WO2019172350A1 - プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分 - Google Patents

プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分 Download PDF

Info

Publication number
WO2019172350A1
WO2019172350A1 PCT/JP2019/008982 JP2019008982W WO2019172350A1 WO 2019172350 A1 WO2019172350 A1 WO 2019172350A1 JP 2019008982 W JP2019008982 W JP 2019008982W WO 2019172350 A1 WO2019172350 A1 WO 2019172350A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
formula
block copolymer
based block
component
Prior art date
Application number
PCT/JP2019/008982
Other languages
English (en)
French (fr)
Inventor
篤 佐久間
津留 和孝
健一郎 岡村
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to SG11202008644YA priority Critical patent/SG11202008644YA/en
Priority to CN201980017706.XA priority patent/CN111819207B/zh
Priority to BR112020018181-1A priority patent/BR112020018181B1/pt
Priority to EP19765075.7A priority patent/EP3763753A4/en
Priority to US16/978,513 priority patent/US11535735B2/en
Priority to KR1020207025561A priority patent/KR102519770B1/ko
Priority to JP2020505095A priority patent/JP6923742B2/ja
Publication of WO2019172350A1 publication Critical patent/WO2019172350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a propylene-based block copolymer, a production method thereof, and a solid titanium catalyst component for olefin polymerization.
  • Propylene-based resins are used in various fields such as daily goods, kitchenware, packaging films, home appliances, machine parts, electrical parts, and automobile parts.
  • a rubber component an amorphous or low crystalline ethylene / propylene copolymer (EPR), an amorphous ethylene / ⁇ -olefin copolymer, etc. may be directly polymerized on a propylene polymer.
  • EPR amorphous or low crystalline ethylene / propylene copolymer
  • a propylene-based block copolymer with improved impact resistance may be used.
  • the propylene-based block copolymer tends to adhere to the inner wall of the polymerization vessel or to adhere to each other during storage.
  • Patent Document 1 reports a method of increasing the fluidity of the propylene block copolymer by feeding a flow modifier when polymerizing the rubber component to the propylene polymer. ing.
  • Patent Document 2 suggests a method of introducing a large amount of rubber component by controlling the shape of the solid titanium catalyst component for producing the propylene-based block polymer.
  • Patent Document 2 discloses that a propylene-based block copolymer having a high rubber content and excellent fluidity can be obtained.
  • the propylene-based high rubber content disclosed in the Examples is disclosed.
  • the rubber component of the block copolymer was suggested to be a rubber component having a relatively low ethylene unit content (relatively hard and difficult to flow).
  • the present invention has been made in view of the above-described problems of the prior art, and a propylene-based block copolymer that can sufficiently suppress adhesion to the inner wall of the polymerization vessel, a method for producing the propylene-based block copolymer, Another object of the present invention is to provide a solid titanium catalyst component for producing the propylene-based block copolymer.
  • the propylene-based block copolymer is a propylene-based block copolymer that can sufficiently control the adhesion to the inner wall of the polymerization vessel even if it is a rubber component that has a relatively high ethylene unit content and is easy to flow. It is.
  • the content of Dsol is 30% by mass or more with respect to a total of 100% by mass of the component soluble in n-decane at 23 ° C.
  • the propylene-based block copolymer according to [1] which is 40% by mass or less.
  • a solid compound (S) containing a magnesium compound (II-0) represented by formula (I) and having a first pore distribution index of 2 or more; First pore distribution index x / y (I) (In the formula (I), x is the cumulative pore volume with a pore diameter of 0.001 to 0.1 ⁇ m measured with a mercury porosimeter, and y is the cumulative pore volume with a pore diameter of 0.1 to 1.0 ⁇ m measured with a mercury porosimeter.
  • the solid titanium catalyst component (i) produced by contacting A first polymerization step of polymerizing propylene and optionally other ⁇ -olefins to produce a crystalline propylene-based (co) polymer;
  • the crystalline propylene (co) polymer prepared in the first polymerization step, a rubber component, an amorphous or low crystalline ethylene / propylene copolymer (EPR), and an amorphous ethylene / ⁇ -olefin copolymer.
  • the magnesium compound (II-0) is a solid complex compound defined by the following formula (II). When a is 0 in formula (II), g is 4 in formula (IV) The method for producing a propylene-based block copolymer according to [4] or [5].
  • a solid compound (S) containing a magnesium compound (II-0) represented by formula (I) and having a first pore distribution index of 2 or more; First pore distribution index x / y (I) (In the formula (I), x is the cumulative pore volume with a pore diameter of 0.001 to 0.1 ⁇ m measured with a mercury porosimeter, and y is the cumulative pore volume with a pore diameter of 0.1 to 1.0 ⁇ m measured with a mercury porosimeter.
  • a propylene-based block copolymer that can sufficiently suppress adhesion to the inner wall of the polymerization vessel, and a method for producing the propylene-based block copolymer.
  • FIG. 1 is a schematic view showing a funnel used for obtaining a fluidity evaluation value for the propylene-based block copolymer of the present invention.
  • the propylene-based block copolymer according to the present invention has a dropping time number X (seconds) when 100 g of a normal temperature copolymer is dropped using a stainless steel funnel having an inner diameter of 11.9 mm, Calculated by the following formula from the falling seconds Y (seconds) when 100 g of the copolymer after being held at 80 ° C. for 24 hours under a load of 10 kg is dropped using a funnel having an inner diameter of 11.9 mm.
  • the funnel is a funnel having the shape shown in FIG.
  • This funnel has the same shape as the “bulk specific gravity measuring device” described in appendix FIG. 2 of JIS K 6720 (1998), except that the diameter of the uppermost portion (the length of a shown in FIG. 1). was 94.9 mm, the height of the truncated cone portion (length b shown in FIG. 1) was 114 mm, and the inner diameter of the particle falling portion (length c shown in FIG. 1) was 11.9 mm.
  • the inclination of the truncated cone-shaped slope is 20 °.
  • the propylene-based block copolymer has a characteristic that it hardly adheres to an inner wall or a channel wall of a polymerizer when flowing through a metal, particularly a stainless steel polymerizer or a channel.
  • the propylene block copolymer comprises a propylene polymer, a rubber component, an amorphous or low crystalline ethylene / propylene copolymer (EPR), and an amorphous ethylene / ⁇ -olefin copolymer. It is a copolymer obtained by directly polymerizing a polymer or the like.
  • the propylene-based block copolymer of the present application is preferably in the form of particles, more preferably propylene-based block copolymer particles formed during polymerization described below.
  • the propylene-based block copolymer is not particularly limited as long as it is a block copolymer containing a propylene-derived structural unit, but it is easy to form a molded article having a good balance in rigidity, impact resistance and molding processability and having a good appearance.
  • a copolymer containing a rubber component is preferable, and a component soluble in n-decane at 23 ° C. (hereinafter also referred to as “Dsol component”) and an n at 23 ° C. -A copolymer having a component hardly soluble in decane (hereinafter also referred to as "Dinsol”) is more preferable.
  • the Dsol component is a component dissolved in the n-decane solution side after the propylene block copolymer is heated and dissolved in n-decane at 150 ° C. for 2 hours and then cooled to 23 ° C.
  • Other components in the propylene-based block copolymer are Dinsol components.
  • the Dsol component may be a component mainly composed of the rubber component, and is a co-polymer of propylene and one or more ⁇ -olefins selected from ethylene and an ⁇ -olefin having 4 to 20 carbon atoms.
  • the combined rubber component is preferably a main component. More specifically, the rubber component amount of the Dsol component is more than 50% by mass, preferably 80% by mass or more and 100% by mass or less, and more preferably 90% by mass or more and 100% by mass or less.
  • Examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1- Examples include tetradecene, 1-hexadecene, 1-octadecene, and 1-eicocene.
  • the ⁇ -olefin to be copolymerized is preferably an ⁇ -olefin selected from ethylene or an ⁇ -olefin having 4 to 10 carbon atoms, and includes ethylene, 1-butene, 1-pentene, 1-hexene, 4- More preferred is an ⁇ -olefin selected from methyl-1-pentene, 1-octene and 1-decene.
  • the amount of structural units derived from one or more ⁇ -olefins selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms contained in the Dsol component is determined by the crystalline propylene-based (co) polymer component described later, decane The amount is larger than the amount of structural units derived from ethylene or an ⁇ -olefin having 4 to 20 carbon atoms contained in the insoluble component (Dinsol component), and is usually 25 mol% or more of the copolymer rubber.
  • the Dsol component containing an ethylene unit tends to have a low glass transition temperature, it is preferable that the Dsol component contains a lot of ethylene units.
  • the lower limit of the content rate of the preferable ethylene unit in the said Dsol component is 30 mol%, More preferably, it is 36.0 mol%, More preferably, it is 40 mol%.
  • a preferable upper limit is 70 mol%, more preferably 65 mol%, still more preferably 60 mol%.
  • the glass transition temperature of the rubber component is lowered and the crystallinity is also lowered, so that the rubber component is soft and tends to flow particularly at high temperatures.
  • adhesion of the polymer in a polymerizer or a silo that will be described later is unlikely to occur. Conceivable.
  • the content of the Dsol component in the propylene-based block copolymer is 5 with respect to a total of 100% by mass of the Dsol component and the Dinsol component from the viewpoint of easily obtaining a molded article having a good balance between rigidity and impact resistance. It is preferably from 50% by mass to 50% by mass, more preferably from 10% by mass to 50% by mass, further preferably from 25% by mass to 50% by mass, and more preferably from 30% by mass to 40% by mass. It is particularly preferred that
  • the intrinsic viscosity [ ⁇ ] of the Dsol component is 1 from the viewpoints of easily obtaining a composition excellent in balance in impact resistance, high fluidity, and high melt elasticity, and easily obtaining a molded article having a good appearance.
  • 0.5 dl / g or more and 10.0 dl / g or less is preferable, and 2.0 dl / g or more and 7.0 dl / g or less is more preferable.
  • the above [ ⁇ ] is obtained by dissolving 20 mg of propylene-based block copolymer in 15 ml of decalin, measuring the specific viscosity ⁇ sp in an oil bath at 135 ° C., and adding 5 ml of decalin solvent to this decalin solution and diluting.
  • the ⁇ sp / C when the concentration (C) is extrapolated to 0 Can be a value.
  • the Dinsol component is a component mainly composed of a crystalline propylene-based (co) polymer component. More specifically, the amount of the crystalline propylene-based (co) polymer component in the Dinsol component is more than 50% by mass, preferably 80% by mass to 100% by mass, and more preferably 90% by mass to 100% by mass. % Or less is more preferable.
  • the crystalline propylene-based (co) polymer component is a crystalline propylene homopolymer, or one or more ⁇ -olefins selected from propylene and ethylene and ⁇ -olefins having 4 to 20 carbon atoms. It is a copolymer with olefin. However, the amount of the structural unit derived from the ⁇ -olefin is 1.5 mol% or less of the crystalline propylene-based (co) polymer component.
  • the content of the Dinsol component in the propylene-based block copolymer is 100% by mass in total of the Dsol component and the Dinsol component from the viewpoint that a molded product excellent in rigidity and impact resistance can be easily obtained.
  • it is preferably 50% by mass or more and 95% by mass or less, more preferably 50% by mass or more and 90% by mass or less, further preferably 50% by mass or more and 75% by mass or less, and more preferably 60% by mass or more. It is especially preferable that it is 70 mass% or less.
  • Examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1- Examples include tetradecene, 1-hexadecene, 1-octadecene, and 1-eicocene.
  • the ⁇ -olefin to be copolymerized is preferably an ⁇ -olefin selected from ethylene or an ⁇ -olefin having 4 to 10 carbon atoms, and includes ethylene, 1-butene, 1-pentene, 1-hexene, 4- More preferred is an ⁇ -olefin selected from methyl-1-pentene, 1-octene and 1-decene.
  • the propylene block copolymer has a melt flow rate (MFR) measured at 230 ° C. and a load of 2.16 kg of 5 g / 10 min to 300 g / 10 min, and can be from 5 g / 10 min to 200 g / min. It is preferable that it is 10 minutes or less.
  • MFR melt flow rate
  • the propylene block copolymer is excellent in fluidity, so that a composition that can be easily injection-molded can be obtained from the propylene block copolymer. Further, from the composition, a molded article that is excellent in impact resistance and can be suitably used for automobile parts and the like can be easily obtained.
  • the content of the propylene-based block copolymer with respect to the total mass of the composition is 58% by mass or more and 90% by mass or less from the viewpoint of easily obtaining a molded product excellent in balance between rigidity and impact resistance. Preferably, it is 60 mass% or more and 90 mass% or less.
  • the composition is a resin other than the propylene-based block copolymer, a light-resistant stabilizer, a heat-resistant stabilizer, a weather-resistant stabilizer, an anti-aging agent, an antioxidant, a fatty acid metal salt, a softening agent, a dispersing agent, and a filler.
  • a resin other than the propylene-based block copolymer a light-resistant stabilizer, a heat-resistant stabilizer, a weather-resistant stabilizer, an anti-aging agent, an antioxidant, a fatty acid metal salt, a softening agent, a dispersing agent, and a filler.
  • Colorants, pigments, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, natural oils, synthetic oils, waxes, and other components are examples of the propylene-based block copolymer.
  • the propylene-based block polymer first synthesizes the component constituting the Dinsol component, in particular, the crystalline propylene-based (co) polymer, and then constitutes the Dsol component. It is obtained by polymerizing the components, particularly the rubber component, to the components constituting the Dinsol component. At this time, synthesis of the component constituting the Dinsol component and polymerization of the component constituting the Dsol component are performed using the solid titanium catalyst component (i) produced by using the following solid compound (S) as a starting material. Thereby, the evaluation value of fluidity
  • the solid compound is preferably a solid compound as described below.
  • the solid titanium catalyst component (i) includes a solid compound (S) having a first pore distribution index represented by the following formula (I) of 2 or more, titanium A compound can be brought into contact with each other and produced. At this time, from the viewpoint of increasing the molecular weight of the obtained polymer and making it easy to control the molecular weight distribution, the solid titanium catalyst component (i) is further allowed to contain an electron donor by further contacting the electron donor. May be.
  • x is a cumulative pore volume with a pore diameter of 0.001 to 0.1 ⁇ m measured with a mercury porosimeter
  • y is a cumulative pore volume with a pore diameter of 0.1 to 1.0 ⁇ m measured with a mercury porosimeter.
  • the preferable lower limit of the first pore distribution index is 2.0, more preferably 2.1, and still more preferably 2.2.
  • the upper limit value is not particularly limited, but is preferably 12, more preferably 10, still more preferably 8, and particularly preferably 7.
  • the relatively small pore diameter ie, 0.001 to 0.1 ⁇ m
  • the relatively large pore diameter ie, 0.1 to 1.0 ⁇ m.
  • This parameter suggests that.
  • it can be considered as a parameter that suggests a tendency to have relatively small and deep pores.
  • the second pore distribution index represented by the following formula (I ′) is preferably a value exceeding 0.5.
  • the second pore distribution index is more preferably 0.56 or more, further preferably 0.58 or more, particularly preferably 0.60 or more, and particularly preferably 0.62 or more.
  • the upper limit is 1. More preferably, it is 0.745.
  • x ⁇ is a cumulative pore volume with a pore diameter of 0.01 to 0.1 ⁇ m measured by a mercury porosimeter, and x ⁇ is a cumulative pore volume of 0.001 to 1.0 ⁇ m measured with a mercury porosimeter.
  • the second pore distribution index indicates that in the catalyst of the present sales invention, pores of 0.01 to 0.1 ⁇ m are the main existence on the volume basis. It can be easily guessed that the excellent particle fluidity that is a feature of the present invention is greatly influenced by the presence of the pore diameter.
  • the pore volume of the solid compound according to the present invention having a pore diameter of 0.001 to 1.0 ⁇ m is not particularly limited as long as it is within the object of the present invention.
  • a more preferred lower limit is 80 mm 3 / g, still more preferably 100 mm 3 / g, particularly preferably 120 mm 3 / g.
  • a more preferable upper limit value is 1000 mm 3 / g, more preferably 800 mm 3 / g, and particularly preferably 500 mm 3 / g. If it is in the range of such a pore volume, there exists a tendency for preferable effects, such as suppression of the said blocking property, to appear easily.
  • the propylene-based block copolymer of the present invention has a feature that, for example, fusion to the inner wall of a polymerization vessel or a silo hardly occurs.
  • fusion to the inner wall of a polymerization vessel or a silo it is important that the above formula (I) is important.
  • the inventors are thinking. The mechanism is not clear at this time, but the following guesses are possible.
  • the shape of the solid compound as a raw material tends to be inherited by the solid titanium catalyst component (i). Therefore, since the solid compound (S) having a shape satisfying such a prescription has a relatively large proportion of the pore size of a relatively small specific size, the rubber component is probably due to the frictional resistance of the surface based on the surface area.
  • the present inventors consider that there is a possibility that bleeding to the surface of the film does not occur easily.
  • the pore diameter is too small, it is considered that diffusion of rubber components to the surface, such as volcanic explosions, is likely to occur. In addition, if the pore diameter is too large, it may penetrate into other pores inside, and the rubber component may be liable to ooze out on the surface.
  • Solid compound (S) The solid compound (S) is characterized by containing the magnesium compound (II-0).
  • a preferable magnesium compound is a magnesium compound used for the raw material complex mentioned later.
  • a preferred solid compound (S) has a structure of a solid compound having a composition represented by the formula (II).
  • X is a halogen atom
  • Rs is a heteroatom-containing hydrocarbon group
  • Rt is a carbon hydrogen group that may contain a heteroatom
  • m is 2.0 ⁇ m ⁇ 3.3. It is a real number that satisfies, a is an integer that satisfies 0 ⁇ a ⁇ 2, b is an integer that satisfies 0 ⁇ b ⁇ 2, and the sum of a and b is 2.
  • Rs in the formula (II) can be an alkoxy group, an aryloxy group, a carboxylate group, or the like.
  • the structure represented by RtOH in the formula (II) is a structure derived from an alcohol represented by RtOH.
  • the alcohol include methanol, ethanol, propanol, butanol, isobutanol, ethylene glycol, 2-methylpentanol, 2-ethylbutanol, n-heptanol, n-octanol, 2-ethylhexanol, decanol, and dodecanol.
  • Fatty alcohols containing alicyclic alcohols, including cyclohexanol, and cycloaliphatic alcohols including methylcyclohexanol, aromatic alcohols including benzyl alcohol, methylbenzyl alcohol, etc., and alkoxy groups including n-butyl cellosolve, etc. Family alcohol etc. are included.
  • the solid compound (S) represented by the formula (II) is, for example, a slurry liquid containing a complex represented by the formula (III) (sometimes referred to as a raw material complex) and a hydrocarbon solvent. It can manufacture by making an inert gas contact continuously with liquid temperature 25 degreeC or more and 80 degrees C or less.
  • X, Rs and Rt are the same as X, Rs and Rt in formula (II), and n is a real number satisfying 0.45 ⁇ m / n ⁇ 0.99.
  • the raw material complex includes magnesium chloride, magnesium halide containing magnesium bromide, methoxy magnesium chloride, ethoxy magnesium chloride, alkoxy magnesium halide containing phenoxy magnesium chloride, ethoxy magnesium, isopropoxy magnesium, butoxy magnesium, and 2 -Magnesium compounds such as alkoxymagnesium containing ethylhexoxymagnesium, aryloxymagnesium containing phenoxymagnesium, and the like, and magnesium carboxylates such as magnesium stearate, and alcohols represented by the above-mentioned RtOH, particularly An alcohol capable of dissolving the magnesium compound can be produced by contacting with a known method.
  • An alcohol component (RtOH) is gently removed from the raw material complex by continuously contacting an inert gas at a liquid temperature of 25 ° C. or higher and 80 ° C. or lower to the slurry liquid containing the raw material complex and the hydrocarbon solvent.
  • a solid compound (S) is produced.
  • the inert gas is a rare gas containing helium, neon, argon, etc., a hydrocarbon gas containing methane, ethane, propane, etc., and a gas that does not substantially react with titanium compounds or organometallic compounds such as nitrogen. I just need it.
  • the slurry concentration of the slurry liquid is not particularly limited, but considering fluidity and the protective function of the solid compound (S), it is preferably 10 g / L or more and 200 g / L or less, and 30 g / L. More preferably, it is 150 g / L or less.
  • the liquid temperature at the time of contact of the slurry-like liquid is 25 ° C. or more from the viewpoint of increasing the alcohol removal efficiency by the inert gas, and 80 ° C. from the viewpoint of suppressing the deterioration of the solid compound (S). From the above viewpoint, the liquid temperature at the time of the contact is preferably 25 ° C. or higher and 80 ° C. or lower, and more preferably 40 ° C. or higher and 70 ° C. or lower.
  • the supply rate of the inert gas is preferably 5 NL / hr or more and 300 NL / hr or less, more preferably 5 NL / hr or more and 40 NL / hr or less, and more preferably 5 NL / hr per 1 L of the slurry-like liquid. It is more preferably no less than hr and no greater than 30 NL / hr, particularly preferably no less than 5 NL / hr and no greater than 25 NL / hr, and particularly preferably no less than 7 NL / hr and no greater than 20 NL / hr.
  • the supply rate is 5 NL / hr or more, the alcohol removal efficiency by the inert gas can be sufficiently increased.
  • the supply time of the inert gas is preferably 1 hour or more and 60 hours or less, more preferably 3 hours or more and 40 hours or less, further preferably 3 hours or more and 36 hours or less, and more preferably 3 hours or more. It is particularly preferably 20 hours or less, and particularly preferably 5 hours or more and 15 hours or less. When the supply rate is 1 hour or more, the alcohol removal efficiency by the inert gas can be sufficiently increased.
  • the system can be homogenized by a method such as stirring the system with a stirring blade.
  • the inert gas can form a homogeneous state similar to stirring in the system.
  • a method of disposing an inert gas outlet in the lower part of the system or a method of arranging a number of inert gas outlets in the system.
  • the first pore distribution index represented by the formula (I) is 2 or more.
  • a certain solid compound (S) can be produced.
  • a method for removing alcohol in the gas phase can also be used. From the viewpoint of easy shape control, the preparation method in the liquid phase environment is preferred.
  • Titanium compound The titanium compound for producing the solid titanium catalyst component (i) in contact with the solid compound (S) has a composition represented by the formula (IV). Ti (OR) g X 4-g (IV)
  • R is a hydrocarbon group
  • X is a halogen atom
  • R in formula (IV) examples include a methyl group, an ethyl group, a propyl group, a butyl group, and the like.
  • titanium compound represented by the formula (IV) examples include titanium halides containing TiCl 4 and TiBr 4 , Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (O Trihalogenated alkoxytitanium, including Ti (OCH 3 ) 2 Cl 2 , including —nC 4 H 9 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , and Ti (O—isoC 4 H 9 ) Br 3.
  • dihalogenated alkoxytitanium including Ti (OC 2 H 5 ) 2 Cl 2 , Ti (OCH 3 ) 3 Cl, Ti (On—C 4 H 9 ) 3 Cl, and Ti (OC 2 H 5 ) monohalogenated alkoxy titanium, including 3 Br, and, Ti (OCH 3) 4, Ti (OC 2 H 5) 4, Ti (OC 4 H 9) 4, and Ti (O-2-ethyl
  • titanium tetrahalide is preferable, and titanium tetrachloride (TiCl 4 ) is more preferable.
  • the electron donor may be an aromatic carboxylic acid ester, an alicyclic carboxylic acid ester, a polyether compound, or the like.
  • the electron donor is preferably an alicyclic polyvalent carboxylic acid ester or a polyether compound represented by the formula (V) or the formula (VI).
  • R d is an alicyclic hydrocarbon having 5 to 20 carbon atoms
  • Re is a hydrocarbon group having 6 to 15 carbon atoms
  • p is 2 Or it is an integer of 3.
  • Examples of the alicyclic polyvalent carboxylic acid ester represented by the formula (V) include cyclohexyl-1,2-dihexanoate, cyclohexyl-1,2-dioctanoate, cyclohexyl-1,2-didecanoate, cyclohexyl-1,2- Didodecanoate, cyclohexyl-1,2-diheptanoate, 3,6-dimethylcyclohexyl-1,2-dioctanoate, 3,6-dimethylcyclohexyl-1,2-decenate, 3,6-dimethylcyclohexyl-1,2-dodecenate, 3, -Methyl-6-propylcyclohexyl-1,2-dioctanate, 3-methyl-6-propylcyclohexyl-1,2-didesenate, 3-methyl-6-propylcyclohexyl-1,2-didodecenate and the like.
  • Examples of the alicyclic polyvalent carboxylic acid ester represented by the formula (VI) include dioctyl 3,6-dimethylcyclohexane-1,2-dicarboxylate, didecyl 3,6-dimethylcyclohexane-1,2-dicarboxylate, Dioctyl 3-methyl-6-ethylcyclohexane-1,2-dicarboxylate, didecyl 3-methyl-6-ethylcyclohexane-1,2-dicarboxylate, 3-methyl-6-n-propylcyclohexane-1,2-dicarboxylic acid Dioctyl acid, dimethyl ethyl 3-methyl-6-n-propylcyclohexane-1,2-dicarboxylate, dioctyl 3,6-diethylcyclohexane-1,2-dicarboxylate, and 3,6-diethylcyclohexane-1,2-dicarboxylic acid Cycloaliphatic polyvalent
  • the above polyether compound is an aromatic carboxylic acid ester or a compound having two or more ether bonds arranged on both sides via a plurality of carbon atoms.
  • the polyether compound include 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isopentyl-1,3-dimethoxy.
  • 1,3-diethers such as propane, 2,2-dicyclohexyl-1,3-dimethoxypropane, and 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane are included.
  • a solid titanium catalyst component (i) can be produced.
  • an electron donor such as an aliphatic carboxylic acid ester, an aromatic carboxylic acid ester, an alcohol, an aldehyde, a ketone, an ether, an amine, a silane compound, and a phosphoric acid ester is brought into contact with each other to obtain a solid state.
  • the stereoregularity of the resulting propylene-based block copolymer can be enhanced while maintaining the high catalytic activity of the titanium catalyst component (i).
  • the contact can be performed by a known method such as the following (P-1) to (P-3).
  • P-1) A slurry of the solid compound (S), the liquid titanium compound, and preferably one or more of the above-described electron donors in a suspended state in the presence of an inert hydrocarbon solvent.
  • P-2) The slurry of the solid compound (S), the liquid titanium compound, and preferably one or more of the above-mentioned electron donors are contacted in several steps
  • P-3 The slurry of the solid compound (S), the liquid titanium compound, and preferably one or more of the electron donors described above are divided into a plurality of times in the suspended state in the presence of an inert hydrocarbon solvent.
  • propylene-based block copolymer described above comprises propylene and optionally other ⁇ -olefins in the presence of the solid titanium catalyst component (i), preferably the olefin polymerization catalyst.
  • a first polymerization step for producing a crystalline propylene-based (co) polymer, a crystalline propylene-based (co) polymer produced in the first polymerization step, a rubber component, an amorphous property Alternatively, it can be produced through a second polymerization step in which a low crystalline ethylene / propylene copolymer (EPR) and a raw material of an amorphous ethylene / ⁇ -olefin copolymer are polymerized.
  • EPR low crystalline ethylene / propylene copolymer
  • the first polymerization step and the second polymerization step may be performed by any polymerization method including a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and the like, and a gas phase polymerization method. .
  • the solid titanium catalyst component (i) includes at least one element selected from the group consisting of Group 1 elements, Group 2 elements, and Group 13 elements.
  • the organometallic compound (ii) may be further contacted to form an olefin polymerization catalyst.
  • the electron donor (iii) may be further contacted.
  • organometallic compound (ii) examples include compounds containing Group 13 elements such as organoaluminum compounds, complex alkylated products of Group 1 elements and aluminum, and organometallic compounds containing Group 2 elements. It is.
  • Examples of the electron donor (iii) include an organosilicon compound represented by the formula (VII), a silane compound represented by the formula (VIII), and a compound represented by the formula (IX).
  • R and R ′ are hydrocarbon groups, and n is an integer of 0 ⁇ n ⁇ 4.
  • R a is a hydrocarbon group having 1 to 6 carbon atoms
  • R b is a hydrocarbon group having 1 to 12 carbon atoms or hydrogen
  • R c is 1 to 12 carbon atoms.
  • R a is a hydrocarbon group having 1 to 6 carbon atoms
  • RN is a perhydroquinolino group, a perhydroisoquinolino group, a 1,2,3,4-tetrahydroquinolino group. , 1,2,3,4-tetrahydroisoquinolino group, and cyclic amino group such as octamethyleneimino group.
  • organosilicon compound represented by the formula (VII) examples include diisopropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-amylmethyldiethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane.
  • Examples of the silane compound represented by the formula (VIII) include dimethylaminotriethoxysilane, diethylaminotriethoxysilane, diethylaminotrimethoxysilane, diethylaminotriethoxysilane, diethylaminotri-n-propoxysilane, di-n-propylaminotri Ethoxysilane, methyl-n-propylaminotriethoxysilane, t-butylaminotriethoxysilane, ethyl-n-propylaminotriethoxysilane, ethyl-iso-propylaminotriethoxysilane, and methylethylaminotriethoxysilane included.
  • Examples of the compound represented by the formula (IX) include (perhydroquinolino) triethoxysilane, (perhydroisoquinolino) triethoxysilane, (1,2,3,4-tetrahydroquinolino) triethoxysilane. , (1,2,3,4-tetrahydroisoquinolino) triethoxysilane, octamethyleneiminotriethoxysilane, and the like.
  • the reaction temperature at the time of the contact is preferably ⁇ 30 ° C. or higher and 150 ° C. or lower, more preferably ⁇ 25 ° C. or higher and 130 ° C. or lower, and further preferably ⁇ 25 ° C. or higher and 120 ° C. or lower.
  • the amount of the solid titanium catalyst component (i) used in the first polymerization step and the second polymerization step is 0.0001 mmol or more and 0.5 mmol or less per liter of polymerization volume in terms of titanium atoms. It is preferable that it be 0.005 mmol or more and 0.1 mmol or less.
  • the amount of the organometallic compound (ii) used in the first polymerization step and the second polymerization step can be 1 mol or more and 2000 mol or less with respect to 1 mol of titanium atom in the polymerization system. It is preferably 500 mol or less.
  • the amount of the electron donor (iii) used in the first polymerization step and the second polymerization step is 0.001 mol to 50 mol with respect to 1 mol of the organometallic compound (ii) in the polymerization system. It is preferably 0.01 mol or more and 30 mol or less, and more preferably 0.05 mol or more and 20 mol or less.
  • the polymerization temperature in the first polymerization step and the second polymerization step can be 20 ° C. or higher and 200 ° C. or lower, preferably 30 ° C. or higher and 100 ° C. or lower, more preferably 50 ° C. or higher and 90 ° C. or lower. preferable.
  • the pressure (gauge pressure) in the first polymerization step and the second polymerization step can be from normal pressure to 9.8 MPa or less, and preferably from 0.20 MPa to 4.9 MPa.
  • the first polymerization step and the second polymerization step in order to lower the molecular weight of the obtained polymer and adjust the melt flow rate (MFR) and the intrinsic viscosity [ ⁇ ] of Dsol to a desired range, in the presence of hydrogen. Polymerization may be performed.
  • the second polymerization step for example, propylene used as a raw material for the rubber component and one or more ⁇ -olefins selected from ethylene and an ⁇ -olefin having 4 to 20 carbon atoms are used in the first polymerization step.
  • the resulting crystalline propylene-based (co) polymer may be polymerized.
  • the rubber component is a propylene-ethylene copolymer rubber
  • the ethylene / (ethylene + propylene) gas ratio is preferably 5 mol% or more and 80 mol% or less, preferably 10 mol% or more and 70 mol% or less. More preferably, it is more preferably 15 mol% or more and 60 mol% or less.
  • melt flow rate the bulk density of the propylene polymer, the amount of decane-soluble component, and the like were measured by the following methods.
  • melt flow rate The melt flow rate (MFR) was measured at a measurement temperature of 230 ° C. according to the ASTM D1238E standard.
  • the content of ethylene-derived units was measured by 125 MHz 13 C NMR (manufactured by Bruker BioSpin, apparatus name AVANCE III cryo-500) using the decane-soluble component obtained by drying under reduced pressure.
  • a unit derived from propylene and a unit derived from propylene were identified and identified from the absorption intensity ratio.
  • Intrinsic viscosity [ ⁇ ]: [dl / g] It measured at 135 degreeC using the decalin solvent. About 20 mg of the sample was dissolved in 15 ml of decalin, and the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. After diluting the decalin solution with 5 ml of decalin solvent, the specific viscosity ⁇ sp was measured in the same manner. This dilution operation was further repeated twice, and the value of ⁇ sp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity.
  • Magnesium content of solid compound The magnesium content of the solid compound was measured by a high frequency plasma emission analysis (ICP-AES) method by the following method.
  • Yttrium oxide (special grade manufactured by Wako Pure Chemical Industries, Ltd.), Mg standard solution (1,000 ppm solution for atomic absorption analysis manufactured by Wako Pure Chemical Industries, Ltd. or 1,000 ppm solution for atomic absorption analysis manufactured by Kanto Chemical Co., Ltd.), and sulfuric acid (Wako Pure Chemical Industries, Ltd.)
  • Mg standard solution 1,000 ppm solution for atomic absorption analysis manufactured by Wako Pure Chemical Industries, Ltd. or 1,000 ppm solution for atomic absorption analysis manufactured by Kanto Chemical Co., Ltd.
  • sulfuric acid (Wako Pure Chemical Industries, Ltd.)
  • the titanium content rate and magnesium content rate of the solid titanium catalyst component (i) can also be obtained by a method according to the above method.
  • First pore distribution index x / y (I)
  • x is a cumulative pore volume with a pore diameter of 0.001 to 0.1 ⁇ m measured with a mercury porosimeter
  • y is a cumulative pore volume with a pore diameter of 0.1 to 1.0 ⁇ m measured with a mercury porosimeter.
  • Second pore distribution index x ⁇ / x ⁇ (I ′)
  • x ⁇ is a cumulative pore volume with a pore diameter of 0.01 to 0.1 ⁇ m measured by a mercury porosimeter
  • x ⁇ is a cumulative pore volume of 0.001 to 1.0 ⁇ m measured with a mercury porosimeter.
  • Fluidity evaluation of propylene-based block copolymer The fluidity of the obtained block copolymer was evaluated by the ratio of the falling seconds before and after a certain amount of the polymer was heated and loaded.
  • a funnel having the shape shown in FIG. 1 was used. This funnel has an uppermost diameter (the length of a shown in FIG. 1) of 94.9 mm, a height (the length of b shown in FIG. 1) of 114 mm, and an inner diameter (FIG. 1) of the portion where the polymer is dropped.
  • the length of c) is a funnel with 11.9 mm.
  • the falling time of 100 g of the copolymer was measured using a metal (stainless steel) funnel having an inner diameter of 11.9 mm, and the value was taken as X (seconds) in the following formula.
  • the polymer was held at 80 ° C. for 24 hours under a load of 10 kg, and again, the number of seconds falling of 100 g of the copolymer was measured using the above-mentioned metal funnel. ).
  • a solid compound was obtained by bubbling dry nitrogen into the liquid while stirring a suspension of a decane and a raw material complex in which 2-3 mol of ethanol was coordinated with 1 mol of magnesium chloride at 250 rpm.
  • a part of the obtained solid compound was filtered, washed with hexane and dried under reduced pressure, and the pore volume was measured using a mercury porosimeter. .
  • Slurry concentration, temperature, time, dry nitrogen supply rate, pore volume, first pore distribution index and second pore when producing solid compounds S-1 to S-5 and CS-1 to CS-4 The distribution index is shown in Table 1.
  • CS-2 to CS-4 were produced, the mixture was stirred and bubbled at 50 ° C. for 5 hours, then heated to 60 ° C. and stirred and bubbled for 1 hour.
  • the total amount of 1) was introduced into 100 ml of titanium tetrachloride maintained at ⁇ 20 ° C. in a volume of 23 mmol in terms of Mg atoms with stirring.
  • the mixture was heated to 80 ° C. over 6.5 hours, and when it reached 80 ° C., di-2-ethylhexyl cyclohexane-1,2-dicarboxylate (trans rate: 75%) as an electron donor (e-1). ) was added.
  • Solid titanium was similarly obtained except that solid compounds (S-2) to (S-5) or (CS-1) to (CS-4) were used instead of solid compound (S-1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本発明は、重合器の内壁への付着を十分に抑制することができるプロピレン系ブロック共重合体を提供することを目的とする。上記目的を達成するための本発明のプロピレン系ブロック共重合体は、常温の100gの共重合体を、内径11.9mmのステンレス製ロートを用いて落下させたときの落下秒数X(秒)と、10kgの荷重下、80℃で24時間保持した後の100gの共重合体を、内径11.9mmのロートを用いて落下させたときの落下秒数Y(秒)と、から以下の式により算出される流動性の評価値が、40%以下である。 流動性の評価値(%)={(Y/X)-1}×100

Description

プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分
 本発明は、プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分に関する。
 プロピレン系樹脂は、日用雑貨、台所用品、包装用フィルム、家電製品、機械部品、電気部品、自動車部品など、種々の分野で利用されている。
 また、用途に応じて、プロピレン系重合体にゴム成分、非晶性または低結晶性エチレン・プロピレン共重合体(EPR)、および非晶性エチレン・α-オレフィン共重合体などを直接重合させて耐衝撃性などを向上させたプロピレン系ブロック共重合体が用いられることがある。しかし、プロピレン系ブロック共重合体は、重合器の内壁に付着したり、保管時に重合体同士が付着したりしやすいことが知られている。
 そこで、たとえば特許文献1などには、プロピレン系重合体に上記ゴム成分を重合させる際に、流動改質剤をフィードするなどして、プロピレン系ブロック共重合体の流動性を高める方法が報告されている。
 また、特許文献2には、プロピレン系ブロック重合体を製造する固体状チタン触媒成分の形状を制御することで、多量のゴム成分を導入する方法が示唆されている。
特開2017-132870号公報 特開2002-356507号公報
 しかし、特許文献1に記載の方法によってプロピレン系ブロック共重合体を製造しても、重合器の内壁への付着を十分に抑制することはできていなかった。
 また、特許文献2には、高いゴム含有量でありながらも流動性に優れたプロピレン系ブロック共重合体が得られるとの開示があるが、実施例に開示されている高いゴム含量のプロピレン系ブロック共重合体のゴム成分は、実験データから計算した結果、エチレン単位の含有率が比較的低い(比較的硬く、流動しにくい)ゴム成分であることが示唆された。
 本発明は、上記従来技術の課題に鑑みなされたものであり、重合器の内壁への付着を十分に抑制することができるプロピレン系ブロック共重合体、当該プロピレン系ブロック共重合体の製造方法、および当該プロピレン系ブロック共重合体を製造するための固体状チタン触媒成分を提供することをその目的とする。好ましくは前記のプロピレン系ブロック共重合体は、エチレン単位の含有率が比較的高い、流動しやすいゴム成分であっても、重合器の内壁への付着を十分に制御できるプロピレン系ブロック共重合体である。
 [1]常温の100gの共重合体を、内径11.9mmのステンレス鋼製ロートを用いて落下させたときの落下秒数X(秒)と、
 10kgの荷重下、80℃で24時間保持した後の100gの共重合体を、内径11.9mmのロートを用いて落下させたときの落下秒数Y(秒)と、から以下の式により算出される流動性の評価値が、40%以下である、
  流動性の評価値(%)={(Y/X)-1}×100
 プロピレン系ブロック共重合体。
 [2]23℃のn-デカンに可溶な成分(Dsol)と23℃のn-デカンに難溶な成分(Dinsol)との合計100質量%に対する、Dsolの含有量が、30質量%以上40質量%以下である、[1]に記載のプロピレン系ブロック共重合体。
 [3]前記Dsolにおけるエチレン単位の含有率が36.0モル%以上である、[2]に記載のプロピレン系ブロック共重合体。
 [4]式(I)で表される第1細孔分布指数が2以上であるマグネシウム化合物(II-0)を含む固体状化合物(S)と、
  第1細孔分布指数= x/y      ・・・(I)
 (式(I)中、xは水銀ポロシメーターで測定した細孔径0.001~0.1μmの累積細孔容積、yは水銀ポロシメーターで測定した0.1~1.0μmの累積細孔容積である。)
 式(IV)で表されるチタン化合物と、
  Ti(OR)4-g      ・・・(IV)
 (式(IV)中、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4を満たす整数である。)
 電子供与体と、
 を接触させて製造される固体状チタン触媒成分(i)の存在下において、
 プロピレンおよび任意に他のα-オレフィンを重合させて結晶性プロピレン系(共)重合体を作製する第1重合工程と、
 上記第1重合工程で作製された結晶性プロピレン系(共)重合体と、ゴム成分、非晶性または低結晶性エチレン・プロピレン共重合体(EPR)、および非晶性エチレン・α-オレフィン共重合体からなる群から選択される1の重合体の原料とを重合させる第2重合工程と、
 を有する、
 プロピレン系ブロック共重合体の製造方法。
 [5]前記第1重合工程および前記第2重合工程は、いずれも、水素の存在下で重合を行わせる工程である、[4]に記載のプロピレン系ブロック共重合体の製造方法。
 [6]前記マグネシウム化合物(II-0)が、下記の(II)式で規定される固体状錯体化合物であり、式(II)においてaが0の場合、式(IV)においてgは4ではない、[4]または[5]に記載のプロピレン系ブロック共重合体の製造方法。
 MgXRs・(RtOH)m  ・・・(II)
 (式(II)中、Xはハロゲン原子であり、Rsはヘテロ原子含有炭化水素基であり、Rtはヘテロ原子を含んでもよい炭素水素基であり、mは2.0≦m≦3.3を満たす実数であり、aは0≦a≦2を満たす整数であり、bは0≦b≦2を満たす整数であり、aとbの和は2である。)
 [7]式(I)で表される第1細孔分布指数が2以上であるマグネシウム化合物(II-0)を含む固体状化合物(S)と、
  第1細孔分布指数= x/y      ・・・(I)
 (式(I)中、xは水銀ポロシメーターで測定した細孔径0.001~0.1μmの累積細孔容積、yは水銀ポロシメーターで測定した0.1~1.0μmの累積細孔容積である。)
 式(IV)で表されるチタン化合物と、
  Ti(OR)4-g        ・・・(IV)
 (式(IV)中、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4を満たす整数である。)
 電子供与体と、
 を接触させて製造される固体状チタン触媒成分。
 本発明によれば、重合器の内壁への付着を十分に抑制することができるプロピレン系ブロック共重合体、および当該プロピレン系ブロック共重合体の製造方法が提供される。
図1は、本発明のプロピレン系ブロック共重合体について流動性の評価値を得るために使用するロートを示す模式図である。
 本発明に係るプロピレン系ブロック共重合体は、常温の100gの共重合体を、内径11.9mmのステンレス鋼製ロートを用いて落下させたときの落下秒数X(秒)と、
 10kgの荷重下、80℃で24時間保持した後の100gの共重合体を、内径11.9mmのロートを用いて落下させたときの落下秒数Y(秒)と、から以下の式により算出される流動性の評価値が、40%以下である。
  流動性の評価値(%)={(Y/X)-1}×100
 具体的には、上記ロートは、図1に示す形状を有するロートである。このロートは、JIS K 6720(1998年)の付属書図2に記載された「かさ比重測定装置」と同様の形状を有し、ただし、最上部の径(図1に示すaの長さ)が94.9mm、円錐台状部の高さ(図1に示すbの長さ)が114mm、粒子落下部分の内径(図1に示すcの長さ)が11.9mmの、円錐台形をしたロートである。なお、円錐台形の斜面の傾き(図1に示すdの角度)は、20°である。
 上記プロピレン系ブロック共重合体は、金属、特にはステンレス鋼製の重合器や流路などを流動するとき、重合器の内壁や流路壁などに付着しにくい特性を有する。
 1.プロピレン系ブロック共重合体
 上記プロピレン系ブロック共重合体は、プロピレン系重合体にゴム成分、非晶性または低結晶性エチレン・プロピレン共重合体(EPR)、および非晶性エチレン・α-オレフィン共重合体などを直接重合させてなる共重合体である。本願のプロピレン系ブロック共重合体は、好ましくは、粒子形状であり、さらに好ましくは後述する重合時に形成されるプロピレン系ブロック共重合体粒子である。
 上記プロピレン系ブロック共重合体は、プロピレン由来の構造単位を含むブロック共重合体であれば特に制限されないが、剛性、耐衝撃性および成形加工性にバランスよく優れ、外観が良好な成形体を容易に得ることができる等の点から、ゴム成分を含む共重合体であることが好ましく、23℃のn-デカンに可溶な成分(以下「Dsol成分」ともいう。)と、23℃のn-デカンに難溶な成分(以下「Dinsol」ともいう。)とを有する共重合体であることがより好ましい。
 なお、Dsol成分は、プロピレン系ブロック共重合体を150℃のn-デカン中で2時間加熱溶解させた後、23℃まで降温後にn-デカン溶液側に溶解している成分のことをいい、プロピレン系ブロック共重合体におけるこれ以外の成分がDinsol成分である。
 上記Dsol成分は、上記ゴム成分が主成分となる成分とすることができ、プロピレンと、エチレンおよび炭素数4以上20以下のα-オレフィンから選ばれる1種以上のα-オレフィンと、の共重合体ゴム成分が主成分となる成分であることが好ましい。より具体的には、上記Dsol成分のゴム成分量は、50質量%より多く、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。
 上記炭素数4以上20以下のα-オレフィンの例には、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、および1-エイコセンなどが含まれる。共重合されるα-オレフィンは、エチレンまたは炭素数4以上10以下のα-オレフィンから選択されるα-オレフィンであることが好ましく、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、および1-デセンから選択されるα-オレフィンであることがより好ましい。
 上記Dsol成分に含まれるエチレンおよび炭素数4以上20以下のα-オレフィンから選ばれる1種以上のα-オレフィン由来の構造単位量は、後述する結晶性プロピレン系(共)重合体成分や、デカン不溶成分(Dinsol成分)に含まれるエチレンまたは炭素数4以上20以下のα-オレフィン由来の構造単位量よりも多く、通常上記共重合体ゴムの25mol%以上である。
 特に、エチレン単位を含むDsol成分は、ガラス転移温度が低くなる傾向があるので、上記Dsol成分は、エチレン単位を多く含むが好ましい。上記Dsol成分中の好ましいエチレン単位の含有率の下限値は30モル%、より好ましくは36.0モル%、さらに好ましくは40モル%である。一方、好ましい上限値は70モル%、より好ましくは65モル%、さらに好ましくは60モル%である。
 エチレン単位の含有率が比較的高くなると、ゴム成分のガラス転移温度が低下し、結晶性も低下するので、ゴム成分が柔らかく、特に高温で流動しやすくなる傾向がある。本発明においては、このような流動しやすいゴム成分を多く含むプロピレン系ブロック共重合体であっても、後述する重合器やサイロ内での重合体の付着が起こりにくいので、生産性に優れると考えられる。
 プロピレン系ブロック共重合体中のDsol成分の含有量は、剛性および耐衝撃性にバランスよく優れる成形体を容易に得るなどの観点から、Dsol成分とDinsol成分との合計100質量%に対し、5質量%以上50質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましく、25質量%以上50質量%以下であることがさらに好ましく、30質量%以上40質量%以下であることが特に好ましい。
 Dsol成分の極限粘度[η]は、耐衝撃性、高流動性、高溶融弾性にバランス良く優れる組成物を容易に得、かつ、外観が良好な成形体を容易に得るなどの点から、1.5dl/g以上10.0dl/g以下であることが好ましく、2.0dl/g以上7.0dl/g以下であることがより好ましい。
 上記[η]は、20mgのプロピレン系ブロック共重合体を15mlのデカリンに溶解し、135℃のオイルバス中で比粘度ηspを測定し、このデカリン溶液に5mlのデカリン溶媒を追加して希釈後、同様にして比粘度ηspを測定するという操作をさらに3回繰り返して得られる、濃度と比粘度との関係を示す関係式において、濃度(C)を0に外挿した時のηsp/Cの値とすることができる。
 上記Dinsol成分は、結晶性プロピレン系(共)重合体成分を主成分とする成分である。より具体的には、上記Dinsol成分中の結晶性プロピレン系(共)重合体成分量は、50質量%より多く、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。
 上記結晶性プロピレン系(共)重合体成分は、結晶性プロピレン単独重合体、または、プロピレンと、エチレンおよび炭素数4以上20以下のα-オレフィンからなるα-オレフィンのうち1種以上のα-オレフィンとの共重合体である。ただし、上記α-オレフィンに由来する構造単位の量は、上記結晶性プロピレン系(共)重合体成分の1.5mol%以下である。
 プロピレン系ブロック共重合体中のDinsol成分の含有量は、剛性および耐衝撃性にバランスよく優れる成形体を容易に得ることができる等の点から、Dsol成分とDinsol成分との合計100質量%に対し、50質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、50質量%以上75質量%以下であることがさらに好ましく、60質量%以上70質量%以下であることが特に好ましい。
 上記炭素数4以上20以下のα-オレフィンの例には、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、および1-エイコセンなどが含まれる。共重合されるα-オレフィンは、エチレンまたは炭素数4以上10以下のα-オレフィンから選択されるα-オレフィンであることが好ましく、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、および1-デセンから選択されるα-オレフィンであることがより好ましい。
 上記プロピレン系ブロック共重合体の、230℃、2.16kg荷重で測定したメルトフローレート(MFR)は、5g/10分以上300g/10分以下とすることができ、5g/10分以上200g/10分以下であることが好ましい。
 MFRが上記範囲にあると、上記プロピレン系ブロック共重合体は流動性に優れるため、射出成形を容易に行うことができる組成物が上記プロピレン系ブロック共重合体から得られる。また、当該組成物からは、耐衝撃性により優れ、自動車部品等に好適に用いることができる成形体を容易に得ることができる。
 上記組成物の全質量に対する上記プロピレン系ブロック共重合体の含有量は、剛性と耐衝撃性とのバランスにより優れる成形体を容易に得る観点から、58質量%以上90質量%以下であることが好ましく、60質量%以上90質量%以下であることがより好ましい。
 なお、上記組成物は、上記プロピレン系ブロック共重合体以外の樹脂、耐光安定剤、耐熱安定剤、耐候安定剤、老化防止剤、酸化防止剤、脂肪酸金属塩、軟化剤、分散剤、充填剤、着色剤、顔料、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、天然油、合成油、ワックスなどのその他の成分を含んでもよい。
 2.プロピレン系ブロック共重合体の製造
 上記プロピレン系ブロック重合体は、はじめに上記Dinsol成分を構成する成分、特には上記結晶性プロピレン系(共)重合体を合成し、続けて、上記Dsol成分を構成する成分、特には上記ゴム成分を、上記Dinsol成分を構成する成分に重合させることで得られる。このとき、以下の固体状化合物(S)を出発材料として製造される固体状チタン触媒成分(i)を触媒として上記Dinsol成分を構成する成分の合成および上記Dsol成分を構成する成分の重合を行うことで、上述した流動性の評価値を40以下とすることができる。上記の固体状化合物は、後述するような固体状化合物であることが好ましい。
 2-1.固体状チタン触媒成分(i)の製造
 上記固体状チタン触媒成分(i)は、下記式(I)で表される第1細孔分布指数が2以上である固体状化合物(S)と、チタン化合物と、を接触させて、製造することができる。このとき、得られる重合体の分子量を大きくしたり、分子量分布を制御しやすくしたりする観点から、さらに電子供与体を接触させて、固体状チタン触媒成分(i)に電子供与体を含ませてもよい。
  第1細孔分布指数= x/y      ・・・(I)
 式(I)中、xは水銀ポロシメーターで測定した細孔径0.001~0.1μmの累積細孔容積、yは水銀ポロシメーターで測定した0.1~1.0μmの累積細孔容積である。
 上記の第1細孔分布指数の好ましい下限値は、2.0であり、より好ましくは2.1であり、さらに好ましくは2.2である。一方、上限値は特に限定されないが、好ましくは12であり、よりに好ましくは10であり、さらに好ましくは8であり、特に好ましくは7である。
 上記の式(I)は、相対的に小さな細孔径すなわち、0.001~0.1μmの細孔が、相対的に大きな細孔径すなわち0.1~1.0μmの細孔よりも相当量多いことを示唆するパラメーターである。もしくは、相対的に小さく、且つ、深い形状の細孔が多い傾向を示唆するパラメーターと考えることもできる。
 また、固体状化合物(S)において、下記式(I’)で表される第2細孔分布指数は、0.5を超える値であることが好ましい。第2細孔分布指数は、より好ましくは0.56以上であり、さらに好ましくは0.58以上であり、特に好ましくは0.60以上であり、殊に好ましくは0.62以上である。上限値は、勿論1である。より好ましくは0.745である。
  第2細孔分布指数= xα/xβ    ・・・(I’)
 式(I’)中、xαは水銀ポロシメーターで測定した細孔径0.01~0.1μmの累積細孔容積、xβは水銀ポロシメーターで測定した0.001~1.0μmの累積細孔容積である。
 第2細孔分布指数は、本販発明の触媒では、0.01~0.1μmの細孔が、その容積ベースでメインの存在であることを示している。本願発明の特徴である優れた粒子流動性には、この細孔径の存在に大きく影響されるであることが容易に推察できる。
 なお、本発明にかかる固体状化合物の細孔径0.001~1.0μmの細孔容積は、本発明の目的の範囲内であれば、特に限定されるものではない。好ましくは、50mm/g以上、1500mm/g以下である。より好ましい下限値は80mm/g、さらに好ましくは100mm/g、特に好ましくは120mm/gである。一方、より好ましい上限値は1000mm/g、さらに好ましくは800mm/g、特に好ましくは500mm/gである。
 このような細孔容積の範囲内であれば、前記のブロッキング性の抑制などの好ましい効果が表れやすい傾向がある。
 本発明のプロピレン系ブロック共重合体は、例えば重合器やサイロの内壁への融着が起こり難い特徴を有するが、それを実現するためには、上記の式(I)の規定が重要と本発明者らは考えている。その機構は現時点では定かでないが、以下のような推測が可能であろう。
 原料である固体状化合物の形状は、固体状チタン触媒成分(i)にも引き継がれる傾向があると言われている。そのため、このような規定を満たす形状の固体状化合物(S)は、相対的に小さな特定のサイズの細孔径の割合が多いため、おそらくその表面積の広さに基づく表面の摩擦抵抗によって、ゴム成分の表面へのブリードが起こり難い可能性があると本発明者らは考えている。
 一方、余りに細孔径が小さすぎると、例えば火山が爆発する様なゴム成分の表面への拡散が起こりやすいのではないかと考えられる。また、細孔径が大きすぎると、他の細孔と内部で貫通してしまい、ゴム成分がかえって表面に染み出しやすい可能性も考えられる。
 このため、本発明者らは、特定の細孔径の範囲の細孔の割合が高いことが、本発明の効果を発現する重要な要件であると考えている。
 2-1-1.固体状化合物(S)
 固体状化合物(S)は、マグネシウム化合物(II-0)を含む態様であることを特徴とする。好ましいマグネシウム化合物は後述する原料錯体に用いられるマグネシウム化合物である。
 好ましい固体状化合物(S)は、式(II)で表される組成を有する固体状化合物の構造を有する。
  MgXRs・(RtOH)m  ・・・(II)
 式(II)中、Xはハロゲン原子であり、Rsはヘテロ原子含有炭化水素基であり、Rtはヘテロ原子を含んでもよい炭素水素基であり、mは2.0≦m≦3.3を満たす実数であり、aは0≦a≦2を満たす整数であり、bは0≦b≦2を満たす整数であり、aとbの和は2である。
 式(II)におけるRsは、アルコキシ基、アリーロキシ基およびカルボキシレート基などとすることができる。
 式(II)におけるRtOHで表される構造は、RtOHで表されるアルコールに由来する構造である。上記アルコールの例には、メタノール、エタノール、プロパノール、ブタノール、イソブタノール、エチレングリコール、2-メチルペンタノール、2-エチルブタノール、n-ヘプタノール、n-オクタノール、2-エチルヘキサノール、デカノール、およびドデカノールなどを含む脂肪族アルコール、シクロヘキサノール、およびメチルシクロヘキサノールなどを含む脂環族アルコール、ベンジルアルコール、およびメチルベンジルアルコールなどを含む芳香族アルコール、ならびに、n-ブチルセルソルブなどを含むアルコキシ基を有する脂肪族アルコールなどが含まれる。
 式(II)で表される固体状化合物(S)は、例えば、式(III)で表される錯体(原料錯体という場合がある)と、炭化水素溶媒と、を含むスラリー状の液体に、液温25℃以上80℃以下で不活性ガスを連続的に接触させることで、製造することができる。
  MgXRs・(RtOH)・・・(III)
 式(III)中、X、RsおよびRtは式(II)におけるX、RsおよびRtと同一であり、nは0.45≦m/n≦0.99を満たす実数である。
 上記原料錯体は、塩化マグネシウム、および臭化マグネシウムなどを含むハロゲン化マグネシウム、メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、およびフェノキシ塩化マグネシウムなどを含むアルコキシマグネシウムハライド、エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、および2-エチルヘキソキシマグネシウムなどを含むアルコキシマグネシウム、フェノキシマグネシウムなどを含むアリーロキシマグネシウム、ならびに、ステアリン酸マグネシウムなどを含むマグネシウムのカルボン酸塩などのマグネシウム化合物と、上述したRtOHで表されるアルコール、特には上記マグネシウム化合物を溶解させるアルコールと、を公知の方法で接触させて、製造することができる。
 上記原料錯体および炭化水素溶媒を含むスラリー状の液体に、液温25℃以上80℃以下で不活性ガスを連続的に接触させることで、原料錯体からアルコール成分(RtOH)を穏やかに除去して、固体状化合物(S)が製造される。
 上記不活性ガスは、ヘリウム、ネオン、アルゴンなどを含む希ガス、メタン、エタン、およびプロパンなどを含む炭化水素ガス、ならびに、窒素などの、チタン化合物や有機金属化合物と実質的に反応しないガスであればよい。
 上記スラリー状の液体のスラリー濃度は特に制限はないが、流動性や固体状化合物(S)の保護的な機能を考慮すると、10g/L以上200g/L以下であることが好ましく、30g/L以上150g/L以下であることがより好ましい。
 上記スラリー状の液体の、上記接触時の液温は、不活性ガスによるアルコールの除去効率を高める観点から25℃以上とし、固体状化合物(S)の変質を抑制する観点から80℃とする。上記観点からは、上記接触時の液温は、25℃以上80℃以下であることが好ましく、40℃以上70℃以下であることがより好ましい。
 上記不活性ガスの供給速度は、1Lの上記スラリー状の液体あたり、5NL/hr以上300NL/hr以下であることが好ましく、5NL/hr以上40NL/hr以下であることがよりに好ましく、5NL/hr以上30NL/hr以下であることがさらに好ましく、5NL/hr以上25NL/hr以下であることが特に好ましく、7NL/hr以上20NL/hr以下であることが殊に好ましい。上記供給速度が5NL/hr以上であると、不活性ガスによるアルコールの除去効率を十分に高めることができる。
 上記不活性ガスの供給時間は、1時間以上60時間以下であることが好ましく、3時間以上40時間以下であることがより好ましく、3時間以上36時間以下であることがさらに好ましく、3時間以上20時間以下であることが特に好ましく、5時間以上15時間以下であることが殊に好ましい。上記供給速度が1時間以上であると、不活性ガスによるアルコールの除去効率を十分に高めることができる。
 上記の不活性ガスの供給時に、系内を撹拌翼などで撹拌するなどの方法で、系内を均質化することもできる。不活性ガスの供給方法や供給位置の工夫によっては、不活性ガスによって、系内を撹拌に類似するような均質な状態を形成することもできる。例えば、不活性ガスの噴き出し口を系内下部に設置することや、不活性ガスの噴き出し口を系内に多数配置する方法が挙げられる。
 上記スラリー濃度、接触時の液温、不活性ガスの供給速度、および不活性ガスの供給時間を適切に調整することで、式(I)で表される第1細孔分布指数が2以上である固体状化合物(S)を製造することができる。
 上記の方法は、炭化水素化合物を用いた液相環境での反応となるため、温度やアルコールの除去を担うと考えられる不活性ガスの使用量などを比較的精密に制御することが可能であるので、前記の(I)式を満たすような高度に制御された構造の固体状化合物(S)を形成するうえで有効な方法である。
 上記の方法以外に、気相でのアルコールの除去方法も用いることが出来る。形状の制御し易さと言う観点では、前記の液相環境での調製方法が好ましい。
 2-1-2.チタン化合物
 固体状化合物(S)と接触させて、上記固体状チタン触媒成分(i)を製造するための、チタン化合物は、式(IV)で表される組成を有する。
  Ti(OR)4-g      ・・・(IV)
 式(IV)中、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4を満たす整数(式(II)においてaが0の場合、g=4を除く)である。
 式(IV)におけるRの例には、メチル基、エチル基、プロピル基、およびブチル基などが含まれる。
 式(IV)で表されるチタン化合物の例には、TiCl、およびTiBrなどを含むテトラハロゲン化チタン、Ti(OCH)Cl、Ti(OC)Cl、Ti(O-n-C)Cl、Ti(OC)Br、およびTi(O-isoC)Brなどを含むトリハロゲン化アルコキシチタン、Ti(OCHCl、およびTi(OCClなどを含むジハロゲン化アルコキシチタン、Ti(OCHCl、Ti(O-n-CCl、およびTi(OCBrなどを含むモノハロゲン化アルコキシチタン、ならびに、Ti(OCH、Ti(OC、Ti(OC、およびTi(O-2-エチルヘキシル)などを含むテトラアルコキシチタンなどが含まれる。これらのうち、テトラハロゲン化チタンが好ましく、四塩化チタン(TiCl)がより好ましい。
 2-1-3.電子供与体
 上記電子供与体は、芳香族カルボン酸エステル、脂環族カルボン酸エステルおよびポリエーテル化合物などとすることができる。
 特に、上記電子供与体は、式(V)または式(VI)で表される脂環式多価カルボン酸エステルおよびポリエーテル化合物などが好ましい。
  R(COOR       ・・・(V)
  R(OCOR       ・・・(VI)
 式(V)および式(VI)中、Rは炭素原子数5以上20以下の脂環族炭化水素であり、Rは炭素原子数6以上15以下の炭化水素基であり、pは2または3の整数である。
 式(V)で示される脂環式多価カルボン酸エステルの例には、シクロヘキシル-1,2-ジヘキサノエート、シクロヘキシル-1,2-ジオクタノエート、シクロヘキシル-1,2-ジデカノエート、シクロヘキシル-1,2-ジドデカノエート、シクロヘキシル-1,2-ジヘプタノエート、3,6-ジメチルシクロヘキシル-1,2-ジオクタネート、3,6-ジメチルシクロヘキシル-1,2-デセネート、3,6-ジメチルシクロヘキシル-1,2-ドデセネート、3-メチル-6-プロピルシクロヘキシル-1,2-ジオクタネート、3-メチル-6-プロピルシクロヘキシル-1,2-ジデセネート、および3-メチル-6-プロピルシクロヘキシル-1,2-ジドデセネートなどが含まれる。
 式(VI)で示される脂環式多価カルボン酸エステルの例には、3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジオクチル、3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジデシル、3-メチル-6-エチルシクロヘキサン-1,2-ジカルボン酸ジオクチル、3-メチル-6-エチルシクロヘキサン-1,2-ジカルボン酸ジデシル、3-メチル-6-n-プロピルシクロヘキサン-1,2-ジカルボン酸ジオクチル、3-メチル-6-n-プロピルシクロヘキサン-1,2-ジカルボン酸ジデシル、3,6-ジエチルシクロヘキサン-1,2-ジカルボン酸ジオクチル、および3,6-ジエチルシクロヘキサン-1,2-ジカルボン酸ジドデシルなどを含む、環状骨格が炭化水素基などで置換された脂環式多価カルボン酸エステル、ならびに、シクロヘキサン-1,2-ジカルボン酸ジ-n-ヘキシル、シクロヘキサン-1,2-ジカルボン酸ジヘプチル、シクロヘキサン-1,2-ジカルボン酸ジオクチル、シクロヘキサン-1,2-ジカルボン酸ジデシル、およびシクロヘキサン-1,2-ジカルボン酸ジドデシルなどを含む、環状骨格がカルボン酸エステル以外の置換基を有さない脂環式多価カルボン酸エステルなどが含まれる。
 上記ポリエーテル化合物は、芳香族カルボン酸エステルまたは複数の炭素原子を介して両側に配置された2個以上のエーテル結合を有する化合物である。上記ポリエーテル化合物の例には、2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、および2,2-ビス(シクロヘキシルメチル)1,3-ジメトキシプロパンなどの1,3-ジエーテル類などが含まれる。
 2-1-4.固体状化合物(S)とチタン化合物と電子供与体との接触
 固体状化合物(S)と、式(IV)で表されるチタン化合物と、任意に上記電子供与体とを接触させることにより、上記固体状チタン触媒成分(i)を製造することができる。
 これらの成分を接触させるとき、脂肪族カルボン酸エステル、芳香族カルボン酸エステル、アルコール、アルデヒド、ケトン、エーテル、アミン、シラン化合物、および燐酸エステルなどの電子供与体をさらに接触させることで、固体状チタン触媒成分(i)の高い触媒活性を維持させたまま、得られるプロピレン系ブロック共重合体の立体規則性を高めることができる。
 上記接触は、たとえば下記(P-1)~(P-3)などの公知の方法で行うことができる。
 (P-1)固体状化合物(S)のスラリーと、液状の上記チタン化合物と、好ましくは1種以上の上述した電子供与体とを、不活性炭化水素溶媒の共存下で、懸濁状態で接触させる
 (P-2)固体状化合物(S)のスラリーと、液状の上記チタン化合物と、好ましくは1種以上の上述した電子供与体とを、複数回に分けて接触させる
 (P-3)固体状化合物(S)のスラリーと、液状の上記チタン化合物と、好ましくは1種以上の上述した電子供与体とを、不活性炭化水素溶媒の共存下で、懸濁状態で、複数回にわけて接触させる
 2-2.プロピレン系ブロック共重合体の製造
 上述したプロピレン系ブロック共重合体は、上記固体状チタン触媒成分(i)、好ましくは上記オレフィン重合用触媒、の存在下で、プロピレンおよび任意に他のα-オレフィンを重合させて、結晶性プロピレン系(共)重合体を作製する第1重合工程、および、上記第1重合工程で作製された結晶性プロピレン系(共)重合体と、ゴム成分、非晶性または低結晶性エチレン・プロピレン共重合体(EPR)、および非晶性エチレン・α-オレフィン共重合体の原料とを重合させる第2重合工程、を経て製造することができる。
 上記第1重合工程および第2重合工程は、いずれも、バルク重合法、溶解重合法および懸濁重合法などを含む液相重合法、ならびに気相重合法のいずれの重合法により行ってもよい。
 上記第1重合工程および第2重合工程において、上記固体状チタン触媒成分(i)に、第1族元素、第2族元素および第13族元素からなる群から選択される少なくとも一種の元素を含む有機金属化合物(ii)をさらに接触させて、オレフィン重合用触媒としてもよい。その際、電子供与体(iii)をさらに接触させてもよい。
 上記有機金属化合物(ii)の例には、有機アルミニウム化合物などの第13族元素を含む化合物、第1族元素とアルミニウムとの錯アルキル化物、および第2族元素を含む有機金属化合物などが含まれる。
 電子供与体(iii)の例には、式(VII)で表される有機ケイ素化合物、式(VIII)で表されるシラン化合物、および式(IX)で表される化合物などが含まれる。
  RSi(OR’)4-n     ・・・(VII)
  Si(OR(NR)  ・・・(VIII)
  RNSi(OR       ・・・(IX)
 式(VII)中、RおよびR’は炭化水素基であり、nは0<n<4の整数である。
 式(VIII)中、Rは炭素原子数1以上6以下の炭化水素基であり、Rは炭素原子数1以上12以下の炭化水素基または水素であり、Rは炭素原子1以上12以下の炭化水素基である。
 式(IX)中、Rは炭素原子数1以上6以下の炭化水素基であり、RNは、パーヒドロキノリノ基、パーヒドロイソキノリノ基、1,2,3,4-テトラヒドロキノリノ基、1,2,3,4-テトラヒドロイソキノリノ基、およびオクタメチレンイミノ基などの環状アミノ基である。
 式(VII)で示される有機ケイ素化合物の例には、ジイソプロピルジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、t-アミルメチルジエトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、t-ブチルトリエトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロペンチルトリメトキシシラン、2-メチルシクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、トリシクロペンチルメトキシシラン、ジシクロペンチルメチルメトキシシラン、ジシクロペンチルエチルメトキシシラン、シクロペンチルジメチルエトキシシランなどが含まれる。
 式(VIII)で表されるシラン化合物の例には、ジメチルアミノトリエトキシシラン、ジエチルアミノトリエトキシシラン、ジエチルアミノトリメトキシシラン、ジエチルアミノトリエトキシシラン、ジエチルアミノトリn-プロポキシシラン、ジ-n-プロピルアミノトリエトキシシラン、メチル-n-プロピルアミノトリエトキシシラン、t-ブチルアミノトリエトキシシラン、エチル-n-プロピルアミノトリエトキシシラン、エチル-iso-プロピルアミノトリエトキシシラン、およびメチルエチルアミノトリエトキシシランなどが含まれる。
 式(IX)で表される化合物の例には、(パーヒドロキノリノ)トリエトキシシラン、(パーヒドロイソキノリノ)トリエトキシシラン、(1,2,3,4-テトラヒドロキノリノ)トリエトキシシラン、(1,2,3,4-テトラヒドロイソキノリノ)トリエトキシシラン、およびオクタメチレンイミノトリエトキシシランなどが含まれる。
 上記接触の際の反応温度は、-30℃以上150℃以下であることが好ましく、-25℃以上130℃以下であることがより好ましく、-25℃以上120℃以下であることがさらに好ましい。
 上記第1重合工程および第2重合工程において用いられる固体状チタン触媒成分(i)の量は、チタン原子に換算して、重合容積1リットルあたり0.0001ミリモル以上0.5ミリモル以下とすることができ、0.005ミリモル以上0.1ミリモル以下とすることが好ましい。
 上記第1重合工程および第2重合工程において用いられる有機金属化合物(ii)の量は、重合系中のチタン原子1モルに対して、1モル以上2000モル以下とすることができ、5モル以上500モル以下であることが好ましい。
 上記第1重合工程および第2重合工程において用いられる電子供与体(iii)の量は、重合系中の有機金属化合物(ii)1モルに対して、0.001モル以上50モル以下とすることができ、0.01モル以上30モル以下であることが好ましく、0.05モル以上20モル以下であることがより好ましい。
 上記第1重合工程および第2重合工程における重合温度は、20℃以上200℃以下とすることができ、30℃以上100℃以下であることが好ましく、50℃以上90℃以下であることがより好ましい。
 上記第1重合工程および第2重合工程における圧力(ゲージ圧)は、常圧から9.8MPa以下とすることができ、0.20MPa以上4.9MPa以下であることが好ましい。
 上記第1重合工程および第2重合工程において、得られる重合体の分子量を下げてメルトフローレート(MFR)およびDsolの極限粘度[η]を所望の範囲に調整するために、水素の存在下で重合を行ってもよい。
 上記第2重合工程においては、たとえば、ゴム成分の原料となるプロピレンと、エチレンおよび炭素数4以上20以下のα-オレフィンから選ばれる1種以上のα-オレフィンと、を、第1重合工程で得られた結晶性プロピレン系(共)重合体に重合させればよい。たとえば、ゴム成分をプロピレン-エチレン共重合体ゴムとするときは、エチレン/(エチレン+プロピレン)ガス比を、5モル%以上80モル%以下とすることが好ましく、10モル%以上70モル%以下とすることがより好ましく、15モル%以上60モル%以下とすることがさらに好ましい。
 なお、上記第1重合工程および第2重合工程の前に、より高い触媒濃度で予備重合を行ってもよい。
 以下、実施例を参照して本発明を更に具体的に説明するが、本発明の範囲は実施例の記載に限定されない。
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。以下の実施例において、メルトフローレート、プロピレン重合体の嵩密度、デカン可溶成分量等は下記の方法によって測定した。
 (1)メルトフローレート(MFR)
 メルトフローレート(MFR)は、ASTM D1238E規格に準拠し、測定温度230℃で測定した。
 (2)嵩密度(BD)
 嵩密度(BD)は、JIS K-6721規格に従って測定した。
 (3)デカン可溶成分量(dsol)、エチレン単位含有率
 ガラス製の測定容器に、プロピレン重合体約3グラム(10-4グラムの単位まで測定した。また、この質量を、下式においてb(グラム)と表した。)、デカン500ml、およびデカンに可溶で且つ後述する減圧乾燥時に実質的に留去される沸点を有する耐熱安定剤を少量装入した。これを、窒素雰囲気下、スターラーで攪拌しながら2時間で150℃まで昇温してプロピレン重合体を溶解させ、150℃で2時間保持した後、8時間掛けて23℃まで徐冷した。得られたプロピレン重合体の析出物を含む液を、磐田ガラス社製25G-4規格のグラスフィルターにて減圧濾過した。濾液の100mlを採取し、これを減圧乾燥してデカン可溶成分の一部を得て、この質量を10-4グラムの単位まで測定した(この質量を、下式においてa(グラム)と表した。)。この操作の後、デカン可溶成分量を下記式によって決定した。
  デカン可溶成分含有率=100×(500×a)/(100×b)
 また、エチレン由来単位の含有率は、前記減圧乾燥で得られたデカン可溶成分を用い、125MHz 13C NMR(ブルカー・バイオスピン社製、装置名AVANCEIIIcryo-500)で測定し、常法によりエチレン由来の単位、プロピレン由来の単位を特定して、その吸収強度比から特定した。
 (4)極限粘度([η]:〔dl/g〕)
 デカリン溶媒を用いて、135℃で測定した。サンプル約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた。
 (5)固体状化合物のマグネシウム含有率
 固体状化合物のマグネシウム含有率を、高周波プラズマ発光分析(ICP-AES)法で、下記の方法で測定した。なお、高周波プラズマ発光分析装置には島津製作所製ICPS-8100型装置(商品名)を用いた。
 (内部標準物質を使用した検量線の作成)
 酸化イットリウム(和光純薬社製特級)、Mg標準液(和光純薬社製原子吸光分析用1,000ppm溶液または関東化学社製原子吸光分析用1,000ppm溶液)、および硫酸(和光純薬社製特級)を用い、濃度の明確な酸化イットリウムとMgとを含む溶液を複数種調製した。これをICP-AES測定することで、酸化イットリウムを内部標準物質とするMg濃度測定のための検量線を常法により作成した。
 (固体状化合物のマグネシウム含有率の測定)
 窒素雰囲気下で、固体状化合物約200mgを0.1mgの単位まで精秤した(この質量を(α)と示す)。これを蒸留水および硫酸に溶解させ、更に酸化イットリウムの溶液を所定量加えた。これを容量(β)のメスフラスコに移して、蒸留水でメスアップして、試料溶液とした。上記試料溶液をICP-AES測定し、上記検量線を利用して、試料溶液のMg濃度を測定した(γ)。これらの結果から、下記式によって固体状化合物中のMg含有率(M)を算出した。
  M=(β×γ)/α
 なお、固体状チタン触媒成分(i)のチタン含有率、マグネシウム含有率も上記の方法に準じた方法で求めることができる。
 (6)細孔容積、第1細孔分布指数、第2細孔分布指数、細孔容積
 細孔容積は、水銀ポロシメーター(商品名:PoreMaster 60GT、カンタクローム社製)により測定した。得られたデータを装置付属の解析ソフト(商品名:Poremaster for Windows)により解析し、細孔径0.001~0.1および0.1~1.0μmの累積値を求めた。また、その値を下式中のx(0.001~0.1μm)、y(0.1~1.0μm)として、下記式(I)により第1細孔分布指数を求め、下記式(I’)により第2細孔分布指数を求めた。
  第1細孔分布指数= x/y      ・・・(I)
 式(I)中、xは水銀ポロシメーターで測定した細孔径0.001~0.1μmの累積細孔容積、yは水銀ポロシメーターで測定した0.1~1.0μmの累積細孔容積である。
  第2細孔分布指数= xα/xβ    ・・・(I’)
 式(I’)中、xαは水銀ポロシメーターで測定した細孔径0.01~0.1μmの累積細孔容積、xβは水銀ポロシメーターで測定した0.001~1.0μmの累積細孔容積である。
 (7)プロピレン系ブロック共重合体の流動性評価
 得られたブロック共重合体の流動性は一定量の重合体を加熱・荷重処理した前後の落下秒数比によって評価した。評価には、図1に示す形状を有するロートを用いた。このロートは、最上部の径(図1に示すaの長さ)が94.9mm、高さ(図1に示すbの長さ)が114mm、前記重合体を落下させる部分の内径(図1に示すcの長さ)が11.9mmのロートである。100gの共重合体の落下秒数を内径11.9mmの金属製(ステンレス鋼製)ロートを用いて測定し、その値を下記式中のX(秒)とした。この重合体を10kgの荷重下、80℃で24時間保持し、再度、上記の金属製ロートを用いて100gの共重合体の落下秒数を測定し、その値を下記式中のY(秒)とした。XとYの比を下記式にて算出し、得られた値を流動性評価の指標とした。
  落下秒数比(%)={(Y/X)-1}×100
 [固体状化合物の作製]
 実施例で用いた固体状化合物は以下の方法により調整した。
 塩化マグネシウム1モルに対してエタノールが2~3モル配位した原料錯体とデカンの懸濁物を250rpmで撹拌しながら、乾燥窒素を液中にバブリングさせることで固体状化合物を得た。第1細孔分布指数および第2細孔分布指数を求めるため、得られた固体状化合物の一部をろ過した後、ヘキサン洗浄および減圧乾燥を行い、水銀ポロシメーターを用いて細孔容積を測定した。固体状化合物S-1~S-5およびCS-1~CS-4を製造した際のスラリー濃度、温度、時間、乾燥窒素供給速度、細孔容積、第1細孔分布指数および第2細孔分布指数を表1に示す。なお、CS-2~CS-4を製造した際には、50℃で5時間撹拌およびバブリングさせた後、60℃に昇温して1時間撹拌およびバブリングさせた。
Figure JPOXMLDOC01-appb-T000001
 [固体状チタン触媒成分の作製]
 水銀ポロシメーターを用いて測定した細孔径0.001~1.0μmの範囲の細孔容積から、上記式(I)により算出した第1細孔分布指数が2.4である固体状化合物(S-1)を、Mg原子に換算して23ミリモル量、-20℃に保持した四塩化チタン100ml中に攪拌下、全量導入した。この混合液を6.5時間かけて80℃に昇温し、80℃に達したところで電子供与体(e-1)としてシクロヘキサン-1,2-ジカルボン酸ジ-2-エチルヘキシル(トランス率75%)を添加した。さらにこれを30分間かけて110℃に昇温し、110℃になったところで電子供与体(e-2)として2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパンを添加した。110℃を維持したまま30分間同温度にて保持した。反応終了後、熱濾過にて固体部を採取し、この固体部を100mlの四塩化チタンに再懸濁させた後、再び110℃で15分間加熱反応を行った。この工程を2回繰り返した。再び熱濾過にて固体部を採取し、100℃デカンおよびヘキサンで、洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。以上の操作によって調製した固体状チタン触媒成分(C-1)はデカンスラリーとして保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。結果を表2に示す。
 固体状化合物(S-1)の代わりに、固体状化合物(S-2)~(S-5)または(CS-1)~(CS-4)を用いた以外は同様にして、固体状チタン触媒成分(C-2)~(C-5)および(CC-1)~(CC-4)を得た。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 [プロピレン系ブロック共重合体の作製]
 内容積2リットルの攪拌機付き重合装置に、室温で500gのプロピレンおよび水素5.3NLを加えた。その後、さらにトリエチルアルミニウム0.5ミリモル、シクロヘキシルメチルジメトキシシラン0.05ミリモル、および固体状チタン触媒成分(C-1)をチタン原子換算で0.004ミリモル加えた。これを速やかに70℃まで昇温し、70℃で20分重合した後、降温させながらプロピレンをパージした。その後窒素置換を数回繰り返した。そして、水素0.08NLを加えた後、エチレン/(エチレン+プロピレン)=44モル%のガス比とし、全圧0.4MPaで気相重合を行った。デカン可溶成分量(dsol)が30~35%に達するまで重合した。反応終了後、少量のメタノールにて反応停止し、エチレン/プロピレン混合ガスをパージした。更に得られた重合体粒子を室温で一晩、減圧乾燥してプロピレン系ブロック共重合体(P-1)を得た。得られた重合体の重合活性、MFR、BD、dsol、共重合部[η]、落下秒数比を表3に示す。
 [実施例1~5、比較例1~4]
 固体状チタン触媒成分(C-1)の代わりに、固体状チタン触媒成分(C-2)~(C-5)または(CC-1)~(CC-4)を用いた以外はプロピレン系ブロック共重合体(P-1)の作製と同様にして、プロピレン系ブロック重合体(P-2)~(P-5)および(CP-1)~(CP-4)を得た。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 固体状チタン触媒成分(C-1)~(C-5)を用いると、流動性の評価値が40%以下であるプロピレン系ブロック共重合体を作製することができた。
 本出願は、2018年3月7日出願の日本国出願第2018-040597号に基づく優先権を主張する出願であり、当該出願の明細書および特許請求の範囲に記載された内容は本出願に援用される。

Claims (7)

  1.  常温の100gの共重合体を、内径11.9mmのステンレス鋼製ロートを用いて落下させたときの落下秒数X(秒)と、
     10kgの荷重下、80℃で24時間保持した後の100gの共重合体を、内径11.9mmのロートを用いて落下させたときの落下秒数Y(秒)と、から以下の式により算出される流動性の評価値が、40%以下である、
      流動性の評価値(%)={(Y/X)-1}×100
     プロピレン系ブロック共重合体。
  2.  23℃のn-デカンに可溶な成分(Dsol)と23℃のn-デカンに難溶な成分(Dinsol)との合計100質量%に対する、Dsolの含有量が、30質量%以上40質量%以下である、請求項1に記載のプロピレン系ブロック共重合体。
  3.  前記Dsolにおけるエチレン単位の含有率が36.0モル%以上である、請求項2に記載のプロピレン系ブロック共重合体。
  4.  式(I)で表される第1細孔分布指数が2以上であるマグネシウム化合物(II-0)を含む固体状化合物(S)と、
      第1細孔分布指数= x/y      ・・・(I)
     (式(I)中、xは水銀ポロシメーターで測定した細孔径0.001~0.1μmの累積細孔容積、yは水銀ポロシメーターで測定した0.1~1.0μmの累積細孔容積である。)
     式(IV)で表されるチタン化合物と、
      Ti(OR)4-g      ・・・(IV)
     (式(IV)中、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4を満たす整数である。)
     電子供与体と、
     を接触させて製造される固体状チタン触媒成分(i)の存在下において、
     プロピレンおよび任意に他のα-オレフィンを重合させて結晶性プロピレン系(共)重合体を作製する第1重合工程と、
     上記第1重合工程で作製された結晶性プロピレン系(共)重合体と、ゴム成分、非晶性または低結晶性エチレン・プロピレン共重合体(EPR)、および非晶性エチレン・α-オレフィン共重合体からなる群から選択される1の重合体の原料とを重合させる第2重合工程と、
     を有する、
     プロピレン系ブロック共重合体の製造方法。
  5.  前記第1重合工程および前記第2重合工程は、いずれも、水素の存在下で重合を行わせる工程である、請求項4に記載のプロピレン系ブロック共重合体の製造方法。
  6.  前記マグネシウム化合物(II-0)が、下記の(II)式で規定される固体状錯体化合物であり、式(II)においてaが0の場合、式(IV)においてgは4ではない、請求項4または5に記載のプロピレン系ブロック共重合体の製造方法。
     MgXRs・(RtOH)m  ・・・(II)
     (式(II)中、Xはハロゲン原子であり、Rsはヘテロ原子含有炭化水素基であり、Rtはヘテロ原子を含んでもよい炭素水素基であり、mは2.0≦m≦3.3を満たす実数であり、aは0≦a≦2を満たす整数であり、bは0≦b≦2を満たす整数であり、aとbの和は2である。)
  7.  式(I)で表される第1細孔分布指数が2以上であるマグネシウム化合物(II-0)を含む固体状化合物(S)と、
      第1細孔分布指数= x/y      ・・・(I)
     (式(I)中、xは水銀ポロシメーターで測定した細孔径0.001~0.1μmの累積細孔容積、yは水銀ポロシメーターで測定した0.1~1.0μmの累積細孔容積である。)
     式(IV)で表されるチタン化合物と、
      Ti(OR)4-g        ・・・(IV)
     (式(IV)中、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4を満たす整数である。)
     電子供与体と、
     を接触させて製造される固体状チタン触媒成分。
PCT/JP2019/008982 2018-03-07 2019-03-07 プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分 WO2019172350A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202008644YA SG11202008644YA (en) 2018-03-07 2019-03-07 Propylene-based block copolymer, production method therefor, and solid titanium catalyst ingredient for olefin polymerization
CN201980017706.XA CN111819207B (zh) 2018-03-07 2019-03-07 丙烯系嵌段共聚物及其制造方法以及烯烃聚合用固体状钛催化剂成分
BR112020018181-1A BR112020018181B1 (pt) 2018-03-07 2019-03-07 Método para produzir um copolímero em bloco de propileno e componente de catalisador de titânio sólido
EP19765075.7A EP3763753A4 (en) 2018-03-07 2019-03-07 Propylene-based block copolymer, production method therefor, and solid titanium catalyst ingredient for olefin polymerization
US16/978,513 US11535735B2 (en) 2018-03-07 2019-03-07 Propylene-based block copolymer, production method therefor, and solid titanium catalyst ingredient for olefin polymerization
KR1020207025561A KR102519770B1 (ko) 2018-03-07 2019-03-07 프로필렌계 블록 공중합체 및 그의 제조 방법, 및 올레핀 중합용 고체상 타이타늄 촉매 성분
JP2020505095A JP6923742B2 (ja) 2018-03-07 2019-03-07 プロピレン系ブロック共重合体の製造方法ならびにオレフィン重合用固体状チタン触媒成分

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040597 2018-03-07
JP2018-040597 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019172350A1 true WO2019172350A1 (ja) 2019-09-12

Family

ID=67846563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008982 WO2019172350A1 (ja) 2018-03-07 2019-03-07 プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分

Country Status (9)

Country Link
US (1) US11535735B2 (ja)
EP (1) EP3763753A4 (ja)
JP (1) JP6923742B2 (ja)
KR (1) KR102519770B1 (ja)
CN (1) CN111819207B (ja)
BR (1) BR112020018181B1 (ja)
SG (1) SG11202008644YA (ja)
TW (1) TW201940535A (ja)
WO (1) WO2019172350A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857407A (ja) * 1981-09-30 1983-04-05 Toa Nenryo Kogyo Kk オレフインの重合用触媒成分
JP2002356507A (ja) 2001-03-30 2002-12-13 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分および触媒
JP2003502487A (ja) * 1999-06-18 2003-01-21 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用触媒成分およびそこから得られた触媒
JP2017132870A (ja) 2016-01-27 2017-08-03 日本ポリプロ株式会社 プロピレン系ブロック共重合体の製造方法
JP2017535660A (ja) * 2014-12-09 2017-11-30 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ エチレンの重合方法
JP2018040597A (ja) 2016-09-05 2018-03-15 株式会社ナリス化粧品 化粧料の価値評価法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1217744B (it) * 1988-05-31 1990-03-30 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine
JP4841717B2 (ja) * 2000-07-19 2011-12-21 三井化学株式会社 プロピレン系ブロック共重合体粒子およびその製造方法
BR0204687B1 (pt) 2001-03-30 2012-12-11 componente de catalisador sólido para a polimerização de olefinas, catalisador para a polimerização de olefinas, e, copolìmero em bloco de propileno.
JP4936885B2 (ja) * 2004-04-23 2012-05-23 出光興産株式会社 マグネシウム化合物、オレフィン重合用触媒及びオレフィン重合体の製造方法
KR100886442B1 (ko) 2004-12-22 2009-03-04 미쓰이 가가쿠 가부시키가이샤 프로필렌계 중합체, 그 중합체를 함유하는 조성물 및이들로부터 얻어지는 성형체
TWI426089B (zh) 2005-09-15 2014-02-11 Dow Global Technologies Llc 具受控嵌段序列分布之催化烯烴嵌段共聚物
KR101284938B1 (ko) 2008-09-22 2013-07-10 미쓰이 가가쿠 가부시키가이샤 프로필렌계 블록 공중합체, 이 공중합체를 포함하는 조성물 및 이들로부터 얻어지는 성형체
WO2015177733A2 (en) 2014-05-20 2015-11-26 Reliance Industries Limited A polyolefin and a process for preparing the same
JP6750287B2 (ja) 2015-04-14 2020-09-02 日本ポリプロ株式会社 軟質ポリマーの重合体粒子及びその製造方法
JP6520421B2 (ja) 2015-06-04 2019-05-29 日本ポリプロ株式会社 プロピレン系ブロック共重合体の製造方法
PL3115379T3 (pl) 2015-07-08 2018-10-31 Borealis Ag Heterofazowy polipropylen o polepszonej zdolności płynięcia proszku, zredukowanej emisji i niskiej kurczliwości
US11008408B2 (en) 2016-03-28 2021-05-18 Toho Titanium Co., Ltd. Alkoxymagnesium, method for producing alkoxymagnesium, solid catalyst component for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857407A (ja) * 1981-09-30 1983-04-05 Toa Nenryo Kogyo Kk オレフインの重合用触媒成分
JP2003502487A (ja) * 1999-06-18 2003-01-21 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用触媒成分およびそこから得られた触媒
JP2002356507A (ja) 2001-03-30 2002-12-13 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分および触媒
JP2017535660A (ja) * 2014-12-09 2017-11-30 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ エチレンの重合方法
JP2017132870A (ja) 2016-01-27 2017-08-03 日本ポリプロ株式会社 プロピレン系ブロック共重合体の製造方法
JP2018040597A (ja) 2016-09-05 2018-03-15 株式会社ナリス化粧品 化粧料の価値評価法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3763753A4

Also Published As

Publication number Publication date
EP3763753A4 (en) 2021-12-29
EP3763753A1 (en) 2021-01-13
KR20200118834A (ko) 2020-10-16
JPWO2019172350A1 (ja) 2020-12-03
TW201940535A (zh) 2019-10-16
BR112020018181B1 (pt) 2023-10-03
SG11202008644YA (en) 2020-10-29
US20200399454A1 (en) 2020-12-24
KR102519770B1 (ko) 2023-04-10
CN111819207A (zh) 2020-10-23
CN111819207B (zh) 2023-01-10
BR112020018181A2 (pt) 2021-02-02
US11535735B2 (en) 2022-12-27
JP6923742B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
JP5597283B2 (ja) オレフィン重合体製造用触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
US8742040B2 (en) Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization process
EP3059263B1 (en) Spherical carriers for olefin polymerization catalyst, catalyst components, catalyst, and preparation methods therefor
KR102462715B1 (ko) 올레핀류 중합 촉매의 제조 방법 및 올레핀류 중합체의 제조 방법
US8470941B2 (en) Catalyst for homopolymerizing and copolymerizing propylene and its preparation and use
EP2206731A1 (en) Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization method
JP2014531108A (ja) ポリプロピレンを含む電力ケーブル
SA515360121B1 (ar) محفِّز لبلمرة الأوليفينات وعملية منه
JP5478736B2 (ja) ポリオレフィン重合用触媒の製造方法及びこれにより製造される触媒、並びにこれを用いたポリオレフィンの製造方法
WO2019172350A1 (ja) プロピレン系ブロック共重合体およびその製造方法ならびにオレフィン重合用固体状チタン触媒成分
EP2374821B1 (en) Manufacturing method of solid catalyst component and of catalyst for olefin polymerization
JP3659764B2 (ja) プロピレン単独重合体を製造する方法
JP2010111755A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505095

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207025561

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 122023001218

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020018181

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019765075

Country of ref document: EP

Effective date: 20201007

ENP Entry into the national phase

Ref document number: 112020018181

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200904