WO2019177032A1 - リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 - Google Patents

リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 Download PDF

Info

Publication number
WO2019177032A1
WO2019177032A1 PCT/JP2019/010297 JP2019010297W WO2019177032A1 WO 2019177032 A1 WO2019177032 A1 WO 2019177032A1 JP 2019010297 W JP2019010297 W JP 2019010297W WO 2019177032 A1 WO2019177032 A1 WO 2019177032A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
metal composite
composite oxide
particles
Prior art date
Application number
PCT/JP2019/010297
Other languages
English (en)
French (fr)
Inventor
友也 黒田
裕一郎 今成
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/979,415 priority Critical patent/US11990617B2/en
Priority to CN201980018099.9A priority patent/CN111837268B/zh
Priority to EP19766519.3A priority patent/EP3767717A4/en
Priority to KR1020207025818A priority patent/KR20200130819A/ko
Publication of WO2019177032A1 publication Critical patent/WO2019177032A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal composite oxide powder, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.
  • Lithium metal composite oxide powder is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power supplies for mobile phones and laptop computers, but also for medium and large power supplies for automobiles and power storage.
  • the lithium metal composite oxide powder may be composed of primary particles and secondary particles formed by aggregation of the primary particles.
  • the lithium metal composite oxide powder is in contact with the electrolytic solution on the surface of the primary particles and on the surface and inside of the secondary particles. Lithium ions are desorbed and lithium ions are inserted into the particles during discharge. Since the surface state of the particles affects the desorption and insertion of lithium ions, controlling the surface state of the primary or secondary particles of the lithium metal composite oxide powder can improve cycle characteristics and improve battery energy density. This is important in improving battery characteristics such as improvement.
  • Patent Document 1 discloses a lithium composite oxide composed of monodispersed primary particles (corresponding to the single particles of the present invention), which are mainly composed of one element selected from the group consisting of cobalt, nickel and manganese and lithium.
  • Product powder is described.
  • the lithium composite oxide described in Patent Document 1 has a specific average particle diameter, specific surface area, and bulk density, and has no aggregated particles.
  • Patent Document 1 describes that by using a lithium composite oxide composed of monodispersed primary particles, there is no grain boundary, and cracks and breakage are less likely to occur during molding of the positive electrode material.
  • a lithium composite oxide composed of monodispersed primary particles is less likely to crack or break than secondary particles.
  • a new surface may occur due to slight cracks generated at the particle interface.
  • the surface of the particles generated as a new surface becomes a reaction site with the electrolytic solution.
  • gas may be generated.
  • the generated gas causes battery swelling.
  • the present invention has been made in view of the above circumstances, and is a lithium metal composite oxide powder that generates less gas and suppresses battery swelling, and a positive electrode active for a lithium secondary battery containing the lithium metal composite oxide powder.
  • An object is to provide a substance, a positive electrode using the same, and a lithium secondary battery using the same.
  • a lithium metal composite oxide powder comprising secondary particles that are aggregates of primary particles and single particles that exist independently of the secondary particles, wherein the lithium metal composite oxide is: A lithium metal composite oxide powder represented by a composition formula (I) and having an average crushing strength of the single particles exceeding 80 MPa.
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • the ratio of the lithium-metal composite oxide and the value obtained by subtracting 90% cumulative volume particle size D 90 10% cumulative volume particle size D 10 of the powder, 50% cumulative volume particle size D 50 ((D 90 -D 10 ) / D 50 ) is a lithium metal composite oxide powder according to [1] or [2], which is less than 2.0.
  • a positive electrode active material for a lithium secondary battery comprising the lithium metal composite oxide powder according to any one of [1] to [4].
  • [7] A lithium secondary battery having the positive electrode according to [6].
  • a lithium metal composite oxide powder that generates less gas and suppresses battery swelling, a positive electrode active material for a lithium secondary battery, a positive electrode using the same, and a lithium secondary battery using the same. can do.
  • the “primary particle” means a particle that does not have a grain boundary on the appearance and constitutes a secondary particle.
  • secondary particles are particles formed by aggregation of the primary particles.
  • the “single particle” is a particle that exists independently of the primary particle or the secondary particle and has no grain boundary on the appearance.
  • the present embodiment is a lithium metal composite oxide powder that includes secondary particles that are aggregates of primary particles and single particles that exist independently of the secondary particles.
  • the lithium metal composite oxide powder of the present embodiment contains single particles that exist independently.
  • the lithium metal composite oxide of this embodiment is represented by the following composition formula (I).
  • the average crushing strength of independently existing single particles exceeds 80 MPa.
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • the lithium metal composite oxide powder of the present embodiment contains single particles that exist independently, and the average crushing strength of the single particles exceeds 80 MPa. That is, the single particle contained in the lithium metal composite oxide powder of the present embodiment has a structure with high particle strength. Such single particles do not have grain boundaries in the particles and are less likely to cause particle cracking. For this reason, a new surface due to particle cracking is unlikely to occur. That is, it is difficult for the decomposition reaction of the electrolyte that may occur on the new surface to occur. That is, according to this embodiment, it is possible to provide a lithium metal composite oxide powder that hardly generates gas in the battery and can suppress battery swelling.
  • the amount of electricity decomposed is a value measured by the following method.
  • a lithium secondary battery (coin-type cell) is produced using a positive electrode active material containing the lithium metal composite oxide powder of this embodiment.
  • a paste-like positive electrode mixture was prepared by adding and kneading so as to have a composition of 3 (mass ratio), and the obtained paste-like positive electrode mixture was then added to a 40 ⁇ m thick collector.
  • An Al foil was applied on one side using an applicator, dried, pressed and fixed at a pressure of 125 kN / m, and punched into a circle having a diameter of 14.5 mm.
  • the positive electrode is placed on the bottom lid of a coin cell (made by Hosen Co., Ltd.) for coin-type battery R2032, with the aluminum foil surface facing downward, and a laminated film separator (polypropylene porous film A heat-resistant porous layer is laminated on top (thickness 25 ⁇ m). 300 ⁇ L of electrolyte is injected here.
  • the electrolytic solution to be used is prepared by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate so as to be 1.0 mol / L.
  • the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and caulked with a caulking machine to form a lithium secondary battery (coin-type battery R2032, hereinafter “coin-type”).
  • coin-type battery R2032 hereinafter “coin-type”.
  • the test is performed as follows using the obtained coin-type cell. That is, the battery is charged at a constant current and a constant voltage at a test temperature of 60 ° C. with a charging maximum voltage of 4.3 V, a charging time of 60 hours, and a charging current of 0.05 CA.
  • constant-current constant-voltage charging the integrated amount of electricity for 30 hours after the transition to the 4.3 V constant-voltage mode is measured and calculated as a float electricity amount (mAh / g).
  • the amount of float electricity measured by the above method is preferably 1.00 to 9.80 (mAh / g), and preferably 2.00 to 9.50 (mAh / g). More preferably, it is 3.00 to 9.00 (mAh / g).
  • the “average crushing strength” of single particles contained in the lithium metal composite oxide powder refers to a value measured by the following method.
  • the single particle diameter (d) in the formula (A) is a parallel line between the parallel lines obtained by observing the single particles used for the measurement with a microscope attached to the compressive strength tester and drawing the single particles from a certain direction. The average of the distance between the parallel lines and the distance between the parallel lines perpendicular to the parallel lines is calculated, and the value is adopted.
  • a single particle to be used for measurement a single particle having a length (longest diameter) substantially equal to the average particle diameter of the single particles is selected. “Approximately equal length” means a length of 80 to 120% of the average particle diameter of single particles.
  • the average particle size of single particles can be determined by the method described later, and it is preferable to determine the average particle size prior to crushing strength measurement.
  • the average crushing strength of the independently present single particles exceeds 80 MPa, preferably 100 MPa or more, more preferably 110 MPa or more, and particularly preferably 120 MPa or more.
  • the upper limit value of the average crushing strength of single particles is not particularly limited, but is preferably 500 MPa or less, more preferably 450 MPa or less, and further preferably 400 MPa or less.
  • the crushing strength is preferably 100 MPa or more and 500 MPa or less, more preferably 110 MPa or more and 450 MPa or less, and further preferably 120 MPa or more and 400 MPa or less.
  • the average crushing strength of the single particles is equal to or higher than the above lower limit value, for example, in the scene where the volume changes when charging / discharging is repeated or in the pressing process at the time of positive electrode molding, particle cracking hardly occurs, and the single particles have high particle strength. Become.
  • composition formula (I) The lithium metal composite oxide of this embodiment is represented by the following composition formula (I). Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I) (However, M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. . Further, from the viewpoint of obtaining a lithium secondary battery having higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. More preferably, it is as follows. The upper limit value and the lower limit value of x can be arbitrarily combined. For example, x is preferably greater than 0 and less than or equal to 0.2, more preferably greater than 0 and less than or equal to 0.1, more preferably not less than 0.01 and not greater than 0.08, and more preferably not less than 0.02 and not greater than 0.
  • the ratio is 0.06 or less.
  • the “cycle characteristics” means a characteristic in which the battery capacity decreases due to repeated charge and discharge, and means a capacity ratio at the time of re-measurement with respect to the initial capacity.
  • y in the composition formula (I) is preferably more than 0, more preferably 0.005 or more, and 0.01 or more. Is more preferable, and 0.05 or more is particularly preferable. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (I) is more preferably 0.35 or less, and further preferably 0.33 or less.
  • the upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably more than 0 and 0.4 or less, more preferably from 0.005 to 0.35, still more preferably from 0.01 to 0.35, It is especially preferable that it is 0.33 or less.
  • composition formula (I) it is more preferable that 0 ⁇ x ⁇ 0.1 and 0 ⁇ y ⁇ 0.4.
  • z in the composition formula (I) is preferably 0.01 or more, more preferably 0.02 or more, and 0.1 or more. More preferably it is. Further, from the viewpoint of obtaining a lithium secondary battery having high storage stability at a high temperature (for example, in an environment of 60 ° C.), z in the composition formula (I) is preferably 0.39 or less, and is 0.38 or less. Is more preferable, and it is still more preferable that it is 0.35 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.01 or more and 0.39 or less, more preferably 0.02 or more and 0.38 or less, and further preferably 0.1 or more and 0.35 or less.
  • w in the composition formula (I) is preferably more than 0, more preferably 0.0005 or more, and 0.001 or more. More preferably. Further, from the viewpoint of obtaining a lithium secondary battery having a large discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.09 or less, more preferably 0.08 or less, and 0 More preferably, it is 0.07 or less.
  • the upper limit value and the lower limit value of w can be arbitrarily combined. For example, w is preferably more than 0 and 0.09 or less, more preferably from 0.0005 to 0.08, and even more preferably from 0.001 to 0.07.
  • y + z + w in the composition formula (I) is preferably less than 0.5, and more preferably 0.3 or less.
  • the lower limit of y + z + w is not particularly limited, but is preferably 0.05 or more, and more preferably 0.1 or more.
  • the upper limit value and the lower limit value of y + z + w can be arbitrarily combined.
  • the y + z + w is preferably 0.05 or more and less than 0.5, and more preferably 0.1 or more and 0.3 or less.
  • M in the composition formula (I) is one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V. Represents.
  • M in the composition formula (I) is one or more metals selected from the group consisting of Ti, Mg, Al, W, B, and Zr. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is preferably one or more metals selected from the group consisting of Ti, Al, W, B, and Zr.
  • w, x, y, and z in the composition formula (I) are obtained by dissolving a powder of a lithium composite metal compound in hydrochloric acid, and then using an inductively coupled plasma emission spectrometer (SII Nanotechnology, Inc.). It can be determined by conducting an analysis using SPS3000).
  • the ratio between the value and the 50% cumulative volume particle size D 50 minus the lithium metal composite oxide 90% cumulative volume particle size D 90 10% cumulative volume particle size D 10 of the powder ((D 90 -D 10 ) / D 50 ) is preferably less than 2.0.
  • the cumulative volume particle size is measured by a laser diffraction scattering method.
  • 0.1 g of lithium metal composite oxide powder is put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution to obtain a dispersion in which the powder is dispersed.
  • the particle size distribution of the obtained dispersion is measured using a laser diffraction / scattering particle size distribution measuring device (Microtrack MT3300EXII manufactured by Microtrack Bell Co., Ltd.) to obtain a volume-based cumulative particle size distribution curve.
  • (D 90 -D 10 ) / D 50 is preferably 1.9 or less, and more preferably 1.8 or less.
  • the lower limit of (D 90 -D 10 ) / D 50 is not particularly limited as long as it has the effect of the present invention, but is preferably 0.1 or more, more preferably 0.3 or more, and further more preferably 0.5 or more. preferable.
  • the upper limit value and lower limit value of the (D 90 -D 10 ) / D 50 can be arbitrarily combined.
  • the (D 90 -D 10 ) / D 50 is preferably 0.1 or more and less than 2.0, more preferably 0.3 or more and 1.9 or less, and 0.5 or more and 1.8. More preferably, it is as follows. When (D 90 -D 10 ) / D 50 is not more than the above upper limit value, the filling property of the positive electrode active material in the positive electrode is improved, and the energy density of the battery is improved.
  • the average particle diameter of single particles is preferably 0.5 ⁇ m or more, more preferably 0.75 ⁇ m or more, and particularly preferably 1.0 ⁇ m or more. Moreover, it is preferable that the average particle diameter of a single particle is 7 micrometers or less, 6 micrometers or less are more preferable, and 5 micrometers or less are especially preferable.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the average particle size of single particles is preferably 0.5 ⁇ m or more and 7 ⁇ m or less, more preferably 0.75 ⁇ m or more and 6 ⁇ m or less, and further preferably 1 ⁇ m or more and 5 ⁇ m or less. .
  • the average particle size of the single particles is equal to or more than the lower limit value, the handleability of the positive electrode active material is improved.
  • the average particle size of the single particles is not more than the above upper limit value, the discharge capacity at a high current rate is improved.
  • the average particle size of the secondary particles is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and particularly preferably 4 ⁇ m or more.
  • the average particle size of the secondary particles is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and particularly preferably 16 ⁇ m or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the average particle size of the secondary particles is preferably 2 ⁇ m or more and 20 ⁇ m or less, more preferably 3 ⁇ m or more and 18 ⁇ m or less, and further preferably 4 ⁇ m or more and 16 ⁇ m or less.
  • the filling property of the positive electrode active material in the positive electrode is improved, and the energy density of the battery is improved.
  • the average particle size of the secondary particles is not more than the above upper limit value, the discharge capacity at a high current rate is improved.
  • the particles are not greatly grown, and the particle diameter is about 0.1 ⁇ m or more and less than 0.5 ⁇ m.
  • the average particle size of single particles is determined by the following method. First, a lithium metal composite oxide powder is placed on a conductive sheet affixed on a sample stage and irradiated with an electron beam having an acceleration voltage of 20 kV using a scanning electron microscope (JSM-5510, manufactured by JEOL Ltd.). And SEM observation. 50 single particles are randomly extracted from an image (SEM photograph) obtained by SEM observation, and the distance between parallel lines of each single particle sandwiched by parallel lines obtained by drawing a projected image of the single particle from a certain direction. (Constant direction diameter) is measured as the particle diameter of a single particle. Let the arithmetic average value of the particle diameter of the obtained single particle be the average particle diameter of the single particle of the lithium metal composite oxide powder.
  • the "average particle diameter" of the secondary particles of the lithium metal composite oxide powder can be measured by the same method as the method for measuring the average particle diameter of the single particles.
  • the "average particle diameter" of the primary particles constituting the secondary particles of the lithium metal composite oxide powder was first randomly extracted from an image (SEM photograph) obtained by SEM observation. About one primary particle which comprises a secondary particle, the distance (constant direction diameter) between the parallel lines which contact
  • the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m, or a monoclinic crystal belonging to C2 / m.
  • a structure is particularly preferred.
  • a metal other than lithium that is, at least Ni, Co, Mn, Fe, Cu, Ti, Mg, Al, W , B, Mo, Nb, Zn, Sn, Zr, Ga, La, and V
  • a metal composite compound containing any one or more arbitrary metals is prepared, and the metal composite compound is inactivated with an appropriate lithium salt. It is preferable to bake with a melting agent.
  • a metal complex compound a metal complex hydroxide or a metal complex oxide is preferable.
  • the metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
  • a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted to form Ni (1-yzw) Co y Mn z ( OH) 2 (wherein 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1) is produced by a coprecipitation method.
  • nickel salt which is a solute of the said nickel salt solution For example, any 1 type, or 2 or more types in nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt which is a solute of the cobalt salt solution for example, any one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • manganese salt that is the solute of the manganese salt solution for example, any one or more of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni (1-yzw) Co y Mn z (OH) 2 . That is, the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yzw): y: z in the composition formula (I) of the lithium metal composite oxide. Stipulate the amount of each metal salt. Moreover, water is used as a solvent.
  • the complexing agent can form a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.
  • Ammonium salt hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be included if desired.
  • the complexing agent contained in the nickel salt solution, the cobalt salt solution, the manganese salt solution, and the mixed solution containing the complexing agent is included.
  • the molar ratio of the metal salt to the total number of moles of the metal salt is greater than 0 and 2.0 or less.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • Ni (1-yzw) 2 when a complexing agent is continuously supplied to the reaction vessel, nickel, cobalt, and manganese react to form Ni (1-yzw).
  • Co y Mn z (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled within a range of 20 ° C. or more and 80 ° C. or less, preferably 30 to 70 ° C.
  • the pH value in the reaction vessel is, for example, pH 9 or more and pH 13 or less, preferably 40 ° C. It is controlled within the range of pH 11 or more and pH 13 or less, and the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • the secondary particle diameter of the lithium metal composite oxide finally obtained in the following steps by appropriately controlling the concentration of metal salt to be supplied to the reaction tank, the stirring speed, the reaction temperature, the reaction pH, the firing conditions described later, etc.
  • Various physical properties such as pore radius can be controlled.
  • various gases for example, an inert gas such as nitrogen, argon, carbon dioxide, an oxidizing gas such as air, oxygen, or a mixed gas thereof may be supplied into the reaction vessel.
  • Use peroxides such as hydrogen peroxide, peroxides such as permanganate, perchlorates, hypochlorites, nitric acid, halogens, ozone, etc. to promote the oxidation state in addition to gases. be able to.
  • organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used to promote the reduced state.
  • reaction pH in the reaction vessel when the reaction pH in the reaction vessel is increased, a metal composite compound having a small secondary particle size is easily obtained. On the other hand, when the reaction pH is lowered, a metal composite compound having a large secondary particle size is easily obtained. Moreover, when the oxidation state in the reaction vessel is increased, a metal composite compound having many voids is easily obtained. On the other hand, when the oxidation state is lowered, a dense metal composite compound is easily obtained. Since the reaction conditions depend on the size of the reaction tank to be used and the like, the reaction conditions may be optimized while monitoring various physical properties of the finally obtained lithium composite oxide.
  • nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared.
  • it can prepare by performing the process of making the said coprecipitate slurry and an oxidizing agent contact, and the process of heat-treating nickel cobalt manganese complex hydroxide, for example.
  • the metal composite compound (metal composite oxide or metal composite hydroxide) is dried and then mixed with a lithium salt to obtain a mixture. Moreover, in this embodiment, it is preferable to mix an inert melting agent simultaneously with this mixing. By firing an inert melt-containing mixture containing a metal composite oxide or metal composite hydroxide, a lithium salt and an inert melt, the mixture is fired in the presence of the inert melt. By firing in the presence of an inert melting agent, primary particles can be prevented from sintering to produce secondary particles. Moreover, the growth of single particles can be promoted.
  • the drying conditions are not particularly limited.
  • the metal composite oxide or the metal composite hydroxide is not oxidized / reduced (that is, the oxide is maintained as an oxide, and the hydroxide is hydroxylated).
  • Conditions under which the metal composite hydroxide is oxidized ie, conditions under which the hydroxide is oxidized into an oxide
  • conditions under which the metal composite oxide is reduced ie, the oxide is hydroxylated
  • Any condition of (reduction condition to product) may be used.
  • An inert gas such as nitrogen, helium and argon may be used for conditions that are not oxidized / reduced, and oxygen or air may be used for conditions under which the metal composite hydroxide is oxidized.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • the lithium salt any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used.
  • Classification may be appropriately performed after drying the metal composite oxide or metal composite hydroxide.
  • the above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final object.
  • the lithium salt and the metal composite hydroxide are LiNi (1- yzw ) Co y Mn z O 2 (where 0 ⁇ y ⁇ 0. 4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1).
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium salt. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • the crystallization reaction of the mixture can be promoted by firing the mixture in the presence of an inert melting agent.
  • the inert melting agent may remain in the fired lithium metal composite oxide powder, or may be removed by washing with water or the like after firing. In this embodiment, it is preferable to wash the lithium composite metal oxide after firing with water or the like.
  • the particle diameter of the obtained lithium metal composite oxide single particles can be controlled within the preferred range of this embodiment.
  • the higher the holding temperature the larger the particle size of the single particles and the smaller the BET specific surface area.
  • the holding temperature may be set in consideration of the melting point of the inert melting agent described later, and is set in the range of the melting point of the inert melting agent minus 100 ° C. or higher and the melting point of the inert melting agent plus 100 ° C. or lower. It is preferable.
  • Specific examples of the holding temperature include a range of 200 ° C. to 1150 ° C., preferably 300 ° C. to 1050 ° C., and more preferably 500 ° C. to 1000 ° C.
  • the holding time at the holding temperature may be 0.1 hour or more and 20 hours or less, preferably 0.5 hour or more and 10 hours or less.
  • the temperature rising rate to the holding temperature is usually 50 ° C./hour or more and 400 ° C./hour or less, and the temperature lowering rate from the holding temperature to room temperature is usually 10 ° C./hour or more and 400 ° C./hour or less.
  • As the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof can be used.
  • the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
  • the inert melting agent that can be used in the present embodiment is not particularly limited as long as it is difficult to react with the mixture during firing.
  • a fluoride of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr, and Ba (hereinafter referred to as “A”), and a chloride of A.
  • A a fluoride of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr, and Ba
  • A a fluoride of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr, and Ba
  • A a chloride of A.
  • NaF (melting point: 993 ° C.), KF (melting point: 858 ° C.), RbF (melting point: 795 ° C.), CsF (melting point: 682 ° C.), CaF 2 (melting point: 1402 ° C.), MgF 2 (Melting point: 1263 ° C.), SrF 2 (melting point: 1473 ° C.) and BaF 2 (melting point: 1355 ° C.).
  • Examples of the chloride of A include NaCl (melting point: 801 ° C.), KCl (melting point: 770 ° C.), RbCl (melting point: 718 ° C.), CsCl (melting point: 645 ° C.), CaCl 2 (melting point: 782 ° C.), MgCl 2 (Melting point: 714 ° C.), SrCl 2 (melting point: 857 ° C.) and BaCl 2 (melting point: 963 ° C.).
  • Na 2 SO 4 (melting point: 884 ° C.), K 2 SO 4 (melting point: 1069 ° C.), Rb 2 SO 4 (melting point: 1066 ° C.), Cs 2 SO 4 (melting point: 1005 ° C.) , CaSO 4 (melting point: 1460 ° C.), MgSO 4 (melting point: 1137 ° C.), SrSO 4 (melting point: 1605 ° C.) and BaSO 4 (melting point: 1580 ° C.).
  • NaNO 3 (melting point: 310 ° C.), KNO 3 (melting point: 337 ° C.), RbNO 3 (melting point: 316 ° C.), CsNO 3 (melting point: 417 ° C.), Ca (NO 3 ) 2 (melting point) : 561 ° C.), Mg (NO 3 ) 2 , Sr (NO 3 ) 2 (melting point: 645 ° C.) and Ba (NO 3 ) 2 (melting point: 596 ° C.).
  • Na 3 PO 4 (melting point: 75 ° C.), K 3 PO 4 (melting point: 1340 ° C.), Rb 3 PO 4 , Cs 3 PO 4 , Ca 3 (PO 4 ) 2 (melting point: 1670 ° C.), Mg 3 (PO 4 ) 2 (melting point: 1184 ° C.), Sr 3 (PO 4 ) 2 (melting point: 1727 ° C.) and Ba 3 (PO 4 ) 2 (melting point: 1767 ° C.).
  • Na 2 MoO 4 (melting point: 698 ° C.), K 2 MoO 4 (melting point: 919 ° C.), Rb 2 MoO 4 (melting point: 958 ° C.), Cs 2 MoO 4 (melting point: 956 ° C.) ), CaMoO 4 (melting point: 1520 ° C.), MgMoO 4 (melting point: 1060 ° C.), SrMoO 4 (melting point: 1040 ° C.) and BaMoO 4 (melting point: 1460 ° C.).
  • Examples of the tungstate of A include Na 2 WO 4 (melting point: 687 ° C.), K 2 WO 4 (melting point: 933 ° C.), Rb 2 WO 4 , Cs 2 WO 4 , CaWO 4 (melting point: 1620 ° C.), MgWO 4 , SrWO 4 (melting point: 1400 ° C.) and BaWO 4 .
  • these inert melting agents can be used. When using 2 or more types, melting
  • these inert melting agents as an inert melting agent for obtaining a lithium metal composite oxide powder having higher crystallinity, any one of carbonates and sulfates of A, chlorides of A, or A combination is preferred.
  • A it is preferable that they are any one or both of sodium (Na) and potassium (K). That is, among the above, the particularly preferable inert melting agent is at least one selected from the group consisting of NaCl, KCl, Na 2 CO 3 , K 2 CO 3, Na 2 SO 4, and K 2 SO 4. .
  • the average crushing strength of the obtained lithium metal composite oxide can be controlled within the preferred range of this embodiment.
  • the average crushing strength of the obtained lithium metal composite oxide is preferred in the present embodiment. Can be controlled to a range.
  • the amount of the inert melting agent at the time of firing may be appropriately selected.
  • the amount of the inert melting agent at the time of firing is 0.1 parts by mass or more with respect to 100 parts by mass of the lithium compound. It is preferably 1 part by mass or more.
  • the molar ratio of the inert melting agent to the total molar ratio of the inert melting agent and the lithium salt [inert melting agent / (inert melting agent + lithium salt)] should be 0.001 to 0.5. Preferably, it is 0.01 to 0.4, more preferably 0.05 to 0.3.
  • the melting agent include ammonium salts such as NH 4 Cl and NH 4 F.
  • the present embodiment is a positive electrode active material for a lithium secondary battery containing the lithium metal composite oxide powder of the present embodiment.
  • Lithium secondary battery> a positive electrode using the positive electrode active material for a lithium secondary battery containing the positive electrode active material powder of the present embodiment, and a lithium secondary battery having the positive electrode will be described.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117: 2009 is 50 seconds / 100 cc or more, 300 seconds. / 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the total volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the lithium metal composite oxide powder was evaluated by the following method.
  • composition analysis of the lithium metal composite oxide produced by the method described below is performed by dissolving the obtained powder of the lithium composite metal compound in hydrochloric acid, and then using an inductively coupled plasma emission spectrometer (made by SII Nano Technology, SPS3000).
  • the “average crushing strength” of single particles contained in the positive electrode active material was measured by the following method.
  • the lithium metal composite oxide powder was subjected to a test pressure (load) on one randomly selected single particle using a “micro compression tester MCT-510” manufactured by Shimadzu Corporation. The amount of displacement was measured. When the test pressure is gradually increased, the pressure value at which the displacement is maximum while the test pressure is almost constant is taken as the test force (P), and the equation of Hiramatsu et al. Vol. 81, (1965)), the crushing strength (St) is calculated. This operation was performed 5 times in total, and the average crushing strength was calculated from the average value of the crushing strength 5 times.
  • the particle size distribution of the obtained dispersion was measured using a laser diffraction / scattering particle size distribution measuring device (Microtrack MT3300EXII manufactured by Microtrack Bell Co., Ltd.) to obtain a volume-based cumulative particle size distribution curve. Then, in the obtained cumulative particle size distribution curve, the value of the particle diameter seen from the fine particle side at the time of 10% accumulation is 10% cumulative volume particle size D 10 ( ⁇ m), the particle seen from the fine particle side at the time of 50% accumulation The value of the diameter is 50% cumulative volume particle size D 50 ( ⁇ m), the value of the particle size viewed from the microparticle side when 90% is accumulated is 90% cumulative volume particle size D 90 ( ⁇ m), and the ratio (D 90 -D 10) was calculated / D 50.
  • a laser diffraction / scattering particle size distribution measuring device Microtrack MT3300EXII manufactured by Microtrack Bell Co., Ltd.
  • the average particle size of single particles (secondary particles) was determined by the following method. First, a lithium metal composite oxide powder is placed on a conductive sheet affixed on a sample stage and irradiated with an electron beam having an acceleration voltage of 20 kV using a scanning electron microscope (JSM-5510, manufactured by JEOL Ltd.). SEM observation was performed. 50 single particles (secondary particles) are randomly extracted from an image (SEM photograph) obtained by SEM observation, and each single particle (secondary particle) is projected as a single particle (secondary particle). Was measured as the particle diameter of the single particles (secondary particles). The arithmetic average value of the particle diameter of the obtained single particle (secondary particle) was defined as the average particle diameter of the single particle (secondary particle) of the lithium metal composite oxide powder.
  • Lithium metal composite oxide powder is placed on a conductive sheet affixed on a sample stage and irradiated with an electron beam having an acceleration voltage of 20 kV using a scanning electron microscope (JSM-5510, manufactured by JEOL Ltd.). SEM observation was performed. For one primary particle constituting a secondary particle randomly extracted from an image (SEM photograph) obtained by SEM observation, the distance (constant direction diameter) between parallel lines in contact with the grain boundary with the adjacent primary particle is determined. It was measured as the particle size of primary particles. The particle diameter of 50 randomly extracted primary particles was measured, and the arithmetic average value of the obtained particle diameters was defined as the average particle diameter of the primary particles constituting the secondary particles of the lithium metal composite oxide powder.
  • a lithium secondary battery (coin-type cell) was produced using a positive electrode active material made of a lithium metal composite oxide powder obtained by the method described later.
  • To prepare a paste-like positive electrode mixture and the obtained paste-like positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector.
  • the electrode which was applied to one side using, dried, and pressed and fixed at a pressure of 125 kN / m, was punched into a circle having a diameter of 14.5 mm.
  • a positive electrode is placed on the bottom lid of a coin cell for coin-type battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil surface facing downward, and a laminated film separator (on a polypropylene porous film) The heat-resistant porous layer is laminated (thickness: 25 ⁇ m). 300 ⁇ L of electrolyte is injected here.
  • the electrolytic solution to be used was prepared by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate so as to be 1.0 mol / L.
  • the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and caulked with a caulking machine to form a lithium secondary battery (coin-type battery R2032, hereinafter "coin cell”).
  • a lithium secondary battery coin-type battery R2032, hereinafter "coin cell”
  • the test was performed as follows using the obtained coin cell. That is, the battery was charged at a constant current and a constant voltage at a test temperature of 60 ° C. with a charging maximum voltage of 4.3 V, a charging time of 60 hours, and a charging current of 0.05 CA.
  • the integrated electricity amount for 30 hours after shifting to the 4.3 V constant-voltage mode was measured and calculated as a float electricity amount (mAh / g).
  • Example 1 Production of Positive Electrode Active Material 1 After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.60: 0.20: 0.20. Prepared.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and nitrogen gas was continuously passed through the reaction vessel.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction tank becomes 11.7 to obtain nickel cobalt manganese composite hydroxide particles, washed, dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt manganese composite hydroxide 1 was obtained by isolating and drying at 105 ° C.
  • the slurry prepared by mixing the powder and pure water so that the weight ratio of the powder is 0.3 with respect to the total amount was stirred for 20 minutes, then dehydrated, isolated, and dried at 105 ° C. A positive electrode active material 1 was obtained.
  • the average particle size of the single particles present independently is 2.0 ⁇ m
  • the average particle size of the secondary particles is 6.0 ⁇ m
  • the primary particles constituting the secondary particles The average particle size of was 0.4 ⁇ m.
  • the average crushing strength of single particles contained in the positive electrode active material 1 was 127 MPa
  • (D 90 -D 10 ) / D 50 was 1.2
  • the amount of float electricity was 7.66 mAh / g.
  • Example 2 >> 1. Production of Positive Electrode Active Material 2 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution were mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms was 0.88: 0.08: 0.04. The nickel cobalt manganese composite hydroxide 2 was obtained by operating in the same manner as in Example 1.
  • the particle diameter of the single particles present independently is 3.0 ⁇ m
  • the average particle diameter of the secondary particles is 9.0 ⁇ m
  • the primary particles constituting the secondary particles The average particle size was 0.4 ⁇ m.
  • the average crushing strength of single particles contained in the positive electrode active material 2 was 126 MPa
  • (D 90 -D 10 ) / D 50 was 1.9
  • the amount of float electricity was 7.68 mAh / g.
  • Example 3 Production of positive electrode active material 3 A positive electrode active material 3 was obtained in the same manner as in Example 2 except that the firing temperature was 760 ° C.
  • the particle size of the single particles present independently is 1.8 ⁇ m
  • the average particle size of the secondary particles is 8.0 ⁇ m
  • the primary particles constituting the secondary particles The average particle size was 0.3 ⁇ m.
  • the average crushing strength of the single particles contained in the positive electrode active material 3 was 102 MPa
  • (D 90 -D 10 ) / D 50 was 1.7
  • the amount of float electricity was 7.57 mAh / g.
  • the average particle diameter of the secondary particles was 8.0 ⁇ m, and the average particle diameter of the primary particles constituting the secondary particles was 0.6 ⁇ m.
  • (D 90 -D 10 ) / D 50 was 1.9, and the amount of float electricity was 11.3 mAh / g.
  • Positive electrode active material 5 was obtained in the same manner as in Example 2 except that K 2 SO 4 was not added at the time of firing the positive electrode active material and the firing temperature was 760 ° C.
  • the average particle diameter of the secondary particles was 6.0 ⁇ m
  • the average particle diameter of the primary particles constituting the secondary particles was 0.3 ⁇ m (D 90 -D 10 ) / D 50 was 1.8
  • the float The amount of electricity was 14.3 mAh / g.
  • the particle size of the single particles present independently is 1.0 ⁇ m
  • the average particle size of the secondary particles is 5.0 ⁇ m
  • the primary particles constituting the secondary particles The average particle size was 0.4 ⁇ m.
  • the average crushing strength of single particles contained in the positive electrode active material 6 was 71.9 MPa
  • (D 90 -D 10 ) / D 50 was 11.0
  • the amount of float electricity was 9.9 mAh / g.
  • the positive electrode active materials of Examples 1 to 3 to which the present invention was applied were positive electrode active materials with little generation of float electricity and little decomposition reaction with the electrolytic solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一次粒子の凝集体である二次粒子と、前記二次粒子とは独立して存在する単粒子と、を含むリチウム金属複合酸化物粉末を含むリチウム二次電池用正極活物質であって、前記リチウム金属複合酸化物は下記組成式(I)で表され、かつ、前記単粒子の平均圧壊強度が80MPaを超えることを特徴とする、リチウム二次電池用正極活物質。 Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)

Description

リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
 本発明は、リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池に関する。
 本願は、2018年3月13日に、日本に出願された特願2018-045955号に基づき優先権を主張し、その内容をここに援用する。
 リチウム二次電池用正極活物質には、リチウム金属複合酸化物粉末が用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 リチウム金属複合酸化物粉末は、一次粒子と、一次粒子が凝集して形成された二次粒子とから構成されることがある。リチウム金属複合酸化物粉末をリチウム二次電池用正極活物質として用いたとき、リチウム金属複合酸化物粉末は一次粒子の表面並びに二次粒子の表面及び内部で電解液と接し、充電時には粒子内からのリチウムイオンの脱離が起こり、放電時には粒子内へのリチウムイオンの挿入が起こる。粒子の表面状態はリチウムイオンの脱離と挿入に影響を及ぼすので、リチウム金属複合酸化物粉末の一次粒子又は二次粒子の表面状態を制御することは、サイクル特性の向上や、電池エネルギー密度の向上等の電池特性を向上させる上で重要である。
 例えば特許文献1には、コバルト、ニッケル、マンガンの群から選ばれる1種の元素と、リチウムとを主成分とする、単分散の一次粒子(本発明の単粒子に相当)からなるリチウム複合酸化物粉末が記載されている。特許文献1に記載のリチウム複合酸化物は、特定の平均粒子径、比表面積、嵩密度を有し、凝集粒が無い。特許文献1には、単分散の一次粒子からなるリチウム複合酸化物としたことにより、粒界がなく、正極材の成型時等に割れや破壊が起こりにくくなることが記載されている。
特開2004-355824号公報
 特許文献1に記載のように、単分散の一次粒子からなるリチウム複合酸化物は、二次粒子よりは割れや破壊が生じにくい。
 一方で、二次電池を使用する場面においては、粒子界面に発生したわずかな割れにより、新生面が発生することがある。新生面として発生した粒子の表面は、電解液との反応箇所となる。この反応箇所では電解液の分解反応が生じ、ガスが発生することがある。発生したガスは、電池膨れを引き起こす。
 本発明は上記事情に鑑みてなされたものであって、ガスの発生が少なく、電池膨れを抑制したリチウム金属複合酸化物粉末、前記リチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質、これを用いた正極、及びこれを用いたリチウム二次電池を提供することを課題とする。
 すなわち、本発明は、下記[1]~[6]の発明を包含する。
[1]一次粒子の凝集体である二次粒子と、前記二次粒子とは独立して存在する単粒子と、を含むリチウム金属複合酸化物粉末であって、前記リチウム金属複合酸化物は下記組成式(I)で表され、かつ、前記単粒子の平均圧壊強度が80MPaを超えることを特徴とする、リチウム金属複合酸化物粉末。
  Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
[2]前記組成式(I)において、0<x≦0.1であり、0<y≦0.4である、[1]に記載のリチウム金属複合酸化物粉末。
[3]前記リチウム金属複合酸化物粉末の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と、50%累積体積粒度D50との比率((D90-D10)/D50)が、2.0未満である、[1]又は[2]に記載のリチウム金属複合酸化物粉末。
[4]前記単粒子の平均粒子径が0.5μm以上7μm以下である、[1]~[3]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[5][1]~[4]のいずれか1つに記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。
[6][5]に記載のリチウム二次電池用正極活物質を有する正極。
[7][6]に記載の正極を有するリチウム二次電池。
 本発明によれば、ガスの発生が少なく、電池膨れを抑制したリチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、これを用いた正極、及びこれを用いたリチウム二次電池を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。
 本発明において、「一次粒子」とは、外観上に粒界が存在しない粒子であって、二次粒子を構成する粒子を意味する。
 本発明において、「二次粒子」とは、前記一次粒子が凝集することにより形成された粒子である。
 本発明において、「単粒子」とは、前記一次粒子又は前記二次粒子とは独立して存在し、外観上に粒界が存在しない粒子である。
<リチウム金属複合酸化物粉末>
 本実施形態は、一次粒子の凝集体である二次粒子と、前記二次粒子とは独立して存在する単粒子と、を含むリチウム金属複合酸化物粉末である。
 本実施形態のリチウム金属複合酸化物粉末は、独立して存在する単粒子を含有する。本実施形態のリチウム金属複合酸化物は、下記組成式(I)で表される。かつ、本実施形態のリチウム金属複合酸化物粉末は、独立して存在する単粒子の平均圧壊強度が80MPaを超える。
  Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
 本実施形態のリチウム金属複合酸化物粉末は、独立して存在する単粒子を含有し、この単粒子の平均圧壊強度は80MPaを超える。つまり、本実施形態のリチウム金属複合酸化物粉末が含有する単粒子は、粒子強度が高い構造を有する。このような単粒子は、粒子内に粒界が存在せず、かつ粒子割れが発生しにくい。このため、粒子割れによる新生面が発生しにくい。つまり新生面で生じうる電解液の分解反応が発生しにくい。つまり本実施形態によれば、電池内でガスが発生しにくく、電池膨れを抑制できるリチウム金属複合酸化物粉末を提供できる。
 電池内のガス発生が抑制されていることを示す相関値として、分解電気量がある。
 本実施形態によれば、粒子界面で電解液と不可逆反応を起こした際に観測される分解電気量(「フロート電気量」と記載する場合がある)の発生を低減できる。
<分解電気量の測定>
 本実施形態において、分解電気量は、以下の方法により測定した値とする。
 本実施形態のリチウム金属複合酸化物粉末を含む正極活物質を用いてリチウム二次電池(コイン型セル)を作製する。正極は、本実施形態のリチウム金属複合酸化物粉末を含む正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した後、得られたペースト状の正極合剤を、集電体となる厚さ40μmのAl箔に、アプリケーターを用いて一面側に塗布して乾燥させ、125kN/mの圧力でプレスし固着させた電極を直径14.5mmの円形に打ち抜いたものを使用した。
 より具体的には、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋に前記正極をアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリプロピレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み25μm))を置く。ここに電解液を300μL注入する。用いる電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35(体積比)混合液に、LiPFを1.0mol/Lとなるように溶解して調製する。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型電池」と称することがある。)を作製する。
 さらに、得られたコイン型セルを用いて次のように試験を行う。
 即ち、試験温度60℃で、充電最大電圧4.3V、充電時間60時間、充電電流0.05CAで定電流定電圧充電する。
 定電流定電圧充電において、4.3Vの定電圧モードに移行してから30時間の間の積算電気量を測定し、フロート電気量(mAh/g)として算出する。
 本実施形態においては、上述の方法で測定されるフロート電気量は、1.00~9.80(mAh/g)であることが好ましく、2.00~9.50(mAh/g)であることがより好ましく、3.00~9.00(mAh/g)であることがさらに好ましい。
≪平均圧壊強度≫
 本実施形態において、リチウム金属複合酸化物粉末に含まれる単粒子の「平均圧壊強度」とは、以下の方法によって測定される値を指す。
 まず、リチウム金属複合酸化物粉末について圧縮強度試験機(株式会社島津製作所製「微小圧縮試験機MCT-510」)を用いて、無作為に選んだ単粒子1個に対して試験圧力(負荷)をかけ、単粒子の変位量を測定する。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出する。この操作を計5回行い、圧壊強度の5回平均値から平均圧壊強度を算出する。
     St=2.8×P/(π×d×d) (d:単粒子径) …(A)
 なお、式(A)中の単粒子径(d)は、圧縮強度試験機に付随する顕微鏡にて測定に使用した単粒子を観察し、単粒子について一定方向から引いた平行線ではさんだ平行線間の距離と、上記平行線と垂直な平行線ではさんだ平行線間の距離の平均を算出し、その値を採用する。
 また、測定に供する単粒子としては、単粒子の平均粒子径とほぼ同等の長さ(最長径)を有する単粒子を選択する。「ほぼ同等の長さ」とは、単粒子の平均粒子径の80~120%の長さを意味する。単粒子の平均粒子径は後述の方法により求めることができ、圧壊強度測定に先立って求めておくことが好ましい。
 本実施形態においては、独立して存在する単粒子の平均圧壊強度が80MPaを超え、100MPa以上が好ましく、110MPa以上がより好ましく、120MPa以上が特に好ましい。本発明の効果を有する限り、単粒子の平均圧壊強度の上限値は特に限定されないが、例えば500MPa以下が好ましく、450MPa以下がより好ましく、400MPa以下がさらに好ましい。
 例えば、前記圧壊強度は、100MPa以上500MPa以下であることが好ましく、110MPa以上450MPa以下であることがより好ましく、120MPa以上400MPa以下であることがさらに好ましい。
 単粒子の平均圧壊強度が上記下限値以上であると、例えば充放電を繰り返した際に体積が変化した場面や正極成型時のプレス工程において粒子割れが発生しにくく、粒子強度が高い単粒子となる。
≪組成式(I)≫
 本実施形態のリチウム金属複合酸化物は、下記組成式(I)で表される。
  Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
 サイクル特性がよいリチウム二次電池を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 例えば、前記xは0超0.2以下であることが好ましく、0超0.1以下であることがより好ましく、0.01以上0.08以下であることがさらに好ましく、0.02以上0.06以下であることが特に好ましい。
 本明細書において、「サイクル特性」とは、充放電の繰り返しにより、電池容量が低下する特性を意味し、初期容量に対する再測定時の容量比を意味する。
 また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。
 例えば、前記yは0超0.4以下であることが好ましく、0.005以上0.35以下であることがより好ましく、0.01以上0.35以下であることがさらに好ましく、0.05以上0.33以下であることが特に好ましい。
 本実施形態においては、組成式(I)において、0<x≦0.1であり、かつ0<y≦0.4であることがより好ましい。
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.39以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
 zの上限値と下限値は任意に組み合わせることができる。
 例えば、前記zは0.01以上0.39以下であることが好ましく、0.02以上0.38以下であることがより好ましく、0.1以上0.35以下であることがさらに好ましい。
 また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が多いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
 wの上限値と下限値は任意に組み合わせることができる。
 例えば、前記wは0超0.09以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.001以上0.07以下であることがさらに好ましい。
 本実施形態においては、前記組成式(I)におけるy+z+wは0.5未満が好ましく、0.3以下がより好ましい。本発明の効果を有する限り、y+z+wの下限値は特に限定されないが、例えば0.05以上が好ましく、0.1以上がより好ましい。
 前記y+z+wの上限値と下限値は任意に組み合わせることができる。
 例えば、前記y+z+wは0.05以上0.5未満であることが好ましく、0.1以上0.3以下であることがより好ましい。
 前記組成式(I)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属を表す。
 また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Mg、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Ti、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましい。
 本実施形態において、前記組成式(I)中のw、x、y、zは、リチウム複合金属化合物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて分析を行うことにより求めることができる。
 本実施形態において、前記リチウム金属複合酸化物粉末の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と50%累積体積粒度D50との比率((D90-D10)/D50)が、2.0未満であることが好ましい。
 累積体積粒度は、レーザー回折散乱法によって測定される。
 まず、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得る。
 次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT3300EXII)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
 そして、得られた累積粒度分布曲線において、全体を100%としたときに、微小粒子側からの累積体積が10%となる点の粒子径の値が10%累積体積粒度D10(μm)、50%となる点の粒子径の値が50%累積体積粒度D50(μm)、90%となる点の粒子径の値が90%累積体積粒度D90(μm)である。
 本実施形態において、(D90-D10)/D50は、1.9以下が好ましく、1.8以下がより好ましい。本発明の効果を有する限り、(D90-D10)/D50の下限値は特に限定されないが、例えば、0.1以上が好ましく、0.3以上がより好ましく、0.5以上がさらに好ましい。
 前記(D90-D10)/D50の上限値と下限値は任意に組み合わせることができる。
 例えば、前記(D90-D10)/D50は0.1以上2.0未満であることが好ましく、0.3以上1.9以下であることがより好ましく、0.5以上1.8以下であることがさらに好ましい。
 (D90-D10)/D50が前記上限値以下であると、正極中の正極活物質の充填性が向上し電池のエネルギー密度が向上する。
 本実施形態においては、単粒子の平均粒径が、0.5μm以上が好ましく、0.75μm以上がより好ましく、1.0μm以上が特に好ましい。また、単粒子の平均粒径が、7μm以下であることが好ましく、6μm以下がより好ましく、5μm以下が特に好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、中でも単粒子の平均粒径が、0.5μm以上7μm以下であることが好ましく、0.75μm以上6μm以下であることがより好ましく、1μm以上5μm以下であることがさらに好ましい。
 単粒子の平均粒径が前記下限値以上であると、正極活物質のハンドリング性が向上する。
 単粒子の平均粒径が前記上限値以下であると、高い電流レートにおける放電容量が向上する。
 本実施形態においては、二次粒子の平均粒径は、2μm以上が好ましく、3μm以上がより好ましく、4μm以上が特に好ましい。また、二次粒子の平均粒径は、20μm以下が好ましく、18μm以下がより好ましく、16μm以下が特に好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、中でも二次粒子の平均粒径が、2μm以上20μm以下であることが好ましく、3μm以上18μm以下であることがより好ましく、4μm以上16μm以下であることがさらに好ましい。二次粒子の平均粒径が前記下限値以上であると、正極中の正極活物質の充填性が向上し、電池のエネルギー密度が向上する。二次粒子の平均粒径が前記上限値以下であると、高い電流レートにおける放電容量が向上する。
 一次粒子は、二次粒子を構成するために凝集するため、粒子が大きく成長したものではなく、その粒子径は0.1μm以上0.5μm未満程度である。
 本実施形態において、単粒子の平均粒子径は下記の方法により求める。
 まず、リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から無作為に50個の単粒子を抽出し、それぞれの単粒子について、単粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子の粒子径として測定する。得られた単粒子の粒子径の算術平均値を、リチウム金属複合酸化物粉末の単粒子の平均粒子径とする。
 また、単粒子の平均粒子径は、例えば以下の方法により求めてもよい。
 上述のSEM観察に得られた画像(SEM写真)から無作為に50個の単粒子を抽出し、それぞれの単粒子について、単粒子の投影像を挟む2本の平行な直線の最大距離を単粒子の粒子径として測定する。得られた単粒子の粒子径の算術平均値を、リチウム金属複合酸化物粉末の単粒子の平均粒子径としてもよい。
・二次粒子の平均粒子径
 また、リチウム金属複合酸化物粉末の二次粒子の「平均粒子径」は、上記単粒子の平均粒子径の測定方法と同様の方法で測定することができる。
・一次粒子の平均粒子径
 また、リチウム金属複合酸化物粉末の二次粒子を構成する一次粒子の「平均粒子径」は、まずSEM観察により得られた画像(SEM写真)から無作為に抽出した二次粒子を構成する一つの一次粒子について、隣り合う一次粒子との粒界に接する平行線間の距離(定方向径)を一次粒子の粒子径として測定する。無作為に抽出した50個の一次粒子について粒子径を測定し、得られた粒子径の算術平均値を、リチウム金属複合酸化物粉末の二次粒子を構成する一次粒子の平均粒子径とする。
(層状構造)
 本実施形態において、正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
<リチウム金属複合酸化物粉末の製造方法>
 本実施形態の正極活物質が含有するリチウム金属複合酸化物粉末を製造するにあたって、まず、リチウム以外の金属、すなわち、少なくともNiを含み、Co、Mn、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、前記金属複合化合物を適当なリチウム塩と、不活性溶融剤と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物粉末の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z-w)CoMn(OH)(式中、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1)で表される金属複合水酸化物を共沈法により製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。以上の金属塩は、上記Ni(1-y-z-w)CoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比が、リチウム金属複合酸化物の組成式(I)の(1-y-z-w):y:zと対応するように各金属塩の量を規定する。
 また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は、所望により含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、Ni(1-y-z-w)CoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御され、反応槽内のpH値は例えば40℃測定時においてpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物の二次粒子径、細孔半径等の各種物性を制御することが出来る。上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、あるいはそれらの混合ガスを反応槽内に供給してもよい。気体以外に酸化状態を促すものとして、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用することができる。
 例えば、反応槽内の反応pHを高くすると、二次粒子径が小さい金属複合化合物が得られやすい。一方、反応pHを低くすると、二次粒子径が大きい金属複合化合物が得られやすい。また、反応槽内の酸化状態を高くすると、空隙を多く有する金属複合化合物が得られやすい。一方、酸化状態を低くすると、緻密な金属複合化合物が得られやすい。反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すればよい。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて得られた反応沈殿物を弱酸水や、水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。ニッケルコバルトマンガン複合酸化物を調製する場合は、例えば、前記共沈物スラリーと酸化剤を接触させる工程や、ニッケルコバルトマンガン複合水酸化物を熱処理する工程を行うことにより調製することができる。
(リチウム金属複合酸化物の製造工程)
 上記金属複合化合物(金属複合酸化物又は金属複合水酸化物)を乾燥した後、リチウム塩と混合し混合物を得る。また、本実施形態において、この混合と同時に不活性溶融剤を混合することが好ましい。
 金属複合酸化物若しくは金属複合水酸化物、リチウム塩及び不活性溶融剤を含む、不活性溶融剤含有混合物を焼成することにより、不活性溶融剤の存在下で、混合物を焼成することになる。不活性溶融剤の存在下で焼成することにより、一次粒子同士が焼結して二次粒子が生成することを抑制できる。また、単粒子の成長を促進できる。
 本実施形態において、乾燥条件は特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化・還元されない条件(すなわち酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される条件)、金属複合水酸化物が酸化される条件(すなわち水酸化物が酸化物に酸化される条件)、金属複合酸化物が還元される条件(すなわち酸化物が水酸化物に還元される条件)のいずれの条件でもよい。酸化・還元されない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよく、金属複合水酸化物が酸化される条件では、酸素又は空気を使用すればよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
 金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と前記金属複合水酸化物は、LiNi(1-y-z-w)CoMn(式中、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 本実施形態においては、不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の結晶化反応を促進させることができる。不活性溶融剤は、焼成後のリチウム金属複合酸化物粉末に残留していてもよいし、焼成後に水などで洗浄すること等により除去されていてもよい。本実施形態においては、焼成後のリチウム複合金属酸化物は水などを用いて洗浄することが好ましい。
 焼成における保持温度を調整することにより、得られるリチウム金属複合酸化物の単粒子の粒子径を本実施形態の好ましい範囲に制御できる。
 通常、保持温度が高くなればなるほど、単粒子の粒子径は大きくなり、BET比表面積は小さくなる傾向にある。焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
 本実施形態においては、保持温度の設定は、後述する不活性溶融剤の融点を考慮すればよく、不活性溶融剤の融点マイナス100℃以上不活性溶融剤の融点プラス100℃以下の範囲で行うことが好ましい。
 保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
 また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
 焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
 本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩及びAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。
 Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)、CsF(融点:682℃)、CaF(融点:1402℃)、MgF(融点:1263℃)、SrF(融点:1473℃)及びBaF(融点:1355℃)を挙げることができる。
 Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)、CsCl(融点:645℃)、CaCl(融点:782℃)、MgCl(融点:714℃)、SrCl(融点:857℃)及びBaCl(融点:963℃)を挙げることができる。
 Aの炭酸塩としては、NaCO(融点:854℃)、KCO(融点:899℃)、RbCO(融点:837℃)、CsCO(融点:793℃)、CaCO(融点:825℃)、MgCO(融点:990℃)、SrCO(融点:1497℃)及びBaCO(融点:1380℃)を挙げることができる。
 Aの硫酸塩としては、NaSO(融点:884℃)、KSO(融点:1069℃)、RbSO(融点:1066℃)、CsSO(融点:1005℃)、CaSO(融点:1460℃)、MgSO(融点:1137℃)、SrSO(融点:1605℃)及びBaSO(融点:1580℃)を挙げることができる。
 Aの硝酸塩としては、NaNO(融点:310℃)、KNO(融点:337℃)、RbNO(融点:316℃)、CsNO(融点:417℃)、Ca(NO(融点:561℃)、Mg(NO、Sr(NO(融点:645℃)及びBa(NO(融点:596℃)を挙げることができる。
 Aのリン酸塩としては、NaPO(融点:75℃)、KPO(融点:1340℃)、RbPO、CsPO、Ca(PO(融点:1670℃)、Mg(PO(融点:1184℃)、Sr(PO(融点:1727℃)及びBa(PO(融点:1767℃)を挙げることができる。
 Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)、CsOH(融点:272℃)、Ca(OH)(融点:408℃)、Mg(OH)(融点:350℃)、Sr(OH)(融点:375℃)及びBa(OH)(融点:853℃)を挙げることができる。
 Aのモリブデン酸塩としては、NaMoO(融点:698℃)、KMoO(融点:919℃)、RbMoO(融点:958℃)、CsMoO(融点:956℃)、CaMoO(融点:1520℃)、MgMoO(融点:1060℃)、SrMoO(融点:1040℃)及びBaMoO(融点:1460℃)を挙げることができる。
 Aのタングステン酸塩としては、NaWO(融点:687℃)、KWO(融点:933℃)、RbWO、CsWO、CaWO(融点:1620℃)、MgWO、SrWO(融点:1400℃)及びBaWOを挙げることができる。
 本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いリチウム金属複合酸化物粉末を得るための不活性溶融剤としては、Aの炭酸塩及び硫酸塩、Aの塩化物のいずれか又はその組み合わせであることが好ましい。また、Aとしては、ナトリウム(Na)及びカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaCl、KCl、NaCO,KCO3、NaSO4、及びKSOからなる群より選ばれる1種以上である。
 これらの不活性溶融剤を用いることにより、得られるリチウム金属複合酸化物の平均圧壊強度を本実施形態の好ましい範囲に制御できる。
 本実施形態において、不活性溶融剤として、KSO及びNaSOのいずれか一方又は両方を用いた場合には、得られるリチウム金属複合酸化物の平均圧壊強度を本実施形態の好ましい範囲に制御できる。
 本実施形態において、焼成時の不活性溶融剤の存在量は適宜選択すればよい。得られるリチウム金属複合酸化物の平均圧壊強度を本実施形態の範囲とするためには、焼成時の不活性溶融剤の存在量はリチウム化合物100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、不活性溶融剤とリチウム塩の総モル比に対する不活性溶融剤のモル比[不活性溶融剤/(不活性溶融剤+リチウム塩)]は、0.001~0.5であることが好ましく、0.01~0.4であることがより好ましく、0.05~0.3であることがさらに好ましい。また、必要に応じて、上記に挙げた不活性溶融剤以外の不活性溶融剤を併せて用いてもよい。前記溶融剤としては、NHCl、NHFなどのアンモニウム塩等を挙げることができる。
<リチウム二次電池用正極活物質>
 本実施形態は、前記本実施形態のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質である。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本実施形態の正極活物質粉末を含有するリチウム二次電池用正極活物質を用いた正極、及びこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
 この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N-ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117:2009で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの総体積に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 次に、本発明を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム金属複合酸化物粉末の評価を下記の方法により実施した。
<組成分析>
 後述の方法で製造されるリチウム金属複合酸化物の組成分析は、得られたリチウム複合金属化合物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
≪平均圧壊強度の測定≫
 正極活物質に含まれる単粒子の「平均圧壊強度」は、以下の方法によって測定した。
 まず、リチウム金属複合酸化物粉末について株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて、無作為に選んだ単粒子1個に対して試験圧力(負荷)をかけ、単粒子の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出する。この操作を計5回行い、圧壊強度の5回平均値から平均圧壊強度を算出した。下記式(A)中の単粒子径(d)は、微小圧縮試験機MCT-510に付随する顕微鏡にて測定に使用した単粒子を観察し、単粒子について一定方向から引いた平行線ではさんだ平行線間の距離と、上記平行線と垂直な平行線ではさんだ平行線間の距離の平均を算出し、その値を採用した。
     St=2.8×P/(π×d×d) (d:単粒子径) …(A)
≪(D90-D10)/D50の測定≫
 リチウム金属複合酸化物粉末の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と、50%累積体積粒度D50との比率((D90-D10)/D50)は以下の方法により算出した。
 まず、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。
 次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT3300EXII)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。
 そして、得られた累積粒度分布曲線において、10%累積時の微小粒子側から見た粒子径の値が10%累積体積粒度D10(μm)、50%累積時の微小粒子側から見た粒子径の値が50%累積体積粒度D50(μm)とし、90%累積時の微小粒子側から見た粒子径の値が90%累積体積粒度D90(μm)とし、比率(D90-D10)/D50を算出した。
≪単粒子(二次粒子)の粒子径の測定≫
 単粒子(二次粒子)の平均粒子径は下記の方法により求めた。
 まず、リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から無作為に50個の単粒子(二次粒子)を抽出し、それぞれの単粒子(二次粒子)について、単粒子(二次粒子)の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子(二次粒子)の粒子径として測定した。得られた単粒子(二次粒子)の粒子径の算術平均値を、リチウム金属複合酸化物粉末の単粒子(二次粒子)の平均粒子径とした。
≪一次粒子の粒子径の測定≫
 リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から無作為に抽出した二次粒子を構成する一つの一次粒子について、隣り合う一次粒子との粒界に接する平行線間の距離(定方向径)を一次粒子の粒子径として測定した。無作為に抽出した50個の一次粒子について粒子径を測定し、得られた粒子径の算術平均値を、リチウム金属複合酸化物粉末の二次粒子を構成する一次粒子の平均粒子径とした。
≪フロート電気量の測定≫
 「フロート電気量」は、以下の方法により測定した。
 後述の方法により得られたリチウム金属複合酸化物粉末からなる正極活物質を用いてリチウム二次電池(コイン型セル)を作製した。正極は、後述の方法により得られた正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した後、得られたペースト状の正極合剤を、集電体となる厚さ40μmのAl箔に、アプリケーターを用いて一面側に塗布して乾燥させ、125kN/mの圧力でプレスし固着させた電極を直径14.5mmの円形に打ち抜いたものを使用した。
 より具体的には、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋に正極をアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリプロピレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み25μm))を置く。ここに電解液を300μL注入する。用いる電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35(体積比)混合液に、LiPFを1.0mol/Lとなるように溶解して調製した。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コインセル」と称することがある。)を作製した。
 さらに、得られたコインセルを用いて次のように試験を行った。
 即ち、試験温度60℃で、充電最大電圧4.3V、充電時間60時間、充電電流0.05CAで定電流定電圧充電した。
 定電流定電圧充電において、4.3Vの定電圧モードに移行してから30時間の間の積算電気量を測定し、フロート電気量(mAh/g)として算出した。
≪実施例1≫
1.正極活物質1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.20、KSO/(LiCO+KSO)=0.1(mol/mol)となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質1を得た。
2.正極活物質1の評価
 正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.20、z=0.20、w=0であった。
 正極活物質1のSEM観察の結果、独立して存在する単粒子の平均粒子径は2.0μmであり、二次粒子の平均粒子径は6.0μmであり、二次粒子を構成する一次粒子の平均粒子径は0.4μmであった。
 正極活物質1に含まれる単粒子の平均圧壊強度は127MPa、(D90-D10)/D50は1.2、フロート電気量は7.66mAh/gであった。
≪実施例2≫
1.正極活物質2の製造
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.88:0.08:0.04となるように混合した以外は、実施例1と同様に操作してニッケルコバルトマンガン複合水酸化物2を得た。
 ニッケルコバルトマンガン複合水酸化物2と、水酸化リチウム一水和物粉末と硫酸カリウム粉末とを、Li/(Ni+Co+Mn)=1.20、KSO/(LiOH+KSO)=0.10(mol/mol)となるように秤量して混合した後、酸素雰囲気下820℃で6時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを、20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質2を得た。
2.正極活物質2の評価
 正極活物質2の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.08、z=0.04、w=0であった。
 正極活物質2のSEM観察の結果、独立して存在する単粒子の粒子径は3.0μmであり、二次粒子の平均粒子径は9.0μmであり、二次粒子を構成する一次粒子の平均粒子径は0.4μmであった。正極活物質2に含まれる単粒子の平均圧壊強度は126MPa、(D90-D10)/D50は1.9、フロート電気量は7.68mAh/gであった。
≪実施例3≫
1.正極活物質3の製造
 焼成温度を760℃とした以外は実施例2と同様の方法で正極活物質3を得た。
2.正極活物質3の評価
正極活物質3の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.08、z=0.04、w=0であった。
 正極活物質3のSEM観察の結果、独立して存在する単粒子の粒子径は1.8μmであり、二次粒子の平均粒子径は8.0μmであり、二次粒子を構成する一次粒子の平均粒子径は0.3μmであった。正極活物質3に含まれる単粒子の平均圧壊強度は102MPa、(D90-D10)/D50は1.7、フロート電気量は7.57mAh/gであった。
≪比較例1≫
1.正極活物質4の製造
 正極活物質焼成時にKSOを添加せずに、焼成温度を850℃とした以外は実施例1と同様の方法で正極活物質4を得た。
2.正極活物質4の評価
 正極活物質4の組成分析を行い、組成式(I)に対応させたところ、x=0、y=0.20、z=0.20、w=0であった。
 正極活物質4のSEM観察の結果、独立して存在する単粒子は含まれていなかった。二次粒子の平均粒子径は8.0μmであり、二次粒子を構成する一次粒子の平均粒子径は0.6μmであった。(D90-D10)/D50は1.9で、フロート電気量は11.3mAh/gであった。
≪比較例2≫
1.正極活物質5の製造
 正極活物質焼成時にKSOを添加せずに、焼成温度を760℃とした以外は実施例2と同様の方法で正極活物質5を得た。
2.正極活物質5の評価
 正極活物質5の組成分析を行い、組成式(I)に対応させたところ、x=0.01、y=0.08、z=0.04、w=0であった。
 正極活物質5のSEM観察の結果、独立して存在する単粒子は含まれていなかった。二次粒子の平均粒子径は6.0μmであり、二次粒子を構成する一次粒子の平均粒子径は0.3μmであった(D90-D10)/D50は1.8で、フロート電気量は14.3mAh/gであった。
≪比較例3≫
1.正極活物質6の製造
正極活物質焼成時にKSOを添加せずに、焼成温度を925℃とした以外は実施例1と同様の方法で正極活物質6を得た。
2.正極活物質6の評価
 正極活物質6の組成分析を行い、組成式(I)に対応させたところ、x=-0.01、y=0.20、z=0.20、w=0であった。
 正極活物質6のSEM観察の結果、独立して存在する単粒子の粒子径は1.0μmであり、二次粒子の平均粒子径は5.0μmであり、二次粒子を構成する一次粒子の平均粒子径は0.4μmであった。正極活物質6に含まれる単粒子の平均圧壊強度は71.9MPaで、(D90-D10)/D50は11.0で、フロート電気量は9.9mAh/gであった。
 下記表1に、実施例1~3、比較例1~3の各結果についてまとめて記載する。
Figure JPOXMLDOC01-appb-T000001
 上記結果に示した通り、本発明を適用した実施例1~3の正極活物質は、フロート電気量の発生が少なく、電解液との分解反応が少ない正極活物質であることが確認できた。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (7)

  1.  一次粒子の凝集体である二次粒子と、
     前記二次粒子とは独立して存在する単粒子と、を含むリチウム金属複合酸化物粉末であって、
     前記リチウム金属複合酸化物は下記組成式(I)で表され、かつ、前記単粒子の平均圧壊強度が80MPaを超えることを特徴とする、リチウム金属複合酸化物粉末。
      Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
    (ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
  2.  前記組成式(I)において、0<x≦0.1であり、0<y≦0.4である、請求項1に記載のリチウム金属複合酸化物粉末。
  3.  前記リチウム金属複合酸化物粉末の90%累積体積粒度D90から10%累積体積粒度D10を引いた値と、50%累積体積粒度D50との比率((D90-D10)/D50)が、2.0未満である、請求項1又は2に記載のリチウム金属複合酸化物粉末。
  4.  前記単粒子の平均粒子径が0.5μm以上7μm以下である、請求項1~3のいずれか1項に記載のリチウム金属複合酸化物粉末。
  5.  請求項1~4のいずれか1項に記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。
  6.  請求項5に記載のリチウム二次電池用正極活物質を有する正極。
  7.  請求項6に記載の正極を有するリチウム二次電池。
PCT/JP2019/010297 2018-03-13 2019-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 WO2019177032A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/979,415 US11990617B2 (en) 2018-03-13 2019-03-13 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
CN201980018099.9A CN111837268B (zh) 2018-03-13 2019-03-13 锂金属复合氧化物粉末、锂二次电池用正极活性物质、正极以及锂二次电池
EP19766519.3A EP3767717A4 (en) 2018-03-13 2019-03-13 LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE, AND LITHIUM SECONDARY BATTERY
KR1020207025818A KR20200130819A (ko) 2018-03-13 2019-03-13 리튬 금속 복합 산화물 분말, 리튬 이차 전지용 정극 활물질, 정극, 및 리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045955A JP2019160573A (ja) 2018-03-13 2018-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP2018-045955 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019177032A1 true WO2019177032A1 (ja) 2019-09-19

Family

ID=67907834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010297 WO2019177032A1 (ja) 2018-03-13 2019-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池

Country Status (6)

Country Link
US (1) US11990617B2 (ja)
EP (1) EP3767717A4 (ja)
JP (1) JP2019160573A (ja)
KR (1) KR20200130819A (ja)
CN (1) CN111837268B (ja)
WO (1) WO2019177032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107754A1 (ja) 2020-11-17 2022-05-27 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022168780A1 (ja) 2021-02-03 2022-08-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020005866T5 (de) 2019-11-29 2022-09-15 Nichia Corporation Aktivmaterial für eine positive elektrode für eine sekundärbatterie mitnicht-wässrigem elektrolyten und verfahren zur herstellungdesselben
EP4129926A4 (en) * 2020-09-21 2023-12-20 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL MANUFACTURED BY SOLID PHASE SYNTHESIS, AND METHOD FOR MANUFACTURING SAME
KR102568195B1 (ko) * 2021-02-04 2023-08-21 한국전자기술연구원 양극 활물질, 그를 포함하는 전고체전지 및 그의 제조 방법
KR20220167037A (ko) * 2021-06-11 2022-12-20 에스케이온 주식회사 리튬 이차 전지용 양극 조성물 및 이를 사용해 제조된 리튬 이차 전지
CN118043987A (zh) * 2021-09-30 2024-05-14 松下知识产权经营株式会社 二次电池用正极和其制造方法、以及二次电池
CN114436347B (zh) * 2022-03-21 2024-02-20 宁波容百新能源科技股份有限公司 一种高镍三元正极材料及其制备方法和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142056A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水系電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004087492A (ja) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質の製造法および正極活物質
JP2004193115A (ja) 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2004355824A (ja) 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質および正極
EP2447214A2 (en) 2009-06-25 2012-05-02 NGK Insulators, Ltd. Positive electrode active material and lithium secondary battery
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
JP2012126633A (ja) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd リチウム複合金属酸化物の製造方法
JP2015026455A (ja) * 2013-07-24 2015-02-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
WO2016129361A1 (ja) * 2015-02-12 2016-08-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法
US20160248090A1 (en) 2015-02-19 2016-08-25 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN106450155A (zh) 2016-09-18 2017-02-22 贵州振华新材料有限公司 球形或类球形锂离子电池正极材料及制法和应用
JP2017188443A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2017188445A (ja) * 2016-03-31 2017-10-12 本田技研工業株式会社 非水系電解質二次電池用正極活物質
JP2018045955A (ja) 2016-09-16 2018-03-22 東芝ライテック株式会社 照明装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466341C (zh) 2002-08-08 2009-03-04 松下电器产业株式会社 非水电解质二次电池用正极活性物质及其制造方法
JP4276442B2 (ja) 2003-01-14 2009-06-10 Agcセイミケミカル株式会社 リチウム二次電池用正極活物質粉末
JP5590283B2 (ja) 2008-09-22 2014-09-17 住友金属鉱山株式会社 リチウム複合ニッケル酸化物およびその製造方法
US20110003206A1 (en) 2009-09-29 2011-01-06 Ngk Insulators, Ltd. Positive electrode active element and lithium secondary battery
JP5035712B2 (ja) * 2010-09-30 2012-09-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP5803539B2 (ja) * 2011-10-11 2015-11-04 株式会社豊田自動織機 リチウム含有複合酸化物粉末の製造方法
JP6549565B2 (ja) 2014-05-29 2019-07-24 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2016148096A1 (ja) * 2015-03-13 2016-09-22 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
WO2017169129A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池
US10115967B2 (en) 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
EP3225592B1 (en) 2016-03-31 2019-07-10 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
JP7120012B2 (ja) * 2016-07-29 2022-08-17 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6337360B2 (ja) 2016-08-31 2018-06-06 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6256956B1 (ja) 2016-12-14 2018-01-10 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142056A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水系電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004087492A (ja) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質の製造法および正極活物質
JP2004193115A (ja) 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2004355824A (ja) 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質および正極
EP2447214A2 (en) 2009-06-25 2012-05-02 NGK Insulators, Ltd. Positive electrode active material and lithium secondary battery
JP2012126633A (ja) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd リチウム複合金属酸化物の製造方法
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
JP2015026455A (ja) * 2013-07-24 2015-02-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
WO2016129361A1 (ja) * 2015-02-12 2016-08-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法
US20160248090A1 (en) 2015-02-19 2016-08-25 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017188443A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2017188445A (ja) * 2016-03-31 2017-10-12 本田技研工業株式会社 非水系電解質二次電池用正極活物質
JP2018045955A (ja) 2016-09-16 2018-03-22 東芝ライテック株式会社 照明装置
CN106450155A (zh) 2016-09-18 2017-02-22 贵州振华新材料有限公司 球形或类球形锂离子电池正极材料及制法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIRAMATSU ET AL.: "Journal of the Mining and Metallurgical Institute of Japan", vol. 81, 1965
JOURNAL OF THE MINING AND METALLURGICAL INSTITUTE OF JAPAN, vol. 81, 1965
See also references of EP3767717A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107754A1 (ja) 2020-11-17 2022-05-27 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022168780A1 (ja) 2021-02-03 2022-08-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
EP3767717A4 (en) 2021-12-15
JP2019160573A (ja) 2019-09-19
KR20200130819A (ko) 2020-11-20
US11990617B2 (en) 2024-05-21
CN111837268B (zh) 2024-04-23
EP3767717A1 (en) 2021-01-20
CN111837268A (zh) 2020-10-27
US20210083286A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6256956B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6600734B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
WO2019177014A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019177032A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
WO2018079816A1 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
JP2019003955A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JPWO2016104488A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6368022B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018043653A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019189425A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
WO2019177023A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
JP2020011892A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP2018081937A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018095546A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7222866B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法
JP2019172573A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019766519

Country of ref document: EP

Effective date: 20201013