WO2019151222A1 - 陰イオン吸着剤および陰イオン吸着剤の製造方法 - Google Patents

陰イオン吸着剤および陰イオン吸着剤の製造方法 Download PDF

Info

Publication number
WO2019151222A1
WO2019151222A1 PCT/JP2019/002910 JP2019002910W WO2019151222A1 WO 2019151222 A1 WO2019151222 A1 WO 2019151222A1 JP 2019002910 W JP2019002910 W JP 2019002910W WO 2019151222 A1 WO2019151222 A1 WO 2019151222A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic material
anion adsorbent
cacl
aqueous solution
anion
Prior art date
Application number
PCT/JP2019/002910
Other languages
English (en)
French (fr)
Inventor
誠志 山▲崎▼
Original Assignee
株式会社村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村上開明堂 filed Critical 株式会社村上開明堂
Publication of WO2019151222A1 publication Critical patent/WO2019151222A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating

Definitions

  • the present invention relates to an anion adsorbent and a method for producing an anion adsorbent.
  • Hazardous substances contained in factory effluent and groundwater cause environmental damage.
  • factory wastewater discharged from a semiconductor factory, a glass factory, or a plating factory contains, for example, fluorine as a harmful substance.
  • fluorine as a harmful substance.
  • Patent Document 1 discloses an ion adsorbent having a structure in which zeolite is bonded with a hydrotalcite-like compound and having both cation adsorption property and anion adsorption property.
  • This ion adsorbent is formed by a predetermined production method, and the proportion of zeolite contained in the ion adsorbent is 10 to 90 wt%, where the total of zeolite and hydrotalcite-like compound is 100 wt%. .
  • Patent Document 2 discloses an anion-adsorbing carbon material obtained by bringing a plant raw material into contact with a solution containing a metal chloride and then carbonized, and a production method thereof.
  • anions that can be exchanged with anions to be adsorbed are bonded directly or directly to a large number of functional groups drawn on the surface of the microporous wall of the carbide. .
  • the ion adsorbent described in Patent Document 1 pursues the simultaneous ion exchange of cations and anions. Therefore, there exists a problem that the adsorption
  • the anion adsorbing carbon material described in Patent Document 2 has a problem that the amount of anion adsorption is small.
  • An object of the present invention is to solve the above-mentioned problems and provide an anion adsorbent excellent in anion adsorption performance and a method for producing the same.
  • the anion adsorbent according to the present invention includes CaOClCa (OH) 2 , Ca (ClO) 2 .nH 2 O (n represents a positive integer), and Ca (ClO) 2 in addition to CaCl 2 . Is attached to the surface of the inorganic material. According to such a configuration, the anion adsorbent is excellent in anion adsorption performance.
  • the inorganic material is preferably foamed glass.
  • An anion adsorbent can be easily handled by carrying foamed glass as an inorganic material.
  • industrial waste can be reduced by using glass waste.
  • the anion adsorbent according to the present invention may have a Ca / Si value of 7 or more and 15 or less, which is a ratio of the Ca content (mass%) and the Si content (mass%). If the value of Ca / Si is 7 or more, the anion adsorption performance is further improved. Moreover, if the value of Ca / Si is 15 or less, it becomes easy to manufacture an anion adsorbent.
  • the anion adsorbent according to the present invention may have a Ca content of 30% by mass to 40% by mass. When the Ca content is 30% by mass or more, the anion adsorption performance is further improved. Moreover, if Ca content is 40 mass% or less, it will become easy to manufacture an anion adsorbent.
  • the anion adsorbent according to the present invention Ca 5 (PO 4 ) 3 (OH) is attached to the surface of the inorganic material. According to such a configuration, the anion adsorbent is excellent in anion adsorption performance.
  • the method for producing an anion adsorbent according to the present invention includes a step of bringing a CaCl 2 aqueous solution into contact with an inorganic material, a step of bringing the CaCl 2 aqueous solution into contact with the inorganic material, and then drying the inorganic material. ,including.
  • the method for producing an anion adsorbent according to the present invention includes a step of heating an inorganic material in contact with at least one of a sodium dihydrogen phosphate aqueous solution, a disodium hydrogen phosphate aqueous solution, and a trisodium phosphate aqueous solution; Heating the inorganic material and then drying the inorganic material.
  • an anion adsorbent excellent in anion adsorption performance can be obtained.
  • the inorganic material is preferably foamed glass.
  • handling such as carrying is facilitated by using foamed glass as the inorganic material.
  • industrial waste can be reduced by using glass waste.
  • the anion adsorbent according to the present invention is excellent in anion adsorption performance.
  • the method for producing an anion adsorbent according to the present invention can produce an anion adsorbent having excellent anion adsorption performance.
  • the anion adsorbent of the first embodiment includes at least one of CaOClCa (OH) 2 , Ca (ClO) 2 .nH 2 O (n represents a positive integer), and Ca (ClO) 2 . It is attached to the surface of an inorganic material.
  • CaCl 2 and at least one of CaOClCa (OH) 2 , Ca (ClO) 2 .nH 2 O, and Ca (ClO) 2 are collectively referred to as a Ca substance as appropriate.
  • the anion adsorbent is a material in which CaCl 2 adheres to the surface of an inorganic material. Further, the anion adsorbent is one in which one or more of CaOClCa (OH) 2 , Ca (ClO) 2 .nH 2 O, and Ca (ClO) 2 are attached to the surface of the inorganic material. It is. Note that n in Ca (ClO) 2 ⁇ nH 2 O represents a positive integer, for example, 1 to 4.
  • inorganic materials include stainless steel, aluminum, copper, metal materials such as 42 alloy, ceramic materials such as silica, alumina, and zirconia, glass materials such as borosilicate glass and quartz glass, and silicon. Examples thereof include materials including silicon materials and crystal materials such as sapphire.
  • the inorganic material is preferably a glass material.
  • the inorganic material is preferably a porous body from the viewpoint of increasing the surface area. Examples of the porous body include foamed glass.
  • foamed glass can be suitably used.
  • the foamed glass is not particularly limited, and conventionally known foamed glass can be used.
  • the shape and size of the inorganic material are not particularly limited.
  • the inorganic material may be granular or powdery.
  • the inorganic material may be any size that is suitable for manufacturing and suitable as an anion adsorbent. In the case of a granular material, the inorganic material has a diameter of, for example, 3 mm or more and 10 mm or less.
  • the inorganic material may be an alkali-treated material.
  • the anion adsorbent exhibits excellent anion adsorption performance even if the inorganic material is not alkali-treated. Therefore, the inorganic material may not be subjected to alkali treatment.
  • the Ca / Si value which is the ratio of the Ca content (mass%) to the Si content (mass%), is preferably 7 or more. If the value of Ca / Si is 7 or more, the anion adsorption performance is further improved.
  • the value of Ca / Si is more preferably 7.2 or more, and further preferably 7.4 or more, from the viewpoint of further improving the anion adsorption performance.
  • the value of Ca / Si is so high that it is preferable, it can be made into 15 or less from a viewpoint of making manufacture of an anion adsorbent easy, for example.
  • the value of Ca / Si can be controlled by the type of the inorganic material, the conditions for bringing the CaCl 2 aqueous solution into contact with the inorganic material, the presence or absence of firing described below, and the like. Moreover, the value of Ca / Si can be calculated
  • the anion adsorbent preferably has a Ca content of 30% by mass or more.
  • the Ca content is more preferably 31% by mass or more, and still more preferably 34% by mass or more, from the viewpoint of further improving the anion adsorption performance.
  • the Ca content can be controlled by the type of the inorganic material, the conditions for bringing the CaCl 2 aqueous solution into contact with the inorganic material, the presence or absence of firing described below, and the like.
  • Ca content can be calculated
  • Ca content is the mass% with respect to the whole anion adsorbent.
  • the method for producing an anion adsorbent includes a step S ⁇ b> 101 for bringing an aqueous solution into contact with an inorganic material and a step S ⁇ b> 102 for drying the inorganic material, which are performed in this order.
  • the anion adsorbent and the inorganic material are as described in the above-described anion adsorbent, and thus the description thereof will be omitted as appropriate.
  • Step S101 for bringing the aqueous solution into contact with the inorganic material is a step for bringing the CaCl 2 aqueous solution into contact with the inorganic material.
  • Contacting the inorganic material of CaCl 2 aqueous solution for example, it can be carried out by immersing the inorganic material to the CaCl 2 solution.
  • a method of contacting the aqueous CaCl 2 solution in an inorganic material in addition to immersing an inorganic material in CaCl 2 aqueous solution such as by spraying, a method of applying the aqueous CaCl 2 solution and the like to the inorganic material.
  • any method may be used as long as the Ca substance adheres to the surface of the inorganic material.
  • an inorganic material having a desired size is prepared.
  • the inorganic material may be subjected to alkali treatment.
  • the alkali treatment can be performed, for example, by immersing an inorganic material in a 4% NaOH aqueous solution.
  • the manufacturing method of an anion adsorbent can obtain an anion adsorbent exhibiting excellent anion adsorption performance without performing an alkali treatment. Therefore, the method for producing an anion adsorbent may be one in which alkali treatment is not performed.
  • the number of processes can be reduced and economic efficiency can be improved.
  • CaCl 2 concentration of CaCl 2 in the aqueous solution is preferably less 1Moldm -3 or more 5moldm -3.
  • the concentration of CaCl 2 in the CaCl 2 aqueous solution is 1 moldm ⁇ 3 or more, the Ca substance is more likely to adhere to the surface of the inorganic material.
  • the concentration of CaCl 2 in the CaCl 2 aqueous solution is 5 moldm ⁇ 3 or less, it is economical.
  • CaCl 2 concentration of CaCl 2 aqueous solution from the viewpoint that the surface of the inorganic material tends to more adhere the Ca material, more preferably 2Moldm -3 or more, further preferably 2.5Moldm -3 or more.
  • CaCl 2 concentration of CaCl 2 aqueous solution from the viewpoint of economy, more preferably 3.5Moldm -3 or less, still more preferably 3Moldm -3 or less.
  • the time of immersing the inorganic material to the CaCl 2 aqueous solution is preferably at least 3 minutes. If the time for immersing the inorganic material in the CaCl 2 aqueous solution is 3 minutes or more, the Ca substance is more likely to adhere to the surface of the inorganic material.
  • the time for immersing the inorganic material in the CaCl 2 aqueous solution is preferably 4 minutes or more, and more preferably 5 minutes or more, from the viewpoint of making the Ca substance more easily adhere to the surface of the inorganic material.
  • the time of immersing the inorganic material to the CaCl 2 aqueous solution for example, may be 10 minutes or less.
  • the inorganic material When immersing the inorganic material to the CaCl 2 aqueous solution, it is preferably vibrated in CaCl 2 solution and an inorganic material by ultrasound. If it does in this way, it will become easy to adhere Ca substance to the surface of an inorganic type material. In particular, when a powdery material is used as the inorganic material, the Ca substance is more easily adhered to the surface of the inorganic material, which is effective.
  • Temperature of aqueous CaCl 2 solution at the time of contacting the aqueous CaCl 2 solution in an inorganic material may be a room temperature (normal temperature).
  • the temperature of the CaCl 2 aqueous solution may be 25 ° C. or higher and 30 ° C. or lower.
  • Step S102 for drying the inorganic material is a step of drying the inorganic material after bringing the CaCl 2 aqueous solution into contact with the inorganic material.
  • the method of drying is not specifically limited, For example, it can be made to dry in an air thermostat.
  • the drying conditions may be, for example, 100 ° C. or more and 120 ° C. or less and 6 hours or more and 24 hours or less.
  • the method for producing an anion adsorbent may include a step of baking the inorganic material after drying the inorganic material.
  • the firing method is not particularly limited.
  • the firing conditions may be, for example, 500 ° C. or more and 600 ° C. or less and 6 hours or more and 24 hours or less.
  • the method for producing an anion adsorbent can provide an anion adsorbent exhibiting excellent anion adsorption performance without firing an inorganic material. Therefore, the method for producing an anion adsorbent may not include a step of firing the inorganic material.
  • the process of baking an inorganic type material the number of processes can be reduced or the energy for a heating can be abbreviate
  • the method for producing an anion adsorbent according to the first embodiment is as described above, but includes other steps before or after each step within a range that does not adversely affect each step. Also good. For example, a foreign matter removing step for removing foreign matter mixed in during manufacturing may be included.
  • An anion adsorbent is one in which Ca 5 (PO 4 ) 3 (OH) (hydroxyapatite) is attached to the surface of an inorganic material.
  • Ca 5 (PO 4 ) 3 (OH) is appropriately referred to as Ca substance. Since the inorganic material is as described in the first embodiment, the description thereof is omitted here.
  • the method for producing an anion adsorbent includes a step S201 for bringing an aqueous solution into contact with an inorganic material, a step S202 for heating the inorganic material, and a step S203 for drying the inorganic material. , In this order.
  • the anion adsorbent and the inorganic material are as described in the above-described anion adsorbent, and thus the description thereof will be omitted as appropriate.
  • the step S201 of bringing the aqueous solution into contact with the inorganic material is a step of bringing at least one of the sodium dihydrogen phosphate aqueous solution, the disodium hydrogen phosphate aqueous solution, and the trisodium phosphate aqueous solution into contact with the inorganic material.
  • At least one of a sodium dihydrogen phosphate aqueous solution, a disodium hydrogen phosphate aqueous solution, and a trisodium phosphate aqueous solution is appropriately referred to as a predetermined aqueous phosphoric acid solution.
  • at least one of sodium dihydrogen phosphate, disodium hydrogen phosphate, and trisodium phosphate is referred to as predetermined sodium phosphate as appropriate.
  • the contact of the predetermined phosphoric acid aqueous solution with the inorganic material can be performed, for example, by immersing the inorganic material in the predetermined phosphoric acid aqueous solution.
  • Examples of the method of bringing the predetermined phosphoric acid aqueous solution into contact with the inorganic material include a method of immersing the inorganic material in the predetermined phosphoric acid aqueous solution and applying the predetermined phosphoric acid aqueous solution to the inorganic material by spraying or the like.
  • any method may be used as long as the Ca substance adheres to the surface of the inorganic material.
  • an inorganic material having a desired size is prepared.
  • the inorganic material may be subjected to alkali treatment.
  • the alkali treatment can be performed, for example, by immersing an inorganic material in a 4% NaOH aqueous solution.
  • the manufacturing method of an anion adsorbent can obtain an anion adsorbent exhibiting excellent anion adsorption performance without performing an alkali treatment. Therefore, the method for producing an anion adsorbent may be one in which alkali treatment is not performed.
  • the number of processes can be reduced and economic efficiency can be improved.
  • the sodium dihydrogen phosphate aqueous solution As the sodium dihydrogen phosphate aqueous solution, the disodium hydrogen phosphate aqueous solution, and the trisodium phosphate aqueous solution, one of these may be used, or two or more may be mixed and used. Among these, a trisodium phosphate aqueous solution is preferable as the predetermined phosphoric acid aqueous solution.
  • the concentration of the predetermined sodium phosphate in the predetermined phosphoric acid aqueous solution is preferably 0.5 mol / L or more and 2 mol / L or less.
  • concentration of the predetermined sodium phosphate in the predetermined phosphoric acid aqueous solution is 0.5 mol / L or more, the Ca substance is more likely to adhere to the surface of the inorganic material.
  • concentration of the predetermined sodium phosphate in the predetermined phosphoric acid aqueous solution is 2 mol / L or less, it is economical.
  • the concentration of the predetermined sodium phosphate in the predetermined phosphoric acid aqueous solution is more preferably 0.7 mol / L or more, and further preferably 1 mol / L or more, from the viewpoint of facilitating the adhesion of the Ca substance to the surface of the inorganic material. .
  • the concentration of the predetermined sodium phosphate in the predetermined phosphoric acid aqueous solution is more preferably 1.5 mol / L or less, and still more preferably 1.2 mol / L or less, from the viewpoint of economy.
  • Step S202 of heating the inorganic material is a step of heating the inorganic material in a state where the predetermined phosphoric acid aqueous solution is in contact with the inorganic material.
  • the heating method is not particularly limited, but for example, heating can be performed using an electric furnace.
  • heating can be performed using an electric furnace.
  • the inorganic material in which the inorganic material is immersed can be heated by heating the predetermined phosphoric acid aqueous solution.
  • the heating temperature is preferably 60 ° C. or higher and 140 ° C. or lower. If heating temperature is 60 degreeC or more, Ca substance will adhere more easily to the surface of an inorganic type material. On the other hand, if heating temperature is 140 degrees C or less, it is economical.
  • the heating temperature is more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher, from the viewpoint of making the Ca substance more easily adhere to the surface of the inorganic material. Further, the heating temperature is more preferably 130 ° C. or less, and further preferably 125 ° C. or less, from the viewpoint of economy.
  • the heating time is preferably 3 hours or more and 8 hours or less. If the heating time is 3 hours or more, the Ca substance is more likely to adhere to the surface of the inorganic material. On the other hand, if the heating time is 8 hours or less, it is economical.
  • the heating time is more preferably 6 hours or more, and even more preferably 6.5 hours or more from the viewpoint of facilitating the adhesion of the Ca substance to the surface of the inorganic material.
  • the heating time is more preferably 7 hours or less, and even more preferably 6.7 hours or less, from the viewpoint of economy.
  • the inorganic material When the inorganic material is immersed in the predetermined phosphoric acid aqueous solution and heated, it is preferably rotated and stirred. If it does in this way, it will become easy to adhere Ca substance to the surface of an inorganic type material. In particular, when a powdery material is used as the inorganic material, the Ca substance is more easily adhered to the surface of the inorganic material, which is effective.
  • the heating of the inorganic material in contact with the predetermined phosphoric acid aqueous solution was performed by heating the predetermined phosphoric acid aqueous solution after bringing the predetermined phosphoric acid aqueous solution into contact with the inorganic material.
  • the heating of the inorganic material in contact with the predetermined phosphoric acid aqueous solution may be performed by bringing the predetermined phosphoric acid aqueous solution set in advance to a predetermined temperature by heating into contact with the inorganic material.
  • Step S203 for drying the inorganic material is a step of drying the inorganic material after heating the inorganic material.
  • the method of drying is not specifically limited, For example, it can be made to dry in an air thermostat.
  • the drying conditions may be, for example, 100 ° C. or more and 120 ° C. or less and 6 hours or more and 24 hours or less.
  • the method for producing an anion adsorbent may include a step of baking the inorganic material after drying the inorganic material.
  • the firing method is not particularly limited.
  • the firing conditions may be, for example, 500 ° C. or more and 600 ° C. or less and 6 hours or more and 24 hours or less.
  • an anion adsorbent exhibiting excellent anion adsorption performance can be obtained by firing an inorganic material. It is thought that by baking the inorganic material, hydroxyapatite with high crystallinity adheres to the surface of the inorganic material.
  • the method for producing an anion adsorbent may not include a step of firing the inorganic material.
  • the number of processes can be reduced or the energy for a heating can be abbreviate
  • the method for producing an anion adsorbent according to the second embodiment is as described above, but includes other steps before or after each step within a range that does not adversely affect each step. Also good. For example, a foreign matter removing step for removing foreign matter mixed in during manufacturing may be included.
  • Example 1 In the following manner, no. Samples 1 to 3 were prepared. No. Samples 1 and 2 are obtained by subjecting foam glass to alkali treatment. In addition, No. The sample of 2 is No.2. In order to confirm the reproducibility of the sample No. 1, It was produced under the same conditions as the sample 1. No. The sample of 3 is what does not perform the alkali treatment to foam glass. No. As No. 4, a foamed glass prepared by subjecting another company's product only to alkali treatment was prepared, and fluoride ion adsorption measurement was performed. In addition, No. The foamed glass used for the samples 1 to 3 is of the same type. The foamed glass used for the sample of No. 4 is No. 4. It is different from the foam glass used for the samples 1 to 3.
  • the alkali treatment was performed as follows.
  • the Teflon decomposition vessel was taken out, placed in ice water and cooled for about 15 minutes. (6) The contents were placed in a glass column, and the Teflon cock was opened to remove only the solution. (7) The Teflon cock was closed, 50 mL of ion exchange water was added, and the column was gently shaken. Thereafter, the solution was poured out. This operation was repeated twice, and the pH of the second solution was measured. (8) 30 mL of 0.01 mol / L HCl aqueous solution was added, and the column was gently shaken. After 10 minutes, the column was gently shaken again to remove the solution, which was discarded first and the pH was measured a second time. This operation was repeated until the pH was 7 or less. (9) With the Teflon cock open, the ion exchange water was turned on to wash out the acid. (10) The washed particles were transferred to a petri dish and dried in a constant temperature bath at 110 ° C. for 15 hours.
  • Samples were produced as follows. (1) 1.5 g of the prepared foamed glass (products with and without alkali treatment) was weighed into a beaker. (2) 10 ml of an aqueous CaCl 2 solution prepared to 3 moldm ⁇ 3 was added to the foamed glass, the whole foamed glass was immersed in the aqueous CaCl 2 solution, and impregnated for 5 minutes while applying ultrasonic vibration. (3) It was dried at 110 ° C. for 9 hours in an air thermostat. (4) The dried sample was placed on a magnetic boat, placed in a tubular furnace, and fired at 550 ° C. for 12 hours in an air stream. (5) After cooling to room temperature, the sample was taken out and water was saturated and adsorbed. The sample thus obtained was subjected to fluoride ion adsorption measurement.
  • the fluoride ion adsorption measurement was performed as follows using a fluorine composite electrode manufactured by Thermo Scientific.
  • Fluorine concentration measurement software was launched and initial settings were made.
  • the fluorine composite electrode was washed with ion-exchanged water, and after removing moisture with Kimwipe, the tip of the electrode was immersed in a 10 ppm NaF aqueous solution for measurement. After the measurement, the electrode was washed and measured in the order of 50 ppm, 100 ppm, 500 ppm, and 1000 ppm. Calibration curve data was stored after the measurement.
  • About 1 g of the sample was weighed.
  • (4) 75 ml of 1000 ppm NaF aqueous solution was weighed into a container with a lid with a 25 ml hole pipette.
  • No. 1 is an example that satisfies the requirements of the present invention.
  • Nos. 1 to 3 are comparative examples. 4 shows that the amount of adsorption of fluoride ions is high and the performance of removing fluorine is excellent.
  • XRD analysis was performed on the following four samples. The alkali treatment and the preparation of each sample are No. It carried out similarly to preparation of 1-3. XRD analysis was performed by using a SmartLab manufactured by Rigaku Co., Ltd. under the conditions of 2 ⁇ range 20 to 70 °, scanning speed 12 ° / min (using high-speed detector D-tex), and K ⁇ filter method.
  • reference numeral 1 is a graph showing SiO 2 (quartz)
  • reference numeral 2 is a graph showing Ca 5 Si 6 O 16 (OH) 2
  • reference numeral 3 is a graph showing CaCl 2.
  • 4 is a graph showing CaOClCa (OH) 2
  • 5 is a graph showing NaCl
  • 6 is a graph showing Ca (ClO) 2 3H 2 O
  • 7 is a graph showing CaF 2 (fluorite).
  • Reference numeral 8 is a graph showing CaCO 3 .
  • No. 1 is a product with alkali treatment and without CaCl 2 treatment. 5
  • No. 1 is a product with alkali treatment, with CaCl 2 treatment, and without firing.
  • No. 6 it was confirmed from the crystallinity peak of the XRD pattern that CaCl 2 was attached to the surface, and that part thereof was oxidized CaOClCa (OH) 2 .
  • Both CaCl 2 and CaOClCa (OH) 2 are presumed to be Ca sites for fluorine ion adsorption.
  • No. 2 is a product with alkali treatment, CaCl 2 treatment, and firing, and before fluoride ion adsorption.
  • NaCl and Ca (ClO) 2 3H 2 O could be confirmed from the crystalline peak of the XRD pattern.
  • Ca (ClO) 2 3H 2 O is presumed to be a Ca site for fluorine ion adsorption.
  • No. 6 No.
  • composition analysis by X-ray fluorescence The following five samples were subjected to composition analysis by fluorescent X-ray. Alkaline treatment and no. The production of samples 10 to 13 is No. It carried out similarly to preparation of 1-3.
  • ZSX Primus II manufactured by Rigaku Corporation was used for fluorescent X-ray analysis. A sample was set in a dedicated cell, the measurement diameter was set to “1 mm”, the measurement time was set to “long”, the atmosphere was set to “vacuum”, and qualitative / quantitative analysis of elements higher than boron B was performed in the EZ scan mode.
  • No. 1 which is an example satisfying the requirements of the present invention.
  • Nos. 10 to 12 are comparative examples.
  • the mass% of O (oxygen) and Si (silicon) is drastically reduced. That is, the foamed glass after the CaCl 2 treatment is not subjected to the alkali treatment and the CaCl 2 treatment, but the foamed glass after the CaCl 2 treatment is a product with an alkali treatment and no firing (No. 10), an alkali treatment and a product with firing ( In No. 11) and the product without alkali treatment and without firing (No. 12), the mass% of O and Si is drastically reduced. This is presumably because CaCl 2 , CaOClCa (OH) 2 and Ca (ClO) 2 3H 2 O confirmed by the XRD analysis cover the foam glass surface.
  • No. No. 12 such as no alkali treatment and no firing, Ca (calcium) equivalent to the product with alkali treatment and not fired, such as No. 10, was detected, and it can be inferred that CaCl 2 and CaOClCa (OH) 2 are attached to the surface.
  • No. 13 With respect to 10 to 12, the mass% of O and Si is not decreased, and the mass% of Ca is decreased. This is considered that a part of Ca compound which covered the surface melt
  • the anion adsorbent of the present invention was excellent in fluoride ion removal performance. It was also found that an anion adsorbent having excellent fluoride ion removal performance can be produced without performing an alkali treatment on the foam glass. Further, it was found that an anion adsorbent excellent in fluoride ion removal performance can be produced without calcination after the foamed glass is immersed in a CaCl 2 aqueous solution and dried.
  • Example 2 In the following manner, no. Fourteen samples were made. In addition, No. Sample 14 is obtained by subjecting foamed glass to alkali treatment. The alkali treatment was performed in the same manner as in [Example 1]. The used foamed glass (before alkali treatment) was No. It is the same kind as the foam glass used for the samples 1 to 3.
  • Example preparation> (1) About 1.5 g of foamed glass was weighed into a 25 ml Teflon decomposition container. (2) 20 ml of 1 mol / L phosphoric acid aqueous solution (trisodium phosphate aqueous solution) was added to the Teflon decomposition vessel. (3) The inner lid of the Teflon decomposition container was put on, and Teflon tape was tightly wound so as to fill the gap between the inner lid and the container. Thereafter, the outer lid was closed tightly. (4) A Teflon decomposition vessel was placed in an electric furnace previously maintained at 120 ° C., and rotated and stirred with a Teflon vessel rotating device for 6.5 hours.
  • the Teflon decomposition container was taken out and cooled in ice water. (6) The contents were put into a glass column packed with quartz glass wool at the top of the Teflon cock so that the sample did not flow out, the Teflon cock was opened, and only the solution was removed. (7) The Teflon cock was closed, ion exchange water was poured in, the cock was opened, and only the solution was removed. This was divided into several times and washed with a universal test paper until neutral (approx. 2 L). (8) The sample after washing was transferred to a petri dish and dried in a constant temperature bath at 110 ° C. for 15 hours.
  • FIG. 7 No. The XRD pattern of 14 samples is shown in FIG. 7, reference numeral 9, Ca 5 (PO 4) is a graph showing 3 (OH) (hydroxyapatite).
  • composition analysis by X-ray fluorescence No. About 14 samples, the compositional analysis by a fluorescent X ray was performed. X-ray fluorescence analysis was performed in the same manner as in [Example 1]. The results are shown in Table 3.
  • No. 1 is an example that satisfies the requirements of the present invention. 14 shows that a large amount of Ca is detected and P is also detected.
  • the anion adsorbent of the present invention can be used for a fluoride ion adsorbent (fluorine remover), a phosphate ion adsorbent (phosphate remover), and the like. In particular, it can be suitably used as a fluoride ion adsorbent (fluorine remover).
  • the anion adsorbent of the present invention can use glass as an inorganic material as a base material. Therefore, the anion adsorbent is easy to handle and carry. Moreover, the anion adsorbent of the present invention can reduce industrial waste by using glass waste material. Since the manufacturing method of the anion adsorbent of the present invention can omit the alkali treatment step and the firing step, it can improve the economy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

陰イオンの吸着性能に優れた陰イオン吸着剤およびその製造方法を提供する。 陰イオン吸着剤は、CaClに加え、CaOClCa(OH)、Ca(ClO)・nHO(nは、正の整数を表す。)、およびCa(ClO)のうちの少なくとも1つが無機系材料の表面に付着していることを特徴とする。 陰イオン吸着剤は、Ca(PO(OH)が無機系材料の表面に付着していることを特徴とする。

Description

陰イオン吸着剤および陰イオン吸着剤の製造方法
 本発明は、陰イオン吸着剤および陰イオン吸着剤の製造方法に関する。
 工場排水や地下水などに含まれる有害物質は、環境破壊の原因となる。例えば、半導体工場、ガラス工場、めっき工場から排出される工場排水などには、有害物質として、例えばフッ素が含まれている。このような有害物質を除去する方法として、陰イオンを吸着する材料の開発が試みられている。
 例えば、特許文献1には、ゼオライトをハイドロタルサイト様化合物で結合した構造を有し、陽イオン吸着性および陰イオン吸着性の両方を有するイオン吸着材が開示されている。このイオン吸着材は、所定の製造方法で形成され、かつ、当該イオン吸着材に含まれるゼオライトの割合が、ゼオライトとハイドロタルサイト様化合物の合計を100重量%として、10~90重量%である。
 また、特許文献2には、金属塩化物を含む溶液に植物からなる原料を接触させた後、炭化させた陰イオン吸着炭素材料ならびにその製造方法が開示されている。この陰イオン吸着炭素材料は、この炭化物の微細孔壁表面に引き出された多数の官能基に、吸着対象の陰イオンとイオン交換可能な陰イオンが、金属イオンを介してまたは直接結合されている。
特開2016-155130号公報 特開2006-61769号公報
 特許文献1に記載のイオン吸着材は、陽イオンと陰イオンを同時にイオン交換することを追及している。そのため、陰イオンの吸着性能が低いという問題がある。
 特許文献2に記載の陰イオン吸着炭素材料は、陰イオンの吸着量が少ないという問題がある。
 本発明は、前記した問題を解決し、陰イオンの吸着性能に優れた陰イオン吸着剤およびその製造方法を提供することを課題とする。
 本発明に係る陰イオン吸着剤は、CaClに加え、CaOClCa(OH)、Ca(ClO)・nHO(nは、正の整数を表す。)、およびCa(ClO)のうちの少なくとも1つが無機系材料の表面に付着している。
 このような構成によれば、陰イオン吸着剤は、陰イオンの吸着性能に優れたものとなる。
 本発明に係る陰イオン吸着剤は、前記無機系材料が発泡ガラスであることが好ましい。
 陰イオン吸着剤は、無機系材料として発泡ガラスを用いることで、持ち運びなどの扱いが容易となる。また、ガラス廃材を利用することで産業廃棄物の削減を図ることができる。
 本発明に係る陰イオン吸着剤は、Ca含有量(質量%)とSi含有量(質量%)との比であるCa/Siの値を7以上15以下としてもよい。
 Ca/Siの値が7以上であれば、陰イオンの吸着性能がより向上する。また、Ca/Siの値が15以下であれば、陰イオン吸着剤の製造が行い易くなる。
 本発明に係る陰イオン吸着剤は、Ca含有量を30質量%以上40質量%以下としてもよい。
 Ca含有量が30質量%以上であれば、陰イオンの吸着性能がより向上する。また、Ca含有量が40質量%以下であれば、陰イオン吸着剤の製造が行い易くなる。
 本発明に係る陰イオン吸着剤は、Ca(PO(OH)が無機系材料の表面に付着している。
 このような構成によれば、陰イオン吸着剤は、陰イオンの吸着性能に優れたものとなる。
 本発明に係る陰イオン吸着剤の製造方法は、CaCl水溶液を無機系材料に接触させる工程と、前記CaCl水溶液を前記無機系材料に接触させた後、前記無機系材料を乾燥させる工程と、を含む。
 本発明に係る陰イオン吸着剤の製造方法は、リン酸二水素ナトリウム水溶液、リン酸水素二ナトリウム水溶液、およびリン酸三ナトリウム水溶液のうちの少なくとも1つが接触した無機系材料を加熱する工程と、前記無機系材料を加熱した後、前記無機系材料を乾燥させる工程と、を含む。
 これらのような製造方法によれば、陰イオンの吸着性能に優れる陰イオン吸着剤を得ることができる。
 本発明に係る陰イオン吸着剤の製造方法は、前記無機系材料が発泡ガラスであることが好ましい。
 陰イオン吸着剤の製造方法は、無機系材料として発泡ガラスを用いることで、持ち運びなどの扱いが容易となる。また、ガラス廃材を利用することで産業廃棄物の削減を図ることができる。
 本発明に係る陰イオン吸着剤は、陰イオンの吸着性能に優れる。
 本発明に係る陰イオン吸着剤の製造方法は、陰イオンの吸着性能に優れる陰イオン吸着剤を製造することができる。
第1実施形態の陰イオン吸着剤の製造方法を示すフローチャートである。 第2実施形態の陰イオン吸着剤の製造方法を示すフローチャートである。 第1実施例のサンプルNo.5におけるXRDパターンのグラフである。 第1実施例のサンプルNo.6におけるXRDパターンのグラフである。 第1実施例のサンプルNo.7におけるXRDパターンのグラフである。 第1実施例のサンプルNo.8におけるXRDパターンのグラフである。 第2実施例のサンプルNo.14におけるXRDパターンのグラフである。
 本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
[第1実施形態]
<陰イオン吸着剤>
 まず、第1実施形態の陰イオン吸着剤について説明する。
 陰イオン吸着剤は、CaClに加え、CaOClCa(OH)、Ca(ClO)・nHO(nは、正の整数を表す。)、およびCa(ClO)のうちの少なくとも1つが無機系材料の表面に付着したものである。
 以下、CaClと、CaOClCa(OH)、Ca(ClO)・nHO、およびCa(ClO)のうちの少なくとも1つとをまとめて、適宜、Ca物質という。
 陰イオン吸着剤は、CaClが無機系材料の表面に付着したものである。陰イオン吸着剤は、さらに、CaOClCa(OH)、Ca(ClO)・nHO、およびCa(ClO)のうちの1つ、または2つ以上が無機系材料の表面に付着したものである。
 なお、Ca(ClO)・nHOのnは正の整数を表し、例えば、1~4である。
 無機系材料としては、例えば、ステンレス鋼、アルミニウム、銅、42アロイのような金属材料、シリカ、アルミナ、ジルコニアのようなセラミックス材料、ホウケイ酸ガラス、石英ガラスのようなガラス材料、シリコンのようなシリコン材料、サファイアのような結晶材料などを含む材料が挙げられる。無機系材料としては、好ましくはガラス材料である。
 また、無機系材料は、表面積がより大きくなる観点から、多孔質体であることが好ましい。多孔質体としては、例えば、発泡ガラスが挙げられる。無機系材料としては、特に、発泡ガラスが好適に使用できる。発泡ガラスとしては特に限定されるものではなく、従来公知の発泡ガラスを用いることができる。
 無機系材料は、その形状や大きさは特に限定されるものではない。無機系材料は、粒状のものであってもよいし、粉状のものであってもよい。また、無機系材料は、製造するのに適し、また、陰イオン吸着剤として適した大きさであればよい。無機系材料の大きさは、粒状の場合、例えば直径が3mm以上10mm以下である。
 無機系材料は、アルカリ処理がされたものであってもよい。ただし、陰イオン吸着剤は、無機系材料にアルカリ処理がされていなくとも、優れた陰イオン吸着性能を示す。したがって、無機系材料は、アルカリ処理がされていないものであってもよい。
 陰イオン吸着剤は、無機系材料として発泡ガラスを用いる場合、Ca含有量(質量%)とSi含有量(質量%)との比であるCa/Siの値が7以上であることが好ましい。Ca/Siの値が7以上であれば、陰イオンの吸着性能がより向上する。Ca/Siの値は、陰イオンの吸着性能をより向上させる観点から、より好ましくは7.2以上、さらに好ましくは7.4以上である。なお、Ca/Siの値は高いほど好ましいが、陰イオン吸着剤の製造を行い易くするなどの観点から、例えば、15以下とすることができる。
 Ca/Siの値は、無機系材料の種類や、CaCl水溶液を無機系材料に接触させる際の条件、後述する焼成の有無などにより制御することができる。また、Ca/Siの値は、蛍光X線による組成分析から求めることができる。
 なお、Ca含有量、Si含有量は、陰イオン吸着剤全体に対する質量%である。
 陰イオン吸着剤は、Ca含有量が30質量%以上であることが好ましい。Ca含有量が30質量%以上であれば、陰イオンの吸着性能がより向上する。Ca含有量は、陰イオンの吸着性能をより向上させる観点から、より好ましくは31質量%以上、さらに好ましくは34質量%以上である。なお、Ca含有量は多いほど好ましいが、陰イオン吸着剤の製造を行い易くするなどの観点から、例えば、40質量%以下とすることができる。
 Ca含有量は、無機系材料の種類や、CaCl水溶液を無機系材料に接触させる際の条件、後述する焼成の有無などにより制御することができる。また、Ca含有量は、蛍光X線による組成分析から求めることができる。
 なお、Ca含有量は、陰イオン吸着剤全体に対する質量%である。
<陰イオン吸着剤の製造方法>
 次に、第1実施形態の陰イオン吸着剤の製造方法の一例について説明する。
 図1に示すように、陰イオン吸着剤の製造方法は、水溶液を無機系材料に接触させる工程S101と、無機系材料を乾燥させる工程S102と、を含み、この順に行う。
 なお、陰イオン吸着剤や無機系材料については、前記した陰イオン吸着剤で説明したとおりであるので、ここでは適宜、説明を省略する。
[水溶液を無機系材料に接触させる工程]
 水溶液を無機系材料に接触させる工程S101は、CaCl水溶液を無機系材料に接触させる工程である。
 CaCl水溶液の無機系材料への接触は、例えば、CaCl水溶液に無機系材料を浸漬することにより行うことができる。
 CaCl水溶液を無機系材料に接触させる方法としては、CaCl水溶液に無機系材料を浸漬させるほか、スプレーなどにより、無機系材料にCaCl水溶液を塗布する方法が挙げられる。その他、無機系材料の表面にCa物質が付着すれば、どのような方法であってもよい。ただし、CaCl水溶液の無機系材料への接触を簡便に行う観点から、浸漬させる方法を用いることが好ましい。
 この工程S101では、まず、所望の大きさの無機系材料を準備する。この工程では、無機系材料にアルカリ処理を行ってもよい。アルカリ処理は、例えば、4%NaOH水溶液に無機系材料を浸漬することにより行うことができる。ただし、陰イオン吸着剤の製造方法は、アルカリ処理を行わなくても、優れた陰イオン吸着性能を示す陰イオン吸着剤を得ることができる。したがって、陰イオン吸着剤の製造方法は、アルカリ処理を行わないものであってもよい。なお、アルカリ処理を行わないことで、工程数を減らすことができ、経済性の向上を図ることができる。
 CaCl水溶液中のCaClの濃度は、1moldm-3以上5moldm-3以下であることが好ましい。CaCl水溶液中のCaClの濃度が1moldm-3以上であれば、無機系材料の表面にCa物質がより付着しやすくなる。一方、CaCl水溶液中のCaClの濃度が5moldm-3以下であれば、経済的である。CaCl水溶液中のCaClの濃度は、無機系材料の表面にCa物質をより付着させやすくする観点から、より好ましくは2moldm-3以上、さらに好ましくは2.5moldm-3以上である。また、CaCl水溶液中のCaClの濃度は、経済性の観点から、より好ましくは3.5moldm-3以下、さらに好ましくは3moldm-3以下である。
 CaCl水溶液に無機系材料を浸漬する場合、CaCl水溶液に無機系材料を浸漬する時間は、3分以上であることが好ましい。CaCl水溶液に無機系材料を浸漬する時間が3分以上であれば、無機系材料の表面にCa物質がより付着しやすくなる。CaCl水溶液に無機系材料を浸漬する時間は、無機系材料の表面にCa物質をより付着させやすくする観点から、より好ましくは4分以上、さらに好ましくは5分以上である。なお、CaCl水溶液に無機系材料を浸漬する時間は、例えば、10分以下とすることができる。
 CaCl水溶液に無機系材料を浸漬する際は、超音波によりCaCl水溶液および無機系材料に振動を与えることが好ましい。このようにすれば、無機系材料の表面にCa物質がより付着しやすくなる。特に、無機系材料として粉状のものを使用した場合、無機系材料の表面にCa物質がより付着しやすくなるため、有効である。
 CaCl水溶液を無機系材料に接触させるときのCaCl水溶液の温度は、室温(常温)であればよい。例えば、CaCl水溶液の温度は、25℃以上30℃以下とすればよい。
[無機系材料を乾燥させる工程]
 無機系材料を乾燥させる工程S102は、CaCl水溶液を無機系材料に接触させた後、無機系材料を乾燥させる工程である。
 乾燥の方法は特に限定されるものではないが、例えば、空気恒温槽中で乾燥させることができる。乾燥の条件は、例えば、100℃以上120℃以下で、6時間以上24時間以下とすることができる。
 また、乾燥は、自然乾燥により行ってもよい。
 陰イオン吸着剤の製造方法は、無機系材料を乾燥した後、無機系材料を焼成する工程を含んでもよい。
 焼成の方法は特に限定されるものではない。焼成の条件は、例えば、500℃以上600℃以下で、6時間以上24時間以下とすることができる。
 ただし、陰イオン吸着剤の製造方法は、無機系材料を焼成しなくても、優れた陰イオン吸着性能を示す陰イオン吸着剤を得ることができる。したがって、陰イオン吸着剤の製造方法は、無機系材料を焼成する工程を含まないものであってもよい。なお、無機系材料を焼成する工程を含まないことで、工程数を減らしたり、加熱のためのエネルギーを省略したりすることができ、経済性の向上を図ることができる。
 第1実施形態に係る陰イオン吸着剤の製造方法は、以上に説明したとおりであるが、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、製造途中に混入した異物を除去する異物除去工程などを含めてもよい。
 また、前記各工程において、明示していない条件については、従来公知の条件を用いればよく、前記各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることはいうまでもない。
[第2実施形態]
<陰イオン吸着剤>
 まず、第2実施形態の陰イオン吸着剤について説明する。
 陰イオン吸着剤は、Ca(PO(OH)(ヒドロキシアパタイト)が無機系材料の表面に付着したものである。
 以下、Ca(PO(OH)を、適宜、Ca物質という。
 無機系材料については、第1実施形態で説明したとおりであるので、ここでは説明を省略する。
<陰イオン吸着剤の製造方法>
 次に、第2実施形態の陰イオン吸着剤の製造方法の一例について説明する。
 図2に示すように、陰イオン吸着剤の製造方法は、水溶液を無機系材料に接触させる工程S201と、無機系材料を加熱する工程S202と、無機系材料を乾燥させる工程S203と、を含み、この順に行う。
 なお、陰イオン吸着剤や無機系材料については、前記した陰イオン吸着剤で説明したとおりであるので、ここでは適宜、説明を省略する。
[水溶液を無機系材料に接触させる工程]
 水溶液を無機系材料に接触させる工程S201は、リン酸二水素ナトリウム水溶液、リン酸水素二ナトリウム水溶液、およびリン酸三ナトリウム水溶液のうちの少なくとも1つを無機系材料に接触させる工程である。
 以下、リン酸二水素ナトリウム水溶液、リン酸水素二ナトリウム水溶液、およびリン酸三ナトリウム水溶液のうちの少なくとも1つを、適宜、所定リン酸水溶液という。また、以下、リン酸二水素ナトリウム、リン酸水素二ナトリウム、およびリン酸三ナトリウムのうちの少なくとも1つを、適宜、所定リン酸ナトリウムという。
 所定リン酸水溶液の無機系材料への接触は、例えば、所定リン酸水溶液に無機系材料を浸漬することにより行うことができる。
 所定リン酸水溶液を無機系材料に接触させる方法としては、所定リン酸水溶液に無機系材料を浸漬させるほか、スプレーなどにより、無機系材料に所定リン酸水溶液を塗布する方法が挙げられる。その他、無機系材料の表面にCa物質が付着すれば、どのような方法であってもよい。ただし、所定リン酸水溶液の無機系材料への接触を簡便に行う観点から、浸漬させる方法を用いることが好ましい。
 この工程S201では、まず、所望の大きさの無機系材料を準備する。この工程では、無機系材料にアルカリ処理を行ってもよい。アルカリ処理は、例えば、4%NaOH水溶液に無機系材料を浸漬することにより行うことができる。ただし、陰イオン吸着剤の製造方法は、アルカリ処理を行わなくても、優れた陰イオン吸着性能を示す陰イオン吸着剤を得ることができる。したがって、陰イオン吸着剤の製造方法は、アルカリ処理を行わないものであってもよい。なお、アルカリ処理を行わないことで、工程数を減らすことができ、経済性の向上を図ることができる。
 リン酸二水素ナトリウム水溶液、リン酸水素二ナトリウム水溶液、およびリン酸三ナトリウム水溶液は、これらのうち1つを用いてもよく、2つ以上を混合して用いてもよい。所定リン酸水溶液としては、これらのうち、リン酸三ナトリウム水溶液が好ましい。
 所定リン酸水溶液中の所定リン酸ナトリウムの濃度は、0.5mol/L以上2mol/L以下であることが好ましい。所定リン酸水溶液中の所定リン酸ナトリウムの濃度が0.5mol/L以上であれば、無機系材料の表面にCa物質がより付着しやすくなる。一方、所定リン酸水溶液中の所定リン酸ナトリウムの濃度が2mol/L以下であれば、経済的である。所定リン酸水溶液中の所定リン酸ナトリウムの濃度は、無機系材料の表面にCa物質をより付着させやすくする観点から、より好ましくは0.7mol/L以上、さらに好ましくは1mol/L以上である。また、所定リン酸水溶液中の所定リン酸ナトリウムの濃度は、経済性の観点から、より好ましくは1.5mol/L以下、さらに好ましくは1.2mol/L以下である。
[無機系材料を加熱する工程]
 無機系材料を加熱する工程S202は、所定リン酸水溶液を無機系材料に接触させた状態で無機系材料を加熱する工程である。
 加熱の方法は特に限定されるものではないが、例えば、電気炉を用いて加熱することができる。また、例えば、所定リン酸水溶液に無機系材料を浸漬する場合は、所定リン酸水溶液を加熱することで、無機系材料を浸漬した無機系材料を加熱することができる。
 加熱温度は、60℃以上140℃以下であることが好ましい。加熱温度が60℃以上であれば、無機系材料の表面にCa物質がより付着しやすくなる。一方、加熱温度が140℃以下であれば、経済的である。加熱温度は、無機系材料の表面にCa物質をより付着させやすくする観点から、より好ましくは110℃以上、さらに好ましくは120℃以上である。また、加熱温度は、経済性の観点から、より好ましくは130℃以下、さらに好ましくは125℃以下である。
 加熱時間は、3時間以上8時間以下であることが好ましい。加熱時間が3時間以上であれば、無機系材料の表面にCa物質がより付着しやすくなる。一方、加熱時間が8時間以下であれば、経済的である。加熱時間は、無機系材料の表面にCa物質をより付着させやすくする観点から、より好ましくは6時間以上、さらに好ましくは6.5時間以上である。また、加熱時間は、経済性の観点から、より好ましくは7時間以下、さらに好ましくは6.7時間以下である。
 所定リン酸水溶液に無機系材料を浸漬して加熱する場合は、回転撹拌させることが好ましい。このようにすれば、無機系材料の表面にCa物質がより付着しやすくなる。特に、無機系材料として粉状のものを使用した場合、無機系材料の表面にCa物質がより付着しやすくなるため、有効である。
 所定リン酸水溶液が接触した無機系材料の加熱は、所定リン酸水溶液を無機系材料に接触させた後、所定リン酸水溶液を加熱することにより行うものとした。しかしながら、所定リン酸水溶液が接触した無機系材料の加熱は、あらかじめ、加熱により所定温度に設定した所定リン酸水溶液を無機系材料に接触させることにより行ってもよい。
[無機系材料を乾燥させる工程]
 無機系材料を乾燥させる工程S203は、無機系材料を加熱した後、無機系材料を乾燥させる工程である。
 乾燥の方法は特に限定されるものではないが、例えば、空気恒温槽中で乾燥させることができる。乾燥の条件は、例えば、100℃以上120℃以下で、6時間以上24時間以下とすることができる。
 また、乾燥は、自然乾燥により行ってもよい。
 陰イオン吸着剤の製造方法は、無機系材料を乾燥させた後、無機系材料を焼成する工程を含んでもよい。
 焼成の方法は特に限定されるものではない。焼成の条件は、例えば、500℃以上600℃以下で、6時間以上24時間以下とすることができる。
 特に、リン酸三ナトリウム水溶液を用いた場合、無機系材料を焼成することで、優れた陰イオン吸着性能を示す陰イオン吸着剤を得ることができる。無機系材料を焼成することで、結晶性の高いヒドロキシアパタイトが無機系材料の表面に付着するためと考えられる。ただし、陰イオン吸着剤の製造方法は、無機系材料を焼成する工程を含まないものであってもよい。なお、無機系材料を焼成する工程を含まないことで、工程数を減らしたり、加熱のためのエネルギーを省略したりすることができ、経済性の向上を図ることができる。
 第2実施形態に係る陰イオン吸着剤の製造方法は、以上に説明したとおりであるが、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、製造途中に混入した異物を除去する異物除去工程などを含めてもよい。
 また、前記各工程において、明示していない条件については、従来公知の条件を用いればよく、前記各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることはいうまでもない。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 以下のようにして、No.1~3のサンプルを作製した。No.1、2のサンプルは、発泡ガラスにアルカリ処理を行ったものである。なお、No.2のサンプルは、No.1のサンプルの再現性を確認するために、No.1のサンプルと同条件で作製したものである。No.3のサンプルは、発泡ガラスにアルカリ処理を行っていないものである。また、No.4として、他社製品のアルカリ処理のみを行った発泡ガラスを準備し、フッ化物イオン吸着測定を行った。なお、No.1~3のサンプルに用いた発泡ガラスは同種のものであり、No.4のサンプルに用いた発泡ガラスは、No.1~3のサンプルに用いた発泡ガラスとは異なるものである。
〈アルカリ処理〉
 アルカリ処理は、以下のようにして行った。
(1)25mLテフロン(登録商標)分解容器に発泡ガラス5gを量り取った。
(2)16mLの4%NaOH水溶液を直接テフロン分解容器に加えた。
(3)テフロン分解容器の内蓋をはめ、内蓋と容器の隙間を埋めるようにテフロンテープをしっかりと一周巻いた。その後、外蓋をしっかりと閉めた。
(4)あらかじめ130℃に保った電気炉にテフロン分解容器を入れ、6.5h、テフロン容器回転装置で60rpmの速度で回転撹拌させた。
(5)テフロン分解容器を取り出し、氷水に入れて約15分間冷却した。
(6)内容物をガラスカラムに入れ、テフロンコックを開けて溶液のみを取り除いた。
(7)テフロンコックを閉じイオン交換水を50mL加え、カラムを静かに振った。その後、溶液を流し出した。この操作を2回繰り返し、2回目の溶液のpHを測定した。
(8)0.01mol/LのHCl水溶液を30mL加え、カラムを静かに振った。10分後、再びカラムを静かに振り、溶液を出し、最初は捨て、2回目のpHを測定した。pHが7以下になるまでこの操作を繰り返した。
(9)テフロンコックを開けたまま、イオン交換水を回しかけ、酸を洗い流した。
(10)洗浄後の粒子をシャーレに移し、110℃の恒温槽で15h乾燥させた。
〈サンプルの作製〉
 サンプルの作製は、以下のようにして行った。
(1)準備した発泡ガラス(アルカリ処理あり品およびアルカリ処理なし品)をビーカーに1.5g量り取った。
(2)3moldm-3に調製したCaCl水溶液10mlを発泡ガラスに加え、CaCl水溶液に発泡ガラス全体を浸漬し、超音波で振動を与えながら5分間含浸させた。
(3)空気恒温槽中、110℃で9h乾燥させた。
(4)乾燥させた試料を磁性ボートに乗せ、管状炉に入れ、空気気流中、550℃で12h焼成した。
(5)室温まで冷却した後に試料を取り出し、水を飽和吸着させた。
 このようにして得られたサンプルについて、フッ化物イオン吸着測定を行った。
〈フッ化物イオン吸着測定〉
 フッ化物イオン吸着測定は、Thermo Scientific社製 フッ素複合電極を用い、以下のようにして行った。
(1)フッ素濃度測定ソフトを立ち上げ、初期設定を行った。
(2)フッ素複合電極をイオン交換水で洗浄し、キムワイプで水分を除いた後、電極の先端を10ppmのNaF水溶液の中に浸け測定した。測定後、電極を洗浄し、50ppm、100ppm、500ppm、1000ppmの順に測定した。測定終了後検量線データを保存した。
(3)試料を約1g量り取った。
(4)蓋付き容器に25mlホールピペットで1000ppmのNaF水溶液を75ml量り取った。
(5)(3)で量り取った試料を(4)の蓋付き容器に入れ反応を開始した。反応は30℃で振とう機で行った。
(6)反応開始から0.5h、1.0h、2.0h、3.0h、4.0h、8.0h、24h、48h後に振とう機から取り出し、フッ素複合電極で測定した。
(7)測定終了後、データを保存しプログラムを終了させた。
 フッ化物イオンの吸着量を算出するための25℃における検量線において、測定の濃度範囲で直線性の高い回帰曲線が得られたため、この近似式より濃度を算出した。
 各サンプルの48時間後の吸着量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の要件を満たす実施例であるNo.1~3は、比較例であるNo.4に比べ、フッ化物イオン吸着量が高く、フッ素除去の性能に優れていることがわかる。
〈XRD分析〉
 以下の4つのサンプルについて、XRD分析を行った。アルカリ処理および各サンプルの作製は、No.1~3の作製と同様に行った。
 XRD分析は、株式会社リガク製 SmartLabを用い、2θ範囲20~70°、スキャン速度 12°/min(高速検出器D-tex使用)、Kβフィルター法の条件で測定することにより行った。
(No.5)
 No.2のサンプルに用いた発泡ガラス(アルカリ処理あり)を用いたものであり、CaCl処理を行っていないもの(アルカリ処理あり、および、CaCl処理なし品)。
(No.6)
 No.2のサンプルに用いた発泡ガラス(アルカリ処理あり)を用いたものであり、乾燥後、焼成前のもの(アルカリ処理あり、CaCl処理あり、および、焼成なし品)。
(No.7)
 No.2のサンプルに用いた発泡ガラス(アルカリ処理あり)を用いたものであり、焼成後のもの(アルカリ処理あり、CaCl処理あり、および、焼成あり品)。
(No.8)
 No.1のサンプルに用いた発泡ガラス(アルカリ処理あり)を用いたものであり、フッ化物イオン吸着後のもの(アルカリ処理あり、CaCl処理あり、および、焼成あり品であって、フッ化物イオン吸着後)。
 No.5のサンプルのXRDパターンを図3に示す。No.6のサンプルのXRDパターンを図4に示す。No.7のサンプルのXRDパターンを図5に示す。No.8のサンプルのXRDパターンを図6に示す。
 なお、図3~6において、符号1は、SiO(石英)を示すグラフ、符号2は、CaSi16(OH)を示すグラフ、符号3は、CaClを示すグラフ、符号4は、CaOClCa(OH)を示すグラフ、符号5は、NaClを示すグラフ、符号6は、Ca(ClO)3HOを示すグラフ、符号7は、CaF(蛍石)を示すグラフ、符号8は、CaCOを示すグラフである。
(XRD分析結果)
 アルカリ処理済みの発泡ガラスについて以下のことが確認できた。
 図3に示すように、アルカリ処理あり、および、CaCl処理なし品であるNo.5は、XRDパターンの結晶性ピークより、CaCl、CaOClCa(OH)、Ca(ClO)nHO、Ca(ClO)のいずれも表面に付着していないことが確認できた。
 図4に示すように、アルカリ処理あり、CaCl処理あり、および、焼成なし品であるNo.6は、XRDパターンの結晶性ピークより、CaClが表面に付着されており、一部は酸化されたCaOClCa(OH)となっているこが確認できた。CaCl、CaOClCa(OH)は、どちらもフッ素イオン吸着のCaサイトとなっていると推測される。
 図5に示すように、アルカリ処理あり、CaCl処理あり、および、焼成あり品であって、フッ化物イオン吸着前であるNo.7は、XRDパターンの結晶性ピークより、NaClとCa(ClO)3HOが確認できた。Ca(ClO)3HOは、フッ素イオン吸着のCaサイトとなっていると推測される。なお、No.7は、CaCl水溶液に発泡ガラスを浸漬させたため、微量のCaClが発泡ガラスに付着していると推測される。
 図6に示すように、アルカリ処理あり、CaCl処理あり、および、焼成あり品であって、フッ化物イオン吸着後であるNo.8は、XRDパターンの結晶性ピークより、CaF(蛍石)が観測でき、フッ化物イオンはCa2+と反応することで高い吸着量を示したことが裏付けられた。
 なお、本実験では、アルカリ処理を行った発泡ガラスを用いたが、アルカリ処理を行っていない発泡ガラスを用いても、同等の結果になると推測される。
[蛍光X線による組成分析]
 以下の5つのサンプルについて、蛍光X線による組成分析を行った。アルカリ処理およびNo.10~13のサンプルの作製は、No.1~3の作製と同様に行った。
 蛍光X線分析は、株式会社リガク製 ZSX PrimusIIを使用した。専用のセルに試料をセットし、測定径を「1mm」、測定時間を「長い」、雰囲気を「真空」に設定し、EZスキャンモードでホウ素B以上の元素の定性・定量分析を行った。
(No.9)
 No.3のサンプルに用いた発泡ガラス(アルカリ処理なし)を用いたものであり、CaCl処理を行っていないもの(アルカリ処理なし、および、CaCl処理なし品)。
(No.10)
 No.2のサンプルに用いた発泡ガラス(アルカリ処理あり)を用いたものであり、乾燥後、焼成前のもの(アルカリ処理あり、CaCl処理あり、および、焼成なし品)。
(No.11)
 No.2のサンプルに用いた発泡ガラス(アルカリ処理あり)を用いたものであり、焼成後のもの(アルカリ処理あり、CaCl処理あり、および、焼成あり品)。
(No.12)
 No.3のサンプルに用いた発泡ガラス(アルカリ処理なし)を用いたものであり、乾燥後、焼成前のもの(アルカリ処理なし、CaCl処理あり、および、焼成なし品)。
(No.13)
 No.3のサンプルに用いた発泡ガラスについて、アルカリ処理、CaCl処理を行い、乾燥後、焼成を行ったサンプルについてフッ化物イオン吸着後のもの(アルカリ処理あり、CaCl処理あり、および、焼成あり品であって、フッ化物イオン吸着後)。
 この結果を表2に示す。なお、表中、「-」は、元素を含有しないものである。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の要件を満たす実施例であるNo.10~12は、比較例であるNo.9に対し、いずれもO(酸素)とSi(ケイ素)の質量%が激減している。すなわち、アルカリ処理なし、および、CaCl処理なしの発泡ガラスに対し、CaCl処理後の発泡ガラスでは、アルカリ処理あり、かつ焼成なし品(No.10)、アルカリ処理あり、かつ焼成あり品(No.11)、アルカリ処理なし、かつ焼成なし品(No.12)ともに、OとSiの質量%が激減している。これは上記XRD分析で確認された、CaCl、CaOClCa(OH)、Ca(ClO)3HOが、発泡ガラス表面を覆っているためと推測できる。
 また、No.12のような、アルカリ処理なし、かつ焼成なし品でも、No.10のような、アルカリ処理あり、かつ焼成なし品と同等のCa(カルシウム)が検出されており、表面にCaClおよびCaOClCa(OH)が付着していると推察できる。
 また、本発明の要件を満たす実施例のサンプルについてフッ化物イオン吸着後であるNo.13は、No.10~12に対し、OとSiの質量%が減少しておらず、Caの質量%が減少している。これは、表面を覆っていたCa化合物の一部が溶解したと考えられる。しかし、フッ素Fが検出されており、XRDの結果を支持する蛍石の生成を裏付ける結果となった。
 以上の結果から、本発明の陰イオン吸着剤は、フッ化物イオンの除去性能に優れていることがわかった。また、発泡ガラスにアルカリ処理を行わなくても、フッ化物イオンの除去性能に優れる陰イオン吸着剤を製造できることがわかった。また、発泡ガラスをCaCl水溶液に浸漬させ、乾燥させた後、焼成を行わなくても、フッ化物イオンの除去性能に優れる陰イオン吸着剤を製造できることがわかった。
[実施例2]
 以下のようにして、No.14のサンプルを作製した。なお、No.14のサンプルは、発泡ガラスにアルカリ処理を行ったものである。アルカリ処理は、[実施例1]と同様の方法で行った。また、用いた発泡ガラス(アルカリ処理前のもの)は、No.1~3のサンプルに用いた発泡ガラスと同種のものである。
〈サンプルの作製〉
(1)25mlテフロン分解容器に発泡ガラスを約1.5g量り取った。
(2)1mol/Lのリン酸水溶液(リン酸三ナトリウム水溶液)20mlをテフロン分解容器に加えた。
(3)テフロン分解容器の内蓋をはめ、内蓋と容器の隙間を埋めるようにテフロンテープをしっかり巻いた。その後、外蓋をしっかり閉めた。
(4)あらかじめ120℃に保った電気炉にテフロン分解容器を入れ、6.5h、テフロン容器回転装置で回転撹拌させた。
(5)テフロン分解容器を取り出し、氷水に入れ冷却した。
(6)試料が流れ出ないようにテフロンコック上部に石英ガラスウールを詰めたガラスカラムに内容物を入れ、テフロンコックを開け、溶液のみ取り除いた。
(7)テフロンコックを閉じ、イオン交換水を流し入れコックを開けて溶液のみ取り除いた。これを何回かに分け、万能試験紙で中性になるまで洗浄した(目安は約2L)。
(8)洗浄後の試料をシャーレに移し、110℃の恒温槽で15h乾燥させた。
 次に、リン酸処理による生成物の結晶性を高めるため、以下の焼成を行った。
(9)(8)で得られた試料1.5gを磁製ボートに量り取った。
(10)磁性ボートを管状炉に入れ、空気気流中(トラップにて1泡/secに設定)550℃で12h焼成した。
(11)12h後、試料を取り出し、水を飽和吸着させた。
〈フッ化物イオン吸着測定〉
 フッ化物イオン吸着測定は、[実施例1]と同様の方法で行った。
 その結果、No.14のフッ化物イオン吸着量は、7.2mg/gであった。
〈XRD分析〉
 No.14のサンプル(乾燥後、焼成後のもの)について、XRD分析を行った。
 XRD分析は、[実施例1]と同様の方法で行った。
 No.14のサンプルのXRDパターンを図7に示す。
 なお、図7において、符号9は、Ca(PO(OH)(ヒドロキシアパタイト)を示すグラフである。
(XRD分析結果)
 図7に示すように、リン酸処理を行い、かつ焼成を行ったNo.14は、XRDパターンの結晶性ピークより、Ca(PO(OH)(ヒドロキシアパタイト)が表面に付着していることがわかる。
[蛍光X線による組成分析]
 No.14のサンプルについて、蛍光X線による組成分析を行った。
 蛍光X線分析は、[実施例1]と同様の方法で行った。
 この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の要件を満たす実施例であるNo.14は、Caが多く検出され、Pも検出されていることがわかる。
 本発明の陰イオン吸着剤は、フッ化物イオン吸着剤(フッ素除去剤)や、リン酸イオン吸着剤(リン酸除去剤)などに用いることができる。特に、フッ化物イオン吸着剤(フッ素除去剤)として好適に用いることができる。
 本発明の陰イオン吸着剤は、基材となる無機系材料としてガラスを利用することができる。そのため、陰イオン吸着剤は、持ち運びなどの扱いが容易である。また、本発明の陰イオン吸着剤は、ガラス廃材を利用することで産業廃棄物の削減を図ることができる。
 本発明の陰イオン吸着剤の製造方法は、アルカリ処理工程や、焼成工程を省略することができるため、経済性の向上を図ることができる。
 1   SiO(石英)を示すグラフ
 2   CaSi16(OH)を示すグラフ
 3   CaClを示すグラフ
 4   CaOClCa(OH)を示すグラフ
 5   NaClを示すグラフ
 6   Ca(ClO)3HOを示すグラフ
 7   CaF(蛍石)を示すグラフ
 8   CaCOを示すグラフ
 9   Ca(PO(OH)を示すグラフ

Claims (9)

  1.  CaClに加え、CaOClCa(OH)、Ca(ClO)・nHO(nは、正の整数を表す。)、およびCa(ClO)のうちの少なくとも1つが無機系材料の表面に付着していることを特徴とする陰イオン吸着剤。
  2.  前記無機系材料は発泡ガラスであることを特徴とする請求項1に記載の陰イオン吸着剤。
  3.  Ca含有量(質量%)とSi含有量(質量%)との比であるCa/Siの値が7以上15以下であることを特徴とする請求項2に記載の陰イオン吸着剤。
  4.  Ca含有量が30質量%以上40質量%以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の陰イオン吸着剤。
  5.  Ca(PO(OH)が無機系材料の表面に付着していることを特徴とする陰イオン吸着剤。
  6.  前記無機系材料は発泡ガラスであることを特徴とする請求項5に記載の陰イオン吸着剤。
  7.  CaCl水溶液を無機系材料に接触させる工程と、
     前記CaCl水溶液を前記無機系材料に接触させた後、前記無機系材料を乾燥させる工程と、を含むことを特徴とする陰イオン吸着剤の製造方法。
  8.  リン酸二水素ナトリウム水溶液、リン酸水素二ナトリウム水溶液、およびリン酸三ナトリウム水溶液のうちの少なくとも1つが接触した無機系材料を加熱する工程と、
     前記無機系材料を加熱した後、前記無機系材料を乾燥させる工程と、を含むことを特徴とする陰イオン吸着剤の製造方法。
  9.  前記無機系材料は発泡ガラスであることを特徴とする請求項7または請求項8に記載の陰イオン吸着剤の製造方法。
PCT/JP2019/002910 2018-01-31 2019-01-29 陰イオン吸着剤および陰イオン吸着剤の製造方法 WO2019151222A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014632A JP6482693B1 (ja) 2018-01-31 2018-01-31 陰イオン吸着剤および陰イオン吸着剤の製造方法
JP2018-014632 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151222A1 true WO2019151222A1 (ja) 2019-08-08

Family

ID=65718219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002910 WO2019151222A1 (ja) 2018-01-31 2019-01-29 陰イオン吸着剤および陰イオン吸着剤の製造方法

Country Status (3)

Country Link
JP (1) JP6482693B1 (ja)
TW (1) TW201936259A (ja)
WO (1) WO2019151222A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937353B1 (ja) * 1969-08-06 1974-10-08
JPS5330986A (en) * 1976-09-03 1978-03-23 Nippon Steel Chem Co Ltd Removing method for heavy metals contained in exhaust water
JPH05293363A (ja) * 1992-04-15 1993-11-09 Nippon Steel Corp 空気清浄力を有する組成物およびその製造方法
JP2002370093A (ja) * 2001-01-26 2002-12-24 Shimonoseki Mitsui Chemicals Inc フッ素化合物含有液体の高度処理方法
JP2003305477A (ja) * 2002-04-18 2003-10-28 Kurita Water Ind Ltd 硫酸イオンの除去方法
JP2006061770A (ja) * 2004-08-25 2006-03-09 Nisshoku Corp 陰イオン吸着炭素材料の製造装置
JP2009226265A (ja) * 2008-03-19 2009-10-08 Univ Waseda 水選択性吸着剤とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169643B2 (ja) * 1991-09-27 2001-05-28 富士通株式会社 リン酸イオン含有水の処理方法
JP3312319B2 (ja) * 1993-04-26 2002-08-05 ミヨシ油脂株式会社 フッ素及びヒ素含有廃水の処理方法
JP5382657B2 (ja) * 2010-02-12 2014-01-08 国立大学法人鳥取大学 リン酸イオン吸着剤の製造方法、リン酸イオン回収方法、リン酸肥料の製造方法
JP5942141B2 (ja) * 2012-02-07 2016-06-29 国立大学法人鳥取大学 フッ素除去剤、フッ素含有液の処理方法
CN205088041U (zh) * 2015-11-11 2016-03-16 天脊煤化工集团股份有限公司 一种工艺外排水脱氟处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937353B1 (ja) * 1969-08-06 1974-10-08
JPS5330986A (en) * 1976-09-03 1978-03-23 Nippon Steel Chem Co Ltd Removing method for heavy metals contained in exhaust water
JPH05293363A (ja) * 1992-04-15 1993-11-09 Nippon Steel Corp 空気清浄力を有する組成物およびその製造方法
JP2002370093A (ja) * 2001-01-26 2002-12-24 Shimonoseki Mitsui Chemicals Inc フッ素化合物含有液体の高度処理方法
JP2003305477A (ja) * 2002-04-18 2003-10-28 Kurita Water Ind Ltd 硫酸イオンの除去方法
JP2006061770A (ja) * 2004-08-25 2006-03-09 Nisshoku Corp 陰イオン吸着炭素材料の製造装置
JP2009226265A (ja) * 2008-03-19 2009-10-08 Univ Waseda 水選択性吸着剤とその製造方法

Also Published As

Publication number Publication date
JP6482693B1 (ja) 2019-03-13
TW201936259A (zh) 2019-09-16
JP2019130475A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6446378B2 (ja) 多孔性基板上にゼオライトおよび/またはゼオライト様結晶の結晶膜を製造するための方法
US9505651B2 (en) Systems and methods for acid-treating glass articles
JP6814181B2 (ja) リン酸リチウム化合物を含有する残留物を表面から除去する方法
Betke et al. Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials
WO2013010019A2 (en) Chemically durable porous glass with enhanced alkaline resistance
TWI225467B (en) Vacuum preparation of hydrogen halide drier
JP6482693B1 (ja) 陰イオン吸着剤および陰イオン吸着剤の製造方法
JP3587373B2 (ja) メソ構造体薄膜及びその製造方法
JP5083748B2 (ja) 炭酸カルシウム・ゼオライト系化合物複合体の製造方法
CN1278235A (zh) 水处理方法
JP2011241132A (ja) ケイ酸塩無機高分子で被覆された酸化マンガン複合体及びその製造方法
JP5366189B2 (ja) ゼオライトもしくはゼオライト膜からなるゼオライト材の製造方法
Syafiqah et al. A factorial analysis study on removal of mercury by palm oil fuel ash adsorbent
JPH0410367B2 (ja)
JP2008184368A (ja) 結晶性リン酸アルミニウム多孔質構造体およびその製造方法
JP7394607B2 (ja) 結晶軸配向ゼオライト膜およびその製造方法
JP7373290B2 (ja) 結晶軸配向ゼオライト膜およびその製造方法
JP2010149078A (ja) リン吸着剤及び製造方法
JPS5930711A (ja) モノシランの精製法
RU2358799C1 (ru) Способ получения сорбента для очистки сточных вод от формальдегида
JP2020193135A (ja) ゼオライトzts−6及びその製造方法
JP2005029453A (ja) 表面をゼオライト化したガラスの製造方法
JP4200302B2 (ja) 多孔体へのチタン酸化物固定化法および該固定化法で作製した複合多孔体
CN110075790B (zh) 一种应用于转轮除湿的块体吸附剂及其制备方法
JP4649677B2 (ja) 高純度シリカ粒子の製造方法、これにより得られた高純度シリカ粒子及びこれを用いた高純度石英ガラス粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747167

Country of ref document: EP

Kind code of ref document: A1