WO2019131512A1 - 電気自動車用防振装置の配設構造 - Google Patents

電気自動車用防振装置の配設構造 Download PDF

Info

Publication number
WO2019131512A1
WO2019131512A1 PCT/JP2018/047253 JP2018047253W WO2019131512A1 WO 2019131512 A1 WO2019131512 A1 WO 2019131512A1 JP 2018047253 W JP2018047253 W JP 2018047253W WO 2019131512 A1 WO2019131512 A1 WO 2019131512A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
electric vehicle
cylinder member
axis
vibration device
Prior art date
Application number
PCT/JP2018/047253
Other languages
English (en)
French (fr)
Inventor
健 岡村
Original Assignee
Toyo Tire株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire株式会社 filed Critical Toyo Tire株式会社
Publication of WO2019131512A1 publication Critical patent/WO2019131512A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports

Definitions

  • the present invention relates to an arrangement structure of an anti-vibration device for an electric vehicle, and more particularly to an arrangement structure of an anti-vibration device for an electric vehicle which can improve the durability of the anti-vibration device for an electric vehicle against a load in the horizontal direction.
  • an anti-vibration device used to support a drive source of an automobile on a vehicle body includes an inner cylindrical member formed in a cylindrical shape, an outer cylindrical member formed in a cylindrical shape surrounding the outer side of the inner cylindrical member, and It is comprised by the anti-vibration base
  • a through hole penetrating in the axial direction of the inner cylinder member to the vibration isolation substrate at a position overlapping the inner cylinder member in the gravity direction It is generally performed to suppress the dynamic spring constant from becoming higher than a predetermined value when a load within a predetermined range is loaded in the direction of gravity (Patent Document 1).
  • the load in the direction of gravity is greater than or equal to the predetermined range, and the vibration isolation substrate is deformed to collapse the inner space of the through holes (the inner surfaces of the through holes And the dynamic spring constant rapidly increases.
  • the value of torque when driven is larger than the value of torque when driving the engine. Therefore, in the electric vehicle, a large load is likely to act on the inner cylinder member as compared with the engine type vehicle. Therefore, in the electric vehicle, the dynamic spring constant of the vibration damping device is likely to be higher than that of the engine type vehicle.
  • the applicant of the present application has found that penetration of the vibration-proof substrate to a position overlapping at least the inner cylindrical member in the direction of gravity with the vibration-proof device for electric vehicle
  • the free length of the anti-vibration base in the radial direction is 0.5 times or more and not more than 1.0 times the axial length of the anti-vibration base on the side where holes are not formed and connected to the inner cylindrical member
  • the cross-sectional area of the cut surface of the vibration-proof substrate in the case where it is continuously cut along the axial direction at each position in the radial direction is set constant at each position in the radial direction.
  • the weight of the entire anti-vibration base is reduced at the bending portion, and the vibration source is driven by the driving source, so that the anti-vibration base receives vibration frequency within a predetermined range input to the anti-vibration base.
  • Natural vibration frequency of the inner cylinder member in the direction of gravity of the inner cylindrical member is not formed while suppressing the resonance of the vibration-proof substrate, thereby preventing gravity of the vibration-proof substrate against the amount of deflection of the vibration-proof substrate. It is possible to have linearity in the characteristic of directional load. As a result, it is possible to suppress an increase in the dynamic spring constant of the anti-vibration device for an electric vehicle at a predetermined range of vibration frequency input to the anti-vibration substrate by driving the drive source.
  • the present invention has been made to solve the above-described problems, and it is an anti-vibration device for an electric vehicle that can improve the durability of the anti-vibration device for an electric vehicle against a load in the horizontal direction.
  • An object of the present invention is to provide an arrangement structure of a vibration device.
  • the arrangement structure of the vibration damping device for a motor vehicle is formed into a cylindrical inner cylindrical member and a cylindrical shape surrounding the outer side of the inner cylindrical member, and the shaft of the inner cylindrical member And an outer cylinder member coaxially disposed, and an anti-vibration base constituted of a rubber-like elastic body and connecting an outer peripheral surface of the inner cylinder member and an inner peripheral surface of the outer cylinder member.
  • An arrangement structure of the anti-vibration device for an electric vehicle comprising: an anti-vibration device, and a vehicle body of the electric vehicle on which the anti-vibration device for the electric vehicle is disposed, wherein the anti-vibration device for the electric vehicle is disposed on the vehicle body
  • the antivibration device for an electric vehicle includes the holding members disposed on both sides in the axial direction of the outer cylinder member, in which the axis of the inner cylinder member and the outer cylinder member is directed horizontally.
  • the anti-vibration base is axially disposed in a region horizontally outside the inner cylindrical member.
  • a through hole to a position overlapping with the inner cylinder member is not formed, and radial freedom is provided with respect to the axial length on the side connected to the inner cylinder member.
  • the length is set to 0.5 times or more and 1.0 times or less, and the cross-sectional area of the cut surface in the case of cutting continuously along the axial direction at each position in the radial direction is constant at each position in the radial direction.
  • the characteristics of the load in the direction of gravity with respect to the amount of deflection of the vibration-proof substrate within the range of the amount of deflection up to 30% of the free length of the vibration-proof substrate have linearity.
  • an abutment portion disposed at an inner side of the curving portion at a predetermined distance from the inner surface of the rim.
  • the holding member disposed on both sides in the axial direction of the outer cylinder member is provided, and the anti-vibration device for an electric vehicle includes an inner cylinder member and an outer cylinder.
  • the vibration damping base body is provided on the vehicle body with the axis of the member oriented in the horizontal direction, and the vibration-proofing base body is provided with a ridge portion axially penetrating in a region horizontally outside the inner cylinder member, and the holding member is Since the contact portion is disposed at the inner side of the curving portion with a predetermined distance from the inner surface, the load in the horizontal direction acts on the anti-vibration device for the electric vehicle and the inner cylinder member is horizontal to the outer cylinder member. When displaced in the direction, the inner cylindrical member can be brought into contact with the contact portion. Therefore, when the load in the horizontal direction acts on the anti-vibration device for an electric vehicle, it is possible to suppress the inner cylinder member from being displaced excessively.
  • the contact portion is disposed at a predetermined distance from the inner surface of the curving portion, when a load in the direction of gravity acts on the anti-vibration device for an electric vehicle, the inner surface of the curving portion (vibration proof substrate) Can be abutted against the contact portion, and it can be suppressed that the dynamic spring constant of the automobile anti-vibration device becomes high rapidly.
  • the anti-vibration device for an electric vehicle is suppressed against a load in the horizontal direction while suppressing that the dynamic spring constant of the anti-vibration device for an electric vehicle The durability of the device can be improved.
  • the rounded portion is not formed in the region overlapping with the inner cylinder member in the direction of gravity, the inner surfaces do not abut each other as in the case of a conventional vibration-damping device in which a through hole is formed. Therefore, the characteristics of the load in the direction of gravity with respect to the amount of deflection of the vibration-proof substrate can be made linear. As a result, when a load in the direction of gravity acts on the anti-vibration device for an electric vehicle, it is possible to suppress the dynamic spring constant of the anti-vibration device for an electric vehicle from being rapidly increased.
  • the free length of the anti-vibration base in the radial direction is set to 0.5 or more times the axial length of the anti-vibration base on the side connected to the inner cylinder member.
  • the cross-sectional area of the cut surface of the vibration-proof substrate when cut continuously along the axial direction at each position in the direction is set constant at each position in the radial direction, and deflection up to 30% of the free length of the vibration-proof substrate.
  • the anti-vibration base for an electric vehicle is set such that the free length of the anti-vibration base in the radial direction is 1.0 or less times the axial length of the anti-vibration base connected to the inner cylinder member. It is possible to satisfy the required characteristics of the vehicle by suppressing the dynamic spring constant in the axial direction of the anti-vibration device for an electric vehicle from being too small.
  • the holding member is formed of a rubber-like elastic body. Because the load in the horizontal direction acts on the anti-vibration device for an electric vehicle and the inner cylinder member is displaced in the horizontal direction and abuts on the contact portion, the vibration-proof substrate or the contact portion is broken. It can be suppressed. Furthermore, the impact of the inner cylindrical member coming into contact with the contact portion can be alleviated, and the impact of the contact can be suppressed from being transmitted to the vehicle body.
  • an abutting portion and a lead portion The space between them is set to a non-contacting space when a load in the direction of gravity acts on the antivibration device for an electric vehicle and the antivibration substrate is displaced in the area of 30% of the free length.
  • the anti-vibration substrate abuts on the contact portion and the dynamic spring constant of the anti-vibration device for an electric vehicle becomes rapidly high. Can be suppressed.
  • the holding member Since the outer cylinder member is integrally formed with the stopper member which suppresses contact with other members, the cost for forming the holding member can be reduced, and the workability of arranging the contact member can be improved.
  • (A) is a side view of the anti-vibration apparatus for electric vehicles in 1st Embodiment of this invention
  • (b) is sectional drawing of the anti-vibration apparatus for electric cars in the Ib-Ib line of Fig.1 (a). It is.
  • (A) is a figure which shows the characteristic of the load concerning the anti-vibration apparatus for electric vehicles with respect to the deflection
  • (b) is an anti-vibration apparatus for electric vehicles in 1st-3rd embodiment. It is a figure which shows the relationship of the dynamic spring constant with respect to the frequency of.
  • (A) is a side view of the anti-vibration apparatus for electric vehicles in a 2nd embodiment
  • (b) is a sectional view of the anti-vibration apparatus for electric vehicles in the IIIb-IIIb line of Drawing 3 (a).
  • (A) is a side view of the vibration control apparatus for electric vehicles in 3rd Embodiment
  • (b) is sectional drawing of the vibration control apparatus for electric cars in the IVb-IVb line
  • (A) is a front view of a part of anti-vibration device for electric vehicles and attachment bracket in a 4th embodiment
  • (b) is an exploded perspective front view of the anti-vibration device for electric vehicles.
  • FIG. 7A is a cross-sectional view of a vibration-damping device for an electric vehicle according to a fifth embodiment
  • FIG. 7B is a cross-sectional view of the vibration-damping device for an electric vehicle taken along line VIIb-VIIb in FIG.
  • A) is a side view of the anti-vibration apparatus for electric vehicles in 6th Embodiment
  • (b) is a side view of the anti-vibration apparatus for electric cars in 7th Embodiment.
  • FIG.1 (a) is a side view of the anti-vibration apparatus 100 for electric vehicles in 1st Embodiment of this invention
  • FIG.1 (b) is the protection for electric vehicles in the Ib-Ib line
  • FIG. 2 is a cross-sectional view of the vibration device 100.
  • FIG. 2 (a) is a graph showing the characteristics of the load (N) applied to the anti-vibration device 100 for an electric vehicle with respect to the amount of deflection (mm) of the anti-vibration substrate 30.
  • FIG. It is a figure which shows the relationship of the dynamic spring constant (N / mm) with respect to the frequency (Hz) of the vibration isolators 100, 200, and 300 for electric vehicles in three embodiments.
  • the right side of the drawing is the rear (rear) side of the vehicle with the anti-vibration device 100 for the electric vehicle disposed in the vehicle, and the rear side of the drawing is the vehicle anti-vibration device 100 for the electric vehicle.
  • the front side of the drawing is the left side of the vehicle body with the anti-vibration device 100 for the electric vehicle disposed on the vehicle body
  • the upper side of the drawing is the upper side of the vehicle body with the anti-vibration device 100 for the electric vehicle disposed
  • the lower side of the drawing is described as the lower side of the vehicle body in a state where the anti-vibration device 100 for an electric vehicle is disposed on the vehicle body.
  • arrows FB, UD, and LR in the figure indicate the longitudinal direction, the vertical direction, and the lateral direction of the vehicle body in a state where the anti-vibration device 100 for an electric vehicle is disposed on the vehicle body. .
  • FIG. 2A shows the characteristics of the load (N) acting in the direction of gravity with respect to the amount of deflection (mm) of the vibration isolation base 30 in a state where the vibration isolation device 100 for an electric vehicle is disposed on the vehicle body of the vehicle.
  • the amount of deflection of the anti-vibration base 30 in the negative direction increases as the horizontal axis moves to the left with respect to the amount of deflection of 0 mm, and as it extends to the right with respect to the amount of deflection of 0 mm.
  • the amount of deflection of the vibration-proof substrate 30 in the positive direction is large, and the vertical axis indicates a state in which the load acts downward in the direction of gravity as it moves upward with reference to load 0N acting in the direction of gravity.
  • a state in which a load acts on the upper side in the direction of gravity is shown as it moves downward with reference to a load 0 N acting in the direction of gravity.
  • the points of the point P1 and the point P2 are shown at the positions where the lines of the figure switch from the linear form (region having linearity) to the curved form, and the points P1 and P2 are illustrated.
  • the position of the deflection amount (mm) of the vibration-proofing base 30 is denoted by reference numerals A1 and A2, and the position of the deflection amount (mm) in the range of ⁇ 30% with respect to the free length (mm) of the vibration-proofing base 30 , With the symbols B1 and B2 shown, with the minimum value of the load in the predetermined range input to the anti-vibration device 100 for electric vehicles described later N1 and the maximum value N2 .
  • the dynamic spring constant (N / mm) with respect to the frequency (Hz) of the anti-vibration apparatus 100 for an electric vehicle in the first embodiment is illustrated by a solid line with a symbol of a line X and illustrated in the second embodiment.
  • the dynamic spring constant (N / mm) with respect to the frequency (Hz) of the anti-vibration device 200 for an electric vehicle in the embodiment is illustrated by a broken line with a symbol of line Y, and is illustrated in FIG.
  • the dynamic spring constant (N / mm) with respect to the frequency (Hz) is illustrated by a two-dot chain line with the sign of the line Z.
  • the horizontal axis indicates the vibration frequency input to the vibration isolation base 30, 230, 330, and the vibration frequency having a larger value is input toward the right side.
  • the dynamic spring constants of the anti-vibration device 100, 200, 300 for a motor vehicle are shown, and the dynamic spring constant of a larger value is shown as it goes upward.
  • C1 is at a position where the vibration frequency at the time of driving of the drive source is minimum, and a range of a predetermined vibration frequency from C3 and C1 at a position at the vibration frequency where the dynamic spring constant of line X is maximum.
  • C2 and the position of the vibration frequency at which the dynamic spring constant of the line Y becomes maximum is attached with the code C4 at the upper limit position, and the code K1 is attached to the position of the predetermined value of the dynamic spring constant described later. It is illustrated.
  • the vibration frequency in a predetermined range means the vibration frequency generated by the drive of a drive source such as an electric motor, and operates in the range of C1 to C2 in FIG. 2 (b).
  • the anti-vibration apparatus 100 for an electric vehicle is a bush interposed between a drive source such as an electric motor and a vehicle body.
  • the anti-vibration device 100 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and concentric with the inner cylindrical member 10.
  • An outer cylinder member 20 formed in a cylindrical shape from a metal material, and a vibration-proof base 30 formed from a rubber-like elastic body and connecting the outer peripheral surface of the inner cylinder member 10 and the inner peripheral surface of the outer cylinder member 20 are provided.
  • the anti-vibration device 100 for an electric vehicle is manufactured by reducing the diameter of the outer cylinder member 20 after the anti-vibration base 30 is bonded by vulcanization between the inner cylinder member 10 and the outer cylinder member 20.
  • FIG. 1 the anti-vibration apparatus 100 for electric vehicles after diameter-reduction processing of the outer cylinder member 20 is illustrated.
  • the inner cylinder member 10 is a member connected to a drive side bracket connected to a drive source of an electric vehicle such as an electric motor.
  • the inner cylinder member 10 is connected to the drive side bracket by being fastened to the drive side bracket by a bolt which is formed in a tubular shape and is inserted inside.
  • the outer cylinder member 20 is a member fitted internally to a vehicle body side bracket connected to the vehicle body of the automobile.
  • the outer cylinder member 20 is press-fit into the inside of a vehicle-side bracket formed in an annular shape having an inner diameter substantially the same as the outer diameter of the outer cylinder member 20 and connected to the vehicle-side bracket.
  • the anti-vibration base 30 includes a first film portion 31 which covers the outer peripheral surface of the inner cylindrical member 10 with a constant thickness, a second film portion 32 which covers the inner peripheral surface of the outer cylindrical member 20 with a constant thickness,
  • the first membrane portion 31, the second membrane portion 32, and the elastic deformation portion 33 are continuous for one round in the circumferential direction around the axis O, and the elastic deformation portion 33 connecting the film portion 31 and the second film portion 32. It has an annular shape.
  • the 1st film part 31 and the 2nd film part 32 are protection parts which control that inner cylinder member 10 and outer cylinder member 20 contact directly.
  • the first film portion 31 and the second film portion 32 are the inner cylinder member 10 and the outer cylinder member when the automobile is rapidly accelerated or stopped and the inner cylinder member 10 is displaced excessively with respect to the outer cylinder member 20. 20 can be abutted to prevent damage to the anti-vibration device 100 for an electric vehicle.
  • the elastically deformable portion 33 has a substantially trapezoidal cross section (see FIG. 1B) when cut into a plane passing through the axis O along the axis O direction (arrow LR direction), and the inner cylindrical member 10 (see FIG.
  • the thickness of the elastically deformable portion 33 in the direction of the axis O is set to be smaller from the first film portion 31) to the outer cylinder member 20 (the second film portion 32) (going radially outward from the axis O).
  • the elastically deformable portion 33 is cut in a case where the elastically deformable portion 33 is continuously cut in the circumferential direction along the axis O direction (the arrow L-R direction) at each position in the radial direction centering on the axis O
  • the cross sectional area of the surface is set to a constant size at each position in the radial direction.
  • the elastically deformable portions 33 are set in an arc shape in which both end surfaces in the direction of the axis O are recessed inward in the direction of the axis O.
  • a reinforcing portion 33a is formed at a corner of a connection portion connected to the first film portion 31 and the second film portion 32.
  • the reinforcing portion 33a is a portion for reinforcing a connection portion between the first film portion 31 and the second film portion 32 and the elastic deformation portion 33, and is formed with a slight thickness.
  • the reinforcing portion 33a protrudes by about 5% at the maximum from the elastically deformable portion 33 in the direction along the axis O direction (the arrow L-R direction). Therefore, when the distance of the elastically deformable portion 33 spaced apart from the axis O in the radial direction is R, and the thickness of the elastically deformable portion 33 in the direction along the axis O at the position of R is H, cutting of each position in the radial direction
  • the cross-sectional area of the elastically deformable portion 33 in the plane is made constant in the range of 5%.
  • the radial free length R2 (the distance from the outer peripheral surface of the inner cylindrical member 10 to the inner peripheral surface of the outer cylindrical member 20 (see FIG. 1 (b))) about the axis O of the vibration isolation base 30 is shown in FIG.
  • the load (N) in the direction of gravity (arrow direction UD) is applied to the antivibration device 100 for an electric vehicle.
  • the amount of deflection (mm) of the vibration-proof substrate 30 in the range up to ⁇ 30% of the deflection (mm) of the free length R2 of the vibration-proof substrate 30 (the range of B1 to B2 in FIG.
  • the characteristics of the load in the direction of gravity are set to have linearity. That is, both ends A1 and A2 of the linear portion shown in FIG. 2A are set to be positioned outside B1 and B2 (A1 ⁇ B1 ⁇ B2 ⁇ A2).
  • the dynamic spring constant of the antivibration device 100 for an electric vehicle It can suppress that it becomes high more than predetermined value (K1 of FIG.2 (b)).
  • the load within a predetermined range is a range that normally acts on the anti-vibration device 100 for an electric vehicle when the vehicle is suddenly started or suddenly stopped. It is a load.
  • the range of ⁇ 4000 N which is narrower than the range of the load at the positions corresponding to the points P1 and P2 is set. That is, in the present embodiment, the load in a predetermined range (the range of N1 to N2 in FIG. 2A) is set in a region where the characteristic of the load in the direction of gravity with respect to the amount of deflection of the vibration-proof substrate 30 has linearity. .
  • the predetermined value (K1 in FIG. 2 (b)) of the dynamic spring constant is a value capable of absorbing the vibration caused by driving the drive source of the automobile and suppressing the transmission of the vibration to the vehicle body And is set to 5000 N / mm in this embodiment.
  • the vibration caused by driving the drive source of the vehicle is transmitted to the vehicle body, and the member disposed on the vehicle body by the vibration It is possible to suppress resonance.
  • the free length R2 of the vibration-proof substrate 30 is appropriately changed according to the thickness of the elastic deformation portion 33 in the direction of the axis O (arrow L-R direction) and the material (elastic modulus) of the vibration-proof substrate 30
  • the characteristic of the load in the direction of gravity with respect to the amount of deflection of the antivibration base 30 is linear within the range of the amount of deflection of ⁇ 30% of the free length R2 of the antivibration base 30. It is set to a value having (linear).
  • the free length R2 is 0.5 or more times the axial length H2 (see FIG.
  • the elastically deformable portion 33 on the first film portion 31 (inner cylindrical member 10) side It is preferable to set to 1.0 times or less. This prevents the dynamic spring constant of the anti-vibration device 100 for an electric vehicle from becoming a predetermined value or more when a load in a predetermined range acts on the anti-vibration device 100 for an electric vehicle. This is because the durability of the vibration device 100 can be suppressed from deteriorating.
  • the anti-vibration device 100 for an electric vehicle is specified to the anti-vibration device 100 for an electric vehicle by increasing the value of the free length R2 of the anti-vibration base 30 (the thickness in the radial direction about the axis O).
  • the characteristic of the load in the direction of gravity with respect to the amount of deflection of the vibration-proof substrate 30 has linearity (point P1 to The range of P2 can be increased.
  • the free length R2 is set to 1.0 or less times the axial length H2 (see FIG. 1B) of the elastically deformable portion 33 on the first film portion 31 side.
  • the anti-vibration device 100 for an electric vehicle reduces the thickness of the anti-vibration base 30 at the radially outer side by reducing the value of the free length R2 of the anti-vibration base 30 (the thickness in the radial direction about the axis O).
  • the thickness can be increased to easily enhance the durability of the anti-vibration device 100 for an electric vehicle.
  • the free length R2 is made too small, the range (the range of points P1 to P2 in FIG. 2A) having linearity in the characteristics of the load in the direction of gravity with respect to the amount of deflection of the vibration isolation base 30 is narrow. Become. Therefore, the dynamic spring constant can not be suppressed to a predetermined value or less when the load in the direction of gravity (the direction of arrow U-D) in a predetermined range is applied.
  • the free length R2 is set to be 0.5 or more times the axial length H2 (see FIG. 1B) of the elastically deformable portion 33 on the first film portion 31 side. This makes it easy to give linearity to the characteristics of the load in the direction of gravity with respect to the amount of deflection of the vibration-proof substrate 30 within the range of the amount of deflection of the vibration-proof substrate 30 ⁇ 30% of the free length R2 of the vibration-proof substrate 30.
  • the vibration damping device 100 for an electric vehicle can suppress the dynamic spring constant from becoming a predetermined value or more.
  • an anti-vibration device which is disposed between the vehicle body and the drive source to suppress the transmission of the vibration of the drive source to the vehicle body.
  • an inner cylinder member formed in a cylindrical shape, an outer cylinder member disposed concentrically with the inner cylinder member, and a vibration-proof substrate connecting the inner cylinder member and the outer cylinder member
  • a through hole penetrating in the axial direction of the inner cylinder member is formed in the vibration isolation base at a position overlapping the inner cylinder member in the gravity direction.
  • the value of torque when driven is larger than the value of torque when driving the engine. Therefore, in the electric vehicle, a large load is likely to act on the inner cylinder member as compared with the engine type vehicle. Therefore, in the electric vehicle, the dynamic spring constant of the vibration damping device is likely to be higher than that of the engine type vehicle.
  • the direction of gravity with the inner cylinder member 10 in a state where the vibration isolation device 100 for an electric vehicle is disposed A through hole in the direction of the axis O (the direction of the arrow L-R) is not formed at a position overlapping the arrow U-D).
  • the through holes are not crushed (the inner surfaces of the through holes abut each other)
  • the dynamic spring constant is abrupt when a load exceeding a predetermined range acts in the direction of gravity. Can be suppressed.
  • the through hole in the direction of the axis O (the direction of the arrow L-R) is not formed at a position overlapping the inner cylinder member 10 in the gravity direction (the direction of the arrow U-D).
  • the dynamic spring constant to the vibration of the drive source may be high.
  • the characteristic of the load in the direction of gravity with respect to the amount of deflection of the anti-vibration base 30 within the range of the amount of deflection of the anti-vibration base 30 ⁇ 30% of the free length R2 Has a linearity, it is possible to suppress the dynamic spring constant from becoming higher than a predetermined value when a load of a predetermined range acts on the anti-vibration device 100 for an electric vehicle in the direction of gravity.
  • the vibration-damping base 30 is a cut surface in the case where the elastically deformable portion 33 is continuously cut in the circumferential direction along the axis O direction (the arrow LR direction) at each position in the radial direction centering on the axis O
  • the cross-sectional area of is set to a constant size at each position in the radial direction.
  • the outer diameter of the inner cylinder member 10 is set to 25 mm
  • the inner diameter of the outer cylinder member 20 is set to 86 mm
  • the free length of the anti-vibration base 30 is 30.5 mm.
  • the thickness in the direction of the axis O in the direction of the axis O (the direction of the arrow L-R) in the direction of the axis O is set to 50 mm.
  • the anti-vibration apparatus 200 for electric vehicles in 2nd Embodiment is demonstrated.
  • the through holes are not formed on both outer sides in the horizontal direction of the inner cylinder member 10 in a state in which the anti-vibration device 100 for an electric vehicle is disposed on the vehicle body of a car.
  • the vibration control device 200 for an electric vehicle according to the second embodiment the (inner cylinder of the inner cylinder member 10 in the horizontal direction orthogonal to the axis O direction (arrow LR direction) is described.
  • a curbed portion 233b penetrating along the direction of the axis O is formed.
  • FIG.3 (a) is a side view of the vibration isolator 200 for electric vehicles in 2nd Embodiment
  • FIG.3 (b) is the vibration isolator 200 for electric cars in the IIIb-IIIb line
  • the anti-vibration apparatus 200 for an electric vehicle in the second embodiment is a bush interposed between a drive source such as an electric motor and a vehicle body.
  • the anti-vibration device 200 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and concentrically with the inner cylindrical member 10.
  • An outer cylinder member 20 formed in a cylindrical shape from a metal material, and a vibration-proof base 230 formed from a rubber-like elastic body and connecting the outer peripheral surface of the inner cylinder member 10 and the inner peripheral surface of the outer cylinder member 20 are provided.
  • the anti-vibration device 200 for an electric vehicle is manufactured by reducing the diameter of the outer cylinder member 20 after the anti-vibration base 230 is bonded by vulcanization between the inner cylinder member 10 and the outer cylinder member 20.
  • FIG. 3 the anti-vibration apparatus 200 for electric vehicles after diameter-reduction-processing the outer cylinder member 20 is illustrated.
  • the anti-vibration base 230 includes a first film portion 31 which covers the outer peripheral surface of the inner cylinder member 10 with a constant thickness, a second film portion 32 which covers the inner peripheral surface of the outer cylinder member 20 with a constant thickness, And an elastic deformation portion 233 connecting the film portion 31 and the second film portion 32.
  • a reinforcing portion 33a formed at a corner portion of a connection portion connected to the first film portion 31 and the second film portion 32, and the anti-vibration device 200 for an electric vehicle are provided in the vehicle body of the vehicle.
  • a collar portion 233b is formed along the direction of the axis O and penetrates outside (the horizontal direction of the inner cylinder member 10) of the inner cylindrical member 10 in the horizontal direction orthogonal to the direction of the axis O (arrow LR direction).
  • An upper upper elastic portion 233c and a lower lower elastic portion 233d which are divided in the direction of gravity (direction of arrow U-D) by the pair of curled portions 233b are provided.
  • the curving portion 233 b is a portion that makes the vibration-proof base 230 lightweight.
  • the curving portion 233b is formed at a position where a portion thereof overlaps the horizontal direction area of the inner cylinder member 10 in a state where the anti-vibration device 200 for an electric vehicle is disposed on the vehicle body of the automobile. It is formed in a curved shape.
  • the rounded portion 233 b is formed at a position where at least a portion thereof overlaps with the horizontal direction area of the inner cylindrical member 10.
  • the vibration isolation base 230 has a direction of gravity of the inner cylindrical member 10 as compared to the case where through holes having the same size in the axial O direction are not overlapped with the horizontal cylindrical region 10.
  • the volume of the anti-vibration base 230 located on both sides (in the direction of the arrows U-D) can be secured.
  • the amount of deformation of the anti-vibration substrate 230 when the anti-vibration substrate 230 is elastically deformed in the gravity direction can be reduced, and the durability of the anti-vibration device 200 for an electric vehicle is secured. be able to.
  • the burred portion 233 b is formed so as to extend from the first film portion 31 to the second film portion 32 in the axial O direction.
  • the vibration-proofing base 230 separates the upper elastic portion 233c on the upper side (arrow U direction side) of the elastic deformation portion 233 and the lower elastic portion 233d on the lower side (arrow D direction side).
  • the weight of the entire anti-vibration base 30 is increased by the amount of the through hole not being formed. Therefore, in the anti-vibration apparatus 100 for an electric vehicle, the anti-vibration base 30 is within the predetermined range (the range of C1 to C2 in FIG. 2B) of the vibration frequency input to the anti-vibration base 30 by driving the drive source.
  • the vibration damping base 30 resonates, and the dynamic spring constant of the vibration damping device 100 for an electric vehicle may become higher than a predetermined value (K1 in FIG. 2B).
  • the inner cylinder member 10 in the horizontal direction orthogonal to the axis O direction (arrow LR direction). On the outer side (in the horizontal direction of the inner cylinder member 10), a curbed portion 233b penetrating in the direction of the axis O is formed.
  • the anti-vibration device 200 for an electric vehicle does not affect the deformability of the anti-vibration base 230 against the load in the direction of gravity (the direction of arrow UD) (the anti-vibration base overlapping the inner cylinder member 10 in the direction of gravity
  • the vibration proof substrate 230 can be lightened while securing a volume of 230).
  • the equation (a) for obtaining the natural frequency F is a square root (of K / m) obtained by dividing the dynamic spring constant K of the vibration isolation base 230 by the value of the rubber weight m of the vibration isolation base 230. Therefore, the natural frequency of the vibration isolation base 230 is increased by increasing the value of the dynamic spring constant, and is increased by reducing the weight of the vibration isolation base 230. Therefore, the natural frequency of the anti-vibration base 230 can be set high by forming the rounded portion 233 b and making the anti-vibration base 230 light.
  • the vibration-resistant base 230 is more specific than the predetermined range of vibration frequency (the range of C1 to C2 in FIG. 2B) by driving a driving source such as an electric motor.
  • the frequency can be increased (set near C4 in FIG. 2B).
  • the elastically deformable portion 233 continuously extends in the circumferential direction of the elastically deformable portion 233 along the axis O at each position in the radial direction around the axis O.
  • the cross-sectional area of the cut surface when cut is set to a constant size at each position in the radial direction.
  • the range of the deflection amount of the anti-vibration substrate 230 ⁇ 30% of the free length R2 of the anti-vibration substrate 230 can be easily made to have linearity.
  • the burred portion 233b is formed such that the inner surface facing in the radial direction is curved in an arc shape coaxial with the axis O when viewed in the direction of the axis O, and the inner surface facing in the circumferential direction extends from the axis O along the radial direction Since it is formed in an extending linear plane, at each position in the radial direction centering on the axis O, the cross section of the cut surface in the case where the elastic deformation portion 233 is continuously cut in the circumferential direction along the axis O It can be easily set to a fixed size at each position in the direction.
  • the characteristic of the load in the direction of gravity with respect to the amount of deflection of the anti-vibration base 230 in the range of the amount of deflection of the anti-vibration base 230 ⁇ 30% of the free length R2 of the anti-vibration base 230 It can be easy to give linearity.
  • the burred portion 233b is formed to penetrate from the first film portion 31 to the second film portion 32 in the radial direction centering on the axis O, the internal space of the curled portion 233b is enlarged to prevent vibration
  • the base 230 can be lightened. Therefore, in the anti-vibration apparatus 200 for an electric vehicle, according to the vibration frequency of the predetermined range (the range of C1 to C2 in FIG. 2B) input to the anti-vibration base 230 by driving the driving source such as the electric motor. Also, the natural frequency of the vibration isolation base 230 can be easily increased (set near C4 in FIG. 2B).
  • the anti-vibration base 230 resonates, and the dynamic spring constant of the anti-vibration apparatus 200 for an electric vehicle becomes higher than a predetermined value (K1 in FIG. 2B). It can be suppressed.
  • the anti-vibration apparatus 300 for electric vehicles in 3rd Embodiment is demonstrated.
  • the inside of the curving portion 233b is formed as a space
  • the case where a connecting portion 333e connecting the inner surfaces of the curving portion 233b is formed will be described.
  • the same parts as those in each embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 4A is a side view of the anti-vibration apparatus 300 for an electric vehicle according to the third embodiment
  • FIG. 4B is an anti-vibration apparatus 300 for an electric vehicle along the line IVb-IVb in FIG. FIG.
  • the anti-vibration apparatus 300 for an electric vehicle in the third embodiment is a bush interposed between a drive source such as an electric motor and a vehicle body.
  • the anti-vibration device 300 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and concentrically with the inner cylindrical member 10.
  • An outer cylinder member 20 formed in a cylindrical shape from a metal material, and a vibration-proof base 330 formed from a rubber-like elastic body and connecting the outer peripheral surface of the inner cylinder member 10 and the inner peripheral surface of the outer cylinder member 20 are provided.
  • the anti-vibration device 300 for an electric vehicle is manufactured by reducing the diameter of the outer cylinder member 20 after the anti-vibration base 330 is bonded by vulcanization between the inner cylinder member 10 and the outer cylinder member 20.
  • FIG. 4 the anti-vibration device 300 for an electric vehicle after diameter reduction processing of the outer cylinder member 20 is illustrated.
  • the anti-vibration base 330 includes a first film portion 31 which covers the outer peripheral surface of the inner cylinder member 10 with a constant thickness, a second film portion 32 which covers the inner peripheral surface of the outer cylinder member 20 with a constant thickness, And an elastic deformation portion 333 connecting the film portion 31 and the second film portion 32.
  • a reinforcing portion 33 a formed at a corner portion of a connection portion connected to the first film portion 31 and the second film portion 32, and the anti-vibration device 300 for an electric vehicle are provided in the vehicle body of the vehicle.
  • a collar portion 233b is formed along the direction of the axis O and penetrates outside (the horizontal direction of the inner cylinder member 10) of the inner cylindrical member 10 in the horizontal direction orthogonal to the direction of the axis O (arrow LR direction).
  • connection portion 333 e enhances the vibration isolation effect at a vibration frequency above a predetermined range, suppresses the resonance of the upper elastic portion 233 c and the lower elastic portion 233 d at a vibration frequency above a predetermined range, and for electric vehicles It is a part which suppresses that the dynamic spring constant of vibration isolation device 300 becomes large.
  • the connection portion 333 e is a substantially central position between the inner cylindrical member 10 and the outer cylindrical member 20 (inner surfaces of the inner peripheral portion 233 b of the peripheral portion 233 b facing each other in the circumferential direction of the peripheral portion 233 b in the axial O direction). The radial direction is approximately at the middle position).
  • the connecting portion 333 e is extended in parallel to a plane orthogonal to the axis O.
  • the connecting portion 333e is formed substantially at the center of the hollow portion 233b in the direction of the axis O (the arrow L-R direction), and is formed inside the both end surfaces of the vibration-proofing base 330 in the direction of the axis O.
  • the radiused portion 233b extends along the axis O direction on the inner surface of the radiused portion 233b from the connection portion between the coupling portion 333e and the radiused portion 233b to both end surfaces of the vibration-proof substrate 330 in the axis O direction.
  • a flat step surface 333b1 to be provided is formed.
  • the anti-vibration apparatus 200 for an electric vehicle described in the second embodiment is a horizontal direction orthogonal to the direction of the axis O (the direction of the arrow L-R) and in the region radially outside the inner cylindrical member 10.
  • the natural frequency of the anti-vibration base 230 can be made larger than the vibration frequency of the predetermined range (C1 to C2 in FIG. 2B) by driving the drive source. It is possible to suppress the resonance of the anti-vibration base 230 by setting it high (set near C4 in FIG. 2B).
  • the vibration frequency of the predetermined range or more (near C4 in FIG. 2 (b))
  • the dynamic spring constant is still high (the dynamic spring constant is high up to near K1 in FIG. 2 (b)). Therefore, in the anti-vibration apparatus 200 for an electric vehicle, the rotational frequency of the drive source is increased to prevent the vibration frequency input from the drive source from being set to a predetermined range or more (around C4 in FIG. 2B).
  • the natural frequency of the vibration isolation base 230 falls within a predetermined range of the vibration frequency input to the vibration base 230, and there is a possibility that the dynamic spring constant of the vibration isolation apparatus 200 for an electric vehicle may be rapidly increased.
  • connection portion 333e of a volume smaller than the upper elastic portion 233c and the lower elastic portion 233d is connected to the inner surfaces facing each other in the circumferential direction of the hollow portion 233b in the axial O direction. Since the upper elastic portion 233c and the lower elastic portion 233d tend to resonate, the dynamic spring constant is high at a vibration frequency smaller than the predetermined vibration frequency (line Z in FIG. 2B).
  • the connecting portion 333 e can be made to resonate at the vibration frequency in the vicinity of C3).
  • a range in which the dynamic spring constant decreases as the vibration frequency becomes higher at a vibration frequency higher than the vibration frequency at which the connecting portion 333e easily resonates (line Z in FIG. 2B).
  • the vibration damping effect by the connecting portion 333 e can be enhanced at (the vibration frequency in the range of C3 to C4 in FIG. 2B), and the upper elastic portion 233 c can be in the vibration frequency range where the vibration damping effect is enhanced.
  • the lower side elastic part 233d can include the vibration frequency of the predetermined value which is easy to resonate.
  • connection portion 333e enhances the vibration isolation effect, and the upper elastic portion 233c and the lower elastic portion 233d resonate. It can suppress and it can suppress that the dynamic spring constant of the anti-vibration apparatus 300 for electric vehicles becomes high rapidly.
  • the step surface 333b1 is formed on the inner surface of the curving portion 233b, and the connecting portion 333e is set at a substantially central position in the axis O direction (arrow LR direction) of the curving portion 233b. Therefore, when the upper elastic portion 233c or the lower elastic portion 233d is deformed, the direction of the force input to the connecting portion 333e can be easily made to act in the extending direction (arrow UD direction) of the connecting portion 333e. That is, in the anti-vibration apparatus 300 for an electric vehicle, it is possible to suppress that the direction of the force input to the connecting portion 333 e is inclined in the direction of the axis O.
  • the connecting portion 333 e is bent in the direction of the axis O (the arrow L-R direction) and the elastic recovery force of the connecting portion 333 e acts in the direction of the axis O It can be suppressed that it can not be satisfied.
  • the anti-vibration base 330 excluding the curving portion 233b has a cross-sectional area of a cut surface in the case where the elastically deformable portion 333 is continuously cut in the circumferential direction along the axis O at each position in the radial direction about the axis O It is set to a fixed size at each position in the radial direction.
  • the connecting portion 333 e is a substantially central position between the inner cylindrical member 10 and the outer cylindrical member 20 in the axial O direction view (a substantially intermediate position in the radial direction of the inner surface of the burred portion 233 b opposed in the circumferential direction).
  • the connecting portion 333 e is in the direction of the axis O in the state before reducing the diameter of the outer cylinder member 20 (after the anti-vibration base 330 is added and attached between the inner cylinder member 10 and the outer cylinder member 20).
  • the outer cylindrical member 20 is processed to reduce its diameter, it is linearly extended as viewed, and is pressed by the upper elastic portion 233c and the lower elastic portion 233d to be bent radially outward.
  • the connecting portion 333 e is formed in a linear shape before the outer cylinder member 20 is subjected to diameter reduction processing, thereby the connection portion 333 e is formed before the outer cylinder member 20 is diameter reduced processing.
  • the connecting portion 333 e can be reduced in weight as compared with the case of forming in a curved shape.
  • the natural frequency of the anti-vibration base 330 (upper elastic portion 233 c and lower elastic portion 233 d) of the portion excluding the connecting portion 333 e and the natural frequency of the connecting portion 333 e can be made to have different values.
  • the upper elastic section 233 c and the lower elastic section 233 d and the connecting section 333 e are operated differently.
  • the dynamic spring constant becomes equal to or more than a predetermined value by suppressing the resonance of the lower-side elastic portion 233 d and the lower-side elastic portion 233 d at a vibration frequency of a predetermined range or more (C2 or more in FIG. It can be easily suppressed.
  • a dynamic spring is applied when a vibration frequency above a predetermined range (near C4 in FIG. 2 (b)) is input to the vibration isolation base 330.
  • the constant is maximized, the dynamic spring constant can be suppressed to a predetermined value (K1 in FIG. 2B) or less.
  • the width in the direction orthogonal to the extending direction (arrow UD direction) of the connecting portion 333 e in the axial O direction view is in the range of 1 ⁇ 5 to 1 ⁇ 3 of the width in the radial direction of the hollow portion 233 b.
  • the width of the connecting portion 333e is set to 1 ⁇ 5 or more.
  • the connection portion 333 e abuts on the outer peripheral surface of the inner cylindrical member 10 or the inner peripheral surface of the outer cylindrical member 20, and it is possible to suppress the dynamic spring constant from changing irregularly.
  • the width of the connecting portion 333 e in the direction of the axis O is the cross-sectional area of the cut surface when the connecting portion 333 e is cut along a plane passing through the axis O along the direction of the axis O Connecting part in the direction of the axis O so as to be 1/5 or less of the cross-sectional area of the cut surface in the case of cutting the anti-vibration base 330 in a plane passing the axis O along the axis O direction). It is set by the relationship between the extending direction (arrow U-D direction) of 333 e and the width in the direction orthogonal to it.
  • the cross-sectional area of the connecting portion 333e is set to 1 ⁇ 5 or less of the cross-sectional area of the vibration-proof substrate 330, so that the upper elastic portion 233c and the lower elastic portion 233d (the vibration-proof substrate 330 excluding the rounded portion). ) And the natural frequency of the connecting portion 333 e can be increased.
  • the anti-vibration apparatus 400 for an electric vehicle in the fourth embodiment will be described.
  • the case where the holding member 440 is inserted into the center portion 233b of the anti-vibration apparatus 300 for an electric vehicle in the third embodiment will be described.
  • the same parts as those in each embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 5 (a) is a front view of a portion of the anti-vibration device 400 for an electric vehicle and the mounting bracket 450 in the fourth embodiment
  • FIG. 5 (b) is an exploded perspective view of the anti-vibration device 400 for an electric vehicle. It is a front view. 6 (a) is a cross-sectional view of the anti-vibration apparatus 400 for an electric vehicle taken along the line VIa-VIa of FIG. 5 (a)
  • FIG. 6 (b) is an electric taken along the line VIb-VIb of FIG.
  • FIG. 6 is a cross-sectional view of the anti-vibration apparatus 400 for an automobile.
  • FIG. 5A a part of the mounting bracket 450 to which the anti-vibration device 400 for an electric vehicle is mounted, and a bolt B and a nut N for mounting the mounting bracket 450 are illustrated by broken lines.
  • the anti-vibration apparatus 400 for an electric vehicle in the fourth embodiment is a bush interposed between a drive source such as an electric motor and a vehicle body.
  • the anti-vibration device 400 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and the inner cylindrical member 10, such as iron or aluminum
  • An outer cylinder member 20 formed in a cylindrical shape from a metal material, and a vibration-proof base 330 formed from a rubber-like elastic body and connecting the outer peripheral surface of the inner cylinder member 10 and the inner peripheral surface of the outer cylinder member 20
  • a clamping member 440 is formed of the same rubber-like elastic body as the vibration base 330, and is disposed on both outer sides in the direction of the arrow O of the outer cylinder member 20 (arrow LR direction).
  • the mounting bracket 450 mainly includes a drive side bracket 451 connected to a drive source of an electric vehicle such as an electric motor, and a vehicle body side bracket 452 connected to a vehicle body of the vehicle.
  • the bolt B is inserted through the inner cylindrical member 10 formed in a cylindrical shape, and the inner cylindrical member 10 is fastened by being fastened with a nut N from the opposite side.
  • the outer cylinder member 20 is press-fit and connected to the vehicle body side bracket 452 inside.
  • a suppressing member 451a formed of a rubber-like elastic body is disposed on the side of the anti-vibration device 400 for an electric vehicle.
  • the suppression member 451 a suppresses the contact of the outer cylinder member 20 with the drive side bracket 451.
  • the outer cylinder member 20 can be prevented from being deformed or damaged.
  • the holding member 440 is a flat plate portion 441 formed in a flat plate shape having a flat surface in a direction orthogonal to the axis O direction (arrow L-R direction), and is provided protruding in the axis O direction from the flat surface And a contact portion 442 which is inserted to the inside of the convex portion 233b of the vibration base 330.
  • the flat plate portion 441 is formed in a rectangular flat plate shape long in one direction, the dimension in the longitudinal direction is set larger than the diameter of the outer cylinder member 20, and both ends in the longitudinal direction are in the radial direction than the outer cylinder member 20 It arranges in the state where it projected outside. Further, the flat plate portion 441 is set coaxially with the axis O, and a circular through hole 441 a is formed.
  • the through hole 441 a is formed to be substantially the same as or slightly smaller than the outer diameter of the first film portion 31 provided on the outer peripheral surface of the inner cylindrical member 10. Therefore, the holding member 440 is disposed on the inner cylindrical member 10 by press-fitting the inner cylindrical member 10 into the through hole 441a (is fitted to the outer cylindrical member 10).
  • the abutting portion 442 is formed in a substantially triangular shape smaller than the inner shape of the contoured portion 233b in the axial O direction.
  • the abutting portion 442 is in a state in which the flat plate portion 441 abuts on the end surface of the outer cylinder member 20 in the direction of the axis O (arrow L-R direction) (a state in which the holding member 440 is externally fitted to the inner cylinder member 10),
  • the projecting end surface is projected to a position facing the end surface of the connecting portion 333 e in the direction of the axis O with a predetermined gap therebetween. That is, the contact portion 442 is set not to be in contact with the connecting portion 333 e.
  • the contact portion 442 is disposed at a predetermined gap S (see FIG. 6B) from the inner surface of the hollow portion 233b when viewed in the axial O direction.
  • the predetermined gap S is a position at which the distance between the inner surface of the curving portion 233b and the contact portion 442 in the gravity direction (arrow UD direction) is minimum, and a predetermined range for the anti-vibration device 400 for an electric vehicle Of the load acts on the direction of gravity, so that the inner surface of the collar 233b is not in contact with the contact portion 442 when the vibration-proof base 330 bends within a range of ⁇ 30% of the free length. Set to distance.
  • the anti-vibration device 400 for an electric vehicle when a load in a predetermined range acts in the direction of gravity, the inner surface of the flared portion 233b abuts on the contact portion 442, and the dynamic spring constant is rapidly increased. (It is possible to maintain linearity in the characteristics of the load in the direction of gravity with respect to the amount of deflection of the vibration-proof substrate 330).
  • a horizontal portion orthogonal to the direction of the axis O (the arrow L-R direction) is formed by the formation of the rounding portion 233b
  • the inner cylindrical member 10 is easily displaced in the horizontal direction with respect to the outer cylindrical member 20. Therefore, in the anti-vibration devices 200 and 300 for electric vehicles, the amount of elastic deformation in the horizontal direction of the anti-vibration substrates 230 and 330 becomes large, and it is difficult to secure the durability of the anti-vibration devices 200 and 300 for electric vehicles.
  • the load acts in the horizontal direction orthogonal to the direction of the axis O (the arrow L-R direction).
  • the inner cylindrical member 10 can be suppressed from being displaced in the horizontal direction with respect to the outer cylindrical member 20 by bringing the inner surface of the bent portion 233 b into contact with the contact portion 442.
  • the anti-vibration device 400 for an electric vehicle can improve its durability.
  • the contact portion 442 is formed of a rubber-like elastic body, the load acts in the horizontal direction orthogonal to the direction of the axis O (the direction of the arrow L-R).
  • the force when the inner surface abuts on the abutting portion 442 can be dispersed to both the abutting portion 442 and the anti-vibration base 330.
  • the anti-vibration device 400 for an electric vehicle can improve its durability.
  • the anti-vibration apparatus 500 for electric vehicles in 5th Embodiment is demonstrated.
  • the case where the contact portion 442 is projected to the front of the connecting portion 333 e has been described, but in the fifth embodiment, the second convex portion 542 b protruding to a position overlapping the connecting portion 333 e in the radial direction Will be described.
  • the same parts as those in each embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 7A is a cross-sectional view of the anti-vibration apparatus 500 for an electric vehicle in the fifth embodiment
  • FIG. 7B is an anti-vibration apparatus 500 for an electric vehicle along the line VIIb-VIIb in FIG. FIG.
  • the cross section of the anti-vibration device 500 for an electric vehicle in FIG. 7A corresponds to the cross-sectional view of the anti-vibration device 400 for an electric vehicle in FIG. 5B.
  • the anti-vibration apparatus 500 for an electric vehicle in the fifth embodiment is a bush interposed between a drive source such as an electric motor and a vehicle body.
  • the anti-vibration device 500 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and the inner cylindrical member 10
  • An outer cylinder member 20 formed in a cylindrical shape from a metal material, and a vibration-proof base 330 formed from a rubber-like elastic body and connecting the outer peripheral surface of the inner cylinder member 10 and the inner peripheral surface of the outer cylinder member 20
  • a clamping member 540 formed of the same rubber-like elastic body as the vibration base 330 and disposed on both sides in the direction of the axis O (arrow LR direction) of the outer cylindrical member 20 is provided.
  • the holding member 540 is a flat plate portion 441 formed in a flat plate shape having a plane orthogonal to the axis O, and is provided protruding in the direction of the axis O (arrow LR direction) from the plane of the flat plate portion 441. And an abutment portion 542 which is inserted into the inside of the curving portion 233b.
  • the contact portion 542 is formed in a substantially triangular shape smaller than the inner shape of the hollow portion 233b in the direction of the axis O, and the first convex portion 542a protruding from the flat plate portion 441 and the tip of the first convex portion 542a And a pair of second convex portions 542b that further protrude in the direction of the axis O (the direction of the arrow L-R).
  • the second convex portion 542 b is a position that separates a predetermined gap in the radial direction from the connecting portion 333 e in the axial O direction, and from the both sides that sandwich the connecting portion 333 e in the radial direction, the axis O direction (arrow LR direction) It is projected on. Further, the second convex portion 542 b is protruded to a substantially central position of the anti-vibration base 330 in the axis O direction.
  • the second convex portion 542 b protrudes to a position overlapping the connecting portion 333 e in the radial direction.
  • the connecting portion 333 e when the connecting portion 333 e is elastically deformed in the radial direction, the connecting portion 333 e can be brought into contact with the second convex portion 542 b to suppress the elastic deformation of the connecting portion 333 e.
  • the upper side elastic portion 233c and the lower side elastic portion 233d of the anti-vibration base 330 are enhanced at the vibration frequency above the predetermined range by driving the vibration source by enhancing the vibration reduction effect of the connection portion 333e.
  • the connecting portion 333 e is elastically deformed and the anti-vibration effect by the connecting portion 333 e is reduced.
  • the anti-vibration device 500 for an electric vehicle it is not necessary to enlarge the outer shape of the connecting portion 333 e in order to suppress the elastic deformation of the connecting portion 333 e.
  • the natural frequency of the side elastic portion 233 d and the natural frequency of the connecting portion 333 e can be easily made different values.
  • connection part 333e was formed in the straight line parallel to the plane orthogonal to the axis
  • connection in 6th Embodiment The portion 633 e extends in the circumferential direction about the axis O.
  • the same parts as those in each embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 8A is a side view of the anti-vibration apparatus 600 for an electric vehicle in the sixth embodiment.
  • the anti-vibration apparatus 600 for electric vehicles in 6th Embodiment is a bush interposed between drive sources, such as an electric motor, and a vehicle body.
  • the anti-vibration device 600 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and concentrically with the inner cylindrical member 10.
  • the anti-vibration device 600 for an electric vehicle is manufactured by reducing the diameter of the outer cylinder member 20 after the anti-vibration base 630 is bonded by vulcanization between the inner cylinder member 10 and the outer cylinder member 20.
  • FIG. 8A the anti-vibration device 600 for an electric vehicle after the diameter reducing process of the outer cylindrical member 20 is illustrated.
  • the anti-vibration base 630 includes a first film portion 31 which covers the outer peripheral surface of the inner cylindrical member 10 with a constant thickness, a second film portion 32 which covers the inner peripheral surface of the outer cylindrical member 20 with a constant thickness, An elastic deformation portion 633 connecting the film portion 31 and the second film portion 32 is provided.
  • the elastic deformation portion 633 is a reinforcement portion 33a (see FIG. 4B) formed at a corner portion of a connection portion connected to the first film portion 31 and the second film portion 32.
  • a connecting portion 633e which connects the inner surfaces from the upper elastic portion 233c to the lower elastic portion 233d.
  • the connection portion 633e enhances the vibration isolation effect at a vibration frequency above a predetermined range, and suppresses the resonance between the upper elastic portion 233c and the lower elastic portion 233d, and the dynamic spring constant of the vibration absorber 600 for an electric vehicle Is a part that suppresses the increase of
  • the connecting portion 633 e is a substantially central position between the inner cylindrical member 10 and the outer cylindrical member 20 (inner surfaces of the inner peripheral portion 233 b of the peripheral portion 233 b facing each other in the circumferential direction of the peripheral portion 233 b in the axial O direction). It is connected to the upper elastic portion 233c and the lower elastic portion 233d at a substantially intermediate position in the radial direction. Further, the connecting portion 633 e is extended at a constant width in the circumferential direction around the axis O, and the width in the direction of the axis O (the arrow LR direction) is set to be constant.
  • the connecting part 633 e can be easily elastically deformed with the elastic deformation of the anti-vibration base body 630 as compared with the connecting part 333 e formed linearly.
  • the anti-vibration apparatus 700 for electric vehicles in 7th Embodiment is demonstrated.
  • the anti-vibration apparatus 600 for an electric vehicle in the sixth embodiment the case where the connecting portion 633 e is extended in the same width in the circumferential direction centering on the axis O has been described, but in the seventh embodiment
  • the vibration apparatus 700 demonstrates the case where the part extended in the circumferential direction is partially thickened.
  • the same parts as those in each embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 8 (b) is a side view of the anti-vibration apparatus 700 for an electric vehicle in the seventh embodiment.
  • the anti-vibration apparatus 700 for an electric vehicle in the seventh embodiment is a bush interposed between a drive source such as an electric motor and a vehicle body.
  • the anti-vibration device 700 for an electric vehicle is disposed concentrically with the inner cylindrical member 10 formed in a cylindrical shape having an axis O from a metal material such as iron or aluminum, and concentrically with the inner cylindrical member 10.
  • the anti-vibration device 700 for an electric vehicle is manufactured by reducing the diameter of the outer cylinder member 20 after the anti-vibration base 730 is bonded by vulcanization between the inner cylinder member 10 and the outer cylinder member 20.
  • FIG. 8B shows the anti-vibration device 700 for an electric vehicle after the outer cylinder member 20 has been subjected to diameter reduction processing.
  • the anti-vibration base 730 includes a first film portion 31 which covers the outer peripheral surface of the inner cylinder member 10 with a constant thickness, a second film portion 32 which covers the inner peripheral surface of the outer cylinder member 20 with a constant thickness, And an elastic deformation portion 733 connecting the film portion 31 and the second film portion 32.
  • the elastic deformation portion 733 is a reinforcement portion 33a (see FIG. 4B) formed at a corner of a connection portion connected to the first film portion 31 and the second film portion 32.
  • a reinforcement portion 33a (see FIG. 4B) formed at a corner of a connection portion connected to the first film portion 31 and the second film portion 32.
  • a connecting portion 733e which connects the inner surfaces from the upper elastic portion 233c to the lower elastic portion 233d.
  • connection portion 733e enhances the vibration isolation effect at a vibration frequency above a predetermined range, suppresses the resonance between the upper elastic portion 233c and the lower elastic portion 233d, and the dynamic spring constant of the vibration absorber 700 for an electric vehicle Is a part that suppresses the increase of
  • the connecting portion 733 e connects the upper elastic portion 233 c and the lower elastic portion 233 d so that the inner surfaces facing each other in the circumferential direction of the hollow portion 233 b in the axial O direction are the inner cylinder member 10 and the outer cylinder member 20.
  • the upper elastic portion 233c and the lower elastic portion 233d are connected to each other at a substantially central position between them (approximately an intermediate position in the radial direction of the inner surface of the facing portion 233b facing in the circumferential direction).
  • the connecting portion 733 e is extended in the circumferential direction centering on the axis O, and the width in the direction of the axis O (the arrow L-R direction) is set to be constant. Further, the connecting portion 733e includes a projecting portion 733e1 which protrudes toward the axis O (the inner cylindrical member 10) at a substantially intermediate position extended in the circumferential direction in the axial O direction.
  • the projecting portion 733e1 is a portion that suppresses the horizontal displacement of the inner cylindrical member 10, and is formed in a region overlapping the inner cylindrical member 10 in the direction orthogonal to the axis O direction (the arrow LR direction).
  • the anti-vibration device 700 for an electric vehicle when the inner cylinder member 10 is displaced in the horizontal direction orthogonal to the axis O direction (arrow L-R direction), the inner cylinder member 10 is made to abut on the projecting portion 733e1.
  • the protrusion 733e1 can be gradually deformed.
  • the protrusion distance of the protrusion 733e1 in the axial O direction view is set to the radial direction outer side than a straight line connecting both ends in the circumferential direction of the connecting portion 733e.
  • the present invention was explained based on the above-mentioned embodiment, the present invention is not limited to the above-mentioned form at all, and it is easily guessed that various modification improvement is possible in the range which does not deviate from the meaning of the present invention. It is possible.
  • the numerical value raised in the above embodiment is an example, and it is naturally possible to adopt other numerical values.
  • anti-vibration device 100, 200, 300, 400, 500, 600, 700 for electric vehicles was arranged in an electric car
  • anti-vibration device 100, 200, for electric vehicles 300, 400, 500, 600, 700 may be used in internal combustion engine type vehicles such as gasoline engines and diesel engines.
  • the vibration control devices 200, 300, 400, 500, 600, 700 for electric vehicles in the second to seventh embodiments include load characteristics acting on an internal combustion engine type automobile and vibration characteristics of a gasoline engine, a diesel engine, etc.
  • the through holes to the vibration-proof substrates 230, 330, 630, 730 are not formed at positions overlapping horizontally with the inner cylinder member 10, and in the axial direction in the region outside the inner cylinder member 10 in the gravity direction.
  • the antivibration device 100, 200, 300, 400, 500, 600, 700 for an electric vehicle may be disposed on a vehicle body of an internal combustion engine type automobile in a state where the penetrating portion is formed.
  • the load acts in the horizontal direction. It can be suppressed that the dynamic spring constants of the anti-vibration devices 100, 200, 300, 400, 500, 600, 700 for electric vehicles become higher than a predetermined value.
  • the anti-vibration devices 100, 200, 300, 400, 500, 600, 700 for electric vehicles are arranged with the axis O direction in the left-right direction (arrow LR direction) with respect to the vehicle body of the vehicle.
  • the present invention is not limited thereto. If the vertical direction (the arrow UD direction) is the same, the axis O direction is arranged in the front-rear direction (the arrow FB direction). It is also good.
  • the shapes of the pair of curving portions 233b or the inside of the curving portions 233b are connected in consideration of the load that is easily input in the front-rear direction (the arrow FB direction).
  • the shape of the connecting portions 333 e, 633 e, 733 e may be changed to different shapes in the front-rear direction to make the deformability of the vibration-proof substrates 230, 330, 630, 730 different with respect to the front-rear load.
  • the vibration isolators 100, 200, 300, 400, 500, 600, and 700 for electric vehicles have the thicknesses of the vibration isolation bases 30, 230, 330, 630, and 730 from the axis O radially outward. Is described, but the present invention is not necessarily limited thereto, and the anti-vibration base 30, 230, 330, 630, 730 is formed so that the thickness of the central portion in the radial direction is minimized. May be
  • the second embodiment has described the case where the curving portion 233b is formed to be curved about the axis O in the direction of the axis O, the present invention is not necessarily limited to this. It may be formed in a straight line along the direction), or may be formed in a circular arc centered on a position different from the axis O.
  • connecting portion 333 e, 633 e, 733 e is formed in one yield portion 233 b
  • present invention is not necessarily limited thereto.
  • the connecting portions 333 e, 633 e, 733 e described above may be formed.
  • the holding members 440 and 540 in which the contact portions 442 and 542 are formed is externally fitted to the outer side of the inner cylindrical member 10 has been described, but the present invention is not limited thereto. Absent.
  • the clamping members 440 and 540 are the direction of the axis O (arrow L) of the drive side bracket 451 of the mounting bracket 450 (see FIG. 5A) to which the anti-vibration device 400 for electric vehicle is attached. -R direction) may be held between the end face and the end face.
  • the contact portions 442 and 542 of the holding member 440 are formed on the suppressing member 451a disposed on the side of the drive-side bracket 451 on the side of the anti-vibration device 400, 500 for the electric vehicle.
  • the suppressing member 451a can be formed of the same member.
  • the suppression member 451a disposed on the drive-side bracket 451 on the side of the anti-vibration apparatus 400, 500 for the electric vehicle is replaced with the holding members 440, 540, and the holding members 440, 540 share the role of the suppression member 451a. be able to.
  • the cost of manufacturing the holding members 440 and 540 can be reduced, and the assembling workability for arranging the holding members 440 and 540 can be improved.
  • the holding members 440 and 540 may be attached to the vehicle body side bracket 452 (see FIG. 5A) into which the outer cylindrical member 20 of the anti-vibration device 400 or 500 for electric vehicle is press-fit.
  • a hole may be formed in the flat plate portion 441, and the screw inserted in the hole may be fastened to the vehicle body side bracket 452 to attach the holding members 440 and 540 to the vehicle body side bracket 452.
  • the holding members 440 and 540 on which the contact portions 442 and 542 are formed is formed of the same material as the vibration isolation base 330
  • the present invention is not limited thereto. is not.
  • the material of the holding members 440 and 540 is made harder to be elastically deformed than the material of the vibration-proof base 330, and the spring constant necessary for the vibration absorbers 400 and 500 for electric vehicles is adjusted by the holding members 440 and 540. It is also good.
  • the said 4th Embodiment demonstrated the case where the clamping member 440 was arrange
  • the holding member 440 may be disposed inside the curving portion 233 b of the non-formed connection portion 333 e (the anti-vibration device 200 for an electric vehicle of the second embodiment).
  • the pair of second convex portions 542b are formed on both sides in the radial direction of the connecting portion 333e in the axial O direction, but the present invention is not necessarily limited thereto.
  • one second convex portion 542 b may be formed on the inner side or the outer side in the radial direction than the connecting portion 333 e.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

【課題】水平方向の荷重に対して電気自動車用防振装置の耐久性を向上できる電気自動車用防振装置の配設構造を提供すること。 【解決手段】電気自動車用防振装置400が自動車の車体に配設された状態における内筒部材10の水平方向外側の領域に軸O方向に貫通するすぐり部233bが形成され、そのすぐり部233bの内側に挿入される挟持部材440を備える。挟持部材440の当接部442がすぐり部233bの内側に挿入されることで、水平方向に過大な荷重が作用する場合に、内筒部材10が外筒部材20に対して変位することを当接部442により抑制できる。これにより、水平方向の荷重に対して電気自動車用防振装置400の耐久性を向上できる。

Description

電気自動車用防振装置の配設構造
 本発明は、電気自動車用防振装置の配設構造に関し、特に、水平方向の荷重に対して電気自動車用防振装置の耐久性を向上できる電気自動車用防振装置の配設構造に関する。
 自動車の駆動源を車体に支持するために用いる防振装置は、従来、筒状に形成される内筒部材と、その内筒部材の外側を囲う筒状に形成される外筒部材と、それら内筒部材および外筒部材を連結するゴム等の弾性体から形成される防振基体とで構成される。
 この種の防振装置によれば、自動車の車体に防振装置が配設された状態において、内筒部材と重力方向に重なる位置の防振基体に内筒部材の軸方向に貫通する貫通穴を形成して、所定の範囲内の荷重が重力方向に負荷された場合に動ばね定数が所定の値以上に高くなることを抑制することが一般的に行われている(特許文献1)。
 しかしながら、上述した従来の貫通穴を備える防振装置では、重力方向への荷重が所定の範囲以上となり、防振基体が変形して貫通穴の内側の空間が潰れる(貫通穴の内面同士が当接する)と、動ばね定数が急激に高くなるという問題点があった。
 また、エンジン式自動車の駆動源となるガソリンエンジンやディーゼルエンジン等では、低速回転時よりも高速回転時に駆動の音が大きくなりやすい傾向がある。そのため、エンジン式自動車では、高速回転時に防振装置の動ばね定数が高くなることに起因して発生する異音がエンジンを駆動する音で掻き消されていた。しかしながら、電気自動車の駆動源となる電気モータは、高速回転時の駆動の音がエンジンに比べて小さい。そのため、電気自動車では、高速回転させた際に防振装置の動ばね定数が高くなることに起因して発生する異音が車内に響きやすい。従って、電気自動車では、駆動源を高速回転させた際の動ばね定数を低くする必要がある。
 さらに、電気自動車の駆動源となる電気モータは、駆動した際のトルクの値がエンジンを駆動した際のトルクの値に比べて大きい。そのため、電気自動車では、エンジン式自動車に比べて内筒部材に大きい荷重が作用しやすい。従って、電気自動車では、エンジン式自動車に比べて防振装置の動ばね定数が高くなりやすい。
 本願出願人は、上述した問題点を解決するべく鋭意検討した結果、電気自動車用防振装置が車体に配設された状態で少なくとも重力方向における内筒部材と重なる位置への防振基体の貫通穴が非形成とされ、内筒部材に連結される側の防振基体の軸方向長さに対して径方向における防振基体の自由長が0.5倍以上であって1.0倍以下に設定され、径方向の各位置で軸方向に沿って連続して切断した場合の防振基体の切断面の断面積が径方向の各位置で一定に設定され、防振基体の自由長の30%までのたわみ量の範囲で防振基体のたわみ量に対する重力方向の荷重の特性が線形性を有する電気自動車用防振装置を開発した(本願出願時において未公知)。
 この電気自動車用防振装置によれば、すぐり部で防振基体全体の重量を小さくして、駆動源を駆動することにより防振基体に入力される所定の範囲の振動周波数よりも防振基体の固有振動数を高めて、防振基体が共振することを抑制しつつ、内筒部材の重力方向の両外側に防振基体への貫通穴を非形成として、防振基体のたわみ量に対する重力方向の荷重の特性に線形性を有することができる。その結果、駆動源を駆動することにより防振基体に入力される所定の範囲の振動周波数で電気自動車用防振装置の動ばね定数が高くなることを抑制できる。
特開2009-85305号公報(例えば、段落0027、図1など)
 しかしながら、上記した電気自動車用防振装置では、電気自動車用防振装置が自動車に配置された状態における水平方向の荷重が電気自動車用防振装置に作用すると、防振基体にすぐり部を形成した分、内筒部材が外筒部材に対して水平方向に変位しやすい。そのため、電気自動車用防振装置の耐久性が悪化するという問題点が新たに見つかった。
 本発明は、上述した問題点を解決するためになされたものであり、電気自動車用防振装置において、水平方向の荷重に対して電気自動車用防振装置の耐久性を向上できる電気自動車用防振装置の配設構造を提供することを目的としている。
 この目的を達成するために本発明の気自動車用防振装置の配設構造は、筒状の内筒部材と、前記内筒部材の外側を取り囲む筒状に形成され、前記内筒部材の軸と同軸上に配設される外筒部材と、ゴム状弾性体から構成され、前記内筒部材の外周面および前記外筒部材の内周面を連結する防振基体と、を有する電気自動車用防振装置と、前記電気自動車用防振装置が配設される電気自動車の車体とを備え、前記電気自動車用防振装置を前記車体に配設する前記電気自動車用防振装置の配設構造において、前記外筒部材の軸方向両側に配設される挟持部材を備え、前記電気自動車用防振装置は、前記内筒部材および前記外筒部材の軸を水平方向に向けた状態で前記車体に配設され、前記防振基体は、前記内筒部材よりも水平方向外側の領域に軸方向に貫通するすぐり部を備え、重力方向における前記内筒部材と重なる位置への貫通穴が非形成とされ、前記内筒部材に連結される側の軸方向長さに対して径方向における自由長が0.5倍以上であって1.0倍以下に設定され、径方向の各位置で軸方向に沿って連続して切断した場合の切断面の断面積が径方向の各位置で一定に設定され、前記防振基体の自由長の30%までのたわみ量の範囲で前記防振基体のたわみ量に対する重力方向の荷重の特性が線形性を有し、前記挟持部材は、前記すぐり部の内面と所定の間隔を隔てて、前記すぐり部の内側に配置される当接部を備える。
 請求項1記載の電気自動車用防振装置の配設構造によれば、外筒部材の軸方向両側に配設される挟持部材を備え、電気自動車用防振装置は、内筒部材および外筒部材の軸を水平方向に向けた状態で車体に配設され、防振基体は、内筒部材よりも水平方向外側の領域に軸方向に貫通するすぐり部を備え、挟持部材は、すぐり部の内面と所定の間隔を隔てて、すぐり部の内側に配置される当接部を備えるので、水平方向の荷重が電気自動車用防振装置に作用して内筒部材が外筒部材に対して水平方向に変位する場合に、内筒部材を当接部に当接させることができる。従って、水平方向の荷重が電気自動車用防振装置に作用する場合に、内筒部材が過大に変位することを抑制できる。なお、当接部は、すぐり部の内面と所定の間隔を隔てて配設されるので、重力方向の荷重が電気自動車用防振装置に作用する場合に、すぐり部の内面(防振基体)が当接部に当接して、自動車用防振装置の動ばね定数が急激に高くなることを抑制できる。その結果、電気自動車用防振装置に重力方向の荷重が作用する場合に電気自動車用防振装置の動ばね定数が急激に高くなることを抑制しつつ、水平方向の荷重に対する電気自動車用防振装置の耐久性を向上できる。
 また、重力方向における内筒部材と重なる領域には、すぐり部が非形成とされるので、従来の貫通穴が形成される防振装置のように内面同士が当接しない。よって、防振基体のたわみ量に対する重力方向の荷重の特性に線形性を持たせることができる。その結果、電気自動車用防振装置に所定の範囲以上の重力方向の荷重が作用する場合に電気自動車用防振装置の動ばね定数が急激に高くなることを抑制できる。
 さらに、電気自動車用防振装置は、内筒部材に連結される側の防振基体の軸方向長さに対して径方向における防振基体の自由長が0.5倍以上に設定され、径方向の各位置で軸方向に沿って連続して切断した場合の防振基体の切断面の断面積が径方向の各位置で一定に設定され、防振基体の自由長の30%までのたわみ量の範囲で防振基体のたわみ量に対する重力方向の荷重の特性が線形性を有するので、電気自動車用防振装置に所定の範囲内の荷重が重力方向に作用する場合に電気自動車用防振装置の動ばね定数が所定の値以上に高くなることを抑制できる。
 また、電気自動車用防振基体は、内筒部材に連結される側の防振基体の軸方向長さに対して径方向における防振基体の自由長が1.0倍以下に設定されるので、電気自動車用防振装置の軸方向における動ばね定数が小さくなりすぎることを抑制して、自動車の要求特性を満足できる。
 請求項2記載の電気自動車用防振装置の配設構造によれば、請求項1記載の電気自動車用防振装置の配設構造の奏する効果に加え、挟持部材は、ゴム状弾性体から形成されるので、電気自動車用防振装置に水平方向の荷重が作用して、内筒部材が水平方向に変位し当接部に当接する場合に、防振基体または当接部が破損することを抑制できる。さらに、内筒部材が当接部に当接する衝撃を緩和して、車体にその当接の衝撃が伝わることを抑制できる。
 請求項3記載の電気自動車用防振装置の配設構造によれば、請求項1又は2に記載の電気自動車用防振装置の配設構造の奏する効果に加え、当接部とすぐり部との間の間隔は、電気自動車用防振装置に重力方向の荷重が作用して防振基体が自由長の30%の領域で変位する際に非当接とされる間隔に設定されるので、電気自動車用防振装置に重力方向の荷重が作用して防振基体が変形する場合に、防振基体が当接部に当接して電気自動車用防振装置の動ばね定数が急激に高くなることを抑制できる。
 請求項4記載の電気自動車用防振装置の配設構造によれば、請求項1から3のいずれかに記載の電気自動車用防振装置の配設構造の奏する効果に加え、挟持部材は、外筒部材が他の部材に当接することを抑制するストッパ部材に一体形成されるので、挟持部材を形成するコストを安価にでき、さらに、当接部材を配設する作業性を向上できる。
(a)は、本発明の第1実施形態における電気自動車用防振装置の側面図であり、(b)は、図1(a)のIb-Ib線における電気自動車用防振装置の断面図である。 (a)は、防振基体のたわみ量に対して電気自動車用防振装置にかかる荷重の特性を示す図であり、(b)は、第1から第3実施形態における電気自動車用防振装置の周波数に対する動ばね定数の関係を示す図である。 (a)は、第2実施形態における電気自動車用防振装置の側面図であり、(b)は、図3(a)のIIIb-IIIb線における電気自動車用防振装置の断面図である。 (a)は、第3実施形態における電気自動車用防振装置の側面図であり、(b)は、図4(a)のIVb-IVb線における電気自動車用防振装置の断面図である。 (a)は、第4実施形態における電気自動車用防振装置および取付用ブラケットの一部の正面図であり、(b)は、電気自動車用防振装置の分解斜視正面図である。 (a)は、図5(a)のVIa-VIa線における電気自動車用防振装置の断面図であり、(b)は、図6(a)のVIb-VIb線における電気自動車用防振装置の断面図である。 (a)は、第5実施形態における電気自動車用防振装置の断面図であり、(b)は、図7(a)のVIIb-VIIb線における電気自動車用防振装置の断面図である。 (a)は、第6実施形態における電気自動車用防振装置の側面図であり、(b)は、第7実施形態における電気自動車用防振装置の側面図である。
 以下、本発明の好ましい実施形態について、添付図面を参照して説明する。図1(a)は、本発明の第1実施形態における電気自動車用防振装置100の側面図であり、図1(b)は、図1(a)のIb-Ib線における電気自動車用防振装置100の断面図である。図2(a)は、防振基体30のたわみ量(mm)に対する電気自動車用防振装置100にかかる荷重(N)の特性を示す図であり、図2(b)は、第1から第3実施形態における電気自動車用防振装置100,200,300の周波数(Hz)に対する動ばね定数(N/mm)の関係を示す図である。
 なお、以下の説明では、図1(a)に示す電気自動車用防振装置100に対して、紙面左側を車体に電気自動車用防振装置100を配設した状態における車体の前方(正面)側として、紙面右側を車体に電気自動車用防振装置100を配設した状態における車体の後方(背面)側として、紙面奥側を車体に電気自動車用防振装置100を配設した状態における車体の右側として、紙面手前側を車体に電気自動車用防振装置100を配設した状態における車体の左側として、紙面上側を電気自動車用防振装置100を車体に配設した状態における車体の上側として、紙面下側を電気自動車用防振装置100を車体に配設した状態における車体の下側としてそれぞれ説明する。さらに、図中の矢印F-B,U-D,L-Rは、電気自動車用防振装置100が車体に配設された状態における車体の前後方向,上下方向,左右方向をそれぞれ示している。
 図2(a)は、電気自動車用防振装置100を自動車の車体に配設した状態において、防振基体30のたわみ量(mm)に対して、重力方向に作用する荷重(N)の特性を示す図である。図2(a)では、横軸が、たわみ量0mmを基準として左側に向かう程、マイナス方向への防振基体30のたわみ量が大きい状態を示し、たわみ量0mmを基準として右側に向かう程、プラス方向への防振基体30のたわみ量が大きい状態を示し、縦軸が、重力方向に作用する荷重0Nを基準として上側に向かう程、重力方向下側に向かって荷重が作用した状態を示し、重力方向に作用する荷重0Nを基準として下側に向かう程、重力方向上側に向かって荷重が作用した状態を示す。
 また、図2(a)では、その図の線が直線形(線形性を有する領域)から曲線形に切り替わる位置に点P1と点P2との点を付して図示され、その点P1,P2の防振基体30のたわみ量(mm)の位置にA1,A2の符号が付して図示され、防振基体30の自由長(mm)に対する±30%の範囲のたわみ量(mm)の位置にB1,B2の符号を付して図示され、後述する電気自動車用防振装置100に入力される所定の範囲の荷重の最小値にN1、最大値にN2の符号を付して図示される。
 図2(b)では、第1実施形態における電気自動車用防振装置100の周波数(Hz)に対する動ばね定数(N/mm)が線Xの符号を付して実線で図示され、第2実施形態における電気自動車用防振装置200の周波数(Hz)に対する動ばね定数(N/mm)が線Yの符号を付して破線で図示され、第3実施形態における電気自動車用防振装置300の周波数(Hz)に対する動ばね定数(N/mm)が線Zの符号を付して2点鎖線で図示される。
 図2(b)では、横軸が、防振基体30,230,330に入力される振動周波数を示し、右側に向かう程大きい値の振動周波数が入力された状態を示し、縦軸が、電気自動車用防振装置100,200,300の動ばね定数を示し、上側に向かう程大きい値の動ばね定数を示す。また、図2(b)では、駆動源の駆動時における振動周波数が最小となる位置にC1、線Xの動ばね定数が最大となる振動周波数の位置にC3、C1から所定の振動周波数の範囲の上限となる位置にC2、線Yの動ばね定数が最大となる振動周波数の位置にC4の符号を付して図示され、後述する動ばね定数の所定の値の位置にK1の符号を付して図示される。
 なお、所定の範囲の振動周波数とは、電気モータ等の駆動源の駆動により発生する振動周波数のことを意味するものとし、図2(b)のC1~C2の範囲で作用するものである。
 図1に示すように、電気自動車用防振装置100は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置100は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体30とを備える。
 なお、電気自動車用防振装置100は、内筒部材10と外筒部材20との間に防振基体30が加硫接着された後、外筒部材20を縮径加工して製造される。図1では、外筒部材20を縮径加工した後の電気自動車用防振装置100が図示される。
 内筒部材10は、電気モータなどの電気自動車の駆動源に連結される駆動側ブラケットに連結される部材である。内筒部材10は、筒状に形成される内側に挿入されるボルトにより駆動側ブラケットに締結されることで駆動側ブラケットと連結される。
 外筒部材20は、自動車の車体に連結される車体側ブラケットに内嵌される部材である。外筒部材20は、外筒部材20の外径と略同一の内径を有する円環状に形成される車体側ブラケットの内側に圧入されて車体側ブラケットに連結される。
 防振基体30は、内筒部材10の外周面を一定の厚みで覆う第1膜部31と、外筒部材20の内周面を一定の厚みで覆う第2膜部32と、それら第1膜部31及び第2膜部32を連結する弾性変形部33とを備え、それら第1膜部31、第2膜部32、弾性変形部33が軸Oを中心とする周方向に一周分連続した円環状に形成される。
 第1膜部31及び第2膜部32は、内筒部材10と外筒部材20とが直接当接することを抑制する保護部である。第1膜部31及び第2膜部32は、自動車が急加速や急停止されて内筒部材10が外筒部材20に対して過大に変位される場合に、内筒部材10と外筒部材20とが当接して電気自動車用防振装置100が破損することを抑制できる。
 弾性変形部33は、軸O方向(矢印L-R方向)に沿って軸Oを通る平面に切断した際の断面が略台形(図1(b)参照)に形成され、内筒部材10(第1膜部31)から外筒部材20(第2膜部32)(軸Oから径方向外側に向かう)につれて軸O方向における弾性変形部33の厚みが小さくなるように設定される。
 また、弾性変形部33は、軸Oを中心とする径方向の各位置で、弾性変形部33を軸O方向(矢印L-R方向)に沿って周方向に連続して切断した場合の切断面の断面積が径方向の各位置で一定の大きさに設定される。詳しく説明すると、弾性変形部33は、軸Oから径方向に離間する距離をRとし、そのRの位置において軸O方向に沿う方向の弾性変形部33の厚みをHとすると、2π×R×H=一定とされる。これにより、弾性変形部33は、軸O方向における両端面が軸O方向内側に向かって凹む円弧状に設定される。
 なお、弾性変形部33は、第1膜部31及び第2膜部32に連結される連結部分の角部に補強部33aが形成される。補強部33aは、第1膜部31及び第2膜部32と弾性変形部33との連結部分を補強するための部分であり、若干の厚みを有して形成される。
 補強部33aは、軸O方向(矢印L-R方向)に沿う方向に弾性変形部33から最大で5%程突出される。従って、軸Oから径方向に離間する弾性変形部33の距離をRとし、そのRの位置において軸Oに沿う方向の弾性変形部33の厚みをHとした場合の径方向の各位置の切断面における弾性変形部33の断面積は、5%の範囲で一定とされる。
 防振基体30の軸Oを中心とする径方向の自由長R2(内筒部材10の外周面から外筒部材20の内周面までの距離(図1(b)参照))は、図2(a)に示すように、電気自動車用防振装置100が自動車の車体に配設された状態において、電気自動車用防振装置100に重力方向(矢印U-D方向)の荷重(N)を作用させた場合に、防振基体30の自由長R2の±30%のたわみ量(mm)までの範囲(図2(a)のB1~B2の範囲)で防振基体30のたわみ量(mm)に対する重力方向の荷重の特性が線形性を有するように設定される。即ち、図2(a)に示す直線部分の両端A1,A2は、B1,B2よりも外側に位置するように設定される(A1<B1<B2<A2)。これにより、電気自動車用防振装置100は、所定の範囲(図2(a)のN1~N2の範囲)の荷重が重力方向に作用する場合に電気自動車用防振装置100の動ばね定数が所定の値(図2(b)のK1)以上に高くなることを抑制できる。
 なお、所定の範囲(図2(a)のN1~N2の範囲)の荷重とは、自動車を急発進、又は、急停止させた場合に、電気自動車用防振装置100に通常作用する範囲の荷重である。本実施形態では、点P1及び点P2に対応する位置の荷重の範囲よりも狭い範囲の±4000Nの範囲に設定される。即ち、本実施形態では、所定の範囲(図2(a)N1~N2の範囲)の荷重が、防振基体30のたわみ量に対する重力方向の荷重の特性が線形性を有する領域に設定される。
 動ばね定数の所定の値(図2(b)のK1)とは、自動車の駆動源を駆動することによる振動を吸収して、その振動が車体へ伝達されることを抑制可能とされる値の最大値であり、本実施形態では5000N/mmに設定される。電気自動車用防振装置100は、動ばね定数を所定の値以下に設定することで、自動車の駆動源を駆動することによる振動が車体に伝達され、その振動により車体に配設される部材が共振することを抑制できる。
 さらに、防振基体30の自由長R2は、弾性変形部33の軸O方向(矢印L-R方向)の厚み、及び、防振基体30の材質(弾性率)によって適宜変更され、電気自動車用防振装置100に荷重を作用させた場合に、防振基体30の自由長R2の±30%の領域のたわみ量の範囲で防振基体30のたわみ量に対する重力方向の荷重の特性が線形性(直線状)を有する値に設定される。この場合に、自由長R2は、第1膜部31(内筒部材10)側の弾性変形部33の軸方向長さH2(図1(b)参照)に対して0.5倍以上であって1.0倍以下に設定されることが好ましい。これは、所定の範囲の荷重が電気自動車用防振装置100に作用する場合に、電気自動車用防振装置100の動ばね定数が所定の値以上になることを抑制しつつ、電気自動車用防振装置100が耐久性が悪くなることを抑制できるからである。
 詳しく説明すると、電気自動車用防振装置100は、防振基体30の自由長R2の値(軸Oを中心とする径方向の厚み)を大きくすることで、電気自動車用防振装置100に所定の範囲の重力方向(矢印U-D方向)の荷重が作用する場合に、防振基体30のたわみ量に対する重力方向の荷重の特性が線形性を有する範囲(図2(a)の点P1~P2の範囲)を増やすことができる。しかしながら、自由長R2を大きくしすぎた場合には、防振基体30が径方向に大きくなる分、電気自動車用防振装置100の軸O方向における動ばね定数が小さくなり、自動車の要求特性を満足できなくなる。
 電気自動車用防振装置100では、自由長R2が、第1膜部31側の弾性変形部33の軸方向長さH2(図1(b)参照)に対して1.0倍以下に設定されることで、電気自動車用防振装置100の軸O方向における動ばね定数が小さくなりすぎることを抑制して、自動車の要求特性を満足できる。
 一方、電気自動車用防振装置100は、防振基体30の自由長R2の値(軸Oを中心とする径方向の厚み)を小さくすることで、径方向外側における防振基体30の厚みを厚くして電気自動車用防振装置100の耐久性を高めやすくできる。しかしながら、自由長R2を小さくしすぎた場合には、防振基体30のたわみ量に対する重力方向の荷重の特性に線形性を有する範囲(図2(a)の点P1~P2の範囲)が狭くなる。よって、電気自動車用防振装置100は、所定の範囲の重力方向(矢印U-D方向)の荷重が作用する場合に、動ばね定数を所定の値以下に抑えることができなくなる。
 電気自動車用防振装置100では、自由長R2が、第1膜部31側の弾性変形部33の軸方向長さH2(図1(b)参照)に対して0.5倍以上に設定されることで、防振基体30の自由長R2の±30%の防振基体30のたわみ量の範囲で防振基体30のたわみ量に対する重力方向の荷重の特性に線形性を持たせやすくできる。その結果、電気自動車用防振装置100は、重力方向に所定の範囲の荷重が作用する場合に、動ばね定数が所定の値以上になることを抑制できる。
 ここで、従来より、車体と駆動源との間に配設され、駆動源の振動が車体に伝達されることを抑制する防振装置がある。従来の防振装置によれば、筒状に形成される内筒部材と、その内筒部材と同心に配設される外筒部材と、それら内筒部材および外筒部材を連結する防振基体とを主に備え、自動車の車体に防振装置が配設された状態において、内筒部材と重力方向に重なる位置の防振基体に内筒部材の軸方向に貫通する貫通穴を形成して、防振装置に所定の範囲の重力方向の荷重が作用する場合に動ばね定数が所定の値以上になることを抑制できる。
 しかしながら、内筒部材と重力方向に重なる位置の防振基体に内筒部材の軸方向に貫通する貫通穴を形成する防振装置では、防振装置の重力方向に所定の範囲以上の荷重が作用することで、防振基体が変形して貫通穴の内部の空間が潰れる(貫通穴の内面同士が当接する)と、動ばね定数が急激に高くなるという問題点があった。
 また、エンジン式自動車の駆動源となるガソリンエンジンやディーゼルエンジン等では、低速回転時よりも高速回転時に駆動の音が大きくなりやすい傾向がある。そのため、エンジン式自動車では、高速回転時に防振装置の動ばね定数が高くなることに起因して発生する異音がエンジンを駆動する音で掻き消されていた。しかしながら、電気自動車の駆動源となる電気モータは、高速回転時の駆動の音がエンジンに比べて小さい。そのため、電気自動車では、高速回転させた際に防振装置の動ばね定数が高くなることに起因して発生する異音が車内に響きやすい。従って、電気自動車では、駆動源を高速回転させた際の動ばね定数を低くする必要がある。
 さらに、電気自動車の駆動源となる電気モータは、駆動した際のトルクの値がエンジンを駆動した際のトルクの値に比べて大きい。そのため、電気自動車では、エンジン式自動車に比べて内筒部材に大きい荷重が作用しやすい。従って、電気自動車では、エンジン式自動車に比べて防振装置の動ばね定数が高くなりやすい。
 上述した従来の防振装置に対し、本実施形態における電気自動車用防振装置100では、電気自動車用防振装置100が自動車の車体に配設された状態において、内筒部材10と重力方向(矢印U-D方向)に重なる位置で軸O方向(矢印L-R方向)への貫通穴が非形成とされる。その結果、電気自動車用防振装置100では、貫通穴が潰れる(貫通穴の内面同士が当接する)ことが無くなるので重力方向に所定の範囲以上の荷重が作用する場合に、動ばね定数が急激に高くなることを抑制できる。
 また、電気自動車用防振装置100では、内筒部材10と重力方向(矢印U-D方向)に重なる位置で軸O方向(矢印L-R方向)への貫通穴が非形成とされることで、所定の範囲の荷重が重力方向に作用する場合に、駆動源の振動に対する動ばね定数が高くなる恐れがある。これに対し、電気自動車用防振装置100では、防振基体30の自由長R2の±30%の防振基体30のたわみ量の範囲で防振基体30のたわみ量に対する重力方向の荷重の特性が線形性を有するので、電気自動車用防振装置100に所定の範囲の荷重が重力方向に作用する場合に動ばね定数が所定の値以上に高くなることを抑制できる。
 なお、防振基体30は、軸Oを中心とする径方向の各位置で弾性変形部33を軸O方向(矢印L-R方向)に沿って周方向に連続して切断した場合の切断面の断面積が、径方向の各位置で一定の大きさに設定される。これにより、電気自動車用防振装置100は、防振基体30の自由長R2の±30%の防振基体30のたわみ量の範囲で防振基体30のたわみ量に対する重力方向の荷重の特性に線形性を持たせやすくできる。
 本実施形態における電気自動車用防振装置100では、内筒部材10の外径が25mmに設定され、外筒部材20の内径が86mmに設定され、防振基体30の自由長が30.5mmに設定され、軸O方向(矢印L-R方向)における第1膜部31側(内筒部材10側)の軸O方向への厚みが50mmに設定される。
 次いで、図3を参照して、第2実施形態における電気自動車用防振装置200について説明する。上記第1実施形態では、電気自動車用防振装置100が自動車の車体に配設された状態における内筒部材10の水平方向両外側にも貫通穴が非形成(周方向に一周分連続した円環形状)とされる場合について説明したが、第2実施形態における電気自動車用防振装置200では、軸O方向(矢印L-R方向)と直交する水平方向における内筒部材10の(内筒部材10の水平方向)外側に軸O方向に沿って貫通するすぐり部233bが形成される。なお、上記第1実施形態と同一の部分には、同一の符号を付してその説明は省略する。
 図3(a)は、第2実施形態における電気自動車用防振装置200の側面図であり、図3(b)は、図3(a)のIIIb-IIIb線における電気自動車用防振装置200の断面図である。
 図3に示すように、第2実施形態における電気自動車用防振装置200は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置200は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体230とを備える。
 なお、電気自動車用防振装置200は、内筒部材10と外筒部材20との間に防振基体230が加硫接着された後、外筒部材20を縮径加工して製造される。図3では、外筒部材20を縮径加工した後の電気自動車用防振装置200が図示される。
 防振基体230は、内筒部材10の外周面を一定の厚みで覆う第1膜部31と、外筒部材20の内周面を一定の厚みで覆う第2膜部32と、それら第1膜部31及び第2膜部32とを連結する弾性変形部233とを備える。
 弾性変形部233は、第1膜部31及び第2膜部32に連結される連結部分の角部に形成される補強部33aと、電気自動車用防振装置200が自動車の車体に配設された状態で、軸O方向(矢印L-R方向)と直交する水平方向における内筒部材10の(内筒部材10の水平方向)外側に軸O方向に沿って貫通形成されるすぐり部233bと、その一対のすぐり部233bにより重力方向(矢印U-D方向)に分けられた上側の上方側弾性部233cと、下側の下方側弾性部233dとを備える。
 すぐり部233bは、防振基体230を軽量にする部分である。すぐり部233bは、電気自動車用防振装置200が自動車の車体に配設された状態において内筒部材10の水平方向領域に一部が重なる位置に形成され、内筒部材10の軸Oを中心とする湾曲形状に形成される。
 また、すぐり部233bは、内筒部材10の水平方向領域に少なくとも一部が重なる位置に形成される。これにより、防振基体230は、軸O方向視において同一の大きさの貫通穴が内筒部材10に水平方向領域と重ならない位置に形成される場合に比べて、内筒部材10の重力方向(矢印U-D方向)両側に位置する防振基体230の体積を確保できる。その結果、電気自動車用防振装置200では、防振基体230が重力方向に弾性変形される場合の防振基体230の変形量を少なくでき、電気自動車用防振装置200の耐久性を確保することができる。
 さらに、すぐり部233bは、軸O方向視において、第1膜部31から第2膜部32に亘って貫通形成される。これにより、防振基体230は、弾性変形部233のうち上方側(矢印U方向側)の上方側弾性部233cと下方側(矢印D方向側)の下方側弾性部233dとをそれぞれ別の部材として変形させることができる。
 ここで、上記第1実施形態で説明した電気自動車用防振装置100では、貫通穴が非形成とされる分、防振基体30全体の重量が重くなる。従って、電気自動車用防振装置100では、駆動源を駆動することにより防振基体30に入力される振動周波数の所定の範囲(図2(b)のC1~C2の範囲)に防振基体30の固有振動数が入り、防振基体30が共振して電気自動車用防振装置100の動ばね定数が所定の値(図2(b)のK1)以上に高くなる恐れがあった。
 これに対し、第2実施形態では、電気自動車用防振装置200が自動車の車体に配設された状態で、軸O方向(矢印L-R方向)と直交する水平方向における内筒部材10の(内筒部材10の水平方向)外側に軸O方向に貫通するすぐり部233bが形成される。その結果、電気自動車用防振装置200では、重力方向(矢印U-D方向)における荷重に対する防振基体230の変形性に影響を与えること無く(内筒部材10と重力方向に重なる防振基体230の体積を確保しつつ)、防振基体230を軽くできる。
 また、防振基体230の固有振動数Fは、F=1/2×(a)で求められる。なお、前記固有振動数Fを求める式の(a)は、防振基体230の動ばね定数Kを防振基体230のゴム重量mの値で割った(K/mの)平方根である。従って、防振基体230の固有振動数は、動ばね定数の値を高くすることで高くなり、防振基体230の重量を軽くすることで高くされる。従って、防振基体230の固有振動数は、すぐり部233bを形成して防振基体230を軽くすることで高く設定できる。これにより、電気自動車用防振装置200では、電気モータ等の駆動源を駆動することによる所定の範囲の振動周波数(図2(b)のC1~C2の範囲)よりも防振基体230の固有振動数を高くする(図2(b)のC4付近に設定する)ことができる。
 また、弾性変形部233は、第1実施形態における弾性変形部33と同様に、軸Oを中心とする径方向の各位置で、弾性変形部233を軸Oに沿って周方向に連続して切断した場合の切断面の断面積が径方向の各位置で一定の大きさに設定される。これにより、電気自動車用防振装置200は、第1実施形態における電気自動車用防振装置100と同様に、防振基体230の自由長R2の±30%の防振基体230のたわみ量の範囲で防振基体230のたわみ量に対する重力方向の荷重の特性に線形性を持たせやすくできる。
 この場合、すぐり部233bは、軸O方向視において、径方向に対向する内面が軸Oと同軸の円弧状に湾曲して形成され、周方向に対向する内面が軸Oから径方向に沿って延びる直線状の平面に形成されるので、軸Oを中心とする径方向の各位置で、弾性変形部233を軸Oに沿って周方向に連続して切断した場合の切断面の断面を径方向の各位置で一定の大きさに設定しやすくできる。その結果、電気自動車用防振装置200では、防振基体230の自由長R2の±30%の防振基体230のたわみ量の範囲で防振基体230のたわみ量に対する重力方向の荷重の特性に線形性を持たせやすくできる。
 また、すぐり部233bは、軸Oを中心とする径方向において、第1膜部31から第2膜部32に亘って貫通形成されるので、すぐり部233bの内部空間を大きくして、防振基体230を軽くできる。従って、電気自動車用防振装置200では、電気モータ等の駆動源を駆動することにより防振基体230に入力される所定の範囲の振動周波数(図2(b)のC1~C2の範囲)よりも防振基体230の固有振動数を高く(図2(b)のC4付近に設定)しやすくできる。その結果、電気自動車用防振装置200では、防振基体230が共振して電気自動車用防振装置200の動ばね定数が所定の値(図2(b)のK1)以上に高くなることを抑制できる。
 次いで、図4を参照して、第3実施形態における電気自動車用防振装置300について説明する。上記第2実施形態では、すぐり部233bの内部が空間として形成される場合について説明したが、第3実施形態では、すぐり部233bの内面同士を連結する連結部333eが形成される場合について説明する。なお、上記各実施形態と同一の部分には、同一の符号を付してその説明は省略する。
 図4(a)は、第3実施形態における電気自動車用防振装置300の側面図であり、図4(b)は、図4(a)のIVb-IVb線における電気自動車用防振装置300の断面図である。
 図4に示すように、第3実施形態における電気自動車用防振装置300は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置300は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体330とを備える。
 なお、電気自動車用防振装置300は、内筒部材10と外筒部材20との間に防振基体330が加硫接着された後、外筒部材20を縮径加工して製造される。図4では、外筒部材20を縮径加工した後の電気自動車用防振装置300が図示される。
 防振基体330は、内筒部材10の外周面を一定の厚みで覆う第1膜部31と、外筒部材20の内周面を一定の厚みで覆う第2膜部32と、それら第1膜部31及び第2膜部32とを連結する弾性変形部333とを備える。
 弾性変形部333は、第1膜部31及び第2膜部32に連結される連結部分の角部に形成される補強部33aと、電気自動車用防振装置300が自動車の車体に配設された状態で、軸O方向(矢印L-R方向)と直交する水平方向における内筒部材10の(内筒部材10の水平方向)外側に軸O方向に沿って貫通形成されるすぐり部233bと、そのすぐり部233bにより重力方向(矢印U-D方向)に分けられた上側の上方側弾性部233cと、下側の下方側弾性部233dと、すぐり部233bの内面同士を上方側弾性部233cから下方側弾性部233dに亘って連結される連結部333eとを備える。
 連結部333eは、所定の範囲以上の振動周波数で防振効果を高め、所定の範囲以上の振動周波数で上方側弾性部233cと下方側弾性部233dとが共振することを抑制し、電気自動車用防振装置300の動ばね定数が大きくなることを抑制する部分である。連結部333eは、軸O方向視におけるすぐり部233bの周方向に対向する内面同士を内筒部材10と外筒部材20との間の略中央位置(周方向において対向するすぐり部233bの内面の径方向略中間位置)で連結される。
 連結部333eは、軸Oと直交する平面と平行に延設される。また、連結部333eは、軸O方向(矢印L-R方向)において、すぐり部233bの略中央に形成されており、軸O方向における防振基体330の両端面よりも内側に形成される。これにより、すぐり部233bには、連結部333eとすぐり部233bとの連結部分から軸O方向における防振基体330の両端面までの間のすぐり部233bの内面に、軸O方向に沿って延設される平面の段差面333b1が形成される。
 ここで、上記第2実施形態で説明した電気自動車用防振装置200では、軸O方向(矢印L-R方向)と直交する水平方向であって、内筒部材10の径方向外側の領域に軸O方向に貫通するすぐり部233bを備えることで、駆動源を駆動することによる所定の範囲(図2(b)のC1~C2)の振動周波数よりも、防振基体230の固有振動数を高く(図2(b)のC4付近に設定)して、防振基体230が共振することを抑制できる。
 しかしながら、図2(b)の線Yに示すように、第2実施形態における電気自動車用防振装置200では、所定の範囲以上(図2(b)のC4付近)の振動周波数が防振基体230に入力される場合に、依然として動ばね定数が高くなる(動ばね定数が図2(b)のK1付近まで高くなる)。そのため、電気自動車用防振装置200では、駆動源の回転数を上げて駆動源から入力される振動周波数が所定の範囲以上(図2(b)のC4付近)に設定された場合に、防振基体230に入力される振動周波数の所定の範囲に防振基体230の固有振動数が入り、電気自動車用防振装置200の動ばね定数が急激に高くなる恐れがあった。
 これに対し、第3実施形態では、軸O方向視において、すぐり部233bの周方向に対向する内面同士に連結され、上方側弾性部233c及び下方側弾性部233dよりも小さい体積の連結部333eが形成されるので、上方側弾性部233c及び下方側弾性部233dが共振しやすい所定の値の振動周波数よりも小さい値の振動周波数(図2(b)の線Zにおいて、動ばね定数が高くなるC3付近の振動周波数)で連結部333eを共振させることができる。これにより、電気自動車用防振装置300では、連結部333eが共振しやすい振動周波数よりも高い振動周波数(図2(b)の線Zにおいて、振動周波数が高くなるにつれて動ばね定数が低くなる範囲(図2(b)C3~C4の範囲)の振動周波数)で、連結部333eによる防振効果を高くすることができ、その防振効果が高くされる振動周波数の範囲に、上方側弾性部233c及び下方側弾性部233dが共振しやすい所定の値の振動周波数を含めることができる。
 その結果、所定の範囲以上(図2(b)のC2以上の範囲)の振動周波数では、連結部333eにより防振効果を高め、上方側弾性部233c及び下方側弾性部233dが共振することを抑制し、電気自動車用防振装置300の動ばね定数が急激に高くなることを抑制できる。
 さらに、電気自動車用防振装置300は、すぐり部233bの内面に段差面333b1が形成され、連結部333eがすぐり部233bの軸O方向(矢印L-R方向)の略中央位置に設定されるので、上方側弾性部233c又は下方側弾性部233dが変形した際に連結部333eに入力される力の方向を、連結部333eの延設方向(矢印U-D方向)に作用させやすくできる。即ち、電気自動車用防振装置300では、連結部333eに入力される力の方向が軸O方向に傾斜することを抑制できる。
 よって、電気自動車用防振装置300では、連結部333eが軸O方向(矢印L-R方向)に撓んで連結部333eの弾性回復力が軸O方向に作用することで、自動車の要求特性を満足できなくなることを抑制できる。
 すぐり部233bを除く防振基体330は、軸Oを中心とする径方向の各位置で、弾性変形部333を軸Oに沿って周方向に連続して切断した場合の切断面の断面積が径方向の各位置で一定の大きさに設定される。さらに、連結部333eは、軸O方向視における内筒部材10と外筒部材20との間の略中央位置(周方向において対向するすぐり部233bの内面の径方向略中間位置)ですぐり部233bの内面に連結されるので、連結部333eの延設方向(矢印U-D方向)端面に上方側弾性部233c及び下方側弾性部233dから作用する力を均等にしやすくできる。
 また、連結部333eは、外筒部材20を縮径加工する前(内筒部材10と外筒部材20との間に防振基体330が加流接着された後)の状態時には、軸O方向視において直線状に延設され、外筒部材20を縮径加工した後の状態時には、上方側弾性部233c及び下方側弾性部233dに押圧されて径方向外側に撓んだ形状とされる。
 従って、電気自動車用防振装置300では、外筒部材20を縮径加工する前において、連結部333eを直線状に形成することで、外筒部材20を縮径加工する前に連結部333eを湾曲した形状に形成する場合に比べて、連結部333eを軽量にできる。
 よって、電気自動車用防振装置300では、連結部333eを除く部分の防振基体330(上方側弾性部233c及び下方側弾性部233d)の固有振動数と、連結部333eの固有振動数と、を異なる値にしやすくできる。その結果、電気自動車用防振装置300では、駆動源の駆動による振動が入力された際に上方側弾性部233c及び下方側弾性部233dと連結部333eとに異なる動作をさせて上方側弾性部233c及び下方側弾性部233dが、所定の範囲以上(図2(b)のC2以上)の振動周波数で共振することを抑制して動ばね定数が所定の値以上になることを連結部333eで抑制しやすくできる。
 なお、本実施形態では、図2(b)の線Zに示すように、所定の範囲以上(図2(b)のC4付近)の振動周波数が防振基体330に入力される場合に動ばね定数が最大となるが、かかる動ばね定数を所定の値(図2(b)のK1)以下に抑えることができる。
 また、軸O方向視における連結部333eの延設方向(矢印U-D方向)と直交する方向の幅は、すぐり部233bの径方向における幅に対して、1/5~1/3の範囲に設定される。これは、連結部333eの幅を1/5以上にすることで、連結部333eの径方向の弾性変形に対する強度を確保して、連結部333eの幅を1/3以下とすることで、連結部333eが弾性変形する場合に連結部333eが内筒部材10の外周面または外筒部材20の内周面に当接して、動ばね定数が不規則に変化することを抑制できるからである。
 さらに、連結部333eの軸O方向(矢印L-R方向)における幅は、連結部333eを軸O方向に沿って軸Oを通る平面で切断した場合の切断面の断面積が、(すぐり部233bを除いた)防振基体330を軸O方向に沿って軸Oを通る平面で切断した場合の切断面の断面積に対して、1/5以下になるよう、軸O方向視における連結部333eの延設方向(矢印U-D方向)と直交する方向の幅との関係で設定される。これは、連結部333eの断面積が防振基体330の断面積の1/5以下に設定されることで、上方側弾性部233c及び下方側弾性部233d(すぐり部を除いた防振基体330)の固有振動数と、連結部333eの固有振動数と、の差を大きくできるからである。
 次いで、図5及び図6を参照して、第4実施形態における電気自動車用防振装置400について説明する。第4実施形態では、上記第3実施形態における電気自動車用防振装置300のすぐり部233bに挟持部材440が挿入される場合について説明する。なお、上記各実施形態と同一の部分には、同一の符号を付してその説明は省略する。
 図5(a)は、第4実施形態における電気自動車用防振装置400及び取付用ブラケット450の一部の正面図であり、図5(b)は、電気自動車用防振装置400の分解斜視正面図である。図6(a)は、図5(a)のVIa-VIa線における電気自動車用防振装置400の断面図であり、図6(b)は、図6(a)のVIb-VIb線における電気自動車用防振装置400の断面図である。
 なお、図5(a)では、電気自動車用防振装置400が取り付けられる取付用ブラケット450の一部と、その取付用ブラケット450を取り付けるボルトB及びナットNと、が破線で図示される。
 図5及び図6に示すように、第4実施形態における電気自動車用防振装置400は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置400は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体330と、その防振基体330と同一のゴム状弾性体から形成され、外筒部材20の軸O方向(矢印L-R方向)両外側に配設される挟持部材440とを備える。
 取付用ブラケット450は、電気モータなどの電気自動車の駆動源に連結される駆動側ブラケット451と、自動車の車体に連結される車体側ブラケット452と、を主に備える。駆動側ブラケット451は、筒状に形成される内筒部材10にボルトBが挿通され、反対側からナットNで締結されることで、内筒部材10が締結される。車体側ブラケット452には、外筒部材20が内側に圧入されて連結される。
 なお、駆動側ブラケット451には、電気自動車用防振装置400側にゴム状弾性体から形成される抑制部材451aが配設される。この抑制部材451aにより、外筒部材20は、駆動側ブラケット451側に向かって変位した場合に、駆動側ブラケット451に当接することが抑制される。その結果、電気自動車用防振装置400では、外筒部材20が変形することや破損することを抑制できる。
 挟持部材440は、軸O方向(矢印L-R方向)と直交する方向の平面を有する平板状に形成される平板部441と、その平板部441の平面から軸O方向に突設され、防振基体330のすぐり部233bの内側に挿入される当接部442とを備える。
 平板部441は、一方向に長い矩形状の平板状に形成され、その長手方向の寸法が、外筒部材20の直径よりも大きく設定され、長手方向の両端が外筒部材20よりも径方向外側に突出した状態で配設される。また、平板部441は、軸Oと同軸上に設定され、円形に貫通する貫通穴441aが形成される。
 貫通穴441aは、内筒部材10の外周面に覆設される第1膜部31の外径と略同一もしくは若干小さく形成される。よって、挟持部材440は、貫通穴441aに内筒部材10を圧入する(内筒部材10に外嵌される)ことで内筒部材10に配設される。
 当接部442は、軸O方向視におけるすぐり部233bの内形よりも小さい略三角形状に形成される。当接部442は、平板部441が外筒部材20の軸O方向(矢印L-R方向)における端面と当接した状態(挟持部材440が内筒部材10に外嵌された状態)において、突出先端面が、連結部333eの軸O方向における端面と所定の隙間を隔てて対向する位置まで突出される。即ち、当接部442は、連結部333eと非当接に設定される。
 さらに、当接部442は、軸O方向視におけるすぐり部233bの内面と所定の隙間S(図6(b)参照)を隔てて配設される。
 所定の隙間Sは、重力方向(矢印U-D方向)におけるすぐり部233bの内面と当接部442との間の距離が最小となる位置であり、電気自動車用防振装置400に所定の範囲の荷重が重力方向に作用して、防振基体330が自由長に対して±30%のたわみ量の範囲でたわむ場合に、すぐり部233bの内面が当接部442に非当接とされる距離に設定される。これにより、電気自動車用防振装置400では、重力方向に所定の範囲の荷重が作用する際にすぐり部233bの内面が当接部442に当接して、動ばね定数が急激に高くなることを抑制できる(防振基体330のたわみ量に対する重力方向の荷重の特性に線形性を保たせることができる)。
 ここで、上記第2及び第3実施形態で説明した電気自動車用防振装置200,300では、すぐり部233bが形成される分、軸O方向(矢印L-R方向)に対して直交する水平方向の荷重が入力される場合に、内筒部材10が外筒部材20に対して水平方向に変位しやすい。そのため、電気自動車用防振装置200,300では、防振基体230,330の水平方向の弾性変形量が大きくなり、電気自動車用防振装置200,300の耐久性を確保することが困難であった。
 これに対し、第4実施形態では、すぐり部233bの内側に挿入される当接部442を備えるので、軸O方向(矢印L-R方向)に対して直交する水平方向に荷重が作用する場合に、すぐり部233bの内面を当接部442に当接させることで、内筒部材10が外筒部材20に対して水平方向に変位することを抑制できる。その結果、電気自動車用防振装置400は、その耐久性を向上できる。
 また、第4実施形態では、当接部442がゴム状弾性体から形成されるので、軸O方向(矢印L-R方向)に対して直交する水平方向に荷重が作用してすぐり部233bの内面が当接部442に当接する場合の力を当接部442と防振基体330との両者に分散させることができる。その結果、電気自動車用防振装置400は、その耐久性を向上できる。
 次いで、図7を参照して、第5実施形態における電気自動車用防振装置500について説明する。上記第4実施形態では、当接部442が連結部333eの手前まで突出される場合について説明したが、第5実施形態では、連結部333eと径方向に重なる位置まで突出する第2凸部542bが形成される場合について説明する。なお、上記各実施形態と同一の部分には、同一の符号を付してその説明は省略する。
 図7(a)は、第5実施形態における電気自動車用防振装置500の断面図であり、図7(b)は、図7(a)のVIIb-VIIb線における電気自動車用防振装置500の断面図である。なお、図7(a)における電気自動車用防振装置500の断面は、図5(b)における電気自動車用防振装置400の断面図と対応する。
 図7に示すように、第5実施形態における電気自動車用防振装置500は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置500は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体330と、その防振基体330と同一のゴム状弾性体から形成され外筒部材20の軸O方向(矢印L-R方向)両外側に配設される挟持部材540とを備える。
 挟持部材540は、軸Oと直交する平面を有する平板状に形成される平板部441と、その平板部441の平面から軸O方向(矢印L-R方向)に突設され、防振基体330のすぐり部233bの内側に挿入される当接部542とを備える。
 当接部542は、軸O方向視におけるすぐり部233bの内形よりも小さい略三角形状に形成され、平板部441から突出される第1凸部542aと、その第1凸部542aの先端から軸O方向(矢印L-R方向)にさらに突出される一対の第2凸部542bとを備える。
 第1凸部542aは、平板部441が外筒部材20の軸O方向(矢印L-R方向)における端面と当接した状態(挟持部材540が内筒部材10に外嵌された状態)において、突出先端面が軸O方向における連結部333eの端面と所定の隙間を隔てる位置まで突出される。
 第2凸部542bは、軸O方向視において、連結部333eと径方向に所定の隙間を隔てる位置であって、連結部333eを径方向に挟む両側から軸O方向(矢印L-R方向)に突出される。また、第2凸部542bは、軸O方向における防振基体330の略中央位置まで突出される。
 即ち、第2凸部542bは、径方向に連結部333eと重なる位置まで突出される。これにより、電気自動車用防振装置500では、連結部333eが径方向に弾性変形する場合に、連結部333eを第2凸部542bに当接させて連結部333eの弾性変形を抑制できる。
 よって、電気自動車用防振装置500では、連結部333eの防振効果を高めて振動源の駆動による所定の範囲以上の振動周波数で防振基体330の上方側弾性部233c及び下方側弾性部233dが共振することを抑制する場合に、連結部333eが弾性変形して連結部333eによる防振効果が低下することを抑制できる。
 従って、電気自動車用防振装置500では、連結部333eの弾性変形を抑制するために連結部333eの外形を大きくする必要がなくなるので、連結部333eを軽量にして、上方側弾性部233c及び下方側弾性部233dの固有振動数と、連結部333eの固有振動数と、を異なる値にしやすくできる。その結果、電気自動車用防振装置500では、駆動源の駆動による所定の範囲の振動周波数で防振基体330が共振されることを抑制できる。
 次いで、図8(a)を参照して、第6実施形態における電気自動車用防振装置600について説明する。上記第3実施形態では、外筒部材20が縮径加工される前において連結部333eが軸Oと直交する平面と平行な直線状に形成される場合について説明したが、第6実施形態における連結部633eは、軸Oを中心とする周方向に沿って延設される。なお、上記各実施形態と同一の部分には、同一の符号を付してその説明は省略する。
 図8(a)は、第6実施形態における電気自動車用防振装置600の側面図である。図8(a)に示すように、第6実施形態における電気自動車用防振装置600は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置600は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体630とを備える。
 なお、電気自動車用防振装置600は、内筒部材10と外筒部材20との間に防振基体630が加硫接着された後、外筒部材20を縮径加工して製造される。図8(a)では、外筒部材20を縮径加工した後の電気自動車用防振装置600が図示される。
 防振基体630は、内筒部材10の外周面を一定の厚みで覆う第1膜部31と、外筒部材20の内周面を一定の厚みで覆う第2膜部32と、それら第1膜部31及び第2膜部32とを連結する弾性変形部633とを備える。
 弾性変形部633は、第1膜部31及び第2膜部32に連結される連結部分の角部に形成される補強部33a(図4(b)参照)と、電気自動車用防振装置600が自動車の車体に配設された状態で、軸O方向(矢印L-R方向)と直交する水平方向における内筒部材10の(内筒部材10の水平方向)外側に軸O方向に沿って貫通形成されるすぐり部233bと、そのすぐり部233bにより重力方向(矢印U-D方向)に分けられた上側の上方側弾性部233cと、下側の下方側弾性部233dと、すぐり部233bの内面同士を上方側弾性部233cから下方側弾性部233dに亘って連結される連結部633eとを備える。
 連結部633eは、所定の範囲以上の振動周波数で防振効果を高め、上方側弾性部233cと下方側弾性部233dとが共振することを抑制し、電気自動車用防振装置600の動ばね定数が大きくなることを抑制する部分である。連結部633eは、軸O方向視におけるすぐり部233bの周方向に対向する内面同士を内筒部材10と外筒部材20との間の略中央位置(周方向において対向するすぐり部233bの内面の径方向略中間位置)で上方側弾性部233cと下方側弾性部233dとに連結される。さらに、連結部633eは、軸Oを中心とする周方向に一定の幅で延設され、軸O方向(矢印L-R方向)の幅が一定に設定される。
 よって、第6実施形態における電気自動車用防振装置600では、直線状に形成される連結部333eに比べて、防振基体630の弾性変形に伴って連結部633eを弾性変形させやすくできる。
 次いで、図8(b)を参照して、第7実施形態における電気自動車用防振装置700について説明する。上記第6実施形態における電気自動車用防振装置600では、連結部633eが軸Oを中心とする周方向に同一幅で延設される場合について説明したが、第7実施形態における電気自動車用防振装置700は、周方向に延設された一部が部分的に厚くされる場合について説明する。なお、上記各実施形態と同一の部分には、同一の符号を付してその説明は省略する。
 図8(b)は、第7実施形態における電気自動車用防振装置700の側面図である。図8(b)に示すように、第7実施形態における電気自動車用防振装置700は、電気モータなどの駆動源と車体との間に介設されるブッシュである。電気自動車用防振装置700は、鉄やアルミ等の金属材料から軸Oを有する筒状に形成される内筒部材10と、その内筒部材10と同心に配設され、鉄やアルミ等の金属材料から筒状に形成される外筒部材20と、ゴム状弾性体から形成され、内筒部材10の外周面および外筒部材20の内周面を連結する防振基体730とを備える。
 なお、電気自動車用防振装置700は、内筒部材10と外筒部材20との間に防振基体730が加硫接着された後、外筒部材20を縮径加工して製造される。図8(b)では、外筒部材20を縮径加工した後の電気自動車用防振装置700が図示される。
 防振基体730は、内筒部材10の外周面を一定の厚みで覆う第1膜部31と、外筒部材20の内周面を一定の厚みで覆う第2膜部32と、それら第1膜部31及び第2膜部32とを連結する弾性変形部733とを備える。
 弾性変形部733は、第1膜部31及び第2膜部32に連結される連結部分の角部に形成される補強部33a(図4(b)参照)と、電気自動車用防振装置700が自動車の車体に配設された状態で、軸O方向(矢印L-R方向)と直交する水平方向における内筒部材10の(内筒部材10の水平方向)外側に軸O方向に沿って貫通形成されるすぐり部233bと、そのすぐり部233bにより重力方向(矢印U-D方向)に分けられた上側の上方側弾性部233cと、下側の下方側弾性部233dと、すぐり部233bの内面同士を上方側弾性部233cから下方側弾性部233dに亘って連結される連結部733eとを備える。
 連結部733eは、所定の範囲以上の振動周波数で防振効果を高め、上方側弾性部233cと下方側弾性部233dとが共振することを抑制し、電気自動車用防振装置700の動ばね定数が大きくなることを抑制する部分である。連結部733eは、上方側弾性部233cと下方側弾性部233dとを連結させて、軸O方向視におけるすぐり部233bの周方向に対向する内面同士を内筒部材10と外筒部材20との間の略中央位置(周方向において対向するすぐり部233bの内面の径方向略中間位置)で上方側弾性部233cと下方側弾性部233dとに連結される。
 連結部733eは、軸Oを中心とする周方向に延設され、軸O方向(矢印L-R方向)の幅が一定に設定される。また、連結部733eは、軸O方向視において周方向に延設される略中間位置に軸O(内筒部材10)に向かって突出する突出部733e1を備える。
 突出部733e1は、内筒部材10の水平方向の変位を抑制する部分であり、軸O方向(矢印L-R方向)と直交する方向における内筒部材10と重なる領域に形成される。
 これにより、電気自動車用防振装置700では、内筒部材10が軸O方向(矢印L-R方向)と直交する水平方向に変位する場合に、内筒部材10を突出部733e1に当接させて、突出部733e1を徐々に変形させることができる。その結果、電気自動車用防振装置700では、内筒部材10が連結部733eに当接する際の連結部733eの荷重の増加を緩やかにできる。
 また、軸O方向視における突出部733e1の突出距離は、連結部733eの周方向における両端を結ぶ直線よりも径方向外側に設定される。これにより、電気自動車用防振装置700では、連結部733eが外筒部材20の内周面に近接する方向に弾性変形しにくくなることを抑制できる。即ち、電気自動車用防振装置700では、連結部733eの延設方向の一方の端面から入力される力が突出部733e1を介して延設方向の他方の端面に直線状に伝達されることを抑制できる。
 以上、上記実施形態に基づき本発明を説明したが、本発明は上記形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形改良が可能であることは容易に推察できるものである。
 例えば、上記実施形態で上げた数値は一例であり、他の数値を採用することは当然可能である。
 上記各実施形態では、電気自動車用防振装置100,200,300,400,500,600,700を電気式の自動車に配設する場合について説明したが、電気自動車用防振装置100,200,300,400,500,600,700を、ガソリンエンジンやディーゼルエンジン等の内燃機関式の自動車に使用してもよい。
 この場合、第2~第7実施形態における電気自動車用防振装置200,300,400,500,600,700では、内燃機関式の自動車に作用する荷重特性やガソリンエンジンやディーゼルエンジン等の振動特性に合わせて、内筒部材10と水平方向に重なる位置への防振基体230,330,630,730への貫通穴を非形成とし、内筒部材10よりも重力方向外側の領域に軸方向に貫通するすぐり部を形成した状態で電気自動車用防振装置100,200,300,400,500,600,700を内燃機関式の自動車の車体に配設してもよい。
 これによれば、内筒部材10と水平方向に重なる位置への防振基体30,230,330,630,730への貫通穴が非形成とされるので、水平方向に荷重が作用する場合に電気自動車用防振装置100,200,300,400,500,600,700の動ばね定数が所定の値以上に高くなることを抑制できる。
 上記各実施形態では、電気自動車用防振装置100,200,300,400,500,600,700は、自動車の車体に対して軸O方向を左右方向(矢印L-R方向)に向けて配設する場合について説明したが、必ずしもこれに限られるものでは無く、上下方向(矢印U-D方向)が同一であれば軸O方向を前後方向(矢印F-B方向)に向けて配置してもよい。
 なお、この場合における第2~第7実施形態では、前後方向(矢印F-B方向)に入力されやすい荷重を考慮して、一対のすぐり部233bの形状、又は、すぐり部233bの内部に連結される連結部333e,633e,733eの形状を前後方向で異なる形状に変更して、前後の荷重に対する防振基体230,330,630,730の変形性を異ならせてもよい。
 上記各実施形態では、電気自動車用防振装置100,200,300,400,500,600,700は、軸Oから径方向外側に向かって防振基体30,230,330,630,730の厚みが小さくなる場合について説明したが、必ずしもこれに限られるものでは無く、径方向における中央部の厚みが最小となるように防振基体30,230,330,630,730が形成されるものであってもよい。
 上記第2実施形態では、軸O方向視において、すぐり部233bが軸Oを中心として湾曲して形成される場合について説明したが、必ずしもこれに限られるものではなく、重力方向(矢印U-D方向)に沿って直線状に形成されるものであってもよく、軸Oと異なる位置を中心とする円弧状に形成されてもよい。
 上記第3実施形態では、1箇所のすぐり部233bに1の連結部333e,633e,733eが形成される場合について説明したが、必ずしもこれに限られるものではなく、1箇所のすぐり部233bに2以上の連結部333e,633e,733eが形成されるものであってもよい。
 上記第4,5実施形態では、当接部442,542が形成される挟持部材440,540が、内筒部材10の外側に外嵌される場合について説明したが、必ずしもこれに限られるものではない。例えば、挟持部材440,540は、電気自動車用防振装置400,500が取り付けられる取付用ブラケット450(図5(a)参照)の駆動側ブラケット451と内筒部材10の軸O方向(矢印L-R方向)端面との間に挟持させて保持されても良い。
 この場合には、駆動側ブラケット451の電気自動車用防振装置400,500側に配設される抑制部材451aに挟持部材440の当接部442,542を形成して、挟持部材440,540と抑制部材451aを同一の部材から形成することができる。言い換えると、駆動側ブラケット451の電気自動車用防振装置400,500側に配設される抑制部材451aを挟持部材440,540に置き換えて、挟持部材440,540に抑制部材451aの役割を兼用させることができる。その結果、挟持部材440,540を製造するコストを低減させることができると共に、挟持部材440,540を配設する組み付け作業性を向上できる。
 また、挟持部材440,540は、電気自動車用防振装置400,500の外筒部材20が圧入される車体側ブラケット452(図5(a)参照)に取り付けられても良い。例えば、平板部441に貫通する穴を形成して、その穴を挿通させたネジを車体側ブラケット452に締結して、挟持部材440,540を車体側ブラケット452に取り付けてもよい。
 この場合には、車体側ブラケット452に電気自動車用防振装置400,500の外筒部材20を圧入した後、車体側ブラケット452に挟持部材440,540のみを取り付けることができるので、内筒部材10に駆動側ブラケット451を配設する作業と同時に挟持部材440,540を配設する必要がない。そのため、電気自動車用防振装置400への挟持部材440の取り付けを簡易にできる。
 上記第4,5実施形態では、当接部442,542が形成される挟持部材440,540が、防振基体330と同一の材料から形成される場合について説明したが、必ずしもこれに限られるものではない。たとえば、挟持部材440,540の材料を防振基体330の材料よりも弾性変形しにくい材料として、挟持部材440,540で電気自動車用防振装置400,500に必要なばね定数を調整するものとしてもよい。
 上記第4実施形態では、すぐり部233bの内側に連結部333eが形成される電気自動車用防振装置400に挟持部材440を配設する場合について説明したが、必ずしも限られるものではなく。連結部333eが非形成(第2実施形態の電気自動車用防振装置200)のすぐり部233bの内側に挟持部材440を配設してもよい。
 上記第5実施形態では、軸O方向視において、第2凸部542bを連結部333eの径方向の両側に挟んで一対形成する場合について説明したが、必ずしもこれに限られるものではなく、軸O方向視において、連結部333eよりも径方向の内側または外側に1の第2凸部542bを形成するものであってもよい。
10                 内筒部材
20                 外筒部材
30,230,330,630,730 防振基体
233b               すぐり部
333b1              段差面
333e,633e,733e     連結部
440,540            挟持部材
442,542            当接部
451a               抑制部材(ストッパ部材)
542b               第2凸部(凸部)
733e1              突出部
100,200,300,400,500,600,700 電気自動車用防振装置

Claims (4)

  1.  筒状の内筒部材と、前記内筒部材の外側を取り囲む筒状に形成され、前記内筒部材の軸と同軸上に配設される外筒部材と、ゴム状弾性体から構成され、前記内筒部材の外周面および前記外筒部材の内周面を連結する防振基体と、を有する電気自動車用防振装置と、前記電気自動車用防振装置が配設される電気自動車の車体とを備え、前記電気自動車用防振装置を前記車体に配設する電気自動車用防振装置の配設構造において、
     前記外筒部材の軸方向両側に配設される挟持部材を備え、
     前記電気自動車用防振装置は、前記内筒部材および前記外筒部材の軸を水平方向に向けた状態で前記車体に配設され、
     前記防振基体は、前記内筒部材よりも水平方向外側の領域に軸方向に貫通するすぐり部を備え、重力方向における前記内筒部材と重なる位置への貫通穴が非形成とされ、前記内筒部材に連結される側の軸方向長さに対して径方向における自由長が0.5倍以上であって1.0倍以下に設定され、径方向の各位置で軸方向に沿って連続して切断した場合の切断面の断面積が径方向の各位置で一定に設定され、前記防振基体の自由長の30%までのたわみ量の範囲で前記防振基体のたわみ量に対する重力方向の荷重の特性が線形性を有し、
     前記挟持部材は、前記すぐり部の内面と所定の間隔を隔てて、前記すぐり部の内側に配置される当接部を備えることを特徴とする電気自動車用防振装置の配設構造。
  2.  前記挟持部材は、ゴム状弾性体から形成されることを特徴とする請求項1記載の電気自動車用防振装置の配設構造。
  3.  前記当接部と前記すぐり部との間の間隔は、前記電気自動車用防振装置に重力方向の荷重が作用して前記防振基体が自由長の30%の領域で変位する際に非当接とされる間隔に設定されることを特徴とする請求項1又は2に記載の電気自動車用防振装置の配設構造。
  4.  前記挟持部材は、前記外筒部材が他の部材に当接することを抑制するストッパ部材に一体形成されることを特徴とする請求項1から3のいずれかに記載の電気自動車用防振装置の配設構造。
PCT/JP2018/047253 2017-12-28 2018-12-21 電気自動車用防振装置の配設構造 WO2019131512A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017253183 2017-12-28
JP2017-253183 2017-12-28
JP2017253182 2017-12-28
JP2017253180 2017-12-28
JP2017253181 2017-12-28
JP2017-253182 2017-12-28
JP2017-253181 2017-12-28
JP2017-253180 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131512A1 true WO2019131512A1 (ja) 2019-07-04

Family

ID=67063616

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2018/047252 WO2019131511A1 (ja) 2017-12-28 2018-12-21 防振装置
PCT/JP2018/047249 WO2019131508A1 (ja) 2017-12-28 2018-12-21 防振装置
PCT/JP2018/047250 WO2019131509A1 (ja) 2017-12-28 2018-12-21 電気自動車用防振装置の配設構造
PCT/JP2018/047253 WO2019131512A1 (ja) 2017-12-28 2018-12-21 電気自動車用防振装置の配設構造
PCT/JP2018/047251 WO2019131510A1 (ja) 2017-12-28 2018-12-21 電気自動車用防振装置の配設構造

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/047252 WO2019131511A1 (ja) 2017-12-28 2018-12-21 防振装置
PCT/JP2018/047249 WO2019131508A1 (ja) 2017-12-28 2018-12-21 防振装置
PCT/JP2018/047250 WO2019131509A1 (ja) 2017-12-28 2018-12-21 電気自動車用防振装置の配設構造

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047251 WO2019131510A1 (ja) 2017-12-28 2018-12-21 電気自動車用防振装置の配設構造

Country Status (2)

Country Link
CN (2) CN111433484B (ja)
WO (5) WO2019131511A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366652A (zh) * 2021-05-20 2022-11-22 本田技研工业株式会社 扭矩杆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112289A (ja) * 1997-06-11 1999-01-06 Honda Motor Co Ltd 防振マウント
JP2014020419A (ja) * 2012-07-13 2014-02-03 Toyo Tire & Rubber Co Ltd 防振装置
JP2016222164A (ja) * 2015-06-02 2016-12-28 Ntn株式会社 インホイールモータ駆動装置およびこれを具備する電動車両

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256932A (ja) * 1989-03-29 1990-10-17 Tokai Rubber Ind Ltd 防振ブッシュ組立体
JPH081309Y2 (ja) * 1990-11-29 1996-01-17 東海ゴム工業株式会社 ゴムブッシュ
JP2618767B2 (ja) * 1991-05-17 1997-06-11 東海ゴム工業株式会社 ステアリングカップリング
JPH0622639U (ja) * 1992-08-26 1994-03-25 東海ゴム工業株式会社 防振ブッシュ
JPH0771513A (ja) * 1993-09-03 1995-03-17 Tokai Rubber Ind Ltd 高粘性流体封入式筒型マウント
JPH1038026A (ja) * 1996-07-25 1998-02-13 Toyota Motor Corp 振動体の支持構造
JP3680575B2 (ja) * 1998-09-14 2005-08-10 東海ゴム工業株式会社 ゴムブッシュおよびその製造方法
JP2001248672A (ja) * 2000-03-02 2001-09-14 Tokai Rubber Ind Ltd 防振装置
FR2812241A1 (fr) * 2000-07-28 2002-02-01 Michelin & Cie Articulation elastique a raideur radiale variable
JP3770170B2 (ja) * 2001-12-10 2006-04-26 東海ゴム工業株式会社 防振ブッシュ
JP2005195057A (ja) * 2004-01-05 2005-07-21 Bridgestone Corp 防振装置
CN101059158A (zh) * 2006-04-18 2007-10-24 宁波拓普声学振动技术有限公司 动力总成悬置装置
CN201677888U (zh) * 2010-01-20 2010-12-22 株洲时代新材料科技股份有限公司 一种轨道交通用橡胶关节
DE102012200001A1 (de) * 2012-01-02 2013-07-04 Ford Global Technologies, Llc Gummimetallager für Kraftfahrzeug-Radaufhängung, Trapezlenker und Radaufhängung
JP6395511B2 (ja) * 2014-08-25 2018-09-26 東洋ゴム工業株式会社 液封入式防振装置
JP6460782B2 (ja) * 2014-12-25 2019-01-30 Toyo Tire株式会社 液体封入式防振装置
CN106025128A (zh) * 2016-06-21 2016-10-12 天津中科先进技术研究院有限公司 电动汽车用电池防震缓冲装置
CN206386428U (zh) * 2016-12-15 2017-08-08 住友理工株式会社 筒形防振装置
CN206503862U (zh) * 2017-02-10 2017-09-19 浙江菲夫自控设备有限公司 悬架橡胶衬套
CN207106097U (zh) * 2017-08-08 2018-03-16 河南森地新能源汽车股份有限公司 电动汽车后悬架总成

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112289A (ja) * 1997-06-11 1999-01-06 Honda Motor Co Ltd 防振マウント
JP2014020419A (ja) * 2012-07-13 2014-02-03 Toyo Tire & Rubber Co Ltd 防振装置
JP2016222164A (ja) * 2015-06-02 2016-12-28 Ntn株式会社 インホイールモータ駆動装置およびこれを具備する電動車両

Also Published As

Publication number Publication date
CN111406161B (zh) 2021-11-16
CN111406161A (zh) 2020-07-10
WO2019131509A1 (ja) 2019-07-04
WO2019131508A1 (ja) 2019-07-04
CN111433484B (zh) 2021-11-02
WO2019131511A1 (ja) 2019-07-04
CN111433484A (zh) 2020-07-17
WO2019131510A1 (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
JP5665774B2 (ja) 防振装置
JP4356641B2 (ja) トルクロッド
WO2012056635A1 (ja) タンク用ゴムクッション
JP6532367B2 (ja) ブラケット付き筒形防振装置
JPWO2007117013A1 (ja) 防振支持装置
WO2019131512A1 (ja) 電気自動車用防振装置の配設構造
JP3627406B2 (ja) 筒形防振支持体
JP2009030769A (ja) 防振連結ロッド
CN113227602A (zh) 马达支架用筒型防振装置
US20130134641A1 (en) Vibration isolator
JP2009180330A (ja) 自動車用筒形防振装置の製造方法
JP2009216136A (ja) 自動車用メンバマウント
JP7390872B2 (ja) ダイナミックダンパおよびその製造方法
JP2007263148A (ja) メンバマウントおよびその製造方法
JPWO2006077622A1 (ja) 防振装置
JPH1038026A (ja) 振動体の支持構造
JP4833908B2 (ja) 防振ブッシュ
JP2011241931A (ja) 防振装置
JP2006264425A (ja) サスペンション用アッパサポートおよびそれを用いた自動車用懸架装置
JP5829239B2 (ja) 防振装置
WO2012132105A1 (ja) 防振装置
JP2002089622A (ja) マウントインシュレータ
JP7460572B2 (ja) 防振装置
KR20040090657A (ko) 롤 로드 시스템
JP5572414B2 (ja) 防振装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP