WO2019167288A1 - プリプレグ及びプリプレグ成形品の製造方法 - Google Patents

プリプレグ及びプリプレグ成形品の製造方法 Download PDF

Info

Publication number
WO2019167288A1
WO2019167288A1 PCT/JP2018/010174 JP2018010174W WO2019167288A1 WO 2019167288 A1 WO2019167288 A1 WO 2019167288A1 JP 2018010174 W JP2018010174 W JP 2018010174W WO 2019167288 A1 WO2019167288 A1 WO 2019167288A1
Authority
WO
WIPO (PCT)
Prior art keywords
peroxide
resin
prepreg
reaction
temperature
Prior art date
Application number
PCT/JP2018/010174
Other languages
English (en)
French (fr)
Inventor
内山 明
田中 浩
正明 平井
Original Assignee
株式会社有沢製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有沢製作所 filed Critical 株式会社有沢製作所
Priority to KR1020207027786A priority Critical patent/KR102305744B1/ko
Priority to US16/976,786 priority patent/US11865794B2/en
Priority to EP18907559.1A priority patent/EP3747937A4/en
Priority to CN201880090306.7A priority patent/CN111770954B/zh
Publication of WO2019167288A1 publication Critical patent/WO2019167288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4895Polyethers prepared from polyepoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a method for producing a prepreg and a prepreg molded product.
  • carbon fiber Compared with glass fiber, carbon fiber has high strength (for example, tensile strength 4.5 GPa, 1.5 times of glass fiber 3 GPa), high elastic modulus (for example, tensile elastic modulus 230 GPa, glass fiber 7 GPa 33 times), and lightweight (e.g., density 1.8 g / cm 3, the glass 70% fibers 2.54 g / cm 3) since it is, CFRP (carbon fiber reinforced plastic) is said to "strong and light".
  • CFRP carbon fiber reinforced plastic
  • the elongation of carbon fiber is 2%
  • the elongation of glass fiber is 4%
  • the elongation of epoxy resin is 4-6%.
  • CFRP using an epoxy resin as a matrix resin breaks in the vicinity of the breaking point when a tensile force is applied or an impact force is applied due to the difference in elongation rate. This is due to the fact that the elongation of the carbon fibers is less than half that of the matrix resin, so that the carbon fibers break without being sticky to the force.
  • the glass fiber is equal to the elongation rate of the epoxy resin (matrix resin), the glass fiber is gradually broken in the vicinity of the breaking point without being broken at once.
  • FRP molded products that make use of this feature and hybridize glass fibers with carbon fibers to supplement impact resistance are known.
  • hybrid FRP of carbon fibers and glass fibers is compared to CFRP.
  • the strength and elastic modulus are lowered (the property tends to be pulled to the glass fiber side).
  • CFRP using an epoxy resin as a matrix resin requires a step of heat-curing the epoxy resin.
  • This heat-curing step is performed after molding the carbon prepreg into a desired shape, for example, 3
  • the temperature is raised at a temperature of 5 ° C./min, held at 130 ° C. for 1 hour, and the temperature is lowered at a temperature of 2 ° C./min.
  • the molding time exceeds 2 hours. ⁇ Although it depends on the cooling rate and holding temperature / time, at least a molding time of about 1 hour is required.
  • CFRP with epoxy resin as matrix resin A) When a tensile force is applied or an impact force is applied, it breaks at a stretch near the point of failure. B) Molding takes 1 to 2 hours. There are problems of A) physical properties (there is no stickiness and breaks at a stretch), and B) commercial aspects (long molding time and little output per hour).
  • the curing conditions for the matrix resins disclosed in Patent Documents 1 to 3 are as follows.
  • Patent Document 1 2 hours at 135 ° C (paragraph [0073])
  • Patent Documents 1 to 3 it takes about 1.5 to 4.5 hours to cure the matrix resin. This is because the curing (crosslinking) reaction is governed by the epoxy resin which is the matrix resin for the base material.
  • the present invention has been made in view of the situation as described above, and is an all-carbon fiber FRP (CFRP), but the matrix resin includes a thermoplastic resin and a thermosetting resin, thereby providing impact resistance.
  • CFRP all-carbon fiber FRP
  • the matrix resin includes a thermoplastic resin and a thermosetting resin, thereby providing impact resistance.
  • urethane acrylate resin as the thermosetting resin, it is possible to reduce the molding cost by reducing the molding time to 5 minutes or less, and extremely practical prepregs and prepreg molded products.
  • a manufacturing method is provided.
  • the gist of the present invention will be described.
  • a first aspect of the present invention is a prepreg formed by impregnating carbon fibers with a matrix resin comprising a mixture of a thermoplastic resin, a thermosetting resin and a curing agent,
  • the thermoplastic resin is a phenoxy resin;
  • the thermosetting resin is a urethane acrylate resin,
  • the curing agent causes cross-linking by a radical polymerization reaction, and includes first and second peroxides having different starting reaction temperatures, and the second peroxide is the first peroxide.
  • the present invention relates to a prepreg characterized in that an initiation reaction starts at a temperature at which a product termination reaction occurs.
  • the second aspect of the present invention is the first aspect, wherein the curing agent comprises first, second and third peroxides having different half-life temperatures of 1 minute,
  • the one-minute half-life temperature of the peroxide is 20 ° C. to 60 ° C. higher than the first peroxide, and the one-minute half-life temperature of the third peroxide is 10 times higher than that of the second peroxide.
  • the present invention relates to a prepreg characterized by a high temperature of 40 ° C to 40 ° C.
  • the first, second and third peroxides are each 0.5 to 3 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the present invention relates to a prepreg characterized by being partially blended.
  • the first, second, and third peroxides are blended in the same amount by mass with respect to 100 parts by mass of the thermosetting resin.
  • the present invention relates to a prepreg characterized by
  • the fifth aspect of the present invention is the second to fourth aspects, wherein the 1-minute half-life temperature of the first peroxide is 90 ° C. ⁇ 10 ° C., and the second peroxide is 1 minute.
  • the half-life temperature is 130 ° C. ⁇ 10 ° C.
  • the 1 minute half-life temperature of the third peroxide is 150 ° C. ⁇ 10 ° C.
  • the sixth aspect of the present invention is a prepreg molded article obtained by pressing the prepreg of the first to fifth aspects at a temperature of 150 ° C. to 165 ° C. and a pressure of 2 MPa to 5 MPa for 2 minutes to 5 minutes and then curing.
  • the present invention relates to a method for producing a prepreg molded product.
  • the present invention is configured as described above, it is an all-carbon fiber FRP (CFRP), yet has high impact resistance, and the molding time can be reduced to 5 minutes or less, thereby reducing the molding cost. It is a very practical method for producing prepregs and prepreg molded products.
  • CFRP all-carbon fiber FRP
  • the phenoxy resin and urethane acrylate resin that make up the matrix resin have good compatibility, and the thermoplastic component and thermosetting component mix well (the phenoxy group reacts with the urethane bonding site by the peroxide and is incorporated). , Forming a compatible structure.).
  • a matrix resin in which a thermoplastic component (soft component) and a thermosetting component (rigid component) are well combined is obtained, and a prepreg molded product (CFRP) composed of the matrix resin and carbon fiber has high toughness and high resistance. Excellent impact properties.
  • the second peroxide initiation reaction starts at a temperature at which the first peroxide termination reaction occurs (for example, the first peroxide termination reaction is considered to occur).
  • the first peroxide termination reaction is considered to occur.
  • Set the 1 minute half-life temperature of each peroxide so that the initiation reaction of the second peroxide begins at the desired temperature). Therefore, the radical polymerization reaction for crosslinking of the urethane acrylate resin is continuously performed by a plurality of peroxides.
  • the initiation reaction of the second peroxide is promoted by the reaction heat of the first peroxide, and the growth reaction is continuously performed, so that the curing is quickly and sufficiently performed.
  • thermosetting resin 15: 85 to 35:65
  • the curing agent is , Which causes cross-linking by radical polymerization reaction, and includes first and second peroxides having different starting reaction temperatures, and the second peroxide is a termination reaction of the first peroxide.
  • the initiation reaction begins at the temperature at which occurs.
  • this example is a prepreg in which a carbon fiber is impregnated with a matrix resin containing a thermoplastic component and a thermosetting component, and the curing agent is a predetermined plurality of types of peroxides.
  • Phenoxy resin is used as the thermoplastic component, and urethane acrylate resin is used as the thermosetting component.
  • a small amount of isocyanate resin may be added to the matrix resin.
  • styrene may be added.
  • the curing agent comprises first, second, and third peroxides having different one-minute half-life temperatures, and the one-minute half-life temperature of the second peroxide is the first peroxide.
  • the one-minute half-life temperature of the third peroxide is higher by 10 to 40 ° C. than that of the second peroxide.
  • the 1-minute half-life temperature of the first peroxide is 90 ° C. ⁇ 10 ° C.
  • the 1-minute half-life temperature of the second peroxide is 130 ° C. ⁇ 10 ° C.
  • the 1-minute half-life temperature of the oxide is 150 ° C. ⁇ 10 ° C.
  • the 1-minute half-life temperature of the first peroxide is around 90 ° C
  • the 1-minute half-life temperature of the second peroxide is around 130 ° C
  • the 1-minute half-life temperature of the third peroxide was around 15 ° C. That is, the 1 minute half-life temperature of the second peroxide is about 40 ° C. higher than the first peroxide, and the 1-minute half-life temperature of the third peroxide is about 20 ° C. than the second peroxide. It was expensive.
  • the first peroxide is a percarbonate
  • the second peroxide is an alkyl perester
  • the third peroxide is a peroxyketal.
  • the first peroxide is an alkyl peroxide having a half-life temperature of about 90 ° C.
  • the second peroxide is a diacyl peroxide having a half-life temperature of about 1 minute at about 130 ° C.
  • Other peroxides such as a peroxide having a half-life temperature of about 150 ° C. for 1 minute may be used as the third peroxide.
  • the first peroxide initiation reaction occurs by heating, when the first peroxide termination reaction occurs (the radical reaction disappears and the radical reaction occurs due to the termination reaction)
  • the second peroxide initiation reaction occurs before the second peroxide termination reaction occurs, and then the second peroxide termination reaction occurs.
  • the peroxide initiation reaction can occur.
  • the first, second and third peroxides are blended in an amount of 0.5 to 3 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the first, second, and third peroxides are blended in the same amount by mass with respect to 100 parts by mass of the thermosetting resin.
  • These compounding amounts are, for example, an experiment for confirming (radical polymerization) reactivity with respect to the total amount of active oxygen amount of each peroxide ⁇ mass part of each peroxide in consideration of the active oxygen amount of each peroxide. To determine as appropriate.
  • thermosetting resin 1 to 5 parts by mass is blended with 100 parts by mass of the thermosetting resin.
  • styrene 3 to 15 parts by mass is blended with 100 parts by mass of the thermosetting resin.
  • peroxide these are appropriately determined based on the reactivity experiment with respect to the amount of styrene and the characteristics of the molded product.
  • the carbon fiber a general one used for a carbon fiber prepreg can be adopted. That is, a general carbon cloth or a unidirectional carbon fiber body can be employed.
  • the resin impregnation amount is set to 20 to 40% by mass.
  • the amounts of carbon fiber and matrix resin are set so as to be 25% by mass.
  • the prepreg having the above structure can be formed into a prepreg molded article (CFRP) having excellent impact resistance by pressing at a temperature of 150 ° C. to 165 ° C. and a pressure of 2 MPa to 5 MPa for 2 minutes to 5 minutes and curing. .
  • CFRP prepreg molded article
  • ester resin which is the same thermosetting resin as the epoxy resin, in order to improve the time taken to cure the epoxy resin.
  • I came up with the use of heat of reaction usually used ester resins of thermosetting resins are unsaturated polyester resins or vinyl ester resins. Both have double bonds in the molecular skeleton. This part causes a crosslinking reaction by radical reaction.
  • the radical reaction involves three reactions: an initiation reaction, a growth reaction, and a termination reaction.
  • the inventors use a second peroxide that starts the reaction at a temperature at which the termination reaction of the first peroxide is considered to occur, using peroxides having different temperatures for the initiation reaction.
  • a third peroxide that starts the reaction at a temperature at which the second peroxide termination reaction is expected to occur, the first peroxide initiates and grows. Utilizing the generated reaction heat, the second peroxide initiation reaction and the growth reaction are caused, and similarly, using the reaction heat, the third peroxide initiation reaction and the growth reaction are caused. Therefore, we thought that the growth reaction could be continued and the molding time could be made extremely short.
  • the inventors have carried out many pultrusion moldings and thermosetting moldings using ester resins (unsaturated polyester resins, vinyl ester resins), and the first peroxide in these experiences and experiments.
  • ester resins unsaturated polyester resins, vinyl ester resins
  • the temperature difference between the 1 minute half-life temperature of the second peroxide and the second peroxide, and the temperature difference between the 1 minute half-life temperatures of the second peroxide and the third peroxide were determined as described above (see FIG. 3). (See mountain-shaped solid lines A, B, and C).
  • the first peroxide starts the reaction by heating, and when heated to 90 ° C., the radical polymerization reaction proceeds by 50% due to the first peroxide. Since the radical polymerization reaction is gradually reduced with the growth reaction, the radical polymerization reaction is not limited to 50%, but proceeds from, for example, 50% to a total of about 60% by reaction heat or the like (see A in FIG. 3).
  • the initiation reaction of the second peroxide starts, and an unreacted radical polymerization reaction at 130 ° C. Advances by 50% (see B in FIG. 3). For example, if 60% of the reaction proceeds with the first peroxide, the radical polymerization reaction proceeds to 20% that is 50% of the remaining 40%, that is, up to a total of 80% (see the broken line B ′ in FIG. 3). ). Similar to the curing with the first peroxide, the radical polymerization reaction gradually decreases with the growth reaction, so that the reaction amount is not limited to 80%, and the radical polymerization reaction proceeds, for example, from a total of 80% to about 85%.
  • the initiation reaction of the third peroxide starts, and further radical polymerization of the unreacted portion at 150 ° C.
  • the reaction proceeds 50% (see C in FIG. 3).
  • the radical polymerization reaction proceeds to 7.5%, which is 50% of the remaining 15%, that is, 92.5% in total (in FIG. 3).
  • dashed line C ′ Similar to the curing with the second peroxide, the radical polymerization reaction gradually stops with the growth reaction, so the reaction is not limited to 92.5%.
  • the radical polymerization reaction is from 92.5% to 96% in total. Advances.
  • a polyamide resin for example, nylon 6
  • the polyamide resin has no functional group such as a phenoxy group in its skeleton (the functional group includes a hydroxyl group: O—, OH, for example, a carboxyl group: COO—, COOH). Is not compatible (difficult to mix).
  • a thermoplastic / thermosetting composite matrix resin composed of an epoxy resin and a polyamide resin, it is a dispersion type compound in which islands of polyamide resin are scattered in the sea of epoxy resin.
  • the resin blend of this example does not require forced stirring in the resin bath because the urethane acrylate resin and the phenoxy resin are compatible. Therefore, it can be said that the prepreg of this example is excellent in that it can be produced by the same prepreg coating machine (prepreg production process) as that for producing a conventional epoxy resin prepreg.
  • the phenoxy resin and the urethane acrylate resin constituting the matrix resin have good compatibility, and the thermoplastic component and the thermosetting component are well mixed (peroxide).
  • the phenoxy group reacts with the urethane binding site and is incorporated, thereby forming a compatible structure.
  • a matrix resin in which a thermoplastic component (soft component) and a thermosetting component (rigid component) are well combined is obtained, and a prepreg molded product (CFRP) composed of the matrix resin and carbon fiber has high toughness and high resistance. Excellent impact properties.
  • the second peroxide start reaction starts during the first peroxide stop reaction
  • the third peroxide start starts during the second peroxide stop reaction.
  • a radical polymerization reaction for crosslinking the urethane acrylate resin is continuously performed by a plurality of peroxides. That is, the reaction reaction of the first peroxide promotes the initiation reaction of the second peroxide, the reaction heat of the second peroxide promotes the initiation reaction of the third peroxide, and the growth reaction is performed. By letting it continue, curing is performed quickly and sufficiently.
  • this example is an all-carbon fiber FRP (CFRP), but has high impact resistance, and can be molded for a period of 5 minutes or less, thus reducing the molding cost. It will be something like that.
  • urethane acrylate resin 500 LM-AS manufactured by Nippon Iupika was used, and YP-50S manufactured by Nippon Steel Chemical Co., Ltd. was used as the phenoxy resin.
  • a percarbonate having a half-life temperature of about 1 minute around 90 ° C. (Perkadox manufactured by Kayaku Akzo: 1 minute half-life temperature: 92 ° C.), Alkyl perester with a 1-minute half-life temperature of around 130 ° C. as a peroxide (Kaya Ester Kaya ester O: 1-minute half-life temperature of 133 ° C.) as a peroxide, and a 1-minute half-life temperature of 150 as a third peroxide.
  • a peroxyketal in the vicinity of 0 ° C. (Trigonox 22 manufactured by Kayaku Akzo: 1 minute half-life temperature 151 ° C.) was used.
  • phenoxy resin is added to 100 g of urethane acrylate resin, and the mixture is stirred and mixed for 5 to 6 hours by applying a temperature of 60 ° C. with a warming stirrer (usually PHR: Parts per Hundred with 100 as the main agent for resin blending). Ratio: Percentage by mass is used. Here, the main agent is expressed as mass with 100 g).
  • this compound varnish (matrix resin liquid) is made by Sumika Covestrourethane as an isocyanate component. 3 g of Baydur PUL2500 may be added.
  • the stirred and mixed preparation varnish (matrix resin solution) is poured into the resin bath of the prepreg coating machine.
  • carbon cloth carbon cloth consisting of carbon fiber 3000 filament, warp yarn and weft yarn 12.5 pieces / 25 mm, basis weight 198 g / m 2 , width 1040 mm, length 100 m
  • a prepreg coating machine set.
  • Set the drying temperature of the prepreg dryer to 110 ⁇ 10 ° C (adjust the temperature according to the viscosity of the prepreg after drying), and speed at 0.5 ⁇ 0.2m / min (speed according to the viscosity of the prepreg after drying)
  • the compound varnish matrix resin solution
  • the degree of resin impregnation into the carbon cloth is adjusted by slightly adding styrene to the prepared varnish so that the viscosity of the resin becomes 25% by mass, which is a desired resin amount (resin impregnation amount). If there is a large amount of styrene (for example, if styrene is added to the same amount as the prepared varnish), the viscosity of the resin liquid will decrease and the impregnation state of the carbon cloth will be improved, but the desired resin amount of 25% by mass of resin The resin will not adhere to the amount of adhesion.
  • the amount of resin adhered to the carbon cloth is adjusted by the balance between the viscosity of the compound varnish and the speed of the prepreg coating machine (the higher the speed, the greater the amount of resin adhered to the carbon cloth).
  • a carbon cloth (this is called a prepreg) to which a preparation varnish having a desired resin adhesion amount is adhered by a prepreg coating machine is cut into a 300 mm ⁇ size, this is overlaid with 9 layers, and release films are formed on the upper and lower surfaces thereof. Are stacked.
  • the nine-layer carbon cloth prepreg on which the release film is laminated is put into a press machine heated to 165 ° C. and a press pressure of 3 MPa is applied. Press-clamp for 3 minutes to cure the resin adhering to the carbon cloth to obtain CFRP. (When put into a press machine heated to 150 ° C., apply pressure of 5 MPa and press-clamp carbon for 5 minutes. The resin attached to the cloth is cured to obtain CFRP.)
  • Comparative Example 1 comprising CFRP, which is a molded product of a prepreg (epoxy resin / phenoxy resin prepreg) in which a carbon fiber is impregnated with a matrix resin employing a phenoxy resin as a thermoplastic resin and an epoxy resin as a thermosetting resin
  • FIG. 2 shows the measurement results of Comparative Example 2 made of CFRP, which is a molded product of a prepreg (epoxy resin prepreg) in which a carbon fiber is impregnated with a matrix resin (100% epoxy resin) not containing a thermoplastic resin.
  • Comparative Examples 1 and 2 the same carbon cloth as in Experimental Examples 1 and 2 is used.
  • the epoxy resin / phenoxy resin prepreg molded product (Comparative Example 1) was pressed at 180 ° C. and 3 MPa for 8 minutes, and the epoxy resin prepreg molded product (Comparative Example 2) was pressed at 150 ° C. and 3 MPa for 60 minutes. The resin is cured.
  • Comparative Example 2 has a press pressing time of 60 minutes, which is 12 to 20 times that of 3 minutes and 5 minutes of Experimental Examples 1 and 2. The molding time is required. In this case, the output per unit time does not increase and the production efficiency is not good.
  • the bending strength of Comparative Example 2 was increased by 10% to 1010 MPa and that of Experimental Example 1 was increased by 21% to 1225 MPa.
  • example 2 example 1 is increased 85MPa and 21% relative 70 MPa, and impact test values according to Charpy experimental example 1 Comparative example 2 with respect to 6.2 / cm 2 and 9.9J / cm 2 60% Increase and impact resistance were higher than those of Comparative Example 2. This indicates that the experimental example has extremely high impact resistance.
  • Comparative Example 1 has a pressing time of 8 minutes, 1.5 to 2.5 times that of 3 minutes and 5 minutes of Experimental Examples 1 and 2. It takes molding time.
  • an epoxy resin curing agent was designed so that the shelf life of the prepreg at room temperature (23 ° C. ⁇ 2 ° C.) was 2 weeks from the practical viewpoint. Even in Comparative Example 1, if the amount of the curing agent for the epoxy resin is increased, the press pressing time can be reduced to about 5 minutes, but in this case, the shelf life of the prepreg is about 1 to 2 days. Not suitable for production. On the other hand, the shelf life of Experimental Examples 1 and 2 is one month or more at room temperature.
  • a radical reaction occurs (explosively) when heated.
  • the prepregs of Experimental Examples 1 and 2 are characterized in that a radical reaction occurs near the 1-minute half-life temperature of 90 ° C. of the first peroxide and hardly react at room temperature, and the shelf life can be extended.
  • the bending strength is approximately equal to 1225 MPa in Comparative Example 1 compared to 1225 MPa in Comparative Example 1, and the bending elastic modulus is about 1 GPa in Comparative Example 1 to 49 GPa.
  • 56 GPa and 14% increase, with respect to the interlaminar shear force, Comparative Example 1 increased by 82% to 82 MPa and Experimental Example 1 increased by 4% to 85 MPa, and the impact test value by Charpy was experimental example for Comparative Example 1 by 9.7 J / cm 2 1 was almost equivalent to 9.9 J / cm 2 .
  • Comparative Example 1 has a glass transition point of 106 ° C., which is lower than 131 ° C. of the prepreg made of 100% epoxy resin of Comparative Example 2, and lower than 128 ° C. of Experimental Example 1 and 122 ° C. of Experimental Example 2.
  • the glass transition point is one of the scales indicating the degree of curing, but Comparative Example 1 is 20 ° C. lower than 131 ° C. of the prepreg made of 100% epoxy resin of Comparative Example 2.
  • a low glass transition point means that the number of cross-linking points is small, and a low cross-linking point indicates that the epoxy resin is not sufficiently cured. This is probably because the phenoxy resin prevents the epoxy resin from being cured.
  • the phenoxy resin has good compatibility with the epoxy resin (familiarity of the epoxy resin and the phenoxy resin) because the bisphenol skeleton of the epoxy resin and the phenoxy group of the phenoxy resin are close to each other and the phenoxy group has a hydroxyl group. It is.
  • the phenoxy resin is a kind of alcohol having a hydroxyl group, and the alcohol component is used to slow down the curing of the epoxy (for example, amine curing) or to obtain flexibility by insufficient curing. . That is, it is considered that the same phenomenon occurs that the glass transition point of the reactive dilution type epoxy resin containing an alcohol component in the epoxy resin does not rise.
  • Comparative Example 1 the glass transition point does not reach the glass transition point of the epoxy resin alone, and the CFRP has a lower elastic modulus than Comparative Example 2. Further, CFRP has a lower elastic modulus than Experimental Examples 1 and 2. Therefore, it can be said that Comparative Example 1 is inferior in impact resistance to Experimental Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

オール炭素繊維のFRP(CFRP)でありながら、耐衝撃性が高く、しかも、成形時間を5分以下にすることが可能で成形費の低減を図ることができるプリプレグを提供すること。熱可塑性樹脂、熱硬化性樹脂及び硬化剤の混合物からなるマトリックス樹脂を炭素繊維に含浸させて成るプリプレグであって、前記熱可塑性樹脂はフェノキシ樹脂であり、前記熱硬化性樹脂はウレタンアクリレート樹脂であり、前記熱可塑性樹脂と前記熱硬化性樹脂との配合比は質量%比で、熱可塑性樹脂:熱硬化性樹脂=15:85~35:65であり、前記硬化剤は、ラジカル重合反応により架橋を生じさせるもので、夫々開始反応温度が異なる第1及び第2の過酸化物を含んで成り、前記第2の過酸化物は前記第1の過酸化物の停止反応が起こる温度で開始反応が始まるものとする。

Description

プリプレグ及びプリプレグ成形品の製造方法
 本発明は、プリプレグ及びプリプレグ成形品の製造方法に関するものである。
 ガラス繊維に比べて炭素繊維は高強度(例えば、引張強度4.5GPa、ガラス繊維3GPaの1.5倍)、高弾性率(例えば、引張弾性率230GPa、ガラス繊維7GPaの33倍)で、かつ軽量(例えば、密度1.8g/cm、ガラス繊維2.54g/cmの70%)であることから、CFRP(炭素繊維強化樹脂)は、「強くて軽い」と言われている。
 一方、炭素繊維の伸び率は2%、ガラス繊維の伸び率は4%、そしてエポキシ樹脂の伸び率は4~6%である。
 エポキシ樹脂をマトリックス樹脂とするCFRPは、上記伸び率の違いから、例えば、引張力をかけた場合や、衝撃力をかけた場合、破壊点付近で一気に壊れてしまう。これは、炭素繊維の伸び率がマトリックス樹脂の半分以下になっていることで、炭素繊維が力に対して粘りきれずに破断してしまうことに起因している。
 しかし、構造材として考える場合、破壊点付近では一気に破壊せずに変形を伴いながら、徐々に破壊する(破壊靱性が高い)か、若しくは、衝撃を吸収できる方が安全上望ましい。この点、ガラス繊維の伸び率はエポキシ樹脂(マトリックス樹脂)の伸び率と同等であるため、破壊点付近では一気に破壊せずに変形を伴いながら、徐々に破壊する。
 この特徴を利用してガラス繊維を炭素繊維とハイブリッドにして、耐衝撃性を補うFRP成形品が知られているが、炭素繊維とガラス繊維とのハイブリッドFRPは、当然のことながら、CFRPに比し、強度、弾性率が低下する欠点がある(特性がガラス繊維側に引っ張られる傾向がある。)。
 また、成型という視点において、エポキシ樹脂をマトリックス樹脂とするCFRPは、エポキシ樹脂を加熱硬化させる工程が必要であり、この加熱硬化の工程は、カーボンプリプレグを所望の形状に賦型後、例えば、3.5℃/分で昇温、130℃で1時間保持、2℃/分で降温というような昇温・保持・降温のサイクルで行われ、この例では成形時間は2時間を超える(昇温・降温速度や保持温度・時間にもよるが、少なくとも1時間程度の成形時間は必要となる。)。
 従って、エポキシ樹脂をマトリックス樹脂としたCFRPには、
 A)引張力をかけた場合や、衝撃力をかけた場合、破壊点付近で一気に壊
   れてしまう。                         
 B)成形に1~2時間を要する。
というA)物性面(粘りがなく一気に破壊する)、及び、B)商業面(成形時間が長く、時間当たりの出来高が少ない)の課題がある。
 これまで、物性面の問題を解決するために、特許文献1~3等に記載されるように、エポキシ樹脂にフィラーやポリアミドを混ぜる技術が知られている。これらは全てエポキシ樹脂を母材マトリックス樹脂として、フィラーやポリアミドを母材マトリックス樹脂中に分散させることで圧縮特性や難燃性の改善を図るものであるが、上記A)の耐衝撃性の改善は不十分である。
 また、上記B)の商業面の問題を解決する技術はこれまで提案されていない。
 例えば、特許文献1~3に示されたマトリックス樹脂の硬化条件は次の通りである。
 ・特許文献1:
  135℃で2時間(段落[0073])
 ・特許文献2:
  昇温速度0.5℃/分、130℃で1時間(段落[0029])
  常温を25℃とすると昇温時間は(130-25)/0.5=210分
  、合計の硬化時間は1時間(60分)+210分=270分(4.5時
  間)
 ・特許文献3:
  25℃から昇温速度1.5℃/分、150℃で3分(段落[0060])
  昇温時間は(150-25)/1.5=84分、合計の硬化時間は84
  分+3分=87分(約1.5時間)
 即ち、特許文献1~3では、1.5時間から4.5時間程もマトリックス樹脂の硬化に時間を費やしている。これは、その硬化(架橋)反応が、母材マトリックス樹脂であるエポキシ樹脂に支配されているためである。
特開2008-7618号公報 特開2004-292594号公報 特許第5614280号公報
 本発明は、上述のような現状に鑑みなされたもので、オール炭素繊維のFRP(CFRP)でありながら、マトリックス樹脂を熱可塑性樹脂及び熱硬化性樹脂を含む構成とすることで、耐衝撃性が高く、しかも、熱硬化性樹脂としてウレタンアクリレート樹脂を採用したことで、成形時間を5分以下にすることが可能で成形費の低減を図ることができる極めて実用的なプリプレグ及びプリプレグ成形品の製造方法を提供するものである。
 本発明の要旨を説明する。
 本発明の第一の態様は、熱可塑性樹脂、熱硬化性樹脂及び硬化剤の混合物からなるマトリックス樹脂を炭素繊維に含浸させて成るプリプレグであって、
 前記熱可塑性樹脂はフェノキシ樹脂であり、
 前記熱硬化性樹脂はウレタンアクリレート樹脂であり、
 前記熱可塑性樹脂と前記熱硬化性樹脂との配合比は質量%比で、熱可塑性樹脂:熱硬化性樹脂=15:85~35:65であり、
 前記硬化剤は、ラジカル重合反応により架橋を生じさせるもので、夫々開始反応温度が異なる第1及び第2の過酸化物を含んで成り、前記第2の過酸化物は前記第1の過酸化物の停止反応が起こる温度で開始反応が始まるものであることを特徴とするプリプレグに係るものである。
 また、本発明の第二の態様は、第一の態様において、前記硬化剤は、1分間半減期温度が異なる第1、第2及び第3の過酸化物を含んで成り、前記第2の過酸化物の1分間半減期温度は、前記第1の過酸化物より20℃~60℃高く、前記第3の過酸化物の1分間半減期温度は、前記第2の過酸化物より10℃~40℃高いことを特徴とするプリプレグに係るものである。
 また、本発明の第三の態様は、第二の態様において、前記第1、第2及び第3の過酸化物は、前記熱硬化性樹脂100質量部に対し、夫々0.5~3質量部配合されていることを特徴とするプリプレグに係るものである。
 また、本発明の第四の態様は、第三の態様において、前記第1、第2及び第3の過酸化物は、前記熱硬化性樹脂100質量部に対し、夫々同質量部ずつ配合されていることを特徴とするプリプレグに係るものである。
 また、本発明の第五の態様は、第二~第四の態様において、前記第1の過酸化物の1分間半減期温度は90℃±10℃、前記第2の過酸化物の1分間半減期温度は130℃±10℃、前記第3の過酸化物の1分間半減期温度は150℃±10℃であることを特徴とするプリプレグに係るものである。
 また、本発明の第六の態様は、第一~第五の態様のプリプレグを、温度150℃~165℃、圧力2MPa~5MPaで2分~5分プレスして硬化成形することでプリプレグ成形品を得ることを特徴とするプリプレグ成形品の製造方法に係るものである。
 本発明は上述のように構成したから、オール炭素繊維のFRP(CFRP)でありながら、耐衝撃性が高く、しかも、成形時間を5分以下にすることが可能で成形費の低減を図ることができる極めて実用的なプリプレグ及びプリプレグ成形品の製造方法となる。
実験例の実験条件及び実験結果を示す表である。 比較例の実験条件及び実験結果を示す表である。 過酸化物の反応性を説明するグラフである。
 好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。
 マトリックス樹脂を構成するフェノキシ樹脂とウレタンアクリレート樹脂とは相溶性が良好であり、熱可塑成分と熱硬化成分とが良好に混ざり合う(過酸化物によりフェノキシ基がウレタン結合部位と反応して組み込まれ、相溶構造を形成する。)。
 従って、熱可塑成分(柔軟成分)と熱硬化成分(剛直成分)とが良好に複合されたマトリックス樹脂となり、このマトリックス樹脂と炭素繊維とからなるプリプレグの成形品(CFRP)は、靱性が高く耐衝撃性に優れたものとなる。
 また、このプリプレグを硬化成形する際、第1の過酸化物の停止反応が起こる温度で第2の過酸化物の開始反応が始まる(例えば、第1の過酸化物の停止反応が起こると考えられる温度で、第2の過酸化物の開始反応が始まるように各過酸化物の1分間半減期温度を設定する。)。よって、複数の過酸化物によりウレタンアクリレート樹脂の架橋のためのラジカル重合反応が継続的に行われる。即ち、第1の過酸化物の反応熱により第2の過酸化物の開始反応を促し、成長反応を継続的に行わせることで、硬化が迅速に且つ十分に行われることになる。
1 本発明の具体的な実施例について図面に基づいて説明する。
 本実施例は、熱可塑性樹脂、熱硬化性樹脂及び硬化剤の混合物からなるマトリックス樹脂を炭素繊維に含浸させて成るプリプレグであって、前記熱可塑性樹脂はフェノキシ樹脂であり、前記熱硬化性樹脂はウレタンアクリレート樹脂であり、前記熱可塑性樹脂と前記熱硬化性樹脂との配合比は質量%比で、熱可塑性樹脂:熱硬化性樹脂=15:85~35:65であり、前記硬化剤は、ラジカル重合反応により架橋を生じさせるもので、夫々開始反応温度が異なる第1及び第2の過酸化物を含んで成り、前記第2の過酸化物は前記第1の過酸化物の停止反応が起こる温度で開始反応が始まるものである。
 即ち、本実施例は、熱可塑成分と熱硬化成分とを含むマトリックス樹脂を炭素繊維に含浸させたプリプレグであり、その硬化剤を所定の複数種の過酸化物としたものである。
 熱可塑成分としてはフェノキシ樹脂を採用し、熱硬化成分としてはウレタンアクリレート樹脂を採用している。なお、マトリックス樹脂には更に少量のイソシアネート樹脂を加えても良い。更に、スチレンを加えても良い。
 また、これらの配合比は、質量%比で、熱可塑性樹脂:熱硬化性樹脂=15:85~35:65としている。熱可塑性樹脂が15質量%未満であると熱可塑成分による耐衝撃性向上効果が得られず、35質量%を超えると剛性が不十分となる可能性があるためである。
 硬化剤は、1分間半減期温度が異なる第1、第2及び第3の過酸化物を含んで成り、前記第2の過酸化物の1分間半減期温度は、前記第1の過酸化物より20℃~60℃高く、前記第3の過酸化物の1分間半減期温度は、前記第2の過酸化物より10℃~40℃高くなるようにしている。
 具体的には、前記第1の過酸化物の1分間半減期温度は90℃±10℃、前記第2の過酸化物の1分間半減期温度は130℃±10℃、前記第3の過酸化物の1分間半減期温度は150℃±10℃としている。
 これらの温度は、第2の過酸化物の開始反応が第1の過酸化物の停止反応中に始まり、第3の過酸化物の開始反応が第1の過酸化物の停止反応中に始まる温度であれば、適宜設定して良いが、本実施例では、第1の過酸化物の1分間半減期温度は90℃近傍、第2の過酸化物の1分間半減期温度は130℃近傍、第3の過酸化物の1分間半減期温度は15℃近傍とした。即ち、第2の過酸化物の1分間半減期温度は第1の過酸化物より約40℃高く、第3の過酸化物の1分間半減期温度は第2の過酸化物より約20℃高くした。
 具体的には、第1の過酸化物はパーカーボネート、第2の過酸化物はアルキルパーエステル、第3の過酸化物はパーオキシケタールである。なお、これらに限らず、例えば第1の過酸化物を1分間半減期温度が90℃近傍のアルキルパーエステル、第2の過酸化物を1分間半減期温度が130℃近傍のジアシルパーオキサイド、第3の過酸化物を1分間半減期温度が150℃近傍のパーカーボネートとする等、他の過酸化物を採用しても良い。
 上述の過酸化物を採用することで、加熱により第1の過酸化物の開始反応が生じた後、第1の過酸化物の停止反応が起こる際(停止反応によりラジカルが消滅してラジカル反応が終了する前)に第2の過酸化物の開始反応を生じさせ、同様に第2の過酸化物の開始反応が生じた後、第2の過酸化物の停止反応が起こる際に第3の過酸化物の開始反応を生じさせることができる。
 また、前記第1、第2及び第3の過酸化物は、前記熱硬化性樹脂100質量部に対し、夫々0.5~3質量部配合されている。本実施例においては、前記第1、第2及び第3の過酸化物は、前記熱硬化性樹脂100質量部に対し、夫々同質量部ずつ配合されている。
 これらの配合量は、例えば、各過酸化物の活性酸素量を考慮して、各過酸化物の活性酸素量×各過酸化物の質量部の合計に対する(ラジカル重合)反応性を確認する実験を行う等して適宜決定する。
 また、イソシアネート樹脂を加える場合には、熱硬化性樹脂100質量部に対し、1~5質量部を配合する。また、スチレンを加える場合には、熱硬化性樹脂100質量部に対し3~15質量部を配合する。これらも過酸化物と同様に、スチレン量に対する反応性の実験や成形品の特性により適宜決定する。
 炭素繊維としては、炭素繊維プリプレグに用いられる一般的なものを採用できる。即ち、一般的なカーボンクロスや一方向炭素繊維体を採用できる。
 また、樹脂含浸量は、20~40質量%となるように設定する。本実施例においては25質量%となるように炭素繊維及びマトリックス樹脂の量を設定する。
 以上の構成のプリプレグは、温度150℃~165℃、圧力2MPa~5MPaで2分~5分プレスして硬化成形することで、耐衝撃性に優れたプリプレグ成形品(CFRP)とすることができる。
2 本実施例が上述の構成を採用した理由について、以下詳述する。
 発明者等は、背景技術の欄で述べたように、エポキシ樹脂の硬化に時間がかかる点を改良すべく、エポキシ樹脂と同じ熱硬化性樹脂であるエステル系樹脂を用いてラジカル反応で得られる反応熱を利用することに思い至った(通常用いられる熱硬化性樹脂のエステル系樹脂としては、不飽和ポリエステル樹脂もしくはビニルエステル樹脂がある。どちらも分子骨格内に二重結合を有していて、この部分がラジカル反応により架橋反応を起こす。)。
 また、ラジカル反応では、開始反応・成長反応・停止反応の3つが起こることが知られている。
 そこで、発明者等は、開始反応の温度の違う過酸化物を用いて、第1の過酸化物の停止反応が起こると考えられる温度で開始反応が始まるような第2の過酸化物を用い、同様に、第2の過酸化物の停止反応が起こると考えられる温度で開始反応が始まるような第3の過酸化物を用いることで、第1の過酸化物による開始反応と成長反応で発生する反応熱を利用して、第2の過酸化物の開始反応と成長反応を起こさせ、同様に、その反応熱を利用して第3の過酸化物の開始反応と成長反応を起こさせて成長反応を継続させ、成形時間を極めて短くできるのではないかと考えた。
 そして、発明者等は、エステル系樹脂(不飽和ポリエステル樹脂、ビニルエステル樹脂)を用いて引抜成形や加熱硬化の成形を多く行っており、これらの経験及び実験の中で第1の過酸化物と第2の過酸化物の1分間半減期温度の温度差、第2の過酸化物と第3の過酸化物の1分間半減期温度の温度差を上述のように定めた(図3の山状の実線A,B,C参照)。
3 本実施例のマトリックス樹脂のラジカル重合反応の概略は以下の通りである。
 加熱により第1の過酸化物の開始反応が始まり、90℃まで加熱すると、第1の過酸化物によりラジカル重合反応は50%進む。ラジカル重合反応は成長反応とともに漸減的に停止するのでラジカル重合反応は50%にとどまらず、反応熱等により、例えば、50%から累計60%程度まで進む(図3中のA参照)。
 第1の過酸化物の反応性(図3中のA)が下がったところで(停止反応が起こる際に)第2の過酸化物の開始反応が始まり、130℃で未反応分のラジカル重合反応が50%進む(図3中のB参照)。例えば第1の過酸化物で60%反応が進んでいるとすると、残りの40%の50%分である20%、即ち累計80%までラジカル重合反応が進む(図3中の破線B’参照)。第1の過酸化物による硬化と同様に、ラジカル重合反応は成長反応とともに漸減的に停止するので反応分は80%にとどまらず、例えば、累計80%から85%程度までラジカル重合反応が進む。
 第2の過酸化物の反応性(図3中のB)が下がったところで(停止反応が起こる際に)第3の過酸化物の開始反応が始まり、150℃で更に未反応分のラジカル重合反応が50%進む(図3中のC参照)。例えば第2の過酸化物で85%反応が進んでいるとすると、残りの15%の50%分である7.5%、即ち累計92.5%までラジカル重合反応が進む(図3中の破線C’参照)。第2の過酸化物による硬化と同様に、ラジカル重合反応は成長反応とともに漸減的に停止するので反応は92.5%にとどまらず、例えば、累計92.5%から96%程度までラジカル重合反応が進む。
 以上は説明のために定量的にラジカル重合反応のパーセンテージを示したが、現実的には、本実施例に係るCFRPの残存スチレンの量から反応は98%以上進み、エステル系樹脂によるCFRP材料として実用上問題のない95%以上のレベルまで重合、硬化していると考察している(硬化後の残存スチレンが多いということは硬化が十分ではないということである。)。
 化学反応のメカニズムは現時点で解明できていないが、これまでの経験から、第1の過酸化物と第2の過酸化物だけを添加する配合よりも、第3の過酸化物を添加する配合の方が硬化後の残存スチレン量は少ないことがわかっている。これは、第3の過酸化物を加える方が、第1、第2の過酸化物だけの場合よりも重合、硬化が十分になることを裏付けている(実際に第3の過酸化物まで加える方がCFRPとして良好な製品が得られることを実験や引抜成形の生産で経験している。)。
 また、樹脂の選定については、熱可塑/熱硬化の複合型のプリプレグを考える場合、熱可塑成分としてポリアミド樹脂(例えば、ナイロン6)を用いることがある。ポリアミド樹脂はその骨格にフェノキシ基のような官能基(官能基としては水酸基:O-、OHの他、例えばカルボキシル基:COO-、COOHがある)がないために、エポキシ樹脂やウレタンアクリレート樹脂とは相溶し難い(混ぜ合わせ難い)。エポキシ樹脂とポリアミド樹脂とで熱可塑/熱硬化型の複合型のマトリックス樹脂とした場合は、エポキシ樹脂の海の中にポリアミド樹脂の島を点在させたような分散型の配合になる。この場合、プレプレグの塗工工程で塗工機の(樹脂が貯められ炭素繊維が通過する)樹脂バス内にポリアミド樹脂が沈降したり偏在したりするため、樹脂バス内の強制攪拌など、均一な分散性を維持するような工夫が必要となる。
 この点、本実施例の樹脂配合は、ウレタンアクリレート樹脂とフェノキシ樹脂とが相溶しているため、樹脂バス内の強制攪拌の必要はない。従って、本実施例のプリプレグは、従来のエポキシ樹脂プリプレグを製造する場合と同様のプリプレグ塗工機(プリプレグ製造工程)によって生産できる点でも優れていると言える。
4 本実施例は上述のように構成したから、マトリックス樹脂を構成するフェノキシ樹脂とウレタンアクリレート樹脂とは相溶性が良好であり、熱可塑成分と熱硬化成分とが良好に混ざり合う(過酸化物によりフェノキシ基がウレタン結合部位と反応して組み込まれ、相溶構造を形成する。)。
 従って、熱可塑成分(柔軟成分)と熱硬化成分(剛直成分)とが良好に複合されたマトリックス樹脂となり、このマトリックス樹脂と炭素繊維とからなるプリプレグの成形品(CFRP)は、靱性が高く耐衝撃性に優れたものとなる。
 また、このプリプレグを硬化成形する際、第1の過酸化物の停止反応時に第2の過酸化物の開始反応が始まり、第2の過酸化物の停止反応時に第3の過酸化物の開始反応が始まることで、複数の過酸化物によりウレタンアクリレート樹脂の架橋のためのラジカル重合反応が継続的に行われる。即ち、第1の過酸化物の反応熱により第2の過酸化物の開始反応を促し、第2の過酸化物の反応熱により第3の過酸化物の開始反応を促して、成長反応を継続的に行わせることで、硬化が迅速に且つ十分に行われる。
 よって、本実施例は、オール炭素繊維のFRP(CFRP)でありながら、耐衝撃性が高く、しかも、成形時間を5分以下にすることが可能で成形費の低減を図ることができる極めて実用的なものとなる。
5 本実施例の効果を裏付ける実験例について説明する。
 ウレタンアクリレート樹脂として日本ユピカ製500LM-ASを用い、フェノキシ樹脂として新日鐵化学製YP-50Sを用いた。
 また、ウレタンアクリレート樹脂の硬化材の、第1の過酸化物として1分間半減期温度が90℃近傍のパーカーボネート(化薬アクゾ製パーカドックス16:1分間半減期温度92℃)、第2の過酸化物として1分間半減期温度が130℃近傍のアルキルパーエステル(化薬アクゾ製カヤエステルO:1分間半減期温度133℃)、第3の過酸化物として1分間の半減期温度が150℃近傍のパーオキシケタール(化薬アクゾ製トリゴノックス22:1分間半減期温度151℃)を用いた。
 先ず、ウレタンアクリレート樹脂100gにフェノキシ樹脂30gを加え、加温攪拌器によって60℃の温度をかけて5~6時間、攪拌混合する(通常、樹脂配合に当たっては主剤を100としたPHR:Parts per Hundred Ratio:質量百分比率が用いられるが、ここでは主剤を100gとして質量で表記した。)。
 続いて、得られたウレタンアクリレート樹脂とフェノキシ樹脂の混合の樹脂液130gに第1の過酸化物を1g、第2の過酸化物を1g、第3の過酸化物を1g、高速ミキサーによって攪拌混合し、調合ワニス(マトリックス樹脂液)とする。
 なお、成形品をより剛直にしたい場合は(例えば、耐衝撃性よりも曲げ強度、曲げ弾性率を重視する場合は)、この調合ワニス(マトリックス樹脂液)にイソシアネート成分として住化コベストロウレタン製Baydur PUL2500を3g加えても良い。
 続いて、攪拌混合された調合ワニス(マトリックス樹脂液)を、プリプレグ塗工機の樹脂バスに注液する。
 一方、カーボンクロス(実験例では、カーボン繊維3000フィラメント、タテ糸、ヨコ糸とも12.5本/25mm、目付け198g/m、幅1040mm、長さ100mからなるカーボンクロス)をプリプレグ塗工機にセットする。プリプレグ乾燥機の乾燥温度を110±10℃にセットし(乾燥後のプリプレグの粘り具合で温度を調整)、0.5±0.2m/分のスピードで(乾燥後のプリプレグの粘り具合でスピードを調整)、カーボンクロスに樹脂バスで調合ワニス(マトリックス樹脂液)を連続的に塗布し、樹脂含浸させる。
 続いて、カーボンクロスへの樹脂含浸の度合いは樹脂の粘度を所望の樹脂量(樹脂含浸量)である25質量%になるように調合ワニスにスチレンをわずかに加えることで調整する。スチレンが多いと(例えば、調合ワニスと同量程度までスチレンを加えると)、樹脂液の粘度が低下し、カーボンクロスへの含浸状態は良くなるが、所望の樹脂量である25質量%の樹脂付着量まで樹脂が付着しなくなってしまう。カーボンクロスへの樹脂付着量は、調合ワニスの粘度とプリプレグの塗工機のスピード(スピードが速くなるとカーボンクロスへの樹脂付着量が多くなる)のバランスによって調整する。
 続いて、プリプレグ塗工機によって所望の樹脂付着量の調合ワニスが付着したカーボンクロス(これをプリプレグと言う)を、300mm□サイズに切断し、これを9層重ね、その上下面に離型フィルムを積層する。
 この離型フィルムが積層された9層のカーボンクロスプリプレグを165℃に加熱されたプレス機に投入し3MPaのプレス圧力を印加する。3分間、プレス圧締しカーボンクロスに付着した樹脂を硬化させ、CFRPを得る(150℃に加熱されたプレス機に投入する場合は、5MPaの圧力を印加し、5分間、プレス圧締しカーボンクロスに付着した樹脂を硬化させ、CFRPを得る。)。
 その後、プレス板に水を投入して130℃まで一気に冷却し、CFRPをプレス機から取出す。165℃、3MPaで3分プレスされたCFRPが実験例1、150℃、5MPaで5分プレスされたCRRPが実験例2である。
 得られた成形品(カーボンプリプレグ300mm□の9層からなる平板)のガラス転移点、曲げ強度、曲げ弾性率、層間せん断力、そしてシャルピーによる衝撃値を測定する。
 実験例1,2の測定結果を図1に示す。また、熱可塑性樹脂としてフェノキシ樹脂、熱硬化性樹脂としてエポキシ樹脂を採用したマトリックス樹脂を炭素繊維に含浸したプリプレグ(エポキシ樹脂/フェノキシ樹脂プリプレグ)の成形品であるCFRPから成る比較例1、及び、熱可塑性樹脂を含まない(エポキシ樹脂100%の)マトリックス樹脂を炭素繊維に含浸したプリプレグ(エポキシ樹脂プリプレグ)の成形品であるCFRPから成る比較例2の測定結果を図2に示す。比較例1,2でも実験例1,2と同一のカーボンクロスを用いている。
 なお、エポキシ樹脂/フェノキシ樹脂プリプレグの成形品(比較例1)は、180℃、3MPaで8分、エポキシ樹脂プリプレグの成形品(比較例2)は150℃、3MPaで60分、夫々プレス圧締し樹脂を硬化させたものである。
 比較例2と本実施例に係る実験例1,2とを比較すると、比較例2はプレス圧締時間が60分と実験例1,2の3分、5分に比べて、12~20倍の成形時間を要している。この場合、単位時間当たりの出来高が上がらず、生産効率は良くない。一方、曲げ強度は比較例2が1010MPaに対して実験例1が1225MPaと21%増し、曲げ弾性率については比較例2が60GPa対して実験例1が56GPaと14%減、層間せん断力ついては比較例2が70MPaに対して実験例1が85MPaと21%増し、そしてシャルピーによる衝撃試験値は比較例2が6.2J/cmに対して実験例1が9.9J/cmと60%増しと、耐衝撃性は比較例2よりも高い値となった。これは、実験例が極めて高い耐衝撃性があることを示している。
 比較例1と実験例1,2とを比較すると、比較例1はプレス圧締時間が8分と実験例1,2の3分、5分に比べて、1.5~2.5倍の成形時間を要している。比較例1は、プリプレグの常温(23℃±2℃)での保存寿命を実用面から考えて2週間になるようにエポキシ樹脂の硬化剤を設計したものを用いた。比較例1でも、エポキシ樹脂の硬化剤量を上げれば、プレス圧締時間を5分程度にすることは可能であるが、この場合、プリプレグの保存寿命は1~2日程度になり、実用の生産には向かない。一方、実験例1,2の保存寿命は常温で1ヶ月以上である。実験例1,2の配合は、加熱した時に(爆発的に)ラジカル反応がおこる。実験例1,2のプリプレグは、第1の過酸化物の1分間半減期温度90℃近くでラジカル反応が起こり、常温では反応しにくい特徴があり、保存寿命を長くすることができる。
 また、比較例1と実施例1との比較において、曲げ強度は比較例1が1213MPaに対して実験例1が1225MPaとほぼ同等、曲げ弾性率については比較例1が49GPa対して実験例1が56GPaと14%増し、層間せん断力ついては比較例1が82MPaに対して実験例1が85MPaと4%増し、そしてシャルピーによる衝撃試験値は比較例1が9.7J/cmに対して実験例1が9.9J/cmとほぼ同等となった。
 しかし、比較例1はガラス転移点が106℃と比較例2の100%エポキシ樹脂によるプリプレグの131℃よりも低く、また、実験例1の128℃、実験例2の122℃よりも低い。ガラス転移点は硬化の度合いを示す尺度のひとつであるが、比較例1は比較例2の100%エポキシ樹脂によるプリプレグの131℃よりも20℃以上低い結果になっている。ガラス転移点が低いというのは、架橋ポイントの数が少ないということであり、架橋ポイントが少ないということは、エポキシ樹脂の硬化が十分ではないことを示している。これは、フェノキシ樹脂にエポキシ樹脂の硬化が妨げられているためと考えられる。フェノキシ樹脂は、エポキシ樹脂のビスフェノール骨格とフェノキシ樹脂のフェノキシ基の骨格が近いこと、フェノキシ基が水酸基を有していることから、エポキシ樹脂との相溶性(エポキシ樹脂とフェノキシ樹脂のなじみ)は良好である。しかしながら、フェノキシ樹脂は水酸基を有した言わばアルコールの一種であり、アルコール成分はエポキシの硬化(例えば、アミン硬化)を遅くしたり、硬化を十分にしないことで柔軟性を得たりするために用いられる。即ち、エポキシ樹脂にアルコール成分が入った反応性希釈型のエポキシ樹脂のガラス転移点が上がらないのと同じ現象が起こっているものと考えられる。
 比較例1は、ガラス転移点がエポキシ樹脂単体のガラス転移点にまで上がりきらず、比較例2よりも低弾性率のCFRPとなっている。また、実験例1,2よりも低弾性率のCFRPとなっている。従って、比較例1は実験例1,2より耐衝撃性に劣ると言える。

Claims (7)

  1.  熱可塑性樹脂、熱硬化性樹脂及び硬化剤の混合物からなるマトリックス樹脂を炭素繊維に含浸させて成るプリプレグであって、
     前記熱可塑性樹脂はフェノキシ樹脂であり、
     前記熱硬化性樹脂はウレタンアクリレート樹脂であり、
     前記熱可塑性樹脂と前記熱硬化性樹脂との配合比は質量%比で、熱可塑性樹脂:熱硬化性樹脂=15:85~35:65であり、
     前記硬化剤は、ラジカル重合反応により架橋を生じさせるもので、夫々開始反応温度が異なる第1及び第2の過酸化物を含んで成り、前記第2の過酸化物は前記第1の過酸化物の停止反応が起こる温度で開始反応が始まるものであることを特徴とするプリプレグ。
  2.  請求項1記載のプリプレグにおいて、前記硬化剤は、1分間半減期温度が異なる第1、第2及び第3の過酸化物を含んで成り、前記第2の過酸化物の1分間半減期温度は、前記第1の過酸化物より20℃~60℃高く、前記第3の過酸化物の1分間半減期温度は、前記第2の過酸化物より10℃~40℃高いことを特徴とするプリプレグ。
  3.  請求項2記載のプリプレグにおいて、前記第1、第2及び第3の過酸化物は、前記熱硬化性樹脂100質量部に対し、夫々0.5~3質量部配合されていることを特徴とするプリプレグ。
  4.  請求項3記載のプリプレグにおいて、前記第1、第2及び第3の過酸化物は、前記熱硬化性樹脂100質量部に対し、夫々同質量部ずつ配合されていることを特徴とするプリプレグ。
  5.  請求項2~4いずれか1項に記載のプリプレグにおいて、前記第1の過酸化物の1分間半減期温度は90℃±10℃、前記第2の過酸化物の1分間半減期温度は130℃±10℃、前記第3の過酸化物の1分間半減期温度は150℃±10℃であることを特徴とするプリプレグ。
  6.  請求項1~4いずれか1項に記載のプリプレグを、温度150℃~165℃、圧力2MPa~5MPaで2分~5分プレスして硬化成形することでプリプレグ成形品を得ることを特徴とするプリプレグ成形品の製造方法。
  7.  請求項5記載のプリプレグを、温度150℃~165℃、圧力2MPa~5MPaで2分~5分プレスして硬化成形することでプリプレグ成形品を得ることを特徴とするプリプレグ成形品の製造方法。
PCT/JP2018/010174 2018-03-02 2018-03-15 プリプレグ及びプリプレグ成形品の製造方法 WO2019167288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207027786A KR102305744B1 (ko) 2018-03-02 2018-03-15 프리프레그 및 프리프레그 성형품의 제조 방법
US16/976,786 US11865794B2 (en) 2018-03-02 2018-03-15 Prepreg and method for manufacturing molded prepreg article
EP18907559.1A EP3747937A4 (en) 2018-03-02 2018-03-15 PREPREG AND METHOD FOR MANUFACTURING A PREPREG SHAPED BODY
CN201880090306.7A CN111770954B (zh) 2018-03-02 2018-03-15 预浸料和预浸料成型品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037390A JP6490850B1 (ja) 2018-03-02 2018-03-02 プリプレグ及びプリプレグ成形品の製造方法
JP2018-037390 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019167288A1 true WO2019167288A1 (ja) 2019-09-06

Family

ID=65895252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010174 WO2019167288A1 (ja) 2018-03-02 2018-03-15 プリプレグ及びプリプレグ成形品の製造方法

Country Status (6)

Country Link
US (1) US11865794B2 (ja)
EP (1) EP3747937A4 (ja)
JP (1) JP6490850B1 (ja)
KR (1) KR102305744B1 (ja)
CN (1) CN111770954B (ja)
WO (1) WO2019167288A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490850B1 (ja) 2018-03-02 2019-03-27 株式会社有沢製作所 プリプレグ及びプリプレグ成形品の製造方法
FR3082845B1 (fr) * 2018-06-21 2021-01-15 Arkema France Composition liquide comprenant trois initiateurs, son procede de polymerisation, son utilisation et materiau obtenu apres polymerisation de la composition
KR102558322B1 (ko) * 2020-12-22 2023-07-21 주식회사 케이피아이 탄소섬유 복합수지 조성물과 탄소섬유 복합수지 및 이를 이용한 탄소섬유 강화 플라스틱 프리프레그와 탄소섬유 강화 플라스틱
KR102276413B1 (ko) * 2020-12-22 2021-07-12 주식회사 에디스플레이 탄소섬유 복합수지를 포함하는 모바일 표시장치 브라켓용 수지 조성물 및 이를 이용한 모바일용 표시장치
CN117050715B (zh) * 2023-10-11 2023-12-26 武汉市三选科技有限公司 一种封装薄膜,其制备方法及一种滤波器芯片封装方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614280B2 (ja) 1972-07-03 1981-04-03
JP2004292594A (ja) 2003-03-26 2004-10-21 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2005281611A (ja) * 2004-03-30 2005-10-13 Toho Tenax Co Ltd エポキシ樹脂組成物を用いたプリプレグ
JP2008007618A (ja) 2006-06-29 2008-01-17 Toray Ind Inc 熱硬化性樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2011005736A (ja) * 2009-06-25 2011-01-13 Kawasaki Heavy Ind Ltd 複合材料の成形方法及び複合材料の製造装置
JP2011225639A (ja) * 2010-04-15 2011-11-10 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにこれを用いた樹脂ワニス、プリプレグ及び金属張積層板
JP2012246583A (ja) * 2011-05-27 2012-12-13 Mitsubishi Rayon Co Ltd 一方向強化織物とその製造方法、これを用いたプリプレグおよび炭素繊維複合材料
WO2016126815A1 (en) * 2015-02-04 2016-08-11 Outlast Technologies, LLC Thermal management films containing phase change materials
JP2017527671A (ja) * 2014-09-08 2017-09-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 熱硬化性架橋される、ヒドロキシ官能性(メタ)アクリレートおよびウレトジオンベースの複合材半製品、およびそれから製造される成形部材ならびに直接製造される成形部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141478B2 (ja) * 2006-04-25 2008-08-27 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
WO2007129711A1 (ja) * 2006-05-09 2007-11-15 Hitachi Chemical Company, Ltd. 接着シート、これを用いた回路部材の接続構造及び半導体装置
JP5562241B2 (ja) * 2008-08-08 2014-07-30 昭和電工株式会社 エポキシ基含有共重合体、及びこれを用いたエポキシ(メタ)アクリレート共重合体、並びにそれらの製造方法
EP2412741B1 (en) 2009-03-25 2019-10-23 Toray Industries, Inc. Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and housing for electronic or electrical component
KR102023975B1 (ko) * 2012-03-16 2019-09-23 주식회사 다이셀 섬유 강화 복합 재료용 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
EP3434718B1 (en) * 2016-03-24 2021-04-28 DIC Corporation Prepreg and molded article
JP6490850B1 (ja) 2018-03-02 2019-03-27 株式会社有沢製作所 プリプレグ及びプリプレグ成形品の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614280B2 (ja) 1972-07-03 1981-04-03
JP2004292594A (ja) 2003-03-26 2004-10-21 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2005281611A (ja) * 2004-03-30 2005-10-13 Toho Tenax Co Ltd エポキシ樹脂組成物を用いたプリプレグ
JP2008007618A (ja) 2006-06-29 2008-01-17 Toray Ind Inc 熱硬化性樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2011005736A (ja) * 2009-06-25 2011-01-13 Kawasaki Heavy Ind Ltd 複合材料の成形方法及び複合材料の製造装置
JP2011225639A (ja) * 2010-04-15 2011-11-10 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにこれを用いた樹脂ワニス、プリプレグ及び金属張積層板
JP2012246583A (ja) * 2011-05-27 2012-12-13 Mitsubishi Rayon Co Ltd 一方向強化織物とその製造方法、これを用いたプリプレグおよび炭素繊維複合材料
JP2017527671A (ja) * 2014-09-08 2017-09-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 熱硬化性架橋される、ヒドロキシ官能性(メタ)アクリレートおよびウレトジオンベースの複合材半製品、およびそれから製造される成形部材ならびに直接製造される成形部材
WO2016126815A1 (en) * 2015-02-04 2016-08-11 Outlast Technologies, LLC Thermal management films containing phase change materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3747937A4

Also Published As

Publication number Publication date
US20210040283A1 (en) 2021-02-11
EP3747937A4 (en) 2021-11-03
JP2019151730A (ja) 2019-09-12
EP3747937A1 (en) 2020-12-09
US11865794B2 (en) 2024-01-09
CN111770954B (zh) 2023-01-06
JP6490850B1 (ja) 2019-03-27
KR20200123235A (ko) 2020-10-28
KR102305744B1 (ko) 2021-09-28
CN111770954A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019167288A1 (ja) プリプレグ及びプリプレグ成形品の製造方法
JP5090701B2 (ja) 部分含浸プリプレグとそれを用いた繊維強化複合材料の製造方法
JP2008540188A (ja) ジビニルベンゼンを含む、低密度のクラスaシートモールディングコンパウンド
KR102495651B1 (ko) 액체 (메트)아크릴 시럽, 상기 시럽으로의 섬유 기재의 함침 방법 및 상기 함침 시럽의 중합 후 제조된 복합 재료
US11186723B2 (en) Liquid (meth)acrylic syrup, method for impregnating a fibrous substrate with said syrup, and composite material produced after polymerisation of said impregnation syrup
JP2008543985A (ja) イソフタレート−マレート熱硬化性樹脂からの低密度クラスaシートモールディングコンパウンド
US8629201B2 (en) Preparing composition for composite laminates
JP6791354B2 (ja) マトリクス樹脂、中間材及び成形品
CN111587265B (zh) 用于smc模塑的热塑性复合材料的应用的液体组合物
JP6846927B2 (ja) 熱硬化性シート状成形材料及び繊維強化プラスチックの製造方法
JP6715666B2 (ja) シートモールディングコンパウンド、その製造方法及び成形品
JP4964722B2 (ja) 連続生産される銅張積層板用熱硬化性樹脂組成物、銅張積層板の連続生産方法及び銅張積層板
JP2019137774A (ja) 成形材料及びその成形品
CN113039236B (zh) 片状模塑料及纤维增强复合材料
US20210230356A1 (en) Sheet molding compound and molded article
CA3102489A1 (en) Liquid composition comprising three initiators, its process of polymerization, use and material or composition obtained following polymerization of composition
JP7028389B2 (ja) シートモールディングコンパウンド及び成形品の製造方法
JP5590371B2 (ja) サンドイッチ構造成形物
JP2022023749A (ja) フッ素ゴムと繊維強化樹脂の直接接着法
JP2024061086A (ja) プリプレグおよび炭素繊維強化プラスチック
JP2023160676A (ja) 金属樹脂複合材及びそれを用いた車両、並びに金属樹脂複合材の解体方法
JPH07251460A (ja) 繊維強化不飽和ポリエステル樹脂成形体の製造方法
JP2024047178A (ja) プリプレグ及び繊維強化プラスチック
JP2009179716A (ja) 共役ジエン系ポリマー含有のプリプレグ、プリプレグを用いた繊維強化複合材料及び繊維強化複合材料積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907559

Country of ref document: EP

Effective date: 20200904

ENP Entry into the national phase

Ref document number: 20207027786

Country of ref document: KR

Kind code of ref document: A