WO2019181906A1 - 錫又は錫合金めっき液、及びバンプの形成方法 - Google Patents

錫又は錫合金めっき液、及びバンプの形成方法 Download PDF

Info

Publication number
WO2019181906A1
WO2019181906A1 PCT/JP2019/011349 JP2019011349W WO2019181906A1 WO 2019181906 A1 WO2019181906 A1 WO 2019181906A1 JP 2019011349 W JP2019011349 W JP 2019011349W WO 2019181906 A1 WO2019181906 A1 WO 2019181906A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
plating solution
acid
benzalacetone
bump
Prior art date
Application number
PCT/JP2019/011349
Other languages
English (en)
French (fr)
Inventor
康司 巽
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018052012A external-priority patent/JP6635139B2/ja
Priority claimed from JP2019040216A external-priority patent/JP6677873B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US16/768,921 priority Critical patent/US11053600B2/en
Publication of WO2019181906A1 publication Critical patent/WO2019181906A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/1312Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29309Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29313Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29318Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/2932Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating

Definitions

  • the present invention relates to a tin or tin alloy plating solution for forming a tin or tin alloy plating film by electroplating, and a bump forming method using the same. More specifically, the present invention relates to a tin or tin alloy plating solution containing benzalacetone suitable for forming solder bumps having different bump diameters on a substrate such as a semiconductor wafer, and a bump forming method using the same.
  • This application includes Japanese Patent Application No. 2018-52012 filed in Japan on March 20, 2018, Japanese Patent Application No. 2018-57551 filed in Japan on March 26, 2018, and Japan on March 6, 2019. Priority is claimed based on Japanese Patent Application No. 2019-40216 filed in Japan, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses the following matters. Conventionally, vias having a structure with a specified aspect ratio or the like are formed on a base material such as a semiconductor chip mounting substrate. Vias with this structure are filled with vias by electroplating using a tin or tin alloy plating bath in which a specific filling organic compound (C) such as benzal acetone and a nonionic surfactant (D) are combined.
  • a method for forming a protruding electrode is disclosed. According to this method, when the bump electrode is formed on the via on the base material by electroplating of tin or a tin alloy, the coexistence of the component (C) and the component (D) effectively deposits the metal on the upper portion of the via. The metal deposition is preferentially advanced from the bottom of the via. As a result, the via can be filled smoothly without the generation of voids.
  • Patent Document 2 discloses (a) a divalent tin salt of alkanesulfonic acid, a divalent lead salt of alkanesulfonic acid, and a divalent tin salt of alkanesulfonic acid and a divalent lead of alkanesulfonic acid.
  • a bath-soluble metal salt selected from the group consisting of a mixture of salts; (b) alkanesulfonic acid; (c) a brightener such as a mixture of ⁇ -naphthaldehyde and benzylideneacetone (benzalacetone); (d) in propylene glycol; An antifoaming agent comprising a mixture of silicone and silica and / or silicate; (e) a first nonionic surfactant comprising an ethoxylated arylphenol; and (f) a second comprising an ethoxylated short chain alcohol.
  • An aqueous acidic tin, lead or tin-lead alloy electroplating bath comprising a nonionic surfactant is disclosed.
  • the brightener ⁇ -naphthaldehyde is present at a concentration of about 0.02 g / L to about 5 g / L
  • benzylideneacetone is present at a concentration of about 0.02 g / L to about 5 g / L. It is shown to exist.
  • This electroplating bath has the inherent ability to foam little or no during electroplating, even under high speed plating conditions such as those caused by the high current density and / or vigorous circulation of the bath. The bath is said to produce uniform and excellent tin and / or lead deposits.
  • Patent Document 3 discloses that metal ions selected from the group consisting of tin ions, lead ions, and mixed ions thereof are about 15.0 g / L to about 350.0 g / L, fluoroborate, fluorosilicic acid. About 100.0 g / L to about 500.0 g / L of a radical selected from the group consisting of a salt, a sulfamate, and a mixed salt thereof; and a specific alkylallyl surfactant of an alkoxylated fatty acid is about 10. Aqueous acidic tin, lead or tin-lead alloy electroplating baths having a pH of less than about 3.0, including 0 g / L to about 25.0 g / L are disclosed.
  • This electroplating bath contains about 0.1 g / L to about 10 carbonyl-containing compounds selected from the group consisting of benzylideneacetone (benzalacetone), 3-butyraldehyde, thiophene aldehyde, tolualdehyde, cinnamaldehyde and anisaldehyde. Further included in an amount of 0.0 g / L.
  • This electroplating bath deposits a sufficiently bright tin-lead alloy plating and provides a simple and efficient electroplating process. Thereby, it is said that a sufficiently glossy tin / lead alloy can be manufactured under economical conditions, and a product having a glossy appearance electroplated with a tin / lead alloy is provided.
  • FIG. 2A First, as shown in FIG. 2A, first, a titanium layer 2 and a surface of a substrate 1 such as a semiconductor wafer substrate are formed. The copper seed layer 3 is formed sequentially. Next, a resist layer 4 is formed, the resist layer 4 is subjected to mask exposure, and development is performed to form a resist pattern 5 having vias 4a and 4b having different diameters. Next, copper or nickel is plated on the copper seed layer 3 in the vias 4a and 4b to form the underlayer 6.
  • tin plating films 7a and 7b are respectively formed.
  • the resist layer 4, the copper seed layer 3, and the titanium layer 2 are sequentially removed.
  • the remaining tin plating deposited layers 7a and 7b are melted by a reflow process.
  • tin bumps 8a and 8b are formed as shown in FIG.
  • the height of the bump 8b with a large bump diameter is larger than the height of the bump 8a with a small bump diameter, resulting in a height difference D, and making the bump height uniform (the bump height). (Improvement of uniformity) cannot be achieved.
  • patterns having different bump diameters are patterns in which the ratio (Smax / Smin) of the minimum underlayer area Smin to the maximum underlayer area Smax is 1.5 or more.
  • Smax / Smin the ratio of the minimum underlayer area Smin to the maximum underlayer area Smax is 1.5 or more.
  • the upper limit value of Smax / Smin is not particularly limited, but is about 30.
  • JP 2016-74963 A Japanese Patent Publication No. 3-17912 U.S. Pat. No. 3,730,853
  • the object of the present invention is to make tin or tin that can provide bumps with a uniform bump height with small variations in height of large and small-diameter bumps formed after reflow, even in patterns with different bump diameters.
  • An alloy plating solution and a bump forming method using the same are provided.
  • the tin or tin alloy plating solution according to the first aspect of the present invention includes a soluble salt (A) containing at least a stannous salt, an acid selected from organic acids and inorganic acids, or a salt thereof (B), and an interface.
  • the benzalacetone (D) is used in an amount of 0.05 g / L to 0.2 g / L in the plating solution, and the mass of the surfactant (C) with respect to the benzalacetone (D).
  • the ratio (C / D) is 10 to 200, and the mass ratio (E / D) of the solvent (E) to the benzalacetone (D) is 10 or more.
  • the surfactant (C) is a nonionic system in which polyoxyethylene (EO) and polyoxypropylene (PO) are condensed.
  • EO polyoxyethylene
  • PO polyoxypropylene
  • the bump forming method according to the third aspect of the present invention uses the tin or tin alloy plating solution according to the first or second aspect to form a plurality of tin or tin alloy plating deposition layers having different diameters on the substrate. And a step of forming a plurality of bumps having different bump diameters by a reflow process.
  • benzalacetone (D) is contained in the plating solution in an amount of 0.05 g / L to 0.2 g / L.
  • the mass ratio (C / D) of the surfactant (C) to benzalacetone (D) is defined as 10 to 200.
  • the mass ratio (E / D) of the solvent (E) to benzalacetone (D) is specified to be 10 or more.
  • FIG. 1 (a) by supplying power through the copper seed layer 13 using this plating solution, when electrotin plating is performed inside the vias of the resist pattern 15, benzal acetone in the plating solution is removed from the vias.
  • the large-diameter via 14b in which the plating solution can easily enter is easy to adsorb benzal acetone and has a great effect of suppressing the precipitation of tin.
  • the small-diameter via 14a, into which the plating solution is difficult to enter has a relatively small amount of benzalacetone adsorbed compared to the large-diameter via 14b, and has a small effect of suppressing the precipitation of tin.
  • the film thickness of the plating deposition layer 17b of the large diameter via 14b is formed thinner than the film thickness of the plating deposition layer 17a of the small diameter via 14a. As shown in FIG.
  • Tin bumps (plating films) 18a and 18b with little variation in bump height and no voids are formed.
  • a board, a plurality of base layers having different areas formed on the substrate, and a plurality of solder bumps formed on each of the plurality of base layers are provided. It is possible to obtain an electronic component with solder bumps of 10% or less.
  • the surfactant (C) is adsorbed on the surface of the plating film to suppress tin crystal growth and refine the crystal. This improves the appearance of the plating film, improves the adhesion between the plating film and the object to be plated, and makes the film thickness uniform. Synergistic effects with benzalacetone (D) make the above effects more effective. Demonstrate.
  • a tin or tin alloy plating deposition layer having a different diameter is formed on a substrate using the tin or tin alloy plating solution according to the first aspect or the second aspect. To do. Next, reflow processing is performed. Thereby, even with patterns having different bump diameters, bumps having a uniform height and no voids can be formed.
  • FIG. 1 is a diagram showing a process of forming bumps in patterns having different bump diameters in the present embodiment.
  • FIG. 1A shows a cross-sectional view in which plating deposition layers having different diameters are formed in vias.
  • FIG. 1 (b) shows a cross-sectional view of the plating deposition layer having different diameters after the resist layer, titanium layer and copper seed layer are peeled off.
  • FIG. 1C shows a cross-sectional view of bumps with different diameters in which the bumps are uniformly formed after the reflow process.
  • FIG. 2 is a diagram showing a process of forming bumps in patterns having different bump diameters in the prior art.
  • FIG. 2A shows a cross-sectional view in which plating deposition layers having different diameters are formed in the via.
  • FIG. 2B shows a cross-sectional view of the plating deposition layer having different diameters after the resist layer, the titanium layer, and the copper seed layer are peeled off.
  • FIG. 2C shows a cross-sectional view of bumps with different diameters in which the bump heights are non-uniformly formed after the reflow process.
  • the tin or tin alloy plating solution of the present embodiment comprises a soluble salt (A) containing at least a stannous salt, an acid selected from organic acids and inorganic acids or a salt thereof (B), and a surfactant (C). And a tin or tin alloy plating solution containing benzalacetone (D) and a solvent (E).
  • A soluble salt
  • B organic acids and inorganic acids or a salt thereof
  • C a surfactant
  • benzalacetone (D) is contained in the plating solution in an amount of 0.05 g / L to 0.2 g / L.
  • the mass ratio (C / D) of the surfactant (C) to benzalacetone (D) is 10 to 200, and the mass ratio of the solvent (E) to benzalacetone (D) (E / D ) Is 10 or more.
  • the base material of this embodiment includes a semiconductor wafer and a substrate for mounting a semiconductor chip.
  • the tin alloy of this embodiment is an alloy of tin and one or more metals selected from silver, copper, bismuth, nickel, antimony, indium, and zinc.
  • binary alloys such as tin-silver alloy, tin-copper alloy, tin-bismuth alloy, tin-nickel alloy, tin-antimony alloy, tin-indium alloy, and tin-zinc alloy, tin-copper-bismuth,
  • ternary alloys such as tin-copper-silver alloys.
  • the soluble salt (A) of this embodiment is a stannous salt, one or more selected from the group consisting of the stannous salt and silver, copper, bismuth, nickel, antimony, indium, and zinc. And a mixture of metal salts.
  • the soluble salt (A) of this embodiment contains various metal ions such as Sn 2+ , Ag + , Cu + , Cu 2+ , Bi 3+ , Ni 2+ , Sb 3+ , In 3+ , and Zn 2+ in the plating solution. It means any soluble salt that forms. Examples of the soluble salt include oxides, halides, inorganic acids, and organic acids of these metals.
  • metal oxide examples include stannous oxide, silver oxide, copper oxide, nickel oxide, bismuth oxide, antimony oxide, indium oxide, and zinc oxide.
  • metal halide examples include stannous chloride, bismuth chloride, bismuth bromide, cuprous chloride, cupric chloride, nickel chloride, antimony chloride, indium chloride, and zinc chloride.
  • Metal salts of inorganic or organic acids include copper sulfate, stannous sulfate, bismuth sulfate, nickel sulfate, antimony sulfate, bismuth nitrate, silver nitrate, copper nitrate, antimony sulfate, indium nitrate, nickel nitrate, zinc nitrate, copper acetate , Nickel acetate, nickel carbonate, sodium stannate, stannous borofluoride, stannous methanesulfonate, silver methanesulfonate, copper methanesulfonate, bismuth methanesulfonate, nickel methanesulfonate, indium metasulfonate, bismethane Examples thereof include zinc sulfonate, stannous ethanesulfonate, and bismuth 2-hydroxypropanesulfonate.
  • the acid or salt (B) of this embodiment is selected from organic acids, inorganic acids, and salts thereof.
  • organic acid include alkane sulfonic acid, alkanol sulfonic acid, organic sulfonic acid such as aromatic sulfonic acid, and aliphatic carboxylic acid.
  • Inorganic acids include borohydrofluoric acid, silicohydrofluoric acid, sulfamic acid, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like.
  • the component (B) is preferably an organic sulfonic acid from the viewpoint of the solubility of the metal salt and the ease of wastewater treatment.
  • examples thereof include sulfonic acid.
  • 2-hydroxyethane-1-sulfonic acid 2-hydroxypropane-1-sulfonic acid, 2-hydroxybutane-1-sulfonic acid, 2-hydroxypentane-1-sulfonic acid, 1-hydroxypropane- 2-sulfonic acid, 3-hydroxypropane-1-sulfonic acid, 4-hydroxybutane-1-sulfonic acid, 2-hydroxyhexane-1-sulfonic acid, 2-hydroxydecane-1-sulfonic acid, 2-hydroxydodecane- Examples thereof include 1-sulfonic acid.
  • the above aromatic sulfonic acid is basically benzenesulfonic acid, alkylbenzenesulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid, and the like. Specifically, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, p-phenolsulfonic acid, cresolsulfonic acid, sulfosalicylic acid, nitrobenzenesulfonic acid, sulfobenzoic acid, diphenylamine-4- Examples thereof include sulfonic acid.
  • aliphatic carboxylic acid examples include acetic acid, propionic acid, butyric acid, citric acid, tartaric acid, gluconic acid, sulfosuccinic acid, and trifluoroacetic acid.
  • the surfactant (C) of this embodiment has an effect of enhancing the effect of suppressing the precipitation of tin in synergy with benzalacetone (D).
  • this surfactant (C) nonionic surfactants obtained by condensation of polyoxyethylene (EO) and polyoxypropylene (PO), or phenol, alkylphenol, styrenated phenol, ⁇ -naphthol, bisphenols, A nonionic surfactant obtained by condensing polyoxyethylene (EO) with any one selected from milphenol is preferable.
  • N, N-dipolyalkylene oxide N— represented by the following formula (1):
  • An alkylamine is preferred.
  • This N, N-dipolyalkylene oxide N-alkylamine has one alkyl group (R) having 5 to 20 carbon atoms in the range of ethylene oxide group (EO group) and propylene oxide group.
  • the EO group is hydrophilic and the PO group is hydrophobic.
  • the water-solubility of N, N-dipolyalkylene oxide N-alkylamine and the adsorptivity to the surface of tin or tin alloy are exhibited in a well-balanced manner. That is, in the plating solution of this embodiment, since the ratio of EO groups and PO groups is in the above range and both the EO groups and PO groups are in a well-balanced state, the nonionic surfactant is tin or a tin alloy. Has a high affinity for and easily adsorbs to the surface of the plating film. A plurality of surfactant molecules are adsorbed on the surface of the plating film to form a layered film and suppress the metal precipitation reaction.
  • the N, N-dipolyalkylene oxide N-alkylamine preferably has a mass average molecular weight in the range of 500 to 30,000. If the mass average molecular weight is too small, the effect of suppressing the precipitation of tin or tin alloy may not be sufficient. On the other hand, when the mass average molecular weight is too large, the suppression force becomes too strong, and there is a possibility that a uniform plating film may not be formed.
  • This N, N-dipolyalkylene oxide N-alkylamine may be used alone or in combination of two or more.
  • the content of N, N-dipolyalkylene oxide N-alkylamine in the plating solution of this embodiment is preferably in the range of 0.1 g / L to 100 g / L, more preferably 1 g / L to 50 g / L. Range. If the content of N, N-dipolyalkylene oxide N-alkylamine is excessively small or large, a uniform plating film may not be formed.
  • nonionic surfactant obtained by condensing phenol and polyoxyethylene examples include polyoxyethylene phenyl ether.
  • examples of the nonionic surfactant in which alkylphenol and polyoxyethylene (EO) are condensed include polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and polyoxyethylene dodecyl phenyl ether.
  • Examples of the nonionic surfactant obtained by condensing styrenated phenol and polyoxyethylene (EO) examples include polyoxyethylene monostyrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, and polyoxyethylene tristyrenation.
  • nonionic surfactant obtained by condensing ⁇ -naphthol and polyoxyethylene (EO) examples include polyoxyethylene ⁇ -naphthyl ether.
  • Nonionic surfactants in which bisphenols and polyoxyethylene (EO) are condensed include polyoxyethylene bisphenol A ether, polyoxyethylene bisphenol E ether, polyoxyethylene bisphenol F ether, polyoxyethylene bisphenol S ether, polyoxy Ethylene bisphenol M ether is mentioned.
  • examples of the nonionic surfactant obtained by condensation of cumylphenol and polyoxyethylene (EO) examples include polyoxyethylene cumylphenyl ether. These nonionic surfactants preferably have a mass average molecular weight in the range of 100 or more and 5000 or less.
  • the mass average molecular weight is too small, the effect of suppressing the precipitation of tin or tin alloy may not be sufficient. On the other hand, when the mass average molecular weight is too large, the suppression force becomes too strong, and there is a possibility that a uniform plating film may not be formed.
  • surfactant (C) of the present embodiment other surfactants may be used alone instead of the surfactant.
  • another surfactant may be used in combination with the above surfactant.
  • examples of other surfactants in this case include ordinary anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants.
  • anionic surfactants include polyoxyethylene (ethylene oxide: containing 12 mol) polyoxyalkylene alkyl ether sulfate such as sodium nonyl ether sulfate; polyoxyethylene (ethylene oxide: containing 12 mol) sodium dodecylphenyl ether sulfate, etc.
  • Polyoxyalkylene alkylphenyl ether sulfates alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; naphthol sulfonates such as 1-naphthol-4-sulfonate sodium and 2-naphthol-3,6-disulfonate disodium ; (Poly) alkyl naphthalene sulfonates such as sodium diisopropyl naphthalene sulfonate, sodium dibutyl naphthalene sulfonate; sodium dodecyl sulfate, sodium oleyl sulfate Alkyl sulfates such as Um like.
  • Cationic surfactants include mono to trialkylamine salts, dimethyldialkylammonium salts, trimethylalkylammonium salts, dodecyltrimethylammonium salts, hexadecyltrimethylammonium salts, octadecyltrimethylammonium salts, dodecyldimethylammonium salts, octadecenyl Dimethylethylammonium salt, dodecyldimethylbenzylammonium salt, hexadecyldimethylbenzylammonium salt, octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, triethylbenzylammonium salt, hexadecylpyridinium salt, dodecylpyridinium salt, dodecylpicolinium salt, dodecylimidazo Linium salt, oleylimidazolinium salt
  • Nonionic surfactants other than the above nonionic surfactants include linear alkyl polyoxyethylene ether, branched alkyl polyoxyethylene ether, alkylphenol polyoxyethylene ether, silicon polyoxyethylene ether, silicon polyoxyethylene ester , Fluorine-based polyoxyethylene ether, fluorine-based polyoxyethylene ester, condensation products of ethylene oxide and / or propylene oxide with alkylamine or diamine, and their sulfated or sulfonated adducts.
  • amphoteric surfactants include betaine, carboxybetaine, imidazolinium betaine, sulfobetaine, and aminocarboxylic acid.
  • Benzalacetone (D) As the benzal acetone (D) of this embodiment, a commercially available one can be used as it is. Moreover, the refined product which removed the impurity contained by refine
  • benzalacetone is hardly adsorbed to a small-diameter via in which the plating solution is difficult to enter, and the plating suppression effect is small. For this reason, compared with the formation of the plating deposition layer with the small diameter via, the formation of the plating deposition layer with the large diameter via is further suppressed. For this reason, the plating film of the large diameter via is formed thinner than the plating film of the small diameter via. When such a plating film is melted by a reflow process, bumps having no variation in height can be obtained.
  • the solvent (E) of this embodiment is preferably an alcohol having 1 to 3 carbon atoms.
  • Alcohols having 1 to 3 carbon atoms improve the solubility of the surfactant and benzalacetone.
  • Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol) and the like. Alcohol can be used individually by 1 type, but can also be used in combination of 2 or more type.
  • the tin or tin alloy plating solution of the present embodiment comprises the soluble tin salt (A), an acid selected from organic acids and inorganic acids or salts thereof (B), a surfactant (C), and benzal acetone. It can be prepared by mixing (D), solvent (E), and water (remainder).
  • benzalacetone (D) has a concentration of 0.05 g / L to 0.2 g / L in the plating solution, preferably 0.06 g / L to 0.18 g / L, more preferably 0.08 g / L. Add to a concentration of ⁇ 0.15 g / L. The larger the difference between the via diameters of different sizes, the larger the addition within the above range. If it is less than 0.05 g / L, the effect of the benzalacetone described above is low, and the variation in height of the different-diameter bumps after reflow cannot be reduced.
  • the surfactant and the benZene are controlled so that the mass ratio (C / D) of the surfactant (C) to the benzalacetone (D) is 10 to 200, preferably 30 to 180, more preferably 50 to 150. Mix with colacetone.
  • the mass ratio C / D is less than 10 or exceeds 200, the action of suppressing the precipitation of tin due to the synergistic effect of benzalacetone and the surfactant does not work sufficiently, and the precipitation of tin on the large-diameter bump is suppressed.
  • the action to do is weakened. For this reason, the variation in the height of the different-diameter bumps after reflow cannot be reduced.
  • the concentration of the surfactant (C) in the plating solution is preferably 5 g / L to 20 g / L. If the amount of the surfactant (C) is excessively small or large, a uniform plating film may not be formed. More preferably, 5 to 10 g / L is suitable.
  • the solvent and benzalacetone are mixed so that the mass ratio (E / D) of the solvent (E) to benzalacetone (D) is 10 or more, preferably 20 or more, more preferably 30 or more. If the mass ratio E / D is less than 10, the required amount of benzal acetone does not dissolve in the solvent, and the plating solution cannot be prepared.
  • the upper limit of the mass ratio E / D is not particularly limited, but is preferably 300 or less. When 300 is exceeded, the solvent more than necessary will be used and there exists a possibility that the cost of a plating solution may rise.
  • the concentration of the solvent (E) in the plating solution is preferably 0.5 g / L to 20 g / L.
  • benzalacetone (D) is precipitated in the plating solution, and the variation in height of the different-diameter bumps after reflow cannot be reduced. If it exceeds 20 g / L, the cost of the plating solution may increase. More preferably, 0.5 to 10 g / L is suitable.
  • soluble metal salt (A) 1 type can be used independently and 2 or more types of mixtures can also be used.
  • the content of the soluble metal salt (A) in the plating solution is 10 to 200 g / L, preferably 50 to 100 g / L. When the content is outside the proper range, a plating film having a smooth surface and good film thickness uniformity cannot be obtained.
  • the inorganic acid, organic acid or salt thereof (B) one kind can be used alone, and a mixture of two or more kinds can also be used.
  • the content of the inorganic acid, organic acid or salt (B) in the plating solution is 10 to 300 g / L, preferably 100 to 200 g / L. When the content is outside the proper range, a plating film having a smooth surface and good film thickness uniformity cannot be obtained.
  • a method for forming bumps using the plating solution of this embodiment will be described.
  • a titanium layer 12 and a copper seed layer 13 are sequentially formed on the surface of a base material 11 such as a semiconductor wafer substrate.
  • the titanium layer 12 is formed by a sputtering method to a thickness of about 100 nm
  • the copper seed layer 13 is formed by a sputtering method to a thickness of about 500 nm.
  • a resist layer 14 having a predetermined thickness is formed.
  • the resist layer 14 is subjected to mask exposure and developed to form a resist pattern 15 having vias 14a and 14b having different diameters.
  • the remaining tin or tin alloy plating deposition layers (tin or tin alloy plating films) 17a and 17b are melted by reflow treatment at 210 ° C. to 240 ° C. in a nitrogen atmosphere.
  • dome-shaped bumps 18a and 18b made of tin or tin alloy are formed.
  • the bumps of tin or tin alloy are not limited to circular cylindrical bumps when viewed from above, but are triangular, quadrilateral, polygonal prismatic bumps when viewed from above, and elliptical elliptical bumps that are elliptical when viewed from above. Including.
  • the electroplating is performed in a range where the current density during the formation of the plating film is 0.1 A / dm 2 or more and 100 A / dm 2 or less, preferably 0.5 A / dm 2 or more and 20 A / dm 2 or less. If the current density is too low, the productivity deteriorates, and if it is too high, the bump height uniformity deteriorates.
  • the liquid temperature is in the range of 10 ° C to 50 ° C, more preferably in the range of 20 ° C to 40 ° C.
  • the base layer is formed, then the resist layer 14 is peeled off, another new resist layer is formed, and this resist is formed so as to have the same diameter as the base layer.
  • the layer may be mask-exposed and developed to form a resist pattern 15 having vias 14a, 14b of different diameters.
  • Example 1 (Building bath of Sn plating solution) ⁇ Example 1> First, benzalacetone (D) and methanol (E) were used and mixed so that E / D was 10 by mass ratio, and benzalacetone was dissolved in methanol. Next, methanesulfonic acid (B) as a free acid and a methanol solution of benzalacetone were mixed with an aqueous solution of methanesulfonic acid Sn (A) to obtain a uniform solution. Next, the N, N-dipolyalkylene oxide N-alkylamine of the above formula (1) was prepared as the surfactant (C).
  • This N, N-dipolyalkylene oxide N-alkylamine has one alkyl group (R) having 12 carbon atoms, and EO group: PO group in a molar ratio of EO group: PO group of 50:50.
  • Two polyalkylene oxide groups (X and Y) containing This surfactant was added so that C / D was 100 by mass ratio.
  • carbon number of the alkyl group of this surfactant is 12, and a mass average molecular weight is 940.
  • ion-exchange water was added and the Sn plating liquid of the following composition was constructed.
  • the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate in a methanesulfonic acid aqueous solution. Further, the amount of alcohol in the plating solution was measured by gas chromatography, and it was confirmed that the content was almost the same as the blending amount.
  • Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L Methanesulfonic acid (as free acid): 150 g / L
  • Nonionic surfactant 5 g / L
  • Benzalacetone 0.05 g / L
  • Methanol 0.5g / L Ion-exchange water: balance
  • Table 1 shows the types and proportions of components (A) to (E) in the plating solution of Example 1, and Table 4 shows the mass ratio (C / D) and mass ratio (E / D).
  • Examples 2 to 17 and Comparative Examples 1 to 5 The types and blending ratios of components (A) to (E) in the plating solutions of Examples 2 to 11 and Comparative Examples 1 to 5 were changed as shown in Tables 1 and 3, and the mass ratio (C / D) and mass were changed. The ratio (E / D) was changed as shown in Table 4. Otherwise, the plating solution was erected in the same manner as in Example 1.
  • a SnAgCu plating solution was constructed using methanesulfonic acid Sn, methanesulfonic acid Ag, and methanesulfonic acid Cu as soluble salts.
  • Example 12 The types and blending ratios of components (A) to (E) in the plating solutions of Examples 12 to 17 were changed as shown in Table 2, and the mass ratio (C / D) and mass ratio (E / D) were displayed. As shown in FIG. Otherwise, the plating solution was erected in the same manner as in Example 1. In Examples 12 to 17, the surfactant (C) shown in Table 2 was used. In Example 13, a SnAg plating solution was constructed using methanesulfonic acid Sn and methanesulfonic acid Ag as soluble salts. In Tables 1 to 3, “MeOH” means methanol, and “IPA” means isopropyl alcohol.
  • the appearance of the plating film on the plated Hull cell plate was visually confirmed using a current density quick-view plate.
  • a glossy or semi-glossy film was evaluated as “good”.
  • the film with dullness and cloudiness was evaluated as “OK”.
  • the film with scorching / burning was evaluated as “bad”. Evaluation was made based on the above three criteria.
  • the tin or tin alloy plating solution of this embodiment can be used for circuit boards such as semiconductor wafer boards, printed circuit boards, flexible printed circuit boards, and semiconductor integrated circuits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

この錫又は錫合金めっき液は、第一錫塩を含む可溶性塩(A)と、有機酸及び無機酸から選ばれた酸又はその塩(B)と、界面活性剤(C)と、ベンザルアセトン(D)と、溶剤(E)とを含み、めっき液は基材上にバンプ径が異なるパターンを形成するために用いられ、ベンザルアセトン(D)の量が0.05g/L~0.2g/Lであり、ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)が10~200であり、ベンザルアセトン(D)に対する溶剤(E)の質量比(E/D)が10以上である。

Description

錫又は錫合金めっき液、及びバンプの形成方法
 本発明は、電気めっき法により錫又は錫合金のめっき膜を形成するための錫又は錫合金めっき液、及びそれを用いたバンプの形成方法に関する。更に詳しくは、半導体ウエハ等の基材上にバンプ径が異なるはんだバンプを形成するのに適する、ベンザルアセトンを含む錫又は錫合金めっき液、及びそれを用いたバンプの形成方法に関する。
 本願は、2018年3月20日に日本に出願された特願2018-52012号、2018年3月26日に日本に出願された特願2018-57551号、及び2019年3月6日に日本に出願された特願2019-40216号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、以下の事項が開示されている。従来、半導体チップ搭載用基板のような基材には、アスペクト比などが特定された構造のビアが形成されている。この構造のビアに、ベンザルアセトンのような特定の充填用有機化合物(C)とノニオン系界面活性剤(D)とを組み合わせた錫又は錫合金めっき浴を用いて、電気めっき方式によりビア充填して、突起電極を形成する方法が開示されている。この方法によれば、基材上のビアに錫又は錫合金の電気めっきにより突起電極を形成するに際し、成分(C)と成分(D)の共存により、ビア上部への金属の析出を効果的に抑制し、金属の析出をビア底部から優先的に進行させる。このことにより、ボイドの発生なしに円滑にビア充填できるとされる。
 また、特許文献2には、(a)アルカンスルホン酸の二価の錫塩、アルカンスルホン酸の二価の鉛塩、並びにアルカンスルホン酸の二価の錫塩及びアルカンスルホン酸の二価の鉛塩の混合物よりなる群から選ばれる浴可溶性金属塩;(b)アルカンスルホン酸;(c)α-ナフトアルデヒド及びベンジリデンアセトン(ベンザルアセトン)の混合物のような光沢剤;(d)プロピレングリコール中にシリコーンとシリカ及び/又はシリケートとの混合物を含む消泡剤;(e)エトキシル化アリールフェノールよりなる第一の非イオン性界面活性剤;及び(f)エトキシル化短鎖アルコールよりなる第二の非イオン性界面活性剤よりなる水性の酸性錫、鉛又は錫・鉛合金の電気めっき浴が開示されている。そして上記光沢剤であるα-ナフトアルデヒドが約0.02g/L~約5g/Lの濃度で存在し、ベンジリデンアセトン(ベンザルアセトン)が約0.02g/L~約5g/Lの濃度で存在することが示される。この電気めっき浴によれば、浴の高い電流密度及び/又は激しい循環により生じるような高速めっき条件下ですら、電気めっき中で殆んど又は全く発泡しない固有の能力を有する。そしてその浴は均一で優れた錫及び/又は鉛の析出物を生成するとされる。
 更に、特許文献3には、錫イオン、鉛イオン及びそれらの混合イオンからなる群より選ばれた金属イオンが約15.0g/L~約350.0g/Lと、フルオロホウ酸塩、フルオロケイ酸塩、スルファミン酸塩及びそれらの混合塩からなる群より選ばれたラジカルが約100.0g/L~約500.0g/Lと、アルコキシル化した脂肪酸の特定のアルキルアリル界面活性剤が約10.0g/L~約25.0g/Lと、を含み、pHが約3.0未満の水性の酸性錫、鉛又は錫・鉛合金の電気めっき浴が開示されている。この電気めっき浴は、ベンジリデンアセトン(ベンザルアセトン)、3-ブチルアルデヒド、チオフェンアルデヒド、トルアルデヒド、桂皮アルデヒド及びアニスアルデヒドからなる群より選ばれたカルボニル含有化合物を約0.1g/L~約10.0g/Lの量で更に含んでいる。この電気めっき浴によれば、十分な光沢のある錫・鉛合金めっきを堆積し、簡潔かつ効率的な電気めっきプロセスが提供される。これにより、十分な光沢のある錫・鉛合金を経済的な条件で製造でき、錫・鉛合金で電気めっきされた光沢のある外観を有する製品を提供するとされる。
 近年では、一つのウエハ基板等の基材上に、バンプ径やバンプピッチが異なる配線パターンが混在するようになってきている。そのような複雑なパターンにおいて、特に異なるバンプ径のバンプを均一な高さで形成することが求められている。上記特許文献1~3のめっき浴によれば、ボイドの発生なしに円滑にビア充填できたり、電気めっき中で発泡せずに均一な析出物を生成できたり、十分な光沢のある製品を簡潔かつ経済的に製造できるなどの優れた特長がある。しかしながら、これらの特許文献1~3におけるめっき液は、一つの基材上にバンプ径の異なる(以下、「異径」ということもある。)バンプを形成するときに、バンプ径の異なるバンプ間の高さの均一性(以下、「バンプの高さ均一性」ということもある。)を図ることをその課題としていない。
 具体的に、バンプ径が異なるパターンでバンプを形成する例を、図2により説明すると、図2(a)に示すように、先ず半導体ウエハ基板のような基材1の表面にチタン層2及び銅シード層3を順次形成する。次いで、レジスト層4を形成し、このレジスト層4にマスク露光をし、現像を行って、異なる径のビア4a、4bを有するレジストパターン5を形成する。次いでこれらのビア4a、4b内の銅シード層3上に銅又はニッケルをめっきして、下地層6を形成する。次に錫めっき液を用いて銅シード層3を通じて給電することにより、レジストパターン5のビア4a、4bの内部に電気錫めっきを行い、下地層6の上のビア4a、4b内に錫めっき堆積層(錫めっき膜)7a、7bをそれぞれ形成する。続いて図2(b)に示すように、レジスト層4、銅シード層3及びチタン層2を順次除去する。次いで、残った錫めっき堆積層7a、7bをリフロー処理により溶融する。これにより、図2(c)に示すように、錫バンプ8a、8bを形成する。これらの錫バンプでは、バンプ径の大きなバンプ8bの高さは、バンプ径の小さなバンプ8aの高さよりも大きくなって、高さの差異Dを生じ、バンプの高さ均一化(バンプの高さ均一性の向上)を図ることができない。
 特許文献1~3に示される従来のベンザルアセトンを含むめっき液を用いて電気めっきを行っても、バンプの高さ均一化(バンプの高さ均一性の向上)を図ることが困難であった。
 なお、本明細書で、バンプ径の異なるパターン、即ち「異径パターン」とは、最小の下地層面積Sminと最大の下地層面積Smaxの比(Smax/Smin)が1.5以上であるパターンをいう。従来のめっき液では、Smax/Sminが1.5以上の場合、異径バンプの高さばらつきを抑えることが困難になる。Smax/Sminの上限値は特に制限はないが、約30である。
特開2016-74963号公報 特公平3-17912号公報 米国特許第3,730,853号公報
 本発明の目的は、バンプ径が異なるパターンでも、リフロー後に形成された大径及び小径のバンプの高さばらつきが小さくバンプ高さの均一性があり、かつボイドの無いバンプが得られる錫又は錫合金めっき液、及びそれを用いたバンプの形成方法を提供することにある。
 本発明の第1の態様に係る錫又は錫合金めっき液は、少なくとも第一錫塩を含む可溶性塩(A)と、有機酸及び無機酸から選ばれた酸又はその塩(B)と、界面活性剤(C)と、ベンザルアセトン(D)と、溶剤(E)とを含む錫又は錫合金めっき液であって、前記めっき液は基材上にバンプ径が異なるパターンを形成するために用いられ、前記ベンザルアセトン(D)が前記めっき液中に0.05g/L~0.2g/Lの量で含まれ、前記ベンザルアセトン(D)に対する前記界面活性剤(C)の質量比(C/D)が10~200であり、前記ベンザルアセトン(D)に対する前記溶剤(E)の質量比(E/D)が10以上である。
 本発明の第2の態様では、第1の態様に係る錫又は錫合金めっき液において、前記界面活性剤(C)が、ポリオキシエチレン(EO)とポリオキシプロピレン(PO)が縮合したノニオン系界面活性剤、もしくはフェノール、アルキルフェノール、スチレン化フェノール、β-ナフトール、ビスフェノール類、及びクミルフェノールから選択されるいずれか1つとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤である。
 本発明の第3の態様に係るバンプの形成方法は、第1又は第2の態様の錫又は錫合金めっき液を用いて、基材上に異なる径の複数の錫又は錫合金めっき堆積層を形成する工程と、次いでリフロー処理をしてバンプ径の異なる複数のバンプを形成する工程を有する。
 本発明の第1の態様の錫又は錫合金めっき液では、ベンザルアセトン(D)がめっき液中に0.05g/L~0.2g/Lの量で含まれる。ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)が10~200に規定される。またベンザルアセトン(D)に対する溶剤(E)の質量比(E/D)が10以上に規定される。図1(a)に示すように、このめっき液を用いて銅シード層13を通じて給電することにより、レジストパターン15のビア内部に電気錫めっきを行うと、めっき液中のベンザルアセトンがビアの底部に吸着し、錫の析出を阻害する。めっき液が入り易い大径のビア14bには、ベンザルアセトンが吸着し易く、錫の析出を抑制する効果が大きい。これに対して、めっき液が入り難い小径のビア14aには、大径のビア14bと比べ、相対的にベンザルアセトンの吸着量が少なく、錫の析出を抑制する効果が小さい。これにより、大径のビア14bのめっき堆積層17bの膜厚が小径のビア14aのめっき堆積層17aの膜厚と比較して、より薄く形成される。図1(b)に示すように、レジスト層14、シード層13、12を順次除去し、次いで残っためっき堆積層17a、17bをリフロー処理により溶融すると、図1(c)に示すように、バンプ高さのばらつきが少なく、かつボイドの無い錫バンプ(めっき膜)18a、18bが形成される。これにより、基板と、基板上に形成された複数のそれぞれ面積が異なる下地層と、複数の下地層上のそれぞれに形成された複数のはんだバンプと、を備え、複数のはんだバンプの高さばらつきが10%以下であるはんだバンプ付き電子部品を得ることができる。
 本発明の第2の態様の錫又は錫合金めっき液では、界面活性剤(C)が、めっき膜の表面に吸着して錫の結晶成長を抑制して、結晶を微細化する。これにより、めっき膜の外観の向上、めっき膜と被めっき物との密着性の向上、膜厚の均一化などの作用が得られ、ベンザルアセトン(D)と相乗して上記効果をより効果的に発揮する。
 本発明の第3の態様のバンプの形成方法では、第1の観点又は第2の観点の錫又は錫合金めっき液を用いて、基材上に異なる径の錫又は錫合金めっき堆積層を形成する。次いで、リフロー処理をする。これにより、バンプ径が異なるパターンでも、高さが均一でかつボイドの無いバンプを形成することができる。
 本発明の第1~3の態様によると、基材上にバンプ高さ均一性のある異径バンプを有する電子部品を提供できる。この電子部品を用いれば、電気的な接続不良のない信頼性の高い半導体装置を作製することができる。
図1は、本実施形態において、バンプ径が異なるパターンにバンプを形成する工程を示す図である。図1(a)はビア内に異なる径のめっき堆積層が形成された断面図を示す。図1(b)はレジスト層、チタン層及び銅シード層を剥離した後の異なる径のめっき堆積層の断面図を示す。図1(c)はリフロー処理した後のバンプの高さが均一に形成された異なる径のバンプの断面図を示す。 図2は、従来技術において、バンプ径が異なるパターンにバンプを形成する工程を示す図である。図2(a)はビア内に異なる径のめっき堆積層が形成された断面図を示す。図2(b)はレジスト層、チタン層及び銅シード層を剥離した後の異なる径のめっき堆積層の断面図を示す。図2(c)はリフロー処理した後のバンプの高さが不均一に形成された異なる径のバンプの断面図を示す。
 次に本発明を実施するための形態を説明する。
 本実施形態の錫又は錫合金めっき液は、少なくとも第一錫塩を含む可溶性塩(A)と、有機酸及び無機酸から選ばれた酸又はその塩(B)と、界面活性剤(C)と、ベンザルアセトン(D)と、溶剤(E)とを含む錫又は錫合金めっき液である。その特徴ある点は、めっき液は基材上にバンプ径が異なるパターンを形成するために用いられ、ベンザルアセトン(D)がめっき液中に0.05g/L~0.2g/Lの量で含まれ、ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)が10~200であり、ベンザルアセトン(D)に対する溶剤(E)の質量比(E/D)が10以上であることにある。なお、本実施形態の基材とは、半導体ウエハ及び半導体チップ搭載用の基板を含む。
 本実施形態の錫合金は、錫と、銀、銅、ビスマス、ニッケル、アンチモン、インジウム、及び亜鉛より選ばれた1種又は2種以上の金属との合金である。例えば、錫-銀合金、錫-銅合金、錫-ビスマス合金、錫-ニッケル合金、錫-アンチモン合金、錫-インジウム合金、及び錫-亜鉛合金などの2元合金や、錫-銅-ビスマス、及び錫-銅-銀合金などの3元合金が挙げられる。
〔少なくとも第一錫塩を含む可溶性塩(A)〕
 本実施形態の可溶性塩(A)は、第一錫塩と、この第一錫塩及び銀、銅、ビスマス、ニッケル、アンチモン、インジウム、亜鉛からなる群から選ばれた1種又は2種以上の金属の塩の混合物とのいずれかよりなる。
 従って、本実施形態の可溶性塩(A)は、めっき液中でSn2+、Ag、Cu、Cu2+、Bi3+、Ni2+、Sb3+、In3+、Zn2+などの各種の金属イオンを生成する任意の可溶性塩を意味する。可溶性塩として、例えば、これら金属の酸化物、ハロゲン化物、無機酸又は有機酸の金属塩などが挙げられる。
 金属酸化物としては、酸化第一錫、酸化銀、酸化銅、酸化ニッケル、酸化ビスマス、酸化アンチモン、酸化インジウム、酸化亜鉛などが挙げられる。
 金属のハロゲン化物としては、塩化第一錫、塩化ビスマス、臭化ビスマス、塩化第一銅、塩化第二銅、塩化ニッケル、塩化アンチモン、塩化インジウム、塩化亜鉛などが挙げられる。
 無機酸又は有機酸の金属塩としては、硫酸銅、硫酸第一錫、硫酸ビスマス、硫酸ニッケル、硫酸アンチモン、硝酸ビスマス、硝酸銀、硝酸銅、硝酸アンチモン、硝酸インジウム、硝酸ニッケル、硝酸亜鉛、酢酸銅、酢酸ニッケル、炭酸ニッケル、錫酸ナトリウム、ホウフッ化第一錫、メタンスルホン酸第一錫、メタンスルホン酸銀、メタンスルホン酸銅、メタンスルホン酸ビスマス、メタンスルホン酸ニッケル、メタスルホン酸インジウム、ビスメタンスルホン酸亜鉛、エタンスルホン酸第一錫、2-ヒドロキシプロパンスルホン酸ビスマスなどが挙げられる。
〔有機酸及び無機酸から選ばれた酸又はその塩(B)〕
 本実施形態の酸又はその塩(B)は、有機酸、無機酸、及びそれらの塩から選択される。
 有機酸には、アルカンスルホン酸、アルカノールスルホン酸、芳香族スルホン酸等の有機スルホン酸、或いは脂肪族カルボン酸などが挙げられる。
 無機酸には、ホウフッ化水素酸、ケイフッ化水素酸、スルファミン酸、塩酸、硫酸、硝酸、過塩素酸などが挙げられる。
 それらの塩は、アルカリ金属の塩、アルカリ土類金属の塩、アンモニウム塩、アミン塩、スルホン酸塩などである。
 成分(B)としては、金属塩の溶解性や排水処理の容易性の観点から有機スルホン酸が好ましい。
 上記アルカンスルホン酸としては、化学式C2n+1SOH(例えば、n=1~5、好ましくは1~3)で示されるものが使用できる。具体的には、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、2-プロパンスルホン酸、1-ブタンスルホン酸、2-ブタンスルホン酸、ペンタンスルホン酸、ヘキサンスルホン酸、デカンスルホン酸、ドデカンスルホン酸などが挙げられる。
 上記アルカノールスルホン酸としては、化学式C2P+1-CH(OH)-C2q-SOH(例えば、p=0~6、q=1~5)で示されるものが使用できる。具体的には、2-ヒドロキシエタン-1-スルホン酸、2-ヒドロキシプロパン-1-スルホン酸、2-ヒドロキシブタン-1-スルホン酸、2-ヒドロキシペンタン-1-スルホン酸、1-ヒドロキシプロパン-2-スルホン酸、3-ヒドロキシプロパン-1-スルホン酸、4-ヒドロキシブタン-1-スルホン酸、2-ヒドロキシヘキサン-1-スルホン酸、2-ヒドロキシデカン-1-スルホン酸、2-ヒドロキシドデカン-1-スルホン酸などが挙げられる。
 上記芳香族スルホン酸は、基本的にはベンゼンスルホン酸、アルキルベンゼンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸、アルキルナフタレンスルホン酸などである。具体的には、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、p-フェノールスルホン酸、クレゾールスルホン酸、スルホサリチル酸、ニトロベンゼンスルホン酸、スルホ安息香酸、ジフェニルアミン-4-スルホン酸などが挙げられる。
 上記脂肪族カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、クエン酸、酒石酸、グルコン酸、スルホコハク酸、トリフルオロ酢酸などが挙げられる。
〔界面活性剤(C)〕
 本実施形態の界面活性剤(C)は、ベンザルアセトン(D)と相乗して錫の析出を抑制する効果を高める作用がある。この界面活性剤(C)としては、ポリオキシエチレン(EO)とポリオキシプロピレン(PO)が縮合したノニオン系界面活性剤、もしくはフェノール、アルキルフェノール、スチレン化フェノール、β-ナフトール、ビスフェノール類、及びクミルフェノールから選択されるいずれか1つとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤であることが好ましい。
 EOPO縮合物(ポリオキシエチレン(EO)とポリオキシプロピレン(PO)が縮合した縮合物)としては、具体的には、下記式(1)で表されるN,N-ジポリアルキレンオキシドN-アルキルアミンであることが好ましい。このN,N-ジポリアルキレンオキシドN-アルキルアミンは、炭素原子数が5個以上20個以下の範囲にあるアルキル基(R)を1個有し、エチレンオキシド基(EO基)とプロピレンオキシド基(PO基)とをモル比(EO基:PO基)でそれぞれ独立に30:70~70:30の範囲にて含むポリアルキレンオキシド基(X及びY)を2個有する。
 EO基は親水性であり、PO基は疎水性である。これにより、N,N-ジポリアルキレンオキシドN-アルキルアミンの水溶性と錫又は錫合金の表面への吸着性とがバランスよく発揮されている。即ち、本実施形態のめっき液においては、EO基とPO基との比率が上記の範囲にあって、EO基とPO基の両者をバランスよく有するので、ノニオン系界面活性剤は錫又は錫合金に対する親和性が高く、めっき膜の表面に吸着し易い。複数の界面活性剤分子がめっき膜の表面に吸着することによって層状の皮膜を形成し、金属の析出反応を抑制する。このため、この界面活性剤により、めっき膜厚が均一になると考えられる。
 N,N-ジポリアルキレンオキシドN-アルキルアミンは、その質量平均分子量が500以上30000以下の範囲にあることが好ましい。質量平均分子量が小さすぎる場合は、錫又は錫合金の析出を抑制する効果が十分でないおそれがある。一方、質量平均分子量が大きすぎる場合は抑制力が強くなり過ぎて、均一なめっき膜が形成されないおそれがある。このN,N-ジポリアルキレンオキシドN-アルキルアミンは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本実施形態のめっき液におけるN,N-ジポリアルキレンオキシドN-アルキルアミンの含有量は、好ましくは0.1g/L以上100g/L以下の範囲、更に好ましくは1g/L以上50g/L以下の範囲である。N,N-ジポリアルキレンオキシドN-アルキルアミンの含有量が過度に少なかったり、または多かったりすると、均一なめっき膜が形成されないおそれがある。
Figure JPOXMLDOC01-appb-C000001
 フェノールとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤としては、ポリオキシエチレンフェニルエーテルが挙げられる。
 アルキルフェノールとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤としては、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテルが挙げられる。
 スチレン化フェノールとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤としては、ポリオキシエチレンモノスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化が挙げられる。
 β-ナフトールとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤としては、ポリオキシエチレンβ-ナフチルエーテルが挙げられる。
 ビスフェノール類とポリオキシエチレン(EO)が縮合したノニオン系界面活性剤としては、ポリオキシエチレンビスフェノールAエーテル、ポリオキシエチレンビスフェノールEエーテル、ポリオキシエチレンビスフェノールFエーテル、ポリオキシエチレンビスフェノールSエーテル、ポリオキシエチレンビスフェノールMエーテルが挙げられる。
 クミルフェノールとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤としては、ポリオキシエチレンクミルフェニルエーテルが挙げられる。
 これらのノニオン系界面活性剤の質量平均分子量は100以上5000以下の範囲にあることが好ましい。質量平均分子量が小さすぎる場合は、錫又は錫合金の析出を抑制する効果が十分でないおそれがある。一方、質量平均分子量が大きすぎる場合は抑制力が強くなり過ぎて、均一なめっき膜が形成されないおそれがある。
 本実施形態の界面活性剤(C)としては、上記界面活性剤の代わりに、他の界面活性剤を単独で用いてもよい。或いは他の界面活性剤を上記界面活性剤と併用してもよい。この場合の他の界面活性剤としては、通常のアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤及び両性界面活性剤が挙げられる。
 アニオン系界面活性剤としては、ポリオキシエチレン(エチレンオキサイド:12モル含有)ノニルエーテル硫酸ナトリウム等のポリオキシアルキレンアルキルエーテル硫酸塩;ポリオキシエチレン(エチレンオキサイド:12モル含有)ドデシルフェニルエーテル硫酸ナトリウム等のポリオキシアルキレンアルキルフェニルエーテル硫酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;1-ナフトール-4-スルホン酸ナトリウム、2-ナフトール-3,6-ジスルホン酸ジナトリウム等のナフトールスルホン酸塩;ジイソプロピルナフタレンスルホン酸ナトリウム、ジブチルナフタレンスルホン酸ナトリウム等の(ポリ)アルキルナフタレンスルホン酸塩;ドデシル硫酸ナトリウム、オレイル硫酸ナトリウム等のアルキル硫酸塩等が挙げられる。
 カチオン系界面活性剤としては、モノ~トリアルキルアミン塩、ジメチルジアルキルアンモニウム塩、トリメチルアルキルアンモニウム塩、ドデシルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウム塩、オクタデシルトリメチルアンモニウム塩、ドデシルジメチルアンモニウム塩、オクタデセニルジメチルエチルアンモニウム塩、ドデシルジメチルベンジルアンモニウム塩、ヘキサデシルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ヘキサデシルピリジニウム塩、ドデシルピリジニウム塩、ドデシルピコリニウム塩、ドデシルイミダゾリニウム塩、オレイルイミダゾリニウム塩、オクタデシルアミンアセテート、ドデシルアミンアセテートなどが挙げられる。
 上記ノニオン系界面活性剤以外のノニオン系界面活性剤としては、直鎖アルキルポリオキシエチレンエーテル、分岐アルキルポリオキシエチレンエーテル、アルキルフェノールポリオキシエチレンエーテル、シリコン系ポリオキシエチレンエーテル、シリコン系ポリオキシエチレンエステル、フッ素系ポリオキシエチレンエーテル、フッ素系ポリオキシエチレンエステル、エチレンオキサイド及び/又はプロピレンオキサイドとアルキルアミン又はジアミンとの縮合生成物及びそれらの硫酸化あるいはスルホン化付加物などが挙げられる。
 両性界面活性剤としては、ベタイン、カルボキシベタイン、イミダゾリニウムベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。
〔ベンザルアセトン(D)〕
 本実施形態のベンザルアセトン(D)は、市販されているものをそのまま使用することができる。また、市販されているものを精製して含有される不純物を除去した精製品を使用することができる。
 ベンザルアセトン(D)は、被めっき物の表面に吸着し、電析による錫の結晶成長を阻害するため、めっき皮膜の堆積を抑制する効果を有する。
 そして、めっき液が入り易い大径のビアにはベンザルアセトンが吸着し易く、めっきの抑制効果が大きい。これに対して、めっき液が入り難い小径のビアにはベンザルアセトンが吸着し難く、めっきの抑制効果が小さい。
 このため、小径のビアでのめっき堆積層の形成と比較して、大径のビアでのめっき堆積層の形成が、より抑制される。このため、大径のビアのめっき膜が、小径のビアのめっき膜よりも薄く形成される。このようなめっき膜をリフロー処理により溶融すると、高さのばらつきのないバンプが得られる。
 なお、ベンザルアセトンの含有量は、異径バンプの径の差の大きさに応じて調整することが好ましい。具体的には、異径バンプの径の差が大きいほど、ベンザルアセトンの配合量を多くすることが好ましい。
〔溶剤(E)〕
 本実施形態の溶剤(E)としては、炭素数が1~3のアルコールが好ましい。炭素数が1~3のアルコールは、上記界面活性剤やベンザルアセトンの溶解性を向上させる。このアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール)等が挙げられる。アルコールは、1種を単独で用いることができるが、2種以上を組合せて用いることもできる。
〔錫又は錫合金めっき液の製造〕
 本実施形態の錫又は錫合金めっき液は、上記可溶性錫塩(A)と、有機酸及び無機酸から選ばれた酸又はその塩(B)と、界面活性剤(C)と、ベンザルアセトン(D)と、溶剤(E)と、水(残部)とを混合することによって調製することができる。
 ここに、ベンザルアセトン(D)はめっき液中に0.05g/L~0.2g/Lの濃度、好ましくは0.06g/L~0.18g/L、より好ましくは0.08g/L~0.15g/Lの濃度になるように添加する。異なる大きさのビア径の差が大きいほど、上記範囲内で多めに添加する。0.05g/L未満では、上述したベンザルアセトンの効果が低くリフロー後の異径バンプの高さのばらつきを小さくすることができない。0.2g/Lを超えると、ベンザルアセトンがビアの底部に過度に吸着し、めっき皮膜表面が粗面化によって黒色となり(一般的に焦げ・ヤケと呼ばれる現象が生じ)、めっき皮膜の外観不良を生じる。
 また、ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)が10~200、好ましくは30~180、より好ましくは50~150になるように、界面活性剤とベンザルアセトンとを混合する。質量比C/Dが10未満、もしくは200を超えた場合では、ベンザルアセトンと界面活性剤の相乗効果による錫の析出を抑制する作用が十分に働かず、大径バンプにおける錫の析出を抑制する作用が弱まる。このため、リフロー後の異径バンプの高さのばらつきを小さくすることができない。
 また、界面活性剤(C)のめっき液中での濃度は5g/L~20g/Lとすることが好ましい。界面活性剤(C)の量が過度に少なかったり、または多かったりすると、均一なめっき膜が形成されないおそれがある。より好ましくは、5~10g/Lが適している。
 更に、ベンザルアセトン(D)に対する溶剤(E)の質量比(E/D)が10以上、好ましくは20以上、より好ましくは30以上になるように、溶剤とベンザルアセトンとを混合する。質量比E/Dが10未満では、必要な量のベンザルアセトンが溶剤に溶解せず、めっき液を作成することが出来ない。質量比E/Dの上限は、特に限定されないが300以下とするとよい。300を超えた場合、必要以上の溶剤を用いることとなり、めっき液のコストが上昇するおそれがある。
 また、溶剤(E)のめっき液中での濃度は0.5g/L~20g/Lとすることが好ましい。0.5g/L未満の場合、めっき液中にベンザルアセトン(D)が析出し、リフロー後の異径バンプの高さのばらつきを小さくすることができない。20g/Lを超えた場合、めっき液のコストが上昇するおそれがある。より好ましくは、0.5~10g/Lが適している。
 また、上記の可溶性金属塩(A)としては、1種を単独で使用でき、また2種以上の混合物も使用できる。めっき液中での可溶性金属塩(A)の含有量は10~200g/L、好ましくは50~100g/Lである。含有量が適正範囲外であると、表面が平滑で膜厚均一性が良好なめっき皮膜が得られなくなる。
 無機酸、有機酸又はその塩(B)としては、1種を単独で使用でき、また2種以上の混合物も使用できる。めっき液中での無機酸、有機酸又はその塩(B)の含有量は10~300g/L、好ましくは100~200g/Lである。含有量が適正範囲外であると、表面が平滑で膜厚均一性が良好なめっき皮膜が得られなくなる。
〔バンプの形成方法〕
 本実施形態のめっき液を用いてバンプを形成する方法について説明する。図1(a)に示すように、先ず半導体ウエハ基板などの基材11の表面にチタン層12及び銅シード層13を順次形成する。例えば、チタン層12は厚さ100nm程度にスパッタリング法により形成され、銅シード層13は厚さ500nm程度にスパッタリング法により形成される。その後、所定の厚さのレジスト層14を形成する。このレジスト層14にマスク露光をし、現像を行って異なる径のビア14a、14bを有するレジストパターン15を形成する。次いでこれらのビア14a、14b内の銅シード層13上に銅またはニッケルをめっきし、下地層16を形成する。次に上述した本実施形態の錫又は錫合金めっき液を用いて、銅シード層13を通じて給電することにより、レジストパターン15のビア14a、14bの内部に電気錫めっきを行う。これにより、下地層16の上のビア14a、14b内に錫又は錫合金のめっき堆積層(錫又は錫合金のめっき膜)17a、17bをそれぞれ形成する。続いて図1(b)に示すように、有機溶剤を用いて、レジスト層14を剥離する。次いで酸により銅シード層13及びチタン層12を順次エッチングして除去する。更に続いて、残った錫又は錫合金のめっき堆積層(錫又は錫合金のめっき膜)17a、17bを窒素雰囲気下で210℃~240℃でリフロー処理により溶融する。これにより、図1(c)に示すように、ドーム形状の錫又は錫合金のバンプ18a、18bを形成する。なお、錫又は錫合金のバンプは、上面視で円形の円柱状のバンプに限らず、上面視で三角形、四角形、多角形の角柱状のバンプ、及び上面視で楕円形の楕円柱状のバンプを含む。
 ここで、電気めっきは、めっき膜の形成時の電流密度が0.1A/dm以上100A/dm以下の範囲、好ましくは0.5A/dm以上20A/dm以下の範囲で行う。電流密度が低すぎると生産性が悪化し、高すぎるとバンプの高さ均一性が悪化してしまう。液温は、10℃以上50℃以下の範囲、より好ましくは20℃以上40℃以下の範囲である。
 なお、図示しないが、上記バンプの形成方法において、下地層を形成し、次いでレジスト層14を剥離し、別の新たなレジスト層を形成し、下地層の径と同じになるように、このレジスト層をマスク露光し、現像を行って、異なる径のビア14a、14bを有するレジストパターン15を形成してもよい。
 次に本発明の実施例を比較例とともに詳しく説明する。
(Snめっき液の建浴)
 <実施例1>
 先ず、ベンザルアセトン(D)とメタノール(E)を用い、質量比でE/Dが10になるように混合して、ベンザルアセトンをメタノールに溶解した。次いでメタンスルホン酸Sn(A)の水溶液に、遊離酸としてのメタンスルホン酸(B)と、ベンザルアセトンのメタノール溶液を混合して、均一な溶液を得た。次いで、界面活性剤(C)として、上述した式(1)のN,N-ジポリアルキレンオキシドN-アルキルアミンを用意した。このN,N-ジポリアルキレンオキシドN-アルキルアミンは、炭素原子数12個のアルキル基(R)を1個有し、EO基:PO基が50:50のモル比でEO基とPO基を含むポリアルキレンオキシド基(X及びY)を2個有した。この界面活性剤を質量比でC/Dが100となるように加えた。なお、この界面活性剤のアルキル基の炭素数は12、質量平均分子量は940である。そして最後にイオン交換水を加えて、下記組成のSnめっき液を建浴した。
 なお、メタンスルホン酸Sn水溶液は、金属Sn板をメタンスルホン酸水溶液中で電解させることにより調製した。まためっき液中のアルコール量をガスクロマトグラフィーにより測定し、配合量とほぼ同じ含有量であることを確認した。
(Snめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):80g/L
 メタンスルホン酸(遊離酸として):150g/L
 ノニオン系界面活性剤:5g/L
 ベンザルアセトン:0.05g/L
 メタノール:0.5g/L
 イオン交換水:残部
 実施例1のめっき液中の成分(A)~(E)の種類と配合割合を表1に示し、質量比(C/D)及び質量比(E/D)を表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <実施例2~17及び比較例1~5>
 実施例2~11及び比較例1~5のめっき液中の成分(A)~(E)の種類と配合割合を表1,3に示すように変更し、質量比(C/D)及び質量比(E/D)を表4に示すように、変更した。それ以外は、実施例1と同様にして、めっき液を建浴した。実施例6では、メタンスルホン酸Sn、メタンスルホン酸Ag及びメタンスルホン酸Cuを可溶性塩として用いて、SnAgCuめっき液を建浴した。
 実施例12~17のめっき液中の成分(A)~(E)の種類と配合割合を表2に示すように変更し、質量比(C/D)及び質量比(E/D)を表4に示すように、変更した。それ以外は、実施例1と同様にして、めっき液を建浴した。実施例12~17では、表2に示す界面活性剤(C)を用いた。実施例13では、メタンスルホン酸Sn、メタンスルホン酸Agを可溶性塩として用いて、SnAgめっき液を建浴した。
 なお、表1~3中、「MeOH」はメタノールを、「IPA」はイソプロピルアルコールを意味する。
 <比較試験及び評価>
 実施例1~17及び比較例1~5の22種類の建浴しためっき液を用いて、図1(a)~(c)に示すように、22種類のシリコンウエハ上に、液温25℃、電流密度4A/dmの条件で電気めっきを行った。これにより、上面視がそれぞれ円形である小径のビア及び大径のビアの内部の下地層上にめっき膜を形成した。その後、レジスト層、銅シード層及びチタン層を順次除去した。続いて、残っためっき膜を窒素雰囲気下で、240℃でリフロー処理により溶融した。これにより、直径約20μmの小径のバンプを2000個、形成し、直径約60μmの大径のバンプを2000個、形成した。(1)リフロー処理した後のバンプの高さばらつき(均一性)及び(2)バンプ表面のめっき膜の外観を次の方法で評価した。その結果を上記の表4に示す。
(1)バンプの高さばらつき(均一性)
 下地層の表面からドーム形状のバンプの頭頂部までの距離をリフロー処理後のバンプの高さとした。2000個の小径のバンプと2000個の大径のバンプ、計4000個について、それぞれのバンプの高さを、レーザー顕微鏡を用いて測定した。4000個のバンプの高さの平均値、最大値及び最小値を求め、下記の式によりバンプの高さばらつきを算出した。
 バンプ高さばらつき(%)={(最大値-最小値)/平均値}×100
(2)バンプ表面のめっき膜の外観
 22種類の建浴した錫及び錫合金めっき液を山本鍍金試験器社製のハルセル槽にそれぞれ別々に入れた。液中にカソードとして銅製ハルセル板を配置し、アノードとして白金板を配置し、ハルセル試験を行った。めっき条件としては、液温を25℃とし、通電電流を3Aとし、めっき処理時間は5分間とした。めっき処理中、めっき液をカソードロッカーで撹拌した。以下の手順でハルセル評価を行った。めっき処理したハルセル板上のめっき膜の皮膜外観を、電流密度早見板を用いて、目視で確認した。光沢・半光沢のある皮膜を「良好」と評価した。無光沢・くもりのある皮膜を「可」と評価した。焦げ・ヤケのある皮膜を「不良」と評価した。以上の3つの判断基準で評価した。
 表4から明らかなように、比較例1では、めっき膜の外観は「可」であった。しかし、ベンザルアセトンのめっき液中に含有割合が0.01g/Lと少な過ぎたため、リフロー処理後のバンプの高さばらつきが16.2%と大きく、バンプの高さ均一性に劣っていた。
 比較例2では、リフロー処理後のバンプの高さばらつきが7.1%と小さく、バンプの高さ均一性はあった。しかし、ベンザルアセトンのめっき液中の含有割合が0.3/Lと過剰であったため、めっき膜の外観は「不良」であった。
 比較例3では、めっき膜の外観は「可」であった。しかし、ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)が5と小さ過ぎたため、リフロー処理後のバンプの高さばらつきが12.8%と大きく、バンプの高さ均一性に劣っていた。
 比較例4では、めっき膜の外観は「可」であった。しかし、ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)が250と大き過ぎたため、リフロー処理後のバンプの高さばらつきが21.5%と大きく、バンプの高さ均一性に劣っていた。
 比較例5では、ベンザルアセトン(D)に対する溶剤(E)の質量比(E/D)が5と小さ過ぎたため、ベンザルアセトンが溶剤であるメタノールに溶けなかった。そのため、リフロー処理後のバンプの高さばらつきとめっき膜の外観の評価はいずれもできなかった。
 これに対して、表4から明らかなように、実施例1~17では、ベンザルアセトン(D)のめっき液中の含有割合、ベンザルアセトン(D)に対する界面活性剤(C)の質量比(C/D)、及びベンザルアセトン(D)に対する溶剤(E)の質量比(E/D)が本実施形態の要件をすべて満たしていた。このため、リフロー処理後のバンプの高さばらつきが1.8~8.6と小さく、まためっき膜の外観は「良好」又は「可」であった。
 本実施形態の錫又は錫合金めっき液は、半導体ウエハ基板、プリント回路基板、フレキシブルプリント回路基板、半導体集積回路などの回路基板に利用することができる。
 11 基材
 12 チタン層
 13 銅シード層
 14 レジスト層
 14a、14b ビア
 15 レジストパターン
 16 下地層
 17a、17b 錫又は錫合金めっき堆積層(錫又は錫合金めっき膜)
 18a、18b 錫バンプ

Claims (3)

  1.  少なくとも第一錫塩を含む可溶性塩(A)と、有機酸及び無機酸から選ばれた酸又はその塩(B)と、界面活性剤(C)と、ベンザルアセトン(D)と、溶剤(E)とを含む錫又は錫合金めっき液であって、
     前記めっき液は基材上にバンプ径が異なるパターンを形成するために用いられ、
     前記ベンザルアセトン(D)が前記めっき液中に0.05g/L~0.2g/Lの量で含まれ、
     前記ベンザルアセトン(D)に対する前記界面活性剤(C)の質量比(C/D)が10~200であり、
     前記ベンザルアセトン(D)に対する前記溶剤(E)の質量比(E/D)が10以上であることを特徴とする錫又は錫合金めっき液。
  2.  前記界面活性剤(C)が、ポリオキシエチレン(EO)とポリオキシプロピレン(PO)が縮合したノニオン系界面活性剤、もしくはフェノール、アルキルフェノール、スチレン化フェノール、β-ナフトール、ビスフェノール類、及びクミルフェノールから選択されるいずれか1つとポリオキシエチレン(EO)が縮合したノニオン系界面活性剤である請求項1記載の錫又は錫合金めっき液。
  3.  請求項1又は2記載の錫又は錫合金めっき液を用いて、基材上に異なる径の複数の錫又は錫合金めっき堆積層を形成する工程と、次いでリフロー処理をしてバンプ径の異なる複数のバンプを形成する工程を有するバンプの形成方法。
PCT/JP2019/011349 2018-03-20 2019-03-19 錫又は錫合金めっき液、及びバンプの形成方法 WO2019181906A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,921 US11053600B2 (en) 2018-03-20 2019-03-19 Tin or tin alloy plating solution and bump forming method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-052012 2018-03-20
JP2018052012A JP6635139B2 (ja) 2018-03-20 2018-03-20 錫又は錫合金めっき堆積層の形成方法
JP2018-057551 2018-03-26
JP2018057551 2018-03-26
JP2019-040216 2019-03-06
JP2019040216A JP6677873B2 (ja) 2018-03-26 2019-03-06 錫又は錫合金めっき液及び該液を用いたバンプの形成方法

Publications (1)

Publication Number Publication Date
WO2019181906A1 true WO2019181906A1 (ja) 2019-09-26

Family

ID=67986477

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/011348 WO2019181905A1 (ja) 2018-03-20 2019-03-19 錫又は錫合金のめっき液、バンプの形成方法、回路基板の製造方法
PCT/JP2019/011349 WO2019181906A1 (ja) 2018-03-20 2019-03-19 錫又は錫合金めっき液、及びバンプの形成方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011348 WO2019181905A1 (ja) 2018-03-20 2019-03-19 錫又は錫合金のめっき液、バンプの形成方法、回路基板の製造方法

Country Status (2)

Country Link
TW (1) TWI754135B (ja)
WO (2) WO2019181905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230323554A1 (en) * 2020-11-25 2023-10-12 Mitsubishi Materials Corporation Tin alloy plating solution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783235B (zh) * 2020-06-10 2022-11-11 南亞電路板股份有限公司 電路板結構及其形成方法
JP7357824B1 (ja) 2022-12-16 2023-10-06 株式会社荏原製作所 めっき装置およびめっき方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348347A (ja) * 2005-06-16 2006-12-28 Nippon Mektron Ltd 電子部品の表面処理方法
JP2010283035A (ja) * 2009-06-02 2010-12-16 Toshiba Corp 電子部品とその製造方法
WO2013046731A1 (ja) * 2011-09-29 2013-04-04 ユケン工業株式会社 スズめっき用酸性水系組成物
JP2013530544A (ja) * 2010-07-05 2013-07-25 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング はんだ堆積物を基板上に形成する方法
WO2017217387A1 (ja) * 2016-06-13 2017-12-21 石原ケミカル株式会社 電気スズ及びスズ合金メッキ浴、当該メッキ浴を用いて電着物を形成した電子部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922026B (zh) * 2010-08-18 2012-02-01 济南德锡科技有限公司 甲基磺酸系镀亚光纯锡电镀液添加剂及其电镀液
JP6133056B2 (ja) 2012-12-27 2017-05-24 ローム・アンド・ハース電子材料株式会社 スズまたはスズ合金めっき液
JP6006683B2 (ja) 2013-06-26 2016-10-12 株式会社Jcu スズまたはスズ合金用電気メッキ液およびその用途
WO2015033921A1 (ja) 2013-09-03 2015-03-12 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2015193916A (ja) 2014-03-18 2015-11-05 上村工業株式会社 錫または錫合金の電気めっき浴、およびバンプの製造方法
JP6442722B2 (ja) 2014-10-08 2018-12-26 石原ケミカル株式会社 電気メッキ式の突起電極形成方法
JP7009679B2 (ja) * 2015-07-29 2022-01-26 石原ケミカル株式会社 電気スズ及び電気スズ合金メッキ浴、当該メッキ浴を用いた電着物の形成方法
JP6759736B2 (ja) * 2016-06-10 2020-09-23 三菱マテリアル株式会社 めっき液
JP6870265B2 (ja) 2016-09-30 2021-05-12 ブラザー工業株式会社 液体カートリッジ及び液体消費装置
JP6455889B2 (ja) 2016-10-04 2019-01-23 ミナト医科学株式会社 腰椎牽引装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348347A (ja) * 2005-06-16 2006-12-28 Nippon Mektron Ltd 電子部品の表面処理方法
JP2010283035A (ja) * 2009-06-02 2010-12-16 Toshiba Corp 電子部品とその製造方法
JP2013530544A (ja) * 2010-07-05 2013-07-25 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング はんだ堆積物を基板上に形成する方法
WO2013046731A1 (ja) * 2011-09-29 2013-04-04 ユケン工業株式会社 スズめっき用酸性水系組成物
WO2017217387A1 (ja) * 2016-06-13 2017-12-21 石原ケミカル株式会社 電気スズ及びスズ合金メッキ浴、当該メッキ浴を用いて電着物を形成した電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230323554A1 (en) * 2020-11-25 2023-10-12 Mitsubishi Materials Corporation Tin alloy plating solution
US11879182B2 (en) * 2020-11-25 2024-01-23 Mitsubishi Materials Corporation Tin alloy plating solution

Also Published As

Publication number Publication date
TW201940747A (zh) 2019-10-16
WO2019181905A1 (ja) 2019-09-26
TWI754135B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
JP3871013B2 (ja) 錫−銅合金電気めっき浴及びそれを使用するめっき方法
WO2019181906A1 (ja) 錫又は錫合金めっき液、及びバンプの形成方法
KR101729658B1 (ko) 은 및 주석 합금의 전기도금조
TWI703239B (zh) 錫或錫合金鍍敷液及凸塊的形成方法
JP2017218662A (ja) めっき液
JP6677873B2 (ja) 錫又は錫合金めっき液及び該液を用いたバンプの形成方法
JP7015975B2 (ja) 錫又は錫合金めっき液
JP6635139B2 (ja) 錫又は錫合金めっき堆積層の形成方法
CN111356789A (zh) 锡或锡合金电镀液
CN111279020B (zh) 锡或锡合金电镀液
TW201704545A (zh) 使用鏻鹽之鍍敷液
KR102629674B1 (ko) 주석 합금 도금액
JP3306768B2 (ja) 鉛及び鉛−錫合金めっき浴
WO2022080191A1 (ja) 錫又は錫合金めっき液及びそのめっき液を用いたバンプの形成方法
JP7276049B2 (ja) めっき方法
US20230038219A1 (en) Tin or tin alloy electroplating solution, method for forming bumps, and method for producing circuit board
WO2018180192A1 (ja) めっき液
WO2019082884A1 (ja) 錫又は錫合金めっき液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772518

Country of ref document: EP

Kind code of ref document: A1