WO2019132184A1 - 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판 - Google Patents

연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판 Download PDF

Info

Publication number
WO2019132184A1
WO2019132184A1 PCT/KR2018/011398 KR2018011398W WO2019132184A1 WO 2019132184 A1 WO2019132184 A1 WO 2019132184A1 KR 2018011398 W KR2018011398 W KR 2018011398W WO 2019132184 A1 WO2019132184 A1 WO 2019132184A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
polyimide film
diamine
dianhydride
mol
Prior art date
Application number
PCT/KR2018/011398
Other languages
English (en)
French (fr)
Inventor
백승열
이길남
임현재
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201880081644.4A priority Critical patent/CN111491988B/zh
Publication of WO2019132184A1 publication Critical patent/WO2019132184A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide film for producing a flexible copper-clad laminate and a flexible copper-clad laminate comprising the same.
  • Polyimide (PI) is a thermally stable polymer based on a rigid aromatic backbone. It has excellent mechanical strength, chemical resistance, weatherability, and heat resistance based on the chemical stability of the imide ring.
  • a polyimide having excellent heat resistance, low temperature resistance, and insulation characteristics, And is used as a protective film for a thin circuit board.
  • Such a thin circuit board generally has a structure in which a circuit including a metal foil is formed on a polyimide film.
  • a thin circuit board may be broadly referred to as a flexible metal foil laminate, It is also referred to as a flexible copper clad laminate (FCCL) in a narrow sense.
  • FCCL flexible copper clad laminate
  • Examples of the manufacturing method of the flexible metal foil laminates include (i) a casting method in which a polyamic acid, which is a precursor of polyimide, is cast or coated on a metal foil and imidized, (ii) by sputtering or plating A metalizing method in which a metal layer is directly provided on a polyimide film, and (iii) a lamination method in which a polyimide film and a metal foil are bonded together by heat and pressure through a thermoplastic polyimide.
  • the double lamination method is advantageous in that the thickness range of the metal foil that can be applied is wider than that of the casting method, and the apparatus cost is lower than that of the metalizing method.
  • a roll laminate apparatus or a double-belt press apparatus which continuously laminate while putting a roll-shaped material is used.
  • the thermal roll lamination method using a thermal roll laminate apparatus can be more preferably used from the viewpoint of productivity.
  • thermoplastic resin is used for bonding the polyimide film and the metal foil as described above, it is preferable that a temperature of 300 DEG C or higher, and in some cases, a glass transition of the polyimide film more than 400 °C heat at or near the at least a temperature (T g), it is necessary to apply to the polyimide film.
  • the value of the storage elastic modulus of a viscoelastic material such as a polyimide film is remarkably reduced in comparison with the value of storage elastic modulus at room temperature in a temperature range exceeding the glass transition temperature.
  • the storage modulus of the polyimide film at high temperature may be significantly lowered, and the polyimide film may be loosened under a low storage elastic modulus so that the polyimide film may not exist in a flat form Is high.
  • the dimensional change of the polyimide film may be relatively unstable.
  • the glass transition temperature of the polyimide film relative to the temperature at the time of lamination is remarkably low. Specifically, in this case, since the viscosity of the polyimide film is relatively high at the temperature at which the lamination is performed, a relatively large dimensional change may be involved, which may lower the appearance quality of the polyimide film after the lamination .
  • Another object of the present invention is to provide a flexible copper clad laminate including a polyimide film satisfying desired physical properties and having a relatively small dimensional change and thus having an excellent appearance quality.
  • BPDA Biphenyltetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • Benzophenonetetracarboxylic dianhydride BTDA
  • At least three aromatic dianhydride monomers selected from the group consisting of oxydiphthalic anhydride (ODPA);
  • a monomer mixture comprising an aromatic diamine monomer containing a diamine having a carboxylic acid functional group and a diamine containing a carboxylic acid functional group, together with p-phenylenediamine (p-PDA), is polymerized at a specific compounding ratio to form a polyamic acid , And imidizing the polyamic acid.
  • p-PDA p-phenylenediamine
  • the polyimide film according to the present invention has an excellent storage modulus at a high temperature while having a desired glass transition temperature. In addition, it can alleviate thermal stress and minimize the dimensional change.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BTDA benzophenonetetracarboxylic dianhydride
  • ODPA oxydiphthalic anhydride
  • p-PDA p-phenylenediamine
  • Such a polyimide film can be produced,
  • (a) has an inflection point of storage elastic modulus with respect to temperature in a range exceeding 340 ⁇ ⁇ ;
  • the thermal expansion coefficient may be 7 ppm / ⁇ ⁇ or more and 15 ppm / ⁇ ⁇ or less.
  • the polyimide film having all of these three conditions is a novel polyimide film which has not been known so far, and the following three conditions will be described in detail below.
  • the inflection point of the storage modulus of the polyimide film according to the present invention may preferably be in the range of more than 340 DEG C to 370 DEG C from the viewpoint of thermal stress relaxation when the metal foil is laminated by the lamination method.
  • the inflection point of the storage elastic modulus is lower than the above range, the polyimide film is excessively loosened during the lamination, and there is a high possibility that appearance defects such as wrinkles and wrinkles are formed on the surface of the polyimide film after completion of the lamination.
  • the temperature at which softening of the core layer starts is too high, so that when the lamination is performed, the thermal stress is not sufficiently relaxed and the dimensional change may also deteriorate.
  • the inflection point of the storage elastic modulus is within a range of 340 ° C or higher and 360 ° C or lower.
  • the glass transition temperature can be determined from the storage elastic modulus and the loss elastic modulus measured by a dynamic viscoelasticity measuring device (DMA), and more specifically, a top peak of tan delta, which is a value obtained by dividing the calculated loss elastic modulus by the storage elastic modulus, Can be calculated as the glass transition temperature.
  • DMA dynamic viscoelasticity measuring device
  • the polyimide film according to the present invention and the glass transition temperature (T g) greater than or equal to 350 °C, preferably may be less than or equal to 380 °C than 360 °C, may be up to more preferably to more than 370 °C 360 °C.
  • the glass transition temperature is lower than the above range, when the lamination is performed, since the viscosity of the polyimide film is relatively high, a large dimensional change may be involved. This is undesirable because it causes deterioration of the appearance quality.
  • the glass transition temperature is higher than the above range, the temperature required for softening the core layer to a level sufficient to alleviate the thermal distortion is excessively high, so that the conventional lamination apparatus can not sufficiently relax the thermal stress, There is a possibility. In other words, if it is out of the above range, the dimensional change may become worse as in the case of the inflection point of the storage elastic modulus.
  • the thermal expansion coefficient of the polyimide film at 300 ° C to 350 ° C is the same as the thermal expansion coefficient of the metal foil.
  • the difference between the thermal expansion coefficient of the polyimide film and the thermal expansion coefficient of the metal foil is within ⁇ 10 ppm It is preferably within 5 ppm.
  • thermoplastic polyimide when used as the adhesive layer, the dimensional change can be minimized when the coefficient of thermal expansion of the polyimide film at 340 ⁇ ⁇ is 7 ppm / ⁇ ⁇ or higher.
  • thermal expansion coefficient is less than 7 ppm / May be excessive to cause appearance failure.
  • the coefficient of thermal expansion is preferably 15 ppm / DEG C or less, and if it exceeds this range, the degree of expansion in the MD and TD directions may excessively cause appearance failure.
  • a more preferable range thereof is a thermal expansion coefficient of 8 ppm / ° C or higher to 13 ppm / ° C or lower, particularly preferably 8 ppm / ° C or higher to 12 ppm / ° C or lower.
  • the polyimide film according to the present invention satisfactorily satisfies all the three conditions described above, thereby effectively suppressing the dimensional change occurring in manufacturing the flexible copper clad laminate.
  • the monomer mixture is such that the para-phenylenediamine (p-PDA) is from 55 mol% to 80 mol%, based on the total moles of the diamine monomer,
  • p-PDA para-phenylenediamine
  • the diamine having a carboxylic acid functional group is contained in an amount of from 5 mol% to 15 mol% based on the total molar amount of the diamine monomer,
  • the diamine containing the carboxylic acid functional group may be from 15 mol% to 40 mol% based on the total molar amount of the diamine monomer.
  • the paraphenylenediamine is preferred because it has a rigid structure with no bending property in its main chain between two NH 2 groups, and can finally produce the polyimide film with non-thermoplastic properties.
  • monomers having a rigid structure that is, monomers having high linearity, for the high modulus of elasticity of the polyimide film.
  • diamine having a carboxylic acid functional group and diamine having no carboxylic acid functional group It should be noted that further includes.
  • the ratio of the diamine monomer p-phenylenediamine having a rigid structure as described above is more than the above range, the obtained glass transition temperature becomes too high, the storage modulus of the high temperature region hardly decreases, It is possible to cause an adverse effect that it becomes too small. On the other hand, if it is less than this range, the opposite harmful to the above-described harm may occur. This applies analogously to the ratio of the diamine having a carboxylic acid functional group to the diamine having a carboxylic acid functional group as described below.
  • the diamine having a carboxylic acid functional group is preferably a diamine selected from the group consisting of 3,5-diaminobenzoic acid (DABA) and 4,4-diaminobiphenyl-3,3-tetracarboxylic acid ; DATA), and more specifically, 3,5-diaminobenzoic acid (DABA), which may be advantageous for improving the mechanical properties of the polyimide film, specifically, the storage elastic modulus.
  • DABA 3,5-diaminobenzoic acid
  • DATA 4,4-diaminobiphenyl-3,3-tetracarboxylic acid
  • DABA 3,5-diaminobenzoic acid
  • the carboxylic acid functional group-containing diamine may be 4,4'-oxydianiline (ODA), m-phenylenediamine (m-PDA), p-methylenediamine (p-MDA) And m-methylenediamine (m-MDA).
  • ODA 4,4'-oxydianiline
  • m-PDA m-phenylenediamine
  • p-MDA p-methylenediamine
  • m-MDA m-methylenediamine
  • m-MDA m-methylenediamine
  • ODA oxydianiline
  • the oxydianiline is a diamine monomer having a flexible structure having an ether group, and can have an appropriate linear expansion coefficient to the polyimide film.
  • the monomer mixture comprises, as the aromatic dianhydride monomer, a main component consisting of the pyromellitic dianhydride (PMDA) and the biphenyltetracarboxylic dianhydride (BPDA)
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • ODPA oxydiphthalic anhydride
  • the aromatic dianhydride monomer includes a total of three kinds of dianhydride monomers, and a part of any one of pyromellitic dianhydride (PMDA) and biphenyltetracarboxylic dianhydride (BPDA) Is replaced by the subcomponent benzophenone tetracarboxylic dianhydride (BTDA) or oxydiphthalic anhydride (ODPA).
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BTDA subcomponent benzophenone tetracarboxylic dianhydride
  • ODPA oxydiphthalic anhydride
  • dianhydride monomers can be classified into dianhydrides having a flexible structure and dianhydrides having a rigid structure.
  • biphenyl tetracarboxylic dianhydride BPDA
  • BTDA benzophenone tetracarboxylic dianhydride
  • ODPA oxy Diptalic anhydride
  • pyromellitic dianhydride In the case of a dianhydride having a relatively rigid structure, pyromellitic dianhydride (PMDA) is exemplified. That is, by using a main component including biphenyltetracarboxylic dianhydride (BPDA), which is a dianhydride having a flexible structure, and pyromellitic dianhydride (PMDA), which is a dianhydride having a rigid structure, The storage elastic modulus and the thermal expansion coefficient of the mid film can be guided to a proper line.
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the subcomponents are not less than 5 mol% and not more than 30 mol% based on the total molar amount of the aromatic dianhydride monomer, and the main component is a total amount of the aromatic dianhydride monomers based on the total number of moles of the aromatic dianhydride monomers And can be 70 mol% or more and 95 mol% or less.
  • the usage ratio of the subcomponent is 10 mol% or more to 20 mol% or less based on the total number of moles of the aromatic dianhydride monomer, and the main component is a ratio of the total number of moles of the aromatic dianhydride monomer , And may be 80 mol% or more and 90 mol% or less.
  • the molar ratio (PMDA / BPDA) of the pyromellitic dianhydride (PMDA) to the phenyltetracarboxylic dianhydride (BPDA) may preferably be 0.6 or more and 0.8 or less.
  • the main component and the subcomponent are intended to clearly distinguish between monomers which occupy a relatively larger molar percentage and monomers which occupy a relatively smaller mole%, and the concept of dividing the reaction-initiating monomer into a non- .
  • the polyamic acid may include, in the polymer chain, two or more sub-fractions of different molecular structures derived from sequential polymerization. This will be described in more detail in the process for producing a polyimide film described below.
  • the polyimide film of the present invention is obtained from polyamic acid which is a precursor of polyimide.
  • the polyamic acid according to the present invention is obtained by dissolving a monomer mixture in which an aromatic diamine monomer and an aromatic dianhydride monomer are mixed so as to have a substantially equimolar amount in an organic solvent and reacting the resulting polyamic acid organic solvent solution with the aromatic dianhydride monomer And stirring the mixture until the polymerization of the aromatic diamine monomer is completed.
  • the polyamic acid is usually obtained at a concentration of 7 wt% to 25 wt%, preferably 10 wt% to 20 wt%, of solid content. In the case of concentrations in this range, the polyamic acid obtains an appropriate molecular weight and solution viscosity.
  • the solvent for producing the polyamic acid is not particularly limited, and any solvent which can dissolve the polyamic acid can be used, but an amide solvent is preferable.
  • the solvent may be an aprotic polar solvent, for example, N, N'-dimethylformamide (DMF), N, N'-dimethylacetamide (DMAc), N (NMP), gamma-butyrolactone (GBL), diglyme, but are not limited thereto, and may be used singly or in combination of two or more as necessary Can be used.
  • N, N-dimethylformamide and N, N-dimethylacetamide may be particularly preferably used as the solvent.
  • the polyimide film of the present invention can control various properties by controlling not only the composition of the aromatic diamine monomer as the raw material monomer and the aromatic dianhydride monomer but also the monomer addition sequence.
  • the method of producing the polyimide film is specifically described as follows.
  • Preparing a first polyamic acid by polymerizing a monomer mixture containing an aromatic diamine monomer in an excess amount relative to the aromatic dianhydride monomer;
  • an aromatic diamine monomer and an aromatic dianhydride monomer are further added to a mixture of the residual monomer and the polyamic acid to prepare a monomer mixture having a different monomer composition from the monomer mixture in the previous step, Extending the sub-pulverization with different composition to the end of the polyamic acid;
  • an aromatic dianhydride monomer is further mixed into a mixture of the residual monomer and the polyamic acid to prepare a final monomer mixture in which the aromatic dianhydride monomer and the aromatic diamine monomer are substantially equivalent to each other, Preparing polyamic acid;
  • the monomer mixture may include the amide-based solvent.
  • the type of sub-pulverization and the number of times of sub-pulverization extension can be changed, and in detail, the sub-pulverization extension step can be repeated one to four times or less.
  • the monomer composition having a different composition for each polymerization may be alternated with the polymerization and the monomer introduction to induce the formation of sub-pulverization having a different monomer composition for each polymerization, and the formation of the sub-pulverization can be sequentially controlled.
  • the polyamic acid in which the polymerization is completed can include two or more sub-pulps having different monomer compositions in its polymer chain.
  • the dianhydride monomer further mixed with the first polyamic acid may be pyromellitic dianhydride (PMDA).
  • a filler may be added for the purpose of improving various properties of a film such as sliding property, thermal conductivity, conductivity, corona resistance, loop hardness, etc.
  • the filler to be added is particularly limited Preferred examples include, but are not limited to, silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • the particle size of the filler is not particularly limited, and it may be determined according to the film properties to be modified and the type of the filler to be added. Generally, the average particle diameter is 0.05 ⁇ to 100 ⁇ , preferably 0.1 ⁇ to 75 ⁇ , more preferably 0.1 ⁇ to 50 ⁇ , particularly preferably 0.1 ⁇ to 25 ⁇ .
  • the particle diameter is below this range, the effect of modification is less likely to appear. If the particle diameter exceeds this range, the surface properties may be greatly impaired or the mechanical properties may be significantly deteriorated.
  • the amount of the filler to be added is not particularly limited, and it may be determined depending on the properties of the film to be modified, the filler particle size, and the like. Generally, the amount of the filler to be added is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, more preferably 0.02 to 80 parts by weight based on 100 parts by weight of the polyimide.
  • the method of adding the filler is not particularly limited, and any known method may be used.
  • the thermal imidation method is a method in which the imidization reaction proceeds only by heating without reacting with a dehydrating cyclizing agent or the like.
  • the chemical imidization method is a method of promoting imidization by reacting a polyamic acid with a chemical conversion agent and / or an imidation catalyst.
  • the term "chemical conversion agent" means a dehydrating ring-closure agent for polyamic acid, and examples thereof include aliphatic acid anhydrides, aromatic acid anhydrides, N, N'- dialkyl carbodiimides, halogenated lower aliphatic, Arylphosphonic acid dihalide, and thionyl halide, or a mixture of two or more thereof.
  • aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic anhydride, or a mixture of two or more of them may be preferably used from the viewpoints of ease of availability and cost.
  • imidation catalyst means a component having an effect of promoting the dehydration ring-closing effect on the polyamic acid.
  • an aliphatic tertiary amine, an aromatic tertiary amine, and a heterocyclic tertiary amine are used.
  • those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as a catalyst.
  • quinoline, isoquinoline,? -Picoline, pyridine and the like are preferably used.
  • the imidization step is a step of applying the film forming composition containing the polyamic acid on a support, heating the support on a support to form a gel film, And a step of further heating the gel film to imidize the remaining amic acid and drying (hereinafter, also referred to as "firing process").
  • a chemical conversion agent and / or an imidation catalyst are mixed in a polyamic acid at a low temperature to obtain a film-forming composition.
  • a composition for film-forming may be obtained by mixing the curing agent containing a chemical conversion agent and an imidization catalyst in a polyamic acid.
  • the amount of the chemical conversion agent to be added is preferably in the range of 0.5 to 5 moles, more preferably 1.0 to 4 moles, per mole of the amide acid unit in the polyamic acid.
  • the addition amount of the imidation catalyst is preferably in the range of 0.05 mol to 2 mol, particularly preferably in the range of 0.2 mol to 1 mol, based on 1 mol of the amic acid unit in the polyamic acid.
  • the chemical imidization may be insufficient, breakage may occur during firing, or the mechanical strength may be lowered.
  • these amounts exceed the above range, the imidization proceeds rapidly, and casting in a film form may become difficult, which is not preferable.
  • the film-forming composition is cast in the form of a film on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless steel drum.
  • a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless steel drum.
  • the composition for film formation is heated on the support in a temperature range of 60 ⁇ ⁇ to 200 ⁇ ⁇ , preferably 80 ⁇ ⁇ to 180 ⁇ ⁇ .
  • the chemical conversion agent and the imidization catalyst are activated, and partially curing and / or drying takes place, whereby a gel film is formed.
  • the gel film is peeled off from the support.
  • the gel film is in the middle stage of curing from polyamic acid to polyimide and has self-supporting property.
  • the volatile content of the gel film is preferably in the range of 5 wt% to 500 wt%, more preferably in the range of 5 wt% to 200 wt%, and particularly preferably in the range of 5 wt% to 150 wt% .
  • the present invention provides a flexible copper-clad laminate including the above-described polyimide film and a copper foil.
  • the present invention also provides an electronic device comprising the flexible copper-clad laminate.
  • the electronic device is not particularly limited as long as it is an electronic device capable of including a flexible copper-clad laminate as a circuit board by having a microcircuit.
  • a copper foil is laminated on one side of the polyimide film
  • the thickness of the copper foil is not particularly limited, and may be a thickness capable of exhibiting a sufficient function depending on the use thereof.
  • DABA, ODA, and BPDA were added to DMF in the molar ratio shown in Table 1 while maintaining the inside of the reaction system at 10 ⁇ ⁇ , and stirring was performed for 1 hour to prepare a first polyamic acid.
  • PDA was added and dissolved in the molar ratio shown in Table 1
  • BTDA was added at the molar ratio shown in Table 1
  • the mixture was stirred for 1 hour to prepare a solution having a different composition at the end of the first polyamic acid The pulverization was extended.
  • An imidization accelerator containing acetic anhydride / isoquinoline / DMF (weight ratio 46 and 13% / 41%) was added to the final polyamic acid thus obtained in an amount of 50 parts by weight based on 100 parts by weight of polyamic acid, and the obtained mixture was added to a stainless steel plate After the application, the film was cast using a doctor blade with a gap of 400 mu m and dried in a 120 DEG C oven for 4 minutes with hot air to prepare a gel film.
  • the thus-prepared gel film was peeled off from the stainless steel plate and fixed with a frame pin.
  • the frame having the gel film fixed thereon was heat-treated at 400 ° C for 7 minutes, and then the film was peeled off to obtain a polyimide film having an average thickness of 15 ⁇ m.
  • a polyimide film having a thickness of 15 ⁇ ⁇ was obtained in the same manner as in Example 1, except that the molar ratio of PMDA to BTDA was changed as shown in Table 1.
  • a polyimide film having a thickness of 15 ⁇ ⁇ was obtained in the same manner as in Example 1, except that the molar ratio of PMDA to BTDA was changed as shown in Table 1.
  • a polyimide film having a thickness of 15 ⁇ ⁇ was obtained in the same manner as in Example 1, except that the composition was changed as shown in Table 1 using ODPA instead of BTDA.
  • a polyimide film having a thickness of 15 ⁇ ⁇ was obtained in the same manner as in Example 4 except that the molar ratio of PMDA and ODPA was changed as shown in Table 1.
  • a polyimide film having a thickness of 15 ⁇ ⁇ was obtained in the same manner as in Example 4 except that the molar ratio of PMDA and ODPA was changed as shown in Table 1.
  • An imidization accelerator containing acetic anhydride / isoquinoline / DMF (weight ratio 46 & 13% / 41%) was added to the polyamic acid thus obtained in an amount of 50 parts by weight based on 100 parts by weight of polyamic acid, and the resulting mixture was applied to a stainless steel plate After casting using a doctor blade with a gap of 400 mu m, the gel film was dried in a 120 DEG C oven for 4 minutes with hot air to prepare a gel film.
  • the thus-prepared gel film was peeled off from the stainless steel plate and fixed with a frame pin.
  • the frame having the gel film fixed thereon was heat-treated at 400 ° C for 7 minutes, and then the film was peeled off to obtain a polyimide film having an average thickness of 15 ⁇ m.
  • An imidization accelerator containing acetic anhydride / isoquinoline / DMF (weight ratio 46 & 13% / 41%) was added to the polyamic acid thus obtained in an amount of 50 parts by weight based on 100 parts by weight of polyamic acid, and the resulting mixture was applied to a stainless steel plate After casting using a doctor blade with a gap of 400 mu m, the gel film was dried in a 120 DEG C oven for 4 minutes with hot air to prepare a gel film.
  • the thus-prepared gel film was peeled off from the stainless steel plate and fixed with a frame pin.
  • the frame having the gel film fixed thereon was heat-treated at 400 ° C for 7 minutes, and then the film was peeled off to obtain a polyimide film having an average thickness of 15 ⁇ m.
  • ODA, p-PDA, and BPDA were added to DMF in the molar ratio shown in Table 1 while maintaining the inside of the reaction system at 25 ⁇ ⁇ , and stirring was performed. After the solution was visually confirmed, stirring was carried out at 20 DEG C for 1 hour, and the polymerization was terminated when the viscosity reached 1500 poise.
  • An imidization accelerator containing acetic anhydride / isoquinoline / DMF (weight ratio 46 & 13% / 41%) was added to the polyamic acid thus obtained in an amount of 50 parts by weight based on 100 parts by weight of polyamic acid, and the resulting mixture was applied to a stainless steel plate After casting using a doctor blade with a gap of 400 mu m, the gel film was dried in a 120 DEG C oven for 4 minutes with hot air to prepare a gel film.
  • the thus-prepared gel film was peeled off from the stainless steel plate and fixed with a frame pin.
  • the frame having the gel film fixed thereon was heat-treated at 400 ° C for 7 minutes, and then the film was peeled off to obtain a polyimide film having an average thickness of 15 ⁇ m.
  • a polyimide film having a thickness of 15 ⁇ was obtained in the same manner as in Example 1 except that the molar ratios of PMDA, BPDA and BTDA were changed as shown in Table 1.
  • a polyimide film having a thickness of 15 ⁇ was obtained in the same manner as in Example 4 except that the molar ratios of PMDA, BPDA and ODPA were changed as shown in Table 1.
  • Example 1 30 50 20 0 65 20 15
  • Example 2 35 50 15 0 65 20 15
  • Example 3 40 50 10 0 65 20 15
  • Example 4 30 50 0 20 65 20 15
  • Example 5 35 50 0 15 65 20 15
  • Example 6 40 50 0 10 65 20 15
  • the polyimide films prepared in each of Examples 1 to 6 and Comparative Examples 1 to 5 were measured for storage elastic modulus inflection point and glass transition temperature (T g ) values by using DMA, and the results are shown in Table 2 Respectively.
  • the inflection point of the storage modulus against temperature is in the range of more than 340 ° C
  • a glass transition temperature (T g) is more than 350 °C
  • the present invention has a high storage modulus at a high temperature while having a desired glass transition temperature due to a combination of specific dianhydride monomers, a combination of diamine monomers, and a specific blend ratio thereof.
  • the present invention can also provide a flexible copper-clad laminate having excellent appearance quality including the polyimide film as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 적어도 3종의 방향족 디안하이드라이드 단량체, 및 파라페닐렌디아민(p-PDA)과 함께, 카르복실산 작용기를 갖는 디아민 및 카르복실산 작용기 미포함의 디아민을 포함하는 방향족 디아민 단량체를 소정의 배합비로 포함하는 단량체 혼합물의 중합에서 유래된 폴리아믹산을 이미드화하여 제조되는 폴리이미드 필름 및 이를 포함하는 연성동박적층판을 제공한다.

Description

연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판
본 발명은 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판에 관한 것이다.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄를 기본으로 하는 열적 안정성을 가진 고분자 물질로 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다.
뿐만 아니라 절연특성, 낮은 유전율과 같은 뛰어난 전기적 특성으로 미소전자 분야, 광학 분야 등에 이르기까지, 고기능성 고분자 재료로 각광받고 있다.
미소전자 분야를 예로 들면, 전자제품의 경량화, 소형화로 인해, 집적도가 높고 유연한 박형 회로기판이 활발히 개발되고 있으며, 이에 매우 우수한 내열성, 내저온성 및 절연특성을 가지면서도 굴곡이 용이한 폴리이미드를 박형 회로기판의 보호 필름으로 이용하는 추세이다.
이러한 박형 회로기판은, 폴리이미드 필름 상에 금속박을 포함하는 회로가 형성되어 있는 구조가 일반적이며, 이러한 박형 회로기판을 넓은 의미에서 연성금속박적층판으로 지칭하기도 하며, 이것의 예로서, 금속박으로 얇은 구리판을 이용할 때 좁은 의미에서 연성동박적층판(Flexible Copper Clad Laminate; FCCL)로 지칭하기도 한다.
연성금속박적층판의 제조 방법으로는, 예를 들면 (i) 금속박 상에 폴리이미드의 전구체인 폴리아믹산을 유연(cast), 또는 도포한 후, 이미드화하는 캐스팅법, (ii) 스퍼터링 또는 도금에 의해 폴리이미드 필름 상에 직접 금속층을 설치하는 메탈라이징법, 및 (iii) 열가소성 폴리이미드를 통해 폴리이미드 필름과 금속박을 열과 압력으로 접합시키는 라미네이트법을 들 수 있다.
이중 라미네이트법은, 적용할 수 있는 금속박의 두께 범위가 캐스팅법보다도 넓고, 장치 비용이 메탈라이징법보다도 저렴한 점에서 이점이 있다. 라미네이트를 행하는 장치로는, 롤형의 재료를 투입하면서 연속적으로 라미네이트하는 롤라미네이트 장치, 또는 더블 벨트 프레스 장치 등이 이용되고 있다. 상기 중에서, 생산성의 관점에서 보면 열 롤라미네이트 장치를 이용한 열 롤라미네이트법을 보다 바람직하게 사용할 수 있다.
다만, 라미네이트의 경우, 전술한바와 같이 폴리이미드 필름과 금속박의 접착에 열가소성 수지를 이용하기 때문에, 이 열가소성 수지의 열융착성을 발현시키기 위해서 300℃ 이상, 경우에 따라서는 폴리이미드 필름의 유리전이온도(Tg)에 육박하거나 그 이상인 400℃ 이상의 열을 폴리이미드 필름에 가할 필요가 있다.
일반적으로, 폴리이미드 필름과 같은 점탄성체의 저장탄성률의 값은 유리전이온도를 넘는 온도영역에서, 상온에서의 저장탄성률의 값에 비해 현저하게 감소하는 것으로 알려져 있다.
즉, 고온을 요구하는 라미네이트를 행할 때, 고온에서의 폴리이미드 필름의 저장탄성률이 크게 낮아질 수 있으며, 낮은 저장탄성률 하에서는 폴리이미드 필름이 느슨해지면서 라미네이트 종료 후에 폴리이미드 필름이 평탄한 형태로 존재하지 않을 가능성이 높다. 달리 말하면, 라미네이트의 경우, 폴리이미드 필름의 치수 변화가 상대적으로 불안정적이라 할 수 있다.
또 하나 주목할 것은, 라미네이트를 행할 때의 온도 대비 폴리이미드 필름의 유리전이온도가 현저히 낮을 경우이다. 구체적으로, 상기 경우, 라미네이트를 행하는 온도에서 폴리이미드 필름의 점성이 상대적으로 높은 상태이므로 상대적으로 큰 치수 변화가 수반될 수 있고, 이에 따라 라미네이트 이후, 폴리이미드 필름의 외관 품질이 저하될 우려가 있다.
따라서, 이상의 문제들을 해결하여 공정성을 크게 개선할 수 있는 기술의 필요성이 높은 실정이다.
본 발명의 목적은 폴리이미드 필름을 제공하는 것이며, 구체적으로, 디안하이드라이드 단량체의 종류, 디아민 단량체의 종류 및 이들의 배합비를 결정함에 기인하여, 그 결과물인 폴리이미드 필름이 소망하는 유리전이온도를 가지면서도 고온에서 높은 저장탄성률을 내재하며, 이외에도 열응력을 완화하여 치수 변화를 최소화 하는 것이다.
본 발명의 다른 목적은 소망하는 물성을 만족하는 폴리이미드 필름을 포함하여 치수 변화가 상대적으로 적고 그로 인해 외관 품질이 우수한 연성동박적층판을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여 본 발명은,
피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA),
바이페닐테트라카르복실릭디안하이드라이드(biphenyltetracarboxylic dianhydride; BPDA),
벤조페논테트라카르복실릭디안하이드라이드(benzophenonetetracarboxylic dianhydride; BTDA) 및
옥시디프탈릭안하이드라이드(oxydiphthalic anhydride; ODPA)로 이루어진 군에서 선택되는 적어도 3종의 방향족 디안하이드라이드 단량체; 및
파라페닐렌디아민(p-phenylenediamine; p-PDA)과 함께, 카르복실산 작용기를 갖는 디아민 및 카르복실산 작용기 미포함의 디아민을 포함하는 방향족 디아민 단량체를 포함하는 단량체 혼합물을 특정 배합비로 중합하여 폴리아믹산을 제조하고, 상기 폴리아믹산을 이미드화하여 제조된 폴리이미드 필름을 제공한다.
본 발명에 따른 폴리이미드 필름의 경우, 소망하는 유리전이온도를 가지면서도 고온에서 우수한 저장탄성률을 가지며, 이외에도 열응력을 완화하여 치수 변화를 최소화할 수 있다.
이하에서는 본 발명에 따른 "폴리이미드 필름", "폴리이미드 필름의 제조 방법" 및 "연성동박적층판"의 순서로 발명의 실시 형태를 보다 상세하게 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
폴리이미드 필름
본 발명에 따른 폴리이미드 필름은,
피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA), 바이페닐테트라카르복실릭디안하이드라이드(biphenyltetracarboxylic dianhydride; BPDA), 벤조페논테트라카르복실릭디안하이드라이드(benzophenonetetracarboxylic dianhydride; BTDA) 및 옥시디프탈릭안하이드라이드(oxydiphthalic anhydride; ODPA)로 이루어진 군에서 선택되는 적어도 3종의 방향족 디안하이드라이드 단량체; 및
파라페닐렌디아민(p-phenylenediamine; p-PDA)과 함께, 카르복실산 작용기를 갖는 디아민 및 카르복실산 작용기 미포함의 디아민을 포함하는 방향족 디아민 단량체;를 포함하는 단량체 혼합물의 중합에서 유래된 폴리아믹산을 이미드화하여 제조된 것을 특징으로 한다.
이러한 폴리이미드 필름은,
(a) 온도에 대한 저장탄성률의 변곡점을 340℃ 초과의 범위에서 가지며;
(b) 유리전이온도(Tg)가 350℃ 이상이고;
(c) 열팽창계수가 7 ppm/℃ 이상 내지 15 ppm/℃ 이하일 수 있다.
이와 관련하여, 위 3개의 조건들을 모두 만족하는 폴리이미드 필름의 경우, 이를 사용하여 연성동박적층판을 제조할 때 치수 변화를 현저하게 억제하는 효과를 가진다.
이들 3개의 조건들을 모두 갖는 폴리이미드 필름은 지금까지 알려지지 않은 신규한 폴리이미드 필름으로서, 이하에서 상기 3개의 조건들에 대해서 상세하게 설명한다.
<저장탄성률의 변곡점>
본 발명에 따른 폴리이미드 필름의 저장탄성률의 변곡점은 라미네이트법으로 금속박을 접합시킬 때의 열응력 완화의 관점에서 340℃ 초과 내지 370℃의 범위 내에 존재하는 것이 바람직할 수 있다.
여기서 저장탄성률의 변곡점이 상기 범위보다도 낮은 경우, 라미네이트 시 폴리이미드 필름이 과도하게 느슨해지면서 라미네이트 종료 후 폴리이미드 필름 표면에 너울이나 주름 등 외관 결함이 형성될 가능성이 높다.
또한, 상기 경우는, 라미네이트에 의한 열 인가 이후, 즉 접착이 완료된 시점에서도 폴리이미드 필름에 내재된 잔류 열량에 의해 폴리이미드 필름의 코어층의 연화가 개시되면서 치수 변화를 크게 하는 원인이 될 수 있다.
반대로, 상기 범위보다도 높은 경우, 코어층의 연화가 시작되는 온도가 너무 높기 때문에 라미네이트를 행할 때, 열응력이 충분히 완화되지 않고, 역시 치수 변화가 악화되는 원인이 될 수 있다.
보다 상세하게는, 상기 저장탄성률의 변곡점이 340℃ 이상 내지 360℃ 이하의 범위 내에서 존재하는 것이 특히 바람직할 수 있다.
<유리전이온도>
본 발명에서 유리전이온도는 동적 점탄성 측정 장치(DMA)에 의해 측정한 저장탄성률과 손실탄성률로부터 구할 수 있으며, 상세하게는 산출된 손실탄성률을 저장탄성률로 나눈 값인 tan δ의 탑 피크(top peak)를 유리전이온도로 산정할 수 있다.
본 발명에 따른 폴리이미드 필름에서는 유리전이온도(Tg)가 350℃ 이상일 수 있으며, 바람직하게는 360℃ 이상 내지 380℃ 이하일 수 있고, 특히 바람직하게는 360℃ 이상 내지 370℃ 이하일 수 있다.
유리전이온도가 상기 범위보다도 낮은 경우, 라미네이트를 행할 때, 폴리이미드 필름의 점성이 상대적으로 높은 상태이므로 큰 치수 변화가 수반될 수 있다. 이는 외관 품질을 저해하는 원인이므로 바람직하지 않다.
반면 유리전이온도가 상기 범위보다도 높은 경우, 열왜곡을 완화시키는데 충분한 수준까지 코어층을 연화시키기 위해서 필요한 온도가 지나치게 높아져 기존의 라미네이트 장치로는 열응력을 충분히 완화시킬 수 없고, 치수 변화가 악화될 가능성이 있다. 즉, 상기 범위를 벗어나는 경우, 저장탄성률의 변곡점과 마찬가지로 치수 변화가 악화되는 원인이 될 수 있다.
<열팽창계수>
금속박과 라미네이트 시, 열왜곡 발생을 억제하기 위해서는, 300℃ 내지 350℃에서의 폴리이미드 필름의 열팽창 계수가 금속박의 열팽창 계수와 동일한 것이 가장 이상적이다. 다만, 폴리이미드 필름의 열팽창 계수를 금속박과 동일하게 설정하는 것이 현실적으로 용이하지 않으며, 열왜곡 발생을 억제한다는 측면에서, 폴리이미드 필름의 열팽창 계수와 금속박의 열팽창 계수와의 차가 ±10 ppm 이내, 상세하게는 ±5 ppm 이내가 되는 것이 바람직하다.
그러나, 폴리이미드 필름과 금속박 사이에서 접착성을 가지는 접착층이 형성될 때, 상기 접착층의 열팽창계수와의 차이도 고려해야 할 것이다.
따라서, 열가소성 폴리이미드를 접착층으로 사용할 경우에, 상기 폴리이미드 필름의 340℃에서의 열팽창계수가 7 ppm/℃ 이상일 때 치수 변화가 최소화될 수 있고, 그 미만에서는 금속박 및 접착층과의 관계에서 치수 변화가 과도하게 나타나 외관 불량을 유발할 수 있다.
또한, 이 경우에도 열팽창계수는 15 ppm/℃ 이하가 바람직하며, 이를 초과할 때에는 MD와 TD 방향으로 팽창 정도가 과도하여 역시 외관 불량을 유발할 수 있다. 이에 대해 보다 바람직한 범위는 열팽창계수가 8 ppm/℃ 이상 내지 13 ppm/℃ 이하, 특히 바람직하게는 8 ppm/℃ 이상 내지 12 ppm/℃ 이하일 수 있다.
이상에서 살펴본 바와 같이, 본 발명에 따른 폴리이미드 필름은, 상기한 3개의 조건들을 모두 만족함에 따라, 연성동박적층판을 제조할 때에 발생되는 치수 변화를 효과적으로 억제할 수 있다.
이상의 조건들을 갖는 폴리이미드 필름에 대한 본 발명의 구현예로서, 디안하이드라이드 단량체의 종류, 디아민 단량체의 종류 및 이들의 배합비는 이하의 비제한적인 예들을 통해 상세하게 설명한다.
하나의 구체적인 예에서, 상기 단량체 혼합물은, 상기 파라페닐렌디아민(p-PDA)이 상기 디아민 단량체 전체 몰수를 기준으로, 55 몰% 이상 내지 80 몰%이하이고,
상기 카르복실산 작용기를 갖는 디아민이 상기 디아민 단량체 전체 몰수를 기준으로, 5 몰% 이상 내지 15 몰%이하이며,
상기 카르복실산 작용기 미포함의 디아민이 상기 디아민 단량체 전체 몰수를 기준으로, 15 몰% 이상 내지 40 몰%이하일 수 있다.
상기 파라페닐렌디아민은, 2개의 NH2기 사이에 주쇄에 굴곡성이 없는 강직한 구조를 가지며, 최종적으로 수득되는 폴리이미드 필름을 비열가소성으로 제조할 수 있다는 점에서 바람직하다.
또한, 폴리이미드 필름의 고탄성률에는 강직한 구조의 단량체, 즉 직선성이 높은 모노머를 사용하는 것이 좋다는 것은 널리 알려진 것이다.
다만, 이러한 강직한 구조를 가지는 파라페닐렌디아민을 다량 사용하는 경우, 폴리이미드 필름의 선팽창계수는 지나치게 저하될 수 있으므로, 본 발명에서는 디아민 단량체로서, 카르복실산 작용기를 갖는 디아민과 미포함의 디아민을 더 포함하는 점에 주목해야 한다.
상기한 바대로 강직한 구조를 가지는 디아민 단량체인 파라페닐렌디아민의 사용 비율이 상기 범위를 상회하면, 얻어지는 필름의 유리전이온도가 지나치게 높아지고, 고온 영역의 저장탄성률이 거의 저하되지 않으며, 선팽창계수가 지나치게 작아지게 된다는 폐해가 발생할 수 있다. 반대로, 이 범위를 하회하면, 상기한 폐해와는 정반대의 폐해가 발생할 수 있다. 이는 후술하는 카르복실산 작용기를 갖는 디아민과 카르복실산 작용기 미포함의 디아민의 사용 비율에도 유사하게 적용된다.
상기 카르복실산 작용기를 갖는 디아민은, 3,5-디아미노벤조산(diaminobenzoic acid; DABA) 및 4,4-디아미노바이페닐-3,3-테트라카르복실산(diaminobiphenyl-3,3-tetracarboxylic acid; DATA)으로 이루어진 그룹으로부터 선택된 1 종 이상일 수 있으며, 상세하게는 폴리이미드 필름의 기계적 물성, 구체적으로 저장탄성률을 개선하는데 유리할 수 있는 3,5-디아미노벤조산(DABA)일 수 있다.
상기 카르복실산 작용기 미포함의 디아민은, 옥시디아닐린(4,4'-oxydianiline; ODA), m-페닐렌디아민(phenylenediamine; m-PDA), p-메틸렌 디아민(p-methylenediamine; p-MDA) 및 메타메틸렌디아민(m-methylenediamine; m-MDA)으로 이루어진 그룹으로부터 선택된 1 종 이상일 수 있으며, 상세하게는, 옥시디아닐린(ODA)일 수 있다.
상기 옥시디아닐린은 에테르기를 가지는 유연한 구조의 디아민 단량체로서, 폴리이미드 필름에 적절한 선팽창계수를 부여할 수 있다.
하나의 구체적인 예에서, 상기 단량체 혼합물은 상기 방향족 디안하이드라이드 단량체로서, 상기 피로멜리틱디안하이드라이드(PMDA) 및 상기 바이페닐테트라카르복실릭디안하이드라이드(BPDA)로 구성된 주성분을 포함하고,
상기 벤조페논테트라카르복실릭디안하이드라이드(BTDA) 및 상기 옥시디프탈릭안하이드라이드(ODPA) 중에서 선택되는 1종의 부성분을 더 포함할 수 있다.
즉, 본 발명에서 방향족 디안하이드라이드 단량체는 총 3종의 디안하이드라이드 단량체들을 포함하며, 피로멜리틱디안하이드라이드(PMDA) 및 바이페닐테트라카르복실릭디안하이드라이드(BPDA) 중 어느 하나의 일부가 부성분인 벤조페논테트라카르복실릭디안하이드라이드(BTDA) 또는 옥시디프탈릭안하이드라이드(ODPA)로 대체되는 것에 특징이 있다.
디아민 단량체와 마찬가지로, 디안하이드라이드 단량체에 대해서도 유연한 구조를 가지는 디안하이드라이드와 강직한 구조를 가지는 디안하이드라이드로 분류할 수 있다.
여기서, 상대적으로 유연한 구조를 가지는 디안하이드라이드의 경우, 바이페닐테트라카르복실릭디안하이드라이드(BPDA)을 예로들 수 있으며, 선택적으로 포함되는 벤조페논테트라카르복실릭디안하이드라이드(BTDA)와 옥시디프탈릭안하이드라이드(ODPA) 역시 유연한 구조를 가지는 디안하이드라이드로 분류할 수 있다.
상대적으로 강직한 구조를 가지는 디안하이드라이드의 경우, 피로멜리틱디안하이드라이드(PMDA)를 예로들 수 있다. 즉, 유연한 구조를 가지는 디안하이드라이드인 바이페닐테트라카르복실릭디안하이드라이드(BPDA)와 강직한 구조를 가지는 디안하이드라이드인 피로멜리틱디안하이드라이드(PMDA)를 포함하는 주성분을 이용하여, 폴리이미드 필름의 저장탄성률과 열팽창계수를 적정선으로 유도할 수 있다.
다만, 이상을 달성하기 위해, 상기 부성분은 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로 5몰% 이상 내지 30몰% 이하이고, 상기 주성분은, 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로 70몰% 이상 내지 95몰% 이하일 수 있다.
더욱 상세하게는, 상기 부성분의 사용 비율은 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로, 10몰% 이상 내지 20몰% 이하이고, 상기 주성분은, 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로, 80몰% 이상 내지 90몰% 이하일 수 있다.
또한, 주성분에서도 상기 바이페닐테트라카르복실릭디안하이드라이드(BPDA)에 대한 상기 피로멜리틱디안하이드라이드(PMDA)의 몰비(=PMDA/BPDA)가 0.45 초과 내지 1.25 이하가 바람직하며, 특히 상기 바이페닐테트라카르복실릭디안하이드라이드(BPDA)에 대한 상기 피로멜리틱디안하이드라이드(PMDA)의 몰비(=PMDA/BPDA)가 0.6 이상 내지 0.8 이하가 바람직할 수 있다.
참고로 본 발명에서 주성분과 부성분은, 상대적으로 더 많은 몰%를 차지하는 단량체와 상대적으로 적은 몰%을 차지하는 단량체를 명확하게 구분하기 위한 것일 뿐, 반응을 주도하는 단량체와 그렇지 않은 단량체로 이분하는 개념은 아니다.
한편, 하나의 구체적인 예에서, 상기 폴리아믹산은 고분자 사슬 중에, 순차적인 중합반응에서 유래된 상이한 분자 구조의 부분쇄를 2종이상 포함할 수 있다. 이에 대해서는 이하에 설명하는 폴리이미드 필름의 제조방법에서 보다 구체적으로 설명할 것이다.
폴리이미드 필름의 제조방법
본 발명의 폴리이미드 필름은 폴리이미드의 전구체인 폴리아믹산으로부터 얻어진다.
본 발명에 따른 폴리아믹산은 방향족 디아민 단량체과 방향족 디안하이드라이드 단량체가 실질적으로 등몰량이 되도록 배합된 단량체 혼합물을 유기 용매 중에 용해시키고 얻어진 폴리아믹산 유기 용매 용액을 제어된 온도 조건하에서 상기 방향족 디안하이드라이드 단량체와 상기 방향족 디아민 단량체의 중합이 완료될 때까지 교반함으로써 제조된다.
폴리아믹산은 통상 고형분 함량이 7 중량% 내지 25 중량%, 바람직하게는 10 중량% 내지 20 중량%의 농도로 얻어진다. 이 범위의 농도인 경우, 폴리아믹산은 적당한 분자량과 용액 점도를 얻는다.
폴리아믹산을 제조하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있지만, 아미드계 용매인 것이 바람직하다. 구체적으로는, 상기 용매는 비양성자성 극성 용매(aprotic polar solvent)일 수 있고, 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc), N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2종 이상 조합해서 사용할 수 있다. 하나의 예에서, 상기 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 특히 바람직하게 사용될 수 있다.
본 발명의 폴리이미드 필름은 원료 단량체인 방향족 디아민 단량체 및 방향족 디안하이드라이드 단량체의 조성뿐만 아니라, 단량체 첨가 순서를 제어하여 여러 물성들을 조절할 수 있다.
이에 대한 하나의 구체적인 예에서, 상기 폴리이미드 필름을 제조하는 방법은 구체적으로,
상기 방향족 디안하이드라이드 단량체 대비 상기 방향족 디아민 단량체가 과량으로 포함된 단량체 혼합물을 중합하여 제1폴리아믹산을 제조하는 단계;
중합이 종료된 후 잔류 단량체와 폴리아믹산의 혼합물에 방향족 디아민 단량체 및 방향족 디안하이드라이드 단량체를 추가로 투입하여, 이전 단계의 단량체 혼합물과 단량체 조성이 상이한 단량체 혼합물을 제조하고, 중합하여 이전 단계에서 제조된 폴리아믹산의 말단에 조성이 상이한 부분쇄를 연장하는 단계;
중합이 종료된 후 잔류 단량체와 폴리아믹산의 혼합물에, 방향족 디안하이드라이드 단량체를 추가로 혼합하여, 방향족 디안하이드라이드 단량체와 방향족 디아민 단량체가 실질적으로 등몰을 이루는 최종 단량체 혼합물을 제조하고, 중합하여 최종 폴리아믹산을 제조하는 단계; 및
상기 최종 폴리아믹산을 지지체에 제막한 후, 이미드화하여 폴리이미드 필름을 수득하는 단계를 포함할 수 있으며, 상기 단량체 혼합물은 상기 아미드계 용매를 포함할 수 있다.
이러한 제조방법에서, 소망하는 물성을 얻기 위하여, 부분쇄의 종류 및 부분쇄 연장 횟수를 변경할 수 있으며, 상세하게는 상기 부분쇄를 연장하는 단계를 1회 이상 내지 4회 이하로 반복할 수 있다.
즉, 중합과 단량체 투입을 교번하되, 중합마다 상이한 조성을 갖는 단량체 조성물을 중합하여, 중합마다 상이한 단량체 조성을 갖는 부분쇄의 형성을 유도하고, 상기 부분쇄의 형성을 순차적으로 제어할 수 있다.
따라서, 중합이 최종 완료된 폴리아믹산은, 그것의 고분자 사슬 중에 상이한 단량체 조성을 갖는 2종 이상의 부분쇄들이 포함될 수 있다.
상기 최종 폴리아믹산을 제조하는 단계에서, 상기 제1폴리아믹산에 추가로 혼합되는 상기 디안하이드라이드 단량체는 피로멜리틱디안하이드라이드(PMDA)일 수 있다.
한편, 상기 폴리이미드 필름의 제조방법"에서는 접동성, 열전도성, 도전성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 충전재를 첨가할 수도 있다. 첨가되는 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.
충전재의 입경은 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류과 따라서 결정하면 된다. 일반적으로는, 평균 입경이 0.05 ㎛ 내지 100 ㎛, 바람직하게는 0.1 ㎛ 내지 75 ㎛, 더욱 바람직하게는 0.1 ㎛ 내지 50 ㎛, 특히 바람직하게는 0.1 ㎛ 내지 25 ㎛이다.
입경이 이 범위를 하회하면 개질 효과가 나타나기 어려워지고, 이 범위를 상회하면 표면성을 크게 손상시키거나, 기계적 특성이 크게 저하되는 경우가 있다.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정하면 된다. 일반적으로, 충전재의 첨가량은 폴리이미드 100 중량부에 대하여 0.01 중량부 내지 100 중량부, 바람직하게는 0.01 중량부 내지 90 중량부, 더욱 바람직하게는 0.02 중량부 내지 80 중량부이다.
충전재 첨가량이 이 범위를 하회하면, 충전재에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 필름의 기계적 특성이 크게 손상될 가능성이 있다. 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.
상기한 바와 같이 제조한 폴리아믹산을 이미드화하여 폴리이미드 필름을 제조하는 방법에 대해서는, 종래 공지된 방법을 사용할 수 있다. 구체적으로는 열 이미드화법 및 화학 이미드화법을 들 수 있다.
열 이미드화법은 탈수 폐환제 등을 작용시키지 않고, 가열만으로 이미드화 반응을 진행시키는 방법이다.
한편, 화학 이미드화법은 폴리아믹산에 화학 전환제 및/또는 이미드화 촉매를 작용시켜 이미드화를 촉진하는 방법이다.
여기서 "화학 전환제"란, 폴리아믹산에 대한 탈수 폐환제를 의미하고, 예를 들면 지방족 산 무수물, 방향족 산 무수물, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 지방산 무수물, 아릴포스폰산디할로겐화물, 및 티오닐할로겐화물, 또는 이들 2종 이상의 혼합물을 들 수 있다. 그 중에서도 입수의 용이성, 및 비용의 관점에서 아세트산 무수물, 프로피온산 무수물, 및 락트산 무수물 등의 지방족 산 무수물, 또는 이들 2종 이상의 혼합물을 바람직하게 사용할 수 있다.
또한, "이미드화 촉매"란 폴리아믹산에 대한 탈수 폐환 작용을 촉진하는 효과를 갖는 성분을 의미하고, 예를 들면 지방족 3급 아민, 방향족 3급 아민, 및 복소환식 3급 아민 등이 이용된다. 그 중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민으로부터 선택되는 것이 특히 바람직하게 이용된다. 구체적으로는 퀴놀린, 이소퀴놀린, β-피콜린, 피리딘 등이 바람직하게 이용된다.
열 이미드화법 및 화학 이미드화법 중 어느 방법을 이용하여도 필름을 제조할 수도 있지만, 화학 이미드화법이 본 발명에 바람직하게 이용되는 여러 가지 특성을 가진 폴리이미드 필름을 얻기 쉬운 경향이 있다.
상기 이미드화 공정에서 화학 이미드화법을 이용하는 경우, 상기 이미드화 공정은 상기 폴리아믹산을 포함하는 제막용 조성물을 지지체 상에 도포하고, 지지체 상에서 가열하여 겔 필름을 형성하고, 지지체로부터 겔 필름을 박리하는 공정 및 상기 겔 필름을 더욱 가열하여, 남은 아미드산(amic acid)을 이미드화하고 건조시키는 공정(이하, "소성 과정"이라고도 함)을 포함하는 것이 바람직하다.
이하에 상기한 각 공정에 대해서 상세히 설명한다.
겔 필름 제조하기 위해서는, 우선 화학 전환제 및/또는 이미드화 촉매를 저온으로 폴리아믹산 중에 혼합하여 제막용 조성물을 얻는다.
상기 화학 전환제 및 이미드화 촉매는 특별히 한정되는 것은 아니지만, 상기 예시한 화합물을 선택하여 사용할 수 있다. 또한, 상기 겔 필름 제조 공정에서는 화학 전환제 및 이미드화 촉매를 포함하는 경화제를 이용하여, 폴리아믹산 중에 혼합하여 제막용 조성물을 얻을 수도 있다.
화학 전환제의 첨가량은 폴리아믹산 중 아미드산 유닛 1 몰에 대하여 0.5 몰 내지 5 몰의 범위 내인 것이 바람직하고, 1.0 몰 내지 4 몰의 범위 내인 것이 보다 바람직하다. 또한, 이미드화 촉매의 첨가량은 폴리아믹산 중 아미드산 유닛 1 몰에 대하여 0.05 몰 내지 2 몰의 범위 내인 것이 바람직하고, 0.2 몰 내지 1 몰의 범위 내인 것이 특히 바람직하다.
화학 전환제 및 이미드화 촉매가 상기 범위를 하회하면 화학적 이미드화가 불충분하고, 소성 도중에 파단되거나, 기계적 강도가 저하되는 경우가 있다. 또한, 이들 양이 상기 범위를 상회하면 이미드화가 빠르게 진행되어, 필름형으로 캐스팅하는 것이 곤란해지는 경우가 있기 때문에 바람직하지 않다.
한편, 다음으로 상기 제막용 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅한다. 그 후, 지지체 상에서 제막용 조성물을 60℃ 내지 200℃, 바람직하게는 80℃ 내지 180℃의 온도 영역에서 가열한다. 이와 같이 함으로써, 화학 전환제 및 이미드화 촉매가 활성화되고, 부분적으로 경화 및/또는 건조가 일어남으로써, 겔 필름이 형성된다. 그 후, 지지체로부터 박리하여 겔 필름을 얻는다.
상기 겔 필름은 폴리아믹산으로부터 폴리이미드에의 경화의 중간 단계에 있고, 자기 지지성을 갖는다. 상기 겔 필름의 휘발분 함량은 5 중량% 내지 500 중량%의 범위 내인 것이 바람직하고, 5 중량% 내지 200 중량%의 범위 내인 것이 보다 바람직하며, 5 중량% 내지 150 중량%의 범위 내인 것이 특히 바람직하다. 휘발분 함량이 이 범위 내에 있는 겔 필름을 이용함으로써, 소성 공정에서 발생하는 필름 파단, 건조 얼룩에 의한 필름의 색조 얼룩, 특성 변동 등의 결점을 회피할 수 있다.
연성동박적층판
본 발명은, 상술한 폴리이미드 필름 및 동박을 포함하는, 연성동박적층판을 제공한다. 본 발명은 또한, 상기 연성동박적층판을 포함하는 전자 장치를 제공한다. 여기서, 상기 전자 장치는, 미소 회로를 가짐으로써 연성동박적층판을 회로기판으로 포함할 수 있는 전자 장치라면 특별히 한정되지 않는다.
본 발명에 따른 연성동박적층판은, 상기 폴리이미드 필름의 일면에 동박이 라미네이트되어 있거나,
상기 폴리이미드 필름의 일면에 열가소성 폴리이미드를 함유하는 접착층이 부가되어 있고, 동박이 접착층에 부착된 상태에서 라미네이트되어 있는 구조일 수 있다.
본 발명에서 상기 동박의 두께에 대해서는 특별히 한정되는 것은 아니고, 그 용도에 따라서 충분한 기능을 발휘할 수 있는 두께일 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시예 1>
반응계 내를 10℃로 유지한 상태에서 DMF에 DABA, ODA, 및 BPDA를 하기 표 1에 나타낸 몰비로 첨가하고, 1시간동안 교반을 행하여 제1폴리아믹산을 제조하였다. 용해된 것을 육안으로 확인한 후, p-PDA를 표 1에 나타낸 몰비로 첨가하고 용해 시킨 후 BTDA을 표 1에 나타낸 몰비로 첨가하고, 1시간동안 교반을 행하여 제1폴리아믹산의 말단에 조성이 상이한 부분쇄를 연장하였다.
계속해서, PMDA를 표 1의 PMDA에 나타낸 몰비만큼 첨가하여, 방향족 디안하이드라이드 단량체와 방향족 디아민 단량체가 실질적으로 등몰을 이루도록 하고, 1시간 동안 교반하여, 점도가 1500 푸아즈(poise)에 도달한 시점에서 중합을 종료하여 최종 폴리아믹산을 제조 하였다.
이렇게 수득된 최종 폴리아믹산에 아세트산 무수물/이소퀴놀린/DMF(중량비46&/13%/41%)를 포함하는 이미드화 촉진제를 폴리아믹산 100 중량부를 기준으로 50 중량부로 첨가하고, 얻어진 혼합물을 스테인리스판에 도포 후 닥터블레이드를 사용해 400 ㎛ 갭을 사용해 캐스팅한 후 120℃ 오븐에서 열풍으로 4분간 건조하여 겔필름을 제조하였다.
이렇게 제조된 겔필름을 스테인리스 판으로부터 떼어내어 프레임 핀으로 고정한 후 겔 필름이 고정된 프레임을 400℃에서 7분간 열처리한 후에 필름을 떼어내어 평균 두께가 15 ㎛인 폴리이미드 필름을 얻었다.
<실시예 2>
PMDA와 BTDA의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
<실시예 3>
PMDA와 BTDA의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
<실시예 4>
BTDA 대신 ODPA를 사용하여 표 1과 같이 조성을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
<실시예 5>
PMDA와 ODPA의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 4와 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
<실시예 6>
PMDA와 ODPA의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 4와 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
<비교예 1>
반응계 내를 10℃로 유지한 상태에서 DMF에 DABA, ODA, 및 BPDA를 하기 표 1에 나타낸 몰비로 첨가하고, 1시간 동안 교반을 행하였다. 용해된 것을 육안으로 확인한 후, p-PDA와 PMDA를 표 1에 나타낸 몰비로 첨가하고 용해 시킨 후, 20℃에서 1시간 동안 교반을 행하여 점도가 1500 푸아즈에 도달한 시점에서 중합을 종료하여 최종 폴리아믹산을 제조하였다.
이렇게 수득된 폴리아믹산에 아세트산 무수물/이소퀴놀린/DMF(중량비46&/13%/41%)를 포함하는 이미드화 촉진제를 폴리아믹산 100 중량부를 기준으로 50 중량부로 첨가하고, 얻어진 혼합물을 스테인리스판에 도포 후 닥터블레이드를 사용해 400㎛ 갭을 사용해 캐스팅한 후 120℃ 오븐에서 열풍으로 4분간 건조하여 겔필름을 제조하였다.
이렇게 제조된 겔필름을 스테인리스 판으로부터 떼어내어 프레임 핀으로 고정한 후 겔 필름이 고정된 프레임을 400℃에서 7분간 열처리한 후에 필름을 떼어내어 평균 두께가 15 ㎛인 폴리이미드 필름을 얻었다.
<비교예 2>
반응계 내를 10℃로 유지한 상태에서 DMF에 ODA, DABA, p-PDA 및 BPDA를 하기 표 1에 나타낸 몰비로 첨가하고, 교반을 행하였다. 용해된 것을 육안으로 확인한 후, 20℃에서 1 시간 동안 교반을 행하여 점도가 1500 푸아즈에 도달한 시점에서 중합을 종료하였다.
이렇게 수득된 폴리아믹산에 아세트산 무수물/이소퀴놀린/DMF(중량비46&/13%/41%)를 포함하는 이미드화 촉진제를 폴리아믹산 100 중량부를 기준으로 50 중량부로 첨가하고, 얻어진 혼합물을 스테인리스판에 도포 후 닥터블레이드를 사용해 400 ㎛ 갭을 사용해 캐스팅한 후 120℃ 오븐에서 열풍으로 4분간 건조하여 겔필름을 제조하였다.
이렇게 제조된 겔필름을 스테인리스 판으로부터 떼어내어 프레임 핀으로 고정한 후 겔 필름이 고정된 프레임을 400℃에서 7분간 열처리한 후에 필름을 떼어내어 평균 두께가 15 ㎛인 폴리이미드 필름을 얻었다.
<비교예 3>
반응계 내를 25℃로 유지한 상태에서 DMF에 ODA, p-PDA 및 BPDA를 하기 표 1에 나타낸 몰비로 첨가하고, 교반을 행하였다. 용해된 것을 육안으로 확인한 후, 20℃에서 1 시간 동안 교반을 행하여 점도가 1500 푸아즈에 도달한 시점에서 중합을 종료하였다.
이렇게 수득된 폴리아믹산에 아세트산 무수물/이소퀴놀린/DMF(중량비46&/13%/41%)를 포함하는 이미드화 촉진제를 폴리아믹산 100 중량부를 기준으로 50 중량부로 첨가하고, 얻어진 혼합물을 스테인리스판에 도포 후 닥터블레이드를 사용해 400 ㎛ 갭을 사용해 캐스팅한 후 120℃ 오븐에서 열풍으로 4분간 건조하여 겔필름을 제조하였다.
이렇게 제조된 겔필름을 스테인리스 판으로부터 떼어내어 프레임 핀으로 고정한 후 겔 필름이 고정된 프레임을 400℃에서 7분간 열처리한 후에 필름을 떼어내어 평균 두께가 15 ㎛인 폴리이미드 필름을 얻었다.
<비교예 4>
PMDA, BPDA 및 BTDA의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
<비교예 5>
PMDA, BPDA 및 ODPA의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 4와 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.
디안하이드라이드 단량체 (몰%) 디아민 단량체 (몰%)
PMDA BPDA BTDA ODPA p-PDA ODA DABA
실시예 1 30 50 20 0 65 20 15
실시예 2 35 50 15 0 65 20 15
실시예 3 40 50 10 0 65 20 15
실시예 4 30 50 0 20 65 20 15
실시예 5 35 50 0 15 65 20 15
실시예 6 40 50 0 10 65 20 15
비교예 1 50 50 0 0 65 20 15
비교예 2 0 100 0 0 65 20 15
비교예 3 0 100 0 0 65 35 0
비교예 4 20 40 40 0 65 20 15
비교예 5 20 40 0 40 65 20 15
<실험예 1>
실시예 1 내지 실시예 6 및 비교예 1 내지 비교예 5에서 각각 제조한 폴리이미드 필름에 대해서, DMA 를 사용하여 저장탄성률 변곡점, 유리전이온도(Tg) 값을 측정하고 그 결과를 하기 표 2에 나타내었다.
또한, TMA를 사용하여 각 폴리이미드 필름의 열팽창계수를 측정하였고, 그 결과도 표 2에 나타내었다.
유리전이온도 (℃) 변곡점(℃) 열팽창계수(ppm/℃)
실시예 1 369 355 11
실시예 2 367 352 10
실시예 3 366 350 9
실시예 4 365 354 10
실시예 5 365 353 9
실시예 6 363 353 8
비교예 1 369 355 6
비교예 2 323 311 11
비교예 3 290 278 14
비교예 4 352 336 20
비교예 5 346 331 18
표 2를 참조하면, 실시예 1 내지 실시예 6에 따른 폴리이미드 필름의 경우, 하기 조건들을 모두 만족하는 것을 알 수 있다.
반면, 비교예 1 및 비교예 5의 경우, 하기 조건들 중 적어도 하나가 충족되지 아니함을 알 수 있다.
(a) 온도에 대한 저장탄성률의 변곡점이 340℃ 초과의 범위에 존재
(b) 유리전이온도(Tg)가 350℃ 이상
(c) 열팽창계수가 7 ppm/℃ 이상 내지 15 ppm/℃ 이하
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명은 특정 디안하이드라이드 단량체들과, 디아민 단량체들의 조합 및 이들의 특정한 배합비에 기인하여, 소망하는 유리전이온도를 가지면서도 고온에서 높은 저장탄성률을 내재하며, 이외에도 열응력을 완화하여 치수 변화를 최소화할 수 있는 폴리이미드 필름을 제공할 수 있다.
본 발명은 또한, 상기와 같은 폴리이미드 필름을 포함하여 외관 품질이 우수한 연성동박적층판을 제공할 수 있다.

Claims (19)

  1. 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA), 바이페닐테트라카르복실릭디안하이드라이드(biphenyltetracarboxylic dianhydride; BPDA), 벤조페논테트라카르복실릭디안하이드라이드(benzophenonetetracarboxylic dianhydride; BTDA) 및 옥시디프탈릭안하이드라이드(oxydiphthalic anhydride; ODPA)로 이루어진 군에서 선택되는 적어도 3종의 방향족 디안하이드라이드 단량체; 및
    파라페닐렌디아민(p-phenylenediamine; p-PDA)과 함께, 카르복실산 작용기를 갖는 디아민 및 카르복실산 작용기 미포함의 디아민을 포함하는 방향족 디아민 단량체를 포함하는 단량체 혼합물의 중합에서 유래된 폴리아믹산을 이미드화하여 제조되는, 폴리이미드 필름.
  2. 제1항에 있어서,
    상기 단량체 혼합물은 상기 방향족 디안하이드라이드 단량체로서, 상기 피로멜리틱디안하이드라이드(PMDA) 및 상기 바이페닐테트라카르복실릭디안하이드라이드(BPDA)로 구성된 주성분을 포함하고,
    상기 벤조페논테트라카르복실릭디안하이드라이드(BTDA) 및 상기 옥시디프탈릭안하이드라이드(ODPA) 중에서 선택되는 1종의 부성분을 더 포함하는, 폴리이미드 필름.
  3. 제2항에 있어서,
    상기 부성분은, 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로 5 몰% 이상 내지 30 몰% 이하이고,
    상기 주성분은, 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로 70 몰% 이상 내지 95 몰% 이하인, 폴리이미드 필름.
  4. 제3항에 있어서,
    상기 부성분은, 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로, 10 몰% 이상 내지 20 몰% 이하이고,
    상기 주성분은, 상기 방향족 디안하이드라이드 단량체의 전체 몰수를 기준으로, 80 몰% 이상 내지 90 몰% 이하인, 폴리이미드 필름.
  5. 제2항에 있어서,
    상기 바이페닐테트라카르복실릭디안하이드라이드(BPDA)에 대한 상기 피로멜리틱디안하이드라이드(PMDA)의 몰비(=PMDA/BPDA)가 0.45 초과 내지 1.25 이하인, 폴리이미드 필름.
  6. 제2항에 있어서,
    상기 바이페닐테트라카르복실릭디안하이드라이드(BPDA)에 대한 상기 피로멜리틱디안하이드라이드(PMDA)의 몰비(=PMDA/BPDA)가 0.6 이상 내지 0.8 이하인, 폴리이미드 필름.
  7. 제1항에 있어서,
    상기 단량체 혼합물은, 상기 파라페닐렌디아민(p-PDA)이 상기 디아민 단량체 전체 몰수를 기준으로, 55 몰% 이상 내지 80 몰%이하이고,
    상기 카르복실산 작용기를 갖는 디아민이 상기 디아민 단량체 전체 몰수를 기준으로, 5 몰% 이상 내지 15 몰%이하이며,
    상기 카르복실산 작용기 미포함의 디아민이 상기 디아민 단량체 전체 몰수를 기준으로, 15 몰% 이상 내지 40 몰%이하인, 폴리이미드 필름.
  8. 제1항에 있어서,
    상기 카르복실산 작용기를 갖는 디아민은, 3,5-디아미노벤조산(diaminobenzoic acid; DABA) 및 4,4-디아미노바이페닐-3,3-테트라카르복실산(diaminobiphenyl-3,3-tetracarboxylic acid; DATA)으로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는, 폴리이미드 필름.
  9. 제8항에 있어서,
    상기 카르복실산 작용기를 갖는 디아민은, 3,5-디아미노벤조산(DABA)인, 폴리이미드 필름.
  10. 제1항에 있어서,
    상기 카르복실산 작용기 미포함의 디아민은, 옥시디아닐린(4,4'-oxydianiline; ODA), m-페닐렌디아민(phenylenediamine; m-PDA), p-메틸렌 디아민(p-methylenediamine; p-MDA) 및 메타메틸렌디아민(m-methylenediamine; m-MDA)으로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는, 폴리이미드 필름.
  11. 제10항에 있어서,
    상기 카르복실산 작용기 미포함의 디아민은, 옥시디아닐린(ODA)인, 폴리이미드 필름.
  12. 제1항에 있어서,
    하기 조건(a) 내지 조건(c)을 모두 충족하는, 폴리이미드 필름:
    (a) 온도에 대한 저장탄성률의 변곡점을 340℃ 초과의 범위에서 가지며;
    (b) 유리전이온도(Tg)가 350℃ 이상이며;
    (c) 열팽창계수가 7 ppm/℃ 이상 내지 15 ppm/℃ 이하이다.
  13. 제1항에 있어서,
    상기 폴리아믹산은 고분자 사슬 중에, 순차적인 중합반응에서 유래된 상이한 단량체 조성을 갖는 부분쇄를 2종이상 포함하는, 폴리이미드 필름.
  14. 제1항에 따른 폴리이미드 필름을 제조하는 방법으로서,
    상기 방향족 디안하이드라이드 단량체 대비 상기 방향족 디아민 단량체가 과량으로 포함된 단량체 혼합물을 중합하여 제1폴리아믹산을 제조하는 단계;
    중합이 종료된 후 잔류 단량체와 폴리아믹산의 혼합물에 방향족 디아민 단량체 및 방향족 디안하이드라이드 단량체를 추가로 투입하여, 이전 단계의 단량체 혼합물과 단량체 조성이 상이한 단량체 혼합물을 제조하고, 중합하여 이전 단계에서 제조된 폴리아믹산의 말단에 조성이 상이한 부분쇄를 연장하는 단계;
    중합이 종료된 후 잔류 단량체와 폴리아믹산의 혼합물에, 방향족 디안하이드라이드 단량체를 추가로 혼합하여, 방향족 디안하이드라이드 단량체와 방향족 디아민 단량체가 실질적으로 등몰을 이루는 최종 단량체 혼합물을 제조하고, 중합하여 최종 폴리아믹산을 제조하는 단계; 및
    상기 최종 폴리아믹산을 지지체에 제막한 후, 이미드화하여 폴리이미드 필름을 수득하는 단계를 포함하는, 제조방법.
  15. 제14항에 있어서,
    상기 부분쇄를 연장하는 단계를 1회 이상 내지 4회 이하로 반복하는, 제조방법.
  16. 제14항에 있어서,
    상기 최종 폴리아믹산을 제조하는 단계에서, 추가로 혼합되는 상기 방향족 디안하이드라이드 단량체가 피로멜리틱디안하이드라이드(PMDA)인, 제조방법.
  17. 제1항에 따른 폴리이미드 필름 및 동박을 포함하는, 연성동박적층판.
  18. 제17항에 있어서,
    상기 폴리이미드 필름의 일면에 동박이 라미네이트되어 있거나,
    상기 폴리이미드 필름의 일면에 열가소성 폴리이미드를 함유하는 접착층이 부가되어 있고, 동박이 접착층에 부착된 상태에서 라미네이트되어 있는, 연성동박적층판.
  19. 제17항에 따른 연성동박적층판을 포함하는, 전자 장치.
PCT/KR2018/011398 2017-12-28 2018-09-27 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판 WO2019132184A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880081644.4A CN111491988B (zh) 2017-12-28 2018-09-27 用于制备柔性铜箔层压板的聚酰亚胺薄膜及包含其的柔性铜箔层压板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170182060A KR102055630B1 (ko) 2017-12-28 2017-12-28 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판
KR10-2017-0182060 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019132184A1 true WO2019132184A1 (ko) 2019-07-04

Family

ID=67067716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011398 WO2019132184A1 (ko) 2017-12-28 2018-09-27 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판

Country Status (4)

Country Link
KR (1) KR102055630B1 (ko)
CN (1) CN111491988B (ko)
TW (1) TWI705092B (ko)
WO (1) WO2019132184A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729137A (zh) * 2019-11-13 2022-07-08 聚酰亚胺先端材料有限公司 高弹性和高耐热聚酰亚胺膜及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346587B1 (ko) * 2019-11-13 2022-01-05 피아이첨단소재 주식회사 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
CN111154125B (zh) * 2020-01-16 2022-09-27 东莞东阳光科研发有限公司 一种黑色聚酰亚胺薄膜及其制备方法
KR102652586B1 (ko) * 2021-09-30 2024-04-01 피아이첨단소재 주식회사 기계적 강도 및 내열성이 향상된 폴리이미드 필름 및 이의 제조방법
KR20230093871A (ko) * 2021-12-20 2023-06-27 에스케이마이크로웍스 주식회사 필름, 다층전자장비 및 필름의 제조방법
CN114573811B (zh) * 2021-12-29 2023-12-22 宁波博雅聚力新材料科技有限公司 一种酰亚胺浆料、其合成方法以及含有该酰亚胺浆料的组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149856A (ja) * 1997-08-04 1999-02-23 Mitsui Chem Inc ポリイミド共重合体
JP2001261822A (ja) * 2000-03-17 2001-09-26 Hitachi Cable Ltd ポリイミドおよびその製造方法
KR20070090425A (ko) * 2006-03-02 2007-09-06 주식회사 엘지화학 금속적층판 및 그의 제조방법
KR20070091577A (ko) * 2006-03-06 2007-09-11 주식회사 엘지화학 금속적층판 및 이의 제조방법
KR20120067645A (ko) * 2010-12-16 2012-06-26 에스케이씨코오롱피아이 주식회사 폴리이미드 필름

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI327521B (en) 2005-07-27 2010-07-21 Lg Chemical Ltd Metallic laminate and method of manufacturing the same
FR2980201B1 (fr) * 2011-09-20 2014-10-24 Rhodia Operations Polyimides thermoplastiques
TWI535760B (zh) * 2014-06-30 2016-06-01 可隆股份有限公司 高耐熱聚醯胺酸溶液及聚醯亞胺薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149856A (ja) * 1997-08-04 1999-02-23 Mitsui Chem Inc ポリイミド共重合体
JP2001261822A (ja) * 2000-03-17 2001-09-26 Hitachi Cable Ltd ポリイミドおよびその製造方法
KR20070090425A (ko) * 2006-03-02 2007-09-06 주식회사 엘지화학 금속적층판 및 그의 제조방법
KR20070091577A (ko) * 2006-03-06 2007-09-11 주식회사 엘지화학 금속적층판 및 이의 제조방법
KR20120067645A (ko) * 2010-12-16 2012-06-26 에스케이씨코오롱피아이 주식회사 폴리이미드 필름

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729137A (zh) * 2019-11-13 2022-07-08 聚酰亚胺先端材料有限公司 高弹性和高耐热聚酰亚胺膜及其制造方法
CN114729137B (zh) * 2019-11-13 2023-09-26 聚酰亚胺先端材料有限公司 高弹性和高耐热聚酰亚胺膜及其制造方法

Also Published As

Publication number Publication date
CN111491988A (zh) 2020-08-04
TWI705092B (zh) 2020-09-21
KR20190079944A (ko) 2019-07-08
TW201930403A (zh) 2019-08-01
CN111491988B (zh) 2023-02-17
KR102055630B1 (ko) 2019-12-16

Similar Documents

Publication Publication Date Title
WO2019132184A1 (ko) 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2016108491A1 (ko) 가교형 수용성 열가소성 폴리아믹산을 이용한 열융착 다층 폴리이미드 필름, 및 이의 제조방법
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2020054912A1 (ko) 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2021096245A2 (ko) 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2020080598A1 (ko) 표면 품질이 개선된 고후도 폴리이미드 필름 및 이의 제조방법
WO2016108490A1 (ko) 가교형 수용성 열가소성 폴리아믹산 및 이의 제조방법
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
KR102141891B1 (ko) 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판
WO2020096410A1 (ko) 금속층과의 접착력이 향상된 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2022098042A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2020209555A1 (ko) 치수안정성 및 접착력이 우수한 다층 폴리이미드 필름 및 이의 제조방법
WO2022108296A1 (ko) 액정 분말을 포함하는 저유전 폴리아믹산, 폴리이미드 필름 및 그 제조방법
WO2020141708A1 (ko) 폴리아믹산 조성물, 및 이의 제조 방법
WO2016108675A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
WO2021107402A1 (ko) 폴리이미드 필름 및 이의 제조 방법
WO2020096364A1 (ko) 전자파 차폐성능이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896419

Country of ref document: EP

Kind code of ref document: A1