WO2019144894A1 - 运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法 - Google Patents

运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法 Download PDF

Info

Publication number
WO2019144894A1
WO2019144894A1 PCT/CN2019/072926 CN2019072926W WO2019144894A1 WO 2019144894 A1 WO2019144894 A1 WO 2019144894A1 CN 2019072926 W CN2019072926 W CN 2019072926W WO 2019144894 A1 WO2019144894 A1 WO 2019144894A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
head
outlet end
ejector
syringe
Prior art date
Application number
PCT/CN2019/072926
Other languages
English (en)
French (fr)
Inventor
盛广济
Original Assignee
北京光阱管理咨询合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810070377.2A external-priority patent/CN110066857B/zh
Priority claimed from CN201810884995.0A external-priority patent/CN110805539A/zh
Application filed by 北京光阱管理咨询合伙企业(有限合伙) filed Critical 北京光阱管理咨询合伙企业(有限合伙)
Priority to US16/964,599 priority Critical patent/US11666900B2/en
Priority to JP2020560537A priority patent/JP7220366B2/ja
Priority to CA3089393A priority patent/CA3089393C/en
Priority to EP19744550.5A priority patent/EP3738671A4/en
Publication of WO2019144894A1 publication Critical patent/WO2019144894A1/zh
Priority to JP2022162284A priority patent/JP7452896B2/ja
Priority to US18/139,617 priority patent/US20230285956A1/en
Priority to JP2024029605A priority patent/JP2024073484A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0268Drop counters; Drop formers using pulse dispensing or spraying, eg. inkjet type, piezo actuated ejection of droplets from capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0286Ergonomic aspects, e.g. form or arrangement of controls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/021Drop detachment mechanisms of single droplets from nozzles or pins non contact spotting by inertia, i.e. abrupt deceleration of the nozzle or pin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present application relates to the technical field of measuring and distributing a small amount of liquid, and particularly to a motion control mechanism, a liquid ejection nozzle, a microdroplet generating device and a generating method, a fluid driving mechanism, a fluid driving method, a microdroplet generating method, and The surface treatment method of the spit gun head.
  • micro-liquid handling is to further split the micro-liter liquid into micro-reaction systems in nanoliter or even picoliter volumes.
  • One of the main technical branches of microreaction system generation is the formation of emulsified microdroplets.
  • various micro-droplet generation techniques have been reported in the literature, such as membrane emulsification, spray emulsification, microfluidic chip, and sputum injection/injection.
  • the spit gun head injection/ejection method as the latest micro-droplet generation technology, has a good application prospect in the generation of micro-droplets and the control of consumable cost.
  • the traditional spit gun head is generally straight tubular.
  • the spit gun head moves rapidly along its extension direction toward the end of the outlet end, the generated microdroplets are broken.
  • the vibration frequency of the spit gun tip must be reduced, resulting in a decrease in the rate of generation of microdroplets.
  • the ejector tip injection/ejection method is used, the outlet end of the ejector tip is moved relative to the oil phase composition by the motion control mechanism. In the process of using the traditional motion control mechanism, the relative movement between the outlet end of the ejection head and the oil phase composition cannot be precisely controlled, and the volume uniformity of the generated micro-droplets is poor.
  • the outlet end of the spit gun head is in motion, and the flow rate of the discharged liquid is unstable and uncontrollable.
  • the generated microdroplet volume size is random.
  • the conventional ejector tip injection/spray method requires a squirting head to perform a liquid surface cutting motion to generate microdroplets.
  • this method forms unstable standing waves on the liquid surface, and the formation process of the micro droplets is unstable.
  • the surface characteristics of the spit gun tip are important factors influencing the formation of microdroplets.
  • the cross-sectional dimensions of traditional spit tips are generally on the order of micrometers. Conventional surface treatment methods are often used for larger parts and are not fully suitable for smaller size spit tips.
  • the present application provides a ejector tip for generating microdroplets, including a needle stem having a hollow cavity and an outlet end disposed at one end of the needle stem; an outlet end of the ejector head The angle between the normal of the end face and the extending direction of the needle stem is less than or equal to 90°.
  • a micro-droplet generating device includes a fluid driving mechanism, a motion control mechanism, and a liquid discharging gun head according to the above aspect; the inside of the liquid discharging gun head stores a first liquid, and the liquid discharging gun head has an outlet end And an inlet end; the fluid drive mechanism is coupled to the inlet end of the ejector head for discharging the first liquid stored inside the squirt head from the outlet end of the squirt head;
  • the motion control mechanism is configured to control the outlet end of the ejector head to generate a set trajectory or a set speed or a set acceleration under the liquid level of the second liquid, so as to discharge the outlet of the ejector head
  • the first liquid at the end forms microdroplets in the second liquid against surface tension and adhesion.
  • a method for producing a micro-droplet comprising the liquid-spraying gun head according to any one of the above aspects, wherein the first liquid is stored in the liquid-spraying gun head, and a micro-droplet container storing the second liquid is provided;
  • the liquid is discharged at a constant speed from the outlet end of the ejector head; and the outlet end of the ejector head is controlled to perform a periodic wave motion with a square wave velocity along the extending direction of the needle stalk under the liquid surface of the second liquid
  • the first half period and the second half period of the periodic movement of the outlet end of the spit gun head are the same as the speed of the outlet end of the spit gun head, and the direction is opposite; the first liquid and the second liquid are mutually incompatible Two liquids or two liquids with an interfacial reaction.
  • a method for producing a micro-droplet comprising the liquid-spraying gun head according to any one of the above aspects, wherein the first liquid is stored in the liquid-spraying gun head, and a micro-droplet container storing the second liquid is provided;
  • the liquid is discharged at a constant speed from the outlet end of the ejector head; the outlet end of the ejector head is controlled to perform a sinusoidal cyclic movement in the direction of the extension of the needle stem inside the second liquid; the first liquid
  • the two liquids are arbitrarily incompatible with each other or two liquids having an interfacial reaction.
  • the present application provides a motion control mechanism including a support frame, a connecting member, and a driving element.
  • the connector is used to connect to the ejector tip.
  • a drive element is fixed to the support frame, and the drive element is drivingly coupled to the connection piece. Under the driving of the driving element, the outlet end of the ejector head is subjected to a sinusoidal change in displacement or a square wave change in speed.
  • the motion control mechanism has the advantages of a sinusoidal change in displacement or a square wave change in velocity at the outlet end of the ejection head to generate microdroplets, which has the advantages of high microdroplet generation efficiency and high homogeneity.
  • the present application provides a fluid drive mechanism for a micro-droplet generation system, including a variable volume assembly and a power assembly.
  • the variable volume assembly includes a syringe barrel and a push rod, the push rod is slidably engaged with an inner wall of the syringe barrel, wherein the syringe barrel can store a driving liquid, and the syringe barrel has an inlet and outlet port, and the inlet and outlet ports are used for An inlet end of the ejector head storing the first liquid is connected.
  • a power assembly is coupled to the push rod for driving the push rod to slide in an extending direction of the syringe.
  • the power assembly drives the push rod to squeeze the driving liquid stored in the syringe, and the driving liquid squeezes the first liquid stored in the jetting gun head, and then the first A liquid is discharged from the outlet end of the spit gun head.
  • a fluid driving method comprising the fluid driving mechanism according to any one of the above aspects, wherein the fluid driving method comprises: the power component driving the push rod to press the driving liquid stored in the syringe, The driving liquid squeezes the first liquid stored in the ejection head, and the first liquid is discharged from an outlet end of the ejection head.
  • a fluid driving method using the fluid driving mechanism of the above aspect comprising: the three-way switching valve communicating the inlet and outlet ports of the variable volume assembly with the liquid storage tank, Driven by the power assembly, the push rod slides within the syringe to change the volume of the syringe to draw the drive liquid in the reservoir into the syringe; a three-way reversing valve that communicates the inlet and outlet ports of the variable volume assembly with an inlet end of the ejector head, and the push rod slides within the syringe under the driving of the power assembly a volume of the syringe to discharge gas in the syringe and in the jetting head; an outlet end of the jetting head enters the first liquid and maintains the three-way reversing a valve that communicates the inlet and outlet ports of the variable volume assembly with an inlet end of the ejector head, and the push rod slides within the syringe to change the syringe under the driving of the power assembly
  • the fluid driving mechanism and the fluid driving method utilize the incompressibility of the driving liquid to ensure that the outlet end of the ejection head can discharge the first liquid from the outlet end of the ejection head at a set flow rate when vibrating at a high frequency.
  • the fluid drive mechanism provided by the present application is capable of precisely controlling the volume of generated microdroplets.
  • the present application provides a method for generating a micro-droplet, comprising the steps of: S201, providing a ejector head having an outlet end, wherein the ejector head stores a first liquid; and providing a second liquid for storing a microdroplet container having an opening; the first liquid and the second liquid are two liquids that are mutually incompatible with each other or two liquids having an interface reaction; S202, an outlet of the spit gun head The end is inserted into the liquid surface of the second liquid by the opening of the micro-droplet container; S203, the outlet end of the ejector head is subjected to a movement including instantaneous acceleration under the liquid surface of the second liquid, and the first liquid is The outlet end of the ejector head is discharged, and the first liquid discharged from the outlet end of the ejector head forms a droplet attached to the outlet end of the ejector head, and the droplet is at the outlet of the ejector head During the instantaneous acceleration
  • the acceleration value of the outlet end of the ejector head is instantaneously increased, and the droplet attached to the outlet end of the ejector head and the outlet end of the ejector head
  • the adhesion is insufficient to accelerate the droplets to accelerate synchronously with the outlet end of the ejector head, and the droplets attached to the outlet end of the ejector head are separated from the outlet end of the ejector head in the second liquid
  • Microdroplets are formed under the surface.
  • the outlet end of the squirting gun head performs a motion including instantaneous acceleration under the liquid surface of the second liquid to generate micro-droplets, and the ejector head is reduced.
  • the disturbance caused by the second liquid during the movement of the outlet end ensures the stability of the micro-droplet formation process.
  • the present application provides a method for generating a micro-droplet, comprising the steps of: S211, providing a ejector head having an outlet end, wherein the ejector head stores a first liquid; and providing a second liquid for storing a microdroplet container having an opening; the first liquid and the second liquid are two liquids that are mutually incompatible with each other or two liquids having an interfacial reaction; S212, an outlet of the spit gun head The end is inserted into the liquid surface of the second liquid by the opening of the micro-droplet container; S213, the outlet end of the liquid-spraying gun head performs a periodic change of the speed under the second liquid level, and the speed changes.
  • the velocity of the outlet end of the ejection head is monotonously changed, and the first liquid is discharged from the outlet end of the ejection head, and the outlet end of the ejection head is discharged.
  • the first liquid forms a droplet attached to the outlet end of the ejector head, and the droplet detaches from the outlet end of the ejector head during the movement of the outlet end of the ejector head under the second liquid level Forming microdroplets.
  • the outlet end of the spit gun head is subjected to a periodic change in velocity under the second liquid level, and the outlet end of the spit gun head is in the first half cycle and the second half cycle of the speed change.
  • the speed varies monotonically.
  • the viscous force of the second liquid to the droplet also changes periodically with the periodic change of the velocity of the outlet end of the ejection head.
  • the droplet cannot move synchronously with the outlet end of the ejection head, and then adheres to the spit
  • the droplets at the outlet end of the liquid lance head are separated from the outlet end of the ejector head to form microdroplets under the second liquid level.
  • the outlet end of the ejector head is subjected to a shifting cycle under the liquid level of the second liquid to generate microdroplets, and the outlet end of the ejector head is reduced.
  • the disturbance caused by the second liquid during the movement ensures the stability of the micro-droplet formation process.
  • the present application provides a surface treatment method for a liquid discharge gun head for surface treatment of a liquid discharge gun head, comprising the following steps: S260, silicidating the liquid discharge gun head; S270, using coke Treating the spit gun head with an aqueous solution of diethyl carbonate; S280, drying the spit gun head.
  • the surface treatment method of the spit gun head, the silanization treatment reduces the surface free energy of the spit gun head and controls the surface free energy of the spit gun head within a certain interval, thereby reducing the surface characteristics of the spit gun head to the micro droplets The impact of the build process.
  • the present application provides a fluid drive mechanism for a micro-droplet generation system including a housing, a first variable volume assembly, and a linear motor assembly.
  • the first variable volume assembly is disposed in the housing, the first variable volume assembly includes a first syringe and a first push rod, and the first push rod is in sliding engagement with an inner wall of the first syringe
  • the first syringe can store a first driving liquid, and the first syringe has an inlet and outlet port for communicating with an inlet end of the first ejection head that stores the third liquid.
  • the linear motor assembly is disposed in the housing, and an output end of the linear motor assembly is drivingly connected to the first push rod for driving the first push rod to slide along an extending direction of the first injection tube .
  • a fluid driving method using the fluid driving mechanism comprising: the switching valve communicating the inlet and outlet ports of the first syringe with the liquid storage tank, Driven by the linear motor assembly, the first push rod slides within the first syringe to change the volume of the first syringe to draw the first driving liquid in the reservoir into the Inside the first syringe.
  • the diverter valve communicates the inlet and outlet ports of the first syringe with the inlet end of the first jetting head, and the first push rod is driven by the linear motor assembly Sliding within the first syringe changes the volume of the first syringe to expel gas within the first syringe and within the first jetting head.
  • the outlet end of the first ejector head enters the third liquid, and maintains the directional valve to make the inlet and outlet ports of the first syringe and the inlet of the first ejector head End communication, the first push rod sliding in the first syringe changes the volume of the first syringe to drive the third liquid into the first drainage liquid under the driving of the power component Inside the gun.
  • the diverter valve communicates the inlet and outlet ports of the first syringe with the inlet end of the first jetting head, and the first push rod is driven by the linear motor assembly Sliding in the first syringe changes the volume of the first syringe to discharge the third liquid stored in the first squirting head to the first squirting head at a set flow rate
  • the exit end The fluid driving mechanism and the fluid driving method utilize the incompressibility of the first driving liquid to ensure that the outlet end of the first ejection head can still discharge the third liquid from the first discharge at a set flow rate when vibrating at a high frequency. The outlet end of the tip is discharged.
  • the linear motor assembly not only has high motion accuracy, but also can conveniently adjust the current according to the actual working conditions such as the discharge speed and the discharge pressure to ensure that the first push rod slides or slides the set distance according to the set speed, thereby realizing
  • the third liquid is discharged from the outlet end of the first discharge head precisely at a set flow rate and flow rate.
  • the fluid drive mechanism provided by the present application is capable of precisely controlling the volume of generated microdroplets.
  • FIG. 1 is a schematic diagram of an overall structure of a digital PCR detector according to an embodiment of the present invention
  • FIG. 2 is a micro-droplet generating apparatus for a digital PCR detector according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the velocity change of the outlet end of the squirting gun head according to an embodiment of the present invention
  • FIG. 5 is a squirting gun provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the force of the droplets during the movement of the outlet end of the squirting gun head according to another embodiment of the present invention
  • FIG. 7 is a schematic diagram of the force of the droplets during the movement of the outlet end of the squirting gun head according to another embodiment of the present invention. Schematic diagram of the viscous resistance change when the droplet moves with the outlet end of the ejector head;
  • FIG. 8 is a schematic view showing the process of generating a micro-droplet at two outlets of the discharge end of the squirting lance head according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a process of generating a micro-droplet in a movement cycle of the outlet end of the squirting gun head according to an embodiment of the present invention;
  • FIG. 10 is a movement cycle of the outlet end of the squirting lance head according to an embodiment of the present application;
  • FIG. 11 is a schematic view showing a process of generating micro droplets when a spit gun head is oscillated according to an embodiment of the present invention
  • FIG. 12 is a viscosity change of a second liquid according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of a process of generating a microdroplet when replacing a spit gun head according to an embodiment of the present invention
  • FIG. 14 is an outlet end of a spit gun head according to an embodiment of the present application
  • FIG. 15 is a schematic diagram showing the change of the velocity of the outlet end of the ejection head according to another embodiment of the present invention
  • FIG. 16 is a schematic diagram of the ejection tip of the ejection tip provided by another embodiment of the present application;
  • FIG. 17 is a schematic structural view of an outlet end of a liquid discharge gun head according to another embodiment of the present invention
  • FIG. 18 is a schematic structural view of a liquid discharge gun head according to an embodiment of the present application
  • FIG. 20 is a schematic view showing a process of generating micro droplets in a spouting tip of a spun-cut structure according to an embodiment of the present invention
  • FIG. 21 is a chamfer provided by another embodiment of the present application.
  • Knot FIG. 22 is a schematic view showing a process of generating micro droplets in a spunlace head of a bent structure according to an embodiment of the present invention
  • FIG. 23 is a bending diagram provided by another embodiment of the present application;
  • FIG. 24 is a flow chart of a surface treatment method for a liquid discharge gun head according to an embodiment of the present invention
  • FIG. 25 is a surface treatment of a liquid discharge gun head according to another embodiment of the present application
  • FIG. 26 is a schematic diagram showing the connection between a fluid control mechanism and a squirting gun head according to an embodiment of the present invention
  • FIG. 27 is a schematic structural diagram of a fluid control mechanism according to an embodiment of the present application
  • FIG. 29 is a schematic structural diagram of a fluid control mechanism according to another embodiment of the present application;
  • FIG. 30 is a schematic structural view of a motion control mechanism according to an embodiment of the present application
  • Figure 31 is a schematic diagram showing the control of a closed-loop control motor according to an embodiment of the present invention
  • Figure 32 is a schematic structural view of a piezoelectric motion control mechanism according to an embodiment of the present application
  • FIG. 34 is a schematic structural diagram of an electromagnetic-elastic-type motion control mechanism according to another embodiment of the present application
  • FIG. 35 is a schematic diagram of an electromagnetic-elastic-type motion control mechanism according to another embodiment of the present application
  • - FIG. 36 is a schematic structural view of an electromagnetic-bearing type motion control mechanism according to another embodiment of the present application
  • FIG. 37 is a schematic structural view of an electromagnetic-bearing type motion control mechanism according to still another embodiment of the present application.
  • Figure 38 is a side elevational view of the overall structure of the fluid drive mechanism according to an embodiment of the present invention;
  • Figure 39 is a first side view showing a portion of the structure of the fluid drive mechanism according to an embodiment of the present application;
  • Figure 4 is a front elevational view showing a portion of a structure of a fluid drive mechanism according to an embodiment of the present invention;
  • Figure 42 is a second side elevational view showing a portion of a structure of a fluid drive mechanism according to an embodiment of the present application;
  • 43 is a schematic exploded view showing the assembly of a fluid drive mechanism according to an embodiment of the present invention;
  • FIG. 45 is a schematic exploded view showing the assembly of the voice coil motor and the connecting plate structure according to an embodiment of the present invention
  • FIG. 46 is a schematic diagram of the assembly explosion of the voice coil motor and the connecting plate structure according to an embodiment of the present application
  • FIG. 47 is a second side elevational view of the integrally formed skeleton and the connecting plate according to an embodiment of the present invention
  • FIG. 48 is a cross-sectional view of the integrally formed skeleton and the connecting plate according to an embodiment of the present invention
  • FIG. 49 is a schematic cross-sectional view of a reversing valve according to an embodiment of the present invention
  • FIG. 50 is a schematic diagram of a fluid driving method according to an embodiment of the present application.
  • the present application provides a digital PCR detector 1 including: a micro-droplet generating device 10 , a temperature control device 20 , a fluorescent signal detecting device 30 , and a quantitative The analysis device 40 and the controller 50 are provided.
  • the microdroplet generating device 10 is configured to microdroplet a nucleic acid amplification reaction solution to form a plurality of microdroplets.
  • the temperature control device 20 and the micro-droplet generating device 10 are connected by a track for transferring the plurality of micro-droplets to the temperature control device 20 to perform temperature cycling to realize nucleic acid amplification.
  • the fluorescence signal detecting device 30 is disposed opposite to the temperature control device 20 for performing photo detection on the plurality of micro droplets after nucleic acid amplification.
  • the quantitative analysis device 40 and the fluorescent signal detecting device 30 are connected by a data line for realizing the transmission of the plurality of micro-droplet fluorescence information for quantitative analysis.
  • the controller 50 is connected to the micro-droplet generating device 10, the temperature control device 20, the fluorescent signal detecting device 30, and the quantitative analyzing device 40, respectively, for controlling the micro-droplet generating device 10, the temperature The control device 20, the fluorescence signal detecting device 30, and the quantitative analysis device 40.
  • the digital PCR detector 1 can integrate the micro-droplet generating device 10, the temperature control device 20, the fluorescent signal detecting device 30, and the quantitative analyzing device 40, thereby enabling an operator to perform an automatic operation. .
  • the digital PCR detector 1 has a high working efficiency.
  • the microdroplet generating device 10 may microdrop the nucleic acid amplification reaction solution to be formed to form a plurality of microdroplets.
  • the temperature control device 20 can perform nucleic acid amplification on the plurality of microdroplets.
  • the fluorescent signal detecting device 30 captures a fluorescence change picture of the plurality of micro-droplets in real time.
  • a fluorescence change curve of the plurality of microdroplets can be obtained by a fluorescence change picture of the plurality of microdroplets.
  • the Ct value of the plurality of microdroplets can be obtained, and the concentration of the initial DNA is quantitatively analyzed by the relationship between the Ct value and the initial copy number.
  • the Ct value refers to the number of cycles experienced when the fluorescence signal of each microdroplet reaches a set threshold.
  • the temperature control device 20 performs a nucleic acid amplification reaction on the plurality of micro droplets, and collects, by the fluorescence signal detecting device 30, product signals of the plurality of micro droplets after the nucleic acid amplification reaction, such as fluorescence, UV absorption, turbidity and other signals. Utilizing the difference in composition between the plurality of amplified and non-amplified microdroplets, the number of droplets obtained by obtaining the target sequence is analyzed, and finally quantitative analysis of the nucleic acid molecule is realized. By monitoring the fluorescence change pictures of the plurality of micro-droplets in real time, the detection result is direct, and the problem of false positives and false negatives among the plurality of micro-droplets can be solved.
  • the digital PCR detector 1 integrates the micro-droplet generating device 10, the temperature control device 20, the fluorescent signal detecting device 30, and the quantitative analyzing device 40, so that the operator can realize automatic operation It does not improve the work efficiency, but also has the advantages of rapid response, good repeatability, high sensitivity, specificity and clear results.
  • microfluidic operation is to further split the microliters of liquid into droplets of nanoliter or even picoliter volume as a microreaction system.
  • microreaction system generation is the formation of emulsified microdroplets.
  • microdroplet formation techniques have been reported in the literature, such as membrane emulsification, spray emulsification, microfluidic chip methods, and spit gun injection/ejection.
  • the method of generating emulsified microdroplets by the ejector tip has its own disadvantages in practical applications.
  • Some methods use the interfacial energy and fluid shear force of the trace liquid in the gas-liquid phase interface to overcome the surface tension and adhesion of the liquid at the outlet of the spit gun head, so that the droplets flowing out of the nozzle of the spit nozzle can be smoothly
  • the ground is separated from the spit head and a droplet of controlled size is formed in the non-phase solution.
  • this method requires the cutting movement of the ejection head at the liquid surface, and the high-precision positioning of the starting and ending positions of the ejection head relative to the liquid surface is required, which is difficult in engineering implementation.
  • the surface of the liquid phase is liable to form unstable standing waves during the repeated rapid ingress and egress of the liquid phase, which limits the rate of formation of the microdroplets.
  • Still other methods form a droplet by cutting the injected phase-in-phase solution by a shearing force generated by a spun gun head in a circumference of the liquid or a uniform motion of the spiral.
  • this method produces errors due to the influence of various system factors (such as the viscosity of the liquid, the temperature of the liquid, the speed of movement, the trajectory of the movement, etc.) due to the size of the droplets generated by the ejector tip. Moreover, this error accumulates as the number of generated droplets increases, and thus it is difficult to control the uniformity of volume size generated by large-volume droplets.
  • micro-droplet generation method and device in the process of generating micro-droplets, the micro-droplet generation rate is slow, and the micro-droplet volume size uniformity is difficult to control.
  • a method and apparatus for generating microdroplets with rapid droplet formation and high volume uniformity is necessary to provide.
  • the micro-droplet generating device 10 includes a ejector head 110, a fluid drive mechanism 120, a motion control mechanism 130, and a first controller 170.
  • the ejector tip 110 has an outlet end and an inlet end and is used to store the first liquid.
  • the microdroplet generating device 10 can be used in conjunction with a microdroplet container. A second liquid is stored in the microdroplet container, and an outlet end of the ejector tip 110 is inserted under the surface of the second liquid.
  • the first liquid and the second liquid are mutually incompatible or have an interfacial reaction.
  • the first liquid and the second liquid may be any two liquids which are immiscible.
  • the first liquid is an aqueous solution
  • the second liquid is an oily liquid that is immiscible with water, such as minerals. Oil (including n-tetradecane, etc.), vegetable oil, silicone oil, and perfluoroalkane oil, etc.
  • the resulting droplets are aqueous droplets.
  • the first liquid is a mineral oil such as an organic phase such as tetradecane and n-hexane
  • the second liquid is a perfluoroalkane oil which is immiscible with mineral oil.
  • the first liquid and the second liquid may be immiscible aqueous two phases.
  • the first liquid is an aqueous solution
  • the second liquid is an aqueous liquid that is immiscible with water.
  • the first liquid is a dextran solution
  • the second liquid is a polyethylene glycol (PEG) aqueous solution
  • the generated droplets are droplets of a dextran solution.
  • the first liquid and the second liquid may also be two liquids having an interfacial reaction.
  • the first liquid is an aqueous solution of sodium alginate
  • the second liquid is an aqueous solution of calcium oxide.
  • an aqueous calcium oxide solution having a mass concentration of 1% has an interfacial reaction
  • the resulting droplets are calcium alginate gel microspheres.
  • the application can also form a plurality of droplets of different components and volumes in the open container by replacing the components of the first liquid flowing out of the spit gun head or the spit gun head, which can be used for realizing large quantities.
  • Micro-volume high-throughput screening can also achieve multi-step ultra-micro biochemical reactions and detection, and has broad application prospects.
  • the fluid drive mechanism 120 is coupled to the inlet end of the ejector head 110 for discharging the first liquid stored inside the squirt head 110 from the outlet end of the squirt head 110 .
  • the motion control mechanism 130 is configured to control a relative movement between the outlet end of the ejector head 110 and the second liquid to generate a set trajectory or set a speed or set an acceleration, so as to discharge the sputum.
  • the first liquid at the outlet end of the tip 110 overcomes the surface tension and the adhesion of the ejector tip 110 thereto to form microdroplets.
  • the first controller 170 is connected to the fluid drive mechanism 120 and the motion control mechanism 130, respectively, for controlling the fluid drive mechanism 120 and the motion control mechanism 130 to work in coordination.
  • Microdroplet generation techniques have been reported in the literature, such as membrane emulsification, spray emulsification, microfluidic chip, and spit-injection/ejection.
  • the spit gun head injection/ejection method as the latest micro-droplet generation technology, has a good application prospect in the generation of micro-droplets and the control of consumable cost.
  • the conventional ejector tip injection/spray method requires a squirting head to perform a liquid surface cutting motion to generate microdroplets.
  • this method forms unstable standing waves on the liquid surface, and the formation process of the micro droplets is unstable.
  • the outlet end 112 of the ejector head 110 can perform a motion including instantaneous acceleration under the second liquid level, and the acceleration is a 1 .
  • the first liquid is discharged from the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the droplet 195 exits the outlet end 112 of the ejector tip 110 at the instant of instantaneous acceleration of the outlet end 112 of the ejector tip 110 to form microdroplets.
  • the forces applied by the microdroplets before exiting the outlet end 112 of the ejector tip 110 are gravity G, the buoyancy f 1 of the second liquid, the viscous resistance f 2 of the second liquid, and the ejector tip 110
  • Micro-droplets in the mass exit from the extruding liquid tip 110 before end 112 is m, is a magnitude of the acceleration a 2. According to Newton’s second law of motion,
  • the viscous resistance f 2 6 ⁇ rv received by the droplet 195 as it moves in the second liquid, where ⁇ is the viscosity coefficient of the second liquid and r is the radius of the droplet 195 , v is the speed of movement of the droplet 195.
  • the velocity of the droplet 195 is zero before the instantaneous end of the ejection tip 110 is instantaneously accelerated, so that the droplet 195 is viscous in the second liquid at the moment the tip end 112 of the ejection tip 110 is instantaneously accelerated.
  • f 2 is zero or very small.
  • the droplet diameter typically in the range of pi to 195 microliters of magnitude, and opposite to gravity and buoyancy G droplets 195 f 1 of the second liquid direction, the droplets of gravity G 195
  • the vector sum with the buoyancy f 1 of the second liquid is about zero. Since the viscous resistance f 2 is zero or very small, and the vector sum of gravity G and buoyancy f 1 is about zero, It can be known from Newton's second law of motion that the maximum acceleration that the droplet 195 can reach in the second liquid is a 2 ⁇ f 3 /m, where m is the droplet when the outlet end 112 of the ejector tip 110 is subjected to the instantaneous acceleration motion. The quality of 195.
  • the droplet 195 falls from the outlet end 112 of the ejector tip 110 to form a microdroplet.
  • the condition under which the droplet 195 exits the outlet end 112 of the ejector tip 110 i.e., produces a microdroplet
  • a 2 ⁇ (f 3 /m) ⁇ a 1 is approximately: a 2 ⁇ (f 3 /m) ⁇ a 1 .
  • the motion control mechanism 130 is capable of accurately controlling the magnitude of the instantaneous acceleration of the outlet end 112 of the ejector head 110. Therefore, by controlling the outlet end 112 of the ejector head 110 to have a large value of the instantaneous acceleration, the outlet end 112 of the ejector head 110 is instantaneously accelerated to generate the droplet 195 efficiently.
  • micro-droplet generation method comprising the following steps:
  • the outlet end 112 of the ejector head 110 performs a motion including instantaneous acceleration under the second liquid level, while the first liquid is discharged from the outlet end 112 of the ejector head 110, and the outlet end of the ejector head 110 is discharged.
  • the first liquid of 112 forms a droplet 195 attached to the outlet end 112 of the ejector tip 110, and the droplet 195 exits the outlet end of the squirt head 110 during the instantaneous acceleration movement of the outlet end 112 of the ejector tip 110.
  • 112 forms microdroplets under the second liquid level.
  • the droplet 195 attached to the outlet end 112 of the ejector head 110 and the sputum
  • the adhesion between the outlet ends 112 of the tips 110 is insufficient to cause the droplets 195 to accelerate in synchronism with the outlet end 112 of the ejector tip 110 such that the fluid adheres to the outlet end 112 of the ejector tip 110
  • the drop 195 is detached from the outlet end 112 of the ejector tip 110 to form microdroplets under the second liquid level.
  • the outlet end 112 of the ejector head 110 generates micro-droplets during the instantaneous acceleration movement under the liquid surface of the second liquid, and the ejector tip 110 is reduced.
  • the disturbance of the second liquid caused by the movement of the outlet end 112 ensures the stability of the micro-droplet generation process.
  • the manner in which the first liquid is discharged from the outlet end 112 of the ejector head 110 may be continuous discharge or discontinuous discharge.
  • the specific discharge method can be designed according to the actual working conditions.
  • the first liquid is continuously discharged from the outlet end 112 of the ejector head 110 to fully utilize the instantaneous acceleration of the outlet end 112 of the ejector head 110 to generate microdroplets.
  • the first liquid is discharged by the outlet end 112 of the ejector head 110 at a constant flow rate, that is, at an equal time interval, the outlet end 112 of the ejector head 110 is discharged.
  • the first liquid volume is always equal.
  • the first liquid is discharged by the outlet end 112 of the ejector tip 110 at a constant flow rate, facilitating control of microdroplet generation by controlling the movement of the outlet end 112 of the ejector head 110.
  • the outlet end 112 of the ejector head 110 performs a periodic motion including instantaneous acceleration under the second liquid level.
  • the outlet end 112 of the ejector tip 110 is periodically moved under the second liquid level, meaning that the displacement, velocity and acceleration of the outlet end 112 of the ejector tip 110 exhibit periodic changes.
  • the outlet end 112 of the ejector tip 110 performs a periodic motion including a momentary acceleration motion, and the first liquid is discharged from the outlet end 112 of the ejector head 110 at a constant flow rate to effect equal time interval generation of the microdroplets.
  • the flow rate of the outlet end 112 of the first liquid discharge jetting head 110 is varied, but during a period of motion of the outlet end 112 of the jetting head 110, the first liquid exits the outlet end 112 of the jetting head 110.
  • the volume remains the same. This ensures that the volume of the droplets 195 is the same each time the outlet end 112 of the ejection tip 110 is instantaneously accelerated to generate microdroplets of uniform size.
  • the surface free energy of the ejector head 110, the geometry of the ejector head 110, and the surface tension of the droplet 195 act as an outlet affecting the ejector head 110 without replacing the ejector tip 110 and the first liquid. factors maximal adhesive force f between two ends 112 and 195 is determined by the droplet. Thus, without replacing the tip 110 and the liquid discharge of the first liquid, the liquid discharge outlet tip end 110 of the maximum adhesion between the droplet 112 f 3 of 195 it is fixed. Driven by the fluid drive mechanism 120, the first liquid is capable of continuously discharging the outlet end 112 of the ejector head 110 at a uniform flow rate.
  • the motion control mechanism 130 can precisely control the timing at which the exit end 112 of the ejector tip 110 makes the instantaneous acceleration a 1 and the magnitude of the instantaneous acceleration a 1 .
  • Fluid drive mechanism 120 and the motion control mechanism 130 cooperate with each other can be easily achieved when the volume of the droplet 195 reaches a fixed value of the moment, the outlet tip 110 of the liquid discharge drive end 112 generates acceleration instantaneous acceleration a 1 to generate the size of the volume Consistent microdroplets.
  • the fluid drive mechanism 120 controls the first liquid to uniformly and continuously discharge the outlet end 112 of the ejector tip 110
  • only the motion control mechanism 130 drives the outlet end 112 of the ejector tip 110 to produce an instantaneous acceleration movement at equal intervals, i.e., Microdroplets of uniform size can be generated.
  • the surface free energy of the ejector tip 110 and the geometry of the ejector tip 110 act as an outlet end 112 and fluid that affect the ejector tip 110.
  • the two factors of maximum adhesion f 3 between drops 195 are varied.
  • batch processing can control the surface free energy of the ejector tip 110 and the geometry of the ejector tip 110 to vary within a certain interval.
  • the surface tension of the droplet 195 as another factor affecting the maximum adhesion force f 3 between the outlet end 112 of the ejection head 110 and the droplet 195 also varies only in a small range.
  • the fluid drive mechanism 120 is capable of driving the first liquid to continuously discharge the outlet end 112 of the ejector head 110 at a uniform flow rate.
  • the motion control mechanism 130 can precisely control the timing at which the exit end 112 of the ejector tip 110 makes the instantaneous acceleration a 1 and the magnitude of the instantaneous acceleration a 1 .
  • Fluid drive mechanism 120 and the motion control mechanism 130 cooperate with each other can be easily achieved when the volume of the droplet 195 reaches a fixed value of the moment, the outlet tip 110 of the liquid discharge drive end 112 generates acceleration instantaneous acceleration a 1 to generate the size of the volume Consistent microdroplets. If the fluid drive mechanism 120 controls the first liquid to uniformly and continuously discharge the outlet end 112 of the ejector tip 110, only the motion control mechanism 130 drives the outlet end 112 of the ejector tip 110 to produce an instantaneous acceleration movement at equal intervals, i.e., Microdroplets of uniform size can be generated.
  • the fluid drive mechanism 120 when the first liquid is uniformly discharged from the outlet end 112 of the ejector head 110, cooperates with the motion control mechanism 130 to perform an instantaneous acceleration motion with a large acceleration value at the moment when the volume of the droplet 195 reaches a set value.
  • the micro-droplet generation method provided by the present application not only ensures that the same ejector tip 110 is used to generate the droplet 195 having a uniform size, and at the same time, the volume of the droplets simultaneously or sequentially generated by the plurality of ejector tips 110 can be ensured. Uniformity.
  • the micro-droplet generation method provided by the embodiment can ensure the generation efficiency of the micro-droplets by simultaneously generating the micro-droplets by the plurality of ejector tips 110 while ensuring the uniformity of the volume of the micro-droplets.
  • the outlet end 112 of the ejector head 110 includes multiple instantaneous acceleration motions in a periodic motion, and the accelerations of the multiple instantaneous acceleration motions are the same, and multiple instantaneous acceleration motions The moments are equally divided into one cycle of motion of the outlet end 112 of the jetting tip 110.
  • the exit end 112 of the ejector tip 110 includes a plurality of transient acceleration motions within a periodic motion to assist in generating a plurality of microdroplets during an exercise cycle at the outlet end 112 of the ejector tip 110.
  • the movement trajectory of the outlet end 112 of the ejector head 110 under the second liquid level includes a combination of one or more of a plurality of trajectories such as a straight line segment, a circular arc segment, and a polygon.
  • a plurality of trajectories such as a straight line segment, a circular arc segment, and a polygon.
  • the outlet end 112 of the ejector tip 110 When the outlet end 112 of the ejector tip 110 includes more than two instantaneous acceleration movements in a periodic motion, the outlet end 112 of the ejector tip 110 is traversed into a regular polygon in the second liquid, including an equilateral triangle, Square, regular pentagon, regular hexagon, etc.
  • step S203 during the periodic movement of the outlet end 112 of the ejector head 110 under the second liquid level, the velocity of the outlet end 112 of the ejector head 110 is a rectangular wave. Variety.
  • the velocity of the outlet end 112 of the ejector tip 110 changes in a rectangular wave.
  • the velocity is entered into a uniform phase, which facilitates the motion control mechanism 130 to achieve precise control of the motion state of the outlet end 112 of the ejector tip 110.
  • the high-order time and the low-order time of the rectangular wave indicating the change in the moving speed of the outlet end 112 of the ejector tip 110 may be equal or different.
  • step S203 during the periodic movement of the outlet end 112 of the ejector head 110 under the second liquid level, the velocity of the outlet end 112 of the ejector head 110 changes in a square wave.
  • the high-order time and the low-order time of the rectangular wave indicating the change in the moving speed of the outlet end 112 of the ejector head 110 are equal.
  • the velocity of the outlet end 112 of the ejection head 110 is zero or has a velocity in the opposite direction with respect to the high position. As shown in FIG.
  • the trajectory of the outlet end 112 of the ejector head 110 under the second liquid level is a straight line segment, and the outlet end 112 of the ejector head 110 is instantaneously accelerated from one end of the straight section.
  • the other end of the straight line segment performs the instantaneous acceleration motion in the opposite direction.
  • the acceleration of the two instantaneous acceleration motions is a 1 .
  • the trajectory of the outlet end 112 of the ejector tip 110 below the second liquid level is a circular arc segment or a polygon.
  • the frequency at which the outlet end 112 of the ejector head 110 periodically moves under the second liquid level is between 0.1 Hz and 200 Hz, which is easy to implement in engineering.
  • the fluid drive mechanism 120 controls the first liquid to exit the outlet end 112 of the ejector head 110 at a constant flow rate.
  • the motion control mechanism 130 controls the output end of the ejector head 110 to perform a periodic motion in which the motion trajectory is a straight line and the speed is a square wave.
  • the speed direction of the outlet end 112 of the ejector head 110 is changed, the instantaneous acceleration of the outlet end 112 of the ejector head 110 reaches a maximum value.
  • the droplet 195 attached to the outlet end 112 of the ejector tip 110 also exits the outlet end 112 of the ejector tip 110 when the instantaneous acceleration of the outlet end 112 of the ejector tip 110 reaches a maximum to form microdroplets 199. Since the first liquid is discharged at the outlet end 112 of the ejector head 110 at a constant flow rate, when the droplet 195 is detached from the outlet end 112 of the ejector head 110, the new droplet 195 enters the generated state. When the outlet end 112 of the ejector tip 110 is again accelerated in the reverse direction, the newly generated droplet 195 also falls from the outlet end 112 of the ejector tip 110 to form a new droplet 199.
  • two micro-droplets 199 can be generated in one motion cycle of the outlet end 112 of the ejector head 110, and the square wave is relatively easy to implement in engineering.
  • a droplet 199 is created during one cycle of the outlet end 112 of the ejector tip 110.
  • the outlet end 112 of the ejector head 110 performs a square wave motion of the trajectory in any direction in the second liquid 699, including: a plane perpendicular to the direction in which the squirting head 110 extends.
  • the square wave motion in which the trajectory is a straight line the square wave motion in which the trajectory is a straight line in a plane at an arbitrary angle with the extending direction of the ejector head 110, and the trajectory in a straight line along the extending direction of the ejector head 110 Wave movements, etc.
  • the trajectory of the outlet end 112 of the ejector head 110 is a circular arc segment or a polygon
  • the outlet end 112 of the ejector tip 110 is traversed in any direction in the second liquid 699.
  • the linear square wave motion includes: performing a square wave motion in which a trajectory is a straight line in a plane perpendicular to the extending direction of the ejector head 110, and making a trajectory in a plane at an arbitrary angle to the extending direction of the ejector head 110
  • the square wave motion of the straight line, the square wave motion in which the trajectory is a straight line along the extending direction of the ejector head 110 is performed by performing a square wave motion in which a trajectory is a straight line in a plane perpendicular to the extending direction of the ejector head 110, and making a trajectory in a plane at an arbitrary angle to the extending direction of the ejector head 110.
  • the outlet end 112 of the ejector head 110 under the driving of the motion control mechanism 130, the outlet end 112 of the ejector head 110 is subjected to a periodic change in velocity under the second liquid level, in the first half of the change in speed. During the latter half of the cycle, the velocity of the outlet end 112 of the ejector tip 110 varies monotonically.
  • the monotonous change means that the velocity value at the rear end of the outlet end 112 of the ejector tip 110 is always greater than or equal to or less than the velocity value at the previous moment during the first half cycle or the second half cycle of the change in the speed magnitude.
  • the velocity of the outlet end 112 of the ejector tip 110 continues to increase or the segment continues to increase while the segment remains unchanged.
  • the velocity of the outlet end 112 of the ejector tip 110 continues to decrease or the segment continues to decrease while the segment remains unchanged.
  • the first liquid is discharged from the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the droplet 195 exits the outlet end 112 of the ejector tip 110 to form microdroplets 199 as the speed of movement of the outlet end 112 of the ejector tip 110 reaches a certain level.
  • the forces received by the microdroplets 199 before exiting the outlet end 112 of the ejector tip 110 are gravity G, the buoyancy f 1 of the second liquid 699, and the viscous resistance of the second liquid 699, respectively.
  • Mass microdroplets outlet 199 from the liquid discharge end 112 of the tip 110 before is m, speed v, acceleration a 2.
  • the droplet 195 is subjected to the combined action of the viscous force f 2 , the gravity G, the buoyancy f 1 and the adhesion force f 3 during the movement of the second liquid 699, ie
  • the free energy, the surface tension of the droplet 195, and the geometry of the ejector tip 110 are related.
  • the droplet 195 attached to the outlet end 112 of the ejector tip 110 is simplified into a spherical shape.
  • the viscous resistance f 2 6 ⁇ rv received by the droplet 195 as it moves in the second liquid 699, where ⁇ is the viscosity coefficient of the second liquid 699 and r is the droplet 195 The radius, v is the speed of movement of the droplet 195.
  • the diameter of the droplets 195 generally ranges from aspirated to microliters, while the viscosity of the second liquid 699 is generally relatively large.
  • the droplet 195 is detached from the outlet end 112 of the ejector tip 110 (i.e., a microdroplet 199 is formed).
  • the outlet end 112 of the ejection head 110 is inserted into the liquid surface of the second liquid 699 by the opening of the microdroplet container 60;
  • the outlet end 112 of the ejector head 110 is subjected to a periodic change in velocity under the liquid level of the second liquid 699.
  • the outlet end 112 of the ejector head 110 is in the first half cycle and the second half cycle of the change in velocity.
  • the magnitude of the velocity varies monotonically, while the first liquid is uniformly discharged from the outlet end 112 of the ejector tip 110, and the first liquid exiting the outlet end 112 of the ejector tip 110 is formed to adhere to the outlet end 112 of the ejector tip 110.
  • the droplet 195, the droplet 195 exits the outlet end 112 of the ejector tip 110 during the movement of the outlet end 112 of the ejector tip 110 to form a microdroplet 199 under the surface of the second liquid 699.
  • the outlet end 112 of the ejector head 110 is subjected to a periodic change in velocity under the liquid level of the second liquid 699, and the ejector tip is in the first half cycle and the second half cycle of the change in the speed.
  • the velocity of the exit end 112 of 110 is monotonically varied.
  • the viscous force f 2 of the second liquid 699 to the droplet 195 also exhibits a periodic change with the periodic variation of the velocity of the outlet end 112 of the ejector tip 110.
  • the outlet end 112 of the ejector head 110 performs a shifting cycle under the liquid level of the second liquid 699 to generate micro-droplets 199, which reduces the squirting gun.
  • the disturbance to the second liquid 699 as the exit end 112 of the head 110 moves ensures the stability of the microdroplet 199 generation process.
  • step S213 the first liquid is continuously discharged from the outlet end 112 of the ejector head 110. Further, in step S213, the first liquid is discharged by the outlet end 112 of the ejector head 110 at a constant flow rate, that is, the first liquid volume of the outlet end 112 of the ejector head 110 is discharged at equal time intervals. Always equal. The first liquid is expelled from the outlet end 112 of the ejector tip 110 at a constant flow rate, facilitating the generation of micro-droplets 199 of uniform size by controlling the periodic movement of the outlet end 112 of the ejector tip 110.
  • the velocity v of the droplet 195 is relatively easy to control.
  • the droplet 195 maintains a synchronized motion with the outlet end 112 of the ejector tip 110 prior to exiting the outlet end 112 of the ejector tip 110 to form the microdroplets 199. Therefore, the moving speed v of the liquid droplet 195 can be accurately controlled by controlling the moving speed of the outlet end 112 of the ejector head 110.
  • the first liquid is controlled to exit the outlet end 112 of the ejector tip 110 at a uniform flow rate, and the magnitude r of the radius of the droplet 195 also exhibits a periodic change over a fixed time interval.
  • the viscosity coefficient ⁇ of the second liquid 699 may vary within a certain range during use, but the second liquid 699 The range of variation of the viscosity coefficient ⁇ is small.
  • the surface free energy of the ejector head 110, the geometry of the ejector head 110, and the surface tension of the droplet 195 act as an outlet affecting the ejector head 110 without replacing the ejector tip 110 and the first liquid. factors maximal adhesive force f between two ends 112 and 195 is determined by the droplet. Thus, without replacing the tip 110 and the liquid discharge of the first liquid, the liquid discharge outlet tip end 110 of the maximum adhesion between the droplet 112 f 3 of 195 it is fixed.
  • the surface free energy of the ejector tip 110 and the geometry of the ejector tip 110 act as an outlet end 112 that affects the ejector tip 110.
  • the two factors of maximum adhesion f 3 between droplets 195 are varied.
  • batch processing can control the surface free energy of the ejector tip 110 and the geometry of the ejector tip 110 to vary within a certain interval.
  • the surface tension of the droplet 195 as another factor affecting the maximum adhesion force f 3 between the outlet end 112 of the ejection head 110 and the droplet 195 also varies only in a small range. Extruding liquid tip outlet end 110 of the fluctuations in the three small interval maximum value f adhesion between the droplet 112 and 195.
  • the viscous resistance f 2 that the droplet 195 is subjected to when moving in the second liquid 699 is greater than the interval value of the maximum value f 3 of the adhesion between the outlet end 112 of the ejector head 110 and the droplet 195.
  • the size r of the radius of the droplet 195 should be fixed during the process of generating the microdroplets 199 in the same batch. Once the experimental parameters are determined, the magnitude r of the radius of the droplet 195 is also determined. The speed of movement of the outlet end 112 of the ejector tip 110 below the level of the second liquid 699 varies.
  • the outlet end 112 of the ejector tip 110 performs a periodic change in velocity at the level of the second liquid 699.
  • the first liquid is controlled to be discharged from the outlet end 112 of the ejector head 110 at a uniform flow rate, and the volume of the droplet 195 attached to the outlet end 112 of the ejector head 110 is also uniformly increased.
  • the radius of the microdroplet 199 is referred to as the critical radius and the velocity of the microdroplet 199 becomes the critical velocity.
  • the droplets 195 attached to the outlet end 112 of the ejector tip 110 simultaneously reach a critical radius and critical velocity, and new droplets 199 are formed. Since the first liquid is discharged at the outlet end 112 of the ejector head 110 at a uniform flow rate, the volume of the generated microdroplets 199 is the same.
  • step S213 the velocity of the outlet end 112 of the ejector head 110 is center-symmetric with the intermediate point in time during a speed change period. Further, in step S213, the acceleration, velocity, and motion trajectory of the outlet end 112 of the ejector tip 110 under the liquid level of the second liquid 699 are periodically changed. Further, in step S213, the velocity of the outlet end 112 of the discharge gun head 110 under the liquid level of the second liquid 699 changes cosine.
  • the movement trajectory of the outlet end 112 of the ejector head 110 under the liquid surface of the second liquid 699 includes one or more of a plurality of trajectories such as a straight line segment, a circular arc segment, and a polygon. combination.
  • the frequency at which the outlet end 112 of the ejector head 110 periodically moves under the liquid level of the second liquid 699 is between 0.1 Hz and 200 Hz, which is easily accomplished in engineering.
  • the outlet end 112 of the ejector head 110 is actually oscillating.
  • the motion displacement can be represented by a sinusoid, as shown by curve a in FIG.
  • the first liquid is discharged from the outlet end 112 of the ejector head 110 at a uniform flow rate by the fluid control mechanism. It is assumed that the drop 195 does not exit the outlet end 112 of the ejector tip 110.
  • the viscosity resistance f viscosity experienced by the droplet 195 as it moves in the second liquid 699 changes with time as shown by the curve b in FIG.
  • the radius r of the droplet 195 increases significantly.
  • a uniform increase in the volume of the droplet 195 can only cause a slow increase in the radius r of the droplet 195.
  • the maximum value of the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 increases rapidly, and then gradually increases slowly. . 7, the liquid droplets 195 moving in the second viscous resistance by 699 f 2 also presents a similar solution discharge outlet tip 110 of the end 112 of the periodic motion periodically, i.e. droplets 195
  • the viscous resistance f 2 experienced when moving in the second liquid 699 varies with the speed of the outlet end 112 of the ejector head 110.
  • the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 increases and is greater than the maximum adhesion between the outlet end 112 of the ejector tip 110 and the droplet 195.
  • f 3 the discharge liquid droplet 195 from the outlet end 112 of tip 110 is formed microdroplets 199 off.
  • the outlet end 112 of the ejector head 110 is controlled to be a circular arc, and the displacement is sinusoidally varied.
  • the liquid discharge outlet tip end 110 of the maximum adhesion between the droplet 112 f 3 of 195 is fixed.
  • the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 also increases.
  • the viscous resistance f 2 of the droplet 195 as it moves in the second liquid 699 is greater than the instant of the maximum value f 3 of the adhesion between the outlet end 112 of the squirt head 110 and the droplet 195, and the droplet 195 is spit from The outlet end 112 of the liquid gun head 110 is detached to form microdroplets 199, which are droplets I in FIG. Entering the generation cycle of the next round of microdroplets 199.
  • a first microdroplet 199 is produced at the end of the second cycle of the oscillating motion of the sinusoidal variation of the displacement end 112 of the ejector tip 110, which is the droplet I in FIG.
  • the radius of the droplet 195 attached to the outlet end 112 of the squirt head 110 is The increase is faster, and the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 does not decrease immediately but presents a small increase. Thereafter, the radius r of the droplet 195 is slowly increased, and the viscous resistance f 2 received by the droplet 195 as it moves in the second liquid 699 mainly changes with the speed of movement of the outlet end 112 of the ejector head 110.
  • the outlet end 112 of the ejector tip 110 is again generated with the previous one at the time of the two movement cycles after the generation of the last droplet 199.
  • the microdroplet 199 is an equal volume of new droplet 195, which is droplet II in FIG.
  • the moving speed of the outlet end 112 of the ejection head 110 is also the same as that before the two motion periods.
  • a new volume 195 of equal volume with the last microdroplet 199 is detached from the outlet end 112 of the ejector tip 110.
  • the outlet end 112 of the ejector head 110 is controlled to be a circular arc with a sinusoidal variation in displacement.
  • the liquid discharge outlet tip end 110 of the maximum adhesion between the droplet 112 f 3 of 195 is fixed.
  • the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 also increases.
  • the viscous resistance f 2 of the droplet 195 as it moves in the second liquid 699 is greater than the instant of the maximum value f 3 of the adhesion between the outlet end 112 of the squirt head 110 and the droplet 195, and the droplet 195 is spit from The outlet end 112 of the liquid gun head 110 is detached to form microdroplets 199. Entering the generation cycle of the next round of microdroplets 199.
  • a first microdroplet 199 is produced at the end of the first cycle of the oscillating motion of the sinusoidal shift of the outlet end 112 of the ejector tip 110, which is droplet I in FIG.
  • the radius of the droplet 195 attached to the outlet end 112 of the squirt head 110 is The increase is faster, and the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 does not decrease immediately but presents a small increase. Thereafter, the radius r of the droplet 195 is slowly increased, and the viscous resistance f 2 received by the droplet 195 as it moves in the second liquid 699 mainly changes with the speed of movement of the outlet end 112 of the ejector head 110.
  • the outlet end 112 of the ejector tip 110 is again generated with the last micro at the moment of the movement of the last microdroplet 199.
  • the droplet 199 is equal in volume to the new droplet 195, and at this point the velocity of the exit end 112 of the jetting tip 110 is also the same as before one motion cycle.
  • a new volume 195 of equal volume with the last microdroplet 199 is detached from the outlet end 112 of the ejector tip 110, which is droplet II in FIG. This cycle generates droplet III, droplet IV, and the like.
  • the uniform discharge of the first liquid and the oscillating movement of the outlet end 112 of the ejector tip 110 in a sinusoidal variation together ensure the uniformity of volumetric size of the generated microdroplets 199.
  • the outlet end 112 of the ejector head 110 is controlled to be a circular arc with a sinusoidal variation in displacement.
  • the liquid discharge outlet tip end 110 of the maximum adhesion between the droplet 112 f 3 of 195 is fixed.
  • the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 also increases.
  • the viscous resistance f 2 of the droplet 195 as it moves in the second liquid 699 is greater than the instant of the maximum value f 3 of the adhesion between the outlet end 112 of the squirt head 110 and the droplet 195, and the droplet 195 is spit from The outlet end 112 of the liquid lance head 110 is detached to form droplets 199, which are droplets I in FIG. Entering the generation cycle of the next round of microdroplets 199.
  • the first micro-droplet 199 is generated in the acceleration phase of the first half cycle of the oscillating motion in which the displacement of the ejection tip 110 is displaced at a sinusoidal variation, and the droplet I is in FIG.
  • the speed of movement of the outlet end 112 of the ejector tip 110 is reduced, but due to the radius of the droplet 195 attached to the outlet end 112 of the ejector tip 110
  • the increase is faster, and the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 does not decrease immediately but presents a small increase.
  • the radius r of the droplet 195 is slowly increased, and the viscous resistance f 2 received by the droplet 195 as it moves in the second liquid 699 mainly changes with the speed of movement of the outlet end 112 of the ejector head 110.
  • the first liquid is controlled to exit the outlet end 112 of the ejector tip 110 at a uniform flow rate.
  • the outlet end 112 of the ejector tip 110 produces a second microdroplet 199 during the second half cycle acceleration phase of the sinusoidal oscillating motion, which is droplet II in FIG. Thereafter, the stage of stably generating the microdroplets 199 is entered.
  • a new droplet 195 of equal volume to the second micro-droplet 199 is generated, and at this time the squirt gun
  • the speed of movement of the outlet end 112 of the head 110 is also the same as before the half of the motion cycle.
  • a new droplet 195 of equal volume with the second microdroplet 199 is detached from the outlet end 112 of the ejector tip 110, and thus circulated, thereby generating droplet III, droplet IV, droplet V, etc. shown in FIG. .
  • the uniform discharge of the first liquid and the oscillating movement of the outlet end 112 of the ejector tip 110 in a sinusoidal variation together ensure the uniformity of volumetric size of the generated microdroplets 199.
  • the condition that the droplet 195 attached to the outlet end 112 of the ejector tip 110 is separated from the outlet end 112 of the ejector tip 110 is approximately:
  • the size of the generated micro-droplets 199 is uniform: the droplets 199 are equally spaced from the ejector tip The outlet end 112 of the 110 is detached.
  • Factors affecting the maximum value f 3 of the adhesion between the outlet end 112 of the ejector tip 110 and the droplet 195 include: surface free energy of the ejector tip 110, geometric dimensions, and surface tension of the first liquid. In the case where the tips 110 without replacing the extruding liquid and the first liquid, the liquid discharge outlet tip end 110 of the maximum adhesion between the droplet 112 f 3 of 195 is fixed.
  • the factors affecting the viscous resistance f 2 that the droplet 195 is subjected to when moving in the second liquid 699 include the viscosity coefficient ⁇ of the second liquid 699, the radius r of the droplet 195, and the moving velocity v of the droplet 195.
  • the curve a indicates the displacement change of the outlet end 112 of the ejector head 110
  • the curve b and the curve c are the droplets 199 when the viscous coefficient ⁇ of the second liquid 699 varies within a small range.
  • the generation process curve When the viscosity coefficient ⁇ of the second liquid 699 varies within a small range, the generation timing of the micro-droplets 199 is changed only in a small range. The generation interval of the microdroplets 199 is not changed. As shown in FIG. 12, the generation time interval of the micro-droplets 199 represented by the curves b and c is half a period t/2, which ensures the uniformity of the volume size of the generated micro-droplets 199.
  • the maximum adhesion force between the outlet end 112 of the ejection head 110 and the droplet 195 when the surface of the first liquid changes due to a temperature change or the like is changed when the ejection head 110 is replaced.
  • f 3 is difficult to control precisely, so if the volume of the generated microdroplets 199 is insensitive to changes in f 3 over a certain range, then it is important to generate microdroplets 199 of uniform size.
  • the curve a indicates the displacement change of the outlet end 112 of the ejector head 110
  • the curve b and the curve c are the generation process curves of the microdroplet 199 when the ejector head 110 is replaced.
  • the maximum value f 3 of the adhesion between the outlet end 112 of the spit gun head 110 and the droplet 195 fluctuates within a certain range, which causes the outlet end of the spit gun head 110 when the droplet 195 falls off.
  • 112 corresponds to different speeds.
  • the generation of the microdroplets 199 reaches a steady state, the velocity of the outlet end 112 of the spit gun head 110 is fixed during each wobble period when the droplets 195 fall off, as shown in FIG. 13, curve b and curve.
  • the generation time interval of the micro-droplets 199 represented by c is half a period t/2. It is therefore possible to ensure that the interval at which the microdroplets 199 are generated is fixed.
  • the volume of the generated microdroplets 199 is uniform. Simultaneously adjusting the flow rate of the outlet end 112 of the first liquid discharge ejector head 110 and the swing frequency of the outlet end 112 of the ejector head 110 in the second liquid 699 can simultaneously control the volume of the uniform volume microdroplet 199. And the generation rate.
  • the maximum value of the adhesion force f 3 and the viscous resistance f 2 are tolerated, that is, the maximum adhesion is obtained.
  • the value f 3 or the viscous resistance f 2 is varied within a certain range, it is still possible to generate the micro droplets 199 having a uniform volume.
  • the range of variation of the maximum value f 3 that can be tolerated is determined as a platform under the premise of generating a micro-droplet 199 having a uniform volume. period.
  • the presence of the plateau period is of great significance for the processing of the ejection tip 110 and the control of the formation temperature of the microdroplets 199.
  • the presence of the plateau period allows the processing precision of the ejector head 110 to be reduced to a certain extent, and even if there is a difference in surface free energy between the squirting tips 110 of the same batch, it is possible to generate a micro-liquid of uniform size. Drop 199.
  • the presence of the plateau period also allows the temperature control requirements of the microdroplet 199 generation process to be reduced to some extent.
  • the presence of the plateau period allows the processing accuracy requirements of the ejector tip 110 or the temperature control requirements of the microdroplet 199 generation process to be reduced to a certain extent, further reducing consumable costs and control costs during the generation of the microdroplets 199.
  • two micro-droplets 199 are generated in each movement cycle of the outlet end 112 of the ejector head 110, and it is easily understood that as long as the outlet end 112 of the ejector tip 110 is displaced, the sinusoidal cyclic movement is performed.
  • the outlet end 112 of the ejector tip 110 can be displaced in a sinusoidal periodic motion in any direction within the second liquid 699.
  • the trajectory of the exit end 112 of the ejector tip 110 is an arc, line or other shaped trajectory.
  • the ejection head 110 is obliquely inserted into the second liquid 699, and the outlet end 112 of the ejection head 110 is swung under the liquid surface of the second liquid 699.
  • a microdroplet 199 is produced.
  • the outlet end 112 of the ejector head 110 performs a periodic motion in which the trajectory is a horizontal straight line and the displacement is sinusoidal in the second liquid 699 to generate a micro Droplet 199.
  • the outlet end 112 of the ejector head 110 is moved in a periodic motion in which the second liquid 699 is in a straight line and the displacement is sinusoidal to generate Microdroplets 199.
  • step S213 the outlet end 112 of the ejector head 110 is in a uniform shifting motion during the first half period and the second half period in one cycle of the change in the speed. Further, in step S213, the outlet end 112 of the ejector head 110 is equal in magnitude to the acceleration of the first half period and the second half period.
  • the first liquid is controlled to exit the outlet end 112 of the ejector tip 110 at a uniform flow rate. As the first liquid is continuously discharged, the viscous resistance f 2 of the droplets 195 adhering to the outlet end 112 of the ejector tip 110 during the movement is also continuously increased.
  • the droplet 195 is detached from the ejector tip 110 to form the microdroplet 199. This is followed by the generation of the next microdroplet 199.
  • the frequency of movement and the speed of movement of the outlet end 112 of the ejector tip 110 are adapted to match the flow rate of the first liquid to ensure volume uniformity of the resulting microdroplets 199.
  • the traditional spit gun head is generally straight tubular.
  • the straight tubular spit gun head moves rapidly along its extending direction toward the end of the outlet end, it breaks the already formed micro-droplets.
  • a ejector tip 110 for generating microdroplets 199 includes a needle stem 113 having a hollow cavity and an outlet end 112 disposed at one end of the needle stem 113.
  • the angle between the normal line of the end face of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is 90 or less.
  • the movement of the end face away from the exit end 112 prevents the microdroplets 199 from being broken by the outlet end 112, maintaining the integrity of the generated microdroplets 199 while allowing the ejection of the sprinkler head 110 along the main body of the pipe.
  • the direction is rapidly vibrated to quickly generate microdroplets 199.
  • the ejection head 110 has a straight tubular shape, and the outlet end 112 of the ejection head 110 has a chamfered structure.
  • the outlet end 112 of the ejection head 110 is chamfered, and the integrity of the generated micro-droplets 199 and the generation efficiency of the micro-droplets 199 are achieved, and the structure is simple, easy to implement, low in manufacturing cost, and high in batch processing precision. specialty.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is between 15° and 75°, and the outlet of the ejection head 110 can be designed according to actual working conditions.
  • the angle between the normal of the end face 112 and the direction in which the needle stem 113 extends should not be too large or too small to affect the formation of the microdroplets 199 or break the microdroplets 199.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is between 30° and 60°. Specifically, the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is 45°.
  • the 45° angle not only ensures the smooth formation of the micro-droplets 199, but also effectively squeezes the generated micro-droplets 199 away from the exit trajectory of the outlet end 112, preventing the outlet end 112 of the ejector tip 110 from breaking the generated micro-- Droplet 199.
  • the portion of the needle stem 113 adjacent the outlet end 112 of the ejector head 110 includes a bent configuration.
  • the outlet end 112 of the ejector tip 110 is bent, and the integrity of the generated micro-droplets 199 and the generation efficiency of the micro-droplets 199 are achieved, and the structure is simple, easy to implement, low in manufacturing cost, and high in batch processing accuracy. specialty.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is between 15° and 75°, and the outlet of the ejection head 110 can be designed according to actual working conditions.
  • the angle between the normal of the end face 112 and the direction in which the needle stem 113 extends should not be too large or too small to affect the formation of the microdroplets 199 or break the microdroplets 199. Further, the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is between 30° and 60°. Specifically, the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the needle stem 113 is 45°.
  • the 45° angle not only ensures the smooth formation of the micro-droplets 199, but also effectively squeezes the generated micro-droplets 199 away from the exit trajectory of the outlet end 112, preventing the outlet end 112 of the ejector tip 110 from breaking the generated micro-- Droplet 199.
  • the bending structure of the needle stem 113 near the outlet end 112 of the ejector head 110 has one or a combination of a polygonal line segment, a circular arc segment, a smooth curved segment, a straight segment, and the like. As shown in Fig. 17, in this embodiment.
  • the portion of the needle stem 113 adjacent the outlet end 112 of the jetting lance tip 110 has a transitional arc segment, specifically a combination of a circular arc segment and a straight segment.
  • the straight tubular spit gun head 110 can be bent at a set angle, and the processing is convenient.
  • the squirting gun head 110 further includes a pin 114 having a reservoir 115 extending through the pin 114 in the extending direction of the pin 114.
  • One end of the reservoir 115 communicates with one end of the needle stem 113 away from the outlet end 112 of the jetting lance head 110, and the end of the needle plug 114 away from the needle stem 113 is the inlet end 111 of the ejector head 110.
  • the needle plug 114 is fixedly coupled to the needle stem 113.
  • the first liquid used to generate the microdroplets 199 can be stored in advance in the pin 114, enabling continuous, batch generation of the microdroplets 199.
  • the pin plug 114 is provided with a card slot 116 away from the inner surface of one end of the needle stem 113.
  • the card slot 116 enables a detachable connection with the fluid drive mechanism 120. It is convenient to replace the spit gun head 110.
  • the present application also provides a microdroplet 199 generating device for generating microdroplets 199 under the surface of the second liquid 699.
  • the microdroplet 199 generating device includes a fluid driving mechanism 120, a motion control mechanism 130, and the liquid discharging gun tip 110 according to any one of the above aspects.
  • the first liquid is stored inside the ejection head 110, and the ejection head 110 has an outlet end 112 and an inlet end 111.
  • the fluid drive mechanism 120 is coupled to the inlet end 111 of the ejector head 110 for discharging the first liquid stored inside the ejector head 110 from the outlet end 112 of the squirt head 110.
  • the motion control mechanism 130 is configured to control the outlet end 112 of the ejector head 110 to generate a set trajectory or a set speed or a set acceleration under the liquid level of the second liquid 699 so that the outlet of the ejector head 110 is discharged.
  • the first liquid of end 112 forms microdroplets 199 within second liquid 699 against surface tension and adhesion.
  • the ejector tip 110 provided herein produces microdroplets 199 during the movement of the second liquid 699 below the surface of the liquid.
  • a liquid discharge outlet tip 110 of the end 112 of the speed is made as a square wave variation of motion in the second liquid level 699, the size of the acceleration a 1.
  • the first liquid is discharged from the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the droplet 195 exits the outlet end 112 of the ejector tip 110 at the instant of instantaneous acceleration of the outlet end 112 of the ejector tip 110 to form microdroplets 199. As shown in FIG.
  • the forces received by the micro-droplets 199 before exiting the outlet end 112 of the ejector tip 110 are gravity G, buoyancy f 1 of the second liquid 699, and viscous resistance of the second liquid 699, respectively.
  • Mass microdroplets outlet 199 from the liquid discharge end 112 of the tip 110 before is m, the size of the acceleration a 2. According to Newton’s second law of motion, it is easy to draw
  • the viscous resistance f 2 6 ⁇ rv received by the droplet 195 as it moves in the second liquid 699, where ⁇ is the viscosity coefficient of the second liquid 699 and r is the droplet 195 The radius, v is the speed of movement of the droplet 195.
  • the velocity of the droplet 195 is zero before the exit end 112 of the ejector tip 110 is instantaneously accelerated, so that the droplet 195 is viscous in the second liquid 699 at the moment the tip end 112 of the ejector tip 110 is instantaneously accelerated.
  • the resistance f 2 is zero or very small.
  • the droplet diameter typically in the range of pi to 195 microliters of magnitude, and opposite to gravity G 195 and the second liquid droplet buoyancy f 1 direction 699, thus the droplet 195
  • the vector sum of the gravitational force f 1 of the gravity G and the second liquid 699 is about zero.
  • Existence It can be seen from Newton's second law of motion that the maximum acceleration that the droplet 195 can reach in the second liquid 699 is a 2 ⁇ f 3 /m when the outlet end 112 of the ejector tip 110 is subjected to the instantaneous acceleration motion, wherein m is a liquid Drop the quality of 195.
  • the condition in which the droplet 195 is detached from the outlet end 112 of the ejector tip 110 i.e., a droplet 199 is generated) is approximately: a 2 ⁇ (f 3 /m) ⁇ a 1 .
  • the magnitude of the instantaneous acceleration of the outlet end 112 of the ejector head 110 can be precisely controlled. As long as the value of the instantaneous acceleration of the outlet end 112 of the ejector head 110 is controlled to be large, the instantaneous acceleration movement of the outlet end 112 of the ejector head 110 can effectively generate the droplet 195.
  • one or two or more microdroplets 199 are formed during one cycle of the outlet end 112 of the ejector tip 110.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejector head 110 and the extending direction of the pipe main body is 45°, and the outlet end of the ejector head 110 112 is a beveled structure.
  • the liquid level of the second liquid 699 is upward, and the ejection head 110 is vertically arranged.
  • the outlet end 112 of the ejector tip 110 is traversed under the liquid level of the second liquid 699 as a vertical straight line segment, and the velocity is a square wave.
  • a microdroplet 199 is created during one cycle of the exit end 112 of the ejector tip 110.
  • a first liquid is stored in the ejector tip 110.
  • the fluid drive mechanism 120 controls the ejector head 110 to discharge an equal volume of the first liquid from the outlet end 112 during each movement cycle of the ejector tip 110.
  • the droplet 195 attached to the outlet end 112 of the ejector tip 110 reaches a set volume size, the outlet end 112 of the ejector tip 110 is instantaneously accelerated downward by the acceleration of the size a 1 from the upper limit position while being attached.
  • the droplet 195 at the outlet end 112 of the ejector tip 110 exits the outlet end 112 of the ejector tip 110 to form microdroplets 199.
  • the micro-droplets 199 move away from the exit trajectory of the outlet end 112 to the side wall of the ejector tip 110.
  • the outlet end 112 of the ejector tip 110 continues to move downward while the first liquid still exits the outlet end 112 of the ejector tip 110 to form a drop 195 that adheres to the outlet end 112 of the ejector tip 110.
  • the outlet end 112 of the ejector head 110 is moved to the lower limit position, the outlet end 112 of the ejector head 110 is moved upward by the lower limit position.
  • the first liquid still exits the outlet end 112 of the ejector tip 110 during the upward movement of the outlet end 112 of the ejector tip 110 from the lower extreme position, and the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 Increase.
  • the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 is equal to the volume of the previously detached droplet 199. Extruding liquid outlet end 112 of tip 110 from the upper limit position again to a size of a downward acceleration of the instantaneous acceleration a new form microdroplets 199, and so on.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejector head 110 and the extending direction of the pipe main body is 45°, and the outlet end of the ejector head 110 is provided.
  • 112 is a beveled structure.
  • the liquid level of the second liquid 699 is upward, and the ejection head 110 is vertically arranged.
  • the outlet end 112 of the ejector tip 110 is traversed under the liquid level of the second liquid 699 as a vertical straight line segment, and the velocity is a square wave.
  • Two microdroplets 199 are created during one cycle of the exit end 112 of the ejector tip 110.
  • a first liquid is stored in the ejector tip 110.
  • the fluid drive mechanism 120 controls the first liquid to exit the outlet end 112 at a uniform flow rate.
  • the droplet 195 attached to the outlet end 112 of the ejector tip 110 reaches a set volume size, the outlet end 112 of the ejector tip 110 is instantaneously accelerated downward by the acceleration of the size a 1 from the upper limit position while being attached.
  • the droplet 195 at the outlet end 112 of the ejector tip 110 exits the outlet end 112 of the ejector tip 110 to form microdroplets 199.
  • the micro-droplets 199 move away from the exit trajectory of the outlet end 112 to the side wall of the ejector tip 110.
  • the outlet end 112 of the ejector tip 110 continues to move downward.
  • the first liquid still exits the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110, and the volume of the droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 is equal to the volume of the previously detached droplet 199.
  • the micro-droplets 199 generated when the outlet end 112 of the ejector tip 110 is in the lower limit position are only moved upward by a small distance under the adhesion of the outlet end 112, and then gradually fall in the second liquid 699.
  • the first liquid still exits the outlet end 112 of the ejector tip 110 during the upward movement of the outlet end 112 of the ejector tip 110 from the lower extreme position, and the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 Increase.
  • the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 is equal to the volume of the previously detached droplet 199. Extruding liquid outlet end 112 of tip 110 from the upper limit position again to a size of a downward acceleration of the instantaneous acceleration a new form microdroplets 199, and so on.
  • the ejector tip 110 provided herein produces microdroplets 199 during the movement of the second liquid 699 below the surface of the liquid.
  • the outlet end 112 of the ejector tip 110 is displaced in a sinusoidal motion under the liquid level of the second liquid 699.
  • the first liquid is discharged from the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the droplet 195 exits the outlet end 112 of the ejector tip 110 to form microdroplets 199 as the speed of movement of the outlet end 112 of the ejector tip 110 reaches a certain level. As shown in FIG.
  • the forces received by the microdroplets 199 before exiting the outlet end 112 of the ejector tip 110 are gravity G, the buoyancy f 1 of the second liquid 699, and the viscous resistance of the second liquid 699, respectively.
  • Mass microdroplets outlet 199 from the liquid discharge end 112 of the tip 110 before is m, speed v, acceleration a 2.
  • the droplet 195 is affected by the viscous force f 2 , the gravity G, the buoyancy f 1 , and the adhesion force f 3 during the movement of the second liquid 699.
  • the diameter of the droplets 195 generally ranges from aspirated to microliters, while the viscosity of the second liquid 699 is generally relatively large. Therefore, there are generally Therefore, during the shifting cycle of the outlet end 112 of the ejector tip 110 under the liquid level of the second liquid 699, the droplet 195 is detached from the outlet end 112 of the ejector tip 110 (i.e., a microdroplet 199 is formed). Approximate Optionally, one or two or more microdroplets 199 are formed during one cycle of the outlet end 112 of the ejector tip 110.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the pipe main body is 45°, and the needle stem 113 is close to the ejection head.
  • the portion of the exit end 112 of 110 is a bent configuration.
  • the liquid level of the second liquid 699 is upward, and the ejection head 110 is vertically arranged.
  • the outlet end 112 of the ejector tip 110 is traversed in a vertical straight line under the liquid level of the second liquid 699, and the displacement is sinusoidally changed.
  • a microdroplet 199 is created during one cycle of the exit end 112 of the ejector tip 110.
  • a first liquid is stored in the ejector tip 110.
  • the fluid drive mechanism 120 controls the ejector head 110 to discharge an equal volume of the first liquid from the outlet end 112 during each movement cycle of the ejector tip 110.
  • the first micro-droplet 199 is generated at an accelerated descending phase of the linear motion in which the displacement at the outlet end 112 of the ejector tip 110 is sinusoidal.
  • the radius r of the droplet 195 attached to the outlet end 112 of the ejector tip 110 is increased. Fast, the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 does not decrease immediately but instead exhibits a small increase.
  • the radius r of the droplet 195 is slowly increased, and the viscous resistance f 2 received by the droplet 195 as it moves in the second liquid 699 mainly changes with the speed of movement of the outlet end 112 of the ejector head 110.
  • the outlet end 112 of the ejector head 110 is lowered to the extreme position and begins to rise, while the volume of the droplet 195 adhering to the outlet end 112 of the ejector head 110 is continuously increased.
  • the outlet end 112 of the ejector tip 110 is again generated with the last micro at the moment of the movement of the last microdroplet 199.
  • the droplet 199 is equal in volume to the new droplet 195, and at this point the velocity of the exit end 112 of the jetting tip 110 is also the same as before one motion cycle.
  • a new volume 195 of equal volume with the last microdroplet 199 is detached from the outlet end 112 of the ejector tip 110 and thus circulated.
  • the uniform discharge of the first liquid and the oscillating movement of the outlet end 112 of the ejector tip 110 in a sinusoidal variation together ensure the uniformity of volumetric size of the generated microdroplets 199.
  • the outlet end 112 of the ejector tip 110 is again moved downward from the upper limit position, if the droplet 199 is still present within the trajectory immediately below the outlet end 112, the droplet 195 attached to the outlet end 112 strikes.
  • the generated microdroplets 199, the generated microdroplets 199 move along the normal to the end face of the exit end 112 to move away from the exit trajectory of the exit end 112.
  • the angle between the normal line of the end surface of the outlet end 112 of the ejection head 110 and the extending direction of the pipe main body is 45°, and the needle stem 113 is close to the ejection head.
  • the portion of the exit end 112 of 110 is a bent configuration.
  • the liquid level of the second liquid 699 is upward, and the ejection head 110 is vertically arranged.
  • the outlet end 112 of the ejector tip 110 is traversed in a vertical straight line under the liquid level of the second liquid 699, and the displacement is sinusoidally changed.
  • Two microdroplets 199 are created during one cycle of the exit end 112 of the ejector tip 110.
  • a first liquid is stored in the ejector tip 110.
  • the fluid drive mechanism 120 controls the first liquid to exit the outlet end 112 at a uniform flow rate.
  • the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 also increases.
  • the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 is greater than the outlet end 112 and the droplet 195 of the ejector tip 110.
  • the maximum value f 3 between the adhesions, the droplets 195 are detached from the outlet end 112 of the ejector head 110 to form microdroplets 199.
  • the micro-droplets 199 move away from the exit trajectory of the outlet end 112 to the side wall of the ejector tip 110.
  • the outlet end 112 of the ejector tip 110 continues to move downwardly, and the outlet end 112 of the ejector tip 110 is lowered to the extreme position and begins to rise.
  • the first liquid still exits the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110, and the volume of the droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the speed of movement of the outlet end 112 of the ejector tip 110 is reduced, but due to the radius of the droplet 195 attached to the outlet end 112 of the ejector tip 110
  • the increase is faster, and the viscous resistance f 2 experienced by the droplet 195 as it moves in the second liquid 699 does not decrease immediately but presents a small increase.
  • the radius r of the droplet 195 is slowly increased, and the viscous resistance f 2 received by the droplet 195 as it moves in the second liquid 699 mainly changes with the speed of movement of the outlet end 112 of the ejector head 110.
  • the outlet end 112 of the ejector tip 110 is in an upward acceleration phase.
  • the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 is equal to the volume of the previously detached droplet 199, and the velocity of the outlet end 112 of the ejector tip 110 is also half a cycle ago.
  • the droplets 195 attached to the outlet end 112 exit the outlet end 112 to form new microdroplets 199.
  • the droplets 199 generated when the outlet end 112 of the ejector tip 110 is in the upward acceleration phase are only moved upward by a small distance under the adhesion of the outlet end 112, and then gradually fall in the second liquid 699.
  • the first liquid still exits the outlet end 112 of the ejector head 110 to form a droplet 195 attached to the outlet end 112 of the squirt head 110, and the volume of the droplet 195 attached to the outlet end 112 of the squirt head 110.
  • the outlet end 112 of the ejector tip 110 is in a downward acceleration phase.
  • the volume of the droplet 195 attached to the outlet end 112 of the ejector tip 110 is equal to the volume of the previously detached droplet 199, and the velocity of the outlet end 112 of the ejector tip 110 is also half a cycle ago.
  • the droplets 195 attached to the outlet end 112 exit the outlet end 112 to form new microdroplets 199, thus circulating.
  • the first liquid is controlled to exit the outlet end 112 of the ejector tip 110 at a uniform flow rate.
  • the outlet end 112 of the ejector tip 110 is in the stage of stably generating the microdroplets 199 after the second microdroplet 199 is generated in the second half cycle acceleration phase in which the trajectory is a vertical straight line and the displacement is sinusoidally changed.
  • the uniform discharge of the first liquid and the oscillating movement of the outlet end 112 of the ejector tip 110 in a sinusoidal variation together ensure the uniformity of volumetric size of the generated microdroplets 199.
  • micro-droplet generating device and the generating method provided by the present application are widely used in medical clinical testing, nano material preparation, food and environmental testing, biochemical analysis and the like.
  • the device for generating microdroplets 199 and the method for generating the same are applied in a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • the cross-sectional size of the spit gun tip 110 is generally on the order of micrometers. Conventional surface treatment methods are often used for larger size parts and are not fully applicable to the smaller size spit gun head 110.
  • an embodiment of the present invention provides a surface treatment method for a liquid discharge gun head 110 for performing surface treatment on the liquid discharge gun head 110, including the following steps: S260, performing the liquid discharge gun head 110 Silicidation treatment; S270, treating the discharge gun head 110 with an aqueous solution of diethylpyrocarbonate (DEPC); S280, drying the discharge gun head 110.
  • S260 performing the liquid discharge gun head 110 Silicidation treatment
  • S270 treating the discharge gun head 110 with an aqueous solution of diethylpyrocarbonate (DEPC)
  • S280 drying the discharge gun head 110.
  • the silanization treatment reduces the surface free energy of the ejector head 110 and controls the surface free energy of the ejector head 110 within a certain interval, thereby reducing the surface characteristics of the ejector head 110.
  • the effect on the microdroplet 199 generation process is not limited to the surface treatment method of the ejector head 110.
  • step S240 is further included to pre-process the liquid discharge gun head 110.
  • the pre-processing includes one or more of the operations of degreasing, decontaminating or cleaning the liquid discharge gun head 110.
  • Degreasing, decontaminating, and cleaning the ejector tip 110 can effectively remove contaminants or interferences adhering to the surface of the squirt head 110 during the pre-processing.
  • the surface of the ejector head 110 is assisted in degreasing, auxiliary decontamination or auxiliary cleaning using ultrasonic vibration.
  • the liquid sprinkling head 110 is degreased, decontaminated and cleaned in an ultrasonic environment, and the chemical means and the mechanical means are used together to ensure the surface pretreatment effect of the spit gun head 110.
  • the squirting gun head 110 is made of stainless steel, and the squirting lance head 110 is washed with a stainless steel cleaning agent.
  • the stainless steel cleaning agent has a higher cleaning effect on the stainless steel spit gun head 110.
  • the pretreatment of the surface of the ejector head 110 may be other methods that enable surface cleaning of the squirt head 110.
  • the ejector tip 110 is one of a quartz capillary tube, a glass tube, a dual fiber capillary tube, and the like.
  • the method further comprises the step S250 of electropolishing the liquid discharge nozzle.
  • Electropolishing reduces the surface roughness of the smaller size jetting head 110 to achieve the silanization requirements of the surface quality of the jetting tip 110. Electropolishing is critical to the surface quality of the squirting tip 110 and is the key to the surface quality of the stainless steel spit tip 110.
  • the spit gun head 110 made of stainless steel is used as an anode, and insoluble copper or the like is used as a cathode in the electrolytic solution.
  • the process parameters for electropolishing the spit gun head 110 are as follows:
  • the ejection head 110 used has an inner diameter of 60 ⁇ m and an outer diameter of 150 ⁇ m. After the electropolishing was finished, it was magnified 50 times under a metallographic microscope to observe no scratches.
  • an amorphous silicon film can be formed on the surface of the ejection head 110, and preferably an amorphous silicon film is formed on the surface of the ejection head 110 by chemical vapor deposition.
  • the thickness of the amorphous silicon film is preferably from 100 angstroms to 1000 angstroms.
  • the step S260 includes: S261, cleaning or immersing the ejector head 110 with deionized water; S262, treating the squirting head with a silylating agent 110; S263, washing or immersing the ejector tip 110 with deionized water.
  • the electrolyzed spit head 110 is washed or soaked with deionized water prior to silanization to remove stains and static electricity on the surface of the spit head 110.
  • the silanization treatment reduces the surface free energy of the ejector tip 110 and controls the surface free energy of the ejector tip 110 within a certain interval, reducing the influence of the surface characteristics of the ejector tip 110 on the process of generating the droplets 199.
  • the silanized blister head 110 is washed or immersed in deionized water to remove stains and static electricity on the surface of the squirt head 110.
  • an amorphous silicon film on the surface of the ejector head 110 by chemical vapor deposition using a silylation reagent.
  • the silylating agent is preferably a silicon tetrahydride gas, more preferably a mixed gas comprising silicon tetrahydride and hydrogenated phosphorus as a dopant.
  • An amorphous silicon treatment film is formed on the surface of the ejection head 110 to reduce the surface free energy of the ejection head 110.
  • the specific steps of the surface silanization treatment of the stainless steel in this embodiment are as follows: the electrolyzed stainless steel spit gun head 110 is placed in a chemical vapor deposition chamber, the surface water vapor of the spit gun head 110 is removed, and the chemical vapor deposition chamber is evacuated to a vacuum; The gas mixture of tetrahydrogen silicon and hydrogen hydride is introduced, the gas pressure deposition gas pressure is controlled in the range of 0.1 Pa to 500 Pa, and the vapor deposition temperature is controlled at 180 ° C to 500 ° C for chemical vapor deposition; the deposition time is 0.4 h to 8 h; Nitrogen gas was introduced and it was cooled to room temperature. Specifically, the volume percentage of the tetrahydrosilane in the mixed gas is from 95.0% to 99.9%, and the volume percentage of the hydrogenated phosphorus in the mixed gas is from 0.1% to 5.0%.
  • the step S270 includes: S271, soaking the spit gun head 110 with a volume fraction of 0.5%-1.5% aqueous diethylpyrocarbonate for 10 min-20 min; S272, the spitting liquid
  • the tip 110 is autoclaved.
  • the ejection tip 110 is soaked in a 1% volume of DEPC aqueous solution to ensure that the surface of the ejection head 110 is free of Ribonuclease (RNase) and deoxyribonuclease (DNase), etc.
  • RNase Ribonuclease
  • DNase deoxyribonuclease
  • the time for soaking the spit head 110 using a 1% volume aqueous solution of DEPC may depend on the particular conditions.
  • the ejector tip 110 is immersed in a DEPC aqueous solution having a volume fraction of 1% for 15 minutes. After testing, 15 minutes is enough to remove the RNase and DNase on the surface of the spit gun head 110.
  • the spit gun head 110 is further purified by using a nitrogen purifying furnace to purify, dry and bake the spit gun head 110. Nitrogen gas is used as a shielding gas when drying the spit gun head 110. The use of nitrogen as a shielding gas can effectively prevent a chemical reaction between the relatively chemically active gas in the environment and the surface of the ejector tip 110, thereby achieving effective protection of the ejector tip 110.
  • the ejection head 110 used has an inner diameter of 60 ⁇ m and an outer diameter of 150 ⁇ m.
  • the electrolyzed spit gun head 110 was immersed in deionized water for 5 min. Then, the ejection head 110 is placed in a chemical vapor deposition chamber, and after evacuation, a mixed gas of silicon tetrahydride and hydrogen hydride is introduced.
  • the vapor deposition pressure was controlled at 300 ⁇ 20 Pa, and the vapor deposition temperature was controlled at 350 ⁇ 20 °C.
  • the volume percentage of the tetrahydrosilane in the mixed gas was 97.0%, and the volume percentage of the hydrogenated phosphorus in the mixed gas was 3.0%.
  • the deposition time was 2 h. After the deposition was completed, nitrogen gas was introduced and the temperature was lowered to room temperature.
  • the silanized blister head 110 is washed with deionized water.
  • the entire ejector tip 110 was immersed for 15 min with a 1% DEPC aqueous solution and the ejector tip 110 was autoclaved. Finally, the spit gun head 110 is placed in a nitrogen purifying furnace for surface cleaning.
  • Eighteen sprinkler heads 110 of the same size were batch processed using the surface treatment method of the spit gun head 110 provided in the examples of the present application, and then the drop 195 suspension test was performed using the 18 spit tips 110, respectively.
  • the first liquid was discharged from the outlet end 112 of the ejector head 110 at a flow rate of 1.0 nL/s using a fluid control mechanism.
  • Counting from the drop of the last microdroplet 199, each spit tip 110 calculates the drop time of 100 microdroplets 199.
  • the average time data of the corresponding 100 droplets 195 drop of the 18 spit gun heads 110 are as follows:
  • the relative variation range of the average drop time of the corresponding microdroplets 199 of the 18 spit tips 110 can directly reflect the relative variation range of the surface free energy between the 18 spit tips 110. From the above experimental data, it can be concluded that the standard deviation of the surface free energy of the jetting head 110 after batch processing using the surface treatment method of the liquid discharging head 110 provided by the embodiment of the present application is 1.33%. Sufficient to meet the volume uniformity requirements of various types of generated microdroplets 199.
  • one end of the ejector tip 110 is an outlet end 112 for surface treatment of the outlet end 112 and the outer side wall of the ejector tip 110.
  • the outlet end 112 and the outer side wall of the ejector tip 110 are surface-treated.
  • the outlet end and the outer wall of the ejector tip 110 contact the generated micro-droplets 199, and are uniform. The surface can effectively push the micro-droplets 199 away from breaking the micro-droplets 199.
  • the conventional fluid-driven mechanism In the process of generating micro-droplets, the conventional fluid-driven mechanism is in a moving state at the outlet end of the ejection head, and the flow rate of the discharged liquid is unstable and uncontrollable.
  • the generated microdroplet volume size is random. Based on this, it is necessary to provide a kind of randomness problem for the volume of microdroplets caused by the unstable and uncontrollable flow rate of the discharge liquid when the traditional spit gun head is in motion.
  • a fluid drive mechanism that discharges liquid at a constant flow rate.
  • the first liquid exits the outlet end 112 of the ejector tip 110 at a set flow rate.
  • the outlet end 112 of the ejector tip 110 performs a periodic motion including instantaneous acceleration, not only can the micro-droplets 199 be efficiently generated, but also the size of the generated micro-droplets 199 can be controlled.
  • the outlet end 112 of the ejector tip 110 is moved in a periodic sinusoidal variation, the micro-droplets 199 cannot be efficiently generated, and the generated micro-droplets 199 have good volume-size uniformity.
  • the first liquid is discharged by the fluid drive mechanism 120 at a set flow rate at the outlet end 112 of the ejector head 110.
  • the present application provides a fluid drive mechanism 120 for use in a micro-droplet generation system including a variable volume assembly 121 and a power assembly 122.
  • the variable volume assembly 121 includes a syringe 1211 and a push rod 1212.
  • the push rod 1212 is slidably engaged with the inner wall of the syringe 1211, and the driving liquid 1214 can be stored in the syringe 1211.
  • the syringe 1211 has an inlet and outlet port 1213 for communicating with the inlet end 111 of the ejector tip 110 in which the first liquid 190 is stored.
  • the power assembly 122 is drivingly coupled to the push rod 1212 for driving the push rod 1212 to slide in the direction in which the syringe 1211 extends.
  • the power assembly 122 drives the push rod 1212 to be squeezed and stored in the syringe 1211 to drive the liquid 1214.
  • the driving liquid 1214 squeezes the first liquid 190 stored in the ejection head 110, and The first liquid 190 is discharged from the outlet end 112 of the ejector head 110.
  • the fluid drive mechanism 120 provided by the present application utilizes the incompressibility of the liquid (driving liquid 1214) to ensure that the outlet end 112 of the ejector head 110 can still spit the first liquid 190 at a set flow rate when vibrating at a high frequency.
  • the outlet end 112 of the liquid gun head 110 is discharged.
  • the fluid drive mechanism 120 provided herein is capable of accurately controlling the volume of generated microdroplets 199.
  • the fluid drive mechanism 120 provided by the present application is not limited to the above embodiment, and for example, a peristaltic pump, a pressure driven pump, a pneumatic drive pump, an electroosmotic drive pump, or the like may be employed.
  • the inlet and outlet port 1213 of the syringe 1211 communicates with the inlet end 111 of the ejector head 110 through a capillary tube 123.
  • a driving liquid 1214 is stored in the syringe 1211 and in the capillary 123.
  • the power assembly 122 is drivingly coupled to the push rod 1212 of the variable volume assembly 121 for urging the push rod 1212 of the variable volume assembly 121 to slide within the syringe 1211.
  • the power assembly 122 pushes the push rod 1212 of the variable volume assembly 121.
  • the push rod 1212 squeezes the driving liquid 1214 stored in the syringe 1211 and the capillary tube 123, and the driving liquid 1214 is squeezed and stored in the spit.
  • the first liquid 190 in the liquid gun head 110 discharges the first liquid 190 from the outlet end 112 of the squirt head 110.
  • the inlet and outlet port 1213 of the syringe 1211 is connected to the inlet end 111 of the ejector head 110 by using a thin tube 123.
  • the inner diameter of the capillary tube 123 is small, so that the volume of the discharged liquid can be accurately controlled by controlling the stroke of the push rod 1212.
  • the use of the thin tube 123 enables flexible placement of the position and distance between the syringe 1211 and the ejector tip 110, facilitating the placement of other necessary equipment between the syringe 1211 and the ejector tip 110.
  • the power assembly 122 pushes the push rod 1212 to slide at a uniform speed within the syringe 1211, that is, the driving liquid 1214 is discharged from the inlet and outlet port 1213 of the variable volume assembly 121 at a uniform flow rate under the push of the push rod 1212.
  • the ejector tip 110 is introduced through the thin tube 123 at a uniform flow rate.
  • the first liquid 190 stored in the ejector tip 110 is discharged by the driving liquid 1214 at a uniform flow rate through the outlet end 112 of the ejector tip 110.
  • the fluid driving mechanism 120 provided in the present embodiment can not only be the first at a uniform flow rate when the ejection head 110 is at rest.
  • the liquid 190 is discharged from the outlet end 112 of the ejector head 110.
  • the fluid drive mechanism 120 provided in the present embodiment can ensure that the first liquid 190 is discharged from the outlet end 112 of the ejector head 110 at a uniform flow rate.
  • the fluid drive mechanism 120 provided by this embodiment greatly improves the volume size uniformity of the generated micro-droplets 199.
  • the function of the power assembly 122 is to drive the push rod 1212 to slide in the direction of the injection port 1211 away from the inlet and outlet port 1213 or in the direction of the inlet and outlet port 1213.
  • the power component 122 may be a component that directly outputs a linear motion such as a cylinder or a hydraulic cylinder, or may be a component that converts a circular motion into a linear motion, such as a combination of a motor and a synchronous pulley, a motor and a screw 1222, and a slide.
  • the combination of block 1223, and the like does not limit the specific structure of the power assembly 122. As shown in FIG.
  • the power assembly 122 includes a drive motor 1221, a lead screw 1222, and a slider 1223.
  • the output shaft of the driving motor 1221 is drivingly coupled to one end of the screw 1222.
  • the slider 1223 has an internal thread, and the slider 1223 is coupled to the external thread of the surface of the screw 1222.
  • the outer edge of the slider 1223 is fixedly coupled to the end of the push rod 1212 remote from the syringe 1211.
  • the slider 1223 cooperates with the screw 1222 to convert the rotational motion of the output of the driving motor 1221 into a linear motion of the slider 1223 along the axial direction of the screw 1222, thereby driving the push rod 1212 of the variable volume assembly 121 to slide within the syringe 1211.
  • the drive motor 1221 used in the present embodiment is a servo motor.
  • the servo motor has the characteristics of precise feedback and control of output angular displacement.
  • the fluid drive mechanism 120 further includes a three-way reversing valve 124 and a liquid storage tank 125.
  • the three-way reversing valve 124 has a first interface, a second interface, and a third interface.
  • the inlet end 111 of the ejector head 110, the inlet and outlet port 1213 of the variable volume unit 121, and the reservoir tank 125 are in communication with the first port, the second port, and the third port of the three-way directional control valve 124, respectively.
  • the three-way switching valve 124 can control at least the fluid driving mechanism 120 to realize the following two modes: 1.
  • the inlet and outlet port 1213 of the variable volume component 121 is connected to the inlet end 111 of the ejector head 110, and is driven by the power component 122.
  • the variable volume assembly 121 provides a liquid driving force to the ejector head 110 for discharging the first liquid 190 in the ejector head 110 from the outlet end 112 of the squirt head 110, or from the first liquid 190
  • the outlet end 112 of the ejector tip 110 is drawn into the ejector head 110. 2.
  • the inlet and outlet port 1213 of the variable volume assembly 121 is communicated with the liquid storage tank 125.
  • variable volume assembly 121 draws the driving liquid 1214 in the liquid storage tank 125 into the variable volume assembly 121. Within the syringe 1211, the drive fluid in the variable volume assembly 121 is pushed into the reservoir 125.
  • an embodiment of the present application further provides a fluid driving method using the fluid driving mechanism, including the following steps: (1)
  • the three-way switching valve 124 makes the inlet and outlet ports 1213 of the variable volume component 121 and the storage.
  • the liquid tank 125 is in communication.
  • the push rod 1212 slides in the syringe 1211 toward the end remote from the inlet and outlet port 1213 to change the volume of the syringe 1211 to draw the drive liquid 1214 in the reservoir 125 into the syringe 1211.
  • the three-way switching valve 124 communicates the inlet and outlet port 1213 of the variable displacement unit 121 with the inlet end 111 of the discharge gun head 110.
  • the push rod 1212 slides in the syringe 1211 toward the end close to the inlet and outlet port 1213 to change the volume of the syringe 1211 to discharge the inside of the syringe 1211, the narrow tube 123 and the ejection head 110. gas.
  • the outlet end 112 of the ejector tip 110 is introduced into the first liquid 190, and the three-way directional valve 124 is maintained to communicate the inlet and outlet port 1213 of the variable volume assembly 121 with the inlet end 111 of the ejector head 110.
  • the push rod 1212 slides in the syringe 1211 toward the end remote from the inlet and outlet port 1213 to change the volume of the syringe 1211 to draw the first liquid 190 into the ejection head 110.
  • the three-way switching valve 124 is maintained to communicate the inlet and outlet port 1213 of the variable displacement unit 121 with the inlet end 111 of the discharge gun head 110.
  • the push rod 1212 slides uniformly in the syringe 1211 toward the end close to the inlet and outlet port 1213 to change the volume of the syringe 1211 to uniformize the first liquid 190 stored in the ejector head 110.
  • the flow rate exits the outlet end 112 of the jetting tip 110.
  • the inlet and outlet port 1213 of the syringe 1211 is mounted upward, and the push rod 1212 is vertically in the syringe 1211. slide.
  • the number of the ejection lances 110 is plural, and the plurality of ejector tips 110 are arranged side by side or arranged in other forms.
  • Each of the ejector tips 110 is in communication with a first interface of the three-way directional valve 124 via a separate capillary tube 123.
  • the number of variable volume assemblies 121 is one, and the inlet and outlet ports 1213 of the variable volume assembly 121 are in communication with the second interface of the three-way switching valve 124.
  • the third port of the three-way reversing valve 124 is in communication with the reservoir 125.
  • the push rod 1212 slides uniformly in the direction of the inlet and outlet port 1213 in the syringe 1211, while pressing the driving liquid 1214 into the plurality of ejection heads 110. Since the plurality of thin tubes 123 are in a parallel relationship, the flow rate of the driving liquid 1214 in each of the thin tubes 123 is the same, and the first liquid 190 in the plurality of ejection heads 110 is ensured to discharge the discharged liquid at the same constant flow rate. The outlet end 112 of the tip 110. Further, the volume size uniformity of the generated micro-droplets 199 is ensured.
  • the number of the ejection lance head 110 and the variable volume module 121 is plural.
  • the plurality of ejector tips 110 are arranged side by side or in other forms.
  • Each of the ejector tips 110 is in communication with a first interface of the three-way directional valve 124 via a separate capillary tube 123.
  • the inlet and outlet port 1213 of each variable volume assembly 121 is also in communication with the second interface of the three-way switching valve 124 via a separate capillary tube 123.
  • the third port of the three-way reversing valve 124 is in communication with the reservoir 125.
  • the plurality of variable volume assemblies 121 are arranged side by side or in other forms.
  • the ends of the push rods 1212 of the plurality of variable volume assemblies 121 remote from the syringe 1211 are relatively fixed and are simultaneously pushed by the power assembly 122.
  • the plurality of push rods 1212 slide uniformly in the respective syringes 1211 in a direction close to the inlet and outlet port 1213, while squeezing the driving liquid 1214 into the plurality of jetting heads 110. Since the plurality of thin tubes 123 are in a parallel relationship, the flow rate of the driving liquid 1214 in each of the thin tubes 123 is the same, and the first liquid 190 in the plurality of ejection heads 110 is ensured to discharge the discharged liquid at the same constant flow rate. The outlet end 112 of the tip 110. Further, the volume size uniformity of the generated micro-droplets 199 is ensured.
  • the number of the squirting lance head 110, the variable-volume component 121, and the three-way directional control valve 124 are the same and are multiple .
  • the inlet end 111 of each of the ejector tips 110 is in communication with a first interface of a three-way directional valve 124 via a separate capillary tube 123.
  • the inlet and outlet ports 1213 of each variable volume assembly 121 are respectively communicated with the second interface of a three-way switching valve 124 via separate thin tubes 123.
  • the third port of each three-way reversing valve 124 is in communication with the reservoir 125, respectively.
  • the liquid storage tanks 125 may be one or more.
  • the first liquid 190 in each of the ejector tips 110 may be the same or different.
  • the plurality of variable volume assemblies 121 are arranged side by side or in other forms. The ends of the push rods 1212 of the plurality of variable volume assemblies 121 remote from the syringe 1211 are relatively fixed and are simultaneously pushed by the power assembly 122. Driven by the power assembly 122, the plurality of push rods 1212 slide uniformly within the respective syringes 1211 in a direction adjacent to the inlet and outlet ports 1213. A plurality of different kinds of microdroplets 199 can be simultaneously generated.
  • the number of the ejector head 110, the variable volume unit 121, and the three-way directional control valve 124 is the same and plural.
  • the inlet end 111 of each of the ejector tips 110 is in communication with a first interface of a three-way directional valve 124 via a separate capillary tube 123.
  • the inlet and outlet ports 1213 of each variable volume assembly 121 are respectively in communication with a second interface of a three-way switching valve 124 via separate thin tubes 123.
  • the third port of each three-way reversing valve 124 is in communication with the reservoir 125, respectively.
  • the liquid storage tanks 125 may be one or more.
  • the first liquid 190 in each of the ejector tips 110 may be the same or different.
  • the plurality of variable volume assemblies 121 are arranged side by side or in other forms. Each variable volume component 121 corresponds to a separate power component 122, respectively. Driven by the power assembly 122, the plurality of push rods 1212 slide uniformly within the respective syringes 1211 in a direction adjacent to the inlet and outlet ports 1213. Not only can a plurality of different kinds of micro-droplets 199 be simultaneously generated, but also the volume size of each of the droplets 195 can be separately controlled under the premise that the volume of the micro-droplets 199 generated by each of the ejector tips 110 is uniform. It is convenient to independently control the generation state of the micro droplets 199 of the plurality of ejection heads 110.
  • microdroplets using the spit gun injection/ejection method because the conventional motion control mechanism cannot accurately control the relative motion between the outlet end of the spit gun head and the oil phase composition.
  • the problem of poor uniformity of the volume of the microdroplets provides a motion control mechanism capable of accurately controlling the relative motion between the outlet end of the ejector tip and the oil phase composition.
  • the outlet end 112 of the ejector tip 110 performs a periodic motion including instantaneous acceleration, which not only can efficiently generate the micro-droplets 199, but also facilitates controlling the size of the generated micro-droplets 199. .
  • the outlet end 112 of the ejector tip 110 is periodically displaced in a sinusoidal variation, and the micro-droplets 199 cannot be efficiently generated, and the generated micro-droplets 199 have good volume-size uniformity.
  • the outlet end 112 of the ejector tip 110 is driven by the motion control mechanism 130 to perform a periodic motion comprising a transient acceleration or a periodic motion with a sinusoidal change in displacement.
  • the present application provides a motion control mechanism 130 including a support frame 131, a connector 132, and a drive element.
  • the connector 132 is for connection to the ejector head 110.
  • the drive member is fixed to the support frame 131, and the drive member is drivingly coupled to the connector 132.
  • the outlet end 112 of the ejector tip 110 is oscillated with a sinusoidal change or a square wave change in velocity.
  • the motion control mechanism 130 provided by the present application generates a micro-droplet 199 by generating a sinusoidal change or a square wave-varying vibration at the outlet end 112 of the ejector head 110, and has a high efficiency of generating the micro-droplet 199. Mention the advantages of high uniformity.
  • the motion control mechanism 130 in the present application may also employ other rotary driving devices such as a swing cylinder, a rotating electromagnet 137, and the like.
  • the driving element includes a vibration motor 133.
  • the type of the vibration motor 133 is a galvanometer motor, and an output shaft of the galvanometer motor is drivingly coupled to the connecting member 132.
  • the galvanometer motor can provide stable and high-speed reciprocating swing and reciprocating linear motion, and the swing and frequency can be set as required, which greatly improves the applicable range of the motion control mechanism 130 of the present application.
  • the rotating electrical machine can also be a voice coil motor or a piezoelectric motor.
  • the vibration motor 133 adopts a motor having a closed-loop control vibration angle or position, and the output end of the motor-driven ejector head 110 is controlled by a closed-loop control vibration angle or position, thereby precisely controlling the oscillating trajectory of the ejector head 110. This further reduces the disturbances caused by the environment and the system.
  • the motor that controls the vibration angle or position in a closed loop includes components such as an infrared position sensor, a control circuit, and a signal processing circuit.
  • an infrared position sensor is mounted on the rotating shaft of the motion control mechanism 130, and the position signal obtained by the infrared position sensor is fed back to the control circuit, and the control circuit separately responds to the position signal according to the PID automatic control principle.
  • the proportional, integral, and differential operation processes are combined, and the signal processing circuits such as position feedforward, speed loop, and current loop are combined to achieve accurate position control of the motor during motion.
  • the use of a closed-loop control of the vibration angle or position of the motor can prevent other vibration motors 133 from being subjected to complex load environment changes resulting in changes in the vibration position, which facilitates engineering precision control of the volume 175 volume and generation speed.
  • the connector 132 includes a joint 1321.
  • the joint 1321 is drivingly coupled to the output shaft of the vibration motor 133.
  • the joint 1321 has a hollow tubular shape, one end of the joint 1321 is for connection with the ejector head 110, and the other end of the joint 1321 is for connection with the fluid control mechanism of the ejector head 110.
  • the first liquid 190 for generating the micro-droplets 199 is stored in the ejector tip 110.
  • the function of the fluid control mechanism is to set the first liquid 190 in the ejector head 110 during the generation of the micro-droplets 199.
  • the flow rate is discharged.
  • the first liquid 190 stored in the ejector tip 110 is discharged at a constant flow rate, or the flow rate exhibits a regular change, or a flow rate set by other classes.
  • the first liquid 190 in the ejector head 110 is discharged from the outlet end 112 of the squirt head 110 at a constant flow rate under the control of the fluid control mechanism.
  • the thin tube 123 of the fluid control mechanism is connected to the end of the joint 1321 away from the ejection head 110.
  • the joint 1321 can simultaneously function to communicate the ejection head 110 and the fluid control mechanism and to drive the ejection head 110.
  • the connector 1321 is coaxial with the ejector head 110.
  • the connecting member 132 includes a connecting shaft 1322.
  • the connecting shaft 1322 is rotatably disposed on the supporting frame 131.
  • the connecting shaft 1322 is drivingly connected to the vibration motor 133.
  • the number of the joints 1321 is plural, and the plurality of joints 1321 are fixedly disposed on the connecting shaft 1322.
  • a plurality of joints 1321 are mounted at intervals on one of the connecting shafts 1322.
  • the plurality of joints 1321 can simultaneously mount a plurality of jetting heads 110, which greatly improves the efficiency of generating the droplets 199.
  • the connecting shaft 1322 is rotatably disposed on the support frame 131, and the two ends of the connecting shaft 1322 are rotatably connected to the support frame 131 and the other positions of the connecting shaft 1322 are rotatably connected to the support frame 131.
  • the two ends of the connecting shaft 1322 are rotatably disposed on the support frame 131.
  • One end of the connecting shaft 1322 is drivingly connected to the vibration motor 133, and a plurality of joints 1321 are fixedly disposed between the two ends of the connecting shaft 1322.
  • the two ends of the connecting shaft 1322 are rotatably disposed on the support member, which is advantageous for increasing the rotational stability of the entire rotating shaft.
  • both ends of the connecting shaft 1322 are rotatably disposed on the support frame 131 by the rotating bearing.
  • other positions of the connecting shaft 1322 may be rotationally disposed on the support frame 131 under the condition that the rotation and the transmission are satisfied.
  • the angle between the axial direction of the joint 1321 and the axial direction of the connecting shaft 1322 can change the movement trajectory and the moving speed of the outlet end 112 of the ejector head 110.
  • the axial direction of the joint 1321 and the axial direction of the connecting shaft 1322 are perpendicular to each other.
  • the axial direction of the joint 1321 and the axial direction of the connecting shaft 1322 are kept perpendicular to each other, which facilitates the spitting gun head 110 to fully utilize the rotation of the connecting shaft 1322 to achieve its own vibration.
  • a plurality of joints 1321 are equally spaced between the ends of the connecting shaft 1322.
  • the sprinkler heads 110 arranged at equal intervals are uniformly disturbing the second liquid 699 during the vibration of the liquid level of the second liquid 699 to ensure that the environment and conditions for generating the micro-droplets 199 by the respective ejector heads 110 are the same.
  • the driving element includes a piezoelectric ceramic 135 and an elastic member 136.
  • the piezoelectric ceramic 135 When the piezoelectric ceramic 135 is energized to generate a deformation in the first direction, the joint 1321 of the driving connector 132 moves in the first direction and is connected to the connecting member 132.
  • the elastic member 136 is elastically deformed.
  • the piezoelectric ceramic 135 When the piezoelectric ceramic 135 is energized to produce a deformation opposite to the first direction, the elastic deformation of the elastic member 136 is restored while the joint 1321 of the connecting member 132 is moved in a direction opposite to the first direction. In this way, the connecting member 132 drives the outlet end 112 of the ejector head 110 to perform a sinusoidal change in displacement or a square wave change in velocity.
  • the outlet end 112 of the ejector head 110 is piezoelectrically oscillated as a circular arc, a sinusoidal displacement, or a square wave change in velocity.
  • the joint 1321 is rotatably disposed on the support frame 131 by a bearing, and the ejector head 110 is sleeved at one end of the joint 1321.
  • the ejector head 110 can perform a circular arc motion with the center of the bearing as a midpoint.
  • the joint 1321 is rotatably coupled to the support frame 131 at a position having a symmetrical extension plate 134 extending in a direction perpendicular to the direction in which the joint 1321 extends.
  • the driving element includes a piezoelectric ceramic 135 and an elastic member 136, and the piezoelectric ceramic 135 and the elastic member 136 cooperate with the driving connector 132.
  • the piezoelectric ceramic 135 and the elastic member 136 drive the extension plate 134 to thereby achieve rapid vibration of the outlet end 112 of the ejection head 110.
  • the piezoelectric method has the advantages of simple structure and stable driving performance.
  • the driving component includes an electromagnet 137, a magnetic member 138, and an elastic member 136.
  • One end of the elastic member 136 is fixedly disposed on the support frame 131, and the connecting member 132 is fixedly disposed at the other end of the elastic member 136. It is fixedly coupled to the joint 1321 of the connector 132.
  • the electromagnet 137 is energized to generate a force in the first direction to the magnetic member 138, the magnetic member 138 and the joint 1321 of the connector 132 move in the first direction while the elastic member 136 is elastically deformed.
  • the elastic member 136 drives the joint 1321 and the magnetic member 138 of the connecting member 132 to move in a direction opposite to the first direction.
  • the electromagnet 137 is controlled to be turned off and on, and the magnetic member 138 drives the outlet end 112 of the ejection head 110 through the connecting member 132 to perform a sinusoidal change in displacement or a square wave change in velocity.
  • the outlet end 112 of the ejector head 110 is electromagnetically oscillated as a circular arc, a sinusoidal displacement, or a square wave change in velocity.
  • the trajectory of the exit end 112 of the ejector head 110 is close to the horizontal section of the plane arc.
  • One end of the elastic member 136 is fixed to the support frame 131, and the other end of the elastic member 136 is fixedly connected to the joint 1321.
  • the spit gun head 110 is sleeved at one end of the joint 1321.
  • the driving element includes an electromagnet 137 and a magnetic member 138.
  • the magnetic member 138 is fixedly coupled to the connecting member 132, and the electromagnet 137 drives the connecting member 132 through the magnetic member 138.
  • the electromagnet 137 is fixedly disposed on the support frame 131, and the magnetic member 138 that can be attracted by the electromagnet 137 is fixedly disposed on the joint 1321 and kept within the working distance range from the electromagnet 137.
  • the position sensor is capable of detecting the position of movement of the magnetic member 138, and the position of the outlet end 112 of the ejector head 110 can be derived by calculation.
  • the electromagnet 137 When the electromagnet 137 is energized, the magnetic member 138 is attracted and the ejection head 110 is moved in the direction of approaching the electromagnet 137, and the elastic member 136 is stored by elastic deformation.
  • the electromagnet 137 When the outlet end 112 of the ejector tip 110 moves closer to the electromagnet 137 to the first set position, the electromagnet 137 is de-energized. The ejector tip 110 is moved away from the electromagnet 137 by the restoring force of the elastic member 136.
  • the electromagnet 137 When the outlet end 112 of the ejector tip 110 moves away from the electromagnet 137 to the second set position, the electromagnet 137 is energized.
  • the electromagnet 137 attracts the magnetic member 138 and causes the ejection head 110 to move in the direction of approaching the electromagnet 137, while the elastic member 136 is stored by elastic deformation, and thus circulates.
  • the operating parameters of the electromagnet 137 and the elastic modulus of the elastic member 136 can be adjusted according to specific working conditions to achieve a vibration in which the outlet end 112 of the ejection head 110 is sinusoidally changed or the square wave is changed in speed.
  • the resilient member 136 includes an elastic steel sheet and other resilient members 136 that meet elastic requirements.
  • the outlet end 112 of the ejector head 110 is electromagnetically oscillated as a circular arc, a sinusoidal displacement, or a square wave change in velocity.
  • the trajectory of the exit end 112 of the ejector head 110 is close to the vertical section of the plane arc.
  • One end of the elastic member 136 is fixed to the support frame 131, and the other end of the elastic member 136 is fixedly connected to the joint 1321.
  • the spit gun head 110 is sleeved at one end of the joint 1321.
  • the electromagnet 137 is fixedly disposed on the support frame 131, and the magnetic member 138 that can be attracted by the electromagnet 137 is fixedly disposed on the joint 1321 and held within the working distance range from the electromagnet 137.
  • the position sensor is capable of detecting the position of movement of the magnetic member 138, and the position of the outlet end 112 of the ejector head 110 can be derived by calculation.
  • the electromagnet 137 When the outlet end 112 of the ejector tip 110 moves closer to the electromagnet 137 to the first set position, the electromagnet 137 is de-energized. The ejector tip 110 is moved away from the electromagnet 137 by the restoring force of the elastic member 136. When the outlet end 112 of the ejector tip 110 moves away from the electromagnet 137 to the second set position, the electromagnet 137 is energized. The electromagnet 137 attracts the magnetic member 138 and causes the ejection head 110 to move in the direction of approaching the electromagnet 137, while the elastic member 136 is stored by elastic deformation, and thus circulates.
  • the operating parameters of the electromagnet 137 and the elastic modulus of the elastic member 136 can be adjusted according to specific working conditions to achieve a vibration in which the outlet end 112 of the ejection head 110 is sinusoidally changed or the square wave is changed in speed.
  • the resilient member 136 includes an elastic steel sheet and other resilient members 136 that meet elastic requirements.
  • the driving element includes an electromagnet 137 and a magnetic member 138.
  • the magnetic member 137 is fixedly coupled to the connector 1321 of the connector 132.
  • the electromagnet 137 generates a varying magnetic field, and the magnetic member 138 moves in a varying magnetic field.
  • the magnetic member 137 drives the outlet end 112 of the ejection head 110 through the connecting member 132 to perform a sinusoidal change in displacement or a square wave change in velocity.
  • the electromagnet 137 is used to realize the vibration of the outlet end 112 of the ejector head 110 as a circular arc, a sinusoidal displacement, or a square wave change in velocity.
  • the joint 1321 is rotatably disposed on the support frame 131 by a bearing, and the ejector head 110 is sleeved at one end of the joint 1321.
  • the electromagnet 137 is fixedly disposed on the support frame 131, and the magnetic member 138 that can be attracted by the electromagnet 137 is fixedly disposed on the joint 1321 and held within the working distance range from the electromagnet 137.
  • the position sensor is capable of detecting the angle of rotation of the joint 1321, and the position of the outlet end 112 of the ejector head 110 can be calculated by calculation.
  • the electromagnet 137 When the electromagnet 137 is energized, the magnetic member 138 is attracted and the ejection head 110 is moved toward the electromagnet 137.
  • the electromagnetic Iron 137 switches the direction of energization. The ejector tip 110 is moved away from the electromagnet 137 by the opposing force of the electromagnet 137.
  • the electromagnet 137 switches the energization direction again.
  • the electromagnet 137 attracts the magnetic member 138 and causes the ejection head 110 to move in the direction of approaching the electromagnet 137, thus circulating.
  • the operating parameters of the electromagnet 137 can be adjusted according to the specific working conditions to realize the vibration in which the displacement end 112 of the ejection head 110 is sinusoidal or the square wave is changed.
  • the above embodiment shows the vibration of the vibration motor 133 output rotation, the outlet end 112 of the ejection head 110 as a circular arc, the displacement being sinusoidal, or the speed being square wave.
  • the outlet end 112 of the ejector head 110 can also be oscillated as a straight line, with a sinusoidal change in displacement or a square wave change in velocity.
  • the electromagnet 137 is used to realize the vibration of the outlet end 112 of the ejection head 110 as a straight line, a sinusoidal displacement, or a square wave change in velocity.
  • the outlet end 112 of the ejector head 110 makes a straight line of vibration in the horizontal plane.
  • the joint 1321 is slidably disposed on the support frame 131 by a linear bearing, and the discharge gun head 110 is sleeved at one end of the joint 1321.
  • the electromagnet 137 is fixedly disposed on the support frame 131, and the magnetic member 138 that can be attracted by the electromagnet 137 is fixedly disposed on the joint 1321 and held within the working distance range from the electromagnet 137.
  • the position sensor is capable of detecting the sliding position of the joint 1321, and the position of the outlet end 112 of the ejector head 110 can be calculated by calculation.
  • the electromagnet 137 is energized, the magnetic member 138 is attracted to drive the ejection head 110 to slide in the direction of approaching the electromagnet 137.
  • the electromagnetic Iron 137 switches the direction of energization.
  • the ejector tip 110 slides away from the electromagnet 137 by the opposing force of the electromagnet 137.
  • the electromagnet 137 switches the energization direction again.
  • the electromagnet 137 attracts the magnetic member 138 and causes the ejection head 110 to slide in the direction of approaching the electromagnet 137, thus circulating.
  • the operating parameters of the electromagnet 137 can be adjusted according to the specific working conditions to realize the vibration in which the displacement end 112 of the ejection head 110 is sinusoidal or the square wave is changed.
  • the electromagnet 137 is used to realize the vibration of the outlet end 112 of the ejection head 110 as a straight line, a sinusoidal displacement, or a square wave change in velocity.
  • the outlet end 112 of the ejector head 110 makes a straight line of vibration in the vertical plane.
  • the joint 1321 is slidably disposed on the support frame 131 by a linear bearing, and the discharge gun head 110 is sleeved at one end of the joint 1321.
  • the electromagnet 137 is fixedly disposed on the support frame 131, and the magnetic member 138 that can be attracted by the electromagnet 137 is fixedly disposed on the joint 1321 and held within the working distance range from the electromagnet 137.
  • the position sensor is capable of detecting the sliding position of the joint 1321, and the position of the outlet end 112 of the ejector head 110 can be calculated by calculation.
  • the electromagnet 137 is energized, the magnetic member 138 is attracted to drive the ejection head 110 to slide in the direction of approaching the electromagnet 137.
  • the electromagnetic Iron 137 switches the direction of energization.
  • the ejector tip 110 slides away from the electromagnet 137 by the opposing force of the electromagnet 137.
  • the electromagnet 137 switches the energization direction again.
  • the electromagnet 137 attracts the magnetic member 138 and causes the ejection head 110 to slide in the direction of approaching the electromagnet 137, thus circulating.
  • the operating parameters of the electromagnet 137 can be adjusted according to the specific working conditions to realize the vibration in which the displacement end 112 of the ejection head 110 is sinusoidal or the square wave is changed.
  • the galvanometer motor is capable of outputting a reciprocating linear motion.
  • the ventilator motor drives the outlet end 112 of the ejector head 110 to make a trajectory that is straight, with a sinusoidal change in displacement or a square wave change in velocity.
  • the galvanometer motor is capable of outputting a reciprocating linear motion.
  • the pulsator motor drives the outlet end 112 of the ejector head 110 to make a trajectory that is straight, with a sinusoidal change in displacement or a square wave change in velocity.
  • micro-droplet generating device and the generating method provided by the present application are widely used in medical clinical testing, nano material preparation, food and environmental testing, biochemical analysis and the like.
  • the device for generating microdroplets 199 and the method for generating the same are applied in a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • the present application provides a fluid drive mechanism 120 for controlling the discharge of the third liquid 820 at the outlet end of the first discharge gun head 830 during the generation of the microdroplets by the microdroplet generation system. Flow rate and flow rate.
  • the fluid drive mechanism 120 provided by the present application includes a housing 100, a first variable volume assembly 200, and a linear motor assembly 300.
  • the housing 100 of the fluid drive mechanism 120 also functions as a support
  • the first variable volume assembly 200 is the execution portion of the fluid drive process
  • the linear motor assembly 300 is the drive portion of the fluid drive process
  • the first variable volume assembly 200 and the straight line Motor assemblies 300 are each mounted within housing 100.
  • the first variable volume assembly 200 includes a first syringe 201 and a first push rod 202.
  • the outer wall of the first syringe 201 is fixedly mounted on the inner wall of the housing 100, and the first push rod 202 is slidably engaged with the inner wall of the first syringe 201. That is, the first push rod 202 is slidably mounted in the first syringe 201.
  • the first syringe 201 can store the first driving liquid 810, and the first syringe 201 has an inlet and outlet port, and the inlet and outlet ports can communicate with the inlet end of the first ejector head 830, and the first ejector head 830 is inside.
  • a third liquid 820 is stored.
  • the output end of the linear motor assembly 300 is drivingly coupled to the first push rod 202 for driving the first push rod 202 to slide in the extending direction of the first syringe 201.
  • the output end of the linear motor assembly 300 drives the first push rod 202 to squeeze the first driving liquid 810 stored in the first syringe 201, and the squeezed first driving liquid 810 is squeezed.
  • the third liquid 820 stored in the first ejector head 830 is pressurized, and finally the third liquid 820 is discharged from the outlet end of the first ejector head 830.
  • the flow rate and flow rate at which the third liquid 820 exits the first ejector head 830 depends on the state of motion of the output end of the linear motor assembly 300.
  • the fluid drive mechanism 120 utilizes the incompressibility of the first driving liquid 810 to ensure that the outlet end of the first ejector head 830 can still move the third liquid 820 from the first at a set flow rate and flow rate when vibrating at a high frequency.
  • the outlet end of the ejector head 830 is discharged.
  • the linear motor assembly 300 not only has high motion accuracy, but also can conveniently adjust the magnitude of the current according to the actual working conditions such as the liquid discharge speed and the discharge pressure to ensure that the first push rod 202 slides or slides the set distance according to the set speed.
  • the third liquid 820 is discharged from the outlet end of the first ejector head 830 precisely at a set flow rate and flow rate.
  • the fluid drive mechanism 120 provided herein is capable of accurately controlling the volumetric volume of the generated microdroplets.
  • the first syringe 201 in the present application may be straight or bent, and the inlet and outlet ports on the first syringe 201 may be opened at one end or intermediate position of the first syringe 201, and the present application does not limit the first.
  • the specific structure of the syringe 201, the first push rod 202, and the specific positional relationship therebetween For convenience of description, as shown in FIG. 41 and FIG. 42 , the present application takes a straight cylindrical first syringe 201 as an example, and the inlet and outlet ports are opened at one end of the first syringe 201 and are slidably mounted in the first syringe 201.
  • the first push rod 202 passes through the other end of the first syringe 201.
  • the first variable volume component 200 can also be any structural form capable of realizing a variable volume function.
  • the linear motor assembly 300 includes a voice coil motor 301, and the primary 311 of the voice coil motor 301 is fixedly mounted on the inner wall of the housing 100, and the secondary of the voice coil motor 301
  • the 312 is fixedly coupled to the first push rod 202 in the sliding direction of the first push rod 202.
  • the voice coil motor 301 not only has the advantages of fast response, high speed, and high acceleration, but also has a simple structure, a small volume, and convenient control.
  • the secondary 312 of the voice coil motor 301 can maintain the set sliding speed while the sliding resistance increases or decreases by the magnitude of the control current, thereby being able to conveniently maintain the set pressure when the discharge pressure of the third liquid 820 changes.
  • the voice coil motor 301 can also operate in a mode such as a set sliding position, a set sliding speed, or a set driving pressure value according to actual working conditions, thereby accurately implementing the third liquid 820 according to the setting by the first variable volume assembly 200.
  • the first discharge head 830 is discharged in a volume, the first discharge head 830 is discharged at a set flow rate, or the first discharge head 830 is discharged in accordance with a set discharge pressure.
  • the voice coil motor 301 is disposed on one side of the first syringe 201, and the sliding direction of the secondary 312 in the voice coil motor 301 and the first push rod 202 are in the first syringe 201.
  • the sliding direction is parallel, and the secondary 312 of the voice coil motor 301 is drivingly coupled to the first push rod 202.
  • the linear motor assembly 300 further includes a connecting plate 302. One end of the connecting plate 302 is fixedly connected to the secondary 312 of the voice coil motor 301, and the other end of the connecting plate 302 is The first push rod 202 is fixedly connected at one end of the first syringe 201.
  • the connecting plate 302 is movably disposed in the housing 100, and the connecting plate 302 slides synchronously with the secondary 312 of the voice coil motor 301, and the secondary 312 of the voice coil motor 301 drives the first push rod 202 through the connecting plate 302.
  • the slide is synchronized in the first syringe 201.
  • the sliding direction of the secondary 312 in the voice coil motor 301 can also be disposed coaxially, vertically, or otherwise achievable with the sliding direction of the first push rod 202.
  • the secondary 312 of the voice coil motor 301 includes a bobbin 3121 and a coil 3122.
  • the coil 3122 is wrapped around the bobbin 3121, and the bobbin 3121 is integrally formed with the connecting plate 302.
  • the integrally formed skeleton 3121 and the connecting plate 302 further eliminate the motion error between the secondary 312 of the voice coil motor 301 and the first push rod 202, ensuring that the first push rod 202 and the secondary 312 of the voice coil motor 301 move synchronously. Precision.
  • the connection between the secondary 312 of the voice coil motor 301 and the connecting plate 302 may also be a fixed connection by a connector such as a screw or a snap.
  • the present application does not limit the connection between the secondary 312 of the voice coil motor 301 and the connecting plate 302, as long as the secondary 312 of the voice coil motor 301 can be driven to slide the first push rod 202 synchronously through the connecting plate 302.
  • the linear motor assembly 300 further includes a guide member 303.
  • the guide member 303 includes a guide rail and a slider.
  • the guide rail is fixedly disposed in the housing 100, and the extending direction of the guide rail is The sliding direction of the first push rod 202 is parallel, the slider is slidably disposed on the guide rail, and the slider is fixedly connected to the connecting plate 302.
  • the guide member 303 plays a guiding role during the sliding process of the connecting plate 302 to ensure that the secondary 312 of the voice coil motor 301 drives the first push rod 202 to stabilize the sliding process through the connecting plate 302, thereby implementing the third liquid 820 according to the third liquid 820.
  • the linear motor assembly 300 further includes a displacement sensor, the displacement sensor is disposed in the housing 100, and the displacement sensor is electrically connected to the voice coil motor 301.
  • the displacement sensor is used to measure the sliding position of the voice coil secondary 312, the connecting plate 302, and the first push rod 202, the sliding speed, and the like, and the displacement sensor is electrically connected to the voice coil motor 301 to implement closed loop control of the voice coil motor 301.
  • the above displacement sensor comprises a grating type, a magnetic grid type, a resistive type or a differential transformer type (LVDT) displacement sensor.
  • the displacement sensor is a photoelectric linear displacement sensor.
  • the voice coil motor 301 itself is a servo motor, and the closed loop control system of the voice coil motor 301 is integrated inside the voice coil motor 301 to further reduce the volume of the fluid drive mechanism 120 provided by the present application.
  • the voice coil motor 301 includes a primary 311 and a secondary 312.
  • the primary 311 includes a first pair of magnets 3111 and a second pair of magnets 3112, the first pair of magnets 3111 and the second pair of magnets 3112 being sequentially disposed in the housing 100 along the sliding direction of the secondary 312, two of the first pair of magnets 3111
  • the magnetic poles of the block magnets are oppositely disposed, and the magnetic poles of the two magnets of the second pair of magnets 3112 are oppositely disposed, and the magnetic line between the first pair of magnets 3111 and the second pair of magnets 3112 are magnetically sensed. The opposite direction.
  • the secondary 312 includes a bobbin 3121 and a coil 3122.
  • the coil 3122 is wound around a bobbin 3121.
  • the coil 3122 has a first segment 3125 and a second segment 3126 with opposite current directions after energization.
  • the first segment 3125 of the coil 3122 is The first pair of magnets 3111 slide between and the second segment 3126 of the coil 3122 slides between the second pair of magnets 3112.
  • the two pairs of magnets and the coil 3122 can simultaneously generate the same direction and the same magnitude of the sensing force in the first segment 3125 and the second segment 3126 of the coil 3122, facilitating the rapid action of the secondary 312 in the voice coil motor 301, and improving the voice coil motor.
  • the sensitivity of 301 The sensitivity of 301.
  • the first pair of magnets 3111 and the second pair of magnets 3112 are both rectangular plate-shaped magnets, and the first pair of magnets 3111 and the second pair of magnets 3112 are fixedly mounted on The inner wall of the housing 100.
  • the skeleton 3121 has a hollow rounded rectangle, and an annular groove having a rounded rectangular shape is formed on one end surface of the skeleton 3121, and a coil 3122 having a hollow rounded rectangular shape is fixedly mounted in the annular groove of the skeleton 3121.
  • the first segment 3125 and the second segment 3126 simultaneously generate the same inductive force of the same direction and the same size. Since the first pair of magnets 3111 and the second pair of magnets 3112 are both fixed, the coil 3122 after the energization is induced. The direction of the force slides, and the skeleton 3121 fixed to the coil 3122 moves in synchronization with the coil 3122. Further, the secondary 312 of the voice coil motor 301 drives the first push rod 202 to move synchronously through the connecting plate 302.
  • the displacement sensor When the displacement sensor detects that the connecting plate 302 sliding in synchronization with the first push rod 202 slides to the set position, the displacement sensor sends a signal, the voice coil motor 301 is powered off, and the secondary 312 of the voice coil motor 301 stops sliding.
  • the displacement sensor detects that the sliding speed of the connecting plate 302 sliding synchronously with the first push rod 202 slightly fluctuates, the displacement sensor sends a signal, and the current flowing into the voice coil motor 301 is adjusted accordingly to ensure the voice coil motor 301.
  • the secondary 312 drives the first push rod 202 to slide at the set speed through the connecting plate 302, so that the third liquid 820 is discharged to the first liquid discharge gun head 830 according to the set flow rate to generate uniform droplets of uniform size.
  • the voice coil motor 301 can also be of other types of construction.
  • the housing 100 includes an opposite first mounting end surface 141 and a second mounting end surface 143.
  • the first mounting end surface 141 and the second mounting end surface 143 are respectively provided with a first mounting hole 142 and a first mounting hole 142.
  • Two mounting holes 144, the first mounting holes 142 and the second mounting holes 144 are oppositely disposed.
  • the primary 311 of the voice coil motor 301 further includes a first mounting plate 3114 and a second mounting plate 3115, and the first mounting plate 3114 and the second mounting plate 3115 are detachably fixed to the first mounting hole 142 and the second mounting hole 144, respectively.
  • the voice coil motor 301 can be integrally removed from the housing 100 or the voice coil motor 301 can be integrally mounted to the housing 100 after assembly, which ensures the assembly precision of the voice coil motor 301 and improves the ease of assembly and disassembly of the voice coil motor 301. Sex. As an achievable manner, the first mounting hole 142 and the second mounting hole 144 are rounded rectangular holes.
  • first mounting plate 3114 and the second mounting plate 3115 are rounded rectangular plates.
  • the first mounting plate 3114 and the second mounting plate 3115 can be respectively fixed to the first mounting hole 142 and the second mounting hole 144 by screws.
  • the opposite sides of the first mounting plate 3114 and the second mounting plate 3115 each have a rectangular groove for mounting the first pair of magnets 3111 and the second pair of magnets 3112, and the first pair of magnets 3111 and the second pair of magnets 3112 are mounted in the first pair of mountings.
  • the housing 100 has a hollow rectangular parallelepiped shape, and the first variable volume assembly 200 of the fluid drive mechanism 120 and the linear motor assembly 300 are both mounted inside the housing 100.
  • One end surface of the housing 100 is provided with a connection hole, and the plurality of housings 100 can be mounted side by side to the base body through the connection hole.
  • the housing 100 has opposing top end faces 145 and bottom end faces 140 in the vertical direction of the space, the housing The extending direction of the first syringe 201 in 100 and the sliding direction of the secondary 312 in the voice coil motor 301 are both spatial vertical directions.
  • the housing 100 has opposite side end faces 150 in a direction in which the first syringe 201 is directed to the voice coil motor 301, and the housing 100 has an opposite first mounting end face in a direction in which the first mounting plate 3114 is directed to the second mounting plate 3115. 141 and a second mounting end face 143.
  • the first mounting end faces 141 and the second mounting end faces 143 of the plurality of housings 100 are sequentially fitted.
  • the connecting holes on the housing 100 are opened on the same side end surface 150 of the housing 100 or the connecting holes on the housing 100 are respectively formed on the two side end faces 150.
  • the housings 100 are each fixedly mounted to the base by screws that are threadedly coupled to the attachment holes.
  • the housing 100 has a dimension of 18 mm in the direction of juxtaposition, meaning that the distance between the opposing first mounting end face 141 and the second mounting end face 143 on the housing 100 is 18 mm.
  • the third liquid 820 can be simultaneously controlled to discharge the first liquid discharge gun head 830 at a set flow rate and flow rate in a plurality of reagent tanks having a pitch of 18 mm, thereby efficiently generating micro droplets.
  • the distance between the plurality of fluid drive mechanisms 120 after the parallel installation may be other sizes as long as the spacing between the plurality of reagent tanks can be matched.
  • the fluid drive method includes the following steps: the linear motor assembly 300 drives the first push rod 202 to be squeezed and stored in the first syringe 201.
  • a driving liquid 810 the first driving liquid 810 presses the third liquid 820 stored in the first ejector head 830, and the third liquid 820 is discharged from the outlet end of the first ejector head 830.
  • the fluid driving method utilizes the incompressibility of the first driving liquid 810 to ensure that the outlet end of the first ejector head 830 can still vent the third liquid 820 from the first at a set flow rate and flow rate when vibrating at a high frequency.
  • the outlet end of the liquid gun head 830 is discharged.
  • the first driving liquid 810 and the third liquid 820 are not mutually soluble, and there is no substance exchange between the two.
  • the density of the first driving liquid 810 is smaller than the density of the third liquid 820.
  • the first driving liquid 810 may be mineral oil or an alkane or the like.
  • the third liquid 820 discharging the first ejector head 830 falls into the holding container containing the first driving liquid 810, and the third liquid 820 falling into the holding container is at the first The liquid 810 is driven to fall.
  • the linear motor assembly 300 not only has high motion accuracy, but also can conveniently adjust the magnitude of the current according to the actual working conditions such as the liquid discharge speed and the discharge pressure to ensure that the first push rod 202 slides or slides the set distance according to the set speed. Further, the third liquid 820 is discharged from the outlet end of the first ejector head 830 precisely at a set flow rate and flow rate.
  • the fluid driven method provided by the present application is capable of precisely controlling the volume of generated microdroplets.
  • the fluid drive mechanism 120 further includes a reversing valve 400.
  • the reversing valve 400 includes a reversing valve first interface 411 and a reversing valve second.
  • the interface 412 and the reversing valve third interface 413, the reversing valve first interface 411, the reversing valve second interface 412 and the reversing valve third interface 413 are respectively capable of entering and exiting the inlet end of the first ejection head 830
  • the port is in communication with a reservoir in which the first drive liquid 810 is stored.
  • the reversing valve 400 When the reversing valve 400 is in operation, the reversing valve first port 411 and the reversing valve second port 412 can be connected, or the reversing valve 400 can be operated to communicate the reversing valve third port 413 and the reversing valve second port 412.
  • the reversing valve 400 can control at least the fluid driving mechanism 120 to implement the following two modes: 1.
  • the inlet and outlet ports of the first variable volume assembly 200 are communicated with the inlet end of the first discharge gun head 830, and the linear motor assembly 300 is Under the driving, the first variable volume assembly 200 provides a liquid driving force to the first ejector head 830 for discharging the third liquid 820 in the first ejector head 830 from the outlet end of the first ejector head 830.
  • the third liquid 820 is drawn from the outlet end of the first ejector head 830 into the first squirt head 830.
  • the inlet and outlet ports of the first variable volume assembly 200 are connected to the liquid storage tank. Under the driving of the linear motor assembly 300, the first variable volume assembly 200 draws the first driving liquid 810 in the liquid storage tank into the first Within the first syringe 201 of a variable volume assembly 200, or the drive fluid within the first variable volume assembly 200 is pushed into the reservoir.
  • the reversing valve 400 includes a valve body 410 and a communication block 420.
  • the valve body 410 includes a reversing valve first port 411, a reversing valve second port 412, and a reversing valve third port 413.
  • the communication block 420 is provided with a first flow channel 421, a second flow channel 422, and a third flow channel 423 that are independent of each other. The first flow channel 421, the second flow channel 422, and the third flow channel 423 each pass through the communication block 420.
  • One ends of the first flow path 421, the second flow path 422, and the third flow path 423 are respectively connected to the reversing valve first port 411, the reversing valve second port 412, and the reversing valve third port 413, and the first flow path 421,
  • the other ends of the second flow path 422 and the third flow path 423 are respectively connected to the inlet end of the first ejection head 830, the inlet and outlet ports, and the reservoir in which the first driving liquid 810 is stored.
  • the connecting block 420 having a plurality of flow paths is provided with the advantages of simple structure and stable communication. Further, the inner surfaces of the first flow channel 421, the second flow channel 422, and the third flow channel 423 are respectively polished and rounded. The inner surfaces of the first flow path 421, the second flow path 422, and the third flow path 423 have no dead angle, and can effectively prevent bubble residue and adsorption.
  • the present application further provides another fluid drive method, including the following steps: (1) the reversing valve 400 makes the inlet and outlet ports of the first syringe 201 and The liquid storage tank is connected, and the first push rod 202 slides in the first injection cylinder 201 to change the volume of the first injection cylinder 201 to drive the first driving liquid 810 in the liquid storage tank. (2) the reversing valve 400 connects the inlet and outlet of the first syringe 201 to the inlet end of the first ejection head 830, and the first push rod 202 is driven by the linear motor assembly 300.
  • the diverter valve 400 connects the inlet and outlet ports of the first syringe 201 to the inlet end of the first jetting head 830, and is driven by the linear motor assembly 300.
  • a push rod 202 slides within the first syringe 201 to change the volume of the first syringe 201 to discharge the third liquid 820 stored in the first jetting head 830 at the set flow rate to the first jetting head. The exit end of the 830.
  • the uniform motion of the linear motor assembly 300 further drives the first push rod 202 to slide at a uniform speed in the first syringe 201, and finally the first driving liquid 810 or the third liquid 820 is sucked at a uniform flow rate.
  • the first syringe 201 is introduced or discharged from the first syringe 201 to ensure the stability of the entire microdroplet formation process and the uniformity of the generated droplet volume size.
  • the housing 100 has a hollow rectangular parallelepiped shape, and the reversing valve 400 is fixedly mounted in the housing 100 at a position near the bottom end surface 140 and the one end surface 150.
  • the variable volume assembly 200 is mounted above the communication block 420 in the diverter valve 400.
  • the voice coil motor 301 is mounted on the side of the first variable volume assembly 200, and the secondary 312 of the voice coil motor 301 and the first variable volume assembly 200 are fixedly coupled by a connecting plate 302, and the guide member 303 is mounted in the housing 100.
  • the loop motor 301 is between the first syringe 201 of the first variable volume assembly 200.
  • the fluid drive mechanism 120 further includes a power interface 500 mounted on the top surface 145 of the housing 100.
  • the power interface 500 is electrically connected to the voice coil motor 301, the reversing valve 400, and the displacement sensor.
  • the power interface 500 can also be externally connected.
  • the power supply is electrically connected to supply power to components within the fluid drive mechanism 120.
  • PCR polymerase chain reaction
  • first feature "on” or “below” the second feature may be a direct contact of the first feature and the second feature, or the first and second features are indirectly contacted by an intermediate medium, unless otherwise explicitly stated and defined.
  • first feature “above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Nozzles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种吐液枪头,包括具有中空腔体的针梗(113)及设置于针梗(113)一端的出口端(112),吐液枪头的出口端(112)端面的法线与针梗(113)的延伸方向之间的夹角小于等于90゜。还包括一种运动控制机构、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法。

Description

运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法
相关申请
本申请要求2018年01月24日申请的,申请号为201810070377.2,名称为“数字PCR定量检测方法”和2018年08月6日申请的,申请号为201810884995.0,名称为“流体驱动机构及流体驱动方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及微量液体的量取、分配技术领域,特别是涉及一种运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法。
背景技术
目前在医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都有着对微量液体精确操作的广泛需求。微量液体操作的核心技术之一是把微升量级的液体进一步分割为纳升甚至皮升体积的微反应体系。微反应体系生成的一个主要技术分支是乳化微液滴生成。近些年来,在文献中报道了多种微液滴生成技术,如膜乳化法、喷雾乳化法、微流控芯片法、吐液枪头注射/喷射法等。其中,吐液枪头注射/喷射法作为最新的微液滴生成技术,在微液滴的生成方面及耗材成本控制方面均具有良好的应用前景。
传统的吐液枪头一般呈直管状。吐液枪头沿自身的延伸方向靠近出口端的一端快速运动时,会打破已生成的微液滴。为了保持生成的微液滴的完整性,须降低吐液枪头的振动频率,导致微液滴的生成速率降低。使用吐液枪头注射/喷射法时,吐液枪头的出口端在运动控制机构的带动下与油相组合物之间产生相对运动。传统的运动控制机构在使用过程中,无法精确控制吐液枪头的出口端与油相组合物之间的相对运动,所生成微液滴的体积大小均一性较差。生成微液滴的过程中,吐液枪头的出口端处于运动状态,排出液体的流速不稳定、不可控。所生成的微液滴体积大小呈现随机性。传统的吐液枪头注射/喷射法需要吐液枪头在液面上下切割运动以生成微液滴。但这种方法会在液面形成不稳定的驻波,微液滴的生成过程不稳定。吐液枪头的表面特性是影响微液滴生成的重要因素。传统吐液枪头的截面尺寸一般是微米级别的,传统的表面处理方法多用于尺寸较大的零件,不能完全适用于尺寸较小的吐液枪头。
申请内容
有鉴于此,本申请提供一种吐液枪头,用于生成微液滴,包括具有中空腔体的针梗及设置于所述针梗一端的出口端;所述吐液枪头的出口端端面的法线与所述针梗的延伸方向之间的夹角小于等于90°。一种微液滴生成装置,包括流体驱动机构、运动控制机构及上述方案所述的吐液枪头;所述吐液枪头的内部储存有第一液体,所述吐液枪头具有出口端及入口端;所述流体驱动机构与所述吐液枪头的入口端连接,用于将储存在所述吐液枪头内部的第一液体从所述吐液枪头的出口端排出;所述运动控制机构用于控制所述吐液枪头 的出口端在第二液体的液面下产生设定轨迹或设定速度或设定加速度的运动,以使排出所述吐液枪头的出口端的第一液体克服表面张力及附着力在第二液体内形成微液滴。一种微液滴生成方法,采用上述方案任一项所述的吐液枪头,所述吐液枪头内储存有第一液体,提供储存有第二液体的微液滴容器;控制第一液体从所述吐液枪头的出口端匀速排出;控制所述吐液枪头的出口端在第二液体的液面下沿所述针梗的延伸方向做速度大小呈方波变化的周期运动;所述吐液枪头的出口端周期运动的前半周期与后半周期内,所述吐液枪头的出口端的速度大小相同,方向相反;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体。一种微液滴生成方法,采用上述方案任一项所述的吐液枪头,所述吐液枪头内储存有第一液体,提供储存有第二液体的微液滴容器;控制第一液体从所述吐液枪头的出口端匀速排出;控制所述吐液枪头的的出口端在第二液体内部沿所述针梗的延伸方向做位移呈正弦变化的周期运动;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体。上述吐液枪头,在吐液枪头沿管道主体的延伸方向振动时,微液滴从吐液枪头的出口端掉落后在第二液体粘滞力及吐液枪头的出口端端面的挤压作用下远离出口端的运动轨迹,避免了微液滴被出口端打破,保持了已生成微液滴的完整性,同时允许吐液枪头沿管道主体的延伸方向快速振动以快速生成微液滴。
有鉴于此,本申请提供一种运动控制机构包括支撑架、连接件以及驱动元件。连接件用于与吐液枪头连接。驱动元件固定于所述支撑架,所述驱动元件与所述连接件传动连接。在所述驱动元件的驱动下,吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。上述运动控制机构,通过带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的振动以生成微液滴,具有微液滴生成效率高、提及均一性高的优点。
有鉴于此,本申请提供一种流体驱动机构,用于微液滴生成系统,包括变容积组件以及动力组件。变容积组件包括注射筒及推杆,所述推杆与所述注射筒的内壁滑动配合,所述注射筒内能够储存驱动液体,所述注射筒具有进出液口,所述进出液口用于连通储存有第一液体的吐液枪头的入口端。动力组件与所述推杆传动连接,用于驱动所述推杆沿所述注射筒的延伸方向滑动。在微液滴的生成过程中,所述动力组件驱动所述推杆挤压储存在所述注射筒内的驱动液体,驱动液体挤压储存在吐液枪头内的第一液体,进而将第一液体从吐液枪头的出口端排出。一种流体驱动方法,采用上述方案任一项所述的流体驱动机构,所述流体驱动方法包括:所述动力组件驱动所述推杆挤压储存在所述注射筒内的所述驱动液体,所述驱动液体挤压储存在所述吐液枪头内的所述第一液体,所述第一液体从所述吐液枪头的出口端排出。一种流体驱动方法,采用上述方案所述的流体驱动机构,所述流体驱动方法包括:所述三通换向阀使所述变容积组件的所述进出液口与所述储液罐连通,在所述动力组件的带动下,所述推杆在所述注射筒内滑动改变所述注射筒的容积,以将所述储液罐内的所述驱动液体吸入所述注射筒内;所述三通换向阀使所述变容积组件的所述进出液口与所述吐液枪头的入口端连通,在所述动力组件的带动下,所述推杆在所述注射筒内滑动改变所述注射筒的容积,以排出所述注射筒内以及所述吐液枪头内的气体;所述吐液枪头的出口端进入所述第一液体中,并维持所述三通换向阀使所述变容积组件的所述进 出液口与所述吐液枪头的入口端连通,在所述动力组件的带动下,所述推杆在所述注射筒内滑动改变所述注射筒的容积,以将所述第一液体吸进所述吐液枪头内;所述三通换向阀使所述变容积组件的所述进出液口与所述吐液枪头的入口端连通,在所述动力组件的带动下,所述推杆在所述注射筒内滑动改变所述注射筒的容积,以将储存在所述吐液枪头内的所述第一液体以均匀的流速排出所述吐液枪头的出口端。上述流体驱动机构及流体驱动方法,利用驱动液体的不可压缩性保证了吐液枪头的出口端在高频率振动时仍能按照设定的流速将第一液体从吐液枪头的出口端排出。本申请提供的流体驱动机构能够精确控制所生成微液滴体积大小。
有鉴于此,本申请提供一种微液滴生成方法,包括以下步骤:S201,提供具有出口端的吐液枪头,所述吐液枪头内储存有第一液体;提供储存有第二液体的微液滴容器,所述微液滴容器具有开口;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体;S202,所述吐液枪头的出口端由所述微液滴容器的开口插入第二液体的液面下;S203,所述吐液枪头的出口端在第二液体的液面下做包含瞬时加速的运动,同时第一液体由所述吐液枪头的出口端排出,排出所述吐液枪头的出口端的第一液体形成附着在所述吐液枪头的出口端的液滴,液滴在所述吐液枪头的出口端的瞬时加速运动过程中脱离所述吐液枪头的出口端在第二液体的液面下形成微液滴。上述微液滴生成方法,所述吐液枪头的出口端瞬时加速时加速度数值较大,附着在所述吐液枪头的出口端的液滴与所述吐液枪头的出口端之间的附着力不足以带动液滴与所述吐液枪头的出口端同步加速,进而附着在所述吐液枪头的出口端的液滴脱离所述吐液枪头的出口端在第二液体的液面下形成微液滴。本申请所提供的微液滴生成方法,所述吐液枪头的出口端在第二液体的液面下做包含瞬时加速的运动以产生微液滴,减小了所述吐液枪头的出口端运动时对第二液体造成的扰动,保证了微液滴生成过程的稳定性。
有鉴于此,本申请提供一种微液滴生成方法,包括以下步骤:S211,提供具有出口端的吐液枪头,所述吐液枪头内储存有第一液体;提供储存有第二液体的微液滴容器,所述微液滴容器具有开口;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体;S212,所述吐液枪头的出口端由所述微液滴容器的开口插入第二液体的液面下;S213,所述吐液枪头的出口端在第二液体液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,所述吐液枪头的出口端的速度大小均单调变化,同时第一液体由所述吐液枪头的出口端排出,排出所述吐液枪头的出口端的第一液体形成附着在所述吐液枪头的出口端的液滴,液滴在所述吐液枪头的出口端的运动过程中脱离所述吐液枪头的出口端在第二液体液面下形成微液滴。上述微液滴生成方法,吐液枪头的出口端在第二液体液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头的出口端的速度大小均单调变化。运动过程中,第二液体对液滴的粘滞力随着吐液枪头的出口端速度大小的周期变化也呈现出周期变化。当吐液枪头的出口端与液滴之间的最大附着力小于第二液体对液滴的粘滞力时,液滴不能与吐液枪头的出口端同步运动,进而附着在所述吐液枪头的出口端的液滴脱离所述吐液枪头的出口端在第二液体液 面下形成微液滴。本申请所提供的微液滴生成方法,所述吐液枪头的出口端在第二液体的液面下做变速周期运动以产生微液滴,减小了所述吐液枪头的出口端运动时对第二液体造成的扰动,保证了微液滴生成过程的稳定性。
有鉴于此,本申请提供一种吐液枪头表面处理方法,用于对吐液枪头进行表面处理,包括以下步骤:S260,对所述吐液枪头进行硅烷化处理;S270,使用焦碳酸二乙酯水溶液处理所述吐液枪头;S280,烘干所述吐液枪头。上述吐液枪头表面处理方法,硅烷化处理降低吐液枪头的表面自由能并将吐液枪头的表面自由能控制在一定区间内,降低了吐液枪头的表面特性对微液滴生成过程的影响。
有鉴于此,本申请提供一种流体驱动机构用于微液滴生成系统,包括壳体、第一变容积组件以及直线电机组件。所述第一变容积组件设置于所述壳体内,所述第一变容积组件包括第一注射筒及第一推杆,所述第一推杆与所述第一注射筒的内壁滑动配合,所述第一注射筒内能够储存第一驱动液体,所述第一注射筒具有进出液口,所述进出液口用于连通储存有第三液体的第一吐液枪头的入口端。所述直线电机组件设置于所述壳体内,所述直线电机组件的输出端与所述第一推杆传动连接,用于驱动所述第一推杆沿所述第一注射筒的延伸方向滑动。一种流体驱动方法,采用所述的流体驱动机构,所述流体驱动方法包括:所述换向阀使所述第一注射筒的所述进出液口与所述储液罐连通,在所述直线电机组件的带动下,所述第一推杆在所述第一注射筒内滑动改变所述第一注射筒的容积,以将所述储液罐内的所述第一驱动液体吸入所述第一注射筒内。所述换向阀使所述第一注射筒的所述进出液口与所述第一吐液枪头的入口端连通,在所述直线电机组件的带动下,所述第一推杆在所述第一注射筒内滑动改变所述第一注射筒的容积,以排出所述第一注射筒内以及所述第一吐液枪头内的气体。所述第一吐液枪头的出口端进入所述第三液体中,并维持所述换向阀使所述第一注射筒的所述进出液口与所述第一吐液枪头的入口端连通,在动力组件的带动下,所述第一推杆在所述第一注射筒内滑动改变所述第一注射筒的容积,以将所述第三液体吸进所述第一吐液枪头内。所述换向阀使所述第一注射筒的所述进出液口与所述第一吐液枪头的入口端连通,在所述直线电机组件的带动下,所述第一推杆在所述第一注射筒内滑动改变所述第一注射筒的容积,以将储存在所述第一吐液枪头内的所述第三液体以设定的流速排出所述第一吐液枪头的出口端。上述流体驱动机构及流体驱动方法,利用第一驱动液体的不可压缩性保证了第一吐液枪头的出口端在高频率振动时仍能按照设定的流速将第三液体从第一吐液枪头的出口端排出。直线电机组件不仅具有较高的运动精度,而且能够便捷的根据排液速度、排液压力等实际工况通过调整电流的大小保证第一推杆按照设定速度滑动或滑动设定距离,进而实现第三液体精确按照设定的流速及流量从第一吐液枪头的出口端排出。本申请提供的流体驱动机构能够精确控制所生成微液滴体积大小。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请 的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请一实施例提供的数字PCR检测仪的整体结构示意图;图2为本申请一实施例提供的数字PCR检测仪的微液滴生成装置;图3为本申请一实施例提供的吐液枪头的出口端运动时液滴的受力示意图;图4为本申请一实施例提供的吐液枪头的出口端的速度变化示意图;图5为本申请一实施例提供的吐液枪头的出口端运动时微液滴生成过程示意图;图6为本申请另一实施例提供的吐液枪头的出口端运动时液滴的受力示意图;图7为本申请一实施例提供的液滴随吐液枪头的出口端运动时理想情况下粘滞阻力变化示意图;图8为本申请一实施例提供的吐液枪头的出口端两个运动周期生成一个微液滴的过程示意图;图9为本申请一实施例提供的吐液枪头的出口端一个运动周期生成一个微液滴的过程示意图;图10为本申请一实施例提供的吐液枪头的出口端一个运动周期生成两个微液滴的过程示意图;图11为本申请一实施例提供的吐液枪头摆动时微液滴的生成过程示意图;图12为本申请一实施例提供的第二液体的粘度变化时微液滴的生成过程示意图;图13为本申请一实施例提供的更换吐液枪头时微液滴的生成过程示意图;图14为本申请一实施例提供的吐液枪头的出口端在不同的运动轨迹下微液滴的生成过程示意图;图15为本申请另一实施例提供的吐液枪头的出口端速度变化示意图;图16为本申请一实施例提供的吐液枪头的出口端结构示意图;图17为本申请另一实施例提供的吐液枪头的出口端结构示意图;图18为本申请一实施例提供的吐液枪头结构示意图;图19为本申请另一实施例提供的吐液枪头结构示意图;图20为本申请一实施例提供的斜切结构吐液枪头生成微液滴的过程示意图;图21为本申请另一实施例提供的斜切结构吐液枪头生成微液滴的过程示意图;图22为本申请一实施例提供的弯折结构吐液枪头生成微液滴的过程示意图;图23为本申请另一实施例提供的弯折结构吐液枪头生成微液滴的过程示意图;图24为本申请一实施例提供的吐液枪头表面处理方法流程图;图25为本申请另一实施例提供的吐液枪头表面处理方法流程图;图26为本申请一实施例提供的流体控制机构与吐液枪头连接示意图;图27为本申请一实施例提供的流体控制机构结构示意图;图28为本申请一实施例提供的吐液枪头在驱动液体驱动下生成微液滴过程示意图;图29为本申请另一实施例提供的流体控制机构结构示意图;图30为本申请一实施例提供的运动控制机构结构示意图;图31为本申请一实施例提供的闭环控制电机控制原理图;图32为本申请一实施例提供的压电式运动控制机构结构示意图;图33为本申请一实施例提供的电磁-弹性件式运动控制机构结构示意图;图34为本申请另一实施例提供的电磁-弹性件式运动控制机构结构示意图;图35为本申请一实施例提供的电磁-轴承式运动控制机构结构示意图;图36为本申请另一实施例提供的电磁-轴承式运动控制机构结构示意图;图37为本申请再一实施例提供的电磁-轴承式运动控制机构结构示意图;图38为本申请一实施例提供的流体驱动机构整体结构侧视示意图;图39为本申请一实施例提供的流体驱动机构部分结构第一侧视示意图;图40为本申请一实施例提供的流体驱动机构部分结构主视示意图;图41为本申请一实施例提供的流体驱动机构部分结构后视示意图;图42为本申请一实施例提供的流 体驱动机构部分结构第二侧视示意图;图43为本申请一实施例提供的流体驱动机构装配爆炸示意图;图44为本申请一实施例提供的音圈电机、连接板以及第一变容积组件结构装配爆炸示意图;图45为本申请一实施例提供的音圈电机与连接板结构装配爆炸示意图;图46为本申请一实施例提供的一体成型的骨架与连接板第一侧视示意图;图47为本申请一实施例提供的一体成型的骨架与连接板第二侧视示意图;图48为本申请一实施例提供的换向阀结构侧视示意图;图49为本申请一实施例提供的换向阀主视剖面结构示意图;图50为本申请一实施例提供的流体驱动方法过程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参见图1,在一个实施例中,本申请提供一种数字PCR检测仪1,所述数字PCR检测仪1包括:微液滴生成装置10、温控装置20、荧光信号检测装置30、定量分析装置40以及控制器50。所述微液滴生成装置10用以将核酸扩增反应液微滴化,形成多个微液滴。所述温控装置20与所述微液滴生成装置10通过轨道连接,用以将所述多个微液滴转移至所述温控装置20,进行温度循环,实现核酸扩增。所述荧光信号检测装置30与所述温控装置20相对设置,用以对核酸扩增后的所述多个微液滴进行拍照检测。所述定量分析装置40与所述荧光信号检测装置30通过数据线连接,用以实现所述多个微液滴荧光信息的传输,进行定量分析。所述控制器50分别与所述微液滴生成装置10、所述温控装置20、荧光信号检测装置30以及定量分析装置40连接,用以控制所述微液滴生成装置10、所述温控装置20、荧光信号检测装置30以及定量分析装置40。
所述数字PCR检测仪1可以将所述微液滴生成装置10、所述温控装置20、所述荧光信号检测装置30以及所述定量分析装置40集成化,从而使得操作人员可以实现自动化操作。所述数字PCR检测仪1具有较高的工作效率。
所述数字PCR检测仪1在工作时,所述微液滴生成装置10可以将所述待测核酸扩增反应液进行微滴化,从而形成多个微液滴。所述温控装置20可以对所述多个微液滴进行核酸扩增。所述荧光信号检测装置30实时拍测所述多个微液滴的荧光变化图片。通过所述多个微液滴的荧光变化图片,可以获取所述多个微液滴的荧光变化曲线。根据所述荧光变化曲线,可以获取所述多个微液滴的Ct值,并通过Ct值与起始拷贝数的关系对初始DNA的浓度进行定量分析。其中,Ct值是指每个微液滴的荧光信号达到设定的阈值时所经历的循环数。
所述温控装置20对所述多个微液滴进行核酸扩增反应,并通过所述荧光信号检测装 置30采集核酸扩增反应后的所述多个微液滴的产物信号,如荧光、紫外吸收、浊度等信号。利用所述多个扩增与非扩增微液滴在组成上的差异,对获得目标序列扩增的液滴数量进行分析,最终实现对核酸分子的定量分析。通过实时监测所述多个微液滴的荧光变化图片,检测结果具有直接性,可以解决所述多个微液滴中的假阳性和假阴性的问题。
所述数字PCR检测仪1将所述微液滴生成装置10、所述温控装置20、所述荧光信号检测装置30以及所述定量分析装置40集成化,使得所述操作人员可以实现自动化操作,不进提高了工作效率,还具有反应快速、重复性好、灵敏度高、特异性强和结果清晰的优点。
目前医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都对微量液体精确操作具有广泛需求。微量液体操作的核心技术之一是把微升量级的液体进一步分割为纳升甚至皮升体积的液滴,作为微反应体系。微反应体系生成的一个主要技术分支是乳化微液滴生成。
近些年来,在文献中报道了多种微液滴生成技术,如膜乳化法、喷雾乳化法、微流控芯片法和吐液枪头注射/喷射法。然而,通过吐液枪头生成乳化微液滴的方法在实际应用中都各存在一定的缺点。有的方法利用微量液体在气液相界面变换时的界面能和流体剪切力,克服液体在吐液枪头出口的表面张力和附着力,使流出吐液枪头管口的液滴能顺利地脱离吐液枪头,并在不相溶液体中形成大小可控的液滴。但是这种方法需要吐液枪头在液面上下切割运动,还需要对吐液枪头相对于液面的起始和终点位置进行高精度的定位,在工程实现上难度很大。上述方法在吐液枪头反复快速进出液相的过程中,液相的表面易形成不稳定的驻波,限制了微液滴的生成速率。还有的方法通过吐液枪头在液体里的圆周或者螺旋匀速运动产生的剪切力切断注入的不相溶液体而形成液滴。但是,这种方法由于吐液枪头产生液滴的大小受到各种系统因素变化的影响较大(比如液体的粘稠度、环境的温度、运动速度、运动轨迹等),从而产生误差。并且,这一误差会随着产生液滴的数量增多而积累,因而大批量液滴生成的体积大小均一性的控制难度很大。
基于此,有必要针对传统的微液滴生成方法与装置在生成微液滴的过程中存在的微液滴生成速率较慢、生成微液滴体积大小均一性难以控制的问题,提供一种微液滴快速生成且体积大小均一性高的微液滴生成方法及装置。
请参见图2,在一个实施例中,所述微液滴生成装置10包括吐液枪头110、流体驱动机构120、运动控制机构130以及第一控制器170。所述吐液枪头110具有出口端及入口端,并用于储存第一液体。微液滴生成装置10可以与微液滴容器配合使用。所述微液滴容器中储存有第二液体,所述吐液枪头110的出口端插入所述第二液体的液面下。
所述第一液体与所述第二液体之间互不相溶或具有界面反应。第一液体和第二液体可以为任意不互溶的两种液体,在本申请的一个实施例中,所述第一液体为水溶液,所述第二液体为与水不互溶的油性液体,如矿物油(包括正十四烷等)、植物油、硅油和全氟烷烃油等,生成的液滴为水溶液液滴。或者,所述第一液体为矿物油,如十四烷和正己烷等有机相,所述第二液体为与矿物油不互溶的全氟烷烃油。所述第一液体和第二液体可以为不 互溶的双水相,在本申请的另一个实施例中,所述第一液体为水溶液,所述第二液体为与水不互溶的水性液体,如第一液体为右旋糖酐溶液,第二液体为聚乙二醇(PEG)水溶液,生成的液滴为右旋糖酐溶液液滴。
所述第一液体和第二液体也可以为具有界面反应的两种液体,在本申请的一个实施例中,所述第一液体为海藻酸纳水溶液,所述第二液体为氧化钙水溶液,如质量浓度为1%的氧化钙水溶液,两者存在界面反应,生成的液滴为海藻酸钙凝胶微球。本申请还可以通过更换吐液枪头或吐液枪头内流出第一液体的组分,顺次在开口容器中形成多个不同组分和体积的液滴,既可以用于实现大批量的微体积高通量筛选,也可以实现多步骤的超微量生化反应和检测,具有广阔的应用前景。
所述流体驱动机构120与所述吐液枪头110的入口端连接,用于将储存在所述吐液枪头110内部的所述第一液体从所述吐液枪头110的出口端排出。所述运动控制机构130用于控制所述吐液枪头110的出口端与所述第二液体之间产生设定轨迹或设定速度或设定加速度的相对运动,以使排出所述吐液枪头110的出口端的第一液体克服表面张力及所述吐液枪头110对其的附着力形成微液滴。所述第一控制器170分别与所述流体驱动机构120以及所述运动控制机构130连接,用以控制所述流体驱动机构120以及所述运动控制机构130协调工作。
有文献报道了微液滴生成技术,如膜乳化法、喷雾乳化法、微流控芯片法、吐液枪头注射/喷射法等。其中,吐液枪头注射/喷射法作为最新的微液滴生成技术,在微液滴的生成方面及耗材成本控制方面均具有良好的应用前景。传统的吐液枪头注射/喷射法需要吐液枪头在液面上下切割运动以生成微液滴。但这种方法会在液面形成不稳定的驻波,微液滴的生成过程不稳定。
基于此,有必要针对传统的吐液枪头注射/喷射法存在的微液滴生成过程不稳定的问题,提供一种微液滴生成过程稳定的微液滴生成方法。
如图3所示,在本申请一实施例中,在运动控制机构130的带动下,吐液枪头110的出口端112可以在第二液体液面下做包含瞬时加速的运动,加速度大小为a 1。第一液体从吐液枪头110的出口端112排出后形成附着在吐液枪头110的出口端112的液滴195。液滴195在吐液枪头110的出口端112瞬时加速的瞬间脱离吐液枪头110的出口端112形成微液滴。微液滴在脱离吐液枪头110的出口端112之前的所受到的作用力分别为重力G、第二液体的浮力f 1、第二液体的粘滞阻力f 2以及吐液枪头110的出口端112与液滴195之间的最大附着力f 3。微液滴在脱离吐液枪头110的出口端112之前的质量为m、加速度大小为a 2。根据牛顿第二运动定律,得出
Figure PCTCN2019072926-appb-000001
吐液枪头110的出口端112与液滴195之间附着力的最大值f 3与吐液枪头110的表面自由能、液滴195的表面张力以及吐液枪头110的几何尺寸有关。吐液枪头110的出口端112做瞬时加速运动时,吐液枪头110的出口端112对液滴195附着力的方向与加速度的方向相同。将附着在吐液枪头110的出口端112的液滴195简化为球状。由斯托克斯(Stokes)公式可知,液滴195在第二液体中运动时所受到的粘滞阻力f 2=6πηrv,其中η为第二液 体的粘滞系数,r为液滴195的半径,v为液滴195的运动速度。在吐液枪头110的出口端112做瞬时加速之前液滴195的速度为零,因此液滴195在吐液枪头110的出口端112瞬时加速的瞬间在第二液体中受到的粘滞阻力f 2为零或极小。在微液滴生成的过程中,一般液滴195的直径范围在皮升至微升的数量级,且液滴195的重力G和第二液体的浮力f 1方向相反,因此液滴195的重力G与第二液体的浮力f 1的矢量和约为零。由于粘滞阻力f 2为零或极小,以及重力G与浮力f 1的矢量和约为零,所以
Figure PCTCN2019072926-appb-000002
由牛顿第二运动定律可知,吐液枪头110的出口端112做瞬时加速运动时,液滴195在第二液体中能达到的最大加速度为a 2≈f 3/m,其中m为液滴195的质量。当液滴195的加速度a 2小于吐液枪头110的出口端112的加速度a 1时,液滴195从吐液枪头110的出口端112掉落形成微液滴。因此,液滴195脱离吐液枪头110的出口端112(即生成一个微液滴)的条件近似为:a 2≈(f 3/m)<a 1
运动控制机构130能够精确控制吐液枪头110的出口端112瞬时加速度的大小。因此,通过控制吐液枪头110的出口端112每次瞬时加速度的值均较大,吐液枪头110的出口端112做瞬时加速运动能够有效的生成液滴195。
基于此,本申请还提供一种微液滴生成方法,包括以下步骤:
S201,提供具有出口端112的吐液枪头110,吐液枪头110内储存有第一液体;提供储存有第二液体的微液滴容器,微液滴容器具有开口,其中第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体;
S202,吐液枪头110的出口端112由微液滴容器的开口插入第二液体的液面下;
S203,吐液枪头110的出口端112在第二液体液面下做包含瞬时加速的运动,同时第一液体由吐液枪头110的出口端112排出,排出吐液枪头110的出口端112的第一液体形成附着在吐液枪头110的出口端112的液滴195,液滴195在吐液枪头110的出口端112的瞬时加速运动过程中脱离吐液枪头110的出口端112在第二液体液面下形成微液滴。
上述微液滴生成方法中,由于所述吐液枪头110的出口端112瞬时加速时加速度数值较大,附着在所述吐液枪头110的出口端112的液滴195与所述吐液枪头110的出口端112之间的附着力不足以带动液滴195与所述吐液枪头110的出口端112同步加速,从而使得附着在所述吐液枪头110的出口端112的液滴195脱离所述吐液枪头110的出口端112在第二液体液面下形成微液滴。本申请所提供的微液滴生成方法,所述吐液枪头110的出口端112在第二液体的液面下做瞬时加速运动时产生微液滴,减小了所述吐液枪头110的出口端112运动时对第二液体造成的扰动,保证了微液滴生成过程的稳定性。
可选的,在步骤S203中,第一液体由吐液枪头110的出口端112排出的方式可以为连续排出或非连续排出。具体的排出方式,可根据实际工况进行相应的设计。在本实施例中,在步骤S203中,第一液体由吐液枪头110的出口端112连续排出,以充分利用吐液枪头110的出口端112的每一次瞬时加速生成微液滴。在一个实施例中,在步骤S203中,第一液体由吐液枪头110的出口端112以恒定的流速排出,意即在相等的时间间隔内,排出吐液枪头110的出口端112的第一液体体积总是相等的。第一液体由吐液枪头110的出 口端112以恒定的流速排出,有利于通过控制吐液枪头110的出口端112的运动实现微液滴生成的控制。
在本申请一实施例中,步骤S203中,吐液枪头110的出口端112在第二液体液面下做包含瞬时加速的周期运动。吐液枪头110的出口端112在第二液体液面下做周期运动,意即吐液枪头110的出口端112的位移、速度及加速度均呈现出周期性的变化。吐液枪头110的出口端112做包含瞬时加速运动的周期运动,配合第一液体由吐液枪头110的出口端112以恒定的流速排出,实现了微液滴的等时间间隔生成。或者第一液体排出吐液枪头110的出口端112的流速是变化的,但在吐液枪头110的出口端112的一个运动周期内,第一液体排出吐液枪头110的出口端112的体积保持相同。以此保证每次吐液枪头110的出口端112瞬时加速前液滴195的体积是相同的,以生成体积大小一致的微液滴。
在不更换吐液枪头110及第一液体的情况下,吐液枪头110的表面自由能、吐液枪头110的几何尺寸及液滴195的表面张力作为影响吐液枪头110的出口端112与液滴195之间最大附着力f 3的两个因素是确定的。因此,在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3是固定的。在流体驱动机构120的带动下,第一液体能够实现以均匀的流速连续排出吐液枪头110的出口端112。运动控制机构130能够精确控制吐液枪头110的出口端112做瞬时加速度a 1运动的时刻及瞬时加速度a 1的大小。流体驱动机构120与运动控制机构130相互配合能够容易的实现当液滴195的体积达到固定值的瞬间,驱动吐液枪头110的出口端112产生加速度为a 1的瞬时加速度,以生成体积大小一致的微液滴。如果流体驱动机构120控制第一液体均匀、连续的排出吐液枪头110的出口端112,只需运动控制机构130驱动吐液枪头110的出口端112产生等时间间隔的瞬时加速运动,即可生成体积大小一致的微液滴。
当使用多个吐液枪头110同时或者顺次生成微液滴时,吐液枪头110的表面自由能及吐液枪头110的几何尺寸作为影响吐液枪头110的出口端112与液滴195之间最大附着力f 3的两个因素是变化的。但批量加工能够控制吐液枪头110的表面自由能及吐液枪头110的几何尺寸在一定的区间内变化。液滴195的表面张力作为影响吐液枪头110的出口端112与液滴195之间最大附着力f 3的另一个因素也只是在很小的范围内变化。因此,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3只在很小的区间内波动。流体驱动机构120能够驱动第一液体以均匀的流速连续排出吐液枪头110的出口端112。运动控制机构130能够精确控制吐液枪头110的出口端112做瞬时加速度a 1运动的时刻及瞬时加速度a 1的大小。流体驱动机构120与运动控制机构130相互配合能够容易的实现当液滴195的体积达到固定值的瞬间,驱动吐液枪头110的出口端112产生加速度为a 1的瞬时加速度,以生成体积大小一致的微液滴。如果流体驱动机构120控制第一液体均匀、连续的排出吐液枪头110的出口端112,只需运动控制机构130驱动吐液枪头110的出口端112产生等时间间隔的瞬时加速运动,即可生成体积大小一致的微液滴。
流体驱动机构120在将第一液体匀速排出吐液枪头110的出口端112的同时,配合运动控制机构130在液滴195的体积达到设定值的瞬间做加速度值较大的瞬时加速运动。本 申请提供的微液滴生成方法不仅保证了使用同一根吐液枪头110生成体积大小均一的液滴195,同时能够保证多根吐液枪头110同时或者顺次生成的微液滴体积大小的均一性。本实施例提供的微液滴生成方法在保证微液滴体积大小均一性的同时,可通过多根吐液枪头110同时生成微液滴提高微液滴的生成效率。
进一步的,在运动控制机构130的控制下,吐液枪头110的出口端112在一个周期性运动内包括多次瞬时加速运动,多次瞬时加速运动的加速度大小相同,且多次瞬时加速运动的时刻均分吐液枪头110的出口端112的一个运动周期。吐液枪头110的出口端112在一个周期性运动内包括多次瞬时加速运动有助于在吐液枪头110的出口端112在一个运动周期内生成多个微液滴。可选的,步骤S203中,吐液枪头110的出口端112在第二液体液面下的运动轨迹包括直线段、圆弧段、多边形等多种轨迹中的一种或多种的组合。作为一个可实现的方式,当吐液枪头110的出口端112在一个周期性运动内包括两次瞬时加速运动时,吐液枪头110的运动轨迹为直线或者圆弧。当吐液枪头110的出口端112在一个周期性运动内包括两次以上的瞬时加速运动时,吐液枪头110的出口端112在第二液体内做轨迹为正多边形,包括正三角形、正方形、正五边形、正六边形等。
作为一种可实现的方式,在步骤S203中,吐液枪头110的出口端112在第二液体液面下的周期运动过程中,吐液枪头110的出口端112的速度大小呈矩形波变化。吐液枪头110的出口端112的速度大小呈矩形波变化,加速阶段结束以后即进入匀速阶段,有利于运动控制机构130实现对吐液枪头110的出口端112的运动状态的精确控制。可选的,表示吐液枪头110的出口端112运动速度大小变化的矩形波的高位时间和低位时间可以是相等的也可以是相异的。进一步,在步骤S203中,吐液枪头110的出口端112在第二液体液面下的周期运动过程中,吐液枪头110的出口端112的速度大小呈方波变化。表示吐液枪头110的出口端112运动速度大小变化的矩形波的高位时间和低位时间是相等的。表示吐液枪头110的出口端112运动速度大小变化的矩形波处于低位时,吐液枪头110的出口端112的速度为零或具有相对于高位时反方向的速度。如图4所示,更进一步的,所述吐液枪头110的出口端112周期运动的前半周期与后半周期内,所述吐液枪头110的出口端112的速度大小相同,方向相反。在吐液枪头110的出口端112的一个运动周期内包含两次方向相反的瞬时加速运动。
在本实施例中,吐液枪头110的出口端112在第二液体液面下的运动轨迹是直线段,吐液枪头110的出口端112从直线段的一个端点做瞬时加速运动,从直线段的另一个端点做反方向的瞬时加速运动。两次瞬时加速运动的的加速度大小均为a 1。在其他的实施例中,吐液枪头110的出口端112在第二液体液面下的运动轨迹是圆弧段或者多边形。进一步,步骤S203中,吐液枪头110的出口端112在第二液体液面下周期运动的频率介于0.1赫兹至200赫兹之间,在工程上容易实现。
如图4及图5所示,在本申请一个具体的实施例中,流体驱动机构120控制第一液体以恒定的流速排出吐液枪头110的出口端112。运动控制机构130控制吐液枪头110的输出端做运动轨迹为直线、速度呈方波变化的周期运动。当吐液枪头110的出口端112的速 度方向发生改变时,吐液枪头110的出口端112的瞬时加速度达到最大值。附着在吐液枪头110的出口端112的液滴195也在吐液枪头110的出口端112的瞬时加速度达到最大值时脱离吐液枪头110的出口端112而形成微液滴199。由于第一液体是以恒定流速排出吐液枪头110的出口端112,当液滴195从吐液枪头110的出口端112脱落时,新的液滴195进入生成状态。当吐液枪头110的出口端112再次反向加速时,新生成的液滴195也从吐液枪头110的出口端112掉落形成新的微液滴199。
本实施例中,吐液枪头110的出口端112的一个运动周期内可生成两个微液滴199,且方波在工程上较易实现。在其他的实施例中,吐液枪头110的出口端112的一个运动周期内生成一个微液滴199。可选的,在实施例中吐液枪头110的出口端112在第二液体699中沿任意方向做轨迹为直线的方波运动,包括:在与吐液枪头110的延伸方向垂直的平面内做轨迹为直线的方波运动、在与吐液枪头110的延伸方向成任意角度的平面内做轨迹为直线的方波运动、沿吐液枪头110的延伸方向做轨迹为直线的方波运动等。在本申请的其他实施例中,吐液枪头110的出口端112的运动轨迹为圆弧段或多边形时,吐液枪头110的出口端112在第二液体699中沿任意方向做轨迹为直线的方波运动,包括:在与吐液枪头110的延伸方向垂直的平面内做轨迹为直线的方波运动、在与吐液枪头110的延伸方向成任意角度的平面内做轨迹为直线的方波运动、沿吐液枪头110的延伸方向做轨迹为直线的方波运动等。
在本申请另一实施例中,在运动控制机构130的带动下,吐液枪头110的出口端112在第二液体液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头110的出口端112的速度大小均单调变化。单调变化指,在速度大小变化的前半周期或后半周期内,吐液枪头110的出口端112的在后时刻的速度值总是大于等于或者小于等于在前时刻的速度值。例如,在速度大小变化的前半周期内,吐液枪头110的出口端112的速度大小持续增加或部分段持续增加而部分段不变。相应的,在速度大小变化的后半周期内,吐液枪头110的出口端112的速度大小持续减小或部分段持续减小而部分段不变。第一液体从吐液枪头110的出口端112排出后形成附着在吐液枪头110的出口端112的液滴195。液滴195在吐液枪头110的出口端112运动速度达到一定大小时脱离吐液枪头110的出口端112形成微液滴199。如图6所示,微液滴199在脱离吐液枪头110的出口端112之前的所受到的作用力分别为重力G、第二液体699的浮力f 1、第二液体699的粘滞阻力f 2以及吐液枪头110的出口端112与液滴195之间的最大附着力f 3。微液滴199在脱离吐液枪头110的出口端112之前的质量为m、速度为v、加速度为a 2。液滴195在第二液体699的运动过程中受粘滞力f 2、重力G、浮力f 1及附着力f 3的共同作用,即
Figure PCTCN2019072926-appb-000003
自由能、液滴195的表面张力以及吐液枪头110的几何尺寸有关。将附着在吐液枪头110的出口端112的液滴195简化为球状。由斯托克斯(Stokes)公式可知,液滴195在第二 液体699中运动时所受到的粘滞阻力f 2=6πηrv,其中η为第二液体699的粘滞系数,r为液滴195的半径,v为液滴195的运动速度。在微液滴199生成的过程中,一般液滴195的直径范围在皮升至微升的数量级,而第二液体699的粘滞系数一般比较大。故,一般有
Figure PCTCN2019072926-appb-000004
Figure PCTCN2019072926-appb-000005
因此,吐液枪头110的出口端112在第二液体699液面下做变速周期运动过程中,液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的
Figure PCTCN2019072926-appb-000006
S211,提供具有出口端112的吐液枪头110,吐液枪头110内储存有第一液体;提供储存有第二液体699的微液滴容器60,微液滴容器60具有开口;第一液体与第二液体699为任意互不相溶的两种液体或具有界面反应的两种液体;
S212,吐液枪头110的出口端112由微液滴容器60的开口插入第二液体699的液面下;
S213,吐液枪头110的出口端112在第二液体699液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头110的出口端112的速度大小均单调变化,同时第一液体由吐液枪头110的出口端112匀速排出,排出吐液枪头110的出口端112的第一液体形成附着在吐液枪头110的出口端112的液滴195,液滴195在吐液枪头110的出口端112的运动过程中脱离吐液枪头110的出口端112在第二液体699液面下形成微液滴199。
上述微液滴生成方法,吐液枪头110的出口端112在第二液体699液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,吐液枪头110的出口端112的速度大小均单调变化。运动过程中,第二液体699对液滴195的粘滞力f 2随着吐液枪头110的出口端112速度大小的周期变化也呈现出周期变化。当吐液枪头110的出口端112与液滴195之间的最大附着力f 3小于第二液体699对液滴195的粘滞力f 2时,液滴195不能与吐液枪头110的出口端112同步运动,进而附着在所述吐液枪头110的出口端112的液滴195脱离所述吐液枪头110的出口端112在第二液体699液面下形成微液滴199。本申请所提供的微液滴生成方法,所述吐液枪头110的出口端112在第二液体699的液面下做变速周期运动以产生微液滴199,减小了所述吐液枪头110的出口端112运动时对第二液体699造成的扰动,保证了微液滴199生成过程的稳定性。
在本实施例中,在步骤S213中,第一液体由吐液枪头110的出口端112连续排出。进一步,在步骤S213中,第一液体由吐液枪头110的出口端112以恒定的流速排出,意即在相等的时间间隔内,排出吐液枪头110的出口端112的第一液体体积总是相等的。第一液体由吐液枪头110的出口端112以恒定的流速排出,有利于通过控制吐液枪头110的出口端112的周期性运动实现生成体积大小一致的微液滴199。
影响液滴195在第二液体699中运动时所受到的粘滞阻力f 2的因素中,液滴195的运动速度v比较容易控制。在脱离吐液枪头110的出口端112而形成微液滴199之前,液滴195与吐液枪头110的出口端112保持同步运动。因此,液滴195的运动速度v可以通过 控制吐液枪头110的出口端112的运动速度实现精确控制。控制第一液体以均匀的流速排出吐液枪头110的出口端112,液滴195半径的大小r在固定的时间间隔内也呈现出周期性的变化。影响液滴195在第二液体699中运动时所受到的粘滞阻力f 2的因素中,第二液体699的粘滞系数η会在使用过程中在一定范围内变化,但第二液体699的粘滞系数η的变化范围很小。
在不更换吐液枪头110及第一液体的情况下,吐液枪头110的表面自由能、吐液枪头110的几何尺寸及液滴195的表面张力作为影响吐液枪头110的出口端112与液滴195之间最大附着力f 3的两个因素是确定的。因此,在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3是固定的。当使用多个吐液枪头110同时或者顺次生成微液滴199时,吐液枪头110的表面自由能及吐液枪头110的几何尺寸作为影响吐液枪头110的出口端112与液滴195之间最大附着力f 3的两个因素是变化的。但批量加工能够控制吐液枪头110的表面自由能及吐液枪头110的几何尺寸在一定的区间内变化。液滴195的表面张力作为影响吐液枪头110的出口端112与液滴195之间最大附着力f 3的另一个因素也只是在很小的范围内变化。吐液枪头110的出口端112与液滴195之间附着力的最大值f 3只在很小的区间内波动。
因此,只需控制液滴195在第二液体699中运动时所受到的粘滞阻力f 2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f 3的区间值即可。由于在同一批次生成微液滴199的过程中,液滴195半径的大小r应是固定的。一旦实验参数确定,液滴195半径的大小r也就随之确定。吐液枪头110的出口端112在第二液体699液面下的运动速度是变化的。当吐液枪头110的出口端112在第二液体699液面下的运动速度满足v>f 3/6πηr时,液滴195从吐液枪头110的出口端112脱离形成微液滴199。
吐液枪头110的出口端112在第二液体699液面下做速度大小周期变化的运动。控制第一液体以均匀的流速从吐液枪头110的出口端112排出,附着在吐液枪头110的出口端112的液滴195体积也是均匀增大的。将第一个微液滴199从吐液枪头110的出口端112掉落时,微液滴199的半径称为临界半径,微液滴199的速度成为临界速度。调整吐液枪头110的出口端112的运动周期及第一液体排出吐液枪头110的出口端112的流速,以使经过相同的时间间隔(吐液枪头110的出口端112运动周期的倍数)后,附着在吐液枪头110的出口端112的液滴195同时达到临界半径及临界速度,新的微液滴199形成。由于第一液体是以均匀的流速排出吐液枪头110的出口端112,所生成的微液滴199的体积大小相同。
作为一种可实现的形式,在步骤S213中,在一个速度大小变化周期内,吐液枪头110的出口端112的速度大小以中间时刻点为中点呈中心对称。进一步,在步骤S213中,吐液枪头110的出口端112在第二液体699液面下的加速度、速度及运动轨迹均呈周期性变化。更进一步,在步骤S213中,吐液枪头110的出口端112在第二液体699液面下的速度大小呈余弦曲线变化。
可选的,在步骤S213中,吐液枪头110的出口端112在第二液体699液面下的运动 轨迹包括直线段、圆弧段、多边形等多种轨迹中的一种或多种的组合。在步骤S213中,吐液枪头110的出口端112在第二液体699液面下周期运动的频率介于0.1赫兹与200赫兹之间,在工程上容易实现。
以吐液枪头110的出口端112在第二液体699液面下做轨迹为圆弧、速度呈余弦变化的周期运动为例,此时吐液枪头110的出口端112实际上做摆动运动,运动位移可以用正弦曲线表示,如图7中曲线a所示。在流体控制机构的驱动下,第一液体以均匀的流速从吐液枪头110的出口端112排出。假设液滴195不脱离吐液枪头110的出口端112。通过计算,液滴195在第二液体699中运动时所受到的粘滞阻力f 随时间变化如图7中曲线b所示。第一液体以均匀的流速从吐液枪头110的出口端112排出的初始阶段,随着液滴195体积的增大,液滴195的半径r也明显增大。随着液滴195半径r的不断增大,液滴195体积的匀速增大只能引起液滴195半径r的缓慢增大。因此,吐液枪头110的出口端112的前几个摆动周期内,液滴195在第二液体699中运动时所受到的粘滞阻力f 2的最大值迅速增加,而后逐渐趋于缓慢增加。如图7所示,液滴195在第二液体699中运动时所受到的粘滞阻力f 2也呈现出与吐液枪头110的出口端112的周期运动相似的周期性,即液滴195在第二液体699中运动时所受到的粘滞阻力f 2随吐液枪头110的出口端112的速度变化而变化。在实际工况中,当液滴195在第二液体699中运动时所受到的粘滞阻力f 2增大并大于吐液枪头110的出口端112与液滴195之间附着力的最大值f 3时,液滴195从吐液枪头110的出口端112脱落形成微液滴199。
在本申请一实施例中,如图8所示,控制吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化的摆动。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3是固定的。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f 2也不断增大。液滴195在第二液体699中运动时所受到的粘滞阻力f 2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f 3的瞬间,液滴195从吐液枪头110的出口端112脱落形成微液滴199,图8中为液滴Ⅰ。进入下一轮微液滴199的生成循环中。
在本实施例中,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3=1.8×10 -4N,吐液枪头110的出口端112的摆动频率是50赫兹。在吐液枪头110的出口端112做位移呈正弦变化的摆动运动的第二个周期末尾生成第一个微液滴199,图8中为液滴I。在生成第二个微液滴199的初始阶段,虽然吐液枪头110的出口端112的运动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f 2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f 2主要随吐液枪头110的出口端112的运动速度变化而变化。
当控制第一液体以均匀流速排出吐液枪头110的出口端112时,吐液枪头110的出口端112在生成上一个微液滴199后的两个运动周期的时刻又生成与上一个微液滴199等体积的新的液滴195,图8中为液滴II。且此时吐液枪头110的出口端112的运动速度也与 两个运动周期之前相同。与上一个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。
在本申请一实施例中,如图9所示,控制吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化的摆动。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3是固定的。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f 2也不断增大。液滴195在第二液体699中运动时所受到的粘滞阻力f 2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f 3的瞬间,液滴195从吐液枪头110的出口端112脱落形成微液滴199。进入下一轮微液滴199的生成循环中。
在本实施例中,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3=1.5×10 -4N,吐液枪头110的出口端112的摆动频率是50赫兹。在吐液枪头110的出口端112做位移呈正弦变化的摆动运动的第一个周期末尾生成第一个微液滴199,图9中为液滴I。在生成第二个微液滴199的初始阶段,虽然吐液枪头110的出口端112的运动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f 2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f 2主要随吐液枪头110的出口端112的运动速度变化而变化。
当控制第一液体以均匀流速排出吐液枪头110的出口端112时,吐液枪头110的出口端112在生成上一个微液滴199后的一个运动周期的时刻又生成与上一个微液滴199等体积的新的液滴195,且此时吐液枪头110的出口端112的运动速度也与一个运动周期之前相同。与上一个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落,图9中为液滴II。如此循环,生成液滴III、液滴IV等。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。
在本申请一实施例中,如图10及图11所示,控制吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化的摆动。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3是固定的。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f 2也不断增大。液滴195在第二液体699中运动时所受到的粘滞阻力f 2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f 3的瞬间,液滴195从吐液枪头110的出口端112脱落形成微液滴199,图10中为液滴I。进入下一轮微液滴199的生成循环中。
在本实施例中,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3=1.0×10 -4N,吐液枪头110的出口端112的摆动频率是50赫兹。在吐液枪头110的出口端112做位移呈正弦变化的摆动运动的前半周期的加速阶段生成第一个微液滴199,图10中为液滴I。在生成第二个微液滴199的初始阶段,当吐液枪头110的出口端112的运 动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f 2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f 2主要随吐液枪头110的出口端112的运动速度变化而变化。
控制第一液体以均匀流速排出吐液枪头110的出口端112。吐液枪头110的出口端112在做位移呈正弦变化的摆动运动的后半周期加速阶段生成第二个微液滴199,图10中为液滴II。此后进入稳定生成微液滴199的阶段。吐液枪头110的出口端112生成第二个微液滴199后的半个运动周期的时刻又生成与第二个微液滴199等体积的新的液滴195,且此时吐液枪头110的出口端112的运动速度也与半个运动周期之前相同。与第二个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落,如此循环,生成图10中所示的液滴III、液滴IV、液滴V等。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。
由上述可知,附着在吐液枪头110的出口端112的液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的条件近似为:
Figure PCTCN2019072926-appb-000007
在控制第一液体以均匀流速排出吐液枪头110的出口端112的情况下,所生成的微液滴199的体积大小均一的条件是:微液滴199等时间间隔的从吐液枪头110的出口端112脱落。
影响吐液枪头110的出口端112与液滴195之间附着力的最大值f 3的因素包括:吐液枪头110的表面自由能、几何尺寸及第一液体的表面张力。在不更换吐液枪头110及第一液体的情况下,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3是固定的。影响液滴195在第二液体699中运动时所受到的粘滞阻力f 2的因素包括:第二液体699的粘滞系数η、液滴195的半径r及液滴195的运动速度v。第一液体匀速排出吐液枪头110的出口端112时,液滴195的半径r由微液滴199生成的间隔时间决定。液滴195在脱离吐液枪头110的出口端112之前与吐液枪头110的出口端112同步运动,可通过运动控制机构130实现精确控制吐液枪头110的出口端112的运动速度。第二液体699的粘滞系数η在液滴195的生成过程中会在一定范围内变化,但第二液体699的粘滞系数η的变化范围很小。如图12所示,曲线a表示吐液枪头110的出口端112的位移变化,曲线b和曲线c为当第二液体699的粘滞系数η在很小的范围内变化时微液滴199的生成过程曲线。当第二液体699的粘滞系数η在很小的范围内变化时,只会在很小范围内改变微液滴199的生成时刻。而不会改变微液滴199的生成时间间隔。如图12所示,曲线b和曲线c所表示的微液滴199的生成时间间隔均为半个周期t/2,保证了所生成微液滴199的体积大小均一性。
如图13所示,在更换吐液枪头110时,或温度变化等引起第一液体的表面张力发生变化时,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3难以精确控制,因此如果生成的微液滴199体积对f 3在一定范围内变化不敏感,那么对生成均一尺寸的微液滴199具有重要意义。图13中,曲线a表示吐液枪头110的出口端112的位移变化,曲线b 和曲线c为当更换吐液枪头110的情况下微液滴199的生成过程曲线。更换吐液枪头110后,吐液枪头110的出口端112与液滴195之间附着力的最大值f 3在一定范围内波动会导致液滴195脱落时吐液枪头110的出口端112对应不同的速度。但是当微液滴199的生成达到稳定状态后,液滴195脱落时吐液枪头110的出口端112的速度在每个摆动周期内都是固定的,如图13所示,曲线b和曲线c所表示的微液滴199的生成时间间隔均为半个周期t/2。因此能够保证微液滴199生成的间隔时间是固定的。当第一液体排出吐液枪头110的出口端112的流速固定时,生成的微液滴199的体积是均一的。同时调整第一液体排出吐液枪头110的出口端112的流速及吐液枪头110的出口端112在第二液体699内的摆动频率,即可同时控制均一体积微液滴199的体积大小及生成速率。
上述实施例中吐液枪头110的出口端112做位移呈正弦变化的周期运动时,对附着力的最大值f 3及粘滞阻力f 2的变化具有一定的容忍性,即附着力的最大值f 3或粘滞阻力f 2在一定范围内变化时,仍然能够生成体积大小均一的微液滴199。当吐液枪头110的出口端112做位移呈正弦变化的周期运动时,保证生成体积大小均一的微液滴199的前提下,能够容忍的附着力的最大值f 3的变化范围称为平台期。平台期的存在对于吐液枪头110的加工及微液滴199生成温度的控制具有重要的意义。平台期的存在允许在一定程度内降低吐液枪头110的加工精度要求,即使同批加工的吐液枪头110之间的表面自由能之间存在差异,也能够生成体积大小均一的微液滴199。同理,平台期的存在也允许在一定程度内降低微液滴199生成过程的温度控制要求。
平台期的存在允许在一定程度内降低吐液枪头110的加工精度要求或微液滴199生成过程的温度控制要求,进一步降低了微液滴199生成过程中的耗材成本及控制成本。上述实施例中吐液枪头110的出口端112的每个运动周期内生成两个微液滴199,容易理解的是,只要吐液枪头110的出口端112做位移呈正弦变化的周期运动,当吐液枪头110的出口端112的每一个运动周期内生成一个微液滴199或者每两个运动周期内生成一个微液滴199时,仍然对附着力的最大值f 3及粘滞阻力f 2的变化具有一定的容忍性,也都存在平台期。
由于微液滴199的生成几乎不受微液滴199的重力及惯性力的影响。因此生成微液滴199时,吐液枪头110的出口端112在第二液体699内可沿任意方向做位移呈正弦变化的周期运动。吐液枪头110的出口端112的运动轨迹是弧线、直线或者其他形状的轨迹。
如图14中的(1)所示,在本申请一实施例中,吐液枪头110倾斜插入第二液体699内,吐液枪头110的出口端112在第二液体699液面下摆动生成微液滴199。作为一种可实现的方式,如图14中的(2)所示,吐液枪头110的出口端112在第二液体699内做轨迹为水平直线、位移呈正弦变化的周期运动以生成微液滴199。作为另一种可实现的方式,如图14中的(3)所示,吐液枪头110的出口端112在第二液体699做轨迹为竖直直线、位移呈正弦变化的周期运动以生成微液滴199。
如图15所示,在本申请另一实施例中,在步骤S213中,速度大小变化的一个周期内,吐液枪头110的出口端112在前半周期与后半周期均是匀变速运动。进一步,在步骤S213 中,吐液枪头110的出口端112在前半周期与后半周期的加速度大小相等。控制第一液体以均匀流速排出吐液枪头110的出口端112。随着第一液体的连续排出,附着在吐液枪头110的出口端112的液滴195在运动过程中受到的粘滞阻力f 2也不断增大。当粘滞阻力f 2大于液滴195与吐液枪头110之间附着力的最大值f 3时,液滴195从吐液枪头110脱离形成微液滴199。随后进入下一个微液滴199的生成过程中。控制吐液枪头110的出口端112的运动频率及运动速度与第一液体的流速相适配,以保证生成微液滴199的体积均一性。
传统的吐液枪头一般呈直管状。上述直管状的吐液枪头沿自身的延伸方向靠近出口端的一端快速运动时,会打破已经生成的微液滴。为了保持生成的微液滴的完整性,须要降低吐液枪头的振动频率,从而导致微液滴的生成速率降低。
基于此,有必要针对传统的吐液枪头不能兼顾所生成微液滴的完整性及微液滴的生成速率的问题,提供一种能兼顾所生成微液滴的完整性及微液滴的生成速率的吐液枪头。
本申请一实施例,提供一种用于生成微液滴199的吐液枪头110,其包括具有中空腔体的针梗113及设置于针梗113一端的出口端112。吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角小于等于90°。在吐液枪头110沿管道主体的延伸方向振动时,微液滴199从吐液枪头110的出口端112掉落后在第二液体699粘滞力及吐液枪头110的出口端112端面的挤压作用下远离出口端112的运动轨迹,避免了微液滴199被出口端112打破,保持了已生成微液滴199的完整性,同时允许吐液枪头110沿管道主体的延伸方向快速振动以快速生成微液滴199。
如图16所示,作为一种可实现的方式,吐液枪头110呈直管状,吐液枪头110的出口端112为斜切结构。将吐液枪头110的出口端112进行斜切,兼顾所生成微液滴199的完整性及微液滴199的生成效率的同时,具有结构简单、易于实现、制造成本低、批量加工精度高的特点。进一步,吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角介于15°-75°之间,可根据实际工况设计吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角。吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角不宜过大或过小,以免影响微液滴199的生成或打破微液滴199。更进一步的,吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角介于30°-60°之间。具体的,吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角为45°。45°角不仅能够保证微液滴199的顺利生成,还能够有效的将已生成的微液滴199挤离开出口端112的运动轨迹,避免吐液枪头110的出口端112打破已生成的微液滴199。
如图17所示,作为另一种可实现的方式,针梗113靠近吐液枪头110的出口端112的部分包括弯折结构。将吐液枪头110的出口端112进行弯折,兼顾所生成微液滴199的完整性及微液滴199的生成效率的同时,具有结构简单、易于实现、制造成本低、批量加工精度高的特点。进一步,吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角介于15°-75°之间,可根据实际工况设计吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角。吐液枪头110的出口端112端面的法线与针梗113的 延伸方向之间的夹角不宜过大或过小,以免影响微液滴199的生成或打破微液滴199。更进一步的,吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角介于30°-60°之间。具体的,吐液枪头110的出口端112端面的法线与针梗113的延伸方向之间的夹角为45°。45°角不仅能够保证微液滴199的顺利生成,还能够有效的将已生成的微液滴199挤离开出口端112的运动轨迹,避免吐液枪头110的出口端112打破已生成的微液滴199。
可选的,针梗113靠近吐液枪头110的出口端112的弯折结构具有折线段、圆弧段、光滑曲线段、直线段等中的一种或者组合。如图17所示,在本实施例中。针梗113靠近吐液枪头110的出口端112的部分具有过渡圆弧段,具体是圆弧段与直线段的组合。在加工过程中将直管状的吐液枪头110进行设定角度的圆弧弯折即可,加工方便。
如图18及图19所示,本申请一实施例提供的吐液枪头110还包括针栓114,针栓114具有沿针栓114的延伸方向贯通针栓114的储液槽115。储液槽115的一端与针梗113远离吐液枪头110的出口端112的一端连通,针栓114远离针梗113的一端是吐液枪头110的入口端111。针栓114与针梗113之间固定连接。用于生成微液滴199的第一液体可以提前储存在针栓114内,能够实现连续、批量的生成微液滴199。进一步,针栓114远离针梗113的一端内表面开设有卡槽116。卡槽116能够实现与流体驱动机构120的可拆卸连接。便于吐液枪头110的更换。
本申请还一种微液滴199生成装置,用于在第二液体699液面下生成微液滴199。微液滴199生成装置包括流体驱动机构120、运动控制机构130及上述方案任一项所述的吐液枪头110。吐液枪头110的内部储存有第一液体,吐液枪头110具有出口端112及入口端111。流体驱动机构120与吐液枪头110的入口端111连接,用于将储存在吐液枪头110内部的第一液体从吐液枪头110的出口端112排出。运动控制机构130用于控制吐液枪头110的出口端112在第二液体699的液面下产生设定轨迹或设定速度或设定加速度的运动,以使排出吐液枪头110的出口端112的第一液体克服表面张力及附着力在第二液体699内形成微液滴199。
本申请提供的吐液枪头110在第二液体699液面下运动的过程中生成微液滴199。作为一种可实现的方式,吐液枪头110的出口端112在第二液体699液面下做速度大小呈方波变化的运动,加速度大小为a 1。第一液体从吐液枪头110的出口端112排出后形成附着在吐液枪头110的出口端112的液滴195。液滴195在吐液枪头110的出口端112瞬时加速的瞬间脱离吐液枪头110的出口端112形成微液滴199。如图3所示,微液滴199在脱离吐液枪头110的出口端112之前的所受到的作用力分别为重力G、第二液体699的浮力f 1、第二液体699的粘滞阻力f 2以及吐液枪头110的出口端112与液滴195之间的最大附着力f 3。微液滴199在脱离吐液枪头110的出口端112之前的质量为m、加速度大小为a 2。根据牛顿第二运动定律,易得出
Figure PCTCN2019072926-appb-000008
吐液枪头110的出口端112与液滴195之间附着力的最大值f 3与吐液枪头110的表面自由能、液滴195的表面张力以及吐液枪头110的几何尺寸有关。吐液枪头110的出口端 112做瞬时加速运动时,吐液枪头110的出口端112对液滴195附着力的方向与加速度的方向相同。将附着在吐液枪头110的出口端112的液滴195简化为球状。由斯托克斯(Stokes)公式可知,液滴195在第二液体699中运动时所受到的粘滞阻力f 2=6πηrv,其中η为第二液体699的粘滞系数,r为液滴195的半径,v为液滴195的运动速度。在吐液枪头110的出口端112做瞬时加速之前液滴195的速度为零,因此液滴195在吐液枪头110的出口端112瞬时加速的瞬间在第二液体699中受到的粘滞阻力f 2为零或极小。在微液滴199生成的过程中,一般液滴195的直径范围在皮升至微升的数量级,且液滴195的重力G和第二液体699的浮力f 1方向相反,因此液滴195的重力G与第二液体699的浮力f 1的矢量和约为零。即存在
Figure PCTCN2019072926-appb-000009
由牛顿第二运动定律可知,吐液枪头110的出口端112做瞬时加速运动时,液滴195在第二液体699中能达到的最大加速度为a 2≈f 3/m,其中m为液滴195的质量。液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的条件近似为:a 2≈(f 3/m)<a 1
在运动控制机构130的带动下,能够精确控制吐液枪头110的出口端112瞬时加速度的大小。只要控制吐液枪头110的出口端112每次瞬时加速度的值均较大,吐液枪头110的出口端112做瞬时加速运动能够有效的生成液滴195。可选的,在吐液枪头110的出口端112的一个运动周期内,形成一个或两个或多个微液滴199。
如图20所示,在本申请一实施例中,吐液枪头110的出口端112端面的法线与管道主体的延伸方向之间的夹角为45°,吐液枪头110的出口端112呈斜切结构。第二液体699的液面朝上,吐液枪头110竖直布置。吐液枪头110的出口端112在第二液体699液面下做轨迹为竖直线段、速度大小呈方波变化的运动。在吐液枪头110的出口端112的一个运动周期内生成一个微液滴199。吐液枪头110内储存有第一液体。流体驱动机构120控制吐液枪头110在吐液枪头110的每个运动周期内从出口端112排出等体积的第一液体。当附着在吐液枪头110的出口端112的液滴195到达设定体积大小时,吐液枪头110的出口端112由上极限位置以大小为a 1的加速度向下瞬时加速,同时附着在吐液枪头110的出口端112的液滴195脱离吐液枪头110的出口端112形成微液滴199。在第二液体699粘滞力及吐液枪头110的出口端112端面的挤压作用下,微液滴199远离出口端112的运动轨迹而靠近吐液枪头110的侧壁。吐液枪头110的出口端112继续向下运动,与此同时第一液体仍然排出吐液枪头110的出口端112形成附着在吐液枪头110的出口端112的液滴195。当吐液枪头110的出口端112运动至下极限位置时,吐液枪头110的出口端112由下极限位置向上运动。在吐液枪头110的出口端112由下极限位置向上运动的过程中第一液体仍然排出吐液枪头110的出口端112,附着在吐液枪头110的出口端112的液滴195体积增大。当吐液枪头110的出口端112运动至上极限位置时,附着在吐液枪头110的出口端112的液滴195体积大小与上一次脱落的微液滴199的体积大小相等。吐液枪头110的出口端112再次由上极限位置以大小为a 1的加速度向下瞬时加速形成新的微液滴199,如 此循环。
如图21所示,在本申请一实施例中,吐液枪头110的出口端112端面的法线与管道主体的延伸方向之间的夹角为45°,吐液枪头110的出口端112呈斜切结构。第二液体699的液面朝上,吐液枪头110竖直布置。吐液枪头110的出口端112在第二液体699液面下做轨迹为竖直线段、速度大小呈方波变化的运动。在吐液枪头110的出口端112的一个运动周期内生成两个微液滴199。吐液枪头110内储存有第一液体。流体驱动机构120控制第一液体以均匀流速从出口端112排出。当附着在吐液枪头110的出口端112的液滴195到达设定体积大小时,吐液枪头110的出口端112由上极限位置以大小为a 1的加速度向下瞬时加速,同时附着在吐液枪头110的出口端112的液滴195脱离吐液枪头110的出口端112形成微液滴199。在第二液体699粘滞力及吐液枪头110的出口端112端面的挤压作用下,微液滴199远离出口端112的运动轨迹而靠近吐液枪头110的侧壁。吐液枪头110的出口端112继续向下运动。与此同时第一液体仍然排出吐液枪头110的出口端112形成附着在吐液枪头110的出口端112的液滴195,附着在吐液枪头110的出口端112的液滴195体积增大。
当吐液枪头110的出口端112运动至下极限位置时,附着在吐液枪头110的出口端112的液滴195体积大小与上一次脱落的微液滴199的体积大小相等。吐液枪头110的出口端112由下极限位置以大小为a 1的加速度向上瞬时加速,附着在出口端112的液滴195脱离出口端112形成新的微液滴199。吐液枪头110的出口端112处于下极限位置时生成的微液滴199在出口端112的附着力的作用下只向上运动一小段距离,便开始在第二液体699中逐渐降落。在吐液枪头110的出口端112由下极限位置向上运动的过程中第一液体仍然排出吐液枪头110的出口端112,附着在吐液枪头110的出口端112的液滴195体积增大。当吐液枪头110的出口端112运动至上极限位置时,附着在吐液枪头110的出口端112的液滴195体积大小与上一次脱落的微液滴199的体积大小相等。吐液枪头110的出口端112再次由上极限位置以大小为a 1的加速度向下瞬时加速形成新的微液滴199,如此循环。当吐液枪头110的出口端112再次由上极限位置向下运动时,若在出口端112正下方的轨迹范围内仍然存在微液滴199,则由附着在出口端112的液滴195撞击已生成的微液滴199,已生成的微液滴199沿出口端112端面的法线运动以远离出口端112的运动轨迹。
本申请提供的吐液枪头110在第二液体699液面下运动的过程中生成微液滴199。作为另一种可实现的方式,吐液枪头110的出口端112在第二液体699液面下做位移呈正弦变化的运动。第一液体从吐液枪头110的出口端112排出后形成附着在吐液枪头110的出口端112的液滴195。液滴195在吐液枪头110的出口端112运动速度达到一定大小时脱离吐液枪头110的出口端112形成微液滴199。如图6所示,微液滴199在脱离吐液枪头110的出口端112之前的所受到的作用力分别为重力G、第二液体699的浮力f 1、第二液体699的粘滞阻力f 2以及吐液枪头110的出口端112与液滴195之间的最大附着力f 3。微液滴199在脱离吐液枪头110的出口端112之前的质量为m、速度为v、加速度为a 2。液滴195在第二液体699的运动过程中受粘滞力f 2、重力G、浮力f 1及附着力f 3的共同作用,
Figure PCTCN2019072926-appb-000010
吐液枪头110的出口端112与液滴195之间附着力的最大值f 3与吐液枪头110的表面自由能、液滴195的表面张力以及吐液枪头110的几何尺寸有关。将附着在吐液枪头110的出口端112的液滴195简化为球状。由斯托克斯(Stokes)公式可知,液滴195在第二液体699中运动时所受到的粘滞阻力f 2=6πηrv,其中η为第二液体699的粘滞系数,r为液滴195的半径,v为液滴195的运动速度。在微液滴199生成的过程中,一般液滴195的直径范围在皮升至微升的数量级,而第二液体699的粘滞系数一般比较大。故,一般有
Figure PCTCN2019072926-appb-000011
因此,吐液枪头110的出口端112在第二液体699液面下做变速周期运动过程中,液滴195脱离吐液枪头110的出口端112(即生成一个微液滴199)的条件近似为
Figure PCTCN2019072926-appb-000012
可选的,在吐液枪头110的出口端112的一个运动周期内,形成一个或两个或多个微液滴199。
如图22所示,在本申请一实施例中,吐液枪头110的出口端112端面的法线与管道主体的延伸方向之间的夹角为45°,针梗113靠近吐液枪头110的出口端112的部分是弯折结构。第二液体699的液面朝上,吐液枪头110竖直布置。吐液枪头110的出口端112在第二液体699液面下做轨迹为竖直线段、位移呈正弦变化的运动。在吐液枪头110的出口端112的一个运动周期内生成一个微液滴199。吐液枪头110内储存有第一液体。流体驱动机构120控制吐液枪头110在吐液枪头110的每个运动周期内从出口端112排出等体积的第一液体。在吐液枪头110的出口端112做位移呈正弦变化的直线运动的加速下降阶段生成第一个微液滴199。在生成第二个微液滴199的初始阶段,虽然吐液枪头110的出口端112存在向下减速阶段,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f 2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f 2主要随吐液枪头110的出口端112的运动速度变化而变化。吐液枪头110的出口端112下降至极限位置后开始上升,与此同时,附着在吐液枪头110的出口端112的液滴195的体积不断增大。
当控制第一液体以均匀流速排出吐液枪头110的出口端112时,吐液枪头110的出口端112在生成上一个微液滴199后的一个运动周期的时刻又生成与上一个微液滴199等体积的新的液滴195,且此时吐液枪头110的出口端112的运动速度也与一个运动周期之前相同。与上一个微液滴199等体积的新的液滴195从吐液枪头110的出口端112脱落,如此循环。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。当吐液枪头110的出口端112再次由上极限位置向下运动时,若在出口端112正下方的轨迹范围内仍然存在微液滴199,则由附着在出口端112的液滴195撞击已生成的微液滴199,已生成的微液滴199沿出口端112端 面的法线运动以远离出口端112的运动轨迹。
如图23所示,在本申请一实施例中,吐液枪头110的出口端112端面的法线与管道主体的延伸方向之间的夹角为45°,针梗113靠近吐液枪头110的出口端112的部分是弯折结构。第二液体699的液面朝上,吐液枪头110竖直布置。吐液枪头110的出口端112在第二液体699液面下做轨迹为竖直线段、位移呈正弦变化的运动。在吐液枪头110的出口端112的一个运动周期内生成两个微液滴199。吐液枪头110内储存有第一液体。流体驱动机构120控制第一液体以均匀流速从出口端112排出。随着附着在吐液枪头110的出口端112的液滴195半径r不断增大,液滴195在第二液体699中运动时所受到的粘滞阻力f 2也不断增大。当吐液枪头110的出口端112处于向下加速阶段时,液滴195在第二液体699中运动时所受到的粘滞阻力f 2大于吐液枪头110的出口端112与液滴195之间附着力的最大值f 3,液滴195从吐液枪头110的出口端112脱落形成微液滴199。在第二液体699粘滞力及吐液枪头110的出口端112端面的挤压作用下,微液滴199远离出口端112的运动轨迹而靠近吐液枪头110的侧壁。
吐液枪头110的出口端112继续向下运动,吐液枪头110的出口端112下降至极限位置后开始上升。与此同时第一液体仍然排出吐液枪头110的出口端112形成附着在吐液枪头110的出口端112的液滴195,附着在吐液枪头110的出口端112的液滴195体积增大。在生成第二个微液滴199的初始阶段,当吐液枪头110的出口端112的运动速度有所减小,但由于附着在吐液枪头110的出口端112的液滴195半径r增加较快,液滴195在第二液体699中运动时所受到的粘滞阻力f 2并没有立刻下降反而呈现出小范围的增加。此后,液滴195半径r缓慢增加,液滴195在第二液体699中运动时所受到的粘滞阻力f 2主要随吐液枪头110的出口端112的运动速度变化而变化。
半个周期的时间间隔后,吐液枪头110的出口端112处于向上加速阶段。附着在吐液枪头110的出口端112的液滴195体积大小与上一次脱落的微液滴199的体积大小相等,同时吐液枪头110的出口端112的速度大小也与半个周期前相同,附着在出口端112的液滴195脱离出口端112形成新的微液滴199。吐液枪头110的出口端112处于向上加速阶段时生成的微液滴199在出口端112的附着力的作用下只向上运动一小段距离,便开始在第二液体699中逐渐降落。与此同时第一液体仍然排出吐液枪头110的出口端112形成附着在吐液枪头110的出口端112的液滴195,附着在吐液枪头110的出口端112的液滴195体积增大。半个周期的时间间隔后,吐液枪头110的出口端112处于向下加速阶段。附着在吐液枪头110的出口端112的液滴195体积大小与上一次脱落的微液滴199的体积大小相等,同时吐液枪头110的出口端112的速度大小也与半个周期前相同,附着在出口端112的液滴195脱离出口端112形成新的微液滴199,如此循环。控制第一液体以均匀流速排出吐液枪头110的出口端112。吐液枪头110的出口端112在做轨迹为竖直线段、位移呈正弦变化的运动的后半周期加速阶段生成第二个微液滴199后,进入稳定生成微液滴199的阶段。第一液体的匀速排出及吐液枪头110的出口端112做位移呈正弦变化的摆动运动共同保证了生成微液滴199的体积大小均一性。当吐液枪头110的出口端112再次由上极 限位置向下运动时,若在出口端112正下方的轨迹范围内仍然存在微液滴199,则由附着在出口端112的液滴195撞击已生成的微液滴199,已生成的微液滴199沿出口端112端面的法线运动以远离出口端112的运动轨迹。
本申请提供的微液滴生成装置及生成方法在医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都有广泛应用。在一个具体的应用环境中,本申请提供的微液滴199的生成装置及生成方法应用在聚合酶链式反应(Polymerase Chain Reaction,PCR)中。
吐液枪头110的截面尺寸一般是微米级别的,传统的表面处理方法多用于尺寸较大的零件,不能完全适用于尺寸较小的吐液枪头110。
基于此,有必要针对传统的表面处理方法多用于尺寸较大的零件,不能完全适用于尺寸较小的吐液枪头110的问题,提供一种适用于微米尺寸级别吐液枪头110的吐液枪头110表面处理方法。
如图24所示,本申请一实施例提供一种吐液枪头110表面处理方法,用于对吐液枪头110进行表面处理,包括以下步骤:S260,对所述吐液枪头110进行硅烷化处理;S270,使用焦碳酸二乙酯(DEPC)水溶液处理所述吐液枪头110;S280,烘干所述吐液枪头110。
上述吐液枪头110表面处理方法,硅烷化处理降低吐液枪头110的表面自由能并将吐液枪头110的表面自由能控制在一定区间内,降低了吐液枪头110的表面特性对微液滴199生成过程的影响。
如图25所示,在本申请一实施例中,在步骤S260前还包括步骤S240,预处理所述吐液枪头110。所述步骤S240中,所述预处理包括对所述吐液枪头110进行脱脂、去污或清洗等操作中的一种或几种。对吐液枪头110进行脱脂、去污及清洗能够有效去除在前序加工的过程中附着在吐液枪头110表面的污染物或干扰物。进一步,所述步骤S240中,使用超声波振荡对吐液枪头110表面进行辅助脱脂、辅助去污或辅助清洗。在超声波环境中对吐液枪头110进行脱脂、去污及清洗,将化学手段与机械手段配合使用,保证了吐液枪头110表面预处理的效果。具体的,所述步骤S240中,吐液枪头110是不锈钢材质,使用不锈钢清洗剂清洗所述吐液枪头110。不锈钢清洗剂对不锈钢材质的吐液枪头110具有更高的清洁效果。在其他的实施例中,对吐液枪头110表面的预处理还可以是其他能够实现吐液枪头110表面清洁的方法。在本申请其他的实施例中,吐液枪头110为石英毛细管、玻璃管、双纤毛细管等中的一种。
在本申请一实施例中,步骤S240之后且在所述步骤S260之前还包括步骤S250电解抛光所述吐液枪头。电解抛光降低较小尺寸的吐液枪头110的表面粗糙度,以使吐液枪头110的表面质量达到硅烷化的要求。电解抛光对于吐液枪头110的表面质量至关重要,是不锈钢材质的吐液枪头110表面质量达标的关键。在本申请一实施例中,不锈钢材质的吐液枪头110做阳极,在电解液中使用不溶性铜等作为阴极。两级同时浸入到电解槽中,通直流电而选择性的溶解做阳极的吐液枪头110,进而达到对吐液枪头110的表面进行抛光的目的。在本实施例中,对吐液枪头110进行电解抛光时的工艺参数如下表:
电解抛光工艺参数表
通电电压 12V 通电时间 30s
脉冲频率 60HZ 电解温度 50℃
通电电流 <1A/cm 2 电解液 50%-60%磷酸
电解抛光工艺中,使用的吐液枪头110的内径是60μm,外径为150μm。电解抛光结束后,放在金相显微镜下放大50倍观测,无明显划痕。
通过所述步骤S260,可以在吐液枪头110表面形成无定型硅膜,优选为通过化学气相沉积的方法在吐液枪头110表面形成无定型硅膜。无定型硅膜的厚度优选为100埃至1000埃。
如图25所示,在本申请一实施例中,所述步骤S260包括:S261,使用去离子水清洗或浸泡所述吐液枪头110;S262,使用硅烷化试剂处理所述吐液枪头110;S263,使用去离子水清洗或浸泡所述吐液枪头110。
在硅烷化之前使用去离子水清洗或浸泡电解后的吐液枪头110,以去除吐液枪头110表面的污渍及静电。硅烷化处理降低吐液枪头110的表面自由能并将吐液枪头110的表面自由能控制在一定区间内,降低了吐液枪头110的表面特性对微液滴199生成过程的影响。在硅烷化之后使用去离子水清洗或浸泡硅烷化后的吐液枪头110,以去除吐液枪头110表面的污渍及静电。所述步骤S262中,优选为使用硅烷化试剂,通过化学气相沉积的方法在吐液枪头110表面形成无定型硅膜。硅烷化试剂优选为四氢化硅气体,更优选包括四氢化硅和作为掺杂剂的氢化磷的混合气体。通过在吐液枪头110表面形成一层无定型硅处理膜,以降低吐液枪头110的表面自由能。
本实施例中不锈钢表面硅烷化处理的具体步骤如下:将电解后不锈钢材质的吐液枪头110放入化学气相沉积室,清除吐液枪头110表面水汽,将化学气相沉积室抽至真空;将四氢化硅与氢化磷混合气体通入,气相沉积气压控制范围在0.1Pa-500Pa;控制气相沉积温度在180℃-500℃,进行化学气相沉积;沉积时间0.4h-8h;沉积完成后,通入氮气,降至室温。具体的,混合气体中所述四氢化硅的体积百分比为95.0%-99.9%,混合气体中所述氢化磷的体积百分比为0.1%-5.0%。
如图25所示,所述步骤S270包括:S271,使用体积分数为0.5%-1.5%的焦碳酸二乙酯水溶液对所述吐液枪头110浸泡10min-20min;S272,对所述吐液枪头110进行高压灭菌。使用体积分数为1%的DEPC水溶液浸泡吐液枪头110以保证吐液枪头110的表面无核糖核酸酶(Ribonuclease,RNase)及脱氧核糖核酸酶(deoxyribonuclease,DNase)等,为后续使用吐液枪头110的操作减少干扰。对所述吐液枪头110进行高压灭菌能够有效去除残留在吐液枪头110表面的DPEC水溶液,同时去除DPEC水溶液未除净的RNase及DNase等。
使用体积分数为1%的DEPC水溶液浸泡所述吐液枪头110的时间可视具体工况而定。进一步,所述步骤S271中,使用体积分数为1%的DEPC水溶液浸泡所述吐液枪头110, 时间为15min。经测试,15min足以将吐液枪头110表面的RNase及DNase去除干净。更进一步的,所述步骤S280中,使用氮气净化炉进一步净化吐液枪头110,对吐液枪头110进行净化、干燥及烘烤。烘干所述吐液枪头110时使用氮气做保护气体。使用氮气做保护气体,能够有效避免环境中的化学性质相对活跃的气体与吐液枪头110的表面之间发生化学反应,实现对吐液枪头110的有效保护。
在本申请一个具体的实施例中,电解抛光工艺中,使用的吐液枪头110的内径是60μm,外径为150μm。将电解后的吐液枪头110在去离子水中浸泡5min。然后将吐液枪头110放入化学气相沉积室内、抽真空后通入四氢化硅与氢化磷混合气体。控制气相沉积气压在300±20Pa,控制气相沉积温度在350±20℃。混合气体中所述四氢化硅的体积百分比为97.0%,混合气体中所述氢化磷的体积百分比为3.0%。沉积时间2h,沉积完成后,通入氮气,降至室温。使用去离子水清洗硅烷化后的吐液枪头110。使用1%的DEPC水溶液对整个吐液枪头110浸泡15min以及对吐液枪头110进行高压灭菌。最后对吐液枪头110放入氮气净化炉进行表面清洁。
使用本申请实施例中提供的吐液枪头110表面处理方法批量处理18根相同尺寸的吐液枪头110,然后使用18根吐液枪头110分别进行液滴195悬挂实验。使用流体控制机构将第一液体从吐液枪头110的出口端112以1.0nL/s的流速排出。从上一个微液滴199掉落开始计时,每根吐液枪头110计算100个微液滴199的掉落时间。18个吐液枪头110分别对应的100个液滴195掉落的平均时间数据如下表:
液滴掉落时间统计表
Figure PCTCN2019072926-appb-000013
18个吐液枪头110分别对应的微液滴199平均掉落时间的相对变化范围能够直接反映18个吐液枪头110之间的表面自由能的相对变化范围。由上述实验数据可得出,使用本申请的实施例提供的吐液枪头110表面处理方法批量处理后的吐液枪头110的表面自由能的标准差为1.33%。足以满足各类生成微液滴199的体积均一性要求。
在本申请一实施例中,吐液枪头110的一端为出口端112,所述吐液枪头表面处理方 法用于对吐液枪头110的出口端112及外侧壁进行表面处理。同时对吐液枪头110的出口端112及外侧壁进行表面处理,在微液滴199的生成过程中,吐液枪头110的出口端及外侧壁接触已生成的微液滴199后,均一的表面能够有效的推开微液滴199,避免打破微液滴199。
传统的流体驱动机构在生成微液滴的过程中,吐液枪头的出口端处于运动状态,排出液体的流速不稳定、不可控。所生成的微液滴体积大小呈现随机性。基于此,有必要针对传统的吐液枪头在运动时因排出液体的流速不稳定、不可控导致的微液滴体积大小呈现出随机性的问题,提供一种能够保证吐液枪头按照设定流速排出液体的流体驱动机构。
在微液滴199的生成过程中,第一液体以设定的流速排出吐液枪头110的出口端112。吐液枪头110的出口端112做包含瞬时加速的周期运动时,不仅能够有效的生成微液滴199,且便于对所生成微液滴199的大小进行控制。吐液枪头110的出口端112做位移呈正弦变化的周期运动时,不能能够有效的生成微液滴199,且所生成微液滴199具有良好的体积大小均一性。在上述两种生成微液滴199的过程中,第一液体在流体驱动机构120的驱动下以设定的流速排出吐液枪头110的出口端112。
如图26及图27所示,本申请提供一种流体驱动机构120,用于微液滴生成系统中,包括变容积组件121及动力组件122。变容积组件121包括注射筒1211及推杆1212。推杆1212与注射筒1211的内壁滑动配合,注射筒1211内能够储存驱动液体1214。注射筒1211具有进出液口1213,进出液口1213用于连通储存有第一液体190的吐液枪头110的入口端111。动力组件122与推杆1212传动连接,用于驱动推杆1212沿注射筒1211的延伸方向滑动。在微液滴199的生成过程中,动力组件122驱动推杆1212挤压储存在注射筒1211内驱动液体1214,驱动液体1214挤压储存在吐液枪头110内的第一液体190,进而将第一液体190从吐液枪头110的出口端112排出。本申请提供的流体驱动机构120,利用液体(驱动液体1214)的不可压缩性保证了吐液枪头110的出口端112在高频率振动时仍能按照设定的流速将第一液体190从吐液枪头110的出口端112排出。本申请提供的流体驱动机构120能够精确控制所生成微液滴199体积大小。本申请所提供的流体驱动机构120并不限于上述实施方式,比如,还可以采用蠕动泵、压力驱动泵、气压驱动泵或电渗驱动泵等。
作为一种可实现的方式,注射筒1211的进出液口1213与吐液枪头110的入口端111之间通过细管123连通。注射筒1211内及细管123内储存有驱动液体1214。动力组件122与变容积组件121的推杆1212传动连接,动力组件122用于推动变容积组件121的推杆1212在注射筒1211内滑动。微液滴199的生成过程中,动力组件122推动变容积组件121的推杆1212,推杆1212挤压储存在注射筒1211及细管123内的驱动液体1214,驱动液体1214挤压储存在吐液枪头110内的第一液体190,进而将第一液体190从吐液枪头110的出口端112排出。使用细管123将注射筒1211的进出液口1213与吐液枪头110的入口端111连接,一方面细管123的内径较小,便于通过控制推杆1212的行程实现对排出液体体积的精确控制;另一方面,使用细管123能够灵活布置注射筒1211和吐液枪头110之间的 位置及距离,便于在注射筒1211和吐液枪头110之间布置其他的必要设备。
在本申请一实施例中,动力组件122推动推杆1212在注射筒1211内匀速滑动,意即驱动液体1214在推杆1212的推动下以均匀的流速从变容积组件121的进出液口1213排出,通过细管123以均匀的流速进入吐液枪头110。储存在吐液枪头110内的第一液体190在驱动液体1214的推动下,以均匀的流速排出吐液枪头110的出口端112。通过使用驱动液体1214做传动介质以及控制推杆1212以均匀的流速排出驱动液体1214,本实施例提供的流体驱动机构120不仅能在吐液枪头110处于静止状态时以均匀的流速将第一液体190由吐液枪头110的出口端112排出。即使吐液枪头110处于快速振动状态下,本实施例提供的流体驱动机构120仍能保证第一液体190从吐液枪头110的出口端112以均匀的流速排出。本实施例提供的流体驱动机构120大大提高了所生成微液滴199的体积大小均一性。
动力组件122的作用是带动推杆1212在注射筒1211内沿远离进出液口1213的方向或者靠近进出液口1213的方向滑动。可选的,动力组件122可以是气缸、液压缸等直接输出直线运动的组件,也可以是将圆周运动转化为直线运动的组件,如电机与同步带轮的组合、电机与丝杆1222及滑块1223的组合等。本申请并不限制动力组件122的具体结构。如图27所示,在本申请一实施例中,动力组件122包括驱动电机1221、丝杆1222及滑块1223。驱动电机1221的输出轴与丝杆1222的一端传动连接,滑块1223具有内螺纹,滑块1223与丝杆1222表面的外螺纹配合连接。滑块1223的外缘与推杆1212远离注射筒1211的一端固定连接。滑块1223与丝杆1222配合将驱动电机1221输出的旋转运动转化为滑块1223沿丝杆1222轴向的直线运动,从而带动变容积组件121的推杆1212在注射筒1211内滑动。进一步,本实施例中使用的驱动电机1221为伺服电机。伺服电机具有精确反馈及控制输出角位移的特点。
如图28所示,在本申请一实施例中,流体驱动机构120还包括三通换向阀124和储液罐125。三通换向阀124具有第一接口、第二接口及第三接口。吐液枪头110的入口端111、变容积组件121的进出液口1213以及储液罐125分别与三通换向阀124的第一接口、第二接口及第三接口连通。三通换向阀124至少可以控制流体驱动机构120实现以下两种模式:一、使变容积组件121的进出液口1213与吐液枪头110的入口端111相连通,在动力组件122的带动下,变容积组件121向吐液枪头110提供液体驱动力,用于将吐液枪头110内的第一液体190从吐液枪头110的出口端112排出,或者将第一液体190从吐液枪头110的出口端112抽吸进入吐液枪头110内。二、使变容积组件121的进出液口1213与储液罐125相连通,在动力组件122的带动下,变容积组件121将储液罐125中的驱动液体1214抽吸进入变容积组件121的注射筒1211内,或者是将变容积组件121内的驱动液推入储液罐125内。
如图28所示,本申请一实施例还提供一种流体驱动方法,采用上述流体驱动机构,包括以下步骤:(1)三通换向阀124使变容积组件121的进出液口1213与储液罐125连通。在动力组件122的带动下,推杆1212在注射筒1211内向远离进出液口1213的一端滑动改变注射筒1211的容积,以将储液罐125内的驱动液体1214吸入注射筒1211内。(2) 三通换向阀124使变容积组件121的进出液口1213与吐液枪头110的入口端111连通。在动力组件122的带动下,推杆1212在注射筒1211内向靠近进出液口1213的一端滑动改变注射筒1211的容积,以排出注射筒1211内、细管123内以及吐液枪头110内的气体。(3)将吐液枪头110的出口端112进入第一液体190中,并维持三通换向阀124使变容积组件121的进出液口1213与吐液枪头110的入口端111连通。在动力组件122的带动下,推杆1212在注射筒1211内向远离进出液口1213的一端滑动改变注射筒1211的容积,以将第一液体190吸进吐液枪头110内。(4)维持三通换向阀124使变容积组件121的进出液口1213与吐液枪头110的入口端111连通。在动力组件122的带动下,推杆1212在注射筒1211内向靠近进出液口1213的一端匀速滑动改变注射筒1211的容积,以将储存在吐液枪头110内的第一液体190以均匀的流速排出吐液枪头110的出口端112。
为了便于在上述第二步骤中顺利的将注射筒1211内的气体排出,如图27所示,安装时注射筒1211的进出液口1213朝上,推杆1212沿竖直方向在注射筒1211内滑动。
为了提高微液滴199的生成效率,作为一种可实现的方式,吐液枪头110的数量是多个,多个吐液枪头110并排间隔设置或者以其他的形式排布。每个吐液枪头110均通过单独的细管123与三通换向阀124的第一接口连通。变容积组件121的数量是一个,变容积组件121的进出液口1213与三通换向阀124的第二接口连通。三通换向阀124的第三接口与储液罐125连通。在动力组件122的驱动下,推杆1212在注射筒1211内沿靠近进出液口1213的方向匀速滑动,同时将驱动液体1214挤压至多个吐液枪头110内。由于多个细管123之间是并联关系,每个细管123内的驱动液体1214的流量相同,保证了多个吐液枪头110内的第一液体190以相同、恒定的流速排出吐液枪头110的出口端112。进而保证了所生成微液滴199的体积大小均一性。
为了提高微液滴199的生成效率,作为另一种可实现的方式,吐液枪头110及变容积组件121的数量均是多个。多个吐液枪头110并排间隔设置或者以其他的形式排布。每个吐液枪头110均通过单独的细管123与三通换向阀124的第一接口连通。每个变容积组件121的进出液口1213也通过单独的细管123与三通换向阀124的第二接口连通。三通换向阀124的第三接口与储液罐125连通。多个变容积组件121并排间隔设置或者以其他的形式排布。多个变容积组件121的推杆1212远离注射筒1211的一端相对固定,由动力组件122同步推动。在动力组件122的驱动下,多个推杆1212在各自的注射筒1211内沿靠近进出液口1213的方向匀速滑动,同时将驱动液体1214挤压至多个吐液枪头110内。由于多个细管123之间是并联关系,每个细管123内的驱动液体1214的流量相同,保证了多个吐液枪头110内的第一液体190以相同、恒定的流速排出吐液枪头110的出口端112。进而保证了所生成微液滴199的体积大小均一性。
为了提高微液滴199的生成效率,作为第三种可实现的方式,如图29所示,吐液枪头110、变容积组件121及三通换向阀124的数量相同且均是多个。每个吐液枪头110的入口端111通过单独的细管123分别与一个三通换向阀124的第一接口连通。每个变容积组件121的进出液口1213通过单独的细管123分别与一个三通换向阀124的第二接口连 通。每个三通换向阀124的第三接口分别与储液罐125连通。可选的,储液罐125可以是一个或者多个。每个吐液枪头110内的第一液体190可以相同也可以不同。多个变容积组件121并排间隔设置或者以其他的形式排布。多个变容积组件121的推杆1212远离注射筒1211的一端相对固定,由动力组件122同步推动。在动力组件122的驱动下,多个推杆1212在各自的注射筒1211内沿靠近进出液口1213的方向匀速滑动。能够同时生成多种不同种类的微液滴199。
为了提高微液滴199的生成效率,作为第四种可实现的方式,吐液枪头110、变容积组件121及三通换向阀124的数量相同且均是多个。每个吐液枪头110的入口端111通过单独的细管123分别与一个三通换向阀124的第一接口连通。每个变容积组件121的进出液口1213通过单独的细管123分别与一个三通换向阀124的第二接口连通。每个三通换向阀124的第三接口分别与储液罐125连通。可选的,储液罐125可以是一个或者多个。每个吐液枪头110内的第一液体190可以相同也可以不同。多个变容积组件121并排间隔设置或者以其他的形式排布。每个变容积组件121分别对应单独的动力组件122。在动力组件122的驱动下,多个推杆1212在各自的注射筒1211内沿靠近进出液口1213的方向匀速滑动。不仅能够同时生成多种不同种类的微液滴199,在保证每个吐液枪头110所生成微液滴199的体积大小均一的提前下,还能够分别控制每种液滴195的体积大小。便于对多个吐液枪头110的微液滴199生成状态进行独立控制。
传统的运动控制机构在使用过程中,无法精确控制吐液枪头的出口端与油相组合物之间的相对运动,所生成微液滴的体积大小均一性较差。
基于此,有必要针对使用吐液枪头注射/喷射法生成微液滴时,由于传统的运动控制机构无法精确控制吐液枪头的出口端与油相组合物之间的相对运动,所生成的微液滴体积大小均一性较差的问题,提供一种能够精确控制吐液枪头的出口端与油相组合物之间相对运动的运动控制机构。
在微液滴199的生成过程中,吐液枪头110的出口端112做包含瞬时加速的周期运动,不仅能够有效的生成微液滴199,且便于对所生成微液滴199的大小进行控制。吐液枪头110的出口端112做位移呈正弦变化的周期运动,不能能够有效的生成微液滴199,且所生成微液滴199具有良好的体积大小均一性。吐液枪头110的出口端112在运动控制机构130的驱动下做包含瞬时加速的周期运动或者位移呈正弦变化的周期运动。
如图30所示,本申请提供一种运动控制机构130,包括支撑架131、连接件132以及驱动元件。连接件132用于与吐液枪头110连接。驱动元件固定于支撑架131,驱动元件与连接件132传动连接。在驱动元件的驱动下,吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。本申请所提供的运动控制机构130,通过带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动以生成微液滴199,具有微液滴199生成效率高、提及均一性高的优点。本申请中的运动控制机构130还可以采用其他旋转驱动装置,例如摆动气缸、旋转电磁铁137等。
在本申请一实施例中,驱动元件包括振动电机133,优选的,振动电机133的类型是 振镜电机,振镜电机的输出轴与连接件132传动连接。振镜电机可以提供稳定且高速的往复摆动及往复直线动作,且摆幅和频率可以按照需求设定,极大提高了本申请运动控制机构130的适用范围。可选的,旋转电机还可以使音圈电机或者压电电机。进一步,振动电机133采用具有闭环控制振动角度或位置的电机,由闭环控制振动角度或位置的电机驱动吐液枪头110的输出端进行振动,从而精密的控制吐液枪头110的摆动轨迹,从而进一步减少环境和系统带来的扰动。
以下结合图31阐述闭环控制振动角度或位置的电机在本申请中的应用。闭环控制振动角度或位置的电机包括红外位置传感器、控制电路和信号处理电路等部件。在本实施例中,在运动控制机构130的旋转轴上安装红外位置传感器,通过红外位置传感器把其所获得的位置信号反馈到控制电路中,控制电路依据PID自动化控制原理分别对反馈的位置信号做了比例、积分、微分运算处理,并且结合位置前馈和速度环、电流环等的信号处理电路,实现了电机运动时的绝对位置精确控制。采用闭环控制振动角度或位置的电机可以避免其它振动电机133受到复杂的负载环境变化而引起振动位置的改变,其有利于工程上精确控制液滴195体积和生成速度。
在本申请一实施例中,连接件132包括接头1321。接头1321与振动电机133的输出轴传动连接。接头1321呈中空管状,接头1321的一端用于与吐液枪头110连接,接头1321的另一端用于与吐液枪头110的流体控制机构连接。吐液枪头110内储存有用于生成微液滴199的第一液体190,流体控制机构的作用是在微液滴199的生成过程中将吐液枪头110内的第一液体190按照设定的流速排出。在流体控制机构的控制下,储存在吐液枪头110内的第一液体190以恒定的流速排出,或者流速呈现出规律性变化,或者其他类别设定的流速。在本实施例中,吐液枪头110内的第一液体190在流体控制机构的控制下以恒定的流速从吐液枪头110的出口端112排出。具体的,流体控制机构的细管123与接头1321远离吐液枪头110的一端连接。接头1321能够同时起到连通吐液枪头110和流体控制机构以及带动吐液枪头110运动的作用。作为一种可实现的方式,接头1321与吐液枪头110连接后,接头1321与吐液枪头110同轴。
为了便于安装和拆卸吐液枪头110,接头1321靠近吐液枪头110的一端外缘呈倒圆台状,吐液枪头110套设于接头1321呈倒圆台状的一端。接头1321靠近吐液枪头110的一端外缘呈倒圆台状能够减小吐液枪头110安装和拆卸的阻力,同时便于牢固的安装吐液枪头110。进一步,连接件132包括连接轴1322,连接轴1322转动设置于支撑架131,连接轴1322与振动电机133传动连接,接头1321的数量是多个,多个接头1321间隔固定设置于连接轴1322。在一个连接轴1322上间隔安装多个接头1321,多个接头1321能够同时安装多个吐液枪头110,大大提高了微液滴199的生成效率。
可选的,连接轴1322转动设置于支撑架131包括连接轴1322的两端与支撑架131转动连接以及连接轴1322的其他位置与支撑架131转动连接。在本实施例中,连接轴1322的两端转动设置于支撑架131,连接轴1322的一端与振动电机133传动连接,多个接头1321固定设置于连接轴1322的两端之间。连接轴1322的两端转动设置于支撑件,有利于 增加整个转轴的转动稳定性。作为一种实现的方式,连接轴1322的两端通过转动轴承转动设置于支撑架131。在其他的实施例中,也可以在满足转动及传动的条件下,将连接轴1322的其他位置转动设置于支撑架131。
接头1321固定于连接轴1322时,接头1321的轴向与连接轴1322的轴向之间的夹角能够改变吐液枪头110的出口端112的运动轨迹及运动速度。作为一种可实现的方式,接头1321的轴向与连接轴1322的轴向相互垂直。接头1321的轴向与连接轴1322的轴向保持相互垂直,有利于吐液枪头110充分利用连接轴1322的转动实现自身的振动。进一步,多个接头1321等间距间隔设置在连接轴1322的两端之间。等间距间隔设置的吐液枪头110在第二液体699液面下振动过程中,均匀的扰动第二液体699,以保证各个吐液枪头110生成微液滴199的环境及条件相同。
本申请一实施例中,驱动元件包括压电陶瓷135和弹性件136,压电陶瓷135通电产生第一方向的变形时驱动连接件132的接头1321向第一方向运动,与连接件132连接的弹性件136产生弹性变形。压电陶瓷135通电产生与第一方向相反的变形时,弹性件136的弹性变形恢复同时带动连接件132的接头1321向与第一方向相反的方向运动。如此反复,连接件132带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的运动。如图32所示,具体的,通过压电方式实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。接头1321通过轴承转动设置于支撑架131,吐液枪头110套设在接头1321的一端,吐液枪头110能够以轴承的轴心为中点做轨迹为圆弧的运动。接头1321与支撑架131转动连接的位置具有对称的延伸板134,延伸板134的延伸方向与接头1321的延伸方向垂直。驱动元件包括压电陶瓷135和弹性件136,压电陶瓷135和弹性件136配合驱动连接件132。压电陶瓷135与弹性件136通过驱动延伸板134进而实现吐液枪头110的出口端112的快速振动。压电的方式具有结构简单、驱动性能稳定的优点。
在本申请一实施中,驱动元件包括电磁铁137、磁性件138和弹性件136,弹性件136的一端固定设置于支撑架131,连接件132固定设置于弹性件136的另一端,磁性件138与连接件132的接头1321固定连接。电磁铁137通电对磁性件138产生第一方向的力时,磁性件138及连接件132的接头1321向第一方向运动,同时弹性件136产生弹性变形。电磁铁137断电时,弹性件136带动连接件132的接头1321及磁性件138向与第一方向相反的方向运动。控制电磁铁137的通断电,磁性件138通过连接件132带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的运动。
具体的,如图33所示,通过电磁的方式实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112的运动轨迹接近平面圆弧的水平段。弹性件136的一端固定在支撑架131上,弹性件136的另一端与接头1321固定连接。吐液枪头110套设于接头1321的一端。驱动元件包括电磁铁137和磁性件138,磁性件138与连接件132固定连接,电磁铁137通过磁性件138驱动连接件132。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138 固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测磁性件138的运动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能。当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137断电。吐液枪头110在弹性件136的恢复力的作用下远离电磁铁137。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137通电。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能,如此循环。可根据具体工况调整电磁铁137的工作参数和弹性件136的弹性模量,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。作为一种可实现的方式,弹性件136包括弹性钢片及其他能够满足弹性要求的弹性件136。
如图34所示,在本申请一实施中,通过电磁的方式实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112的运动轨迹接近平面圆弧的竖直段。弹性件136的一端固定在支撑架131上,弹性件136的另一端与接头1321固定连接。吐液枪头110套设于接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测磁性件138的运动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能。当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137断电。吐液枪头110在弹性件136的恢复力的作用下远离电磁铁137。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137通电。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,同时弹性件136因发生弹性变形而蓄能,如此循环。可根据具体工况调整电磁铁137的工作参数和弹性件136的弹性模量,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。作为一种可实现的方式,弹性件136包括弹性钢片及其他能够满足弹性要求的弹性件136。
在本申请一实施例中,驱动元件包括电磁铁137和磁性件138,磁性件137与连接件132的接头1321固定连接,电磁铁137产生变化的磁场,磁性件138在变化的磁场中运动。磁性件137通过连接件132带动吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的运动。
进一步,如图35所示,使用电磁铁137实现吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。接头1321通过轴承转动设置于支撑架131,吐液枪头110套设在接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测接头1321的转动角度,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动, 当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137转换通电方向。吐液枪头110在电磁铁137的反向作用力的作用下远离电磁铁137。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137再次转换通电方向。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向运动,如此循环。可根据具体工况调整电磁铁137的工作参数,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。
上述实施例给出了振动电机133输出转动、吐液枪头110的出口端112做轨迹为圆弧、位移呈正弦变化或者速度呈方波变化的振动。在其他的实施例中,吐液枪头110的出口端112还可做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。
如图36所示,在本申请一实施例中,使用电磁铁137实现吐液枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112在水平面内做轨迹为直线的振动。接头1321通过直线轴承滑动设置于支撑架131,吐液枪头110套设在接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测接头1321的滑动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137转换通电方向。吐液枪头110在电磁铁137的反向作用力的作用下远离电磁铁137滑动。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137再次转换通电方向。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,如此循环。可根据具体工况调整电磁铁137的工作参数,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。
如图37所示,在本申请一实施例中,使用电磁铁137实现吐液枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。在本实施例中,吐液枪头110的出口端112在竖直面内做轨迹为直线的振动。接头1321通过直线轴承滑动设置于支撑架131,吐液枪头110套设在接头1321的一端。电磁铁137固定设置于支撑架131,能够被电磁铁137吸引的磁性件138固定设置于接头1321并与电磁铁137保持在工作距离范围内。位置传感器能够检测接头1321的滑动位置,通过计算可得出吐液枪头110的出口端112的位置。电磁铁137通电时,吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,当吐液枪头110的出口端112靠近电磁铁137运动到第一设定位置时,电磁铁137转换通电方向。吐液枪头110在电磁铁137的反向作用力的作用下远离电磁铁137滑动。当吐液枪头110的出口端112远离电磁铁137运动到第二设定位置时,电磁铁137再次转换通电方向。电磁铁137吸引磁性件138并带动吐液枪头110向靠近电磁铁137的方向滑动,如此循环。可根据具体工况调整电磁铁137的工作参数,以实现吐液枪头110的出口端112做位移呈正弦变化或者速度呈方波变化的振动。
振镜电机能够输出往复直线运动,在本申请其他的实施例中,通过振镜电机驱动吐液 枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。
振镜电机能够输出往复直线运动,在本申请其他的实施例中,通过振镜电机驱动吐液枪头110的出口端112做轨迹为直线、位移呈正弦变化或者速度呈方波变化的振动。
本申请提供的微液滴生成装置及生成方法在医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都有广泛应用。在一个具体的应用环境中,本申请提供的微液滴199的生成装置及生成方法应用在聚合酶链式反应(Polymerase Chain Reaction,PCR)中。
针对传统的流体驱动机构及流体驱动方法在驱动吐液枪头运动时因排出液体的流速不稳定、不可控导致的微液滴体积大小呈现出随机性的问题,提供一种能够保证吐液枪头按照设定流速排出液体的流体驱动机构及流体驱动方法。
如图38-43所示,本申请提供一种流体驱动机构120,用于在微液滴生成系统生成微液滴的过程中控制第一吐液枪头830的出口端排出第三液体820的流速及流量。本申请提供的流体驱动机构120包括壳体100、第一变容积组件200以及直线电机组件300。流体驱动机构120的壳体100同时还起到支撑的作用,第一变容积组件200是流体驱动过程的执行部分,直线电机组件300是流体驱动过程的驱动部分,第一变容积组件200以及直线电机组件300均安装在壳体100内。第一变容积组件200包括第一注射筒201及第一推杆202,第一注射筒201的外壁固定安装在壳体100的内壁,第一推杆202与第一注射筒201的内壁滑动配合,意即第一推杆202滑动安装在第一注射筒201内。第一注射筒201内能够储存第一驱动液体810,且第一注射筒201具有进出液口,进出液口能够与第一吐液枪头830的入口端连通,第一吐液枪头830内储存有第三液体820。直线电机组件300的输出端与第一推杆202传动连接,用于驱动第一推杆202沿第一注射筒201的延伸方向滑动。在微液滴的生成过程中,直线电机组件300的输出端驱动第一推杆202挤压储存在第一注射筒201内的第一驱动液体810,受挤压的第一驱动液体810进而挤压储存在第一吐液枪头830内的第三液体820,最终将第三液体820从第一吐液枪头830的出口端排出。第三液体820排出第一吐液枪头830的流速及流量取决于直线电机组件300中输出端的的运动状态。
上述流体驱动机构120,利用第一驱动液体810的不可压缩性保证了第一吐液枪头830的出口端在高频率振动时仍能按照设定的流速及流量将第三液体820从第一吐液枪头830的出口端排出。直线电机组件300不仅具有较高的运动精度,而且能够便捷的根据排液速度、排液压力等实际工况通过调整电流的大小保证第一推杆202按照设定速度滑动或滑动设定距离,进而实现第三液体820精确按照设定的流速及流量从第一吐液枪头830的出口端排出。本申请提供的流体驱动机构120能够精确控制所生成微液滴体积大小。
在本申请中的第一注射筒201可以是直筒状或弯折状,第一注射筒201上的进出液口可以开设在第一注射筒201的一端或者中间位置,本申请并不限制第一注射筒201、第一推杆202的具体结构以及两者之间的具体位置关系。为便于说明,如图41及图42所示,本申请以直筒状的第一注射筒201为例,且进出液口开设在第一注射筒201的一端,滑动 安装在第一注射筒201内的第一推杆202穿过第一注射筒201的另一端。在本申请其他的实施例中,第一变容积组件200还可以是任意能够实现变容积功能的结构形式。
在本申请一实施例中,如图38-43所示,直线电机组件300包括音圈电机301,音圈电机301的初级311固定安装在壳体100的内壁上,音圈电机301的次级312与第一推杆202在第一推杆202的滑动方向上固定连接。音圈电机301不仅具有响应快、高速度、高加速度的优点,而且结构简单、体积小、控制方便。音圈电机301的次级312能够通过控制电流的大小在滑动阻力增大或者减小时仍然保持设定的滑动速度,进而能够便捷的在第三液体820的排液压力变化时仍然保持设定的排液流速。音圈电机301还能够根据实际工况在设定的滑动位置、设定的滑动速度或者设定驱动压力值等模式下运行,进而通过第一变容积组件200精确实现第三液体820按照设定体积排出第一吐液枪头830、按照设定流速排出第一吐液枪头830或者按照设定排出压力排出第一吐液枪头830等。
进一步,如图39-40所示,音圈电机301设置于第一注射筒201的一侧,音圈电机301中次级312的滑动方向与第一推杆202在第一注射筒201内的滑动方向平行,音圈电机301的次级312与第一推杆202传动连接。将音圈电机301设置在第一注射筒201的一侧能够缩小流体驱动机构120沿第一注射筒201延伸方向的尺寸,音圈电机301中次级312的滑动方向与第一推杆202的滑动方向相同能够简化音圈电机301的次级312与第一推杆202之间的连接方式。作为一种可实现的方式,如图39-42所示,直线电机组件300还包括连接板302,连接板302的一端与音圈电机301的次级312固定连接,连接板302的另一端与第一推杆202位于第一注射筒201外的一端固定连接。可以理解的,连接板302活动设置在壳体100内,且连接板302与音圈电机301的次级312同步滑动,进而音圈电机301的次级312通过连接板302带动第一推杆202在第一注射筒201内同步滑动。在其他的实施例中,音圈电机301中次级312的滑动方向还可以与第一推杆202的滑动方向同轴设置、垂直设置或者其他可实现的布置方式。
更进一步的,如图42-47所示,音圈电机301的次级312包括骨架3121和线圈3122,线圈3122缠设于骨架3121,骨架3121与连接板302一体成型。一体成型的骨架3121和连接板302进一步消除了音圈电机301的次级312与第一推杆202之间的动作误差,保证了第一推杆202与音圈电机301的次级312同步运动的精度。在其他的实施例中,音圈电机301的次级312与连接板302之间的连接也可以是通过螺钉、卡接等连接件实现固定连接。本申请并不限制音圈电机301的次级312与连接板302之间的连接方式,只要能实现音圈电机301的次级312通过连接板302带动第一推杆202同步滑动即可。
在本申请一实施例中,如图40及图42所示,直线电机组件300还包括导向件303,导向件303包括导轨和滑块,导轨固定设置于壳体100内,导轨的延伸方向与第一推杆202的滑动方向平行,滑块滑动设置于导轨,且滑块与连接板302固定连接。导向件303在连接板302的滑动过程中起到导向的作用,以保证音圈电机301的次级312通过连接板302带动第一推杆202同步滑动过程的稳定,进而实现第三液体820按照设定流量或者流速排出第一吐液枪头830的精确控制。进一步,直线电机组件300还包括位移传感器,位移传 感器设置于壳体100内,位移传感器与音圈电机301电连接。位移传感器用于测量同步滑动的音圈次级312、连接板302以及第一推杆202的滑动位置、滑动速度等,位移传感器与音圈电机301电连接以实现音圈电机301的闭环控制。可选的,上述位移传感器包括光栅式、磁栅式、电阻式或差分变压器式(LVDT)位移传感器等类型。具体的,位移传感器为光电式直线位移传感器。在本申请其他的实施例中,音圈电机301自身为伺服电机,音圈电机301的闭环控制系统集成在音圈电机301的内部,进一步减小本申请提供的流体驱动机构120的体积。
在本申请一实施例中,如图42-45所示,音圈电机301包括初级311和次级312。初级311包括第一对磁体3111和第二对磁体3112,第一对磁体3111和第二对磁体3112沿次级312的滑动方向顺次设置于壳体100内,第一对磁体3111中的两块磁体相异的磁极相对设置,第二对磁体3112中的两块磁体相异的磁极相对设置,第一对磁体3111之间的磁感线方向与第二对磁体3112之间的磁感线方向相反。次级312包括骨架3121和线圈3122,线圈3122缠绕于骨架3121,线圈3122具有通电后电流方向相反的第一段3125和第二段3126,次级312滑动时,线圈3122的第一段3125在第一对磁体3111之间滑动,线圈3122的第二段3126在第二对磁体3112之间滑动。两对磁体以及线圈3122,能够同时在线圈3122的第一段3125和第二段3126产生相同方向、相同大小的感应力,便于音圈电机301中次级312的快速动作,提高了音圈电机301的灵敏性。
作为一种可实现的方式,如图43-45所示,第一对磁体3111和第二对磁体3112均为矩形板状的磁体,第一对磁体3111和第二对磁体3112均固定安装在壳体100内壁。沿音圈电机301的次级312滑动方向,第一对磁体3111的一端与第二对磁体3112的一端抵接安装。骨架3121呈中空的圆角矩形,骨架3121的一端面上开设有圆角矩形的环形槽,同样呈中空的圆角矩形状的线圈3122固定安装在骨架3121的环形槽内。线圈3122内通过电流时,第一段3125和第二段3126同时产生方向相同、大小相同的感应力,由于第一对磁体3111和第二对磁体3112均为固定,通电后的线圈3122向感应力的方向滑动,与线圈3122固定的骨架3121随线圈3122同步运动。进而音圈电机301的次级312通过连接板302带动第一推杆202同步运动。当位移传感器检测到与第一推杆202同步滑动的连接板302滑动至设定位置时,位移传感器发出信号,音圈电机301断电,音圈电机301的次级312停止滑动。或者,当位移传感器检测到与第一推杆202同步滑动的连接板302滑动速度发生微小波动时,位移传感器发出信号,通入音圈电机301的电流发生相应调整,以保证音圈电机301的次级312通过连接板302带动第一推杆202以设定速度滑动,进而实现第三液体820按照设定的流速排出第一吐液枪头830,生成大小均一的微液滴。在本申请其他的实施例中,音圈电机301还可以是其他类型的结构。
进一步,如图43-44所示,壳体100包括相对的第一安装端面141和第二安装端面143,第一安装端面141和第二安装端面143上分别开设有第一安装孔142和第二安装孔144,第一安装孔142和第二安装孔144相对设置。音圈电机301的初级311还包括第一安装板3114和第二安装板3115,第一安装板3114和第二安装板3115分别可拆卸的固定于第一安 装孔142和第二安装孔144。第一对磁体3111中的两块磁体分别安装在第一安装板3114和第二安装板3115沿次级312滑动方向的一端,第二对磁体3112中的两块磁体分别安装在第一安装板3114和第二安装板3115沿次级312滑动方向的另一端。音圈电机301能够从壳体100上整体拆下或者音圈电机301能够装配完毕后整体安装到壳体100上,保证了音圈电机301的装配精度并提高了音圈电机301的拆装便捷性。作为一种可实现的方式,第一安装孔142及第二安装孔144均为圆角矩形孔,对应的,第一安装板3114及第二安装板3115均为圆角矩形板。第一安装板3114及第二安装板3115能够通过螺钉分别固定在第一安装孔142及第二安装孔144处。第一安装板3114及第二安装板3115相对的两侧面均具有安装第一对磁体3111及第二对磁体3112的矩形槽,第一对磁体3111及第二对磁体3112安装在第一对安装板及第二对安装板上的矩形槽内。
更进一步的,壳体100呈中空的长方体状,流体驱动机构120的第一变容积组件200以及直线电机组件300均安装在壳体100内部。壳体100的一端面开设有连接孔,多个壳体100能够通过连接孔并列安装于基体。多个流体驱动机构120并列安装后能够同时控制多个微液滴的生成过程,大幅提升微液滴的生成效率。作为一种可实现的方式,如图38、图39及43所示,在流体驱动机构120的工作过程中,壳体100沿空间竖直方向具有相对的顶端面145和底端面140,壳体100内第一注射筒201的延伸方向以及音圈电机301中次级312的滑动方向均为空间竖直方向。壳体100沿第一注射筒201指向音圈电机301的方向具有相对的两个侧端面150,以及壳体100沿第一安装板3114指向第二安装板3115的方向具有相对的第一安装端面141和第二安装端面143。当多个流体安装机构并列安装时,多个壳体100的第一安装端面141和第二安装端面143之间顺次贴合。壳体100上的连接孔开设在壳体100的同一侧端面150上或者壳体100上的连接孔分别开设在两个侧端面150上。壳体100均通过与连接孔螺纹连接的螺钉固定安装在基体上。在一个具体的实施例中,壳体100沿并列延伸方向的尺寸为18mm,意即壳体100上相对的第一安装端面141和第二安装端面143之间的距离为18mm。多个流体驱动机构120并列安装后能够在间距为18mm的多个试剂槽中同时控制第三液体820按照设定的流速及流量排出第一吐液枪头830,进而高效生成微液滴。在本申请的其他实施例中,并列安装后的多个流体驱动机构120之间距离还可为其他尺寸,只要能够与多个试剂槽之间的间距相匹配即可。
基于上述技术方案中的流体驱动机构120,本申请还提供一种流体驱动方法,流体驱动方法包括以下步骤:直线电机组件300驱动第一推杆202挤压储存在第一注射筒201内的第一驱动液体810,第一驱动液体810挤压储存在第一吐液枪头830内的第三液体820,第三液体820从第一吐液枪头830的出口端排出。上述流体驱动方法,利用第一驱动液体810的不可压缩性保证了第一吐液枪头830的出口端在高频率振动时仍能按照设定的流速及流量将第三液体820从第一吐液枪头830的出口端排出。可以理解的,第一驱动液体810与第三液体820不互溶,两者之间不存在物质交换。通常情况下,第一驱动液体810的密度小于第三液体820的密度,可选的,第一驱动液体810可以是矿物油或者烷烃等。作为一种可实现的方式,排出第一吐液枪头830的第三液体820落入盛有第一驱动液体810的 盛放容器中,落入盛放容器中的第三液体820在第一驱动液体810中下落。直线电机组件300不仅具有较高的运动精度,而且能够便捷的根据排液速度、排液压力等实际工况通过调整电流的大小保证第一推杆202按照设定速度滑动或滑动设定距离,进而实现第三液体820精确按照设定的流速及流量从第一吐液枪头830的出口端排出。本申请提供的流体驱动方法能够精确控制所生成微液滴体积大小。
在本申请一实施例中,如图40-41及图48-49所示,流体驱动机构120还包括换向阀400,换向阀400包括换向阀第一接口411、换向阀第二接口412及换向阀第三接口413,换向阀第一接口411、换向阀第二接口412及换向阀第三接口413能够分别与第一吐液枪头830的入口端、进出液口及储存有第一驱动液体810的储液罐连通。换向阀400动作时能够连通换向阀第一接口411和换向阀第二接口412,或者换向阀400动作时能够连通换向阀第三接口413和换向阀第二接口412。换向阀400至少可以控制流体驱动机构120实现以下两种模式:一、使第一变容积组件200的进出液口与第一吐液枪头830的入口端相连通,在直线电机组件300的带动下,第一变容积组件200向第一吐液枪头830提供液体驱动力,用于将第一吐液枪头830内的第三液体820从第一吐液枪头830的出口端排出,或者将第三液体820从第一吐液枪头830的出口端抽吸进入第一吐液枪头830内。二、使第一变容积组件200的进出液口与储液罐相连通,在直线电机组件300的带动下,第一变容积组件200将储液罐中的第一驱动液体810抽吸进入第一变容积组件200的第一注射筒201内,或者是将第一变容积组件200内的驱动液推入储液罐内。
进一步,如图48-49所示,换向阀400包括阀体410和连通块420,阀体410包括换向阀第一接口411、换向阀第二接口412及换向阀第三接口413。连通块420内开设有相互独立的第一流道421、第二流道422和第三流道423,第一流道421、第二流道422以及第三流道423均贯通连通块420。第一流道421、第二流道422以及第三流道423的一端分别与换向阀第一接口411、换向阀第二接口412及换向阀第三接口413连接,第一流道421、第二流道422以及第三流道423的另一端分别与第一吐液枪头830的入口端、进出液口及储存有第一驱动液体810的储液罐连接。开设有若干流道的连通块420具有结构简单、连通稳定的优点。更进一步的,第一流道421、第二流道422以及第三流道423内表面分别抛光且圆角过渡。第一流道421、第二流道422以及第三流道423内表面均无死角,能够有效避免气泡残留和吸附。
基于上述技术方案中的流体驱动机构120,如图50所示,本申请还提供另一种流体驱动方法,包括以下步骤:(1)换向阀400使第一注射筒201的进出液口与储液罐连通,在直线电机组件300的带动下,第一推杆202在第一注射筒201内滑动改变第一注射筒201的容积,以将储液罐内的第一驱动液体810吸入第一注射筒201内;(2)换向阀400使第一注射筒201的进出液口与第一吐液枪头830的入口端连通,在直线电机组件300的带动下,第一推杆202在第一注射筒201内滑动改变第一注射筒201的容积,以排出第一注射筒201内以及第一吐液枪头830内的气体;(3)第一吐液枪头830的出口端进入第三液体820中,并维持换向阀400使第一注射筒201的进出液口与第一吐液枪头830的入口端连 通,在直线电机组件300的带动下,第一推杆202在第一注射筒201内滑动改变第一注射筒201的容积,以将第三液体820吸进第一吐液枪头830内;(4)换向阀400使第一注射筒201的进出液口与第一吐液枪头830的入口端连通,在直线电机组件300的带动下,第一推杆202在第一注射筒201内滑动改变第一注射筒201的容积,以将储存在第一吐液枪头830内的第三液体820以设定的流速排出第一吐液枪头830的出口端。
进一步,在上述流体驱动方法中,直线电机组件300的匀速动作进而带动第一推杆202在第一注射筒201内匀速滑动,最终实现第一驱动液体810或第三液体820以均匀的流速吸进第一注射筒201或从第一注射筒201排出,以保证整个微液滴生成过程的稳定性及所生成微液滴体积大小的均一性。
作为一种可实现的方式,如图38-43所示,壳体100呈中空的长方体状,换向阀400固定安装在壳体100内靠近底端面140和一侧端面150的位置,第一变容积组件200安装在换向阀400中连通块420的上方。音圈电机301安装在第一变容积组件200的侧面,音圈电机301的次级312和第一变容积组件200之间通过连接板302固定连接,导向件303在壳体100内安装在音圈电机301和第一变容积组件200的第一注射筒201之间。流体驱动机构120还包括电源接口500,电源接口500安装在壳体100顶端面145上,电源接口500与音圈电机301、换向阀400以及位移传感器均电连接,电源接口500还能够与外置电源电连接以向流体驱动机构120内的元件供电。
上述各个实施例都可以在医学临床检验、纳米材料制备、食品及环境检测、生化分析等应用领域都有广泛应用。在一个具体的应用环境中,本申请提供的微液滴199的生成装置及生成方法应用在聚合酶链式反应(Polymerase Chain Reaction,PCR)中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
最后,还需要说明的是,本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本文中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特 征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (82)

  1. 一种吐液枪头,包括具有中空腔体的针梗(113)及设置于所述针梗(113)一端的出口端(112);所述吐液枪头的出口端(112)端面的法线与所述针梗(113)的延伸方向之间的夹角小于等于90°。
  2. 根据权利要求1所述的吐液枪头,其特征在于,所述吐液枪头呈直管状,所述吐液枪头的出口端(112)为斜切结构。
  3. 根据权利要求1所述的吐液枪头,其特征在于,所述针梗(113)靠近所述吐液枪头的出口端(112)的部分包括弯折结构。
  4. 根据权利要求3所述的吐液枪头,其特征在于,所述针梗(113)靠近所述吐液枪头的出口端(112)的弯折结构具有过渡圆弧段。
  5. 根据权利要求1-4任一项所述的吐液枪头,其特征在于,还包括针栓(114),所述针栓(114)具有沿所述针栓(114)的延伸方向贯通所述针栓(114)的储液槽(115);所述储液槽(115)的一端与所述针梗(113)远离所述吐液枪头的出口端(112)的一端连通,所述针栓(114)远离所述针梗(113)的一端是所述吐液枪头的入口端(111)。
  6. 根据权利要求5所述的吐液枪头,其特征在于,所述针栓(114)远离所述针梗(113)的一端内表面开设有卡槽(116)。
  7. 根据权利要求1-4任一项所述的吐液枪头,其特征在于,所述吐液枪头的出口端(112)端面的法线与所述针梗(113)的延伸方向之间的夹角介于15°-75°之间。
  8. 根据权利要求7所述的吐液枪头,其特征在于,所述吐液枪头的出口端(112)端面的法线与所述针梗(113)的延伸方向之间的夹角介于30°-60°之间。
  9. 根据权利要求8所述的吐液枪头,其特征在于,所述吐液枪头的出口端(112)端面的法线与所述针梗(113)的延伸方向之间的夹角为45°。
  10. 一种微液滴生成装置,其特征在于,包括流体驱动机构(120)、运动控制机构(130)及权利要求1-9任一项所述的吐液枪头;所述吐液枪头的内部储存有第一液体,所述吐液枪头具有出口端(112)及入口端(111);所述流体驱动机构(120)与所述吐液枪头的入口端(111)连接,用于将储存在所述吐液枪头内部的第一液体从所述吐液枪头的出口端(112)排出;所述运动控制机构用于控制所述吐液枪头的出口端(112)在第二液体的液面下产生设定轨迹或设定速度或设定加速度的运动,以使排出所述吐液枪头的出口端(112)的第一液体克服表面张力及附着力在第二液体内形成微液滴。
  11. 一种微液滴生成方法,其特征在于,采用权利要求1-9任一项所述的吐液枪头,所述吐液枪头内储存有第一液体,提供储存有第二液体的微液滴容器(60);控制第一液体从所述吐液枪头的出口端(112)匀速排出;控制所述吐液枪头的出口端(112)在第二液体的液面下沿所述针梗(113)的延伸方向做速度大小呈方波变化的周期运动;所述吐液枪头的出口端(112)周期运动的前半周期与后半周期内,所述吐液枪头的出口端(112)的速度大小相同,方向相反;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体。
  12. 一种微液滴生成方法,其特征在于,采用权利要求1-9任一项所述的吐液枪头,所述吐液枪头内储存有第一液体,提供储存有第二液体的微液滴容器(60);控制第一液体从所述吐液枪头的出口端(112)匀速排出;控制所述吐液枪头的的出口端(112)在第二液体内部沿所述针梗(113)的延伸方向做位移呈正弦变化的周期运动;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体。
  13. 一种运动控制机构,包括:
    支撑架(131);
    连接件(132),用于与吐液枪头(110)连接;
    驱动元件,固定于所述支撑架(131),所述驱动元件与所述连接件(132)传动连接;
    在所述驱动元件的驱动下,所述吐液枪头(110)的出口端做位移呈正弦变化或者速度呈方波变化的运动。
  14. 根据权利要求13所述的运动控制机构,其特征在于,所述驱动元件包括振动电机(133),所述振动电机(133)的输出轴与所述连接件(132)传动连接。
  15. 根据权利要求13所述的运动控制机构,其特征在于,所述连接件(132)包括接头(1321),所述接头(1321)与所述振动电机(133)的输出轴传动连接,所述接头(1321)呈中空管状,所述接头(1321)的一端用于与所述吐液枪头(110)连接,所述接头(1321)的另一端用于与所述吐液枪头(110)的流体控制机构连接。
  16. 根据权利要求15所述的运动控制机构,其特征在于,所述接头(1321)靠近所述吐液枪头(110)的一端外缘呈倒圆台状,所述吐液枪头(110)套设于所述接头(1321)呈倒圆台状的一端。
  17. 根据权利要求15所述的运动控制机构,其特征在于,所述连接件(132)包括连接轴(1322),所述连接轴(1322)转动设置于所述支撑架(131),所述连接轴(1322)与所述振动电机(133)传动连接,所述接头(1321)的数量是多个,多个所述接头(1321)间隔固定设置于所述连接轴(1322)。
  18. 根据权利要求17所述的运动控制机构,其特征在于,所述连接轴(1322)的两端转动设置于所述支撑架(131),所述连接轴(1322)的一端与所述振动电机(133)传动连接,多个所述接头(1321)固定设置于所述连接轴(1322)的两端之间。
  19. 根据权利要求18所述的运动控制机构,其特征在于,所述接头(1321)的轴向与所述连接轴(1322)的轴向相互垂直。
  20. 根据权利要求18所述的运动控制机构,其特征在于,多个所述接头(1321)等间距间隔设置在所述连接轴(1322)的两端之间。
  21. 根据权利要求13所述的运动控制机构,其特征在于,所述驱动元件包括压电陶瓷(135)和弹性件(136),所述压电陶瓷(135)通电产生第一方向的变形时驱动所述连接件(132)向第一方向运动,与所述连接件(132)连接的所述弹性件(136)产生弹性变形;所述压电陶瓷(135)通电产生与第一方向相反的变形时,所述弹性件(136)的弹性变形恢复同时带动所述连接件(132)向与第一方向相反的方向运动;如此反复,所述 连接件(132)带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
  22. 根据权利要求13所述的运动控制机构,其特征在于,所述驱动元件包括电磁铁(137)和磁性件(138),所述磁性件(138)与所述连接件(132)固定连接,所述电磁铁(137)产生变化的磁场,所述磁性件(138)在变化的磁场中运动;所述磁性件(138)通过所述连接件(132)带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
  23. 根据权利要求22所述的运动控制机构,其特征在于,所述驱动元件包括还包括弹性件(136),所述弹性件(136)的一端固定设置于所述支撑架(131),所述连接件(132)固定设置于所述弹性件(136)的另一端,所述磁性件(138)与所述连接件(132)固定连接;所述电磁铁(137)通电对所述磁性件(138)产生第一方向的力时,所述磁性件(138)及所述连接件(132)向第一方向运动,同时所述弹性件(136)产生弹性变形;所述电磁铁(137)断电时,所述弹性件(136)带动所述连接件(132)及所述磁性件(138)向与第一方向相反的方向运动;控制所述电磁铁(137)的通断电,所述磁性件(138)通过所述连接件(132)带动吐液枪头的出口端做位移呈正弦变化或者速度呈方波变化的运动。
  24. 一种流体驱动机构,包括:
    变容积组件(121),包括注射筒(1211)及推杆(1212),所述推杆(1212)与所述注射筒(1211)的内壁滑动配合,所述注射筒(1211)内能够储存驱动液体(1214),所述注射筒(1211)具有进出液口(1213),所述进出液口(1213)用于连通储存有第一液体(190)的吐液枪头(110)的入口端;
    动力组件(122),与所述推杆(1212)传动连接,用于驱动所述推杆(1212)沿所述注射筒(1211)的延伸方向滑动;
    在微液滴的生成过程中,所述动力组件(122)驱动所述推杆(1212)挤压储存在所述注射筒(1211)内的所述驱动液体(1214),所述驱动液体(1214)挤压储存在所述吐液枪头(110)内的所述第一液体(190),进而将所述第一液体(190)从所述吐液枪头(110)的出口端排出。
  25. 根据权利要求24所述的流体驱动机构,其特征在于,所述注射筒(1211)的所述进出液口(1213)与所述吐液枪头(110)的入口端之间通过细管连通。
  26. 根据权利要求24所述的流体驱动机构,其特征在于,所述动力组件(122)能够驱动所述推杆(1212)在所述注射筒(1211)内匀速滑动。
  27. 根据权利要求24所述的流体驱动机构,其特征在于,还包括:
    储液罐(125),用于储存所述驱动液体(1214);
    三通换向阀(124),具有第一接口、第二接口及第三接口,所述吐液枪头(110)的入口端(111)、所述进出液口(1213)及所述储液罐(125)分别与所述第一接口、所述第二接口及所述第三接口连通。
  28. 根据权利要求24所述的流体驱动机构,其特征在于,所述动力组件(122)包括驱动电机(1221)、丝杆(1222)及滑块(1223),所述驱动电机(1221)的输出轴与所述 丝杆(1222)传动连接,所述丝杆(1222)与所述滑块(1223)螺纹连接,所述滑块(1223)与所述推杆(1212)固定连接。
  29. 根据权利要求28所述的流体驱动机构,其特征在于,所述驱动电机(1221)为伺服电机。
  30. 根据权利要求24所述的流体驱动机构,其特征在于,所述变容积组件(121)的数量为多个,多个所述变容积组件(121)的所述推杆(1212)均与所述动力组件(122)传动连接。
  31. 根据权利要求24所述的流体驱动机构,其特征在于,所述变容积组件(121)及所述动力组件(122)均为多个且数量相同,多个所述变容积组件(121)并排间隔设置,每个所述变容积组件(121)由单独的所述动力组件(122)驱动。
  32. 一种流体驱动方法,其特征在于,采用权利要求24-31任一项所述的流体驱动机构,所述流体驱动方法包括:所述动力组件(122)驱动所述推杆(1212)挤压储存在所述注射筒(1211)内的所述驱动液体(1214),所述驱动液体(1214)挤压储存在所述吐液枪头(110)内的所述第一液体(190),所述第一液体(190)从所述吐液枪头(110)的出口端(112)排出。
  33. 一种流体驱动方法,其特征在于,采用权利要求27所述的流体驱动机构,所述流体驱动方法包括:
    所述三通换向阀(124)使所述变容积组件(121)的所述进出液口(1213)与所述储液罐(125)连通,在所述动力组件(122)的带动下,所述推杆(1212)在所述注射筒(1211)内滑动改变所述注射筒(1211)的容积,以将所述储液罐(125)内的所述驱动液体(1214)吸入所述注射筒(1211)内;
    所述三通换向阀(124)使所述变容积组件(121)的所述进出液口(1213)与所述吐液枪头(110)的入口端连通,在所述动力组件(122)的带动下,所述推杆(1212)在所述注射筒(1211)内滑动改变所述注射筒(1211)的容积,以排出所述注射筒(1211)内以及所述吐液枪头(110)内的气体;
    所述吐液枪头(110)的出口端进入所述第一液体(190)中,并维持所述三通换向阀(124)使所述变容积组件(121)的所述进出液口(1213)与所述吐液枪头(110)的入口端连通,在所述动力组件(122)的带动下,所述推杆(1212)在所述注射筒(1211)内滑动改变所述注射筒(1211)的容积,以将所述第一液体(190)吸进所述吐液枪头(110)内;
    所述三通换向阀(124)使所述变容积组件(121)的所述进出液口(1213)与所述吐液枪头(110)的入口端(111)连通,在所述动力组件(122)的带动下,所述推杆(1212)在所述注射筒(1211)内滑动改变所述注射筒(1211)的容积,以将储存在所述吐液枪头(110)内的所述第一液体(190)以均匀的流速排出所述吐液枪头(110)的出口端(112)。
  34. 一种微液滴生成方法,包括以下步骤:
    S201,提供具有出口端的吐液枪头,所述吐液枪头内储存有第一液体;提供储存有第 二液体的微液滴容器,所述微液滴容器具有开口;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体;
    S202,所述吐液枪头的出口端由所述微液滴容器的开口插入第二液体的液面下;
    S203,所述吐液枪头的出口端在第二液体的液面下做包含瞬时加速的运动,同时第一液体由所述吐液枪头的出口端排出,排出所述吐液枪头的出口端的第一液体形成附着在所述吐液枪头的出口端的液滴,液滴在所述吐液枪头的出口端的瞬时加速运动过程中脱离所述吐液枪头的出口端在第二液体的液面下形成微液滴。
  35. 根据权利要求34所述的微液滴生成方法,其特征在于,所述步骤S203中,所述吐液枪头的出口端在第二液体的液面下做包含瞬时加速的周期运动。
  36. 根据权利要求35所述的微液滴生成方法,其特征在于,所述步骤S203中,所述吐液枪头的出口端在第二液体液面下的周期运动过程中,所述吐液枪头的出口端的速度大小呈矩形波变化。
  37. 根据权利要求36所述的微液滴生成方法,其特征在于,所述吐液枪头的出口端的速度大小呈方波变化。
  38. 根据权利要求37所述的微液滴生成方法,其特征在于,所述步骤S203中,所述吐液枪头的出口端周期运动的前半周期与后半周期内,所述吐液枪头的出口端的速度大小相同,方向相反。
  39. 根据权利要求35所述的微液滴生成方法,其特征在于,所述步骤S203中,所述吐液枪头的出口端在第二液体液面下的运动轨迹包括直线段、圆弧段、多边形多种轨迹中的一种或多种的组合。
  40. 根据权利要求35所述的微液滴生成方法,其特征在于,所述步骤S203中,所述吐液枪头的出口端在第二液体液面下周期运动的频率介于0.1赫兹至200赫兹之间。
  41. 根据权利要求34所述的微液滴生成方法,其特征在于,所述步骤S203中,所述吐液枪头的出口端在第二液体液面下的运动方向与所述吐液枪头的延伸方向垂直或平行或呈任意角度。
  42. 根据权利要求34-41任一项所述的微液滴生成方法,其特征在于,所述步骤S203中,第一液体由所述吐液枪头的出口端连续排出。
  43. 根据权利要求42所述的微液滴生成方法,其特征在于,所述步骤S203中,第一液体由所述吐液枪头的出口端以恒定的流速排出。
  44. 一种微液滴生成方法,包括以下步骤:
    S211,提供具有出口端的吐液枪头,所述吐液枪头内储存有第一液体;提供储存有第二液体的微液滴容器,所述微液滴容器具有开口;第一液体与第二液体为任意互不相溶的两种液体或具有界面反应的两种液体;
    S212,所述吐液枪头的出口端由所述微液滴容器的开口插入第二液体的液面下;
    S213,所述吐液枪头的出口端在第二液体液面下做速度大小呈周期变化的运动,在速度大小变化的前半周期与后半周期内,所述吐液枪头的出口端的速度大小均单调变化,同 时第一液体由所述吐液枪头的出口端排出,排出所述吐液枪头的出口端的第一液体形成附着在所述吐液枪头的出口端的液滴,液滴在所述吐液枪头的出口端的运动过程中脱离所述吐液枪头的出口端在第二液体液面下形成微液滴。
  45. 根据权利要求44所述的微液滴生成方法,其特征在于,在所述步骤S213中,在一个速度大小变化周期内,所述吐液枪头的出口端的速度大小以中间时刻点为中点呈中心对称。
  46. 根据权利要求45所述的微液滴生成方法,其特征在于,在所述步骤S213中,所述吐液枪头的出口端在第二液体液面下的加速度及运动轨迹均呈周期性变化。
  47. 根据权利要求46所述的微液滴生成方法,其特征在于,在所述步骤S213中,所述吐液枪头的出口端在第二液体液面下的速度大小呈余弦曲线变化。
  48. 根据权利要求47所述的微液滴生成方法,其特征在于,在所述吐液枪头的出口端速度变化的前半周期中加速阶段和后半周期中加速阶段,分别有一个液滴脱离所述吐液枪头的出口端形成微液滴。
  49. 根据权利要求47所述的微液滴生成方法,其特征在于,在所述步骤S213中,所述吐液枪头的出口端在第二液体液面下的运动轨迹包括直线段、圆弧段、多边形多种轨迹中的一种或多种的组合。
  50. 根据权利要求46所述的微液滴生成方法,其特征在于,在所述步骤S213中,所述吐液枪头的出口端在第二液体液面下周期运动的频率介于0.1赫兹至200赫兹之间。
  51. 根据权利要求44所述的微液滴生成方法,其特征在于,在所述步骤S213中,速度大小变化的一个周期内,所述吐液枪头的出口端在前半周期与后半周期均是匀变速运动。
  52. 根据权利要求51所述的微液滴生成方法,其特征在于,在所述步骤S213中,所述吐液枪头的出口端在前半周期与后半周期的加速度大小相等。
  53. 根据权利要求44-52任一项所述的微液滴生成方法,其特征在于,所述步骤S213中,第一液体由所述吐液枪头的出口端连续排出。
  54. 根据权利要求53所述的微液滴生成方法,其特征在于,所述步骤S213中,第一液体由所述吐液枪头的出口端以恒定的流速排出。
  55. 一种吐液枪头表面处理方法,用于对吐液枪头进行表面处理,包括以下步骤:
    S260,对所述吐液枪头进行硅烷化处理;
    S270,使用焦碳酸二乙酯水溶液处理所述吐液枪头;
    S280,烘干所述吐液枪头。
  56. 根据权利要求55所述的吐液枪头表面处理方法,其特征在于,在所述步骤S260前还包括步骤S240,预处理所述吐液枪头;所述步骤S240中,所述预处理包括对所述吐液枪头进行脱脂、去污或清洗操作中的一种或几种。
  57. 根据权利要求56所述的吐液枪头表面处理方法,其特征在于,所述步骤S240中,使用超声波振动对吐液枪头表面进行辅助脱脂、辅助去污或辅助清洗。
  58. 根据权利要求56所述的吐液枪头表面处理方法,其特征在于,所述吐液枪头是不锈钢材质,所述步骤S240中,使用不锈钢清洗剂清洗所述吐液枪头。
  59. 根据权利要求56所述的吐液枪头表面处理方法,其特征在于,所述吐液枪头是不锈钢材质,所述步骤S240之后且在所述步骤S260之前还包括步骤S250,电解抛光所述吐液枪头。
  60. 根据权利要求55所述的吐液枪头表面处理方法,其特征在于,所述步骤S260依次包括:
    S261,使用去离子水清洗或浸泡所述吐液枪头;
    S262,使用硅烷化试剂处理所述吐液枪头;
    S263,使用去离子水清洗或浸泡所述吐液枪头。
  61. 根据权利要求60所述的吐液枪头表面处理方法,其特征在于,所述步骤S262中,所述硅烷化试剂包括四氢化硅和氢化磷的混合气体。
  62. 根据权利要求61所述的吐液枪头表面处理方法,其特征在于,所述混合气体中所述四氢化硅的体积百分比为95.0%-99.9%,所述混合气体中所述氢化磷的体积百分比为0.1%-5.0%。
  63. 根据权利要求55所述的吐液枪头表面处理方法,其特征在于,所述步骤S270包括:
    S271,使用体积分数为0.5%-1.5%的所述焦碳酸二乙酯水溶液浸泡所述吐液枪头10min-20min;
    S272,对所述吐液枪头进行高压灭菌。
  64. 根据权利要求63所述的吐液枪头表面处理方法,其特征在于,所述步骤S271中,使用体积分数为1%的所述焦碳酸二乙酯水溶液浸泡所述吐液枪头15min。
  65. 根据权利要求55所述的吐液枪头表面处理方法,其特征在于,所述步骤S280中,烘干所述吐液枪头时使用氮气做保护气体。
  66. 根据权利要求55所述的吐液枪头表面处理方法,其特征在于,所述吐液枪头为石英毛细管、玻璃管及双纤毛细管中的一种。
  67. 根据权利要求55所述的吐液枪头表面处理方法,其特征在于,所述吐液枪头的一端为出口端,所述吐液枪头表面处理方法用于对所述吐液枪头的出口端及外侧壁进行表面处理。
  68. 一种流体驱动机构,包括:
    壳体(100);
    第一变容积组件(200),设置于所述壳体(100)内,所述第一变容积组件(200)包括第一注射筒(201)及第一推杆(202),所述第一推杆(202)与所述第一注射筒(201)的内壁滑动配合,所述第一注射筒(201)内能够储存第一驱动液体(810),所述第一注射筒(201)具有进出液口,所述进出液口用于连通储存有第三液体(820)的第一吐液枪头(830)的入口端;
    直线电机组件(300),设置于所述壳体(100)内,所述直线电机组件(300)的输出端与所述第一推杆(202)传动连接,用于驱动所述第一推杆(202)沿所述第一注射筒(201)的延伸方向滑动。
  69. 根据权利要求68所述的流体驱动机构,其特征在于,所述直线电机组件(300)包括音圈电机(301),所述音圈电机(301)设置于所述第一注射筒(201)的一侧,所述音圈电机(301)中次级的滑动方向与所述第一推杆(202)在所述第一注射筒(201)内的滑动方向平行,所述音圈电机(301)的次级与所述第一推杆(202)传动连接。
  70. 根据权利要求69所述的流体驱动机构,其特征在于,所述直线电机组件(300)还包括连接板(302),所述连接板(302)的一端与所述音圈电机(301)的次级固定连接,所述连接板(302)的另一端与所述第一推杆(202)位于所述第一注射筒(201)外的一端固定连接。
  71. 根据权利要求70所述的流体驱动机构,其特征在于,所述直线电机组件(300)还包括导向件(303),所述导向件(303)包括导轨和滑块,所述导轨固定设置于所述壳体(100)内,所述导轨的延伸方向与所述第一推杆(202)的滑动方向平行,所述滑块滑动设置于所述导轨,且所述滑块与所述连接板(302)固定连接。
  72. 根据权利要求70所述的流体驱动机构,其特征在于,所述音圈电机(301)的所述次级(312)包括骨架(3121)和线圈(3122),所述线圈(3122)缠设于所述骨架(3121),所述骨架(3121)与所述连接板(302)一体成型。
  73. 根据权利要求69所述的流体驱动机构,其特征在于,所述音圈电机(301)包括初级(311)和次级(312);所述初级(311)包括第一对磁体(3111)和第二对磁体(3112),所述第一对磁体(3111)和所述第二对磁体(3112)沿所述次级(312)的滑动方向顺次设置于所述壳体(100)内,所述第一对磁体(3111)中的两块磁体相异的磁极相对设置,所述第二对磁体(3112)中的两块磁体相异的磁极相对设置,所述第一对磁体(3111)之间的磁感线方向与所述第二对磁体(3112)之间的磁感线方向相反;所述次级(312)包括骨架(3121)和线圈(3122),所述线圈(3122)缠绕于所述骨架(3121),所述线圈(3122)具有通电后电流方向相反的第一段(3125)和第二段(3126),所述次级(312)滑动时,所述线圈(3122)的所述第一段(3125)在所述第一对磁体(3111)之间滑动,所述线圈(3122)的所述第二段(3126)在所述第二对磁体(3112)之间滑动。
  74. 根据权利要求73所述的流体驱动机构,其特征在于,所述壳体(100)包括相对的第一安装端面(141)和第二安装端面(143),所述第一安装端面(141)和所述第二安装端面(143)上分别开设有第一安装孔(142)和第二安装孔(144),所述第一安装孔(142)和所述第二安装孔(144)相对设置;所述音圈电机(301)的所述初级(311)还包括第一安装板(3114)和第二安装板(3115),所述第一安装板(3114)和所述第二安装板(3115)分别可拆卸固定于所述第一安装孔(142)和所述第二安装孔(144);所述第一对磁体(3111)中的两块磁体分别安装在所述第一安装板(3114)和所述第二安装板(3115)沿所述次级(312)滑动方向的一端,所述第二对磁体(3112)中的两块磁体分别安装在所述第一安装 板(3114)和所述第二安装板(3115)沿所述次级(312)滑动方向的另一端。
  75. 根据权利要求69所述的流体驱动机构,其特征在于,所述直线电机组件(300)还包括位移传感器,所述位移传感器设置于所述壳体(100)内,所述位移传感器与所述音圈电机(301)电连接。
  76. 根据权利要求69所述的流体驱动机构,其特征在于,所述音圈电机(301)为伺服电机。
  77. 根据权利要求68所述的流体驱动机构,其特征在于,所述流体驱动机构还包括换向阀(400),所述换向阀(400)包括换向阀第一接口(411)、换向阀第二接口(412)及换向阀第三接口(413),所述换向阀第一接口(411)、所述换向阀第二接口(412)及所述换向阀第三接口(413)能够分别与第一吐液枪头(830)的入口端、所述进出液口及储存有第一驱动液体(810)的储液罐连通;所述换向阀(400)动作时能够连通所述换向阀第一接口(411)和所述换向阀第二接口(412),或者所述换向阀(400)动作时能够连通所述换向阀第三接口(413)和所述换向阀第二接口(412)。
  78. 根据权利要求77所述的流体驱动机构,其特征在于,所述换向阀(400)包括阀体(410)和连通块(420),所述阀体(410)包括所述换向阀第一接口(411)、所述换向阀第二接口(412)及所述换向阀第三接口(413);所述连通块(420)内开设有相互独立的第一流道(421)、第二流道(422)和第三流道(423),所述第一流道(421)、所述第二流道(422)以及所述第三流道(423)均贯通所述连通块(420);所述第一流道(421)、所述第二流道(422)以及所述第三流道(423)的一端分别与所述换向阀第一接口(411)、所述换向阀第二接口(412)及所述换向阀第三接口(413)连接,所述第一流道(421)、所述第二流道(422)以及所述第三流道(423)的另一端分别与第一吐液枪头(830)的入口端、所述进出液口及储存有第一驱动液体(810)的储液罐连接,所述第一流道(421)、所述第二流道(422)以及所述第三流道(423)内表面分别抛光且圆角过渡。
  79. 根据权利要求68所述的流体驱动机构,其特征在于,所述壳体(100)呈中空的长方体状,所述壳体(100)的一端面开设有连接孔,多个所述壳体(100)能够通过所述连接孔并列安装于基体。
  80. 根据权利要求79所述的流体驱动机构,其特征在于,所述壳体(100)沿并列延伸方向的尺寸为18mm。
  81. 一种流体驱动方法,其特征在于,采用权利要求68-80任一项所述的流体驱动机构,所述流体驱动方法包括:所述直线电机组件(300)驱动所述第一推杆(202)挤压储存在所述第一注射筒(201)内的所述第一驱动液体(810),所述第一驱动液体(810)挤压储存在所述第一吐液枪头(830)内的所述第三液体(820),所述第三液体(820)从所述第一吐液枪头(830)的出口端排出;所述第一驱动液体(810)与所述第三液体(820)不互溶。
  82. 一种流体驱动方法,其特征在于,采用权利要求77所述的流体驱动机构,所述流体驱动方法包括:
    所述换向阀(400)使所述第一注射筒(201)的所述进出液口与所述储液罐连通,在所述直线电机组件(300)的带动下,所述第一推杆(202)在所述第一注射筒(201)内滑动改变所述第一注射筒(201)的容积,以将所述储液罐内的所述第一驱动液体(810)吸入所述第一注射筒(201)内;
    所述换向阀(400)使所述第一注射筒(201)的所述进出液口与所述第一吐液枪头(830)的入口端连通,在所述直线电机组件(300)的带动下,所述第一推杆(202)在所述第一注射筒(201)内滑动改变所述第一注射筒(201)的容积,以排出所述第一注射筒(201)内以及所述第一吐液枪头(830)内的气体;
    所述第一吐液枪头(830)的出口端进入所述第三液体(820)中,并维持所述换向阀(400)使所述第一注射筒(201)的所述进出液口与所述第一吐液枪头(830)的入口端连通,在动力组件的带动下,所述第一推杆(202)在所述第一注射筒(201)内滑动改变所述第一注射筒(201)的容积,以将所述第三液体(820)吸进所述第一吐液枪头(830)内;
    所述换向阀(400)使所述第一注射筒(201)的所述进出液口与所述第一吐液枪头(830)的入口端连通,在所述直线电机组件(300)的带动下,所述第一推杆(202)在所述第一注射筒(201)内滑动改变所述第一注射筒(201)的容积,以将储存在所述第一吐液枪头(830)内的所述第三液体(820)以设定的流速排出所述第一吐液枪头(830)的出口端。
PCT/CN2019/072926 2018-01-24 2019-01-24 运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法 WO2019144894A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/964,599 US11666900B2 (en) 2018-01-24 2019-01-24 Motion controlling mechanism, liquid discharging nozzle, microdroplet generating device and method, liquid driving mechanism and method, microdroplet generating method, and surface processing method of liquid discharging nozzle
JP2020560537A JP7220366B2 (ja) 2018-01-24 2019-01-24 運動制御機構、液体吐出ピペットチップ、微小液滴生成装置及び生成方法、流体駆動機構及び流体駆動方法、微小液滴生成方法並びに液体吐出ピペットチップの表面処理方法
CA3089393A CA3089393C (en) 2018-01-24 2019-01-24 Motion controlling mechanism, liquid discharging nozzle, microdroplet generating device and method, liquid driving mechanism and method, microdroplet generating method, and surface processing method of liquid discharging nozzle
EP19744550.5A EP3738671A4 (en) 2018-01-24 2019-01-24 MOTION CONTROL MECHANISM, LIQUID EMISSIONING PIPETTE TIP, MICRODROPLET GENERATOR, LIQUID DRIVE MECHANISM AND LIQUID CONTROL PROCEDURES, MICRODROPLE AND OVERSIZATION PROCEDURES
JP2022162284A JP7452896B2 (ja) 2018-01-24 2022-10-07 運動制御機構微小液滴生成装置
US18/139,617 US20230285956A1 (en) 2018-01-24 2023-04-26 Motion Controlling Mechanism, Liquid Discharging Nozzle, Microdroplet Generating Device and Method, Liquid Driving Mechanism and Method, Microdroplet Generating Method, and Surface Processing Method of Liquid Discharging Nozzle
JP2024029605A JP2024073484A (ja) 2018-01-24 2024-02-29 運動制御機構微小液滴生成装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810070377.2A CN110066857B (zh) 2018-01-24 2018-01-24 数字pcr定量检测方法
CN201810070377.2 2018-01-24
CN201810884995.0A CN110805539A (zh) 2018-08-06 2018-08-06 流体驱动机构及流体驱动方法
CN201810884995.0 2018-08-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/964,599 A-371-Of-International US11666900B2 (en) 2018-01-24 2019-01-24 Motion controlling mechanism, liquid discharging nozzle, microdroplet generating device and method, liquid driving mechanism and method, microdroplet generating method, and surface processing method of liquid discharging nozzle
US18/139,617 Continuation US20230285956A1 (en) 2018-01-24 2023-04-26 Motion Controlling Mechanism, Liquid Discharging Nozzle, Microdroplet Generating Device and Method, Liquid Driving Mechanism and Method, Microdroplet Generating Method, and Surface Processing Method of Liquid Discharging Nozzle

Publications (1)

Publication Number Publication Date
WO2019144894A1 true WO2019144894A1 (zh) 2019-08-01

Family

ID=67394547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072926 WO2019144894A1 (zh) 2018-01-24 2019-01-24 运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法

Country Status (5)

Country Link
US (2) US11666900B2 (zh)
EP (1) EP3738671A4 (zh)
JP (3) JP7220366B2 (zh)
CA (2) CA3089393C (zh)
WO (1) WO2019144894A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453041A (zh) * 2022-03-08 2022-05-10 广州大学 一种微液滴制备装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698333B2 (en) * 2017-06-21 2023-07-11 Sony Corporation Sample liquid-sending apparatus, flow cytometer, and sample liquid-sending method
CN115518703A (zh) * 2021-06-24 2022-12-27 北京致雨生物科技有限公司 液滴生成装置、系统及生成液滴的方法
EP4157537A1 (en) * 2021-06-24 2023-04-05 Beijing Zhiyu Biotechnology Ltd. Droplet generation method, system and application
WO2023117864A1 (en) 2021-12-20 2023-06-29 Stilla Technologies Micro-droplet generating apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551557B1 (en) * 1998-07-07 2003-04-22 Cartesian Technologies, Inc. Tip design and random access array for microfluidic transfer
CN1986229A (zh) * 2005-12-23 2007-06-27 章维一 基因芯片点样喷头
CN103717308A (zh) * 2011-08-03 2014-04-09 索尼公司 微芯片和微粒分析装置
EP3236269A1 (en) * 2014-12-18 2017-10-25 Hitachi High-Technologies Corporation Sampling nozzle, automated analyzer using same, and sampling nozzle manufacturing method
CN208131057U (zh) * 2018-01-24 2018-11-23 北京光阱管理咨询合伙企业(有限合伙) 流体驱动机构
CN208378891U (zh) * 2018-01-24 2019-01-15 北京光阱管理咨询合伙企业(有限合伙) 运动控制机构
CN208494266U (zh) * 2018-01-24 2019-02-15 北京光阱管理咨询合伙企业(有限合伙) 吐液枪头及微液滴生成装置

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139525A (ja) 1995-11-15 1997-05-27 Hitachi Chem Co Ltd ペルチェ冷却ユニット構造
JP2000120983A (ja) * 1998-10-19 2000-04-28 Seiko Instruments Inc 液体注入器
CN100595274C (zh) 2000-07-18 2010-03-24 雀巢制品公司 前脂肪细胞系
JP3809086B2 (ja) * 2001-10-12 2006-08-16 オリンパス株式会社 液体分注装置
GB0127564D0 (en) 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
JP2003170425A (ja) * 2001-12-04 2003-06-17 Sekisui Chem Co Ltd 樹脂微粒子の製造装置、および、この製造装置を用いた樹脂微粒子の製造方法
JP2003174203A (ja) 2001-12-07 2003-06-20 Sony Corp 熱電変換装置
JP2004279340A (ja) 2003-03-18 2004-10-07 Komatsu Ltd マイクロチップ及びそれの温度調節装置
JP2006341203A (ja) * 2005-06-09 2006-12-21 Nuclear Fuel Ind Ltd 電磁滴下装置、及び振動滴下方法
JP4678529B2 (ja) 2006-01-11 2011-04-27 ヤマハ株式会社 温度制御装置
JP2007257014A (ja) 2006-03-20 2007-10-04 Yamaha Corp 温度制御装置
CN100374540C (zh) 2006-03-21 2008-03-12 山东大学 一种聚合酶链式反应芯片阵列的控制装置及控制方法
JP2008100189A (ja) 2006-10-20 2008-05-01 Toray Eng Co Ltd リアクタ
CA2727478A1 (en) * 2008-06-13 2009-12-17 Xy, Llc Lubricious microfluidic flow path system
WO2010018465A2 (en) 2008-08-12 2010-02-18 Stokes Bio Limited Methods and devices for digital pcr
KR20100128518A (ko) 2009-05-28 2010-12-08 경북대학교 산학협력단 나노유체를 이용한 중합효소 연쇄반응 칩 및 그 제조방법
CN101974421B (zh) 2010-10-26 2014-07-23 秦荣 一种带精密温度补偿的变温金属模块及温度补偿方法
CN103429348B (zh) 2011-01-21 2016-03-09 拜奥-多特公司 具有纵向变换器和可替换毛细管的压电分配器
JP5725471B2 (ja) * 2011-03-18 2015-05-27 公立大学法人首都大学東京 試料の液液抽出方法及び試料の液液抽出装置
CN202195997U (zh) 2011-08-24 2012-04-18 上海梭伦信息科技有限公司 液滴影像法界面流变测试装置
WO2013049443A1 (en) 2011-09-30 2013-04-04 Life Technologies Corporation Methods and systems for visualizing and evaluating data
CN104053784B (zh) 2011-11-17 2017-04-19 好奇诊断有限责任公司 进行定量测定的方法
WO2013130857A1 (en) 2012-02-29 2013-09-06 Bio Dx, Inc. Defining diagnostic and therapeutic targets of conserved fetal dna in maternal circulating blood
WO2014025924A1 (en) 2012-08-07 2014-02-13 California Institute Of Technology Ultrafast thermal cycler
DE102013002411A1 (de) 2013-02-11 2014-08-14 Dürr Systems GmbH Beschichtungsvorrichtung mit Ablenkeinrichtung zum Ablenken eines Beschichtungsmittels
US9039993B2 (en) 2013-03-14 2015-05-26 Formulatrix, Inc. Microfluidic device
CN103434272B (zh) 2013-08-23 2015-04-29 浙江大学 用于微液滴发生的压电式喷头装置
EP2848698A1 (en) 2013-08-26 2015-03-18 F. Hoffmann-La Roche AG System and method for automated nucleic acid amplification
KR20150027583A (ko) 2013-09-04 2015-03-12 삼성전자주식회사 열전 소자를 갖는 반도체 소자
EP3146277B1 (en) 2014-05-23 2021-10-27 Laird Thermal Systems, Inc. Thermoelectric heating/cooling devices including resistive heaters
CN104107734B (zh) 2014-07-18 2016-03-02 华南师范大学 一种微流控芯片及自组装的方法
EP3171985B1 (en) 2014-07-25 2024-04-10 Biodot, Inc. Piezoelectric dispenser with a longitudinal transducer and replaceable capillary tube
CN104324769B (zh) 2014-11-17 2016-06-22 中国科学院微生物研究所 基于微管道的液滴的生成方法
CN104450891B (zh) 2014-11-17 2017-06-06 中国科学院微生物研究所 基于微液滴的数字核酸扩增定量分析方法及系统
WO2016078340A1 (zh) * 2014-11-17 2016-05-26 中国科学院微生物研究所 微量液体分配/混合装置、系统及方法
CN104388307B (zh) 2014-11-24 2016-05-25 中国科学院苏州生物医学工程技术研究所 一种液滴式样品荧光检测系统和方法
WO2016133783A1 (en) 2015-02-17 2016-08-25 Zalous, Inc. Microdroplet digital pcr system
JP2017063778A (ja) 2015-05-12 2017-04-06 積水化学工業株式会社 温度制御装置、核酸増幅装置及び温度制御方法
JP6576124B2 (ja) 2015-07-02 2019-09-18 東京エレクトロン株式会社 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
CN108027382B (zh) 2015-07-07 2021-12-24 华盛顿大学 用于样品自数字化的系统、方法和装置
DE102015011970B4 (de) 2015-09-09 2017-04-06 Scienion Ag Dispensiergerät und entsprechendes Dispensierverfahren
CN105498869B (zh) 2015-11-27 2017-06-09 中国石油大学(华东) 一种微纳米液滴制备方法
CN205501281U (zh) 2016-03-30 2016-08-24 华东医药(杭州)基因科技有限公司 一种微滴式数字pcr专用生物芯片
CN105925572B (zh) 2016-06-07 2020-08-21 杭州微著生物科技有限公司 一种dna编码微球及其合成方法
CN105854965B (zh) 2016-06-12 2019-04-12 北京天天极因科技有限公司 一种用于离心法产生油包水液滴的油相组合物
US11286984B2 (en) 2016-11-16 2022-03-29 Jabil Inc. Apparatus, system and method for an air bearing stage for component or devices
CN106854618B (zh) 2016-12-30 2019-06-11 领航基因科技(杭州)有限公司 一种在芯片内部平铺液滴的方法
CN106754341B (zh) 2016-12-30 2019-01-18 领航基因科技(杭州)有限公司 一种微滴式数字pcr生物芯片
CN106755345B (zh) 2016-11-30 2019-10-29 领航基因科技(杭州)有限公司 一种用于制备微滴式数字pcr中液滴的油相组合物
CN106596489B (zh) 2016-12-19 2019-06-28 中国科学院苏州生物医学工程技术研究所 用于荧光液滴检测中荧光强度数据的处理方法
CN106520524A (zh) 2016-12-30 2017-03-22 中国科学技术大学 一体式刚性流道液滴数字pcr系统及方法
CN108373971A (zh) 2017-03-11 2018-08-07 南京科维思生物科技股份有限公司 用于进行实时数字pcr的方法和装置
CN107349882B (zh) 2017-07-21 2019-12-27 天津大学 一种用于无细胞蛋白质合成的微液滴及其制备方法
CN107513495B (zh) 2017-09-01 2020-07-31 中国科学院苏州生物医学工程技术研究所 用于核酸检测的多通道微滴检测芯片
CN107478629A (zh) 2017-09-04 2017-12-15 中国科学院苏州生物医学工程技术研究所 一种大面积数字pcr微滴荧光高通量检测装置和方法
CN207596826U (zh) 2017-10-11 2018-07-10 领航基因科技(杭州)有限公司 数字pcr容器
CN107586700A (zh) 2017-10-11 2018-01-16 华东医药(杭州)基因科技有限公司 一种数字pcr容器
CN107622185B (zh) 2017-10-27 2020-08-21 领航基因科技(杭州)有限公司 一种数字pcr浓度计算方法
CN110066857B (zh) 2018-01-24 2020-03-24 思纳福(北京)医疗科技有限公司 数字pcr定量检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551557B1 (en) * 1998-07-07 2003-04-22 Cartesian Technologies, Inc. Tip design and random access array for microfluidic transfer
CN1986229A (zh) * 2005-12-23 2007-06-27 章维一 基因芯片点样喷头
CN103717308A (zh) * 2011-08-03 2014-04-09 索尼公司 微芯片和微粒分析装置
EP3236269A1 (en) * 2014-12-18 2017-10-25 Hitachi High-Technologies Corporation Sampling nozzle, automated analyzer using same, and sampling nozzle manufacturing method
CN208131057U (zh) * 2018-01-24 2018-11-23 北京光阱管理咨询合伙企业(有限合伙) 流体驱动机构
CN208378891U (zh) * 2018-01-24 2019-01-15 北京光阱管理咨询合伙企业(有限合伙) 运动控制机构
CN208494266U (zh) * 2018-01-24 2019-02-15 北京光阱管理咨询合伙企业(有限合伙) 吐液枪头及微液滴生成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453041A (zh) * 2022-03-08 2022-05-10 广州大学 一种微液滴制备装置

Also Published As

Publication number Publication date
JP7452896B2 (ja) 2024-03-19
JP2024073484A (ja) 2024-05-29
US11666900B2 (en) 2023-06-06
US20230285956A1 (en) 2023-09-14
JP2021511210A (ja) 2021-05-06
JP7220366B2 (ja) 2023-02-10
CA3089393C (en) 2023-04-04
EP3738671A4 (en) 2021-03-24
US20210053046A1 (en) 2021-02-25
CA3089393A1 (en) 2019-08-01
EP3738671A1 (en) 2020-11-18
CA3188454A1 (en) 2019-08-01
JP2023015038A (ja) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2019144894A1 (zh) 运动控制机构、吐液枪头、微液滴生成装置及生成方法、流体驱动机构及流体驱动方法、微液滴生成方法以及吐液枪头表面处理方法
Abhari et al. A comprehensive study of micropumps technologies
CN110075933B (zh) 微液滴生成装置、系统及生成方法
US20210229101A1 (en) Digital pcr chip, and droplet generation system and detection system containing same
WO2023025289A1 (zh) 一种用于微液滴制备的控制装置及制备微液滴的方法
CN110684650A (zh) 用于数字pcr检测的液滴生成系统及数字pcr检测方法
CN112444530A (zh) 一种用于冷冻电镜的微量样品制备装置及其制样方法
EP4023336A1 (en) Sample adding needle for preparing microdroplets and microdroplet preparation method
US20230149918A1 (en) Droplet generation method, system and application
Fan et al. Dotette: Programmable, high-precision, plug-and-play droplet pipetting
CN112076807B (zh) 一种自发形成油包水液滴的微流控芯片及装置
CN110064452B (zh) 微液滴生成方法
CN216224451U (zh) 一种不对称振动微液滴生成机构
CN110369011A (zh) 基于液压驱动的微量液体转移装置、控制设备及控制方法
CN115518702A (zh) 液滴生成方法、加样管组件及系统
CN208378891U (zh) 运动控制机构
CN110066721B (zh) 微液滴生成方法
CN212663478U (zh) 一种高通量制备均匀单乳液滴的装置
CN115518703A (zh) 液滴生成装置、系统及生成液滴的方法
CN110064453B (zh) 微液滴生成装置及生成方法
CN110064451B (zh) 流体驱动机构及流体驱动方法
CN116059890B (zh) 一种基于声驱气泡振荡的微混合机器人装置及混合控制方法
CN108855267B (zh) 一种用于生物微纳粒子微操控的微流道平台
Yin et al. A novel array-type microdroplet parallel-generation device
KR101377173B1 (ko) 미세 유체 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560537

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3089393

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019744550

Country of ref document: EP

Effective date: 20200812