WO2019153845A1 - 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用 - Google Patents

玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2019153845A1
WO2019153845A1 PCT/CN2018/117645 CN2018117645W WO2019153845A1 WO 2019153845 A1 WO2019153845 A1 WO 2019153845A1 CN 2018117645 W CN2018117645 W CN 2018117645W WO 2019153845 A1 WO2019153845 A1 WO 2019153845A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
composition
content
less
weight
Prior art date
Application number
PCT/CN2018/117645
Other languages
English (en)
French (fr)
Inventor
张广涛
李青
郑权
王丽红
闫冬成
王俊峰
王博
李志勇
Original Assignee
东旭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭集团有限公司 filed Critical 东旭集团有限公司
Priority to JP2020543025A priority Critical patent/JP7022838B2/ja
Priority to EP18905497.6A priority patent/EP3753909B1/en
Priority to KR1020207026309A priority patent/KR102551614B1/ko
Priority to US16/969,319 priority patent/US11746039B2/en
Publication of WO2019153845A1 publication Critical patent/WO2019153845A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the invention relates to the field of glass manufacturing, in particular to a glass composition, a low inclusion content glass, a preparation method and application thereof.
  • Handheld display devices such as mobile phones, have a mainstream pixel density of more than 200 ppi, 300 ppi or even 400 ppi; fixed display devices, such as LCD TVs, have resolutions exceeding 2K, 4K or even 8K.
  • the trend of high definition puts higher and higher requirements on the fineness of the panel process, and then needs to upgrade the thermal stability and quality of the supporting substrate glass.
  • the glass suitable for display substrate belongs to alkali-free high alumina silicate glass system, which has the characteristics of high strain point, high temperature viscosity and large surface tension. The manufacturing difficulty is obviously higher than that of ordinary soda lime glass, and it is difficult to remove residual gaseous inclusions at high temperature. Excluded, and finally cured on the surface or inside of the glass, forming a bad point, resulting in product waste.
  • One method is to reduce the viscosity of the high temperature glass melt.
  • the lower viscosity melt has a higher temperature, which is beneficial to the reduction of the chemical solubility of common gaseous substances in most glass (such as SO 3 , CO 2 , O 2 ), and is beneficial for the residual gaseous inclusions to stick when rising inside the melt.
  • the hysteresis resistance is reduced, which is favorable for the ascending and combined overflow, and the glass homogenate having the residual gaseous inclusion content satisfying the requirements is obtained.
  • the substrate glass has the characteristics of high temperature viscosity and large surface tension.
  • the viscosity of the glass melt used to exclude residual gaseous inclusions in the above glass melt is generally about 100 poise, and the corresponding temperature at the viscosity often reaches 1650 ° C. At 1700 ° C or even above 1750 ° C, reducing the viscosity of the high temperature glass melt again will lead to a further increase in temperature, resulting in an increase in the reaction between the glass and the refractory material, which in turn poses a great challenge to the temperature resistance and service life of the supporting refractory material;
  • the smelting vessel of the above glass melt is often composed of high zirconium bricks having a ZrO 2 content of more than 80%, and high temperature corrosion and spalling refractories (for example, zirconia) become a potential risk source for solid inclusions inside the glass.
  • Another method is to increase the chemical clarifying agent content.
  • This method has problems such as increasing residual solid inclusions or eliminating residual gaseous inclusions.
  • the above high-viscosity glass melt is often subjected to a chemical clarifying agent at the time of high-temperature melting, and is, for example, at least one of As 2 O 3 , Sb 2 O 3 , SnO 2 , BaSO 4 , Ba(NO 3 ) 2 or the like.
  • SnO 2 is currently more used as a clarifying agent in an amount of between about 0.1 and 1% by weight.
  • the object of the present invention is to overcome the problem of difficulty in removing inclusions existing in the prior art, and to provide a composition for glass having a low inclusion content, a simple preparation process, and a low preparation cost. Etc.
  • an aspect of the invention provides a composition for glass comprising 50-64 wt% of SiO 2 , 14-24 wt% of Al 2 O 3 , 0-7 wt% of B 2 O 3 +P 2 O 5 , 0.5-7 wt% of MgO, 1-10 wt% of CaO, 0-9 wt% of SrO, 0.1-14 wt% of BaO, 0.1-5 wt% of ZnO, 0.1-4 wt% of TiO 2 , 0.1-7 wt % Y 2 O 3 +La 2 O 3 +Nd 2 O 3 , ⁇ 0.05 wt% R 2 O, wherein R 2 O is the sum of Li 2 O, Na 2 O, K 2 O content, and the combination
  • the material satisfies the following conditions: (1) a viscosity of 100 poise corresponding to a temperature T 100 of 1730 ° C or more; (2) a surface tension of 1300 ° C of less than 420 mN /
  • the composition further satisfies: (3) the liquidus temperature T L is less than 1180 °C.
  • the composition further satisfies: (4) the strain point T st is 710 ° C or higher.
  • the composition contains 56-63 wt% SiO 2 , 17-22 wt% Al 2 O 3 , 0-5.2 wt% B 2 O 3 + P 2 O 5 , 1-5 wt% MgO, 2- 8 wt% CaO, 0-8 wt% SrO, 1-12 wt% BaO, 0.3-4 wt% ZnO, 0.2-3 wt% TiO 2 , 0.1-4 wt% Y 2 O 3 + La 2 O 3 + Nd 2 O 3 , ⁇ 0.05 wt% of R 2 O, wherein R 2 O is the sum of the contents of Li 2 O, Na 2 O, and K 2 O.
  • the composition contains from 0 to 5% by weight of B 2 O 3 and from 0 to 7% by weight of P 2 O 5 , preferably from 0 to 5% by weight.
  • the composition contains 0 to 2 wt% of Y 2 O 3 , 0 to 3 wt % of La 2 O 3 , and 0 to 3 wt% of Nd 2 O 3 .
  • the composition contains Li 2 O of 0.01% by weight or less, Na 2 O of 0.01% by weight or less, and K 2 O of 0.01% by weight or less.
  • the composition further contains a chemical clarifying agent.
  • the chemical fining agent is preferably tin oxide.
  • the clarifying agent is contained in an amount of not more than 1% by weight based on the total weight of the composition.
  • the raw material is uniformly mixed with NH 4 NO 3 by the above-mentioned composition for the glass composition, and then melt-treated, and then the gaseous inclusions are removed in a viscosity range of 210 to 500 poise, and the molding treatment and the annealing treatment are sequentially performed.
  • the glass obtained afterwards satisfies: the content of gaseous inclusions having an equivalent spherical diameter (D.EQ.) of more than 0.02 mm is less than 0.5/Kg of glass.
  • a low inclusion content glass which is prepared by using the above glass composition of the present invention.
  • the low inclusion content glass is prepared by uniformly mixing the raw material with NH 4 NO 3 by the above composition for the glass composition, and then performing the melt treatment to remove the gaseous inclusions in a viscosity range of 210-500 poise. Then, molding processing and annealing treatment are sequentially performed.
  • a third aspect of the present invention provides a method for producing a glass having a low inclusion content, which comprises mixing a raw material with NH 4 NO 3 by a ratio of the above composition for glass, and then performing a melt treatment, and then having a viscosity of 210- Gaseous inclusions are removed within 500 poise.
  • the NH 4 NO 3 is used in an amount of 0.2 to 10% by weight, preferably 1 to 8% by weight, more preferably 2.5 to 5% by weight, based on the raw material of the composition for glass.
  • the gaseous inclusions are removed in the range of from 220 to 350 poise; more preferably, the gaseous inclusions are removed in the range of from 250 to 300 poise.
  • the method further comprises sequentially performing a forming treatment, an annealing treatment, and a mechanical processing on the product after removing the gaseous inclusions.
  • the method further comprises: subjecting the product obtained by the mechanical processing to a secondary melting and thinning treatment.
  • the prepared glass has a thickness of less than 0.1 mm by the mechanical processing or the secondary fusion thinning treatment.
  • a low inclusion content glass prepared by the above preparation method.
  • the low inclusion content glass satisfies the following conditions:
  • the low inclusion content glass satisfies the following conditions:
  • the low inclusion content glass satisfies the following conditions: a density lower than 2.7 g/cm 3 , a thermal expansion coefficient in the range of 50-350 ° C lower than 40 ⁇ 10 -7 /° C., and a Young's modulus higher than 80 GPa
  • the transmittance at a wavelength of 308 nm is 50% or more, and the heat shrinkage at 600 ° C / 10 min is less than 15 ppm.
  • the use of the low inclusion content glass in a display device, a solar cell substrate glass, a safety glass, a bulletproof glass, a smart car glass, an intelligent traffic display, a smart window or a smart card ticket is provided.
  • the inventors of the present invention conducted intensive studies on glass having a low inclusion content and found that by appropriately controlling the composition and properties of the composition for glass, the operating temperature for removing inclusions in the preparation of high-viscosity glass can be lowered, and inclusions can be made. It is easier to eliminate, thereby greatly reducing the content of gaseous inclusions and/or solid inclusions in the produced glass, and reasonably reducing the glass manufacturing cost.
  • the strong oxidant NH 4 NO 3 promotes the variable-price chemical clarifying agent to remain in a high-priced state, avoiding premature reaction failure before the intense oxygen releasing section;
  • the N 2 decomposed by NH 4 NO 3 dissolves and saturates in the glass and then enters the gaseous inclusions.
  • the partial pressure of N 2 gas increases, it promotes O 2 , CO 2 , etc.
  • gaseous inclusions and/or solid inclusions in the glass can be further reduced by adding NH 4 NO 3 and removing gaseous inclusions in a specific viscosity range. content.
  • any values of the ranges disclosed herein are not limited to the precise range or value, and such ranges or values are understood to include values that are close to the ranges or values.
  • the endpoint values of the various ranges, the endpoint values of the various ranges and the individual point values, and the individual point values can be combined with one another to yield one or more new ranges of values.
  • the scope should be considered as specifically disclosed herein.
  • the present invention provides a composition for glass comprising 50-64 wt% of SiO 2 , 14-24 wt% of Al 2 O 3 , 0-7 wt% of B 2 O 3 + P 2 O 5 , 0.5- 7 wt% of MgO, 1-10 wt% of CaO, 0-9 wt% of SrO, 0.1-14 wt% of BaO, 0.1-5 wt% of ZnO, 0.1-4 wt% of TiO 2 , 0.1-7 wt% of Y 2 O 3 +La 2 O 3 +Nd 2 O 3 , ⁇ 0.05 wt% of R 2 O, wherein R 2 O is the sum of the contents of Li 2 O, Na 2 O, K 2 O, and the composition satisfies the following conditions: 1) The viscosity T 100 corresponds to a temperature T 100 of 1730 ° C or more; (2) 1300 ° C surface tension is less than 420 mN / m.
  • the composition satisfies: (2) a surface tension of less than 400 mN/m at 1300 °C.
  • the composition further satisfies: (3) a liquidus temperature T L of less than 1180 °C.
  • the composition further satisfies: (4) the strain point T st is 710 ° C or higher.
  • the temperature T 100 corresponding to a viscosity of 100 poise is determined by referring to ASTM C-965, wherein the 100 P viscosity corresponds to a temperature T 100 in units of ° C; and the 1300 ° C surface tension is measured using a high temperature surface tension meter ( Beijing Xuhui Xinrui Technology Co., Ltd., model ZLXS-II); liquidus temperature T L is determined by the ladder furnace method with reference to ASTM C-829; strain point T st is determined by reference to ASTM C-336.
  • the glass composition can be subjected to the removal of residual gaseous inclusions in the glass melt at a high viscosity (e.g., 210-500 poise).
  • a high viscosity e.g., 210-500 poise.
  • the melt of the composition for glass of the present invention exhibits a "boiling" effect at an appropriate stage, which not only greatly reduces the content of residual gaseous inclusions, but also promotes the homogenization process of the melt, while simultaneously promoting the melt homogenization process.
  • the process belt is widened to reduce the production difficulty.
  • the present invention can make the gaseous inclusions easier to remove by controlling the surface tension of the glass, and further reduce the content of inclusions in the produced glass.
  • the composition contains 56-63 wt% SiO 2 , 17-22 wt% Al 2 O 3 , 0-5.2 wt% B 2 O 3 + P 2 O 5 , 1 -5 wt% of MgO, 2-8 wt% of CaO, 0-8 wt% of SrO, 1-12 wt% of BaO, 0.3-4 wt% of ZnO, 0.2-3 wt% of TiO 2 , 0.1-4 wt% of Y 2 O 3 + La 2 O 3 + Nd 2 O 3 , ⁇ 0.05 wt% of R 2 O, wherein R 2 O is the sum of the contents of Li 2 O, Na 2 O, and K 2 O.
  • the composition contains from 0 to 5% by weight of B 2 O 3 and from 0 to 7% by weight of P 2 O 5 , preferably from 0 to 5% by weight.
  • B 2 O 3 is 0-4.7 wt% and/or P 2 O 5 is 0-1.5 wt%.
  • the composition contains 0 to 2 wt% of Y 2 O 3 , 0 to 3 wt % of La 2 O 3 , and 0 to 3 wt% of Nd 2 O 3 .
  • Y 2 O 3 is 0-1 wt%
  • La 2 O 3 is 0-1.7 wt%
  • Nd 2 O 3 is 0-2 wt%.
  • the composition contains Li 2 O of 0.01% by weight or less, Na 2 O of 0.01% by weight or less, and K 2 O of 0.01% by weight or less.
  • the glass composition of the present invention may further contain a chemical clarifying agent as needed.
  • the chemical clarifying agent is not particularly limited, and may be a conventional chemical clarifying agent which can be used for glass, for example, one or more of tin oxide, arsenic oxide, cerium oxide, barium sulfate, and cerium nitrate.
  • the chemical fining agent is preferably tin oxide.
  • the content of the chemical clarifying agent is preferably 100% by weight based on the total weight of the composition, and the clarifying agent is contained in an amount of not more than 1% by weight, preferably 0.1% to 0.8% by weight, more preferably 0.2% to 0.4% by weight.
  • the melt treatment in order to reduce the inclusion content of the glass composition, it is preferred to carry out the melt treatment by uniformly mixing the raw material with NH 4 NO 3 by using the above composition for the glass composition, and then having a viscosity of 210-
  • the gas inclusions are removed in the range of 500 poise, and the glass obtained after the molding treatment and the annealing treatment in sequence satisfies: the content of gaseous inclusions having an equivalent spherical diameter (D.EQ.) of more than 0.02 mm is less than 0.5/Kg of glass.
  • the raw material is uniformly mixed with NH 4 NO 3 by the above-mentioned composition for the glass composition, and then melt-treated, and then the gaseous inclusions are removed in the range of 210-500 poise, and sequentially
  • the glass obtained after the molding treatment and the annealing treatment also satisfies: the N 2 content in the gaseous inclusion component is ⁇ 50 vol.% based on the volume percentage.
  • the present invention also provides a low inclusion content glass which is prepared using the above glass composition of the present invention.
  • the above low inclusion content glass can be carried out by any conventional method for glass preparation.
  • the low inclusion content glass is prepared by mixing the raw material with NH 4 NO 3 and melting it by using the above composition for the glass composition of the present invention.
  • the treatment removes gaseous inclusions in a viscosity range of 210-500 poise, and then performs molding processing and annealing treatment in sequence.
  • the present invention also provides a method for preparing a glass having a low inclusion content, wherein the method comprises mixing a raw material with NH 4 NO 3 by a ratio of the above composition for glass, and then performing a melt treatment, and then having a viscosity of 210- Gaseous inclusions are removed within 500 poise.
  • the glass composition of the present invention contains SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, ZnO, TiO 2 , Y 2 O 3 , La 2 O 3 and Nd. 2 O 3
  • a raw material for preparing the above-mentioned composition for glass composition means using a carbonate, a nitrate, a sulfate, a phosphate, a basic carbonate, an oxide, or the like containing each of the above elements, and The content of each component mentioned above is based on the oxide of each element, and the specific carbonate, nitrate, sulfate, phosphate, basic carbonate, oxide of each element is selected in the art. It is well known to the person and will not be described here.
  • the obtained product is not greatly reduced.
  • the content of gaseous inclusions and/or solid inclusions in the glass can simultaneously reduce the glass manufacturing cost.
  • the amount of the NH 4 NO 3 to be used is not particularly limited, and the effect of eliminating gaseous inclusions can be achieved.
  • the NH 4 NO 3 is used in an amount of 0.2 to 10% by weight, preferably 1 to 8% by weight, more preferably 2.5-%, based on the raw material of the composition for glass composition. 5wt%.
  • the present invention it is preferred to remove gaseous inclusions in the range of from 220 to 350 poise; more preferably, to remove gaseous inclusions in the range of from 250 to 300 poise.
  • the present invention can be at a lower level than the removal of gaseous inclusions in the viscosity range of conventional 100 poise and below.
  • the operation of removing gaseous inclusions is performed at a temperature, thereby reducing manufacturing energy consumption and cost.
  • the conditions of the melt treatment are not particularly limited, and conventional conditions which can be used for the melt treatment of the glass composition can be employed.
  • the conditions of the melt treatment include: a temperature lower than 1680 ° C, a time greater than 1 h, such as a temperature of 1600-1650 ° C, and a time of 2-50 h.
  • a person skilled in the art can determine the specific melting temperature and melting time according to the actual situation, which is well known to those skilled in the art and will not be described herein.
  • the method further comprises sequentially subjecting the product after removing the gaseous inclusions to a forming treatment, an annealing treatment, and a mechanical processing.
  • the molding treatment is not particularly limited, and various molding treatment methods which are common in the art may be used, and for example, it may be an overflow method, a floating method, a pressing method, a blowing method, a drawing method, The rolling method, the casting method, and the like.
  • the conditions of the annealing treatment include a temperature higher than 730 ° C, a time greater than 0.1 h, such as a temperature of 770-850 ° C, and a time of 0.5-5 h.
  • a person skilled in the art can determine a specific annealing temperature and annealing time according to actual conditions, which are well known to those skilled in the art and will not be described herein.
  • the mechanical processing is not particularly limited, and various mechanical processing methods which are common in the art can be used, for example, the product obtained by annealing treatment can be cut, ground, polished, or the like.
  • the method further comprises: subjecting the product obtained by the mechanical processing to a secondary fusion thinning process.
  • the thickness of the obtained glass can be further reduced by the secondary melting thinning treatment.
  • the prepared glass has a thickness of less than 0.1 mm, more preferably 0.01 to 0.08 mm by the mechanical processing or the secondary melting thinning treatment.
  • the invention also provides a low inclusion content glass prepared by the above preparation method.
  • the low inclusion content glass satisfies the following conditions:
  • the low inclusion content glass satisfies the following conditions:
  • the low inclusion content glass satisfies the following conditions: the density is less than 2.7 g/cm 3 , and the thermal expansion coefficient in the range of 50-350 ° C is lower than 40 ⁇ 10 -7 /° C.
  • the Young's modulus is higher than 80 GPa, the transmittance at a wavelength of 308 nm is 50% or more, and the heat shrinkage is less than 15 ppm at 600 ° C/10 min; preferably, the density is less than 2.7 g/cm 3 , and the range is 50-350 ° C
  • the coefficient of thermal expansion is less than 40 ⁇ 10 -7 / ° C
  • the Young's modulus is higher than 80 GPa
  • the transmittance at a wavelength of 308 nm is 50% or more
  • the heat shrinkage at 600 ° C / 10 min is less than 10 ppm.
  • the invention also provides the application of the low inclusion content glass in the display device, the solar cell substrate glass, the safety glass, the bulletproof glass, the smart automobile glass, the intelligent traffic display screen and the smart window.
  • the low inclusion content glass of the present invention is particularly suitable for preparing a substrate glass substrate material for a flat panel display product and/or a glass film layer material for screen surface protection, a substrate glass substrate material for a flexible display product, and/or a surface mount glass. Glass film material for material and/or screen surface protection, substrate glass substrate material for flexible solar cells, safety glass, bulletproof glass, smart car glass, intelligent traffic display, smart window and smart card ticket, and for other applications requiring high heat stability Application areas of glass materials for sexual and mechanical stability.
  • the glass density was measured in accordance with ASTM C-693 in units of g/cm 3 .
  • the coefficient of thermal expansion of the glass at 50-350 ° C was measured using a horizontal dilatometer in accordance with ASTM E-228, in units of 10 -7 /°C.
  • the Young's modulus of the glass was measured in accordance with ASTM C-623 in units of GPa.
  • the glass high temperature viscosity temperature curve is determined in accordance with ASTM C-965, wherein the 100 P viscosity corresponds to a temperature T 100 in ° C; the viscosity is X poe corresponding to a temperature T X in ° C.
  • the glass liquidus temperature T L was measured in accordance with ASTM C-829 using a ladder furnace method in °C.
  • the glass strain point T st was measured in accordance with ASTM C-336 in °C.
  • the surface tension of the glass at 1300 ° C was measured using a high temperature surface tension meter (Beijing Xuhui Xinrui Technology Co., Ltd., model ZLXS-II) in units of mN/m.
  • composition and volume percentage of the residual gaseous inclusions in the glass were measured using a bubble analysis mass spectrometer (IPI, Germany, model GIA522) in vol.%.
  • the number of gaseous inclusions in the glass was counted in units of /kg glass using a x200-fold polarizing microscope (Olympus, model BX51, the same below).
  • the number of solid inclusions in the glass was counted using a x200-fold polarizing microscope in units of /kg glass.
  • the content of ZrO 2 in the mixture was measured by X-ray fluorescence spectrometer (PANalytical, Model Magix (PW 2403)), and it was recorded as m 1 in wt%.
  • the content of ZrO 2 in the glass was determined by X-ray fluorescence spectrometry.
  • m 2 the unit is wt%.
  • the glass transmittance was measured using an ultraviolet-visible spectrophotometer (Perkin Elmer, model LAMBDA25), and the thickness of the glass sample was 0.5 mm, and the transmittance at 308 nm was taken in units of %.
  • the heat shrinkage rate after heat treatment was measured by the following heat treatment method (difference calculation method): the glass was heated from 25 ° C (measured initial length, labeled as L0) to a temperature increase rate of 5 ° C / min to 600 ° C and at 600 ° C After heat preservation for 10 min, then the temperature was lowered to 25 ° C at a cooling rate of 5 ° C / min, the glass length was contracted by a certain amount, and the length was measured again.
  • the heat shrinkage rate Y t was expressed as: The final unit is expressed in ppm.
  • the glass product is cut, ground, polished, and then cleaned and dried with deionized water to obtain a finished glass product having a thickness of 0.5 mm.
  • the various properties of each glass finished product were measured, and the results are shown in Table 1-2, wherein the composition of gaseous inclusions in the glass is shown in Table 3.
  • the low inclusion content glass obtained in Examples 1-13 of the present invention greatly reduces the obtained glass by selecting the components and preparation methods of the present invention.
  • the content of gaseous inclusions and/or solid inclusions, and the inclusion exclusion process can be performed at a lower temperature, reducing the glass manufacturing cost.
  • the obtained glass has a lower liquidus temperature T 1 and a physical property such as a suitable strain point T st , which is more advantageous for the application of the glass.
  • Comparative Example 1 the raw materials used in Comparative Example 1 are not within the scope of the present invention, and the obtained physical properties such as strain point and heat shrinkage of the glass are inferior and cannot meet the application requirements; in Comparative Example 2, the inclusions of the present invention are not used. Conditions, while using the higher temperature commonly used inclusions commonly used in the prior art, NH 4 NO 3 was not added in Comparative Example 3 , but the inclusions in the glass obtained in Comparative Examples 2 and 3 were higher, much larger than the present application. The low inclusion content glasses of Examples 1-13.
  • the method of the present invention has a significant effect on the problem that the content of gaseous inclusions and solid inclusions in the high viscosity glass such as the substrate glass is too high, and the high viscosity glass obtained by using the glass melt viscosity excluding the gaseous inclusions is simultaneously It has the advantages of relatively low content of gaseous inclusions and solid inclusions, high thermal stability, high stability of glass formation and high mechanical strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

涉及玻璃制造领域,公开了一种玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用。该组合物含有50-64wt%的SiO 2、14-24wt%的Al 2O 3、0-7wt%的B 2O 3+P 2O 5、0.5-7wt%的MgO、1-10wt%的CaO、0-9wt%的SrO、0.1-14wt%的BaO、0.1-5wt%的ZnO、0.1-4wt%的TiO 2、0.1-7wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和,并且该组合物满足如下条件:(1)粘度为100泊对应的温度T 100为1730℃以上;(2)1300℃表面张力小于420mN/m。玻璃用组合物和低夹杂物含量的玻璃制备方法制备得到的玻璃具有夹杂物含量低、制备工艺简单、成本低等优点。

Description

玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用 技术领域
本发明涉及玻璃制造领域,具体涉及一种玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用。
背景技术
在平面显示领域,手持式显示设备与固定式显示设备均在向高清晰度方向发展。手持式显示设备,如手机等,主流像素密度已超过200ppi、300ppi甚至400ppi;固定式显示设备,如液晶电视等,分辨率已超过2K、4K甚至8K。高清晰度的趋势对面板制程的精细程度提出越来越高的要求,进而对配套基板玻璃的热稳定性和品质质量提出升级需要。而适用于显示基板的玻璃属于无碱高铝硅酸盐玻璃体系,具有应变点高、高温粘度大、表面张力大的特点,制造难度明显高于普通钠钙玻璃,高温下残余气态夹杂物难以排除,最终固化在玻璃表面或内部,形成不良欠点,造成产品废弃。
目前已有数种方法用来帮助高粘度玻璃中残余气态夹杂物的排除。一种方法是降低高温玻璃熔体的粘度。更低粘度的熔体具有更高的温度,有利于大部分玻璃中常见气态物质化学溶解度降低(如SO 3、CO 2、O 2),同时有利于残余气态夹杂物在熔体内部上升时粘滞阻力减小,从而有利于上升合并溢出,得到残余气态夹杂物含量满足要求的玻璃均质体。但显示基板玻璃存在高温粘度和表面张力较大的特点,现有用于排除上述玻璃熔体中残余气态夹杂物的玻璃熔体粘度一般为100泊左右,该粘度下对应的温度往往达到1650℃、1700℃甚至1750℃以上,再次降低高温玻璃熔体粘度会导致温度的进一步升高,导致玻璃与耐火材料之间反应加剧,进而对配套耐火材料的耐温性及使用寿命带来巨大挑战;另一方面,上述玻璃熔体的熔炼容器往往由 ZrO 2含量超过80%的高锆砖组成,高温侵蚀及剥落的耐火材料(例如,氧化锆)又成为玻璃内部固态夹杂物产生的潜在风险源。
另一种方法是提高化学澄清剂含量。这种方法存在增加残余固态夹杂物或排除残余气态夹杂物效果不佳等问题。上述高粘度玻璃熔体在高温熔炼时往往使用化学澄清剂,例如,常见为As 2O 3、Sb 2O 3、SnO 2、BaSO 4、Ba(NO 3) 2等中的至少一种。对于氧化气氛,从绿色制造的角度考虑,当前更多使用SnO 2作为澄清剂,其添加量在约0.1-1wt%之间。在一种情况下,随着添加量增加,有利于玻璃熔体中残余气态夹杂物的排除,但是SnO 2存在降温过程中冷凝落入玻璃熔体液流的风险,从而导致残余固态夹杂物含量的增加;在另一种情况下,增加SnO 2含量,反而促使熔体中O 2化学溶解过饱和后,过多的气态物质无法快速排出熔体,从而以残余气态夹杂物的形式保留下来成为欠点;对于还原气氛,通常使用硫酸盐作为化学澄清剂,其添加量在约0.1-1wt%之间。SO 3属于低温型澄清剂,增加含量易造成早期过沸,使得在均质化后期过程无法调节残余气态夹杂物中组成分压的作用,从而无法达到有效排除气态夹杂物的效果。
发明内容
本发明的目的是为了克服现有技术存在的夹杂物去除困难的问题,提供了一种玻璃用组合物,该玻璃用组合物制备得到的玻璃具有夹杂物含量低、制备工艺简单、制备成本低等优点。
为了实现上述目的,本发明一方面提供一种玻璃用组合物,该组合物含有50-64wt%的SiO 2、14-24wt%的Al 2O 3、0-7wt%的B 2O 3+P 2O 5、0.5-7wt%的MgO、1-10wt%的CaO、0-9wt%的SrO、0.1-14wt%的BaO、0.1-5wt%的ZnO、0.1-4wt%的TiO 2、0.1-7wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和,并且该组合物满足如下条件:(1) 粘度为100泊对应的温度T 100为1730℃以上;(2)1300℃表面张力小于420mN/m。
优选地,该组合物还满足:(3)液相线温度T L低于1180℃。
优选地,该组合物还满足:(4)应变点T st为710℃以上。
优选地,该组合物含有56-63wt%的SiO 2、17-22wt%的Al 2O 3、0-5.2wt%的B 2O 3+P 2O 5、1-5wt%的MgO、2-8wt%的CaO、0-8wt%的SrO、1-12wt%的BaO、0.3-4wt%的ZnO、0.2-3wt%的TiO 2、0.1-4wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和。
优选地,该组合物含有的B 2O 3为0-5wt%,P 2O 5为0-7wt%,优选为0-5wt%。
优选地,该组合物含有的Y 2O 3为0-2wt%、La 2O 3为0-3wt%、Nd 2O 3为0-3wt%。
优选地,该组合物含有的Li 2O为0.01wt%以下、Na 2O为0.01wt%以下、K 2O为0.01wt%以下。
优选地,所述组合物还含有化学澄清剂。更优选地,所述化学澄清剂优选为氧化锡。更优选地,以该组合物的总重量为基准,所述澄清剂的含量不大于1wt%。
优选地,通过用上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,然后在粘度为210-500泊范围内除去气态夹杂物,并依次进行成型处理和退火处理后得到的玻璃满足:等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.5个/Kg玻璃。
本发明第二方面提供一种低夹杂物含量的玻璃,其采用本发明的上述玻璃用组合物制备。
优选地,该低夹杂物含量的玻璃制备方法为:用上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,在粘度为210-500泊范围内 除去气态夹杂物,然后依次进行成型处理和退火处理。
本发明第三方面提供一种低夹杂物含量的玻璃的制备方法,该方法包括用上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,然后在粘度为210-500泊范围内除去气态夹杂物。
优选地,相对于所述玻璃用组合物配比的原料,所述NH 4NO 3的用量为0.2-10wt%,优选为1-8wt%,更优选为2.5-5wt%。
优选地,在粘度为220-350泊范围内除去气态夹杂物;更优选地,在粘度为250-300泊范围内除去气态夹杂物。
优选地,该方法还包括对除去气态夹杂物后的产物依次进行成型处理、退火处理和机械加工处理。
优选地,该方法还包括:对机械加工处理得到的产物进行二次熔融拉薄处理。
优选地,通过所述机械加工处理或者二次熔融拉薄处理使制备得到的玻璃厚度小于0.1mm。
本发明第四方面提供上述制备方法制备得到的低夹杂物含量的玻璃。
优选地,所述低夹杂物含量的玻璃满足如下条件:
(1)等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.5个/Kg玻璃,并且以体积百分比为基准,所述气态夹杂物成分中N 2含量≥50vol.%;
(2)ZrO 2含量与高温熔炼前混合料中ZrO 2含量的差值Δ ZrO2≤0.02wt%;
(3)大于0.02mm的固态夹杂物含量小于0.5个/kg玻璃。
更优选地,所述低夹杂物含量的玻璃满足如下条件:
(1)等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.1个/Kg玻璃,并且以体积百分比为基准,所述气态夹杂物成分中N 2含量≥60vol.%;
(2)ZrO 2含量与高温熔炼前混合料中ZrO 2含量的差值Δ ZrO2≤0.015wt%;
(3)大于0.02mm的固态夹杂物含量小于0.1个/kg玻璃。
优选地,所述低夹杂物含量的玻璃满足如下条件:密度低于2.7g/cm 3,50-350℃范围内的热膨胀系数低于40×10 -7/℃,杨氏模量高于80GPa,波长为308nm处透过率为50%以上,600℃/10min条件下热收缩小于15ppm。
本发明第五方面提供上述低夹杂物含量的玻璃在显示器件、太阳能电池衬底玻璃、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗或者智能卡票中的应用。
本发明的发明人针对低夹杂物含量的玻璃进行了深入研究发现,通过适当控制玻璃用组合物的组分和性质,可以降低高粘度玻璃制备过程中排除夹杂物的操作温度,并且使夹杂物更容易排除,从而大幅降低了制得的玻璃中气态夹杂物和/或固态夹杂物的含量,并且合理地降低了玻璃制造成本。
根据本发明的低夹杂物含量的玻璃制备方法,在硅酸盐反应阶段,强氧化剂NH 4NO 3促使变价化学澄清剂保持在高价状态,避免在激烈放氧段之前过早反应而失效;在玻璃结构形成和去除气态夹杂物阶段,NH 4NO 3分解得到的N 2在玻璃中溶解过饱和之后便进入气态夹杂物中,随着N 2气体分压增大,促进O 2、CO 2等气体不断进入气态夹杂物,进而增大气态夹杂物体积、降低N 2气体分压,再次促进N 2进入气态夹杂物。通过循环不断增大气态夹杂物体积和上升浮力,最终排出玻璃体之外。通过采用本发明的低夹杂物含量的玻璃制备方法,通过添加NH 4NO 3,并配合在特定的粘度范围内除去气态夹杂物,可以更进一步降低玻璃中气态夹杂物和/或固态夹杂物的含量。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这 些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供的一种玻璃用组合物,该组合物含有50-64wt%的SiO 2、14-24wt%的Al 2O 3、0-7wt%的B 2O 3+P 2O 5、0.5-7wt%的MgO、1-10wt%的CaO、0-9wt%的SrO、0.1-14wt%的BaO、0.1-5wt%的ZnO、0.1-4wt%的TiO 2、0.1-7wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和,并且该组合物满足如下条件:(1)粘度为100泊对应的温度T 100为1730℃以上;(2)1300℃表面张力小于420mN/m。
优选地,该组合物满足:(2)1300℃表面张力小于400mN/m。
根据本发明的一种优选的实施方式,该组合物还满足:(3)液相线温度T L低于1180℃。
根据本发明的一种优选的实施方式,该组合物还满足:(4)应变点T st为710℃以上。
在本发明中,粘度为100泊对应的温度T 100参照ASTM C-965测定玻璃高温粘温曲线,其中,100P粘度对应的温度T 100,单位为℃;1300℃表面张力使用高温表面张力仪(北京旭辉新锐科技有限公司,型号ZLXS-II)测定;液相线温度T L参照ASTM C-829使用梯温炉法测定;应变点T st参照ASTM C-336测定。
在本发明中,通过使玻璃用组合物具有上述的组成和性质,可以使所述玻璃用组合物在较高(例如210-500泊)的粘度下进行玻璃熔体中残余气态夹杂物的排除操作,从而使得排除本发明的玻璃用组合物熔体中气态夹杂物的过程能够在较低的操作温度下进行。即本发明的玻璃用组合物的熔体排除气态夹杂物的最小粘度η min为210-500泊,优选为220-350泊,更优选为 250-300泊。通过控制增大上述最小熔体粘度,使得本发明的玻璃用组合物熔体在恰当阶段出现“沸腾”的效果,不仅大大减少了残余气态夹杂物的含量、促进熔体均质化进程,同时使得工艺带扩宽,降低生产难度。同时本发明通过控制玻璃的表面张力,可以使得气态夹杂物更容易排除,进一步降低制得的玻璃中的夹杂物含量。
根据本发明的一种优选的实施方式,该组合物含有56-63wt%的SiO 2、17-22wt%的Al 2O 3、0-5.2wt%的B 2O 3+P 2O 5、1-5wt%的MgO、2-8wt%的CaO、0-8wt%的SrO、1-12wt%的BaO、0.3-4wt%的ZnO、0.2-3wt%的TiO 2、0.1-4wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和。
优选地,该组合物含有的B 2O 3为0-5wt%,P 2O 5为0-7wt%,优选为0-5wt%。例如B 2O 3为0-4.7wt%和/或P 2O 5为0-1.5wt%。
优选地,该组合物含有的Y 2O 3为0-2wt%、La 2O 3为0-3wt%、Nd 2O 3为0-3wt%。例如Y 2O 3为0-1wt%、La 2O 3为0-1.7wt%和/或Nd 2O 3为0-2wt%。
优选地,该组合物含有的Li 2O为0.01wt%以下、Na 2O为0.01wt%以下、K 2O为0.01wt%以下。
根据本发明,本发明的玻璃用组合物还可以根据需要含有化学澄清剂。作为所述化学澄清剂,没有特别的限定,可以是现有的能够用于玻璃的化学澄清剂,例如氧化锡、氧化砷、氧化锑、硫酸钡、硝酸钡中的一种或多种。优选地,所述化学澄清剂优选为氧化锡。作为所述化学澄清剂的含量,以组合物的总重量为100wt%计,优选所述澄清剂的含量不大于1wt%,优选为0.1-0.8wt%,更优选为0.2-0.4wt%。
根据本发明,为了降低所述玻璃用组合物的夹杂物含量,优选地,通过用上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,然后在粘度为210-500泊范围内除去气态夹杂物,并依次进行成型处理和退火 处理后得到的玻璃满足:等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.5个/Kg玻璃。
根据本发明进一步优选的实施方式,通过用上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,然后在粘度为210-500泊范围内除去气态夹杂物,并依次进行成型处理和退火处理后得到的玻璃还满足:以体积百分比为基准,所述气态夹杂物成分中N 2含量≥50vol.%。
本发明还提供一种低夹杂物含量的玻璃,其采用本发明的上述玻璃用组合物制备。
上述低夹杂物含量的玻璃可以采用现有的用于玻璃制备的任意方法进行。为了降低夹杂物含量,提高玻璃的物理性质,优选地,该低夹杂物含量的玻璃制备方法为:用本发明的上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,在粘度为210-500泊范围内除去气态夹杂物,然后依次进行成型处理和退火处理。通过将本发明的玻璃用组合物配比的原料与NH 4NO 3混合,并配合在特定的粘度范围内除去气态夹杂物,不但大幅降低了制得的玻璃中的气态夹杂物和/或固态夹杂物的含量,同时能合理降低玻璃制造成本。
本发明还提供一种低夹杂物含量的玻璃的制备方法,其中,该方法包括用上述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,然后在粘度为210-500泊范围内除去气态夹杂物。
本领域技术人员应该理解的是,本发明的玻璃用组合物中含有SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO、TiO 2、Y 2O 3、La 2O 3和Nd 2O 3,用于制备上述玻璃用组合物的配比的原料指的是使用含前述各元素的碳酸盐、硝酸盐、硫酸盐、磷酸盐、碱式碳酸盐、氧化物等,且前述提及的各组分的含量均以各元素的氧化物计,具体的各元素的碳酸盐、硝酸盐、硫酸盐、磷酸盐、碱式碳酸盐、氧化物的选择为本领域技术人员所熟知,在此不再赘述。
在本发明中,通过在高温熔炼前,将本发明的玻璃用组合物配比的原料与NH 4NO 3混合,并配合在特定的粘度范围内除去气态夹杂物,不但大幅降低了制得的玻璃中的气态夹杂物和/或固态夹杂物的含量,同时能合理降低玻璃制造成本。
根据本发明,所述NH 4NO 3的用量没有特别的限定,达到排除气态夹杂物的效果即可。根据本发明的一种优选的实施方式,相对于所述玻璃用组合物配比的原料,所述NH 4NO 3的用量为0.2-10wt%,优选为1-8wt%,更优选为2.5-5wt%。通过使NH 4NO 3的用量在上述范围内,保证NH 4NO 3分解得到足量的N 2参与到玻璃熔体排除气态夹杂物过程,进一步提高排除气态夹杂物的效果。
在本发明的方法中,优选在粘度为220-350泊范围内除去气态夹杂物;更优选在粘度为250-300泊范围内除去气态夹杂物。通过控制在上述粘度范围内除去气态夹杂物(更优选在上述最小熔体粘度下除去气态夹杂物),相比于常规100泊及以下的粘度范围内除去气态夹杂物,本发明能够在较低的温度下进行排除气态夹杂物的操作,从而降低制造能耗和成本。
在本发明的方法中,熔融处理的条件没有特别的限定,可以采用现有的能够用于玻璃组合物熔融处理的条件。优选情况下,所述熔融处理的条件包括:温度低于1680℃,时间大于1h,例如温度为1600-1650℃,时间为2-50h。本领域技术人员可以根据实际情况确定具体的熔融温度和熔融时间,此为本领域技术人员所熟知,在此不再赘述。
根据本发明,该方法还包括对除去气态夹杂物后的产物依次进行成型处理、退火处理和机械加工处理。
在本发明的制备方法中,对于成型处理没有特别的限定,可以为本领域常见的各种成型处理方式,例如可以为溢流法、浮式法、压制法、吹制法、拉制法、延压法、浇铸法等。
在本发明的制备方法中,优选情况下,退火处理的条件包括:温度高于730℃,时间大于0.1h,例如温度为770-850℃,时间为0.5-5h。本领域技术人员可以根据实际情况确定具体的退火温度和退火时间,此为本领域技术人员所熟知,在此不再赘述。
在本发明的制备方法中,对于机械加工处理没有特别的限定,可以为本领域常见的各种机械加工方式,例如可以为将退火处理得到的产物进行切割、研磨、抛光等。
根据本发明的一种优选的实施方式,该方法还包括:对机械加工处理得到的产物进行二次熔融拉薄处理。通过二次熔融拉薄处理,可以进一步降低得到玻璃的厚度。
根据本发明,优选通过所述机械加工处理或者二次熔融拉薄处理使制备得到的玻璃厚度小于0.1mm,更优选为0.01-0.08mm。
本发明还提供了上述制备方法制备得到的低夹杂物含量的玻璃。
优选地,所述低夹杂物含量的玻璃满足如下条件:
(1)等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.5个/Kg玻璃,并且以体积百分比为基准,所述气态夹杂物成分中N 2含量≥50vol.%;
(2)ZrO 2含量与高温熔炼前混合料中ZrO 2含量的差值Δ ZrO2≤0.02wt%;
(3)大于0.02mm的固态夹杂物含量小于0.5个/kg玻璃。
更优选地,所述低夹杂物含量的玻璃满足如下条件:
(1)等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.1个/Kg玻璃,并且以体积百分比为基准,所述气态夹杂物成分中N 2含量≥60vol.%;
(2)ZrO 2含量与高温熔炼前混合料中ZrO 2含量的差值Δ ZrO2≤0.015wt%;
(3)大于0.02mm的固态夹杂物含量小于0.1个/kg玻璃。
根据本发明的一种优选的实施方式,所述低夹杂物含量的玻璃满足如下条件:密度低于2.7g/cm 3,50-350℃范围内的热膨胀系数低于40×10 -7/℃,杨氏模量高于80GPa,波长为308nm处透过率为50%以上,600℃/10min条件下热收缩小于15ppm;优选地,密度低于2.7g/cm 3,50-350℃范围内的热膨胀系数低于40×10 -7/℃,杨氏模量高于80GPa,波长为308nm处透过率为50%以上,600℃/10min条件下热收缩小于10ppm。
本发明还提供了上述低夹杂物含量的玻璃在显示器件、太阳能电池衬底玻璃、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗中的应用。本发明的低夹杂物含量的玻璃,尤其适用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的衬底玻璃基板材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性和机械稳定性玻璃材料的应用领域。
以下将通过实施例对本发明进行详细描述。以下实施例中,如无特别说明,所用的各材料均可通过商购获得,如无特别说明,所用的方法为本领域的常规方法。
参照ASTM C-693测定玻璃密度,单位为g/cm 3
参照ASTM E-228使用卧式膨胀仪测定50-350℃的玻璃热膨胀系数,单位为10 -7/℃。
参照ASTM C-623测定玻璃杨氏模量,单位为GPa。
参照ASTM C-965测定玻璃高温粘温曲线,其中,100P粘度对应的温度T 100,单位为℃;粘度为X泊对应的温度T X,单位为℃。
参照ASTM C-829使用梯温炉法测定玻璃液相线温度T L,单位为℃。
参照ASTM C-336测定玻璃应变点T st,单位为℃。
使用高温表面张力仪(北京旭辉新锐科技有限公司,型号ZLXS-II)测定玻璃1300℃的表面张力,单位为mN/m。
使用气泡分析质谱仪(德国IPI公司,型号GIA522)测定玻璃中残余气态夹杂物中各组成种类及体积百分比,单位为vol.%。
使用×200倍偏光显微镜(奥林巴斯公司,型号BX51,下同)统计玻璃中气态夹杂物个数,单位为个/kg玻璃。
使用×200倍偏光显微镜统计玻璃中固态夹杂物个数,单位为个/kg玻璃。
使用X射线荧光光谱仪(荷兰PANalytical公司,型号Magix(PW2403))测定混合料中ZrO 2含量,记为m 1,单位为wt%;使用X射线荧光光谱仪测定制得玻璃中ZrO 2含量,记为m 2,单位为wt%。制得玻璃中ZrO 2含量m 2与高温熔炼前混合料中ZrO 2含量m 1的差值记为Δ ZrO2,即Δ ZrO2=m 2-m 1,单位为wt%。
使用紫外-可见分光光度计(Perkin Elmer公司,型号LAMBDA25)测定玻璃透过率,玻璃样品厚度为0.5mm,取308nm处透过率,单位为%。
采用如下热处理的方法(差值计算法)测定经过热处理后的热收缩率:将玻璃从25℃(测定初始长度,标记为L0)以5℃/min的升温速率升温至600℃并在600℃保温10min,然后以5℃/min的降温速率降温至25℃,玻璃长度发生一定量的收缩,再次测量其长度,标记为Lt,则热收缩率Y t表示为:
Figure PCTCN2018117645-appb-000001
最终单位以ppm表示。
实施例1-13、对比例1-3
按照表1-2所示配比称量各原料组分,混匀,将混合料倒入高锆砖坩埚(ZrO 2>85wt%)中,然后在η x泊粘度的对应温度为T x的电阻炉中加热48 小时,并使用高锆棒(ZrO 2>85wt%)搅拌器匀速缓慢搅拌。将熔制好的玻璃液快速浇注入不锈钢铸铁磨具内,成形为规定的块状玻璃制品,然后将玻璃制品在退火炉中退火2小时,关闭电源随炉冷却到25℃。将玻璃制品进行切割、研磨、抛光,然后用去离子水清洗干净并烘干,制得厚度为0.5mm的玻璃成品。分别对各玻璃成品的各种性能进行测定,结果见表1-2,其中玻璃中的气态夹杂物组成见表3。
表1
Figure PCTCN2018117645-appb-000002
表2
Figure PCTCN2018117645-appb-000003
Figure PCTCN2018117645-appb-000004
将表1-3中的实施例与对比例数据比较可知,本发明实施例1-13得到的低夹杂物含量的玻璃通过选用本发明的组分和制备方法,大幅降低了制得的玻璃中气态夹杂物和/或固态夹杂物的含量,并且可以在较低的温度下进行夹杂物排除的过程,降低了玻璃制造成本。其中,实施例1-8中通过选用优选的原料组分,得到的玻璃具有更低的液相线温度T 1以及适当的应变点T st等物理性质,更有利于玻璃的应用。
与之相对,对比例1中使用的原料不在本发明的范围内,得到的玻璃应变点、热收缩等物理性质较差,不能满足应用的需求;对比例2中未采用本发明的排除夹杂物条件,而采用现有技术中通常使用的较高温度排除夹杂物,对比例3中未添加NH 4NO 3,但是对比例2、3中得到的玻璃中夹杂物反而更高,远大于本申请实施例1-13的低夹杂物含量的玻璃。
可见,本发明方法对于显示基板玻璃等高粘度玻璃中气态夹杂物和固态夹杂物含量过高的问题有明显效果,使用较高排除气态夹杂物的玻璃熔体粘度所制得的高粘度玻璃同时兼具气态夹杂物和固态夹杂含量明显较低、热稳定性较高性、玻璃形成稳定性较高、机械强度高等优点。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

  1. 一种玻璃用组合物,其特征在于,该组合物含有50-64wt%的SiO 2、14-24wt%的Al 2O 3、0-7wt%的B 2O 3+P 2O 5、0.5-7wt%的MgO、1-10wt%的CaO、0-9wt%的SrO、0.1-14wt%的BaO、0.1-5wt%的ZnO、0.1-4wt%的TiO 2、0.1-7wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和,并且该组合物满足如下条件:
    (1)粘度为100泊对应的温度T 100为1730℃以上;
    (2)1300℃表面张力小于420mN/m。
  2. 根据权利要求1所述的玻璃用组合物,其特征在于,该组合物还满足:(3)液相线温度T L低于1180℃;
    优选地,该组合物还满足:(4)应变点T st为710℃以上。
  3. 根据权利要求1所述的玻璃用组合物,其特征在于,该组合物含有56-63wt%的SiO 2、17-22wt%的Al 2O 3、0-5.2wt%的B 2O 3+P 2O 5、1-5wt%的MgO、2-8wt%的CaO、0-8wt%的SrO、1-12wt%的BaO、0.3-4wt%的ZnO、0.2-3wt%的TiO 2、0.1-4wt%的Y 2O 3+La 2O 3+Nd 2O 3、<0.05wt%的R 2O,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和。
  4. 根据权利要求1或3所述的玻璃用组合物,其特征在于,该组合物含有的B 2O 3为0-5wt%,P 2O 5为0-7wt%,优选为0-5wt%;
    优选地,该组合物含有的Y 2O 3为0-2wt%、La 2O 3为0-3wt%、Nd 2O 3为0-3wt%;
    优选地,该组合物含有的Li 2O为0.01wt%以下、Na 2O为0.01wt%以下、K 2O为0.01wt%以下。
  5. 根据权利要求1所述的玻璃用组合物,其特征在于,所述组合物还含有化学澄清剂;
    优选地,所述化学澄清剂为氧化锡;
    优选地,以该组合物的总重量为基准,所述澄清剂的含量不大于1wt%。
  6. 根据权利要求1-5中任意一项所述的玻璃用组合物,其特征在于,通过用所述玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,然后在粘度为210-500泊范围内除去气态夹杂物,并依次进行成型处理和退火处理后得到的玻璃满足:等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.5个/Kg玻璃。
  7. 一种低夹杂物含量的玻璃,其采用权利要求1-5中任一项所述的玻璃用组合物制备。
  8. 根据权利要求7所述的低夹杂物含量的玻璃,其特征在于,该低夹杂物含量的玻璃的制备方法为:用权利要求1-5中任意一项所述的玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,在粘度为210-500泊范围内除去气态夹杂物,然后依次进行成型处理和退火处理。
  9. 一种低夹杂物含量的玻璃的制备方法,其特征在于,该方法包括用权利要求1-5中任意一项所述的玻璃用组合物的配比将原料与NH 4NO 3混合均匀后进行熔融处理,在粘度为210-500泊范围内除去气态夹杂物,然后依次进行成型处理和退火处理。
  10. 根据权利要求9所述的低夹杂物含量的玻璃的制备方法,其特征在于,相对于所述玻璃用组合物配比的原料,所述NH 4NO 3的用量为 0.2-10wt%,优选为1-8wt%,更优选为2.5-5wt%;
    优选地,在粘度为220-350泊范围内除去气态夹杂物;更优选地,在粘度为250-300泊范围内除去气态夹杂物。
  11. 根据权利要求9所述的低夹杂物含量的玻璃的制备方法,其特征在于,该方法还包括对退火处理后的产物进行机械加工处理;
    优选地,该方法还包括:对机械加工处理得到的产物进行二次熔融拉薄处理;
    优选地,通过所述机械加工处理或者二次熔融拉薄处理使制备得到的玻璃厚度小于0.1mm。
  12. 根据权利要求9-11中任意一项所述的制备方法制备得到的低夹杂物含量的玻璃。
  13. 根据权利要求7、8和12中任意一项所述的低夹杂物含量的玻璃,其特征在于,所述低夹杂物含量的玻璃满足如下条件:
    (1)等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.5个/Kg玻璃,并且以体积百分比为基准,所述气态夹杂物成分中N 2含量≥50vol.%;
    (2)ZrO 2含量与高温熔炼前混合料中ZrO 2含量的差值Δ ZrO2≤0.02wt%;
    (3)大于0.02mm的固态夹杂物含量小于0.5个/kg玻璃。
  14. 根据权利要求13所述的低夹杂物含量的玻璃,其特征在于,所述低夹杂物含量的玻璃满足如下条件:
    (1)等效球形直径(D.EQ.)大于0.02mm的气态夹杂物含量小于0.1 个/Kg玻璃,并且以体积百分比为基准,所述气态夹杂物成分中N 2含量≥60vol.%;
    (2)ZrO 2含量与高温熔炼前混合料中ZrO 2含量的差值Δ ZrO2≤0.015wt%;
    (3)大于0.02mm的固态夹杂物含量小于0.1个/kg玻璃。
  15. 根据权利要求12-14中任意一项所述的低夹杂物含量的玻璃,该玻璃满足如下条件:密度低于2.7g/cm 3,50-350℃范围内的热膨胀系数低于40×10 -7/℃,杨氏模量高于80GPa,波长为308nm处透过率为50%以上,600℃/10min条件下热收缩小于15ppm。
  16. 根据权利要求12-15中任意一项所述的低夹杂物含量的玻璃在显示器件、太阳能电池衬底玻璃、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗或者智能卡票中的应用。
PCT/CN2018/117645 2018-02-12 2018-11-27 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用 WO2019153845A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020543025A JP7022838B2 (ja) 2018-02-12 2018-11-27 ガラス用組成物、低介在物含有量のガラス、その製造方法及び使用
EP18905497.6A EP3753909B1 (en) 2018-02-12 2018-11-27 Glass composition, low inclusion content glass, preparation method therefor and application thereof
KR1020207026309A KR102551614B1 (ko) 2018-02-12 2018-11-27 유리 조성물, 개재물 함량이 낮은 유리와 그 제조 방법 및 이의 응용
US16/969,319 US11746039B2 (en) 2018-02-12 2018-11-27 Glass composition, low inclusion content glass, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810144654.X 2018-02-12
CN201810144654.XA CN108341595B (zh) 2018-02-12 2018-02-12 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019153845A1 true WO2019153845A1 (zh) 2019-08-15

Family

ID=62959345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117645 WO2019153845A1 (zh) 2018-02-12 2018-11-27 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用

Country Status (6)

Country Link
US (1) US11746039B2 (zh)
EP (1) EP3753909B1 (zh)
JP (1) JP7022838B2 (zh)
KR (1) KR102551614B1 (zh)
CN (1) CN108341595B (zh)
WO (1) WO2019153845A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2020896B1 (en) 2018-05-08 2019-11-14 Corning Inc Water-containing glass-based articles with high indentation cracking threshold
CN108341595B (zh) * 2018-02-12 2020-09-29 东旭集团有限公司 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用
CN109160727B (zh) * 2018-10-16 2020-10-13 东旭光电科技股份有限公司 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用
CN109231819B (zh) * 2018-10-16 2021-04-09 东旭光电科技股份有限公司 无碱铝硅酸盐玻璃及其制备方法和应用
TW202026261A (zh) * 2018-11-16 2020-07-16 美商康寧公司 可水蒸氣強化無鹼玻璃組成物
TW202026257A (zh) 2018-11-16 2020-07-16 美商康寧公司 用於透過蒸氣處理而強化之玻璃成分及方法
CN114127024B (zh) 2019-05-16 2023-10-24 康宁股份有限公司 具有蒸汽处理雾度抗性的玻璃组合物及其方法
CN114031292A (zh) * 2021-12-07 2022-02-11 中氢国储(杭州)精密制造有限公司 高铝硅玻璃管配方及高铝硅玻璃管的制作方法
CN115745398B (zh) * 2022-11-30 2024-07-26 成都光明光电股份有限公司 玻璃组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285325A (zh) * 1999-08-21 2001-02-28 肖特玻璃制造厂 无碱铝硼硅酸盐玻璃及其应用
US20010034293A1 (en) * 2000-01-12 2001-10-25 Ulrich Peuchert Alkali-free aluminoborosilicate glass, and uses thereof
JP2002308643A (ja) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd 無アルカリガラス及びディスプレイ用ガラス基板
CN101801872A (zh) * 2007-07-31 2010-08-11 康宁股份有限公司 适合下拉法的玻璃组合物及其制造和使用方法
CN102417300A (zh) * 2011-08-31 2012-04-18 中国科学院微电子研究所 一种液晶显示器用玻璃及其制造方法
CN102584007A (zh) * 2011-12-20 2012-07-18 东旭集团有限公司 一种环保型tft-lcd基板玻璃的配方
CN108341595A (zh) * 2018-02-12 2018-07-31 东旭集团有限公司 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183645A (ja) * 1984-09-28 1986-04-28 Hoya Corp カラ−コントラスト眼鏡レンズ用ガラス
JPH11292563A (ja) * 1998-04-03 1999-10-26 Nippon Electric Glass Co Ltd 無アルカリガラス基板
DE19934072C2 (de) 1999-07-23 2001-06-13 Schott Glas Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung
JP2001076336A (ja) * 1999-09-08 2001-03-23 Hoya Corp 情報記録媒体用ガラス基板およびそれを用いた情報記録媒体
JP5874316B2 (ja) 2010-10-27 2016-03-02 日本電気硝子株式会社 無アルカリガラス
JP5729673B2 (ja) 2010-12-06 2015-06-03 日本電気硝子株式会社 無アルカリガラス
JP5831838B2 (ja) 2011-03-08 2015-12-09 日本電気硝子株式会社 無アルカリガラス
JP2014240332A (ja) * 2013-06-11 2014-12-25 日本電気硝子株式会社 ガラス基板の製造方法
US9278883B2 (en) * 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
CN104986954B (zh) * 2015-07-07 2017-03-22 清远南玻节能新材料有限公司 锆质铝硅酸盐玻璃及其制备方法
CN105236736A (zh) * 2015-08-21 2016-01-13 中国南玻集团股份有限公司 铝硅酸盐玻璃及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285325A (zh) * 1999-08-21 2001-02-28 肖特玻璃制造厂 无碱铝硼硅酸盐玻璃及其应用
US20010034293A1 (en) * 2000-01-12 2001-10-25 Ulrich Peuchert Alkali-free aluminoborosilicate glass, and uses thereof
JP2002308643A (ja) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd 無アルカリガラス及びディスプレイ用ガラス基板
CN101801872A (zh) * 2007-07-31 2010-08-11 康宁股份有限公司 适合下拉法的玻璃组合物及其制造和使用方法
CN102417300A (zh) * 2011-08-31 2012-04-18 中国科学院微电子研究所 一种液晶显示器用玻璃及其制造方法
CN102584007A (zh) * 2011-12-20 2012-07-18 东旭集团有限公司 一种环保型tft-lcd基板玻璃的配方
CN108341595A (zh) * 2018-02-12 2018-07-31 东旭集团有限公司 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用

Also Published As

Publication number Publication date
KR102551614B1 (ko) 2023-07-04
US11746039B2 (en) 2023-09-05
CN108341595B (zh) 2020-09-29
EP3753909A4 (en) 2021-11-17
CN108341595A (zh) 2018-07-31
JP2021512843A (ja) 2021-05-20
EP3753909C0 (en) 2024-03-20
JP7022838B2 (ja) 2022-02-18
US20210047230A1 (en) 2021-02-18
EP3753909B1 (en) 2024-03-20
EP3753909A1 (en) 2020-12-23
KR20200123158A (ko) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2019153845A1 (zh) 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用
CN110615610B (zh) 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
KR101140193B1 (ko) 디스플레이 기판용 유리와 그 사용 방법 및 제조 방법
CN108314316B (zh) 玻璃用组合物、化学强化玻璃及其制备方法和应用
TWI677479B (zh) 顯示器用玻璃基板
JP2021520330A (ja) 微結晶ガラス、微結晶ガラス製品、およびその製造方法
JP5267464B2 (ja) 無アルカリガラスの製造方法
WO2016078473A1 (zh) 高硬度透明微晶玻璃及其制备方法
KR101409707B1 (ko) 평판 디스플레이용 유리 기판 및 그의 제조 방법
TW201213258A (en) Method for manufacturing non-alkali glass
CN112707639A (zh) 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品
KR20180022872A (ko) 디스플레이용 유리 기판 및 그 제조 방법
JPWO2016017558A1 (ja) 高透過ガラス
KR102291291B1 (ko) 무알칼리 유리의 제조 방법
JP7138139B2 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
CN108863051B (zh) 一种应用于5g通信移动终端的微晶玻璃浮法制备工艺
JP7484369B2 (ja) アルミノシリケートガラス及びその製造方法
KR102479156B1 (ko) 무알칼리 유리 및 그 제조 방법
CN116621455A (zh) 微晶玻璃、微晶玻璃制品及其制造方法
JP2009084073A (ja) ガラスの製造方法
JP2016113361A (ja) 無アルカリガラス
JP2007126298A (ja) 光学ガラス
CN109809687A (zh) 一种用于高分辨率显示器的基板玻璃
CN116375345A (zh) 具有尖晶石晶相的微晶玻璃和微晶玻璃制品
CN108585488A (zh) 一种应用于5g通信移动终端的微晶玻璃格法制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026309

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018905497

Country of ref document: EP

Effective date: 20200914