WO2019163707A1 - 触媒及びそれを用いた直結二段接触気相酸化方法 - Google Patents

触媒及びそれを用いた直結二段接触気相酸化方法 Download PDF

Info

Publication number
WO2019163707A1
WO2019163707A1 PCT/JP2019/005842 JP2019005842W WO2019163707A1 WO 2019163707 A1 WO2019163707 A1 WO 2019163707A1 JP 2019005842 W JP2019005842 W JP 2019005842W WO 2019163707 A1 WO2019163707 A1 WO 2019163707A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
gas phase
stage
acid
phase oxidation
Prior art date
Application number
PCT/JP2019/005842
Other languages
English (en)
French (fr)
Inventor
秀臣 酒井
誠一郎 福永
佑太 中澤
昌平 後藤
成喜 奥村
元彦 杉山
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201980013971.0A priority Critical patent/CN111757779A/zh
Priority to JP2019540016A priority patent/JP6598419B1/ja
Priority to KR1020207021042A priority patent/KR102618400B1/ko
Publication of WO2019163707A1 publication Critical patent/WO2019163707A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst containing molybdenum, bismuth, iron and an alkali metal, and a directly coupled two-stage contact gas phase oxidation method using the same.
  • Patent Document 1 discloses a method for producing a composite oxide catalyst containing molybdenum and bismuth, in which (1) an organic acid is added in an integration step in an aqueous system of source compounds of at least these component elements, and the catalyst Ammonia temperature-programmed desorption method with respect to the acid amount of the catalyst on the high temperature side by ammonia temperature-programmed desorption method, comprising: preparing a solution or slurry containing the raw material; and (2) drying and calcining the solution or slurry.
  • Patent Document 2 discloses a method in which a catalyst precursor includes salts such as nitrate and ammonium salt
  • Patent Document 3 discloses a method in which a chelating agent is added to a molybdenum-containing slurry
  • Patent Document 4 discloses a molybdenum compound and a bismuth compound. A method of adding ammonia water at the time of integration is disclosed.
  • the catalyst component addition process is devised in various ways to increase the yield of the resulting catalyst, but the simplicity and safety during catalyst production, reproducibility in catalyst production, and mechanical strength of the catalyst On the other hand, the conventional catalyst is still not sufficient in terms of environmental problems and the like, and improvement thereof has been desired.
  • a generally adopted method is to periodically stop the reaction and fill the non-filled catalyst to prevent clogging of the catalyst layer on the gas inlet side of the post-catalyst catalyst or decrease in catalyst activity.
  • a method for extracting and replacing an active substance has been proposed.
  • a method has also been proposed in which methacrolein is once separated from the pre-stage reaction product gas and this separation methacrolein is supplied again to the post-stage reaction to employ an oxidation reaction optimization process.
  • a method has been proposed in which the reaction is performed by diluting the raw material gas concentration more than necessary to lower the by-product concentration.
  • Patent Document 5 in order to prevent clogging of piping in the middle part of the reaction of the former stage and the latter stage, a method of keeping the part at a temperature higher than the boiling point of maleic anhydride, and a device that takes a very high gas linear velocity are proposed. A method is disclosed.
  • Patent Document 6 proposes a method of specifying the shape of the catalyst used in the subsequent reaction and increasing the porosity between the catalysts to suppress the clogging of the solid matter from the previous reactor.
  • these methods are also not satisfactory as industrial methods, and it is desired to develop a catalyst with less by-product of high-boiling substances for a long-term industrial production rather than a slight increase in yield. ing.
  • An object of the present invention is to use a catalyst capable of providing a long-term stable operation and a high yield of a final product by reducing the by-product of an aromatic compound which is a high-boiling compound, and the catalyst.
  • a directly connected two-stage contact gas phase oxidation method is provided.
  • the inventors of the present invention have a catalyst in which molybdenum, bismuth, iron and an alkali metal are essential components, and the atomic ratio of the alkali metal to 12 atoms of molybdenum is greater than 0.3 and less than 1.0.
  • a catalyst having a specific acid amount and a direct-coupled two-stage contact gas phase oxidation method using the same suppress the by-product of the aromatic compound, which is a high-boiling point compound, and provide a long-term stable operation and a high yield. It has been found that it contributes to the production of the final product, and the present invention has been completed.
  • the catalyst has an essential component of molybdenum, bismuth, iron and alkali metal, the atomic ratio of alkali metal to 12 atoms of molybdenum is greater than 0.3 and less than 1.0, and the catalyst acid on the high temperature side by the ammonia temperature programmed desorption method A catalyst having an amount of 0.026 mmol / g or less, (2) The catalyst according to (1), wherein the acid amount of the catalyst on the high temperature side by the ammonia thermal desorption method is 0.024 mmol / g or less, (3) The catalyst according to (1) or (2), wherein the acid amount of the catalyst on the high temperature side by the ammonia thermal desorption method is 0.020 mmol / g or less, (4) The catalyst according to any one of (1) to (3), wherein the catalytically active component has a composition represented by the following formula (I): Mo a1 Bi b1 Fe c1 A d1 B e1 C f1 D g1 E h
  • a catalyst according to any one of (1) to (6), (8) A step of drying a slurry containing a metal component constituting the composition of the catalytically active component to obtain a dry powder, a step of pre-baking the dry powder at a temperature of 200 ° C. to 600 ° C. to obtain a pre-fired powder,
  • the method for producing a catalyst according to any one of (1) to (7), comprising a step of forming a pre-fired powder and a step of subjecting the obtained molded product to a main firing again at a temperature of 200 ° C. or higher and 600 ° C. or lower.
  • the first step which is a step of obtaining an unsaturated aldehyde compound using the catalyst (A), and a catalyst different from the catalyst used in the first step (hereinafter referred to as catalyst (B)) are not used.
  • Mo 10 V a2 P b2 Cu c2 As d2 X e2 O g2 (II) (In the formula, Mo, V, P, Cu, As, and O represent molybdenum, vanadium, phosphorus, copper, arsenic, and oxygen, respectively, and X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, Ti.
  • the catalyst of the present invention contains molybdenum, bismuth, iron and alkali metal as essential components, and has an atomic ratio of alkali metal to 12 atoms of molybdenum of more than 0.3 and less than 1.0, and by an ammonia temperature-programmed desorption method.
  • the acid amount of the catalyst on the high temperature side is 0.026 mmol / g or less, and the direct-coupled two-stage catalytic gas phase oxidation method using the catalyst reduces aromatic compounds that are high-boiling byproducts. It is valid. According to this method, it is possible to obtain a final product with long-term stable operation and high yield.
  • an aromatic which is a high-boiling compound is used.
  • By-products of the compound can be reduced, and stable operation over a long period of time and production of methacrolein and / or methacrylic acid in a high yield can be maintained.
  • by-product reduction pipe clogging is less likely to occur, the number of shutdowns due to regular cleaning can be reduced, and unsaturated aldehydes and / or unsaturated carboxylic acid compounds can be produced stably. is there.
  • the catalyst of the present embodiment is a composite oxide catalyst containing molybdenum, bismuth, iron and alkali metal, the atomic ratio of alkali metal to 12 atoms of molybdenum is greater than 0.3 and less than 1.0, and the temperature of ammonia is increased.
  • the acid amount of the catalyst on the high temperature side by the desorption method is 0.026 mmol / g or less.
  • the catalyst having the above structure is referred to as a catalyst (A).
  • the acid amount of the catalyst on the high temperature side by the ammonia temperature programmed desorption method is 0.026 mmol / g or less, preferably 0.024 mmol / g or less, more preferably 0.020 mmol / g or less. is there.
  • the acid amount By this acid amount, side reactions other than the oxidation reaction to the target compound are suppressed, and by-products other than the target compound are reduced. As a result, the by-product of the high boiling point compound can be reduced.
  • final products such as unsaturated aldehyde compounds and / or unsaturated carboxylic acid compounds can be stably obtained in high yield.
  • the lower limit is not particularly limited, but may be 0.0002 mmol / g or the like, and a preferable lower limit is 0.0012.
  • the catalyst (A) of this embodiment is measured by an ammonia temperature-programmed desorption spectrum (for example, “BELCAT-B”, which can be measured by Nippon Bell Co., Ltd., etc.), a range of 100 ° C. to 400 ° C. (low temperature side) 1 peak (this acid amount value is expressed as acid amount (L)), and one peak (this acid amount value is expressed as acid amount (H) in the range of 400 ° C. or higher (high temperature side). )).
  • the peak apex in the range of 100 ° C. or higher and 400 ° C. or lower exists near 200 ° C.
  • the peak apex in the range of 400 ° C. or higher exists near 600 ° C.
  • the catalyst (A) is a composite oxide catalyst containing molybdenum, bismuth, iron and alkali metal, and the atomic ratio of alkali metal to 12 atoms of molybdenum is greater than 0.3 and less than 1.0.
  • the lower limit of the atomic ratio of the alkali metal for more effectively suppressing the production of the aromatic compound as a by-product is more preferably 0.32, still more preferably 0.34, and most preferably 0.36.
  • the upper limit of the atomic ratio of alkali metal is more preferably 0.8, still more preferably 0.6, and most preferably 0.5.
  • a preferred composition of the catalytically active component of the catalyst (A) is represented by the following general formula (I).
  • Mo molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from lithium, sodium, potassium, rubidium and cesium, and C is At least one element selected from boron, phosphorus, chromium, manganese, zinc, arsenic, niobium, tin, antimony, tellurium, cerium and lead, D is at least one element selected from silicon, aluminum, titanium and zirconium, E is At least one element selected from alkaline earth metals, and O is oxygen, and a1, b1, c1, d1, e1, f1, g1, h1, and x1 are Mo, Bi, Fe, A, B,
  • the catalyst active component here refers to the component which shows the catalyst activity contained in a catalyst (A), the catalyst (B) mentioned later, etc. That is, when the catalyst includes an inert carrier, the inert carrier is not included in the catalytically active component.
  • the starting material of each element constituting the catalyst (A) of the present embodiment is not particularly limited.
  • the molybdenum component material may be molybdenum oxide such as molybdenum trioxide, molybdic acid, or paramolybdic acid.
  • Molybdic acid or a salt thereof such as ammonium or ammonium metamolybdate, a heteropoly acid containing molybdenum such as phosphomolybdic acid or silicomolybdic acid, or a salt thereof can be used.
  • bismuth nitrate bismuth carbonate, bismuth sulfate, bismuth acetate such as bismuth acetate, bismuth trioxide, metal bismuth, and the like
  • These raw materials can be used in the form of a solid or as a slurry of an aqueous solution, a nitric acid solution, or a bismuth compound generated from the aqueous solution, but it is preferable to use nitrate, a solution thereof, or a slurry generated from the solution.
  • the lower limit of b1 in the composition of the general formula (I) is more preferably 0.3, still more preferably 0.5, and particularly preferably 0.8.
  • an upper limit of b1, 8 is more preferable, 6 is still more preferable, and 4 is especially preferable.
  • the raw material of the alkali metal that is the component B represented by the general formula (I) is not limited to these, but hydroxides, chlorides, and carbonates of the component elements (lithium, sodium, potassium, rubidium, cesium). , Sulfates, nitrates, oxides or acetates.
  • it is a compound containing cesium, and examples thereof include cesium hydroxide, cesium chloride, cesium carbonate, cesium sulfate, cesium oxide and the like, and it is particularly preferable to use cesium nitrate.
  • e is 0.3 ⁇ e1 ⁇ 1.0, preferably 0.32 ⁇ e1 ⁇ 0.8, and more preferably 0.34 ⁇ e1 ⁇ 0.6.
  • the alkali metal in the catalyst (A) is preferably cesium, and the B component of the general formula (I) in the above preferred embodiment is preferably cesium.
  • the acid amount (H) of the catalyst by the ammonia temperature-programmed desorption method is increased, resulting in a by-product of a high-boiling compound. Is unfavorable because of the increase in the number.
  • the atomic ratio of the B component raw material is high, the by-product of the high boiling point compound is reduced, and long-term industrial production is possible, but since the raw material conversion rate is low, a satisfactory yield is obtained as a result. Improvement cannot be expected.
  • ammonium salts, nitrates, carbonates, chlorides, sulfates, hydroxides, organic acid salts, oxides or mixtures of the metal elements generally used in this type of catalyst May be used in combination, but ammonium salts and nitrates are preferably used.
  • c1 in the composition of the above-mentioned general formula (I) 0.3 is more preferred, 0.6 is still more preferred, and 1 is especially preferred.
  • c1 in the composition of the general formula (I) is more preferably 3, more preferably 5, and particularly preferably 6.
  • an upper limit of d1 16 is more preferable, 14 is still more preferable, and 12 is especially preferable.
  • the upper limit of g1 in the composition of the general formula (I) is more preferably 20, more preferably 15, and particularly preferably 10.
  • the upper limit of h1 in the composition of the general formula (I) is more preferably 4, more preferably 3, and particularly preferably 2.
  • these compounds containing active ingredients may be used alone or in admixture of two or more.
  • the slurry liquid can be obtained by uniformly mixing each active ingredient-containing compound and water.
  • the amount of water used in the slurry is not particularly limited as long as the total amount of the compound used can be completely dissolved or mixed uniformly.
  • the amount of water used may be appropriately determined in consideration of the drying method and drying conditions. Usually, it is 200 mass parts or more and 2000 mass parts or less with respect to 100 mass parts of total mass of the compound for slurry preparation.
  • the amount of water may be large, but if it is too large, the energy cost of the drying process becomes high, and there are many disadvantages such as the case where it cannot be completely dried.
  • the slurry solution of the source compound of each component element described above is (a) a method in which the source compounds are mixed together, (b) a method in which the components are mixed and then aged, and (c) stepwise. It is preferable to prepare by a method of mixing, (d) a method of repeating the mixing / aging process stepwise, and a method of combining (a) to (d).
  • the term “ripening” means “processing industrial raw materials or semi-finished products under specific conditions such as constant time and constant temperature to obtain necessary physical and chemical properties, increase the chemical reaction, or advance a predetermined reaction. It means "operation to measure etc.”.
  • the above-mentioned constant time refers to a range of 5 minutes to 24 hours
  • the above-mentioned constant temperature refers to a range below the boiling point of an aqueous solution or aqueous dispersion at room temperature or higher.
  • the shape of the stirring blade of the stirrer used when mixing the essential active ingredients is not particularly limited, and is a propeller blade, turbine blade, paddle blade, inclined paddle blade, screw blade, anchor blade, ribbon blade, large size Arbitrary stirring blades such as lattice blades can be used in one stage, or in the vertical direction, the same blade or different blades can be used in two or more stages.
  • the drying method is not particularly limited as long as the slurry liquid can be completely dried. Examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Among these, in the present embodiment, spray drying that can dry the slurry liquid into powder or granules in a short time is particularly preferable.
  • the drying temperature of spray drying varies depending on the concentration of the slurry liquid, the liquid feeding speed, etc.
  • the temperature at the outlet of the dryer is generally 70 ° C. or higher and 150 ° C. or lower.
  • it is preferable to dry so that the average particle diameter of the slurry liquid dry body obtained in this case may be 10 micrometers or more and 700 micrometers or less.
  • the catalyst precursor obtained as described above is pre-fired, and after molding and main firing, it becomes possible to control and maintain the molded shape, and a catalyst having particularly excellent mechanical strength for industrial use. Obtained and stable catalyst performance can be expressed.
  • any molding method can be employed, that is, a supported molding in which a carrier such as silica is supported and a non-supported molding in which no carrier is used.
  • Specific examples of the molding method include tableting molding, press molding, extrusion molding, and granulation molding.
  • As the shape of the molded product for example, a cylindrical shape, a ring shape, a spherical shape, or the like can be appropriately selected in consideration of operating conditions.
  • the proportion of the catalytically active component in the entire catalyst is preferably 20% by mass or more and 80% by mass or less.
  • a small amount of known additives such as graphite and talc may be added.
  • the carrier silicon carbide, alumina, silica alumina, mullite, alundum or the like may be used.
  • the pre-baking method, pre-baking conditions, main baking method and main baking conditions are not particularly limited, and known processing methods and conditions can be applied.
  • Optimum conditions for preliminary calcination and main calcination vary depending on the catalyst raw material, catalyst composition, preparation method, etc., but are usually 200 ° C. or higher and 600 ° C. or lower, preferably under an oxygen-containing gas flow or an inert gas flow such as air. Is performed at 300 ° C. or higher and 550 ° C. or lower for 0.5 hour or longer, preferably 1 hour or longer and 40 hours or shorter.
  • the inert gas refers to a gas that does not decrease the reaction activity of the catalyst, and specifically includes nitrogen, carbon dioxide, helium, argon, and the like.
  • This catalyst (A) can reduce the production
  • this effect is particularly effective in suppressing the formation of aromatic aldehyde compounds, so it is more effective to use in the stage of obtaining an unsaturated aldehyde compound (defined as the first step in this specification).
  • the aromatic compound is often a precursor of terephthalic acid
  • the direct-coupled two-stage contact gas phase oxidation method of the present embodiment is particularly effective for suppressing the by-product of terephthalic acid.
  • the direct-coupled two-stage contact gas phase oxidation method directly converts the first-stage product gas to the second-stage reaction gas. This is the method used for the stage.
  • the direct coupled two-stage contact gas phase oxidation method of the present embodiment uses at least one raw material selected from isobutylene and t-butyl alcohol in the presence of an oxidation catalyst composition and a molecular oxygen-containing gas. It is particularly preferred to be used when producing methacrolein and / or methacrylic acid by catalytic gas phase oxidation.
  • Catalyst (B) In the direct-coupled two-stage contact gas phase oxidation method of the present embodiment, a catalyst different from the catalyst used in the first stage process in the stage of producing an unsaturated carboxylic acid (described as the second stage process in this specification) It is preferable to use (described as catalyst (B) in this specification).
  • “different” means a catalyst having a different composition or manufacturing method, and is different even if there is a difference in some physical property values as long as the catalysts are manufactured with the same composition and the same manufacturing method. It is not a thing.
  • the catalyst (B) is not particularly limited as long as it is different from the catalyst used in the first step, and may or may not satisfy the conditions of the catalyst (A).
  • a preferred composition of the catalytically active component of the catalyst (B) is represented by the following general formula (II).
  • Mo 10 V a2 P b2 Cu c2 As d2 X e2 O g2 (II) (In the formula, Mo, V, P, Cu, As, and O represent molybdenum, vanadium, phosphorus, copper, arsenic, and oxygen, respectively, and X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, Ti. , Zr, Sb, Cr, Re, Bi, W, Fe, Co, Ni, Ce and Th represent at least one element selected from a2 to e2, Mo, V, P, Cu and As, respectively.
  • A2 is 0.1 ⁇ a2 ⁇ 6, b2 is 0.5 ⁇ b2 ⁇ 6, c2 is 0 ⁇ c2 ⁇ 3, d2 is 0 ⁇ d2 ⁇ 3, e2 is 0 ⁇ e2 ⁇ 3 and g2 is a value determined by the valence and atomic ratio of other elements.
  • the catalyst (B) containing the catalytically active component having the above preferred composition a method generally known as a method for preparing this type of catalyst, for example, an oxide catalyst, a heteropolyacid or a salt thereof, is employed. it can.
  • the raw material which can be used when manufacturing a catalyst is not specifically limited, A various thing can be used.
  • the molybdenum compound ammonium molybdate, molybdic acid, molybdenum oxide and the like can be used.
  • the vanadium compound ammonium metavanadate, vanadium pentoxide and the like can be used.
  • phosphorus compound phosphoric acid or a salt thereof
  • polymerization Phosphoric acid or a salt thereof can be used, and as a copper compound, copper oxide, copper phosphate, copper sulfate, copper nitrate, copper molybdate, copper metal, etc.
  • antimony, arsenic, silver, magnesium, zinc, aluminum, Boron, germanium, tin, lead, titanium, zirconium, chromium, rhenium, bismuth, tungsten, iron, cobalt, nickel, cerium, thorium, potassium, and rubidium compounds include nitrates, sulfates, carbonates, and phosphates.
  • Organic acid salt, halide, hydroxide, oxidation , Metal or the like can be used.
  • a slurry liquid can be prepared according to the same method as described in the catalyst (A).
  • the obtained slurry is dried to obtain a catalytically active component solid.
  • the drying method is not particularly limited as long as the slurry liquid can be completely dried. Examples of the drying method include drum drying, freeze drying, spray drying, and evaporation to dryness. Spray drying that can be dried is preferred.
  • the drying temperature for spray drying varies depending on the concentration of the slurry liquid, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, it is preferable to dry the dried slurry liquid obtained at this time so that the average particle size is 10 to 700 ⁇ m.
  • the catalytically active component solids of this embodiment is a catalyst having a heteropolyacid structure.
  • the catalyst having this heteropolyacid structure has phosphovanadmolybdic acid as a basic skeleton, and other constituent elements are incorporated into this heteropolyacid structure, contributing to improvement in catalytic activity and selectivity, and thermal stability of the structure. It is thought that it contributes to the improvement of the property.
  • the catalyst having this heteropolyacid structure is a catalyst having a particularly long life.
  • a catalyst having a heteropolyacid structure can be easily prepared by a general method for preparing ordinary heteropolyacids.
  • the catalytically active component solid obtained as described above can be used as it is for a coating mixture. However, when fired, moldability may be improved, which is preferable.
  • the firing method and firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, preparation method, etc., but the calcination temperature is usually 100 to 350 ° C., preferably 150 to 300 ° C., and the calcination time is 1 to 20 hours.
  • the firing is usually performed in an air atmosphere. However, the firing may be performed in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, or argon, and may be further performed as necessary after firing in an inert gas atmosphere. Baking may be performed in an air atmosphere.
  • the compound containing the active ingredient at the time of preparing the slurry does not necessarily need to contain all the active ingredients, and some of the ingredients may be used before the following coating step. .
  • the shape of the catalyst (B) of this embodiment is not particularly limited, and is used after being molded into a columnar shape, a tablet, a ring shape, a spherical shape, or the like in order to reduce the pressure loss of the reaction gas in the oxidation reaction.
  • This rolling step is preferably the rolling granulation method described below.
  • the support in the container is vigorously stirred by repeated rotation and revolution movements by rotating the disk at high speed.
  • the support is coated with a binder, a catalytically active component solid, and, if necessary, a coating mixture to which other additives such as a molding aid and a strength improver are added.
  • the method of adding the binder is as follows: 1) Preliminarily mix with the coating mixture 2) Add at the same time as adding the coating mixture into the fixed container 3) Add after adding the coating mixture into the fixed container 4) Addition of the coating mixture before it is added to the fixed container, 5) Dividing the coating mixture and the binder, respectively, and combining 2) to 4) as appropriate to add the total amount, etc. .
  • the coating rate is adjusted by using an auto feeder or the like so that a predetermined amount is supported on the carrier without adhesion of the coating mixture to the fixed container wall and aggregation of the coating mixture. Is preferred.
  • the binder is not particularly limited as long as it is at least one selected from the group consisting of water and an organic compound having a boiling point of 150 ° C. or less at 1 atm or less.
  • binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate.
  • Ketones such as acetone or methyl ethyl ketone, and aqueous solutions thereof, and ethanol is particularly preferable.
  • ethanol / water 10/0 to 0/10 (mass ratio), preferably 9/1 to 1/9 (mass ratio) by mixing with water.
  • the amount of these binders used is usually 2 to 60 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the coating mixture.
  • the carrier in the above coating include a spherical carrier having a diameter of 1 to 15 mm, preferably 2.5 to 10 mm, such as silicon carbide, alumina, silica alumina, mullite, alundum and the like. These carriers are usually those having a porosity of 10 to 70%.
  • molding adjuvant used as needed a silica gel, diatomaceous earth, an alumina powder, etc. are mentioned.
  • the amount of the molding aid used is usually 1 to 60 parts by mass with respect to 100 parts by mass of the catalytically active component solid.
  • the use of inorganic fibers (for example, ceramic fibers or whiskers) inert to the catalytically active component solid and the reaction gas as a strength improver is useful for improving the mechanical strength of the catalyst, Glass fiber is preferred.
  • the amount of these fibers used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the catalytically active component solid.
  • the coated catalyst obtained as described above can be directly used for the catalytic gas phase oxidation reaction as a catalyst.
  • firing may preferably improve the catalytic activity.
  • the firing method and firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, preparation method, etc., but the calcination temperature is usually 100 to 450 ° C., preferably 270 to 420 ° C., and the calcination time is 1 to 20 hours.
  • the firing is usually performed in an air atmosphere. However, the firing may be performed in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, or argon, and may be further performed as necessary after firing in an inert gas atmosphere.
  • Baking may be performed in an air atmosphere.
  • a carrier By supporting the catalyst (B) used in the present embodiment on a carrier, favorable effects such as heat resistance, improvement in life, and increase in reaction yield can be expected.
  • Known materials such as alumina, silica, titania, zirconia, niobia, silica alumina, silicon carbide, carbides, and mixtures thereof can be used as the material of the carrier, and the particle size, water absorption rate, mechanical strength, each crystal phase There are no particular restrictions on the degree of crystallinity and the mixing ratio, and an appropriate range should be selected in consideration of the final performance of the catalyst (B), moldability, production efficiency, and the like.
  • the catalyst (A) of the present embodiment is a method for producing a corresponding unsaturated aldehyde or unsaturated carboxylic acid using propylene, isobutylene, t-butyl alcohol or the like as a raw material, or 1,3-butadiene from butenes. It can be used in a method, particularly a method for producing methacrolein or methacrylic acid by catalytic gas phase oxidation of isobutylene or t-butyl alcohol with molecular oxygen or a molecular oxygen-containing gas.
  • the catalyst (A) in the above method it is possible to effectively suppress the by-product of the aromatic compound (particularly terephthalic acid).
  • the target product can be produced in a high yield by suppressing the temperature of the hot spot, and as a result, the price competitiveness of the product can be expected to be improved as compared with known methods.
  • the catalyst (A) is obtained by catalytic gas phase oxidation of at least one raw material selected from isobutylene and t-butyl alcohol in particular in the presence of a catalyst using a molecular oxygen-containing gas, and methacrolein and / or It can be suitably used when producing methacrylic acid.
  • the flow method of the source gas in the production method of the present embodiment may be a normal single flow method or a recycle method, and can be carried out under generally used conditions and is not particularly limited.
  • isobutylene as a starting material is 1 to 10% by volume at room temperature, preferably 4 to 9% by volume, molecular oxygen is 3 to 20% by volume, preferably 4 to 18% by volume, water vapor is 0 to 60% by volume, It is preferably 250 to 250% on the catalyst of this embodiment in which a mixed gas comprising 4 to 50% by volume and 20 to 80% by volume, preferably 30 to 60% by volume of an inert gas such as carbon dioxide and nitrogen is filled in the reaction tube.
  • the reaction is carried out at a temperature of from about 450 ° C. to a pressure of from atmospheric pressure to 10 atm and a space velocity of from 300 to 5000 hr ⁇ 1 .
  • the conversion rate, yield, and selectivity are defined as follows.
  • Raw material conversion rate (mole number of t-butyl alcohol or isobutylene reacted in the first step) / (mole number of t-butyl alcohol or isobutylene supplied to the first step) * 100
  • First stage process methacrolein yield (number of moles of methacrolein produced in the first stage process) / (number of moles of t-butyl alcohol or isobutylene supplied to the first stage process) * 100
  • the acid amount of the composite oxide catalyst containing molybdenum and bismuth by the ammonia temperature programmed desorption method in this example was measured using a catalyst analyzer (trade name: “BELCAT-B”, manufactured by Nippon Bell Co., Ltd.). did. After accurately weighing 0.3 g of the catalyst, it was filled into a measuring tube and pretreated with a catalyst at a treatment temperature of 500 ° C. for 1 hour in a helium atmosphere. Next, ammonia gas was adsorbed at an adsorption temperature of 100 ° C., evacuated for 30 minutes, heated to 600 ° C. at a rate of 10 ° C./min, and the amount of ammonia desorbed per unit weight of the catalyst compact was measured.
  • terephthalic acid was quantified using liquid chromatography (trade name: “Ultimate 3000 HPLC system”, manufactured by Thermo Scientific). In the examples, the terephthalic acid yield was calculated according to the following formula.
  • Terephthalic acid yield (%) (number of moles of terephthalic acid produced) / (number of moles of t-butanol or isobutylene supplied) * 100
  • Example 1 While heating and stirring 3040 ml of distilled water, 800 g of ammonium molybdate and 29 g of cesium nitrate were dissolved to obtain an aqueous solution (A). Separately, 791 g of cobalt nitrate, 267 g of ferric nitrate, and 88 g of nickel nitrate were dissolved in 607 ml of distilled water to prepare an aqueous solution (B). Further, bismuth nitrate 306 g was dissolved in 402 ml of distilled water acidified by adding 78 ml of concentrated nitric acid to prepare an aqueous solution (C).
  • a powder obtained by mixing 5 parts by mass of crystalline cellulose with 100 parts by mass of the pre-fired powder (D) was supported on an inert carrier (particle size: 4.0 mm).
  • the loading was carried out so that the pre-baked powder (D) accounted for 40% by mass of the entire catalyst after molding.
  • the molded product thus obtained was calcined at 520 ° C. for 5 hours to obtain a catalyst molded body (E).
  • the temperature-programmed ammonia desorption spectrum of the obtained catalyst compact was measured, it had one peak in the range of 100 ° C. or higher and 400 ° C. or lower, and one peak in the range of 400 ° C. or higher. .
  • Example 2 While heating and stirring 3040 ml of distilled water, 800 g of ammonium molybdate and 29 g of cesium nitrate were dissolved to obtain an aqueous solution (A). Separately, 718 g of cobalt nitrate, 297 g of ferric nitrate, and 264 g of nickel nitrate were dissolved in 678 ml of distilled water to prepare an aqueous solution (B). Also, an aqueous solution (C) was prepared by dissolving 170 g of bismuth nitrate in 224 ml of distilled water acidified by adding 43 ml of concentrated nitric acid.
  • Example 3 A catalyst was prepared in the same manner as in Example 2 except that 29 g of cesium nitrate was changed to 37 g in Example 2.
  • the ammonia temperature-programmed desorption spectrum of the obtained catalyst compact showed the same shape as that of the catalyst of Example 2. The obtained results are shown in Table 1.
  • Example 4 A catalyst was prepared in the same manner as in Example 2 except that 29 g of cesium nitrate was changed to 3 g in Example 2.
  • the ammonia temperature-programmed desorption spectrum of the obtained catalyst molded body showed the same shape as the catalyst of Example 1. The obtained results are shown in Table 1.
  • Example 5 A catalyst was prepared in the same manner as in Example 2 except that 29 g of cesium nitrate was changed to 22 g in Example 2.
  • the ammonia temperature-programmed desorption spectrum of the obtained catalyst compact showed the same shape as that of the catalyst of Example 2. The obtained results are shown in Table 1.
  • Example 4 [Evaluation of direct-coupled two-stage contact gas phase oxidation method]
  • Example 1 a molded product obtained by supporting a powder obtained by mixing preliminarily calcined powder (D) with crystalline cellulose on an inert carrier was calcined at 540 ° C. for 5 hours to obtain a molded catalyst.
  • the acid amount of the catalyst on the high temperature side by the ammonia temperature programmed desorption method was 0.011 mmol / g.
  • the catalyst prepared as in Example 1 and as described above was provided with a jacket for circulating the molten salt as a heating medium.
  • the bath temperature was set at 340 ° C., and the reaction in the first step was started.
  • the Mo-VP heteropolyacid catalyst described in Example 1 of Japanese Patent No. 5570142 was used.
  • the catalyst was filled in a stainless steel reaction tube having an inner diameter of 29.4 mm by 350 cm, and the gas produced by the oxidation reaction in the first stage process was introduced to carry out the oxidation reaction in the second stage process.
  • the reaction tube outlet pressure was adjusted to 0.05 MPa.
  • the reaction bath temperature in the second stage process is adjusted so that the methacrolein conversion rate is 65% to 85%, and the conversion rate of methacrolein in the second stage process determines the terephthalic acid, which is the main component of the pipe blockage. It was measured how the amount of production changed. The results are shown in Table 2.
  • Example 4 From the results of Example 4 and Comparative Example 6, it was confirmed that the by-product rate of terephthalic acid could be greatly reduced when the directly coupled two-stage contact gas phase oxidation method of the present invention was used. Along with this, it can be seen that the yield is also improved.
  • the present invention relates to a catalyst capable of providing a long-term stable operation and a high yield of a final product by reducing by-products of aromatic compounds, which are high-boiling compounds, and an unsaturated carboxylic acid using the catalyst.
  • a method for producing an acid compound is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

高沸点化合物である芳香族化合物の副生を低減することで長期安定的な運転と最終生成物を高収率に提供することを可能とする触媒、及びそれを用いた直結二段接触気相酸化方法を提供するものである。当該触媒は、モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である。

Description

触媒及びそれを用いた直結二段接触気相酸化方法
 本発明は、モリブデン、ビスマス、鉄およびアルカリ金属を含む触媒とそれを用いた直結二段接触気相酸化方法に関する。
 プロピレン、イソブチレン、t-ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法や、ブテン類から1,3-ブタジエンを製造する方法として、分子状酸素による接触気相酸化方法が、数多く提案されている。
 例えば、特許文献1には、モリブデン、ビスマスを含む複合酸化物触媒の製造方法において、(1)少なくともこれらの成分元素の供給源化合物の水性系での一体化工程において有機酸を添加し、触媒原料を含む溶液またはスラリーを調製する段階と、(2)前記溶液またはスラリーを乾燥、焼成する段階とを含む、アンモニア昇温脱離法による高温側における触媒の酸量に対するアンモニア昇温脱離法による低温側における触媒の酸量の比率が0.14以下であることを特徴とする複合酸化物触媒の製造方法が開示されている。
 特許文献2には、触媒前駆体に硝酸塩、アンモニウム塩などの塩類を含有させる方法、特許文献3にはモリブデン含有スラリーにキレート剤を添加する方法、特許文献4には、モリブデン化合物およびビスマス化合物の一体化の際にアンモニア水を添加する方法が開示されている。
 これら公知技術は、触媒成分の添加工程を種々工夫して、得られる触媒の高収率化を図っているが、触媒製造時の簡便性や安全性、触媒製造における再現性、触媒の機械強度の面、さらには環境問題等の面では従来の触媒は未だ充分とは言えず、その改良も望まれていた。
 また、イソブチレンおよびt-ブチルアルコ-ルから選ばれる少なくとも1種を接触気相酸化反応させた場合、主生成物のメタクロレインのほかに、マレイン酸やテレフタル酸等の比較的高沸点の化合物が副生し、同時に重合物やタール状物質が反応生成ガス中に含まれてくる。このような物質を含む反応生成ガスをそのまま後段反応に供すると、これらの物質は配管内や後段触媒充填層での閉塞を引き起し、圧力損失の増大や、触媒活性の低下、メタクリル酸への選択率の低下などの原因となる。また、閉塞を除去するために工業生産を停止しなければならなくなり、多大な生産性の低下を引き起こしてしまう。このようなトラブルは、メタクリル酸の生産性を高めるためにイソブチレンおよび/またはt-ブチルアルコールの供給量を増やしたり、イソブチレンおよび/またはt-ブチルアルコール濃度を上げたりすると多く発生する。
 このようなトラブルを防止するため一般に採用される方法としては、定期的に反応を停止して、後段触媒のガス入口側に触媒層での閉塞や触媒の活性低下を防止するために充填した不活性物質を抜き出して入れ替える方法が提案されている。あるいは前段反応生成ガスからメタクロレインをいったん分離し、あらためてこの分離メタクロレインを後段反応に供給することで酸化反応の最適化プロセスを採用する方法も提案されている。さらには原料ガス濃度を必要以上に希釈して、副生成物濃度を下げて反応を行う方法も提案されている。特許文献5には前段および後段の反応の中間部での配管などの閉塞防止のために、その部分を無水マレイン酸の沸点以上の温度に保温する方法、ガス線速度を極めて大きくとるように工夫する方法が開示されている。特許文献6には、後段反応に用いられる触媒の形状を特定して触媒間の空隙率を上げて前段反応器からの固形物の閉塞を押える方法等が提案されている。しかしながら、これらの方法もまた、工業的方法としては充分満足できるものではなく、僅かな収率の向上よりも長期間な工業生産のため、高沸点物質の副生が少ない触媒の開発が望まれている。
日本国特開2012-115825号公報 日本国特開2003-251183号公報 日本国特開平2-214543号公報 日本国特開2003-220335号公報 日本国特開昭50-126605号公報 日本国特開昭61-221149号公報
 本発明の目的は、高沸点化合物である芳香族化合物の副生を低減することで長期安定的な運転と最終生成物を高収率に提供することを可能とする触媒、及びその触媒を用いた直結二段接触気相酸化方法を提供するものである。
 本発明者らは、上記課題を解決するために、モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満である触媒において、特定の酸量を有した触媒とそれを用いた直結二段接触気相酸化方法が、高沸点化合物である芳香族化合物の副生を抑え、長期安定的な運転と高収率での最終生成物製造に寄与するものであることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、
(1)
 モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である、触媒、
(2)
 前記アンモニア昇温脱離法による高温側における触媒の酸量が0.024mmol/g以下である、(1)に記載の触媒、
(3)
 前記アンモニア昇温脱離法による高温側における触媒の酸量が0.020mmol/g以下である、(1)又は(2)に記載の触媒、
(4)
 触媒活性成分が下記式(I)で表される組成を有する、(1)~(3)のいずれかに記載の触媒、
 Moa1Bib1Fec1d1e1f1g1h1x1   (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a1、b1、c1、d1、e1、f1、g1、h1およびx1はそれぞれMo、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a1=12の時、0.1≦b1≦10、0.1≦c1≦20、1≦d1≦20、0.3<e1<1.0、0≦f1≦10、0≦g1≦30、0≦h1≦5であり、x1はそれぞれの元素の酸化状態によって定まる数値である。)
(5)
 アルカリ金属がセシウムである、(1)~(4)のいずれかに記載の触媒、
(6)
 成形触媒である、(1)~(5)のいずれかに記載の触媒、
(7)
 球状担体に触媒活性成分が担持された触媒であり、触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分が触媒全体に占める割合が20質量%以上80質量%以下である、(1)~(6)のいずれかに記載の触媒、
(8)
 触媒活性成分の組成を構成する金属成分を含有するスラリーを乾燥して乾燥紛体を得る工程、前記乾燥粉体を200℃以上600℃以下の温度で予備焼成して予備焼成紛体を得る工程、前記予備焼成粉体を成形する工程、および得られた成形物を再度200℃以上600℃以下の温度で本焼成する工程、を含む(1)~(7)のいずれかに記載の触媒の製造方法、
(9)
 (1)~(7)のいずれか一項に記載の触媒(以下触媒(A)とする)を用いて、不飽和アルデヒド化合物を経由した後、不飽和カルボン酸化合物を得る、直結二段接触気相酸化方法、
(10)
 前記触媒(A)を用いて不飽和アルデヒド化合物を得る段階である第一段目工程、および前記第一段目工程に用いた触媒と異なる触媒(以下触媒(B)とする)を用いて不飽和カルボン酸化合物を製造する段階である第二段目工程を含む、(9)に記載の直結二段接触気相酸化方法、
(11)
 前記触媒(B)の触媒活性成分が下記式(II)で表される組成を有する、(10)に記載の直結二段接触気相酸化方法。
Mo10a2b2Cuc2Asd2e2g2   (II)
(式中、Mo、V、P、Cu、As、Oはそれぞれモリブデン、バナジウム、リン、銅、ヒ素及び酸素を表し、XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。a2~e2は、それぞれMo、V、P、Cu、AsおよびXの原子比を表し、a2は0.1≦a2≦6、b2は0.5≦b2≦6、c2は0<c2≦3、d2は0≦d2≦3、e2は0≦e2≦3であり、g2は他の元素の原子価ならびに原子比により定まる値である。)
(12)
 前記不飽和アルデヒドがメタクロレインであり、前記不飽和カルボン酸がメタクリル酸である、(9)~(11)のいずれかに記載の直結二段接触気相酸化方法、
(13)
 (9)~(12)のいずれかに記載の直結二段接触気相酸化方法を用いた、副生成物である芳香族化合物の低減方法、
(14)
 前記芳香族化合物がテレフタル酸である、(13)に記載の副生成物である芳香族化合物の低減方法、
(15)
 (9)~(12)のいずれかに記載の直結二段接触気相酸化方法を用いる、不飽和アルデヒド化合物、不飽和カルボン酸化合物またはその両方の製造方法、に関する。
 本発明の触媒は、モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下であることを特徴とし、その触媒を用いた直結二段接触気相酸化方法は、高沸点の副生成物である芳香族化合物の低減に有効である。本方法によれば、長期安定的な運転と高収率で最終生成物を得ることが可能である。
 特にイソブチレンおよびt-ブチルアルコ-ルから選ばれる少なくとも1種の原料を、分子状酸素含有ガスを用いて接触気相酸化する状況下において本発明の製造方法を用いると、高沸点化合物である芳香族化合物の副生を低減することができ、長期安定的な運転とメタクロレインおよび/またはメタクリル酸を高収率に製造することを維持できる。
 また、副生成物の削減により、配管閉塞も起こし難く、定期的な清掃によるシャットダウンの回数を減らすことができ、安定的に不飽和アルデヒドおよび/または不飽和カルボン酸化合物を製造することも可能である。
 以下、本発明の実施形態について詳細に説明する。
[触媒(A)について]
 本実施形態の触媒は、モリブデン、ビスマス、鉄およびアルカリ金属を含む複合酸化物触媒であり、モリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である。なお、本明細書において、上記構成を有する触媒を触媒(A)と記載する。
 上記触媒(A)においてアンモニア昇温脱離法による高温側における触媒の酸量は0.026mmol/g以下であるが、好ましくは0.024mmol/g以下、さらに好ましくは0.020mmol/g以下である。この酸量であることにより、目的化合物への酸化反応以外の副反応を抑制し、目的化合物以外の副生成物が減少する結果、高沸点化合物の副生を少なくできる。また特に、不飽和アルデヒド化合物及び/又は不飽和カルボン酸化合物等の最終生成物を安定に高い収率で得ることができる。なお下限は特に制限はないが、0.0002mmol/g等で良く、好ましい下限は0.0012である。
 本実施形態の触媒(A)をアンモニア昇温脱離スペクトル(例えば「BELCAT-B」、日本ベル株式会社製等で測定可能)にて測定すると、100℃以上400℃以下の範囲(低温側)に1つのピーク(この酸量の値を酸量(L)と表記する)を有しており、400℃以上の範囲(高温側)に1つのピーク(この酸量の値を酸量(H)と表記する)を有していた。100℃以上400℃以下の範囲のピークの頂点は200℃付近に存在し、400℃以上の範囲のピークの頂点は600℃付近に存在する。
 上記触媒(A)は、モリブデン、ビスマス、鉄およびアルカリ金属を含む複合酸化物触媒であり、モリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満である。副生成物である芳香族化合物の生成をより有効に抑える為のアルカリ金属の原子比の下限としては、0.32がより好ましく、0.34が更に好ましく、0.36が最も好ましい。またアルカリ金属の原子比の上限としては、0.8がより好ましく、0.6が更に好ましく、0.5が最も好ましい。
 触媒(A)の触媒活性成分の好ましい組成は、下記一般式(I)で表される。
 Moa1Bib1Fec1d1e1f1g1h1x1   (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a1、b1、c1、d1、e1、f1、g1、h1およびx1はそれぞれMo、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a1=12の時、0.1≦b1≦10、0.1≦c1≦20、1≦d1≦20、0.3<e1<1.0、0≦f1≦10、0≦g1≦30、0≦h1≦5であり、x1はそれぞれの元素の酸化状態によって定まる数値である。)。
 なお、ここでいう触媒活性成分は、触媒(A)や後述する触媒(B)等に含まれる触媒活性を示す成分を指す。すなわち、触媒が不活性担体を含む場合には、当該不活性担体は触媒活性成分に含まれない。
 本実施形態の触媒(A)を構成する各元素の出発原料としては特に制限されるものではないが、例えばモリブデン成分の原料としては三酸化モリブデンのようなモリブデン酸化物、モリブデン酸、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウムのようなモリブデン酸またはその塩、リンモリブデン酸、ケイモリブデン酸のようなモリブデンを含むヘテロポリ酸またはその塩などを用いることができる。
 ビスマス成分の原料としては硝酸ビスマス、炭酸ビスマス、硫酸ビスマス、酢酸ビスマスのようなビスマス塩、三酸化ビスマス、金属ビスマスなどを用いることができる。これらの原料は固体のままあるいは水溶液や硝酸溶液、それらの水溶液から生じるビスマス化合物のスラリーとして用いることができるが、硝酸塩、あるいはその溶液、またはその溶液から生じるスラリーを用いることが好ましい。上記一般式(I)の組成におけるb1の下限としては、0.3がより好ましく、0.5が更に好ましく、0.8が特に好ましい。またb1の上限としては、8がより好ましく、6が更に好ましく、4が特に好ましい。
 上記一般式(I)で表されるB成分であるアルカリ金属の原料としては、これらに限定されないが、成分元素(リチウム、ナトリウム、カリウム、ルビジウム、セシウム)の水酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましくは、セシウムを含有する化合物であり、例えば、水酸化セシウム、塩化セシウム、炭酸セシウム、硫酸セシウム、酸化セシウム等が挙げられるが、特に硝酸セシウムを用いることが好ましい。上記一般式(I)の組成において、eは0.3<e1<1.0、好ましくは0.32≦e1≦0.8、より好ましくは0.34≦e1≦0.6である。また、触媒(A)におけるアルカリ金属はセシウムであると好ましく、上記の好ましい態様における一般式(I)のB成分はセシウムであると好ましい。
 上記一般式(I)で表されるB成分であるアルカリ金属の原料は原子比が低すぎると、アンモニア昇温脱離法による触媒の酸量(H)が高くなり、高沸点化合物の副生が多くなるため、好ましくない。また、B成分原料の原子比が高い場合、高沸点化合物の副生は少なくなり、長期間な工業生産は可能となるが、原料転化率が低くなってしまうため、結果として満足のいく収率の向上が期待できない。
 その他の成分元素の出発原料としては、一般にこの種の触媒に使用される金属元素のアンモニウム塩、硝酸塩、炭酸塩、塩化物、硫酸塩、水酸化物、有機酸塩、酸化物またはこれらの混合物を組み合わせて用いればよいが、アンモニウム塩および硝酸塩が好適に用いられる。上記一般式(I)の組成におけるc1の下限としては、0.3がより好ましく、0.6が更に好ましく、1が特に好ましい。またc1の上限としては、16がより好ましく、12が更に好ましく、8が特に好ましい。上記一般式(I)の組成におけるd1の下限としては、3がより好ましく、5が更に好ましく、6が特に好ましい。またd1の上限としては、16がより好ましく、14が更に好ましく、12が特に好ましい。上記一般式(I)の組成におけるf1の上限としては、8がより好ましく、6が更に好ましく、4が特に好ましい。上記一般式(I)の組成におけるg1の上限としては、20がより好ましく、15が更に好ましく、10が特に好ましい。上記一般式(I)の組成におけるh1の上限としては、4がより好ましく、3が更に好ましく、2が特に好ましい。
 触媒(A)の製造にあたっては、これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。スラリー液は、各活性成分含有化合物と水とを均一に混合して得ることができる。スラリー液における水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はない。乾燥方法や乾燥条件を勘案して、水の使用量を適宜決定すれば良い。通常、スラリー調製用化合物の合計質量100質量部に対して、200質量部以上2000質量部以下である。水の量は多くてもよいが、多過ぎると乾燥工程のエネルギーコストが高くなり、又完全に乾燥できない場合も生ずるなどデメリットが多い。
 上記各成分元素の供給源化合物のスラリー液は上記の各供給源化合物を、(イ)一括して混合する方法、(ロ)一括して混合後、熟成処理する方法、(ハ)段階的に混合する方法、(ニ)段階的に混合・熟成処理を繰り返す方法、および(イ)~(ニ)を組み合わせた方法により調製することが好ましい。ここで、上記熟成とは、「工業原料もしくは半製品を、一定時間、一定温度などの特定条件のもとに処理して、必要とする物理性、化学性の取得、上昇あるいは所定反応の進行などをはかる操作」のことをいう。なお、本実施形態において、上記の一定時間とは、5分以上24時間以下の範囲をいい、上記の一定温度とは室温以上の水溶液ないし水分散液の沸点以下の範囲をいう。
 本実施形態において、必須活性成分を混合する際に用いられる攪拌機の攪拌翼の形状は特に制約はなく、プロペラ翼、タービン翼、パドル翼、傾斜パドル翼、スクリュー翼、アンカー翼、リボン翼、大型格子翼などの任意の攪拌翼を1段あるいは上下方向に同一翼または異種翼を2段以上で使用することができる。また、反応槽内には必要に応じてバッフル(邪魔板)を設置しても良い。
 次いで、このようにして得られたスラリー液を乾燥する。乾燥方法は、スラリー液が完全に乾燥できる方法であれば特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられる。これらのうち本実施形態においては、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70℃以上150℃以下である。また、この際得られるスラリー液乾燥体の平均粒径が10μm以上700μm以下となるように乾燥するのが好ましい。
 上記のようにして得られた触媒前駆体は予備焼成し、成形を経て、本焼成することで、成形形状を制御、保持することが可能となり、工業用途として特に機械的強度が優れた触媒が得られ、安定した触媒性能を発現できる。
 成形は、シリカ等の担体に担持する担持成形と、担体を使用しない非担持成形と、のいずれの成形方法も採用できる。具体的な成形方法としては、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状としては、例えば、円柱状、リング状、球状等が運転条件を考慮して適宜選択可能である。球状担体、特にシリカやアルミナ等の不活性担体に触媒活性成分を担持した、平均粒径3.0mm以上10.0mm以下、好ましくは平均粒径3.0mm以上8.0mm以下の担持触媒を使用すると好ましい。担体に担持する場合には、触媒活性成分が触媒全体に占める割合が20質量%以上80質量%以下であると好ましい。なお、成形に際しては、公知の添加剤、例えば、グラファイト、タルク等を少量添加してもよい。また、担体としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等を用いてもよい。
 予備焼成方法や予備焼成条件または本焼成方法や本焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。予備焼成や本焼成の最適条件は、用いる触媒原料、触媒組成、調製法等によって異なるが、通常、空気等の酸素含有ガス流通下または不活性ガス流通下で、200℃以上600℃以下、好ましくは300℃以上550℃以下で、0.5時間以上、好ましくは1時間以上40時間以下で行う。ここで、不活性ガスとは、触媒の反応活性を低下させない気体のことをいい、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。
 この触媒(A)は特定の組成及び特定の酸量を有することにより、芳香族化合物の生成を有効に低減することができる。
 またこの効果は、特に芳香族アルデヒド化合物の生成を抑える効果が大きいため、不飽和アルデヒド化合物を得る段階(本明細書においては第一段目工程と定義する)において用いることがより効果的である。また、上記芳香族化合物は、テレフタル酸の前駆体である場合が多い為、本実施形態の直結二段接触気相酸化方法によれば、テレフタル酸の副生の抑制に特に効果的である。
 直結二段接触気相酸化方法とは、第一段目生成ガスから目的生成物を分離した後、第二段目反応に供する分離法とは異なり、第一段目の生成ガスを直接第二段目に供する方法である。また、本実施形態の直結二段接触気相酸化方法は、イソブチレンおよびt-ブチルアルコ-ルから選ばれる少なくとも1種の原料を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて接触気相酸化して、メタクロレインおよび/またはメタクリル酸を製造する際に用いられることが特に好ましい。
[触媒(B)について]
 本実施形態の直結二段接触気相酸化方法において、不飽和カルボン酸を製造する段階(本明細書において第二段目工程と記載する)では第一段目工程で用いた触媒とは異なる触媒(本明細書において触媒(B)と記載する)を用いることが好ましい。ここで、「異なる」とは触媒の組成又は製造方法が異なるものを意味し、同一組成、同一製造方法で製造された触媒であれば、多少の物性値に違いがあったとしても「異なる」ものではない。
 触媒(B)としては、第一段目工程で用いる触媒と異なるものであれば特に制限はなく、上記触媒(A)の条件を満たすものであっても、満たさないものであっても良い。
 触媒(B)の触媒活性成分の好ましい組成は、下記一般式(II)で表される。
Mo10a2b2Cuc2Asd2e2g2   (II)
(式中、Mo、V、P、Cu、As、Oはそれぞれモリブデン、バナジウム、リン、銅、ヒ素及び酸素を表し、XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。a2~e2は、それぞれMo、V、P、Cu、AsおよびXの原子比を表し、a2は0.1≦a2≦6、b2は0.5≦b2≦6、c2は0<c2≦3、d2は0≦d2≦3、e2は0≦e2≦3であり、g2は他の元素の原子価ならびに原子比により定まる値である。)
 上記好ましい組成の触媒活性成分を含む触媒(B)の製造にあたっては、この種の触媒、例えば酸化物触媒、ヘテロポリ酸又はその塩構造を有する触媒を調製する方法として一般に知られている方法が採用できる。触媒を製造する際に使用できる原料は特に限定されず、種々のものが使用できる。例えば、モリブデン化合物としては、モリブデン酸アンモニウム、モリブデン酸、酸化モリブデン等が使用でき、バナジウム化合物としては、メタバナジン酸アンモニウム、五酸化バナジウム等が使用でき、リン化合物としては、リン酸もしくはその塩、重合リン酸もしくはその塩が使用でき、銅化合物としては、酸化銅、リン酸銅、硫酸銅、硝酸銅、モリブデン酸銅、銅金属等が使用でき、アンチモン、砒素、銀、マグネシウム、亜鉛、アルミニウム、ホウ素、ゲルマニウム、錫、鉛、チタン、ジルコニウム、クロム、レニウム、ビスマス、タングステン、鉄、コバルト、ニッケル、セリウム、トリウム、カリウム及びルビジウム化合物としては、それぞれの硝酸塩、硫酸塩、炭酸塩、リン酸塩、有機酸塩、ハロゲン化物、水酸化物、酸化物、金属等が使用できる。
 触媒(B)の製造にあたっては、これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。上記の触媒(A)において説明した方法と同様の方法に従って、スラリー液を調製できる。得られたスラリー液を乾燥し、触媒活性成分固体とする。乾燥方法は、スラリー液が完全に乾燥できる方法であれば特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられるが、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70~150℃である。また、この際得られるスラリー液乾燥体の平均粒径が10~700μmとなるように乾燥するのが好ましい。
 本実施形態の触媒活性成分固体のうち特に好ましいものは、ヘテロポリ酸構造を有する触媒である。このヘテロポリ酸構造を有する触媒は、リンバナドモリブデン酸を基本骨格とし、他の構成元素はこのヘテロポリ酸構造の中に組み込まれ、触媒活性及び選択性の向上に寄与すると共に、構造の熱的安定性の向上にも寄与していると考えられる。このヘテロポリ酸構造を有する触媒は、特に寿命の長い触媒である。ヘテロポリ酸構造を有する触媒は通常のヘテロポリ酸の一般的な調製法によって容易に調製できる。
 前記のようにして得られた触媒活性成分固体は、そのまま被覆用混合物に供することができるが、焼成すると成形性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、使用する触媒原料、触媒組成、調製法等によって異なるが、焼成温度は通常100~350℃、好ましくは150~300℃、焼成時間は1~20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。
 また、本実施形態において、前記スラリーを調製する際の活性成分を含有する化合物は、必ずしも全ての活性成分を含んでいる必要はなく、一部の成分を下記被覆工程前に使用してもよい。
 本実施形態の触媒(B)の形状は特に制約はなく、酸化反応において反応ガスの圧力損失を小さくするために、柱状物、錠剤、リング状、球状等に成型し使用する。このうち選択性の向上や反応熱の除去が期待できることから、不活性担体に触媒活性成分固体を被覆し、被覆触媒とするのが特に好ましい。
 この被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰返しにより激しく攪拌させ、ここにバインダーと触媒活性成分固体並びに、必要により、これらに他の添加剤例えば成形助剤、強度向上剤を添加した被覆用混合物を担体に被覆する方法である。
 バインダーの添加方法は、1)前記被覆用混合物に予め混合しておく、2)被覆用混合物を固定容器内に添加するのと同時に添加、3)被覆用混合物を固定容器内に添加した後に添加、4)被覆用混合物を固定容器内に添加する前に添加、5)被覆用混合物とバインダーをそれぞれ分割し、2)~4)を適宜組み合わせて全量添加する等の方法を任意に採用しうる。このうち5)においては、例えば被覆用混合物の固定容器壁への付着、被覆用混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。
 バインダーは水及び1気圧以下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種であれば特に制約はない。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1~4のアルコール、エチルエーテル、ブチルエーテル又はジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0~0/10(質量比)、好ましくは水と混合し9/1~1/9(質量比)とすることが好ましい。これらバインダーの使用量は、被覆用混合物100質量部に対して通常2~60質量部、好ましくは10~50質量部である。
 上記被覆における担体の具体例としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等の直径1~15mm、好ましくは2.5~10mmの球形担体等が挙げられる。これら担体は通常は10~70%の空孔率を有するものが用いられる。担体と被覆用混合物の割合は通常、被覆用混合物/(被覆用混合物+担体)=10~75質量%、好ましくは15~60質量%となる量を使用する。被覆用混合物の割合が大きい場合、被覆触媒の反応活性は大きくなるが、機械的強度が小さくなる傾向にある。逆に、被覆用混合物の割合が小さい場合、機械的強度は大きいが、反応活性は小さくなる傾向がある。なお、前記において、必要により使用する成形助剤としては、シリカゲル、珪藻土、アルミナ粉末等が挙げられる。成形助剤の使用量は、触媒活性成分固体100質量部に対して通常1~60質量部である。また、更に必要により触媒活性成分固体及び反応ガスに対して不活性な無機繊維(例えば、セラミックス繊維又はウィスカー等)を強度向上剤として用いることは、触媒の機械的強度の向上に有用であり、ガラス繊維が好ましい。これら繊維の使用量は、触媒活性成分固体100質量部に対して通常1~30質量部である。
 前記のようにして得られた被覆触媒はそのまま触媒として接触気相酸化反応に供することができるが、焼成すると触媒活性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、使用する触媒原料、触媒組成、調製法等によって異なるが、焼成温度は通常100~450℃、好ましくは270~420℃、焼成時間は1~20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。本実施形態に用いられる触媒(B)は担体に担持させることによって、耐熱性、寿命の向上、反応収率の増大等好ましい効果が期待できる。担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒(B)の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。
 本実施形態の触媒(A)は、プロピレン、イソブチレン、t-ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法や、ブテン類から1,3-ブタジエンを製造する方法、特にイソブチレン、t-ブチルアルコールを分子状酸素又は分子状酸素含有ガスにより接触気相酸化してメタクロレイン、メタアクリル酸を製造する方法に用いることができる。触媒(A)を上記方法に用いることで、芳香族化合物(特にテレフタル酸)の副生を有効に抑制することができる。また、ホットスポットの温度を抑制し高収率に目的物を製造することができ、これらの結果として公知の方法と比較して、製品の価格競争力の向上が期待できる。
 触媒(A)は、特にイソブチレンおよびt-ブチルアルコ-ルから選ばれる少なくとも1種の原料を、触媒の存在下に、分子状酸素含有ガスを用いて接触気相酸化して、メタクロレインおよび/またはメタクリル酸を製造する際に好適に使用できる。本実施形態の製造方法における原料ガスの流通方法は、通常の単流通法でもあるいはリサイクル法でもよく、一般に用いられている条件下で実施することができ特に限定されない。たとえば出発原料物質としてのイソブチレンが常温で1~10容量%、好ましくは4~9容量%、分子状酸素が3~20容量%、好ましくは4~18容量%、水蒸気が0~60容量%、好ましくは4~50容量%、二酸化炭素、窒素等の不活性ガスが20~80容量%、好ましくは30~60容量%からなる混合ガスを反応管中に充填した本実施形態の触媒上に250~450℃で、常圧~10気圧の圧力下で、空間速度300~5000hr-1で導入し反応を行う。
 以下に、実施例により本発明を更に具体的に説明する。
 なお実施例において転化率、収率、選択率は次の通りに定義される。
・原料転化率=(第一段目工程で反応したt-ブチルアルコールまたはイソブチレンのモル数)/(第一段目工程に供給したt-ブチルアルコールまたはイソブチレンのモル数)*100
・第一段目工程メタクロレイン収率=(第一段目工程で生成したメタクロレインのモル数)/(第一段目工程に供給したt-ブチルアルコールまたはイソブチレンのモル数)*100
・第一段目工程メタクリル酸収率=(第一段目工程で生成したメタクリル酸のモル数)/(第一段目工程に供給したt-ブチルアルコールまたはイソブチレンのモル数)*100
・有効収率=第一段目工程メタクロレイン収率+第一段目工程メタクリル酸収率
・第二段目工程メタクロレイン収率=(第二段目工程で生成したメタクロレインのモル数)/(第一段目工程に供給したt-ブチルアルコールまたはイソブチレンのモル数)*100
・第二段目工程メタクロレイン転化率=(第一段目工程メタクロレイン収率-第二段目工程メタクロレイン収率)/(第一段目工程メタクロレイン収率)*100
・最終メタクリル酸収率=(第一段目工程で生成したメタクリル酸のモル数)+第二段目工程で生成したメタクリル酸のモル数)/(第一段目工程に供給したt-ブチルアルコールまたはイソブチレンのモル数)*100
 なお、本実施例におけるアンモニア昇温脱離法によるモリブデン、ビスマスを含む複合酸化物触媒の酸量は、触媒分析装置(商品名:「BELCAT-B」、日本ベル株式会社製)を用いて測定した。触媒0.3gを正確に秤量後、測定管に充填し、ヘリウム雰囲気下にて処理温度500℃で1時間の触媒前処理を行った。次いで、アンモニアガスを吸着温度100℃で吸着させ、30分間真空排気し、600℃まで10℃/minの速度で昇温して、触媒成形体単位重量当たりのアンモニア脱離量を測定した。
 また、テレフタル酸の定量は液体クロマトグラフィー(商品名:「UltiMate 3000 HPLC system」、Thermo Scientific社製)を用いて行った。実施例において、テレフタル酸収率は以下の式に従って算出した。
テレフタル酸収率(%)=(生成したテレフタル酸のモル数)/(供給したt-ブタノールまたはイソブチレンのモル数)*100
[触媒(A)に関する評価]
(酸化反応試験)
 熱媒体として溶融塩を循環させるためのジャケットおよび触媒層温度を測定するための熱電対を管軸に設置した、内径22.2mmのステンレス製反応器に触媒成形体を充填した。当該反応器に、原料モル比がイソブチレン:酸素:窒素:水=1:2.2:12.5:1.0の混合ガスを接触時間2.4秒(NTP基準)で供給して、0.05kgfの加圧下で反応を行った。反応成績、アンモニア昇温脱離法による触媒成形体の酸量およびテレフタル酸収率は表1の通りであった。
[実施例1]
 蒸留水3040mlを加熱攪拌しながらモリブデン酸アンモニウム800gと硝酸セシウム29gとを溶解して水溶液(A)を得た。別に、硝酸コバルト791g、硝酸第二鉄267g、および硝酸ニッケル88gを蒸留水607mlに溶解して水溶液(B)を調製した。また、濃硝酸78mlを加えて酸性にした蒸留水402mlに硝酸ビスマス306gを溶解して水溶液(C)を調製した。上記水溶液(A)に(B)、(C)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し、440℃で5時間予備焼成し予備焼成粉末(D)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=1.8、Co=7.2、Ni=0.8、Cs=0.4であった。
 その後、予備焼成粉末(D)100質量部に結晶性セルロース5質量部を混合した粉末を不活性担体(粒径4.0mm)に担持した。担持は、予備焼成粉末(D)が成形後の触媒全体に占める割合が40質量%となるように、実施した。
 こうして得た成形物を520℃で5時間本焼成し触媒成形体(E)を得た。得られた触媒成形体のアンモニア昇温脱離スペクトルを測定したところ、100℃以上400℃以下の範囲に1つのピークを有しており、400℃以上の範囲に1つのピークを有していた。100℃以上400℃以下の範囲のピークの頂点は200℃付近に存在し(この酸量の値を表1において酸量(L)と表記する)、400℃以上の範囲のピークの頂点は600℃付近(この酸量の値を表1において酸量(H)と表記する)に存在していた。得られた結果を表1に示した。
[比較例1]
 実施例1において硝酸セシウム29gを0gにした以外は実施例1と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=1.8、Co=7.2、Ni=0.8、Cs=0であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例1の触媒と同様の形状を示していた。得られた結果を表1に示した。
[比較例2]
 実施例1において硝酸セシウム29gを11gにした以外は実施例1と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=1.8、Co=7.2、Ni=0.8、Cs=0.2であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例1の触媒と同様の形状を示していた。得られた結果を表1に示した。
[実施例2]
 蒸留水3040mlを加熱攪拌しながらモリブデン酸アンモニウム800gと硝酸セシウム29gとを溶解して水溶液(A)を得た。別に、硝酸コバルト718g、硝酸第二鉄297g、および硝酸ニッケル264gを蒸留水678mlに溶解して水溶液(B)を調製した。また、濃硝酸43mlを加えて酸性にした蒸留水224mlに硝酸ビスマス170gを溶解して水溶液(C)を調製した。上記水溶液(A)に(B)、(C)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し、440℃で5時間予備焼成し予備焼成粉末(D)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.4であった。
 その後、予備焼成粉末(D)100質量部に結晶性セルロース5質量部を混合した粉末を不活性担体(粒径4.0mm)に担持した。担持は、予備焼成粉末(D)が成形後の触媒全体に占める割合が40質量%となるように、実施した。
 こうして得た成形物を520℃で5時間本焼成し触媒成形体(E)を得た。得られた触媒成形体のアンモニア昇温脱離スペクトルを測定したところ、100℃以上400℃以下の範囲に1つのピークを有しており、400℃以上の範囲に1つのピークを有していた。100℃以上400℃以下の範囲のピークの頂点は200℃付近に存在し、400℃以上の範囲のピークの頂点は600℃付近に存在していた。得られた結果を表1に示した。
[実施例3]
 実施例2において硝酸セシウム29gを37gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.5であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例2の触媒と同様の形状を示していた。得られた結果を表1に示した。
[比較例3]
 実施例2において硝酸セシウム29gを74gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=1.0であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例2の触媒と同様の形状を示していた。得られた結果を表1に示した。モリブデン12原子に対するセシウムの原子比が大きいため、テレフタル酸の副生は少なくなり、長期間の工業生産は可能となるが、原料転化率が低くなってしまったため、満足のいく収率を達成できない結果となった。
[比較例4]
 実施例2において硝酸セシウム29gを3gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.04であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例1の触媒と同様の形状を示していた。得られた結果を表1に示した。
[比較例5]
 実施例2において硝酸セシウム29gを22gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.3であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例2の触媒と同様の形状を示していた。得られた結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記の酸化反応(直結二段接触気相酸化における第一段目工程)において、テレフタル酸収率が0.01%以下であれば、実用性として問題がない。上記の実施例1および実施例2では、テレフタル酸収率が0.01%以下であり、実用上問題がないことが確認された。
[直結二段接触気相酸化方法に関する評価]
[実施例4]
 実施例1において、予備焼成粉末(D)に結晶性セルロースを混合した粉末を不活性担体に担持して得た成形物を、540℃で5時間本焼成し触媒成形体を得た。この時のアンモニア昇温脱離法による高温側における触媒の酸量は0.011mmol/gであった。
 実施例1及び上記のようにして調製した触媒を、熱媒である溶融塩を循環させるためのジャケットを備え、気相酸化触媒層と不活性充填物層との境界部の温度を測定するための熱電対が管軸に設置された、内径22.6mmのステンレス製反応管に充填した。充填は、気相酸化触媒層の層高が313cm(反応原料ガス入口部より540℃本焼成品が90cm、520℃本焼成品が223cm)になるように実施した。また、反応原料ガスの入り口部には、平均粒径5mmのシリカ及びアルミナを主成分とする不活性充填物からなる球状体を、層高が140cmになるように充填した。次いで、この反応管に、イソブチレンを分子状酸素を用いて酸化させてなる反応原料ガス(組成(モル比);イソブチレン:酸素:水蒸気:窒素=1:2.0:1.6:11.9)を、空間速度1000hr-1となるように供給し、浴温を340℃に設定し、第一段目工程の反応を開始した。
 第二段酸化反応器には、日本国特許第5570142号公報の実施例1に記載のMo-V-P系ヘテロポリ酸触媒を用いた。触媒を内径29.4mmのステンレス反応管に350cm充填し、上記第一段目工程の酸化反応による生成ガスを導入し、第二段目工程の酸化反応を実施した。反応管出口圧力は0.05MPaに調製した。第二段目工程の反応浴温度はメタクロレイン転化率が65%から85%となるように調整し、第二段目工程におけるメタクロレインの転化率により、配管閉塞物のメイン成分であるテレフタル酸生成量がどのように変化するか測定を行った。結果を表2に示す。
[比較例6]
 比較例2で調製した触媒を、気相酸化触媒層の層高が313cmになるように第一段目工程の酸化反応器に充填した以外は実施例4と同様にして反応を開始した。
 なお第二段目工程の酸化反応器には、実施例4で用いたものと同じ触媒を用いた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例4、比較例6の結果より、本発明の直結二段接触気相酸化方法を用いた場合には、テレフタル酸の副生率を大きく低減できていることが確認された。またそれに伴って、収率の向上にもつながっていることが分かる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2018年2月20日付で出願された日本国特許出願(特願2018-27498)および2018年6月26日付で出願された日本国特許出願(特願2018-120455)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明は、高沸点化合物である芳香族化合物の副生を低減することで長期安定的な運転と最終生成物を高収率に提供することを可能とする触媒とそれを用いた不飽和カルボン酸化合物の製造方法を提供するものである。特にイソブチレン又はt-ブチルアルコ-ルを原料として原料、分子状酸素含有ガスを用いて接触気相酸化する状況下において高沸点化合物である芳香族化合物の副生を低減することができ、長期安定的な運転とメタクロレインおよび/またはメタクリル酸を高収率に得ることができる。

Claims (15)

  1.  モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である、触媒。
  2.  前記アンモニア昇温脱離法による高温側における触媒の酸量が0.024mmol/g以下である、請求項1に記載の触媒。
  3.  前記アンモニア昇温脱離法による高温側における触媒の酸量が0.020mmol/g以下である、請求項1又は2に記載の触媒。
  4.  触媒活性成分が下記式(I)で表される組成を有する、請求項1~3のいずれか一項に記載の触媒。
     Moa1Bib1Fec1d1e1f1g1h1x1   (I)
    (ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a1、b1、c1、d1、e1、f1、g1、h1およびx1はそれぞれMo、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a1=12の時、0.1≦b1≦10、0.1≦c1≦20、1≦d1≦20、0.3<e1<1.0、0≦f1≦10、0≦g1≦30、0≦h1≦5であり、x1はそれぞれの元素の酸化状態によって定まる数値である。)
  5.  アルカリ金属がセシウムである、請求項1~4のいずれか一項に記載の触媒。
  6.  成形触媒である、請求項1~5のいずれか一項に記載の触媒。
  7.  球状担体に触媒活性成分が担持された触媒であり、触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分が触媒全体に占める割合が20質量%以上80質量%以下である、請求項1~6のいずれか一項に記載の触媒。
  8.  触媒活性成分の組成を構成する金属成分を含有するスラリーを乾燥して乾燥紛体を得る工程、前記乾燥粉体を200℃以上600℃以下の温度で予備焼成して予備焼成紛体を得る工程、前記予備焼成粉体を成形する工程、および得られた成形物を再度200℃以上600℃以下の温度で本焼成する工程、を含む請求項1~7のいずれか一項に記載の触媒の製造方法。
  9.  請求項1~7のいずれか一項に記載の触媒(以下触媒(A)とする)を用いて、不飽和アルデヒド化合物を経由した後、不飽和カルボン酸化合物を得る、直結二段接触気相酸化方法。
  10.  前記触媒(A)を用いて不飽和アルデヒド化合物を得る段階である第一段目工程、および前記第一段目工程に用いた触媒と異なる触媒(以下触媒(B)とする)を用いて不飽和カルボン酸化合物を製造する段階である第二段目工程を含む、請求項9に記載の直結二段接触気相酸化方法。
  11.  前記触媒(B)の触媒活性成分が下記式(II)で表される組成を有する、請求項10に記載の直結二段接触気相酸化方法。
    Mo10a2b2Cuc2Asd2e2g2   (II)
    (式中、Mo、V、P、Cu、As、Oはそれぞれモリブデン、バナジウム、リン、銅、ヒ素及び酸素を表し、XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。a2~e2は、それぞれMo、V、P、Cu、AsおよびXの原子比を表し、a2は0.1≦a2≦6、b2は0.5≦b2≦6、c2は0<c2≦3、d2は0≦d2≦3、e2は0≦e2≦3であり、g2は他の元素の原子価ならびに原子比により定まる値である。)
  12.  前記不飽和アルデヒドがメタクロレインであり、前記不飽和カルボン酸がメタクリル酸である、請求項9~11のいずれか一項に記載の直結二段接触気相酸化方法。
  13.  請求項9~12のいずれか一項に記載の直結二段接触気相酸化方法を用いた、副生成物である芳香族化合物の低減方法。
  14.  前記芳香族化合物がテレフタル酸である、請求項13に記載の副生成物である芳香族化合物の低減方法。
  15.  請求項9~12のいずれか一項に記載の直結二段接触気相酸化方法を用いる、不飽和アルデヒド化合物、不飽和カルボン酸化合物またはその両方の製造方法。
PCT/JP2019/005842 2018-02-20 2019-02-18 触媒及びそれを用いた直結二段接触気相酸化方法 WO2019163707A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980013971.0A CN111757779A (zh) 2018-02-20 2019-02-18 催化剂以及使用该催化剂的直接连接两段气相催化氧化方法
JP2019540016A JP6598419B1 (ja) 2018-02-20 2019-02-18 触媒及びそれを用いた直結二段接触気相酸化方法
KR1020207021042A KR102618400B1 (ko) 2018-02-20 2019-02-18 촉매 및 그의 제조 방법, 그리고 당해 촉매를 이용한 직결 2단 접촉 기상 산화 방법 및 그의 이용

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018027498 2018-02-20
JP2018-027498 2018-02-20
JP2018-120455 2018-06-26
JP2018120455 2018-06-26

Publications (1)

Publication Number Publication Date
WO2019163707A1 true WO2019163707A1 (ja) 2019-08-29

Family

ID=67686767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005842 WO2019163707A1 (ja) 2018-02-20 2019-02-18 触媒及びそれを用いた直結二段接触気相酸化方法

Country Status (4)

Country Link
JP (1) JP6598419B1 (ja)
KR (1) KR102618400B1 (ja)
CN (1) CN111757779A (ja)
WO (1) WO2019163707A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103894A1 (zh) * 2019-11-25 2021-06-03 上海华谊新材料有限公司 钼钒系复合氧化物催化剂、其制备方法和用途
JP7105397B1 (ja) * 2021-01-27 2022-07-22 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法
WO2022163725A1 (ja) * 2021-01-27 2022-08-04 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471530B (zh) * 2020-10-27 2023-09-29 中国石油化工股份有限公司 一种甲基丙烯酸制造用复合催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251183A (ja) * 2002-02-28 2003-09-09 Nippon Shokubai Co Ltd 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法
JP2010241700A (ja) * 2009-04-02 2010-10-28 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2012115825A (ja) * 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
WO2014181839A1 (ja) * 2013-05-09 2014-11-13 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126605A (ja) 1974-03-23 1975-10-04
JPS61221149A (ja) 1985-03-26 1986-10-01 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸の製造方法
JP2747920B2 (ja) 1989-02-16 1998-05-06 日東化学工業株式会社 酸化反応に適するモリブデン含有金属酸化物流動層触媒の製法
US5856259A (en) * 1994-12-21 1999-01-05 Mitsubishi Rayon Co., Ltd. Preparation process of supported catalyst for the synthesis of methacrolein and methacrylic acid
JP4280797B2 (ja) 2001-11-21 2009-06-17 三菱化学株式会社 複合酸化物触媒の製造方法
JP5574434B2 (ja) * 2008-11-06 2014-08-20 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP5763406B2 (ja) * 2011-05-02 2015-08-12 花王株式会社 α−オレフィンの製造方法
KR20150020541A (ko) * 2012-05-18 2015-02-26 닛뽄 가야쿠 가부시키가이샤 메타크릴산 제조용 촉매, 그의 제조 방법 및 당해 촉매를 이용하는 메타크릴산의 제조 방법
JP6078387B2 (ja) 2013-03-19 2017-02-08 住友化学株式会社 メタクリル酸の製造方法
US9393553B2 (en) * 2013-04-25 2016-07-19 Nippon Kayaku Kabushiki Kaisha Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing the catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst
KR20170126876A (ko) * 2015-03-03 2017-11-20 닛뽄 가야쿠 가부시키가이샤 공액 디올레핀 제조용 촉매와, 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251183A (ja) * 2002-02-28 2003-09-09 Nippon Shokubai Co Ltd 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法
JP2010241700A (ja) * 2009-04-02 2010-10-28 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2012115825A (ja) * 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
WO2014181839A1 (ja) * 2013-05-09 2014-11-13 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103894A1 (zh) * 2019-11-25 2021-06-03 上海华谊新材料有限公司 钼钒系复合氧化物催化剂、其制备方法和用途
JP7105397B1 (ja) * 2021-01-27 2022-07-22 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法
WO2022163725A1 (ja) * 2021-01-27 2022-08-04 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法

Also Published As

Publication number Publication date
JPWO2019163707A1 (ja) 2020-02-27
KR102618400B1 (ko) 2023-12-27
JP6598419B1 (ja) 2019-10-30
CN111757779A (zh) 2020-10-09
KR20200122302A (ko) 2020-10-27

Similar Documents

Publication Publication Date Title
JP6598419B1 (ja) 触媒及びそれを用いた直結二段接触気相酸化方法
JP7418252B2 (ja) 触媒前駆体、それを用いた触媒、及びその製造方法
JP5973999B2 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP4756890B2 (ja) メタクリル酸製造用触媒及びその製造方法
JP6077533B2 (ja) メタクリル酸製造用触媒、その製造方法及び該触媒を用いるメタクリル酸の製造方法
JP6674441B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2015053269A1 (ja) 不飽和カルボン酸の製造方法、及び担持触媒
JP2012115825A (ja) メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
JP2006314923A (ja) メタクリル酸製造用触媒の製造方法
WO2013084258A1 (en) Catalyst for the manufacturing of acrylic acid and a process for producing acrylic acid by using the catalyst
JP5680373B2 (ja) 触媒及びアクリル酸の製造方法
WO2021141133A1 (ja) 触媒、触媒の充填方法、および触媒を用いた化合物の製造方法
US20230020130A1 (en) Catalyst, method for producing compound using same, and compound
WO2012063771A1 (ja) メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
JP6067013B2 (ja) アクリル酸製造用触媒およびこの触媒を使用することによってアクリル酸を製造するための方法
JP2011152543A (ja) メタクリル酸製造用触媒の製造方法
JP7224351B2 (ja) 触媒及びそれを用いた化合物の製造方法
WO2022065116A1 (ja) 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
JP5269046B2 (ja) メタクリル酸製造用触媒の製造方法
JP2023141551A (ja) 触媒、及びそれを用いた不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP2023141552A (ja) 不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP2020151612A (ja) 触媒及びそれを用いた不飽和アルデヒド、不飽和カルボン酸の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540016

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757726

Country of ref document: EP

Kind code of ref document: A1