WO2019176895A1 - 硫化物系固体電解質粒子 - Google Patents
硫化物系固体電解質粒子 Download PDFInfo
- Publication number
- WO2019176895A1 WO2019176895A1 PCT/JP2019/009847 JP2019009847W WO2019176895A1 WO 2019176895 A1 WO2019176895 A1 WO 2019176895A1 JP 2019009847 W JP2019009847 W JP 2019009847W WO 2019176895 A1 WO2019176895 A1 WO 2019176895A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- halogen
- sulfide
- ratio
- particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is a sulfide-based solid electrolyte particle that can be suitably used as a solid electrolyte of a lithium secondary battery, and is a cubic composed of lithium (Li), phosphorus (P), sulfur (S), and halogen (Ha).
- the present invention relates to a sulfide-based solid electrolyte particle having a crystal phase of a crystalline Argyrodite crystal structure.
- the lithium secondary battery is a secondary battery having a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is occluded, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging.
- Lithium secondary batteries have features such as high energy density and long life, so electric appliances such as home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools It is widely used as a power source for tools and the like, and has recently been applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).
- EV electric vehicles
- HEV hybrid electric vehicles
- This type of lithium secondary battery is composed of a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes.
- the ion conductive layer includes a separator made of a porous film such as polyethylene or polypropylene and a non-aqueous system.
- the one filled with the electrolytic solution is generally used.
- an organic electrolyte using a flammable organic solvent as a solvent is used as the electrolyte, it was necessary to improve the structure and materials to prevent volatilization and leakage. It was also necessary to improve the structure and materials in order to prevent the occurrence of short circuits by installing safety devices that suppress the temperature rise.
- an all-solid-state lithium secondary battery obtained by solidifying a battery using a solid electrolyte using lithium sulfide (Li 2 S) as a starting material does not use a flammable organic solvent.
- the apparatus can be simplified, and the manufacturing cost and productivity can be improved.
- it has the feature that high voltage can be achieved by stacking in series in the cell.
- this type of solid electrolyte does not move except for Li ions, side reactions due to movement of anions do not occur. This is expected to lead to improvements in safety and durability.
- Solid electrolytes used in such batteries are required to have as high ionic conductivity as possible and to be chemically and electrochemically stable.
- lithium halides, lithium nitrides, lithium oxyacid salts, or derivatives thereof are known as material candidates.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2016-24874
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-24874
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-24874
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-24874
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-24874
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-24874
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-24874
- a sulfide-based solid electrolyte containing a compound and satisfying 0.8 ⁇ x ⁇ 1.7 and 0 ⁇ y ⁇ ⁇ 0.25x + 0.5 in the composition formula (1) is disclosed. Has been.
- Patent Document 3 Japanese Patent Laid-Open No. 2012-94445
- the surface of the sulfide-based solid electrolyte particles is appropriately repeated by, for example, repeatedly performing a treatment of drying after exposure to the atmosphere.
- an oxide layer is formed on the surface to prevent the contact between the sulfide-based solid electrolyte particles and the oxide active material, thereby suppressing the formation of a high resistance site on the surface of the sulfide-based solid electrolyte particles. It is disclosed.
- the sulfide compound having a cubic Argyrodite type crystal structure has high crystallinity and excellent ionic conductivity, but is characterized by being hard.
- a sulfide-based compound having a cubic Argyrodite-type crystal structure containing halogen (Ha) has a characteristic that it is particularly hard, so that it is excellent between positive electrode active material particles or negative electrode active material particles. Since it is difficult to ensure a contact state and it is difficult to promote good interdiffusion of lithium ions, it has been a problem in enhancing rate characteristics and cycle characteristics.
- the present invention relates to a sulfide-based solid electrolyte particle having a crystal phase of a cubic Argyrodite type crystal structure composed of lithium (Li), phosphorus (P), sulfur (S) and halogen (Ha), and positive electrode active material particles
- a new sulfide-based solid electrolyte particle capable of ensuring a good contact state with the negative electrode active material particles and further improving rate characteristics and cycle characteristics. Is.
- the present invention is a sulfide-based solid electrolyte particle having a crystal phase of a cubic Argyrodite crystal structure composed of lithium (Li), phosphorus (P), sulfur (S) and halogen (Ha), -ray Photoelectron Spectroscopy) is measured by, for element ratio Z Ha1 halogen (Ha) at the position of depth 100nm from the surface of the particles (SiO 2 sputtering rate conversion), at a depth of 5nm from the particle surface (SiO 2 sputtering rate ratio of element ratio Z Ha2 halogen (Ha) in terms of) (Z Ha2 / Z Ha1) is not less than 0.5, and, phosphorus (P at the position of depth of 5nm from the particle surface (SiO 2 sputtering rate conversion) ), sulfur (S), oxygen (O) and total Z A2 to pairs of element ratio halogen (Ha) That the ratio of oxygen element ratio Z O2 (Z O2 / Z A2
- the sulfide-based solid electrolyte particles proposed by the present invention increase the oxygen concentration on the particle surface, while lowering the halogen (Ha) concentration on the particle surface as compared with the inside of the particle, so that the positive electrode active material particle or the negative electrode active material A good contact state can be ensured between the particles and the rate characteristics and cycle characteristics can be improved.
- the surface becomes soft by reducing the concentration of halogen (Ha) on the particle surface as compared with the inside of the particle, so that it is good between the positive electrode active material particles or the negative electrode active material particles. It can be considered that the contact state can be secured.
- the sulfide-based solid electrolyte particles according to the present embodiment are cubic Argyrodite-type crystals composed of lithium (Li), phosphorus (P), sulfur (S), and halogen (Ha). Particles having a crystalline phase of structure.
- the solid electrolyte particles preferably have a lower halogen (Ha) element ratio on the particle surface than the inside of the particle. Therefore, the halogen (Ha) element ratio at a depth of 100 nm from the particle surface as measured by XPS.
- Z Ha1 it is preferable ratio of the element ratio Z Ha2 halogen (Ha) at the position of depth of 5nm from the particle surface (Z Ha2 / Z Ha1) is 0.5 or less, 0.50 or less. among them, among them It is more preferably 0.01 or more and 0.4 or less, particularly 0.40 or less, particularly 0.05 or more or 0.3 or less, and particularly preferably 0.30 or less.
- the element ratio of halogen (Ha) on the particle surface is preferably relatively low among all the constituent elements on the particle surface, and therefore the position measured at 5 nm depth from the particle surface is measured by XPS.
- the ratio (Z Ha2 / Z A2 ) of the element ratio Z Ha2 of halogen (Ha) to the total Z A2 of element ratios of phosphorus (P), sulfur (S), oxygen (O) and halogen (Ha) in 1 or less, preferably 0.10 or less, more preferably 0.01 or more and 0.08 or less, and particularly preferably 0.02 or more or 0.05 or less.
- this solid electrolyte particle has a certain amount of halogen (Ha) inside the particle, phosphorus (P) and sulfur (S) at a depth of 100 nm from the particle surface as measured by XPS.
- the ratio (Z Ha1 / Z A1 ) of the halogen (Ha) element ratio Z Ha1 to the total element ratio Z A1 of oxygen (O) and halogen (Ha) is 0.03 to 0.3. Among these, it is preferably 0.30 or less, more preferably 0.04 or more or 0.25 or less, and particularly preferably 0.2 or less, and more preferably 0.20 or less.
- the sulfide compound particles having a cubic Argyrodite type crystal structure particularly, the sulfide type compound particles having a cubic Argyrodite type crystal structure containing halogen (Ha) have a feature of being particularly hard.
- the present solid electrolyte particles are preferably measured by XPS since the oxygen ratio on the particle surface is preferably higher than usual from the viewpoint of relatively reducing the element ratio of halogen (Ha) on the particle surface.
- Ratio of oxygen element ratio Z O2 to the total element ratio Z A2 of phosphorus (P), sulfur (S), oxygen (O), and halogen (Ha) at a position 5 nm deep from the surface (Z O2 / Z A2 ) Is preferably 0.5 or more, more preferably 0.50 or more, particularly 0.6 or more or 1.0 or less, particularly 0.60 or more, particularly 0.8 or more, and particularly 0.80 or more. More preferably.
- the solid electrolyte particles have a small oxygen ratio inside the particles from the viewpoint of ensuring conductivity, phosphorus (P) and sulfur (S) at a position 100 nm deep from the particle surface, measured by XPS.
- the ratio of the oxygen element ratio Z O1 to the total element ratio Z A1 of oxygen (O) and halogen (Ha) (Z O1 / Z A1 ) is preferably less than 0.3. 001 or more or 0.2 or less, more preferably 0.20 or less, and particularly preferably 0.01 or more.
- the oxygen present on the surface of the solid electrolyte particles is considered to be water-derived oxygen when the production method described below is adopted, and therefore contains a large amount of oxygen present as OH groups. Can be guessed.
- the means for increasing the oxygen concentration near the particle surface while reducing the concentration of halogen (Ha) near the particle surface is an atmosphere containing a predetermined moisture, in other words, a predetermined range. This can be realized by exposing the fixed electrolyte particles to an atmosphere having a dew point of a predetermined time and not performing a drying treatment. However, it is not limited to this method.
- halogen (Ha) concentration and oxygen concentration at a depth of 5 nm from the particle surface, not the outermost surface of the particle, were examined because the outermost surface of the particle is greatly affected by external factors such as exposure conditions. Therefore, it is defined in consideration of the fact that the influence is less and the characteristics of the present solid electrolyte particles can be shown.
- the present solid electrolyte particles are composed mainly of a compound represented by the composition formula (1): Li 7-x PS 6-x Ha x having a cubic Argyrodite crystal structure. preferable.
- the present solid electrolyte particles may contain oxygen (O), a slight heterogeneous phase, or the like as long as it includes a crystal phase of a cubic Argyrodite crystal structure as a main phase.
- the content ratio of the heterogeneous phase is not limited as long as it affects the properties of the solid electrolyte particles, and is specifically less than 10% by mass, preferably less than 5% by mass, and particularly preferably less than 3% by mass.
- the “main phase” in the solid electrolyte particles means a phase, that is, a compound that is contained in the solid electrolyte particles most in a molar ratio.
- examples of the Ha element include fluorine (F), chlorine (Cl), bromine (Br), and iodine (I), and one or a combination of two or more of these may be used. I just need it.
- x indicating the content of the Ha element is preferably 0.2 to 1.8. If x is 0.2 to 1.8, it is easy to obtain a cubic Argyrodite crystal structure and the generation of impurity phases can be suppressed, so that the conductivity of lithium ions can be increased. From this viewpoint, x is preferably 0.2 to 1.8, and particularly preferably 0.6 or more and 1.6 or less.
- x is preferably 0.4 or more, and among these, x is 0.6 or more, and 1.6 or less. It is particularly preferably 0.8 or more or 1.2 or less.
- the solid electrolyte particles are a compound represented by the composition formula (2): Li 7-x PS 6-x Cl y Br z .
- the ratio of the molar ratio of Br to the molar ratio of Cl (z / y) is preferably 0.1 to 10. If the ratio of the molar ratio of Br to the molar ratio of Cl (z / y) is 0.1 or more, it is preferable because the solid electrolyte has a low elastic modulus, while the ratio (z / y) is 10 or less. If it is, it becomes preferable from becoming high ionic conductivity. From this point of view, in the above composition formula (2), the ratio of the molar ratio of Br to the molar ratio of Cl (z / y) is preferably 0.1 to 10, more preferably 0.2 or more and 5 or less. Among these, it is more preferable that it is 0.3 or more or 3 or less.
- the present solid electrolyte including the present solid electrolyte particles is an aggregate of particles, and the D 50 of the solid electrolyte, that is, the D 50 (“average particle size” based on the volume particle size distribution obtained by measurement by a laser diffraction scattering type particle size distribution measuring method.
- D 50 ) or“ D 50 ”
- D 50 is preferably from 0.1 ⁇ m to 10 ⁇ m. If D 50 is 0.1 ⁇ m or more, the resistance increases and due to the increase the surface area of the solid electrolyte particles, there is no necessity that the mixing of the active material becomes difficult preferred.
- the average particle diameter (D 50 ) of the present solid electrolyte is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.3 ⁇ m or more and 7 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more or 5 ⁇ m or less. Further preferred.
- the solid electrolyte particles are solid electrolyte particles having a cubic Argyrodite crystal structure composed of lithium (Li), phosphorus (P), sulfur (S), and halogen (Ha) (“raw material solid electrolyte particles” and
- the surface solid electrolyte particles are subjected to “surface modification treatment”. That is, it can be obtained by exposing the raw material solid electrolyte particles for a predetermined time in an atmosphere having a dew point in the predetermined range described above, and not performing a drying process.
- the manufacturing method demonstrated here is an example to the last, and is not limited to this method.
- the method for preparing the raw material solid electrolyte particles is arbitrary. It may be purchased or manufactured.
- the raw solid electrolyte particles are obtained by weighing, for example, a lithium sulfide (Li 2 S) powder, a phosphorus sulfide (P 2 S 5 ) powder, a lithium chloride (LiCl) powder, or a lithium bromide (LiBr) powder.
- a lithium sulfide (Li 2 S) powder a phosphorus sulfide (P 2 S 5 ) powder
- LiCl lithium chloride
- LiBr lithium bromide
- the above pulverization and mixing may be carried out by reducing the crystallinity of the raw material powder or making it amorphous or homogenizing the raw material mixed powder by a very powerful mechanical pulverization mixing such as mechanical alloying method.
- a very powerful mechanical pulverization mixing such as mechanical alloying method.
- the bond between sulfur and sulfur is broken, sulfur is lost during firing, sulfur deficiency is generated, and electronic conductivity is exhibited. Therefore, pulverization and mixing that can maintain the crystallinity of the raw material powder is desirable.
- raw material solid electrolyte particles having almost no sulfur deficiency can be produced by firing at 350 ° C. or higher in an inert atmosphere or hydrogen sulfide gas (H 2 S) flow.
- H 2 S hydrogen sulfide gas
- the sulfur partial pressure in the vicinity of the fired sample can be increased by sulfur gas generated by decomposition of hydrogen sulfide during firing, so that sulfur deficiency is difficult to generate even at high firing temperatures.
- Electron conductivity can be lowered.
- the firing temperature is preferably 350 ° C. to 650 ° C., particularly 450 ° C. or more and 600 ° C. or less, and more preferably 500 ° C. or more or 550 ° C. or less. Is particularly preferred.
- the firing temperature is preferably 350 ° C. to 500 ° C., more preferably 350 ° C. or more and 450 ° C. or less, and particularly preferably 400 ° C. or more and 450 ° C. or less. .
- exhaust gas is completely burned with a burner or the like and then neutralized with a sodium hydroxide solution to be treated as sodium sulfide or the like.
- the surface modification treatment of the raw material solid electrolyte particles is performed by exposing the raw material solid electrolyte particles for a predetermined time in an atmosphere containing a predetermined moisture, particularly an atmosphere having a dew point temperature within a predetermined range, and performing a drying process at this time. It is preferable to do so.
- the dew point temperature within a predetermined range is preferably ⁇ 45 ° C. to 10 ° C., more preferably ⁇ 35 ° C. or higher or 0 ° C. or lower, and particularly preferably ⁇ 30 ° C. or higher or ⁇ 10 ° C. or lower.
- the dew point temperature of the atmosphere is preferably adjusted by introducing moisture into a dry atmosphere having a low dew point temperature and an atmosphere mixture having a high dew point temperature, or in dry air having a low dew point temperature.
- the temperature at which the raw solid electrolyte particles are exposed in an atmosphere having a dew point temperature within a predetermined range is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. or more and 80 ° C. or less, and particularly 25 ° C. or more or 45 More preferably, it is not higher than ° C.
- the exposure time at that time is preferably 1 to 12 hours, more preferably 2 hours or more or 10 hours or less, and more preferably 4 hours or more or 8 hours or less.
- the raw solid electrolyte particles are exposed for a predetermined time in an atmosphere containing a predetermined moisture, it is preferable not to perform a drying process such as evacuation. This is because when the drying treatment is performed, the oxygen concentration near the surface of the solid electrolyte particles, particularly the oxygen concentration derived from moisture, decreases.
- the aggregate of the present solid electrolyte particles (referred to as “the present solid electrolyte”) is used as a solid electrolyte layer of an all-solid lithium secondary battery or an all-solid lithium primary battery, a solid electrolyte mixed with the positive electrode material or the negative electrode material, or the like.
- an all-solid lithium secondary battery can be formed by forming a positive electrode, a negative electrode, and a layer containing the present solid electrolyte between the positive electrode and the negative electrode.
- the solid electrolyte is excellent in water resistance and oxidation resistance and has little deterioration in characteristics even when handled in dry air.
- an assembly operation of an all-solid lithium secondary battery can be performed even in a dry room. it can.
- This solid electrolyte can be suitably used as an electrode material for a lithium secondary battery.
- the layer made of the present solid electrolyte is, for example, a method in which a slurry made of the present solid electrolyte, a binder and a solvent is dropped on a substrate and scraped off with a doctor blade, a method of cutting with an air knife after contacting the slurry, a screen printing method, etc.
- the film can be formed by forming a coating film and then removing the solvent through heating and drying.
- the powder of the present solid electrolyte can be produced by appropriately processing after producing a green compact by pressing or the like.
- the positive electrode mixture for forming the positive electrode includes the positive electrode material, the present solid electrolyte, and as necessary.
- the mixture may be prepared by mixing a conductive aid.
- this positive electrode material what is used as a positive electrode active material of a lithium secondary battery can be used suitably.
- an oxide-based positive electrode active material can be used, and more specifically, a lithium-containing composite oxide having a layered rock salt structure, a lithium-containing composite oxide having a spinel structure, and a combination thereof can be used.
- the negative electrode mixture for forming the negative electrode may be prepared by mixing the negative electrode material, the present solid electrolyte, and a conductive additive as necessary.
- the negative electrode material those used as the negative electrode active material of the lithium secondary battery can be appropriately used.
- this solid electrolyte is electrochemically stable, artificial graphite, natural graphite, non-graphitizable, which is charged and discharged at a base potential (about 0.1 V vs Li + / Li) comparable to lithium metal.
- Carbon-based materials such as carbon (hard carbon) can be used. Therefore, the energy density of the all solid lithium secondary battery can be greatly improved by using the carbon-based material for the negative electrode material.
- a lithium secondary battery including the present solid electrolyte and a negative electrode active material containing carbon such as artificial graphite, natural graphite, and non-graphitizable carbon (hard carbon) can be configured.
- carbon such as artificial graphite, natural graphite, and non-graphitizable carbon (hard carbon)
- silicon and tin which are promising as high-capacity materials, and oxides thereof can also be used.
- the “solid electrolyte” means all substances that can move ions such as Li + in the solid state.
- X to Y X and Y are arbitrary numbers
- it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified.
- the meaning of “smaller than Y” is also included.
- X or more X is an arbitrary number
- Y or less Y is an arbitrary number
- Example 1 ⁇ Example 1, Example 2, Example 3, Example 4> Surface modification treatment was performed by exposing a powder composed of sulfide particles having a cubic Argyrodite crystal structure having the composition shown in Table 1 for 6 hours in a glove box adjusted to a dew point temperature of ⁇ 30 ° C. I did it. After the exposure, the solid electrolyte (measurement sample) was obtained without drying. The dew point temperature of the atmosphere was adjusted by adjusting the amount of water while mixing with air having a high dew point temperature in the glove box. The temperature was not specifically controlled.
- XPS measurement For the solid electrolytes (measurement samples) obtained in the examples and comparative examples, using XPS, oxygen (O), phosphorus (P), sulfur (S), halogen (Ha) at positions 100 nm and 5 nm deep from the particle surface ) Ratio was measured.
- the measurement conditions are as follows.
- ⁇ Measurement device Versa Probe III (manufactured by ULVAC-PHI) Excitation X-ray: Monochrome AlK ⁇ ray (1486.7 eV) ⁇ Output: 50W ⁇ X-ray diameter: 200 ⁇ m ⁇ Pass Energy: 26eV -Photoelectron escape angle: 45 ° (Ar ion etching conditions) ⁇ Acceleration voltage: 2 kV ⁇ Sputtering area: 2mm x 2mm, Etching rate: 8.0 nm / min in terms of SiO 2
- the measurement sample was stored in a transfer vessel in a glove box substituted with Ar gas (dew point -60 ° C. or less), and then quickly transported to the XPS apparatus and introduced into the apparatus so as not to be exposed to the atmosphere.
- Ar gas dew point -60 ° C. or less
- Table 2 shows the results of Example 1
- Table 3 shows the results of Comparative Example 1
- Table 4 shows the results of Comparative Example 4
- Table 5 shows the results of Example 4
- Table 6 shows the results of Comparative Example 5. Indicated. Further, from the measurement results, the above-mentioned element ratio (Z Ha2 / Z Ha1), the (Z Ha2 / Z A2), (Z Ha1 / Z A1), (Z O2 / Z A2), (Z O1 / Z A1) The calculated results are shown in Table 7.
- the sample (powder) was used as a non-aqueous solvent using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.).
- the flow rate was set to 50%, 30 W ultrasonic waves were irradiated for 60 seconds, and then the particle size distribution was measured using a laser diffraction particle size distribution measuring instrument “MT3000II” manufactured by Nikkiso Co., Ltd.
- the average particle diameter (D 50 ) was measured from the distribution chart.
- the water-insoluble solvent used in the measurement was passed through a 60 ⁇ m filter, the solvent refractive index was 1.50, the particle permeability was transmissive, the particle refractive index was 1.59, the shape was non-spherical, and the measurement range was 0.00. 133 ⁇ m to 704.0 ⁇ m, the measurement time was 10 seconds, and the average value measured twice was D 50 .
- a positive electrode mixture powder a positive electrode active material powder, a solid electrolyte powder, and a conductive additive (acetylene black) are prepared by mixing in a mortar at a weight ratio of 60: 37: 3, and uniaxial press molding is performed at 20 MPa. Material pellets were obtained.
- negative electrode material powder graphite powder and solid electrolyte powder not subjected to surface modification treatment (that is, powder composed of sulfide-based particles used in Example 1) are mixed in a mortar at a weight ratio of 64:36. Prepared.
- the lower opening of a polypropylene cylinder (opening diameter: 10.5 mm, height: 18 mm) opened at the top and bottom was closed with a positive electrode (manufactured by SUS), and a positive electrode mixture pellet was placed on the positive electrode.
- a standard powder solid electrolyte not subjected to surface treatment was placed thereon and uniaxially pressed at 180 MPa to form a positive electrode mixture and a solid electrolyte layer.
- a negative electrode manufactured by SUS
- SUS serial metal-oxide-semiconductor
- a positive electrode mixture having a thickness of about 100 ⁇ m
- a solid electrolyte layer having a thickness of about 300 ⁇ m
- a die battery having a three-layer structure of a negative electrode composite was produced.
- the battery was placed in an environmental tester set so that the environmental temperature for charging / discharging the battery was 25 ° C., prepared so as to be charged / discharged, and allowed to stand so that the battery temperature became the environmental temperature.
- the battery was charged / discharged with 1 mA as 1C.
- constant current and constant potential charging was performed at 0.1 C up to 4.5 V to obtain an initial charge capacity.
- constant current discharge to 2.5V was performed at 0.1 C, and the initial discharge capacity was obtained.
- the initial charge / discharge efficiency was obtained from the discharge capacity relative to the charge capacity.
- constant current discharging was performed at 5 C to 2.5 V to obtain a discharge capacity at 5 C.
- Table 1 shows the initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency.
- capacitance shown here is a thing per weight (g) of a positive electrode active material.
- the rate characteristic (5C capacity retention rate (%)) was obtained by calculating the ratio of 5C discharge capacity with 0.1C discharge capacity as 100%. The rate characteristics are as shown in Table 1.
- the solid solid electrolyte particles can increase the oxygen concentration in the vicinity of the particle surface while reducing the halogen (Ha) concentration, thereby ensuring a good contact state between the solid electrolyte particles and the active material particles. It has been found that rate characteristics and cycle characteristics can be improved as compared with solid electrolyte particles having the same composition not subjected to surface modification treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
また、特許文献2(特開2016-24874号公報)には、立方晶系Argyrodite型結晶構造を有し、組成式(2):Li7-x-2yPS6-x-yClxで表される化合物を含有し、且つ、前記組成式(1)において、0.8≦x≦1.7、0<y≦-0.25x+0.5を満足することを特徴とする硫化物系固体電解質が開示されている。
以下、本明細書で、粒子表面から深さ5nmの位置又は100nmの位置とは、SiO2スパッタレート換算の深さを意味する。
本実施形態に係る硫化物系固体電解質粒子(「本固体電解質粒子」と称する)は、リチウム(Li)、リン(P)、硫黄(S)及びハロゲン(Ha)からなる立方晶系Argyrodite型結晶構造の結晶相を有する粒子である。
なお、本固体電解質粒子における「主相」とは、mol比率で本固体電解質粒子中に最も多く含まれている相すなわち化合物の意味である。
かかる観点から、xは0.2~1.8であるのが好ましく、中でも0.6以上或いは1.6以下であるのが特に好ましい。
Cl及びBrの合計モル比x(=y+z)が1.0より大きく且つ1.8以下であれば、イオン導電率をさらに高めることができるから好ましい。特にxが1.8以下であれば、異相の生成を制御することができ、イオン導電率の低下を抑えることができる。
かかる観点から、上記組成式(2)におけるxは1.0より大きく且つ1.8以下であるのが好ましく、中でも1.1以上或いは1.7以下、その中でも1.2以上或いは1.6以下であるのがさらに好ましい。
Clのモル比に対するBrのモル比の割合(z/y)が0.1以上であれば、固体電解質が低弾性率となるから好ましく、他方、当該割合(z/y)が10以下であれば、高いイオン導電率となるから好ましい。
かかる観点から、上記組成式(2)において、Clのモル比に対するBrのモル比の割合(z/y)は0.1~10であるのが好ましく、中でも0.2以上或いは5以下、その中でも0.3以上或いは3以下であるのがさらに好ましい。
本固体電解質粒子を含む本固体電解質は、粒子の集合体であり、本固体電解質のD50すなわちレーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布によるD50(「平均粒径(D50)」又は「D50」と称する)は0.1μm~10μmであるのが好ましい。
D50が0.1μm以上であれば、固体電解質粒子の表面積が増えることによる抵抗増大や、活物質との混合が困難となることがないから好ましい。他方、D50が10μm以下であれば、活物質や、組み合わせて用いる固体電解質の隙間に本固体電解質が入りやすくなり、接触点及び接触面積が大きくなるから好ましい。
かかる観点から、本固体電解質の平均粒径(D50)は0.1μm~10μmであるのが好ましく、中でも0.3μm以上或いは7μm以下、その中でも特に0.5μm以上或いは5μm以下であるのがさらに好ましい。
次に、本固体電解質粒子の製造方法の一例について説明する。但し、ここで説明する製造方法はあくまでも一例であり、この方法に限定するものではない。
原料固体電解質粒子を準備する方法は任意である。購入してもよいし、製造してもよい。
中でも、焼成時に硫化水素ガスを用いる場合、焼成時に硫化水素が分解して生成する硫黄ガスにより、焼成試料近傍の硫黄分圧を高めることができるため、高い焼成温度においても硫黄欠損は生成しにくく、電子伝導性を低くすることができる。硫化水素ガスを含有する雰囲気下で焼成する場合には、焼成温度は350℃~650℃とするのが好ましく、中でも450℃以上或いは600℃以下、その中でも500℃以上或いは550℃以下とするのが特に好ましい。
また、上記の原料及び焼成物は、大気中で極めて不安定で、水分と反応して分解し、硫化水素ガスを発生したり、酸化したりするため、不活性ガス雰囲気に置換したグローブボックス等を通じて、原料を炉内にセットして焼成物を炉から取り出す一連の作業を行うのが好ましい。
原料固体電解質粒子の表面改質処理は、所定の水分を含有する雰囲気、中でも所定範囲の露点温度を有する雰囲気中で、原料固体電解質粒子を所定時間暴露し、且つ、この際、乾燥処理を行わないことにより、行うのが好ましい。
雰囲気の露点温度は、低露点温度の乾燥雰囲気と高露点温度の雰囲気混合、もしくは低露点温度の乾燥空気中に水分を導入するようにして調整するのが好ましい。
また、その際の暴露時間は、1時間~12時間であるのが好ましく、中でも2時間以上或いは10時間以下、その中でも4時間以上或いは8時間以下であるのがさらに好ましい。
本固体電解質粒子の集合体(「本固体電解質」と称する)は、全固体リチウム二次電池又は全固体リチウム一次電池の固体電解質層や、正極材又は負極材に混合する固体電解質等として使用することができる。
例えば正極と、負極と、正極及び負極の間に本固体電解質を含む層とを形成することで、全固体リチウム二次電池を構成することができる。
この際、本固体電解質は、耐水性及び耐酸化性に優れており、乾燥空気中で取り扱っても特性劣化が少ないため、例えばドライルームなどでも全固体リチウム二次電池の組立作業を行うことができる。
本固体電解質はリチウム二次電池の電極材として好適に使用することができる。
他方、負極を形成する負極合剤は、負極材と本固体電解質と必要に応じて導電助剤などを混合して調製すればよい。負極材についても、リチウム二次電池の負極活物質として使用されているものを適宜使用可能である。但し、本固体電解質は、電気化学的に安定であることから、リチウム金属に匹敵する卑な電位(約0.1V vs Li+/Li)で充放電する人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素系材料を使用することができる。そのため、炭素系材料を負極材に用いることで、全固体リチウム二次電池のエネルギー密度を大きく向上させることができる。よって、例えば本固体電解質と、人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素を含む負極活物質と、を有するリチウム二次電池を構成することができる。また、高容量材料として有望なケイ素や錫、およびこれらの酸化物を使用することもできる。
本発明において「固体電解質」とは、固体状態のままイオン、例えばLi+が移動し得る物質全般を意味する。
また、本発明において「X~Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」又は「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)又は「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」又は「Yより小さいことが好ましい」旨の意図を包含する。
表1に示す組成の立方晶系Argyrodite型結晶構造の結晶相を有する硫化物系粒子からなる粉体を、露点温度-30℃に調整したグローブボックス内に6時間暴露して表面改質処理をおこなった。暴露後は乾燥処理をせず、固体電解質(測定サンプル)を得た。
グローブボックス内で高露点温度の空気と混合しながらその水分量を調整することにより、雰囲気の露点温度を調整した。温度は特に制御することはしなかった。
硫化物系粒子からなる粉体を、それぞれ表1に示す組成の立方晶系Argyrodite型結晶構造の結晶相を有する硫化物系粒子に変更すると共に、上記表面改質処理を行わずに露点温度-70℃で保管した以外、上記実施例と同様に固体電解質(測定サンプル)を得た。
なお、表1に示すように、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例5は、それぞれ同じ組成において上記表面改質処理の有無で対比したものである。
表1に示す組成の立方晶系Argyrodite型結晶構造の結晶相を有する硫化物系粒子からなる粉体を、特開2012-94445号の[0118]記載の方法に準じて、大気中に1分間曝露した後、5分間真空乾燥を行った。その後、同様の1分間の大気曝露と5分間の真空乾燥を3回繰り返し、固体電解質(測定サンプル)を得た。
実施例・比較例で使用した硫化物系粒子について、組成をICP発光分析法で測定した。
実施例・比較例で使用した硫化物系粒子をX線回折法(XRD)で分析し、生成相を特定した。
実施例・比較例で得た固体電解質(測定サンプル)について、XPSを用いて、粒子表面から深さ100nm及び5nmの位置における酸素(O)、リン(P)、硫黄(S)、ハロゲン(Ha)の比率を測定した。測定条件は以下の通りである。
・測定装置:Versa ProbeIII (アルバック・ファイ社製)
・励起X線:モノクロAlKα線(1486.7eV)
・出力:50W
・X線径:200μm
・Pass Energy:26eV
・光電子脱出角度:45°
(Arイオンエッチング条件)
・加速電圧:2kV
・スパッタエリア:2mm×2mm、
・エッチング速度:SiO2換算で8.0nm/min
実施例及び比較例で得た固体電解質(サンプル)について、レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、サンプル(粉体)を非水系溶媒に投入し、流速を50%に設定し、30Wの超音波を60秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートから平均粒径(D50)を測定した。
なお、測定の際の非水溶性溶媒は60μmのフィルターを通し、溶媒屈折率を1.50、粒子透過性条件を透過、粒子屈折率1.59、形状を非球形とし、測定レンジを0.133μm~704.0μm、測定時間を10秒とし、2回測定した平均値をD50とした。
実施例・比較例で得たサンプル(硫化物系化合物)を、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で200MPaの圧力にて一軸加圧成形した。さらに200MPaの圧力にて冷間等方圧加圧法(CIP)にて直径10mm、厚み2mm~5mmのペレットを作製し、更にペレット上下両面に電極としてのカーボンペーストを塗布した後、180℃で30分熱処理を行い、イオン導電率測定用サンプルを作製した。イオン導電率測定は、室温(25℃)にて交流インピーダンス法にて行い、「導電率」として表1に結果を示す。
(材料)
正極活物質として、三元系層状化合物であるLiNi0.5Co0.2Mn0.3O2(NCM)粉末(D50=6.7μm)を用い、負極活物質としてグラファイト(Gr)粉末(D50=20μm)を用い、固体電解質粉末として実施例・比較例で得た固体電解質(サンプル)を用いた。
正極合材粉末として、正極活物質粉末、固体電解質粉末及び導電助剤(アセチレンブラック)を60:37:3の重量比で乳鉢混合して調製し、それを20MPaで1軸プレス成型して正極材ペレットを得た。
負極材粉末として、グラファイト粉末と表面改質処理を行っていない固体電解質粉末(すなわち、実施例1で使用した硫化物系粒子からなる粉体)とを、重量比64:36の割合で乳鉢混合して調製した。
上下を開口したポリプロピレン製の円筒(開口径10.5mm、高さ18mm)の下側開口部を正極電極(SUS製)で閉塞し、正極電極上に正極合材ペレットを載せた。その上から表面処理を行っていない標準粉末固体電解質を載せて、180MPaにて1軸プレスし正極合材と固体電解質層を形成した。その上から負極合材粉末を載せた後、負極電極(SUS製)で閉塞して550MPaにて1軸成形し、およそ100μm厚の正極合材、およそ300μm厚の固体電解質層、およそ20μm厚の負極合材の3層構造からなるダイス電池を作製した。
上記のように作製したダイス電池を用いて、次のように電気抵抗測定、充放電試験を実施した。
1mAを1Cとして電池の充放電を行った。次に、0.1Cで4.5Vまで定電流定電位充電し、初回充電容量を得た。
次に、0.1Cで2.5Vまで定電流放電し、初回放電容量を得た。充電容量に対する放電容量から初回充放電効率を得た。
次に、0.2Cで4.5Vまで定電流定電位充電した後に、5Cで2.5Vまで定電流放電し5Cにおける放電容量を得た。このようにして図1に示す初回充放電曲線を得た。初回充電容量、初回放電容量及び初回充放電効率を表1に示す。なお、ここで示す容量は正極活物質の重さ(g)あたりのものである。
0.1Cの放電容量を100%とした5Cの放電容量の割合を算出し、レート特性(5C容量維持率(%))を得た。レート特性は表1に示す通りである。
上記実施例及び発明者がこれまで行ってきた試験結果から、リチウム(Li)、リン(P)、硫黄(S)及びハロゲン(Ha)からなる立方晶系Argyrodite型結晶構造の結晶相を有する硫化物系固体電解質粒子は、粒子表面付近の酸素濃度を高める一方、ハロゲン(Ha)の濃度を低下させることにより、固体電解質粒子と活物質粒子との間に良好な接触状態を確保することができ、表面改質処理を行っていない同じ組成の固体電解質粒子と比較して、レート特性及びサイクル特性を向上させることができることが分かった。
Claims (5)
- リチウム(Li)、リン(P)、硫黄(S)及びハロゲン(Ha)からなる立方晶系Argyrodite型結晶構造の結晶相を有する硫化物系固体電解質粒子であって、
XPS(X―ray Photoelectron Spectroscopy)により測定される、粒子表面から深さ100nmの位置(SiO2スパッタレート換算)におけるハロゲンの元素比率ZHa1に対する、粒子表面から深さ5nmの位置(SiO2スパッタレート換算)におけるハロゲン(Ha)の元素比率ZHa2の比率(ZHa2/ZHa1)が0.5以下であり、且つ、
粒子表面から深さ5nmの位置(SiO2スパッタレート換算)におけるリン(P)、硫黄(S)、酸素(O)及びハロゲン(Ha)の元素比率の合計ZA2に対する、酸素の元素比率ZO2の比率(ZO2/ZA2)が0.5以上であることを特徴とする硫化物系固体電解質粒子。 - 粒子表面から深さ5nmの位置(SiO2スパッタレート換算)におけるリン(P)、硫黄(S)、酸素(O)及びハロゲン(Ha)の元素比率の合計ZA2に対する、ハロゲン(Ha)の元素比率ZHa2の比率(ZHa2/ZA2)が0.1以下であることを特徴とする請求項1に記載の硫化物系固体電解質粒子。
- 粒子表面から深さ100nmの位置(SiO2スパッタレート換算)におけるリン(P)、硫黄(S)、酸素(O)及びハロゲン(Ha)の元素比率の合計ZA1に対する、ハロゲン(Ha)の元素比率ZHa1の比率(ZHa1/ZA1)が0.03~0.3であることを特徴とする請求項1又は2に記載の硫化物系固体電解質粒子。
- 請求項1~3の何れかに記載の硫化物系固体電解質粒子と、正極活物質及び/又は負極活物質とを含むことを特徴とするリチウム二次電池用の電極材。
- 請求項1~3の何れかに記載の硫化物系固体電解質粒子を含む層を備えたリチウム二次電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/979,920 US11688879B2 (en) | 2018-03-12 | 2019-03-12 | Sulfide-based solid electrolyte particles |
JP2019539878A JP6595153B1 (ja) | 2018-03-12 | 2019-03-12 | 硫化物系固体電解質粒子 |
CN201980004437.3A CN111066190B (zh) | 2018-03-12 | 2019-03-12 | 硫化物系固体电解质颗粒 |
KR1020207006512A KR102151511B1 (ko) | 2018-03-12 | 2019-03-12 | 황화물계 고체 전해질 입자 |
EP19766847.8A EP3726635B1 (en) | 2018-03-12 | 2019-03-12 | Sulfide-based solid electrolyte particles |
US17/453,930 US20220059870A1 (en) | 2018-03-12 | 2021-11-08 | Sulfide-Based Solid Electrolyte Particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018044210 | 2018-03-12 | ||
JP2018-044210 | 2018-03-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/979,920 A-371-Of-International US11688879B2 (en) | 2018-03-12 | 2019-03-12 | Sulfide-based solid electrolyte particles |
US17/453,930 Continuation US20220059870A1 (en) | 2018-03-12 | 2021-11-08 | Sulfide-Based Solid Electrolyte Particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176895A1 true WO2019176895A1 (ja) | 2019-09-19 |
Family
ID=67908300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009847 WO2019176895A1 (ja) | 2018-03-12 | 2019-03-12 | 硫化物系固体電解質粒子 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11688879B2 (ja) |
EP (1) | EP3726635B1 (ja) |
JP (1) | JP6595153B1 (ja) |
KR (1) | KR102151511B1 (ja) |
CN (1) | CN111066190B (ja) |
WO (1) | WO2019176895A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020114787A (ja) * | 2019-01-17 | 2020-07-30 | トヨタ自動車株式会社 | 硫化物固体電解質粒子及びその製造方法、並びに、全固体電池 |
JP2020115425A (ja) * | 2019-01-17 | 2020-07-30 | トヨタ自動車株式会社 | 硫化物固体電解質粒子、及び、全固体電池 |
WO2021054433A1 (ja) | 2019-09-20 | 2021-03-25 | 出光興産株式会社 | 固体電解質及びその製造方法 |
WO2021251347A1 (ja) * | 2020-06-10 | 2021-12-16 | 三井金属鉱業株式会社 | 固体電解質、電極合剤及び電池 |
JP7092248B1 (ja) | 2021-09-30 | 2022-06-28 | Agc株式会社 | 硫化物系固体電解質及びその製造方法、固体電解質層並びにリチウムイオン二次電池 |
CN115280425A (zh) * | 2020-03-31 | 2022-11-01 | 松下知识产权经营株式会社 | 固体电解质材料及使用该固体电解质材料的电池 |
EP4075557A4 (en) * | 2019-12-12 | 2023-02-08 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE COMPOSITION AND METHOD OF MAKING A SOLID ELECTROLYTE ELEMENT |
WO2023127830A1 (ja) * | 2021-12-27 | 2023-07-06 | 三井金属鉱業株式会社 | 複合活物質 |
US11742517B2 (en) | 2020-02-21 | 2023-08-29 | Toyota Jidosha Kabushiki Kaisha | All-solid-state battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116057009A (zh) * | 2020-08-28 | 2023-05-02 | 三井金属矿业株式会社 | 活性物质及其制造方法、电极合剂以及电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094445A (ja) | 2010-10-28 | 2012-05-17 | Toyota Motor Corp | 硫化物固体電解質粒子 |
WO2016009768A1 (ja) * | 2014-07-16 | 2016-01-21 | 三井金属鉱業株式会社 | リチウムイオン電池用硫化物系固体電解質 |
WO2016104702A1 (ja) | 2014-12-26 | 2016-06-30 | 三井金属鉱業株式会社 | リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物 |
WO2018003333A1 (ja) * | 2016-07-01 | 2018-01-04 | 三井金属鉱業株式会社 | リチウム二次電池用硫化物系固体電解質 |
JP2018026321A (ja) * | 2016-05-16 | 2018-02-15 | パナソニックIpマネジメント株式会社 | 硫化物固体電解質材料、正極材料、および、電池 |
JP2018032621A (ja) * | 2016-08-23 | 2018-03-01 | パナソニックIpマネジメント株式会社 | 電極材料、および、電池 |
JP2018186077A (ja) * | 2017-04-27 | 2018-11-22 | パナソニックIpマネジメント株式会社 | 固体電解質材料、電極材料、正極、及び電池 |
JP2019050182A (ja) * | 2017-09-08 | 2019-03-28 | パナソニックIpマネジメント株式会社 | 硫化物固体電解質材料及びそれを用いた電池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059142A (ja) * | 2005-08-23 | 2007-03-08 | Nissan Motor Co Ltd | 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法 |
JP5708233B2 (ja) * | 2011-05-18 | 2015-04-30 | トヨタ自動車株式会社 | 硫化物固体電解質材料の製造方法および硫化物固体電解質材料 |
JP6234665B2 (ja) * | 2011-11-07 | 2017-11-22 | 出光興産株式会社 | 固体電解質 |
US9673482B2 (en) | 2012-11-06 | 2017-06-06 | Idemitsu Kosan Co., Ltd. | Solid electrolyte |
US10644348B2 (en) * | 2013-07-04 | 2020-05-05 | Mitsui Mining & Smelting Co., Ltd. | Crystalline solid electrolyte and production method therefor |
WO2015011937A1 (ja) * | 2013-07-25 | 2015-01-29 | 三井金属鉱業株式会社 | リチウムイオン電池用硫化物系固体電解質 |
FR3018516B1 (fr) * | 2014-03-13 | 2019-08-23 | Blue Solutions | Batterie lithium-soufre |
JP2015225776A (ja) | 2014-05-28 | 2015-12-14 | トヨタ自動車株式会社 | 全固体電池の製造方法 |
JP2016033918A (ja) * | 2014-07-29 | 2016-03-10 | 富士フイルム株式会社 | 全固体二次電池、電池用電極シート、電池用電極シートの製造方法、固体電解質組成物、固体電解質組成物の製造方法、および全固体二次電池の製造方法 |
US10026990B2 (en) * | 2014-10-16 | 2018-07-17 | Corning Incorporated | Lithium-ion conductive garnet and method of making membranes thereof |
WO2016204253A1 (ja) * | 2015-06-17 | 2016-12-22 | 出光興産株式会社 | 固体電解質の製造方法 |
US10811726B2 (en) * | 2017-11-14 | 2020-10-20 | Samsung Electronics Co., Ltd. | Solid electrolyte for all-solid lithium secondary battery, all-solid lithium secondary battery, and method of preparing the solid electrolyte |
JP7196625B2 (ja) * | 2019-01-17 | 2022-12-27 | トヨタ自動車株式会社 | 硫化物固体電解質粒子及びその製造方法、並びに、全固体電池 |
-
2019
- 2019-03-12 CN CN201980004437.3A patent/CN111066190B/zh active Active
- 2019-03-12 WO PCT/JP2019/009847 patent/WO2019176895A1/ja unknown
- 2019-03-12 JP JP2019539878A patent/JP6595153B1/ja active Active
- 2019-03-12 EP EP19766847.8A patent/EP3726635B1/en active Active
- 2019-03-12 KR KR1020207006512A patent/KR102151511B1/ko active IP Right Grant
- 2019-03-12 US US16/979,920 patent/US11688879B2/en active Active
-
2021
- 2021-11-08 US US17/453,930 patent/US20220059870A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094445A (ja) | 2010-10-28 | 2012-05-17 | Toyota Motor Corp | 硫化物固体電解質粒子 |
WO2016009768A1 (ja) * | 2014-07-16 | 2016-01-21 | 三井金属鉱業株式会社 | リチウムイオン電池用硫化物系固体電解質 |
JP2016024874A (ja) | 2014-07-16 | 2016-02-08 | 三井金属鉱業株式会社 | リチウムイオン電池用硫化物系固体電解質 |
WO2016104702A1 (ja) | 2014-12-26 | 2016-06-30 | 三井金属鉱業株式会社 | リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物 |
JP2018026321A (ja) * | 2016-05-16 | 2018-02-15 | パナソニックIpマネジメント株式会社 | 硫化物固体電解質材料、正極材料、および、電池 |
WO2018003333A1 (ja) * | 2016-07-01 | 2018-01-04 | 三井金属鉱業株式会社 | リチウム二次電池用硫化物系固体電解質 |
JP2018032621A (ja) * | 2016-08-23 | 2018-03-01 | パナソニックIpマネジメント株式会社 | 電極材料、および、電池 |
JP2018186077A (ja) * | 2017-04-27 | 2018-11-22 | パナソニックIpマネジメント株式会社 | 固体電解質材料、電極材料、正極、及び電池 |
JP2019050182A (ja) * | 2017-09-08 | 2019-03-28 | パナソニックIpマネジメント株式会社 | 硫化物固体電解質材料及びそれを用いた電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3726635A4 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7156048B2 (ja) | 2019-01-17 | 2022-10-19 | トヨタ自動車株式会社 | 硫化物固体電解質粒子、及び、全固体電池 |
JP2020115425A (ja) * | 2019-01-17 | 2020-07-30 | トヨタ自動車株式会社 | 硫化物固体電解質粒子、及び、全固体電池 |
JP7196625B2 (ja) | 2019-01-17 | 2022-12-27 | トヨタ自動車株式会社 | 硫化物固体電解質粒子及びその製造方法、並びに、全固体電池 |
US11532837B2 (en) | 2019-01-17 | 2022-12-20 | Toyota Jidosha Kabushiki Kaisha | Sulfide solid electrolyte particles and all-solid-state battery |
US11489196B2 (en) | 2019-01-17 | 2022-11-01 | Toyota Jidosha Kabushiki Kaisha | Sulfide solid electrolyte particles, method for producing the same, and all-solid-state battery |
JP2020114787A (ja) * | 2019-01-17 | 2020-07-30 | トヨタ自動車株式会社 | 硫化物固体電解質粒子及びその製造方法、並びに、全固体電池 |
KR20220066038A (ko) | 2019-09-20 | 2022-05-23 | 이데미쓰 고산 가부시키가이샤 | 고체 전해질 및 그 제조 방법 |
EP4032852A4 (en) * | 2019-09-20 | 2023-09-13 | Idemitsu Kosan Co.,Ltd. | SOLID ELECTROLYTE AND METHOD FOR PRODUCING THEREOF |
WO2021054433A1 (ja) | 2019-09-20 | 2021-03-25 | 出光興産株式会社 | 固体電解質及びその製造方法 |
EP4075557A4 (en) * | 2019-12-12 | 2023-02-08 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE COMPOSITION AND METHOD OF MAKING A SOLID ELECTROLYTE ELEMENT |
US11742517B2 (en) | 2020-02-21 | 2023-08-29 | Toyota Jidosha Kabushiki Kaisha | All-solid-state battery |
US12009477B2 (en) | 2020-02-21 | 2024-06-11 | Toyota Jidosha Kabushiki Kaisha | All-solid-state battery |
CN115280425A (zh) * | 2020-03-31 | 2022-11-01 | 松下知识产权经营株式会社 | 固体电解质材料及使用该固体电解质材料的电池 |
JP7329062B2 (ja) | 2020-06-10 | 2023-08-17 | 三井金属鉱業株式会社 | 固体電解質、電極合剤及び電池 |
WO2021251347A1 (ja) * | 2020-06-10 | 2021-12-16 | 三井金属鉱業株式会社 | 固体電解質、電極合剤及び電池 |
JPWO2021251347A1 (ja) * | 2020-06-10 | 2021-12-16 | ||
JP2023051501A (ja) * | 2021-09-30 | 2023-04-11 | Agc株式会社 | 硫化物系固体電解質及びその製造方法、固体電解質層並びにリチウムイオン二次電池 |
JP7092248B1 (ja) | 2021-09-30 | 2022-06-28 | Agc株式会社 | 硫化物系固体電解質及びその製造方法、固体電解質層並びにリチウムイオン二次電池 |
WO2023053467A1 (ja) * | 2021-09-30 | 2023-04-06 | Agc株式会社 | 硫化物系固体電解質及びその製造方法、固体電解質層並びにリチウムイオン二次電池 |
WO2023127830A1 (ja) * | 2021-12-27 | 2023-07-06 | 三井金属鉱業株式会社 | 複合活物質 |
Also Published As
Publication number | Publication date |
---|---|
CN111066190A (zh) | 2020-04-24 |
KR20200028496A (ko) | 2020-03-16 |
EP3726635A1 (en) | 2020-10-21 |
EP3726635B1 (en) | 2022-10-19 |
US11688879B2 (en) | 2023-06-27 |
JPWO2019176895A1 (ja) | 2020-04-23 |
US20220059870A1 (en) | 2022-02-24 |
US20210013542A1 (en) | 2021-01-14 |
EP3726635A4 (en) | 2021-09-22 |
KR102151511B1 (ko) | 2020-09-03 |
JP6595153B1 (ja) | 2019-10-23 |
CN111066190B (zh) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6595153B1 (ja) | 硫化物系固体電解質粒子 | |
CN110800149B (zh) | 锂二次电池的固体电解质及该固体电解质用硫化物系化合物 | |
JP6293383B1 (ja) | リチウム二次電池用硫化物系固体電解質 | |
JP6997216B2 (ja) | 固体電解質 | |
JP5985120B1 (ja) | リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物 | |
JP5873533B2 (ja) | リチウムイオン電池用硫化物系固体電解質 | |
JP5701741B2 (ja) | 硫化物系固体電解質 | |
KR102016788B1 (ko) | 소듐 이차전지용 양극활물질, 및 이의 제조 방법 | |
TWI727734B (zh) | 固體電解質 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019539878 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19766847 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207006512 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019766847 Country of ref document: EP Effective date: 20200717 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |