JP6202718B2 - 放熱基板 - Google Patents

放熱基板 Download PDF

Info

Publication number
JP6202718B2
JP6202718B2 JP2013064800A JP2013064800A JP6202718B2 JP 6202718 B2 JP6202718 B2 JP 6202718B2 JP 2013064800 A JP2013064800 A JP 2013064800A JP 2013064800 A JP2013064800 A JP 2013064800A JP 6202718 B2 JP6202718 B2 JP 6202718B2
Authority
JP
Japan
Prior art keywords
plane
grain boundary
ray diffraction
diffraction intensity
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013064800A
Other languages
English (en)
Other versions
JP2014189817A (ja
Inventor
牧 一誠
一誠 牧
広行 森
広行 森
公 荒井
公 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2013064800A priority Critical patent/JP6202718B2/ja
Publication of JP2014189817A publication Critical patent/JP2014189817A/ja
Application granted granted Critical
Publication of JP6202718B2 publication Critical patent/JP6202718B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、純度99.90mass%以上の純銅からなる放熱基板に関するものである。
従来、上述の純銅板は熱伝導に優れていることから、例えば特許文献1に開示されているように、半導体素子等の電子部品から発生する熱を放散させる放熱基板として広く使用されている。
ここで、MPUやCPUに用いられる放熱器においては、例えば特許文献1に記載されているように、上述の純銅板からなる放熱基板と半導体素子との間に、金属フィラー、グラファイト等を含有した有機系の樹脂バインダーなどからなる熱伝導部材を介在させている。熱伝導部材を放熱基板と半導体素子の接合面の凹凸に追従するように配置することで、放熱基板と半導体素子とを密着させ、放熱特性の向上を図っている。
特開2009−212495号公報
ところで、放熱基板等に用いられる純銅板は、通常、純銅からなるインゴットを熱間加工(熱間圧延又は熱間鍛造)した後、冷間圧延を施し、その後、結晶粒の微細化や歪みの軽減のために熱処理を施すことにより製造されている。なお、冷間圧延と熱処理は、要求される純銅板のサイズや特性に応じて、繰り返し実施されることもある。
また、純銅板を放熱基板として用いる場合には、純銅板に対してエッチング、めっき等の表面処理が施される。
ここで、上述の製造方法によって製造された純銅板においては、熱処理後に、圧延面に{200}面が発達することが知られている。ここで、{200}面は、それ以外の結晶面に比べてエッチング速度が遅いことから、圧延面において{200}面が発達した場合には、エッチング処理を行った際に凹凸が形成されて表面が粗化しやすい傾向にある。
放熱基板の表面が粗化されている場合には、有機系の樹脂バインダーなどからなる熱伝導部材が十分に追従せず、放熱基板と熱伝導部材との間に空隙が生じ、放熱特性が劣化するといった問題があった。
この発明は、前述した事情に鑑みてなされたものであって、エッチング等によって表面に凹凸が生じにくく、他の部材との密着性に優れた放熱基板を提供することを目的とする。
この課題を解決するために、本発明の放熱基板は、純度99.90mass%以上の純銅からなり、圧延面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{200}面からのX線回折強度の割合R{200}をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.9以下とされており、板厚が0.1mm以上とされており、切断法により測定された圧延面における結晶粒の平均粒径が60μm以下であり、EBSD法にて測定した全結晶粒界長さLに対する全特殊粒界長さLσの比率である特殊粒界長さ比率(Lσ/L)が40%以上とされていることを特徴としている
上述の構成とされた本発明の放熱基板においては、{200}面からのX線回折強度の割合R{200}が0.9以下とされており、{200}面の発達が抑制されているので、圧延面において結晶毎のエッチング速度の差異が小さくなり、大きな凹凸が形成されにくく、表面の粗化を抑制できる。よって、他の部材との密着性に優れることになる。なお、上述の作用効果を確実に奏功せしめるためには、{200}面からのX線回折強度の割合R{200}を0.85以下とすることが好ましい。さらに好ましくは0.8以下である。
この構成の放熱基板においては、{200}面からのX線回折強度の割合R{200}が0.9以下とされているので、エッチング後においても表面の凹凸が少なく、他の部材との密着性に優れている。また、板厚が0.1mm以上とされているので、熱を板面方向に拡げることができ、放熱特性に優れている。よって、半導体素子等の放熱基板として特に適している。
また、純度が99.90mass%以上の純銅で構成されているので、熱伝導性に特に優れることになる。なお、不純物が少ないほど熱伝導性が向上することから、銅の純度は、99.95mass%以上が好ましく、99.99mass%以上がさらに好ましい。
さらに、板厚が0.1mm以上とされているので、剛性が確保され、取扱いが容易となる。さらに、熱を板面方向に拡げることができ、放熱特性を向上させることができる。なお、上述の作用効果を確実に奏功せしめるためには、板厚が0.2mm以上とされていることが好ましい。
ここで、本発明の放熱基板においては、切断法(JIS H 0501:1986で規定)により測定された圧延面における結晶粒の平均粒径が60μm以下と比較的小さくされているので、圧延面の結晶粒のエッチング速度が大きく異なっていてエッチング速度が速い結晶粒が優先的にエッチングされた場合であっても、表面に形成される凹凸を小さく抑えることができる。なお、上述の作用効果を確実に奏功せしめるためには、圧延面における結晶の平均粒径が50μm以下とすることが好ましく、さらに40μm以下が好ましく、30μm以下とすることがさらに好ましい。
また、本発明の放熱基板においては、EBSD法にて測定した全結晶粒界長さLに対する全特殊粒界長さLσの比率である特殊粒界長さ比率(Lσ/L)が40%以上とされており、特殊粒界が多く存在していることになる。ランダム粒界と特殊粒界で囲まれた結晶粒は、上述の切断法で測定された結晶粒径よりも微細となる。よって、エッチングにおいて表面の凹凸をさらに小さく抑えることができる。また、特殊粒界は、他の粒界に比べてエッチングされにくい性質を有していることから、表面の粗化をさらに抑制することができる。なお、上述の作用効果を確実に奏功せしめるためには、特殊粒界長さ比率(Lσ/L)を50%以上とすることが好ましく、さらに好ましくは55%以下である。
また、本発明の放熱基板においては、{200}面からのX線回折強度の割合R{200}が0.9以下とされているので、エッチング後においても表面の凹凸が少なく、他の部材との密着性に優れている。また、板厚が0.1mm以上とされているので、熱を板面方向に拡げることができ、放熱特性に優れている。よって、半導体素子等の放熱基板として特に適している。
本発明によれば、エッチング等によって表面に凹凸が生じにくく、他の部材との密着性に優れた放熱基板を提供することができる。
以下に、本発明の一実施形態である純銅板について説明する。
本実施形態である純銅板は、純度が99.90mass%以上である純銅で構成されている。
また、本実施形態である純銅板は、切断法(JIS H 0501:1986で規定)により測定された圧延面における結晶粒の平均粒径が100μm以下とされており、さらに、EBSD法にて測定した全結晶粒界長さLに対する全特殊粒界長さLσの比率である特殊粒界長さ比率(Lσ/L)が40%以上とされている。
そして、本実施形態である純銅板においては、
圧延面における{111}面からのX線回折強度をI{111}、
{200}面からのX線回折強度をI{200}、
{220}面からのX線回折強度をI{220}、
{311}面からのX線回折強度をI{311}、
{200}面からのX線回折強度の割合R{200}を
R{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.9以下とされている。
ここで、上述のように成分組成、結晶組織を規定した理由について以下に説明する。
(成分組成)
本実施形態である純銅板においては、上述のように純度が99.90mass%以上の純銅で構成されている。ここで、銅の熱伝導率は、不純物を少なくすることで向上することから、純度を99.95mass%以上、あるいは、99.99mass%以上とすることが好ましい。
具体的には、本実施形態である純銅板は、タフピッチ銅(UNS C11000)、無酸素銅(UNS C10200)、電子管用無酸素銅(UNS C10100)等で構成されている。
(X線回折強度比)
タフピッチ銅(UNS C11000)、無酸素銅(UNS C10200)、電子管用無酸素銅(UNS C10100)等で構成された純銅板を、冷間圧延工程及び再結晶熱処理工程を含む製造方法によって製造すると、圧延方向に{100}<001>方位、いわゆるCube方位が選択的に発達するが、例えばCube方位に代表される{200}面は、例えば硫酸−過酸化水素系エッチング剤に対して極端にエッチング速度が遅く、エッチングされにくい性質を有している。このため、圧延面に{200}面が多く存在すると、他の方位の結晶粒とのエッチング速度の差が大きい結晶粒が多くなり、エッチング後において、圧延面に大きな凹凸が生じるおそれがある。
このため、本実施形態では、圧延面における{200}面からのX線回折強度の割合R{200}を0.9以下に抑制している。また、{200}面からのX線回折強度の割合R{200}は、上記の範囲内でも0.85以下が好ましい。さらに好ましくは0.8以下である。
なお、{200}面からのX線回折強度の割合R{200}の下限には、特に規定はないが、0.1以上とすることが好ましい。さらに好ましくは0.2以上である。
(平均結晶粒径)
圧延面にエッチング速度が他の結晶粒に比べて極端に速い結晶粒が存在していた場合、エッチング処理時には、当該結晶粒が優先的にエッチングされることになり、この結晶粒の大きさに応じた凹凸が生じることになる。このため、圧延面における結晶の平均粒径を小さくすることで、エッチング後の表面の凹凸を小さく抑えることが可能となる。
以上のことから、本実施形態では、圧延面における結晶の平均粒径を100μm以下に抑制している。なお、圧延面における結晶の平均粒径は50μm以下とすることが好ましく、さらに40μm以下が好ましく、30μm以下とすることがさらに好ましい。
(特殊粒界長さ比率)
特殊粒界長さ比率(Lσ/L)は、電界放出型走査電子顕微鏡を用いたEBSD測定装置によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより得られるものである。
結晶粒界は、二次元断面観察の結果、隣り合う2つの結晶間の配向方位差が15°以上となっている場合の当該結晶間の境界として定義される。
また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
特殊粒界とランダム粒界で囲まれた結晶粒は、上述の切断法で測定された結晶粒径よりも微細となる。また、特殊粒界は、他の粒界に比べてエッチングされにくい性質を有している。以上のことから、特殊粒界が多く存在していることにより、エッチング後の表面の凹凸を小さくすることが可能となるのである。
そこで、本実施形態では、EBSD法にて測定した全結晶粒界長さLに対する全特殊粒界長さLσの比率である特殊粒界長さ比率(Lσ/L)が40%以上に設定している。なお、特殊粒界長さ比率(Lσ/L)を50%以上とすることがさらに好ましく、さらに好ましくは55%以上である。
このような構成とされた本実施形態である純銅板は、以下のような手順で製造される。
まず、銅原料を溶解して上述の純度に調整された純銅の溶湯を溶製し、この溶湯を鋳型に注入して鋳塊を製出する(溶解・鋳造工程)。
得られた鋳塊に対して熱間圧延を施した後、表面の酸化スケールを除去する(熱間圧延工程)。
次に、−200℃から200℃の温度範囲で冷間圧延を実施する(冷間圧延工程)。この冷間圧延工程では、圧下率を5〜99.9%とする。
その後、結晶粒の微細化や歪みの軽減のために熱処理を行う(熱処理工程)。
なお、冷間圧延工程と熱処理工程は、純銅板のサイズや特性に応じて繰り返し実施することになる。
ここで、熱間圧延工程、冷間圧延工程、熱処理工程の条件を適宜調整することにより、圧延面における結晶面(結晶方位)を制御することが可能となる。
このようにして得られた本実施形態である純銅板は、圧延面に、例えば半導体素子が熱伝導部材を介して接合され、半導体パッケージの放熱基板として使用される。
以上のような構成とされた純銅板においては、{200}面からのX線回折強度の割合R{200}が0.9以下とされており、{200}面の発達が抑制されているので、エッチング後においても、圧延面に大きな凹凸が形成されにくく、圧延面の粗化を抑制できる。よって、純銅板を放熱基板として使用し、圧延面に半導体素子等の発熱体を接合した場合には、発熱体と放熱基板(純銅板)との密着性に優れ、発熱体からの熱を効率よく放散することが可能となる。
また、本実施形態である純銅板は、純度が99.90mass%以上の純銅で構成され、具体的には、タフピッチ銅(UNS C11000)、無酸素銅(UNS C10200)、電子管用無酸素銅(UNS C10100)で構成されているので、熱伝導性に特に優れており、圧延面に接合された半導体素子等の発熱体からの熱を効率よく伝達することができる。
さらに、本実施形態である純銅板は、板厚が0.1mm以上の圧延板とされており、さらに好ましくは板厚が0.2mm以上とされているので、圧延面に接合された半導体素子等の発熱体からの熱を板面方向に拡げることができ、放熱特性を向上させることができる。また、純銅板の剛性が確保されるため、取扱いが容易となる。
また、本実施形態においては、切断法(JIS H 0501:1986)により測定された圧延面における結晶粒の平均粒径が100μm以下とされているので、圧延面の結晶粒の一部が他の結晶粒に比べてエッチング速度が大きく異なる場合であっても、エッチング後において表面に形成される凹凸を小さく抑えることができ、半導体素子等の発熱体と放熱基板(純銅板)との密着性に優れることになる。
さらに、本実施形態においては、EBSD法にて測定した全結晶粒界長さLに対する全特殊粒界長さLσの比率である特殊粒界長さ比率(Lσ/L)が40%以上とされているので、他の粒界に比べてエッチングされにくい性質を有する特殊粒界が多く存在し、エッチング後の表面の粗化を抑制することができる。また、特殊粒界が存在することにより、結晶粒がさらに分断されて微細となり、エッチングにおいて表面の凹凸をさらに小さく抑えることができる。
このような構成とされた本実施形態である純銅板からなる放熱基板においては、半導体素子等の発熱体との密着性に優れるとともに、放熱特性に優れており、半導体素子等の発熱体からの熱を効率良く放散することができる。よって、性能の良い半導体パッケージ等を提供することができる。
以上、本発明の実施形態である純銅板及び放熱基板について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、純銅板の製造方法の一例について説明したが、製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
さらに、半導体素子が接合される半導体パッケージの放熱基板として使用されるものとして説明したが、これに限定されることはなく、他の用途に使用される純銅板及び放熱基板であってもよい。
以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
銅の純度が99.99mass%を超える電子管用無酸素銅(UNS C10100)、銅の純度が99.99mass%程度の無酸素銅(UNS C10200)、銅の純度が99.95mass%程度のタフピッチ銅(UNS C11000)の鋳塊を準備した。なお、鋳塊のサイズを幅40mm×長さ100mm×厚さ32mmとした。
この鋳塊を熱間圧延した。なお、開始温度を800℃、総圧下率を60%とした。熱間圧延終了後は、100℃以下の温度になるまで200℃/min以上の冷却速度で水冷した。
その後、熱間圧延材を面削及び切断して、幅40mm×長さ50mm×厚さ12mmとし、冷間圧延を実施した。このとき、圧下率を15〜99%、圧延時の材料温度を−200〜200℃の範囲内とした。
次に、冷間圧延材に対して、ホットプレートまたは焼鈍炉を用いて、表1に示す昇温速度、保持温度、保持時間で熱処理を実施した。
なお、本発明例4〜6においては、表1に示すように、冷間圧延及び熱処理を2回実施した。
このようにして、本発明例1〜14、比較例1〜4の純銅板を作製した。
得られた本発明例1〜14、比較例1〜4の純銅板について、板厚、圧延面のX線回折強度比、平均結晶粒径、特殊粒界長さ比率、エッチング後の表面粗さを評価した。
(圧延面のX線回折強度比)
圧延面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度I{200}、{220}面からのX線回折強度I{220}、{311}面からのX線回折強度I{311}は、次のような手順で測定する。特性評価用条材から測定試料を採取し、反射法で、測定試料に対して1つの回転軸の回りのX線回折強度を測定した。ターゲットにはCuを使用し、KαのX線を使用した。管電流40mA、管電圧40kV、測定角度40〜150°、測定ステップ0.02°の条件で測定し、回折角とX線回折強度のプロファイルにおいて、X線回折強度のバックグラウンドを除去後、各回折面からのピークのKα1とKα2を合わせた積分X線回折強度Iを求め、式 R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}) より、R{200}の値を求めた。
(平均結晶粒径)
平均結晶粒径の測定は、純銅板の圧延面(ND面)にて、光学顕微鏡を使用してミクロ組織観察を行い、JIS H 0501:1986(切断法)に準拠して行った。
(特殊粒界長さ比率)
各試料について、圧延方向(RD方向)に沿う縦断面(TD方向に見た面)を耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。
そして、EBSD測定装置(HITACHI社製 S4300−SEM、EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより、特殊粒界長さ比率の解析を行った。
まず、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、電子線を試料表面に2次元で走査させ、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。
また、測定範囲における結晶粒界の全粒界長さLを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσと、上記測定した結晶粒界の全粒界長さLとの粒界長さ比率Lσ/Lを求め、特殊粒界長さ比率(Lσ/L)とした。
(エッチング後の表面粗さ)
表面粗さの評価は、各試料から切り出した各試験片を表面処理液(HSO:70.5g/L(0.72mol/L)、H:34g/L(1mol/L))に3分間浸してエッチングを行った後、菱化システム社製非接触表面・層断面形状計測システムVertScan2.0−R5500HML−150Aにより、圧延面(ND面)における3次元算術平均粗さSaを測定した。
平均粗さSaは、VertScanにて測定データから算出される粗さ画像の、高さ平均値と各点の高さの差の絶対値平均であり、次の式で表わされる。なお、Zs(x,y)を粗さ画像の点(x,y)の高さ、lx、lyを、x,y方向の範囲とする。
Figure 0006202718
Figure 0006202718
測定範囲はRD方向470μmにTD方向350μmの長方形とし、この範囲を640pixel×480pixelとなるように倍率を調整して、1試料につき3ヶ所測定した。3ヶ所のSaの算術平均からSaの平均値を算出し、各試料の表面粗さとした。
条件、評価結果について、表1、2に示す。
Figure 0006202718
Figure 0006202718
圧延面における{200}面からのX線回折強度の割合R{200}が0.9を超える比較例1〜4においては、エッチング後の表面粗さSaが大きくなっていることが確認される。
これに対して、圧延面における{200}面からのX線回折強度の割合R{200}が0.9以下とされた本発明例1,2,4〜14においては、エッチング後の表面粗さSaが小さく、大きな凹凸の発生が抑制されていることが確認される。特に、割合R{200}を0.8以下とした本発明例1,2,4〜8、13、14においては、さらにエッチング後の表面粗さSaが小さくなることが確認された。
以上のことから、本発明例によれば、エッチングによって表面に凹凸が生じにくく、他の部材との密着性に優れた純銅板を得ることが可能となる。
本発明は、純銅板に関するものであり、特に放熱基板、バッキングプレート、スティーブモールド、加速器用電子管、マグネトロン、超電導安定化材、真空部材、熱交換機の管板、バスバー、電極材、めっき用アノード等に用いることができる。

Claims (1)

  1. 純度99.90mass%以上の純銅からなり、
    圧延面における{111}面からのX線回折強度をI{111}、
    {200}面からのX線回折強度をI{200}、
    {220}面からのX線回折強度をI{220}、
    {311}面からのX線回折強度をI{311}、
    {200}面からのX線回折強度の割合R{200}を
    R{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.9以下とされており、
    板厚が0.1mm以上とされており、
    切断法により測定された圧延面における結晶粒の平均粒径が60μm以下であり、
    EBSD法にて測定した全結晶粒界長さLに対する全特殊粒界長さLσの比率である特殊粒界長さ比率(Lσ/L)が40%以上とされていることを特徴とする放熱基板。
JP2013064800A 2013-03-26 2013-03-26 放熱基板 Active JP6202718B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064800A JP6202718B2 (ja) 2013-03-26 2013-03-26 放熱基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064800A JP6202718B2 (ja) 2013-03-26 2013-03-26 放熱基板

Publications (2)

Publication Number Publication Date
JP2014189817A JP2014189817A (ja) 2014-10-06
JP6202718B2 true JP6202718B2 (ja) 2017-09-27

Family

ID=51836392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064800A Active JP6202718B2 (ja) 2013-03-26 2013-03-26 放熱基板

Country Status (1)

Country Link
JP (1) JP6202718B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462074A (zh) 2017-03-31 2019-11-15 古河电气工业株式会社 用于带铜板的绝缘基板的铜板材及其制造方法
JP6926013B2 (ja) * 2018-02-23 2021-08-25 Jx金属株式会社 フレキシブルプリント基板用銅箔、フレキシブルプリント基板用銅箔の販売製品、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
KR102343189B1 (ko) 2018-03-29 2021-12-24 후루카와 덴끼고교 가부시키가이샤 절연 기판 및 그 제조 방법
WO2019187767A1 (ja) * 2018-03-29 2019-10-03 古河電気工業株式会社 絶縁基板及びその製造方法
JP6954211B2 (ja) * 2018-03-30 2021-10-27 日本製鉄株式会社 金属成形板、塗装金属成形板および成形方法
EP3950981A4 (en) * 2019-03-29 2023-04-26 Mitsubishi Materials Corporation COPPER MATERIAL AND HEAT-DISSIPTING ELEMENT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197134B1 (en) * 1997-01-08 2001-03-06 Dowa Mining Co., Ltd. Processes for producing fcc metals
US6478902B2 (en) * 1999-07-08 2002-11-12 Praxair S.T. Technology, Inc. Fabrication and bonding of copper sputter targets
JP5320638B2 (ja) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ 圧延銅箔およびその製造方法
JP4974197B2 (ja) * 2009-08-28 2012-07-11 古河電気工業株式会社 スパッタリングターゲット用銅材料およびその製造方法
JP4869415B2 (ja) * 2010-02-09 2012-02-08 三菱伸銅株式会社 純銅板の製造方法及び純銅板

Also Published As

Publication number Publication date
JP2014189817A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
JP6202718B2 (ja) 放熱基板
TWI518197B (zh) 熱軋銅板
JP4869415B2 (ja) 純銅板の製造方法及び純銅板
JP6678757B2 (ja) 銅板付き絶縁基板用銅板材及びその製造方法
JP6719316B2 (ja) 放熱部材用銅合金板材およびその製造方法
JP6984799B1 (ja) 純銅板、銅/セラミックス接合体、絶縁回路基板
JP4792116B2 (ja) 純銅板の製造方法及び純銅板
JP6378819B1 (ja) Cu−Co−Si系銅合金板材および製造方法並びにその板材を用いた部品
KR20170045106A (ko) 무산소 동판, 무산소 동판의 제조방법 및 세라믹 배선기판
JP5787647B2 (ja) スパッタリングターゲット用銅材料の製造方法
TW201132768A (en) Cu-mg-p-based copper alloy bar and method for producing same
JPWO2019176838A1 (ja) 銅合金板材およびその製造方法ならびに電気電子機器用放熱部品およびシールドケース
JP6219070B2 (ja) 銅合金板材の製造方法
JP6425404B2 (ja) セラミック配線基板用銅合金材、セラミック配線基板及びセラミック配線基板の製造方法
JP2013049893A (ja) 太陽電池インターコネクタ用導体及び太陽電池用インターコネクタ
WO2019187767A1 (ja) 絶縁基板及びその製造方法
JP6146963B2 (ja) 二次電池集電体用銅合金圧延箔およびその製造方法
KR20180133852A (ko) 구리 합금제 백킹 튜브 및 구리 합금제 백킹 튜브의 제조 방법
JP5858961B2 (ja) 応力緩和特性に優れる銅合金板
KR102343189B1 (ko) 절연 기판 및 그 제조 방법
JP5183818B1 (ja) インジウム製スパッタリングターゲット部材及びその製造方法
JP7236299B2 (ja) 高純度アルミニウムシートおよびその製造方法ならびに当該高純度アルミニウムシートを用いたパワー半導体モジュール
JP2017188676A (ja) 放熱基板
WO2013088785A1 (ja) インジウム製スパッタリングターゲット部材及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6202718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250