WO2019131503A1 - 全固体電池、その製造方法および加工装置 - Google Patents

全固体電池、その製造方法および加工装置 Download PDF

Info

Publication number
WO2019131503A1
WO2019131503A1 PCT/JP2018/047234 JP2018047234W WO2019131503A1 WO 2019131503 A1 WO2019131503 A1 WO 2019131503A1 JP 2018047234 W JP2018047234 W JP 2018047234W WO 2019131503 A1 WO2019131503 A1 WO 2019131503A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
electrode layer
positive electrode
negative electrode
laminate
Prior art date
Application number
PCT/JP2018/047234
Other languages
English (en)
French (fr)
Inventor
剛 杉生
英之 福井
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP2019561643A priority Critical patent/JP7082142B2/ja
Priority to CN201880083445.7A priority patent/CN111527638B/zh
Priority to KR1020207021720A priority patent/KR102544158B1/ko
Priority to US16/958,461 priority patent/US20210057777A1/en
Priority to EP18895450.7A priority patent/EP3734741A4/en
Publication of WO2019131503A1 publication Critical patent/WO2019131503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state battery and a method of manufacturing the same.
  • the conventional all solid battery is a battery including a laminate (a positive electrode layer, a solid electrolyte layer and a negative electrode layer) containing powder, a positive electrode current collector, and a negative electrode current collector. Since the laminate is a powder film, powder collapse and the like occur particularly at the end portions, which may cause a short circuit between the positive electrode active material and the negative electrode active material.
  • Patent Literatures 1 and 2 disclose that the positive electrode layer is surrounded by an insulator in order to prevent a short circuit at an end portion caused by an end portion collapse or an end portion collapse of the laminate.
  • Japanese Patent Publication Japanese Patent Application Laid-Open No. 2015-125893 (released on July 6, 2015)
  • Japanese Patent Publication Japanese Patent Application Laid-Open No. 2015-162353 (released on September 7, 2015)
  • An aspect of the present invention is directed to preventing edge collapse of a laminate constituting an all-solid-state battery.
  • the manufacturing method of the all solid battery concerning one mode of the present invention has the 1st electrode layer, the 2nd electrode layer which has the opposite polarity to the polarity of the 1st electrode layer, and the above A laminate forming step of forming a laminate including a first electrode layer and a solid electrolyte layer interposed between the second electrode layers, and a cutting-off step of cutting off an outer peripheral end of the laminate;
  • the body contains powder material.
  • the all-solid-state battery comprises a first electrode layer, a second electrode layer having a polarity opposite to the polarity of the first electrode layer, and the first electrode It is an all-solid battery in which a solid electrolyte layer interposed between the layer and the second electrode layer is laminated on a support plate, and the area of the interface between the first electrode layer and the solid electrolyte layer is the solid
  • the side surface of the all-solid-state battery is inclined, which is smaller than the area of the interface between the electrolyte layer and the second electrode layer.
  • FIG. 13 is a cross-sectional view taken along line AA of FIG. 12; It is sectional drawing which shows the structure of the pond which shows the structure of the all-solid-state battery which concerns on Embodiment 4 of this invention. It is sectional drawing which shows the structure of the pond which shows the structure before the all-solid-state battery shown in FIG. 14 is cut out from a large-area all-solid-state battery. It is a top view which shows the structure of the screen used for the apparatus shown in FIG.
  • FIG. 18 is a view showing another precision punching device according to Embodiment 5. It is a figure which shows the precision punching apparatus which concerns on the comparative example of Embodiment 5.
  • FIG. 18 is a view showing another precision punching device according to Embodiment 5. It is a figure which shows the precision punching apparatus which concerns on the comparative example of Embodiment 5.
  • Embodiment 1 The following description will explain Embodiment 1 of the present invention with reference to FIGS. 1 to 8.
  • an all solid secondary battery using a lithium ion conductive solid electrolyte that is, an all solid lithium ion secondary battery will be described as an example of the all solid battery.
  • the all-solid-state battery according to the present invention is, of course, not limited to the all-solid-state lithium ion secondary battery.
  • FIG. 1 is a cross-sectional view showing the structure of the all-solid battery 101 according to the first embodiment.
  • the all-solid battery 101 includes all-solid batteries 1 to 5, a positive electrode current collector 6, a negative electrode current collector 7, and a package 8.
  • the all-solid-state battery 101 is configured by connecting, in parallel, a plurality of all-solid-state batteries 1 to 5 that operate alone. All-solid battery 101 may be configured by connecting all-solid batteries 1 to 5 in series. Further, in FIG. 1, all the solid batteries 1 to 5, the positive electrode current collector 6 and the negative electrode current collector 7 are drawn at intervals, for convenience, but adjacent ones are in contact with each other. FIG. 8 described later is also drawn similarly to FIG.
  • the package 8 is a box-like housing which contains all the solid batteries 1 to 5.
  • the all solid batteries 1 to 5 are arranged in order of the all solid battery 1, the all solid battery 2, the all solid battery 3, the all solid battery 4 and the all solid battery 5 from the negative electrode side.
  • the all-solid battery 1 is configured by laminating a positive electrode current collector 11, a laminate 12, and a negative electrode current collector 13 in this order.
  • the all-solid battery 2 is configured by laminating a positive electrode current collector 21, a laminate 22, and a negative electrode current collector 23 in this order.
  • the all-solid battery 3 is configured by laminating a positive electrode current collector 31, a laminate 32, and a negative electrode current collector 33 in this order.
  • the all-solid battery 4 is configured by laminating a positive electrode current collector 41, a laminate 42, and a negative electrode current collector 43 in this order.
  • the all-solid battery 5 is configured by laminating a positive electrode current collector 51, a laminate 52, and a negative electrode current collector 53 in this order.
  • the all-solid-state battery 1 is arrange
  • the all solid battery 5 is disposed such that the positive electrode current collector 51 of the all solid battery 5 is positioned on the positive electrode side.
  • all solid batteries 1 and 2 are disposed such that positive electrode current collector 11 of all solid battery 1 and positive electrode current collector 21 of all solid battery 2 are opposed to each other.
  • the all solid batteries 2 and 3 are arranged such that the negative electrode current collector 23 of the all solid battery 2 and the negative electrode current collector 33 of the all solid battery 3 are opposed to each other.
  • the all solid batteries 3 and 4 are arranged such that the positive electrode current collector 31 of the all solid battery 3 and the positive electrode current collector 41 of the all solid battery 4 are opposed to each other.
  • the all solid batteries 4 and 5 are disposed such that the negative electrode current collector 43 of the all solid battery 4 and the negative electrode current collector 53 of the all solid battery 5 are opposed to each other.
  • the planar shape of all the solid batteries 1 to 5 is a square (for example, a square), but the shape is not limited to the square as long as all the solid batteries 1 to 5 can be accommodated in the package 8.
  • the planar shape of all the solid batteries 1 to 5 may be a circle, a polygon, or a shape consisting of straight lines and curves.
  • all the solid batteries 1 to 5 are usually formed to have the same planar shape and the same size (area).
  • the laminates 12, 22, 32, 42, and 52 each include a positive electrode layer (first electrode layer), a negative electrode (second electrode layer) having a polarity opposite to the polarity of the positive electrode layer, and the positive electrode layer and the negative electrode layer. And a solid electrolyte layer interposed therebetween, which is a stacked structure.
  • the positive electrode layer is formed only of a mixture (mixture) of a positive electrode active material and a solid electrolyte, or a positive electrode active material.
  • the weight ratio of the positive electrode active material to the solid electrolyte in the above mixture is, for example, 7: 3.
  • materials generally used for the positive electrode active material in the all solid battery field can be used.
  • a lithium-containing oxide for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 or the like)
  • LiCoO 2 lithium cobaltate
  • LiNiO 2 lithium nickelate
  • LiMnO 2 or the like lithium manganate
  • the negative electrode layer is formed only of a mixture (mixture) of a negative electrode active material and a solid electrolyte, or the negative electrode active material.
  • the weight ratio of the negative electrode active material to the solid electrolyte in the above mixture is, for example, 6: 4.
  • materials generally used for the negative electrode active material in the all solid battery field can be used.
  • graphite naturally graphite, artificial graphite, etc.
  • carbon material graphite carbon fiber, resin-baked carbon, etc.
  • tin lithium, oxide, sulfide, nitride, alloy, etc., powder or foil It can be used regardless of the shape, etc.
  • the solid electrolyte used for the positive electrode layer the solid electrolyte layer and the negative electrode layer, materials and the like usually used in the lithium ion battery field are used.
  • examples of such solid electrolytes include materials composed of organic compounds, inorganic compounds, and both organic and inorganic compounds.
  • sulfides such as Li 2 S—P 2 S 5 are superior in ion conductivity as compared with other inorganic compounds.
  • the positive electrode current collector 6 is constituted by positive electrode current collectors 61 to 63.
  • the positive electrode current collector 61 is disposed between the inner surface of the package 8 on the positive electrode side and the positive electrode current collector 51 of the all solid battery 5 so as to be in contact with the positive electrode current collector 51.
  • the positive electrode current collector 62 is disposed between the positive electrode current collector 31 of the all solid battery 3 and the positive electrode current collector 41 of the all solid battery 4 so as to be in contact with both.
  • the positive electrode current collector 63 is disposed between the positive electrode current collector 11 of the all solid battery 1 and the positive electrode current collector 21 of the all solid battery 2 so as to be in contact with both.
  • the positive electrode terminal 60 is connected to the end of the positive electrode current collectors 61 to 63.
  • the positive electrode terminal 60 is disposed so as to be exposed to the outside from a part of the package 8, for example, the vicinity of one end side of the all-solid-state battery 5 on the side surface of the package 8.
  • the positive electrode current collector 6 can be electrically connected to an external predetermined portion.
  • the negative electrode current collector 7 is composed of negative electrode current collectors 71 to 73.
  • the negative electrode current collector 71 is disposed between the inner surface of the package 8 on the negative electrode side and the negative electrode current collector 13 of the all solid battery 1 so as to be in contact with the negative electrode current collector 13.
  • the negative electrode current collector 72 is disposed between the negative electrode current collector 23 of the all solid battery 2 and the negative electrode current collector 33 of the all solid battery 3 so as to be in contact with both.
  • the negative electrode current collector 73 is disposed between the negative electrode current collector 43 of the all solid battery 4 and the negative electrode current collector 53 of the all solid battery 5 so as to be in contact with both.
  • the negative electrode terminal 70 is connected to the end of the negative electrode current collectors 71 to 73.
  • the negative electrode terminal 70 is disposed so as to be exposed to the outside from a part of the package 8, for example, the vicinity of one end side (the opposite side to the positive electrode terminal 60) of the all solid battery 1 on the side surface of the package 8.
  • the negative electrode current collector 7 can be electrically connected to an external predetermined portion.
  • the positive electrode terminal 60 and the negative electrode terminal 70 are separately disposed on both sides of the package 8 for ease of illustration.
  • the position where the positive electrode terminal 60 and the negative electrode terminal 70 are disposed is not limited to the above position, and may be anywhere in the package 8.
  • the location which current-collects with the positive electrode terminal 60 and the negative electrode terminal 70 is not necessarily one each for positive / negative electrode. It is also possible to collect current at multiple locations from each of the positive and negative electrodes.
  • the package 8 (at least the inner surface) is preferably formed to have insulation. Alternatively, it is preferable to insert an insulator between the package 8 and the all solid batteries 1 to 5 or between the package 8 and the positive electrode current collectors 61 to 63 and the negative electrode current collectors 71 to 73.
  • the positive electrode current collector 6, the negative electrode current collector 7, the positive electrode terminal 60, and the negative electrode terminal 70 are copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, tin, or these Is formed using any of the alloys as a material.
  • the form of the positive electrode current collectors 61 to 63 and the negative electrode current collectors 71 to 73 is a plate, a foil, a powder, a film, or the like.
  • the positive electrode current collectors 61 to 63 are formed of aluminum foil
  • the negative electrode current collectors 71 to 73 are formed of copper foil.
  • the materials for forming the positive electrode current collector 6, the negative electrode current collector 7, the positive electrode terminal 60, and the negative electrode terminal 70 preferably have a certain degree of toughness and rigidity.
  • the positive electrode current collectors 11, 21, 31, 41 and 51 are mutually connected by the positive electrode terminal 60, and the negative electrode current collectors 13, 23, 33, 43, 53 are connected in parallel by being mutually connected by the negative electrode terminal 70.
  • the all-solid battery 101 of the present embodiment includes all-solid batteries 1 to 5, the number of all-solid batteries is not limited to five.
  • the all solid state battery 101 has an odd numbered layer structure in which five layer all solid state batteries 1 to 5 are stacked.
  • the all solid state battery 101 may have a structure having an even layer all solid state battery.
  • FIG. 2 is a view showing a film forming method of the laminates 12, 22, 32, 42, 42 of the all-solid-state battery 101 according to the first embodiment.
  • the powder film-forming method using a well-known electrostatic force as needed for example, electrostatic coating and the electrostatic screen film-forming method (printing method)
  • a method of forming the laminates 12, 22, 32, 42, and 52 by an electrostatic screen deposition method will be described.
  • the laminated body of the all-solid-state battery which concerns on Embodiment 2 mentioned later is also formed by the following film-forming methods.
  • laminates 12, 22, 32, 42, and 52 are manufactured by an electrostatic screen film formation method.
  • FIG. 2 an apparatus shown in FIG. 2 is used.
  • This apparatus comprises a porous screen 201 and a substrate B which is a pedestal on which a substrate to be film-formed is placed.
  • the negative electrode of the DC power source DC is connected to the screen 201, and the substrate B is a positive electrode of the DC power source DC. Is connected.
  • the positive electrode of the DC power supply DC may be connected to the screen 201, and the negative electrode of the DC power supply DC may be connected to the substrate B.
  • it since it suffices to generate a potential difference between the screen 201 and the printed material, it is not necessary to connect one to the positive electrode and not to connect the other to the negative electrode, and one may be the ground (earth) potential. .
  • a commercially available mesh for screen printing can be used.
  • the powder can be formed into an arbitrary shape by appropriately changing the opening shape of the mesh.
  • a mesh having a mesh number of 300 / inch, a wire diameter of 30 ⁇ m, and an opening of 55 ⁇ m was employed.
  • the material of the mesh is not limited as long as it has conductivity.
  • the above mesh employed in the present embodiment is a general SUS mesh.
  • the mesh used as the screen 201 it is preferable to appropriately select the number of meshes, the wire diameter, the opening, the material, and the like according to the powder and the environment.
  • the powder 202 is brought into contact with the screen 201 by imprinting the powder 202 onto the screen 201 by the imprinting body 203. Thereby, the powder 202 is charged. When the charged powder 202 falls through the screen 201, it is electrostatically induced to adhere to the substrate. Thus, the positive electrode layer, the solid electrolyte layer, and the negative electrode layer of each of the laminates 12, 22, 32, 42, and 52 are formed into a film.
  • each layer is performed from the step of forming the positive electrode layer on the support plate using the apparatus 2 shown in FIG.
  • the support plate supports the substrate, the current collector, and the laminate.
  • the support plate itself may function as a substrate or a current collector.
  • the distance between the screen 201 and the substrate B is 10 mm, and the applied voltage is 5 kV.
  • a solid electrolyte layer is formed on the positive electrode layer by the same positive film method as the positive electrode layer.
  • the negative electrode layer is formed on the solid electrolyte layer by the same film forming method as the positive electrode layer.
  • each layer is not limited to the order of film formation described above, and film formation may be started from any layer. Moreover, after forming a single substance of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer as needed, each may be pressurized and planarized.
  • pressurization a pressure of several t / cm 2 is applied to the laminate for several seconds to several tens of seconds.
  • pressurization may be performed in a state where the negative electrode current collector is laminated on the laminate.
  • the positive electrode layer, the solid electrolyte layer, and the negative electrode layer of the laminate compressed by the above pressure are each strongly integrated.
  • the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are formed to be appropriately thin several tens ⁇ m to one hundred and several tens ⁇ m.
  • the total thickness of the layers is reduced to about 100 to 400 ⁇ m.
  • the weight of each layer in the laminate, the thickness of each layer, the weight ratio between layers, and the like are not limited to a specific range.
  • the ratio of the thickness of the negative electrode layer to the thickness of the positive electrode layer is preferably 1.0 or more.
  • each of the laminated bodies 12, 22, 32, 42, and 52 is obtained by cutting off the outer peripheral edge part of the laminated body obtained by said pressure processing.
  • FIG. 3 are diagrams showing each step in the first manufacturing method of the all-solid-state battery 101.
  • FIG. (A) to (d) of FIG. 4 are diagrams showing respective steps in the second manufacturing method of the all-solid battery 101.
  • FIG. 5 is a view showing a precision punching apparatus used to manufacture the all-solid-state battery 101.
  • FIG. 6 is a view showing a state in which the outer peripheral end is cut off from the laminated body 501 in the manufacture of the all-solid-state battery 101 by division by the chocolate breaking method.
  • FIG. 7 is a view showing a state in which the outer peripheral end is cut off from the laminated body 501 in the manufacture of the all-solid-state battery 101 by another division by the chocolate breaking method.
  • the positive electrode layer 302 is formed in a square on the support plate 301 (supporting plate) formed in a square, using the apparatus shown in FIG. .
  • the positive electrode layer 302 is pressurized.
  • the solid electrolyte layer 303 is formed on the positive electrode layer 302 in the same shape and the same size as the positive electrode layer 302.
  • the solid electrolyte layer 303 is formed such that the outer peripheral end of the solid electrolyte layer 303 overlaps the outer peripheral end of the positive electrode layer 302.
  • the solid electrolyte layer 303 is pressurized.
  • the negative electrode layer 304 is formed on the solid electrolyte layer 303 in the same shape and the same size as the positive electrode layer 302 and the solid electrolyte layer 303.
  • the negative electrode layer 304 is formed such that the outer peripheral end of the negative electrode layer 304 overlaps the outer peripheral end of the solid electrolyte layer 303.
  • the negative electrode layer 304 is pressurized as necessary.
  • a laminate 310 in which the positive electrode layer 302, the solid electrolyte layer 303, and the negative electrode layer 304 are stacked on the support plate 301 is produced (laminate formation step). Furthermore, a laminate in which the support plate 301, the positive electrode layer 302, the solid electrolyte layer 303, and the negative electrode layer 304 are firmly integrated by pressurizing the laminate 310 as described above (temporary pressurization and main pressurization). 310 is obtained.
  • the outer peripheral end portion is cut off from the laminated body 310 with a cut-off outer shape 306 forming a square indicated by a two-dot chain line (cut-off step).
  • Get The support plate 301 is removed from the laminate 311 to obtain laminates 12, 22, 32, 42, and 52.
  • the cut-off portion may be divided into a plurality of portions along a dividing line L1 indicated by an alternate long and short dash line. Thereby, a plurality of divided laminates can be obtained.
  • Such divided laminates may be used as the laminates 12, 22, 32, 42 and 52.
  • the positive electrode layer 302 in the stacked body 310, the positive electrode layer 302, the solid electrolyte layer 303, and the negative electrode layer 304 are formed such that the overlapping interfaces of the respective layers have the same area.
  • the powder may be broken at the end of the laminate 311 or the positive electrode layer may be formed due to alignment accuracy at the time of film formation of each layer, film formation accuracy, uneven pressing of the end and center, and the like.
  • the possibility of short circuit between the positive electrode active material and the negative electrode active material forming the negative electrode layer increases.
  • the peripheral portion of the laminated body 310 (portion outside the cut-off outer shape 306) is cut off.
  • the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are portions having a dense structure which is uniformly pressed and solidified by pressure, and the outer peripheral end portion is unlikely to be broken. Therefore, it is possible to prevent end collapse or short circuit at the outer peripheral end of the laminated body 311.
  • the positive electrode layer 312 (first electrode layer) is formed into a square on the support plate 301 formed into a square using the apparatus shown in FIG. Form.
  • the outer peripheral end of the positive electrode layer 312 is the outer peripheral end of the support plate 301 so that the positive electrode layer 312 forms a square smaller in area than the support plate 301 and smaller than the above-described positive electrode layer 312. It is formed so as to be at a predetermined width and at a position where it retreats inward.
  • the positive electrode layer 312 is pressurized.
  • the solid electrolyte layer 313 is formed on the positive electrode layer 312 in the same shape as the positive electrode layer 312 and larger than the positive electrode layer 312.
  • the solid electrolyte layer 313 is formed so as to cover the whole of the positive electrode layer 312 by positioning the outer peripheral end of the solid electrolyte layer 313 outside the outer peripheral end of the positive electrode layer 302.
  • the solid electrolyte layer 313 is pressurized as necessary.
  • the negative electrode layer 314 is formed on the solid electrolyte layer 313 in the same planar shape and the same planar size as the solid electrolyte layer 303.
  • the negative electrode layer 314 is formed such that the outer peripheral end of the negative electrode layer 314 overlaps the outer peripheral end of the solid electrolyte layer 313.
  • the negative electrode layer 314 may be formed so that the outer peripheral end of the negative electrode layer 314 is located between the outer peripheral end of the positive electrode layer 312 and the outer peripheral end of the solid electrolyte layer 313 .
  • the negative electrode layer 314 is pressurized.
  • a laminate 320 in which the positive electrode layer 312, the solid electrolyte layer 313, and the negative electrode layer 314 are stacked on the support plate 301 is produced (laminate formation step). Furthermore, by pressing the laminate 320 as described above, a laminate 320 in which the support plate 301, the positive electrode layer 312, the solid electrolyte layer 313, and the negative electrode layer 314 are firmly integrated is obtained.
  • the outer peripheral end portion is cut off from the laminated body 320 with a cut-off outer shape 316 forming a square indicated by a two-dot chain line (cut-off process).
  • the cut-off outer shape 316 is located inside the outer peripheral end of each of the support plate 301, the solid electrolyte layer 313, and the negative electrode layer 314, and is located outside the outer peripheral end of the positive electrode layer 312 (a region without the positive electrode layer 312). doing.
  • This laminate 321 is used as laminates 12, 22, 32, 42, 52 to which positive electrode current collectors 11, 21, 31, 41, 51 are attached, respectively.
  • the cut-out portion may be divided into a plurality of portions along a dividing line L2 indicated by a dashed dotted line. Thereby, a plurality of divided laminates can be obtained.
  • Such divided laminates may be used as the laminates 12, 22, 32, 42 and 52.
  • the area of the upper surface of each layer is the smallest in the positive electrode layer and the largest in the solid electrolyte layer, or the smallest in the positive electrode layer, and the solid electrolyte layer and the negative electrode layer Are equal.
  • the positive electrode layer is covered with the solid electrolyte layer on the cut-off surface. Therefore, the possibility of contact between the positive electrode active material of the positive electrode layer and the negative electrode active material of the negative electrode layer can be substantially eliminated. Therefore, the reliability of the stacked body 321 can be improved.
  • the method for cutting off the outer peripheral end portions of the laminates 310 and 320 is not particularly limited. Cutting off the outer peripheral end from the laminates 310 and 320 is the simplest by punching as follows.
  • the cutting is performed using a precision punching device 400 configured by the punch 401, the die 402 and the pressing plate 403.
  • a punching die having a shape as shown in FIG. 5 punch 401, die 402, pressing plate 403, etc.
  • laminates 311 and 321 are obtained from one laminate 310 and 320 by one-time punching. be able to.
  • the conditions for punching depend on the material and thickness of the laminates 310 and 320 to be punched out, the pressure applied to the laminate, and the like.
  • the clearance C between the punch 401 and the die 402 is preferably in the range of 0 to several hundreds ⁇ m, and the insertion speed V of the punch 401 is preferably in the range of several to several tens of mm / sec. If the clearance C is large, burrs are likely to occur, so the clearance C should be as small as possible. As the clearance C is smaller, the blade edge 401a of the punch 401 and the blade edge 402a of the die 402 are more easily damaged. In the present embodiment, the clearance C is 3 ⁇ m, and the insertion speed V of the punch 401 is 30 mm / sec.
  • the die 402 is provided with a flank 402b.
  • the relief angle ⁇ 1 forming the relief surface 402b is about several degrees.
  • the flanks 402 b can prevent the cross sections of the stacked bodies 310 and 320 from being roughened at the inner peripheral wall of the die 402.
  • the flank 402 may be formed from near the upper end to the lower end of the die 402. However, when the flank 402 is formed in this manner, the life of the die 402 is shortened. Therefore, in order to extend the life of the die 402, the flank 402 is preferably formed below the middle portion of the inner peripheral wall of the die 402, as shown in FIG. Further, the upper side of the inner peripheral wall of the die 402 above the middle portion is formed as a parallel surface substantially parallel to the outer peripheral wall of the punch 401.
  • the punch 401 is driven so that the lower end surface of the punch 401 reaches below the lower end of the parallel surface at the lower dead center of the punch 401.
  • the laminates 310 and 320 are very hard by pressure treatment and have sufficient strength to withstand punching by the punch 401.
  • punching can be performed without providing the pressing plate 403.
  • the punch 401, the die 402, and the like be provided with a short circuit preventive measure so that the punch 401 and the die 402 do not cause a short circuit at the time of punching.
  • a short circuit preventive measure for example, the insulation of the pressure plate 403 and the coating on the surface of the punch 401 and the die 402 can be mentioned.
  • the cutting may be performed using a Thomson blade or another blade, or may be performed using a laser, shearing, a cutting machine or the like as a means other than the blade.
  • the outer peripheral end may be cut off from the laminates 310 and 320 by division by the chocolate breaking method.
  • a cutting groove is provided on the surface of the support plate 301 of the laminate 310, 320 with a cutter blade or the like, and a dividing groove is provided on the outer shape 306, 316, and the laminate 310, 320 is bent by impact or bending. Add a moment. Thereby, the laminates 310 and 320 can be broken along the dividing grooves.
  • the laminates 311 and 321 can be cut out in a desired shape.
  • the laminated body 501 may be broken by applying a bending moment to both sides of the dividing groove 501a of the laminated body 501.
  • a dividing groove 501a (groove) is formed on one surface of a support plate (for example, the above-described support plate 301) in the laminate 501. Therefore, the dividing groove 501a is not formed on the other surface of the support plate (a layer surface which is a portion of the interface between the support plate and the positive electrode layer or the negative electrode layer).
  • a bending moment is applied to both sides of the dividing groove 501a in such a laminated body 501, and stress is concentrated on the dividing groove 501a, whereby the laminated body 501 is broken.
  • the method of applying force is not limited to the above method, and any method may be used to apply force to the laminate 501 as long as bending stress, shear stress, or both act on the periphery of the dividing groove 51a. Absent.
  • the laminate 501 may be broken in a state of being fixed by the first pressing plate 601 and the second pressing plate 602. Specifically, the laminated body 501 is sandwiched and fixed between the first pressing plate 601 and the second pressing plate 602 at a position spaced a predetermined distance on one side of the dividing groove 501a, and a predetermined distance on the other side of the dividing groove 501a. Apply a load at the place where it is set. Thereby, the laminate 501 is broken.
  • the division groove 501a is not limited to a width of less than 1 mm and a total thickness of the laminate 501 although it depends on the material forming the laminate 501, the thickness of the laminate 501, the pressure applied at the time of molding of the laminate 501, and the like. It is preferable to have a depth of 10/10 or less.
  • the dividing groove 501a may be provided by any method other than the notch by the cutter blade or the like as described above.
  • the split groove 501a may be formed by pressing a mold having a convex portion that matches the shape of the split groove 501a against the laminate 501, or the split may be performed using a rotary blade (a blade is provided with a blade).
  • the groove 501a may be formed.
  • the dividing groove 501a may be provided on any surface of the positive electrode layer, the negative electrode layer, and the support plate (including the positive electrode current collector or the negative electrode current collector (positive electrode current collector foil or negative electrode current collector foil)). Absent. However, in the case where the dividing groove 501a is provided on the surface of the positive electrode current collector foil or the negative electrode current collector foil, it is preferable that the positive electrode layer or the negative electrode layer is in close contact with the current collector foil.
  • laminates 12, 22, 32, 42, 42 are obtained.
  • the end portions of these laminates 12, 22, 32, 42 and 52 are protected (coated) as necessary.
  • the coating material needs to be selected according to the application of the battery to be manufactured, but basically, it should be selected from insulating materials such as photo-curing resin, thermosetting resin, two-component curing resin, rubber, silicone, ceramic, etc. Can.
  • a photocurable resin is selected as a coating material that does not react with the solid electrolyte and cures as low as possible.
  • the final product is a stack of a plurality of stacks 321 (when the capacity and output are insufficient for one cell)
  • a plurality of stacks 321 are stacked and then an end protection structure is formed.
  • a plurality of laminates 321 having a protective structure of the end may be stacked.
  • the positive electrode current collectors 11, 21, 31, 41 and 51 and the negative electrode current collectors 13, 23, 33, 43 and 53 are respectively obtained in the laminates 12, 22, 32, 42 and 52 obtained through the above steps.
  • all solid batteries 1 to 5 are further stacked and sealed in package 8 to complete all solid battery 101.
  • the all solid battery 101 is an all solid lithium ion secondary battery.
  • the all solid lithium ion secondary battery although voltage can be obtained without connecting a plurality of all solid batteries in series, a large current value can not be obtained without connecting the respective stacks in parallel. Therefore, in the example described below, as shown in FIG. 1, a structure in which all the solid batteries 1 to 5 are connected in parallel will be described.
  • all solid batteries 1 to 5 positive electrode current collector, negative electrode current collector, and presence or absence of end coating in parallel
  • all solid batteries 1 to 5 positive electrode current collector, negative electrode current collector, and presence or absence of end coating in parallel
  • the all solid state battery 3 is disposed so as to have a negative electrode layer on the negative electrode side and a positive electrode layer on the positive electrode side.
  • positive electrode current collectors 61 to 63 are disposed in appropriate positions and at least partially in contact with respective positive electrode layers of all the solid batteries 1 to 5.
  • negative electrode current collectors 71 to 73 are disposed in appropriate positions and at least partially in contact with the respective negative electrode layers of all the solid batteries 1 to 5. Specifically, the negative electrode current collector 71 is disposed at a position contacting the negative electrode layer of the all solid battery 1, and the negative electrode current collector 72 is disposed at a position contacting the respective negative electrode layers of the all solid batteries 2 and 3.
  • the negative electrode current collector 73 is disposed at a position in contact with the negative electrode layer of each of all the solid batteries 4 and 5.
  • the positive electrode current collector 61 is disposed at a position contacting the positive electrode layer of the all solid battery 5
  • the positive electrode current collector 62 is disposed at a position contacting the respective positive electrode layers of the all solid batteries 4
  • the positive electrode current collector 63 is disposed at a position in contact with the respective positive electrode layers of the batteries 2 and 1.
  • connection between positive electrode current collectors 61 to 63 and negative electrode current collectors 71 to 73, connection between positive electrode current collectors 61 to 63 and positive electrode terminal 60, and connection between negative electrode current collectors 71 to 73 and negative electrode terminal 70 can use welding techniques such as ultrasonic welding, resistance welding, laser welding. However, these connections may be made not only by the welding technique but also by other methods. For example, if the contact resistance can be sufficiently reduced, adhesion with a conductive adhesive, physical contact such as caulking or screwing alone does not matter.
  • the support plate 301 of the laminates 310 and 320 is the positive electrode current collectors 11, 21, 31, 41 and 51
  • one of the positive electrode current collectors 11, 21, 31 and 41 is It may be used also as the conductors 61 to 63.
  • the positive electrode current collectors 61 to 63 are formed integrally with the positive electrode current collectors 51, 31 and 11, respectively.
  • the all solid battery 4 is disposed such that the positive electrode current collector 41 contacts the positive electrode current collector 31 which also serves as the positive electrode current collector 62, and the positive electrode current collector 21 also serves as the positive electrode current collector 63.
  • All solid state battery 2 is arranged to be in contact with body 11.
  • the positive electrode current collectors 61 to 63 are formed integrally with the positive electrode current collectors 51, 41, and 21, respectively.
  • the all solid battery 3 is disposed such that the positive electrode current collector 31 contacts the positive electrode current collector 41 which also serves as the positive electrode current collector 62, and the positive electrode current collector 11 also serves as the positive electrode current collector 63.
  • All solid state battery 1 is arranged to be in contact with body 21.
  • the support plate 301 is connected to the positive electrode terminal 60 in cutting off the outer peripheral end from the laminates 310 and 320 described above. It is necessary to leave the connection without cutting it off.
  • the positive electrode current collector does not have the above connection portion, it is necessary to electrically connect the positive electrode current collector and the positive electrode terminal 60 with any connection member.
  • the manufacturing method of the all-solid-state battery 101 which concerns on this embodiment is a laminated body which forms the laminated body containing a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between a positive electrode layer and a negative electrode layer. It includes a forming step and a cutting-off step of forming a laminated body including a powder material by cutting off the outer peripheral end of the laminated body.
  • the laminate can remove the outer peripheral end that is easily broken by the alignment accuracy at the time of film formation of each layer, the film forming accuracy, and the uneven pressure at the end and center, and thus a new outer periphery that is not easily broken.
  • the end can be obtained. Therefore, a short circuit between the electrodes due to the collapse of the outer peripheral end can be prevented.
  • the above-described manufacturing method may further include a pressing step of pressing the laminate.
  • a pressing step of pressing the laminate may be made uniform throughout.
  • the outer peripheral end of the laminate may be cut off with a blade or a die. Thereby, the outer peripheral end can be cut off at one time. Therefore, the trimming can be performed efficiently.
  • the laminate a groove is formed on one surface, and a support plate (support plate 301) in which the layer surface of the laminate (a part of an interface between the laminate and the support plate) is in contact with the other surface.
  • the laminate may be divided by a chocolate breaking method.
  • the laminate can be easily divided along the grooves of the support plate. Therefore, the outer peripheral end can be cut out without using a large-scale device.
  • cutting-off of the outer peripheral end and division into a plurality of portions of the laminate may be simultaneously performed. Thereby, a plurality of divided laminates can be obtained simultaneously with cutting off the outer peripheral end. Therefore, a plurality of batteries can be easily manufactured.
  • FIG. 8 is a cross-sectional view showing the structure of an all-solid-state battery 102 according to a comparative example of the present embodiment.
  • Example 1 an all-solid battery 101 manufactured by the first manufacturing method using the laminate 310 will be described.
  • the positive electrode layer 302, the solid electrolyte layer 303, and the negative electrode layer 304 were formed such that the area of the interface between the layers was the same.
  • the outer peripheral end of the laminated body 310 is cut off. Therefore, it is not necessary to limit the size and shape of these three layers.
  • the positive electrode layer 302, the solid electrolyte layer 303, and the negative electrode layer 304 are formed in this order as a powder layer on the positive electrode current collector as the support plate 301.
  • the method of forming the powder layer is as described above.
  • the negative electrode current collector may be placed (or integrated) on the negative electrode layer 304.
  • Unnecessary support plate 301 (current collector) can be removed by cutting off. Therefore, a large support plate 301 can be used to facilitate handling of the support plate 301 to improve manufacturing reliability.
  • the obtained laminate 311 has a square shape with an outer size of 50 mm ⁇ 50 mm, and has an effective area ratio (chargeable / dischargeable area ratio) of 100%.
  • the external dimensions of the all-solid-state battery 101 including the package 8 were 55 mm ⁇ 55 mm ⁇ 2.5 mm, and the weight of the all-solid-state battery 101 was about 10 g.
  • inside the package 8 there is no unnecessary insulator or the like for preventing an end short circuit other than that the inside of the package is insulated.
  • Example 2 In the present embodiment, an all-solid battery 101 manufactured by the second manufacturing method using the laminate 320 will be described.
  • the positive electrode layer 312 (or the negative electrode layer 304) is formed the smallest, and the solid electrolyte layer 313 is formed to cover the upper surface and the side surface. It formed.
  • the screen 201 for forming a covering portion covering the side surface of the positive electrode layer 312 in the solid electrolyte layer 313 is used. The process of forming a coating part was added. However, the method of obtaining this configuration is not limited to this, and any other method may be used.
  • the laminate 320 was produced such that the area of the upper surface of the positive electrode layer 312 was the smallest and the area of the upper surface of the solid electrolyte layer 313 was the largest.
  • a laminate 320 was also produced so that the area of the top surface of the positive electrode layer 312 is the smallest, and the area of the top surfaces of the solid electrolyte layer 313 and the negative electrode layer 314 is the largest.
  • the outer peripheral end was cut off at a place where the positive electrode layer 312 does not exist (here, a place where only the solid electrolyte layer 313 and the negative electrode layer 314 exist on the support plate 301).
  • the possibility of the positive electrode active material and the negative electrode active material coming into contact with each other due to shearing of the cut-off can be substantially eliminated.
  • the unnecessary support plate 301 (current collector) can be removed by cutting off. Therefore, a large support plate 301 can be used to facilitate handling of the support plate 301 to improve manufacturing reliability.
  • the obtained laminated body 321 has a square of 50 mm ⁇ 50 mm in outer diameter, and has a portion without a positive electrode layer in a slight range of the peripheral portion, and thus has an effective area ratio of 96% (49 mm ⁇ 49 mm).
  • the external dimensions of the all-solid-state battery 101 including the package 8 are 55 mm ⁇ 55 mm ⁇ 2.5 mm.
  • the weight of the all-solid-state battery 101 was about 10 g.
  • inside the package 8 there is no unnecessary insulator or the like for preventing an end short circuit other than that the inside of the package is insulated.
  • Comparative Example As a comparative example, the all-solid-state battery 102 manufactured by the conventional manufacturing method is demonstrated.
  • the all-solid battery 102 includes all-solid batteries 1A to 5A, a positive electrode current collector 6, a negative electrode current collector 7, and a package 8.
  • the all solid batteries 1A to 5A are arranged in order of the all solid battery 1A, the all solid battery 22A, the all solid battery 3A, the all solid battery 4A and the all solid battery 5A from the negative electrode side.
  • the all solid battery 1A is configured by laminating the positive electrode current collector 111, the laminate 12, and the negative electrode current collector 113 in this order.
  • the all-solid battery 2A is configured by stacking the positive electrode current collector 121, the laminate 22, and the negative electrode current collector 123 in this order.
  • the all-solid battery 3A is configured by laminating a positive electrode current collector 131, a laminate 32, and a negative electrode current collector 133 in this order.
  • the all-solid battery 4A is configured by laminating the positive electrode current collector 141, the laminate 42, and the negative electrode current collector 143 in this order.
  • the all-solid-state battery 5A is configured by stacking the positive electrode current collector 151, the laminate 52, and the negative electrode current collector 153 in this order.
  • the positive electrode current collectors 111, 121, 131, 141, 151 and the negative electrode current collectors 113, 123, 133, 143, 153 have wider interface areas than the laminates 12, 22, 32, 42, 42, respectively. It is formed.
  • the positive electrode current collectors 111, 121, 131, 141, 151 and the negative electrode current collectors 113, 123, 133, 143, 153 have outer peripheral ends corresponding to the outer peripheral ends of the laminates 12, 22, 32, 42, 42, respectively. It is arranged to project further outward.
  • the outer peripheral end is cut off from the state of the laminate, and the all-solid-state batteries 1A to 5A are not manufactured.
  • the external shapes of the positive electrode current collectors 111, 121, 131, 141, 151 and the negative electrode current collectors 113, 123, 133, 143, 153 are the same as those of the positive electrode current collectors 11, 21, 21, 31 of Examples 1 and 2. 41 and 51 and the external shape of the negative electrode current collectors 13, 23, 33, 43 and 53.
  • the external shape of the obtained all solid batteries 1A to 5A is 51 mm ⁇ 51 mm, and there is a portion without the positive electrode layer in a slight range of the peripheral portion, so the effective area ratio (chargeable / dischargeable area ratio) is 92% (49 mm) ⁇ 49 mm).
  • the all solid battery 102 since the current collector is not cut off, packaging the all solid batteries 1A to 5A while leaving an insulator (not shown) for preventing end collapse, handling allowance, etc. Must-have. Therefore, the external dimensions of the all-solid battery 102 including the package 8 were 66 mm ⁇ 66 mm ⁇ 2.5 mm, and the weight of the all-solid battery 102 was about 15 g. Moreover, in order to improve the non-defective rate, the current collector can be enlarged, and the handling property can be slightly improved. On the other hand, the package volume and weight are increased, and the energy density is further reduced.
  • the all-solid-state battery 101 according to Examples 1 and 2 has a smaller volume of the package 8 and a lighter battery weight than the all-solid-state battery 102 according to the comparative example. Therefore, the energy density per volume and weight is also greater in the first and second embodiments.
  • the non-defective rate was as low as 65% because the powder layer is likely to have uneven density due to edge collapse, short circuit at the edge, and in-plane pressure unevenness.
  • the non-defective rate of the all-solid-state battery 101 according to the first embodiment is 85%
  • the non-defective rate of the all-solid-state battery 101 according to the second embodiment is 90%.
  • the volume (insulator, end without electrode layer, sealing portion, etc.) that does not contribute to charge / discharge in the final product (battery) is It gets bigger. This makes it difficult to produce a battery with high energy density or power density per weight or volume.
  • the yield does not decrease due to a short circuit at the end of the electrode layer (positive electrode layer, negative electrode layer), and the weight per unit volume or volume It is possible to manufacture batteries with high energy density or power density.
  • FIG. 9 is a cross-sectional view showing the structure of the all-solid-state battery 90 according to the second embodiment.
  • a negative electrode current collector 91 support plate
  • a negative electrode layer 92 negative electrode layer
  • a solid electrolyte layer 93 solid electrolyte layer
  • a positive electrode layer 94 positive electrode current collector 95
  • the negative electrode current collector 91 is formed of the same material as the material forming the negative electrode current collectors 71 to 73 in the all-solid-state battery 101 of the first embodiment.
  • the positive electrode current collector 95 is formed of the same material as the material forming the positive electrode current collectors 61 to 63 of the all solid state battery 101.
  • the positive electrode layer 94 (first electrode layer) is formed of the same material as the material forming the positive electrode layer of the all-solid-state battery 101.
  • the negative electrode layer 92 (second electrode layer) has the polarity opposite to that of the positive electrode layer 94, and is formed of the same material as the material forming the negative electrode layer of the all-solid battery 101.
  • the solid electrolyte layer 93 is interposed between the negative electrode layer 92 and the positive electrode layer 94, and is formed of the same material as the material forming the solid electrolyte layer of the all-solid battery 101.
  • Each of the positive electrode layer 94, the solid electrolyte layer 93, and the negative electrode layer 92 has an upper surface and a lower surface.
  • the area of the upper surface of each of the positive electrode current collector 95, the positive electrode layer 94, the solid electrolyte layer 93, the negative electrode layer 92, and the negative electrode current collector 91 becomes larger.
  • the area of the interface between the lower surface of the positive electrode layer 94 and the upper surface of the solid electrolyte layer 93 is smaller than the area of the interface between the lower surface of the solid electrolyte layer 93 and the upper surface of the negative electrode layer 92.
  • the side surfaces of the all-solid-state battery 90 form a single flat surface that slopes continuously throughout.
  • the side surface of the all-solid-state battery 90 may be continuously inclined, and may form a curved surface (convex or concave).
  • the side surface of the all solid battery 90 formed in a convex shape is less likely to cause end collapse.
  • the form of the inclination of the side of the all-solid-state battery 90 it is not limited to the form by which a single flat surface (inclined surface) as shown in FIG. 9 is formed in the whole.
  • a plurality of inclined surfaces having different inclination angles may be continuously formed on the entire side surface.
  • the inclination angle of each inclined surface is not limited to a specific angle, and can be set according to various factors.
  • the position of the boundary between adjacent inclined surfaces may be located at any position on the side surface.
  • the side surface may be inclined in a curved shape.
  • the curved surface shape is not limited to a specific shape, and may be the above-mentioned curved shape or the like.
  • an inclined surface may be formed on part of the side surface.
  • the range in which the inclined surface is formed is not limited to a specific range, and may be an intermediate portion of the side surface, or both end sides of the side surface, or both ends It may be one of the two sides. It can be said that such side surfaces are also inclined.
  • the side surface formed in the various forms as described above cuts off the outer peripheral end of the all solid battery 190 with a blade having an inner shape corresponding to the shape of the side surface Obtained by In other words, by designing the shape of the blade, it is possible to obtain the side of the desired shape. For example, when forming the above-mentioned multistage inclined surface in a side, it cuts off using a blade which has a plurality of inclined surfaces corresponding to each inclined surface of a multistage inclined surface inside.
  • FIG. 10 is a cross-sectional view of all-solid battery 190 showing a cutting-off step in the manufacture of all-solid battery 90.
  • a laminate is prepared in the same manner as in the method of producing the laminates 310 and 320 described with reference to FIGS. 3 and 4 in Embodiment 1, and further, the negative electrode current collector 91 and the positive electrode current collector 95 are prepared.
  • an all solid battery 190 shown in FIG. 10 is produced (laminate forming step).
  • a negative electrode layer 92, a solid electrolyte layer 93, a positive electrode layer 94, and a positive electrode current collector 95 are sequentially stacked on the negative electrode current collector 91 to obtain an all-solid battery 190.
  • each layer is pressurized in the formation step.
  • a three-layered laminate composed of the negative electrode layer 92, the solid electrolyte layer 93, and the positive electrode layer 94 is formed, and after pressing this laminated body, the laminate is disposed on the negative electrode current collector 91, and The positive electrode current collector 95 may be formed.
  • the outer peripheral end of the all solid battery 190 including the laminate is cut off (cut-off process).
  • cut-off process by pressing the powder layer substantially uniformly, it is possible to obtain an all solid battery 90 which is uniform to the end.
  • insulators such as resin, rubber, and ceramic.
  • the above-mentioned trimming is performed using a precision punching device having a punch 701 and a die 702.
  • a punching die having a shape as shown in FIG. 10 it is possible to obtain an all-solid battery 90 from one all-solid battery 190 by one-time punching.
  • the blade 701a of the punch 701 has the inner blade which becomes thin at least inside toward a blade edge, you may have a double-edged blade.
  • By performing cutting off using such a punch 701 it is possible to obtain an all-solid-state battery 90 whose side faces are inclined on both sides of the blade. Therefore, division at the dividing lines L1 and L2 shown in (d) of FIG. 3 and (d) of FIG. 4 can be easily realized.
  • the all solid battery 190 can be cut so that the cut surface of the all solid battery 90 may be inclined as shown in FIG. 10, a blade other than the punch 701 or a laser may be used.
  • the positive electrode layer 94 is smaller than the negative electrode layer 92, and both the positive electrode layer 94 and the negative electrode layer 92 are not constant in the thickness direction.
  • the area of the negative electrode layer is generally larger than that of the positive electrode layer.
  • the side of the all-solid-state battery 90 according to this embodiment is inclined. Thereby, the part which each layer protrudes does not arise in the outer peripheral end surface of a laminated body. Thus, it is possible to avoid a short circuit between the positive electrode layer and the negative electrode layer due to the collapse of the protruding portions of the positive electrode layer and the negative electrode layer as in the conventional all solid battery in which the positive electrode layer and the negative electrode layer are stacked one by one. .
  • the area of the upper surface of the negative electrode layer 92 is larger than the area of the upper surface of the positive electrode layer 94 in the present embodiment, the area of the upper surface of the positive electrode layer 94 may be larger than the area of the upper surface of the negative electrode layer 92.
  • FIG. 11 is a cross-sectional view showing the structure of the all-solid-state battery 800 according to the fourth embodiment.
  • the all solid battery 800 has a structure in which a positive electrode current collector 801, a positive electrode layer 802, a solid electrolyte layer 803, a negative electrode layer 804, and a negative electrode current collector 805 are stacked in this order. have.
  • the positive electrode layer 802, the solid electrolyte layer 803 and the negative electrode layer 804 form a laminate 806 in the all-solid battery 800.
  • the positive electrode current collector 801 is formed of the same material as the material forming the positive electrode current collectors 61 to 63 of the all solid state battery 101.
  • the negative electrode current collector 805 is formed of the same material as the material forming the negative electrode current collectors 71 to 73 in the all-solid-state battery 101 of the first embodiment.
  • the positive electrode layer 802 (first electrode layer) is formed of the same material as the material forming the positive electrode layer of the all-solid-state battery 101.
  • the negative electrode layer 804 (second electrode layer) has the opposite polarity to the positive electrode layer 802, and is formed of the same material as the material forming the negative electrode layer of the all-solid battery 101.
  • the solid electrolyte layer 803 is interposed between the positive electrode layer 802 and the negative electrode layer 804, and is formed of the same material as the material forming the solid electrolyte layer of the all-solid battery 101.
  • FIG. 12 is a plan view showing the structure before the outer peripheral end of the all-solid-state battery 800 is cut off.
  • FIG. 13 is a cross-sectional view taken along line AA of FIG.
  • an insulating member 807 having an opening 807a is disposed on a square positive electrode current collector 801 in a region where the laminate 806 can be formed, and a lower adhesive layer 808 is formed. Glue by. Insulating member 807 is formed to form a square having an area smaller than that of positive electrode current collector 801, and the outer peripheral end of insulating member 807 is inward from the outer peripheral end of positive electrode current collector 801 by a predetermined width. It is arranged to be in the retreated position. Further, the inner peripheral end portion forming the opening 807a is formed thicker than the portion formed in the plate shape on the outer peripheral side than that.
  • a stack 805 is formed in the region of the opening 807a of the insulating member 807 on the surface of the positive electrode current collector 801 using the device shown in FIG.
  • the positive electrode layer 802 is formed on the positive electrode current collector 801.
  • the positive electrode layer 802 is pressurized.
  • a solid electrolyte layer 803 is formed on the positive electrode layer 802 so as to cover the surface of the positive electrode layer 802 and to cover the inner circumferential surface and the upper surface of the insulating member 807.
  • the solid electrolyte layer 803 is pressurized.
  • the negative electrode layer 804 is formed on the solid electrolyte layer 803. In addition, the negative electrode layer 804 is pressurized as necessary.
  • the negative electrode current collector 805 in which the upper adhesive layer 809 is formed is disposed on the negative electrode layer 804, and is adhered to the plate-like portion of the insulating member 807 by the upper adhesive layer 809.
  • the negative electrode current collector 805 is temporarily pressurized at a low pressure. After that, main suction is performed at high pressure while suctioning internal air.
  • an all-solid battery 810 is produced in which the positive electrode layer 802, the solid electrolyte layer 803, and the negative electrode layer 804 are stacked on the positive electrode current collector 801, and the negative electrode current collector 805 is formed Process).
  • the negative electrode current collector 805 is omitted so that the lower layer structure of the negative electrode current collector 805 can be understood.
  • the outer peripheral end including the insulating member 807 not only does not contribute to charge and discharge, but the thickness is different from the central part and may not be sufficiently compressed and may be fragile. Therefore, the outer peripheral end is cut off using the precision punching device shown in FIG.
  • the outer peripheral end is cut off in a state in which the rigidity of the portion inside the outer peripheral end to be cut off is higher than the rigidity of the outer peripheral end.
  • the outer peripheral end can be made more brittle than the all solid battery 800 cut out from the all solid battery 810, and the distortion of the laminate 805 generated at the time of cutting off the outer peripheral end can be absorbed in the outer peripheral end.
  • the high rigidity member is cut off prior to cutting off the outer peripheral end. Specifically, the portion including the majority of the rigid insulating member 807 (high rigidity member) included in the outer peripheral end around the all solid battery 800 is cut off at the cut-off point C1.
  • the outer shape of the peripheral portion that is, the shape of the outer periphery of the laminated body 805 is formed so as to be equal to or less than the area of the (inner portion).
  • the laminate 805 is formed such that the area of the peripheral portion is 2500 mm 2 or less, that is, the peripheral outline has a size of at least 70.7 mm square. Is desirable.
  • the peripheral part In a layer formed of the same material as in the laminate 805 and pressed under the same pressure, when the area of the peripheral part is larger than the area of the inner part, the peripheral part does not become brittle when cut off. Therefore, it is difficult for the distortion generated in the inner part to escape to the surrounding part.
  • the outer peripheral shape of the laminated body 805 is formed with respect to the position of the cut-off point C2 such that the area of the outer peripheral portion is equal to or less than the area of the inner portion.
  • the powder material forming the laminate 805 is compacted in the all-solid-state battery 800, it has the property of being more easily broken when the blade is inserted, as compared to a metal material. In addition, since the bonding between the fine powders is not as strong as metal bonding, they are easily broken when an impact is applied by rapid processing.
  • the laminate 805 can be sheared so as to be divided gently without applying an impact that breaks the laminate 805 made of the powder material.
  • the cutting speed is 50 mm / sec or less, the collapse of the laminate 805 due to the cutting can be substantially suppressed.
  • Embodiment 4 The fourth embodiment of the present invention is described below with reference to FIG. 2, FIG. 10, and FIG. 14 to FIG.
  • components having the same functions as the components in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 14 is a plan view showing the structure of the all-solid-state battery 900 according to the fourth embodiment.
  • the all solid battery 900 has a structure in which a positive electrode current collector 901, a positive electrode layer 902, a solid electrolyte layer 903, a negative electrode layer 904, and a negative electrode current collector 905 are stacked in this order. have.
  • the positive electrode layer 902, the solid electrolyte layer 903 and the negative electrode layer 904 form a laminate 906 in the all-solid battery 900.
  • the positive electrode current collector 901 is formed of the same material as the material forming the positive electrode current collectors 61 to 63 of the all solid state battery 101.
  • the negative electrode current collector 905 is formed of the same material as the material forming the negative electrode current collectors 71 to 73 in the all-solid-state battery 101 of the first embodiment.
  • the positive electrode layer 902 (first electrode layer) is formed of the same material as the material forming the positive electrode layer of the all-solid-state battery 101.
  • the negative electrode layer 904 (second electrode layer) has the polarity opposite to that of the positive electrode layer 902, and is formed of the same material as the material forming the negative electrode layer of the all-solid battery 101.
  • the solid electrolyte layer 903 is interposed between the positive electrode layer 902 and the negative electrode layer 904, and is formed of the same material as the material forming the solid electrolyte layer of the all-solid battery 101.
  • the solid electrolyte layer 903 is formed as an undulating film having an undulation (relief). Specifically, the solid electrolyte layer 903 has a thick film portion 903a formed thick in the outer peripheral portion and a thin film portion 903b formed inside the thick film portion 903a.
  • the thicknesses of the positive electrode layer 902, the solid electrolyte layer 903 and the negative electrode layer 904 are all 100 ⁇ m, and the laminate 905 is formed in a flat plate shape having a uniform thickness of 300 ⁇ m.
  • the stack 905 In order for the stack 905 to have such a shape and the solid electrolyte layer 903 to have a waviness, the following equation needs to be satisfied.
  • Wp-Wv / T 0.1 to 2.0 [ ⁇ m]
  • Wp represents the maximum height with respect to the reference position which is the average film thickness of the solid electrolyte layer 903 of the thick film portion 903a
  • Wv represents the maximum height with respect to the above reference position
  • T represents the average film thickness ( ⁇ m) of the solid electrolyte layer 903.
  • the Wp-Wv of any one of the positive electrode layer 902, the solid electrolyte layer 903 and the negative electrode layer 904 is 200 ⁇ m, the Wp-Wv substantially reaches the maximum value for the laminate 905 to be flat.
  • the positive electrode layer 902 or the negative electrode layer 904 may have undulation.
  • the stack 906 at least one of the positive electrode layer 902, the solid electrolyte layer 903, and the negative electrode layer 904 may have an undulation.
  • the laminate 906 needs to be formed in a flat plate shape having a uniform thickness.
  • FIG. 15 is a plan view showing a structure before all solid state battery 100 is cut out from all solid state battery 910.
  • FIG. 16 is a plan view showing the structure of the screen 201 used in the apparatus shown in FIG. 2 for producing the laminate included in the all-solid battery 910 shown in FIG.
  • the positive electrode layer 902, the solid electrolyte layer 903 and the negative electrode layer 904 are formed on the square positive electrode current collector 901 using the apparatus shown in FIG. First, the positive electrode layer 902 of the positive electrode current collector 901 is formed. Here, if necessary, the positive electrode layer 902 is pressurized.
  • a solid electrolyte layer 903 is formed on the positive electrode layer 902.
  • the solid electrolyte layer 803 is pressurized.
  • the screen 201 shown in FIG. 16 is used to form the solid electrolyte layer 903.
  • the screen 201 has a screen frame 201a forming a square.
  • the unopened part 201b which does not make powder material fall is formed inside the screen frame 201a, and the opening parts 201c and 201d are further formed inside the unopened part 201b.
  • a plurality of square openings 201d are arranged in the square openings 201c (three rows and three columns in the example shown in FIG. 16).
  • the openings 201 c and 201 d are formed by the aforementioned mesh in order to drop the powder material.
  • the opening 201c is provided to form the thick film portion 903a, has a small mesh number, and has a large opening.
  • the opening 201d is provided to form the thin film portion 903b, and has a large number of meshes and a small opening.
  • the opening 201c the opening 104 ⁇ m, the mesh number 190 / inch, the wire diameter 29 ⁇ m, and the opening ratio 61.1% are preferable.
  • the opening 201d it is preferable that the opening 55 ⁇ m, the mesh number 302 / inch, the wire diameter 29 ⁇ m, and the aperture ratio 42.9%. Note that these values are just an example.
  • the screen 201 configured such that the amount by which the powder material is dropped varies depending on the portion is used. As a result, a large amount of powder material falls in the region between the outer peripheral region of the opening 201c and the adjacent opening 201d, while a small amount of powder material falls in the opening 201d.
  • thick film portions 903 a and thin film portions 903 b are alternately formed.
  • the negative electrode layer 904 is formed on the solid electrolyte layer 903. In addition, the negative electrode layer 904 is pressurized as necessary.
  • the negative electrode current collector 905 is formed over the negative electrode layer 904. After the negative electrode current collector 905 is temporarily pressurized at low pressure, main pressurization is performed at high pressure.
  • This all solid state battery 910 includes a plurality of all solid state batteries 900.
  • the outer peripheral end of the all-solid-state battery 910 is cut off at a cut-off point C forming a square (cut-off step). Further, in this cutting-off step, the cut-off portion C forming a square may be divided into a plurality of parts along a dividing line (for example, a dividing line L1 as shown in (d) of FIG. . Thereby, a plurality of single all solid batteries 900 are obtained as a divided laminate.
  • a dividing line for example, a dividing line L1 as shown in (d) of FIG.
  • the solid electrolyte layer is thin. Therefore, when cutting out a plurality of all solid batteries, deformation of the cutting surface occurs due to shear force or the like, and the positive electrode layer and the negative electrode layer exceed the solid electrolyte layer. could short circuit. In addition, when an impact or vibration is applied to the all solid battery as a product, a short circuit between the positive electrode layer and the negative electrode layer occurs because the solid electrolyte layer is thin, particularly at the end where each layer tends to collapse particularly in the laminate. There was a fear.
  • the average film thickness of the solid electrolyte layer 903 is thicker than the average film thickness of the solid electrolyte layer 903 in the cut-off portion C and dividing line in the all-solid battery 910 A thick film portion 903a is formed. Further, a thin film portion 903 b thinner than the average film thickness of the solid electrolyte layer 903 is formed inside the thick film portion 903 a formed on the outer peripheral portion of the solid electrolyte layer 903.
  • the thickness of the outer peripheral portion (thick film portion 903b) of the solid electrolyte layer 903 in the all-solid-state battery 900 is larger than the thickness of the central portion (thin film portion 903b).
  • the solid electrolyte layer 903 has the thick film portion 903a at the end of the all solid battery 900 where the laminate 906 easily collapses, so that even if shock or vibration is applied to the all solid battery 900 as a product, the positive electrode layer 902 and The possibility of a short circuit with the negative electrode layer 904 can be reduced.
  • Electrodeposition occurs by eliminating the When electrodeposition occurs, not only the battery characteristics deteriorate, but also there is a possibility that the positive electrode and the negative electrode may be minutely short-circuited through the electrodeposition site.
  • the mass of the negative electrode active material is larger than the mass of the positive electrode active material at any portion on the plane of the all-solid battery 900.
  • the mass of the negative electrode active material facing the positive electrode active material can be increased. Therefore, the occurrence of electrodeposition can be suppressed.
  • a precision punching apparatus suitable for punching a laminate having brittleness will be described.
  • a conventional precision punching device using a mold will be described.
  • FIG. 19 is a view showing a precision punching device 410 according to a comparative example of the fifth embodiment.
  • the conventional precision punching apparatus 410 holds a punch 411 and a die 412 arranged to secure an appropriate clearance C, and a presser that holds the workpiece 450 on the die 413. And a plate 413.
  • the precision punching device 410 cuts the plate-like workpiece 450 disposed between the punch 411 and the die 412 by shear deformation in the vicinity of the area of the clearance C by lowering the punch 411.
  • the clearance C and fixation of the workpiece 450 by the pressing plate 413 are essential in order to punch the workpiece 450 precisely.
  • whether the clearance C is appropriate or not is determined to determine the success or failure of the shearing operation.
  • the clearance C is small, the punching cross section of the workpiece 450 is sharpened.
  • the clearance C is large, the bending force (deformation) becomes larger than the shear force (cutting), so that sagging or burring occurs.
  • the pressing plate 413 is required to suppress deformation such as bending of the workpiece 450 toward the punch 411 before the workpiece 450 is cut by shearing.
  • the punching accuracy is improved by increasing the lowering speed (processing speed) of the punch 411.
  • the conventional precision punching apparatus 410 properly selects the workpiece 450. I can not punch out.
  • the clearance C is not very important, and there is no need to suppress the deformation of the workpiece 450 by the pressing plate 413. Rather, since the pressing plate 413 suppresses the gentle deformation of the workpiece 450, a load is applied only to the vicinity of the clearance C in the workpiece 450, and the portion of the clearance C is broken. Further, when the processing speed is increased, the workpiece 450 is easily broken by the impact of the punch 411.
  • the punch surface of the punch 411 is formed to be a surface perpendicular to the tool axis (the central axis of the punch 411), while the workpiece 450 is a die Tilt and place on the 412.
  • a shearing angle is provided on the mounting surface (upper end surface) of the die 412 on which the workpiece 450 is mounted.
  • a line load can be converted to a point load.
  • the reason why the shear angle is provided not on the side of the punch 411 but on the side of the die 412 is that when the side of the punch 411 is inclined, deformation such as warping occurs in the punched workpiece 450.
  • FIG. 17 is a view showing a precision punching device 400A according to the fifth embodiment.
  • the precision punching device 400A (processing device) includes a punch 404 and a die 402.
  • the die 402 is also included in the precision punching device 400 in the first embodiment described above, and has a cutting edge 402a (blade) and a flank surface 402b on the inner peripheral wall forming a space into which the punch 404 is inserted. .
  • the punch 404 has a shear angle so as to be inclined with respect to the tool axis (the central axis of the punch 404).
  • the upper end surface of the die 402 may have a shear angle in the same manner as the upper end surface of the die 412 of the precision punching device 410 described above has a shear angle instead of the punch 404 having a shear angle.
  • both die 402 and punch 404 may have shear angles.
  • the punch 404 preferably has a shear angle. That is, it is preferable that a shear angle be provided between the upper end surface of the die 402 and the punch surface of the punch 404 (the lower end surface having the blade in the punch 404) regardless of any of outline extraction and drilling. Thereby, the punching thrust can be reduced, and the punching accuracy can be improved.
  • the clearance C between the die 402 and the punch 404 does not have to be strictly defined, and is set to several to several tens of ⁇ m.
  • the precision punching device 400A may include an attached peripheral device 406.
  • the peripheral device 406 includes a removal mechanism, a cleaning mechanism, a transport mechanism, a positioning mechanism, and the like.
  • the removal mechanism is a mechanism for scraping off the remaining matter remaining on the punch 404.
  • the cleaning mechanism is a mechanism for cleaning the fine powder generated by the punching of the workpiece 450.
  • the transport mechanism transports the workpiece 450 to the die 402 and transports the punched workpiece 450 on the die 402 to an apparatus of another process.
  • the positioning mechanism is a mechanism for positioning the workpiece 450 at a predetermined processing position on the die 402.
  • the workpiece 450 here is, for example, a sheet-like material including a brittle material, such as the laminates 310 and 320 punched out by the precision punching device 400 in the first embodiment.
  • the workpiece 450 is freely supported on the die 402.
  • the workpiece 450 may be loosely supported by a pressing plate (not shown) to such an extent that deformation occurring at the time of punching is not suppressed. That is, the die 402 is held so as not to suppress the deformation of the workpiece 450 for punching by the punch 404.
  • the insertion speed V of the punch 404 is 100 mm / sec or less, preferably 50 mm / sec or less, more preferably 25 mm / sec or less.
  • the workpiece 450 is punched in a range slightly larger than a desired punching size (product size), and the punched workpiece 450 is further punched into a desired punching size.
  • a desired punching size product size
  • the brittle material can be punched with higher accuracy by performing punching a plurality of times.
  • the outer peripheral edge cut off from that portion rather than the rigidity of the cut portion. Cut out with low rigidity of the part. Thereby, the distortion produced at the time of cutting out can be absorbed at the outer peripheral end, and the product can be prevented from being damaged or defective.
  • the outer peripheral end of the sheet containing a brittle material tends to be structurally unstable. For this reason, when a sheet slightly larger (about several mm) than the cut-out shape of the product is manufactured, the outer peripheral end of the cut-out product portion also becomes unstable. Therefore, a stable product can be obtained by forming a sheet with a relatively large area and cutting out only the structurally stable sheet central portion.
  • the sheet is punched slightly larger than the product, and the punched sheet is punched into a product shape.
  • FIG. 18 is a view showing another precision punching device 400B according to the fifth embodiment.
  • the precision punching device 400 B (processing device) includes a punch 404 and a die 405.
  • the die 405 has an upper blade 405a, a middle blade 405b, and a lower blade 405c as a plurality of blades on the inner peripheral wall.
  • the upper blade 405a is provided on the upper end surface of the die 405 located at the uppermost position.
  • the middle blade 405b is provided below the upper blade 405a.
  • the middle blade 405b protrudes by a protrusion amount D1 toward the center of the die 405 than the upper blade 405a.
  • the lower blade 405c is provided below the middle step 405b.
  • the lower blade 405c protrudes with a protrusion amount D2 toward the center of the die 405 than the middle blade 405b.
  • the amount of protrusion D1, D2 is on the order of sub-mm to several tens of mm, and more preferably 0.3 to 0.5 mm.
  • the opening area of the upper blade 405a is the largest
  • the opening area of the middle step 405b is the second largest
  • the opening area of the lower blade 405c is the smallest.
  • the opening area is formed to be smaller as it is positioned downward from the upper end surface of the die 405.
  • the shapes of the upper blade 405a, the middle blade 405b and the lower blade 405c are basically similar. However, since the lower blade 405c cuts out the product portion, the lower blade 405c is given a design (micro unevenness, micro waviness, rounded corners, etc.) for determining the outer shape of the product, and the upper blade 405a and the middle step There is no need for such a design to be given to 405b.
  • a flank surface 405 d is formed from the lower side to the lower end of the lower blade 405 c in the inner circumferential wall of the die 405.
  • the clearance angle ⁇ 2 that forms the clearance surface 405 is about several degrees, similar to the clearance angle ⁇ 1 of the die 402 in the above-described precision punching device 400.
  • a narrow range between the lower blade 405 c and the upper end of the flank surface 405 is formed as a parallel surface substantially parallel to the outer peripheral wall of the punch 404.
  • the upper end surface of the die 405 may have a shear angle.
  • both the die 405 and the punch 404 may have a shear angle. That is, it is preferable that a shear angle be provided between the upper end surface of the die 405 and the punched surface of the punch 404 regardless of whether it is outline removal or drilling. Thereby, the punching thrust can be reduced, and the punching accuracy can be improved.
  • the clearance C between the die 405 and the punch 404 is set to the same extent (several to several tens of ⁇ m) as the precision punching device 400A.
  • the precision punching device 400B may also include the peripheral device 406 in the same manner as the precision punching device 400A.
  • the workpiece 450 here is, for example, a sheet-like material including a brittle material, like the workpiece 450 punched by the precision punching device 400A.
  • the workpiece 450 is freely supported on the die 402.
  • the workpiece 450 may be loosely supported by a pressing plate (not shown) to such an extent that deformation occurring at the time of punching is not suppressed.
  • the punch 404 By inserting the punch 404 into the die 405, first, the workpiece 450 is punched out by the upper blade 405a, whereby a portion larger by two turns than the product portion is cut out. Further, by pushing the punch 404 downward, a portion larger than the portion punched by the upper blade 405a is cut out. Further, by pushing the punch 404 downward, the product part is cut out from the part punched out at 405b.
  • the workpiece 450 is punched in a range slightly larger than a desired punching size (product size), and the punched workpiece 450 is further punched into a desired punching size.
  • a desired punching size product size
  • the brittle material can be punched with higher accuracy by performing punching a plurality of times.
  • a sheet containing a brittle material such as a powder layer can be precisely punched with a single device if it has a simple shape.
  • one kind of punch 404 and die 405 may be prepared. Therefore, the introduction cost of the processing apparatus is lowered, and the mold management can be facilitated.
  • the precision punching devices 400A and 400B of the present embodiment can also be used for the cutting-off processing in the third and fourth embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

全固体電池を構成する積層体の電極層の端部崩れを防止する。全固体電池の製造方法は、正極層(302)と、正極層(302)の極性と反対の極性を有する負極層(304)と、正極層(302)および負極層(304)の間に介在する固体電解質層(303)とを含む積層体(310)を形成する積層体形成工程と、積層体(310)の外周端部を切り落とすことにより粉体材料を含む積層体を形成する切り落とし工程と、を含む。

Description

全固体電池、その製造方法および加工装置
 本発明は、全固体電池およびその製造方法に関する。
 従来の全固体電池は、粉体を含む積層体(正極層、固体電解質層および負極層)、正極集電体、負極集電体を含む電池である。積層体は、粉体膜であるため、特に端部で粉体崩れなどが発生し、そのために正極活物質と負極活物質が短絡するおそれがある。
 特許文献1,2には、積層体の端部崩れや端部崩れに起因する端部での短絡を防ぐために、絶縁体によって正極層を囲い込むことが開示されている。
日本国公開特許公報「特開2015-125893号(2015年7月6日公開)」 日本国公開特許公報「特開2015-162353号(2015年9月7日公開)」
 しかしながら、絶縁体によって正極層を囲い込むような対策を行っても、粉体を含む積層体を、端部を含む全面にわたって均一に成形することは難しい。したがって、特許文献1,2に開示された電池においても、端部崩れや端部での短絡は十分に防ぐことができない。
 本発明の一態様は、全固体電池を構成する積層体の端部崩れを防止することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る全固体電池の製造方法は、第1電極層と、前記第1電極層の極性と反対の極性を有する第2電極層と、前記第1電極層および前記第2電極層の間に介在する固体電解質層とを含む積層体を形成する積層体形成工程と、前記積層体の外周端部を切り落とす切り落とし工程と、を含み、前記積層体が粉体材料を含む。
 上記の課題を解決するために、本発明の一態様に係る全固体電池は、第1電極層と、前記第1電極層の極性と反対の極性を有する第2電極層と、前記第1電極層および前記第2電極層の間に介在する固体電解質層とが支持板上に積層された全固体電池であって、前記第1電極層と前記固体電解質層との界面の面積が、前記固体電解質層と前記第2電極層との界面の面積よりも小さく、前記全固体電池の側面が傾斜している。
 本発明の一態様によれば、全固体電池を構成する積層体の端部崩れを防止することができる。
本発明の実施形態1に係る全固体電池の構造を示す断面図である。 各実施形態に係る全固体電池の積層体の成膜方法を示す図である。 (a)~(d)は上記全固体電池の第1の製造における各工程を示す図である。 (a)~(d)は上記全固体電池の第2の製造における各工程を示す図である。 上記全固体電池の製造に用いられる精密打ち抜き装置を示す図である。 上記全固体電池の製造における積層体からチョコレートブレイク法による分割で外周端部を切り出す状態を示す図である。 上記全固体電池の製造における積層体からチョコレートブレイク法による他の分割で外周端部を切り出す状態を示す図である。 本発明の実施形態1の比較例に係る全固体電池の構造を示す断面図である。 本発明の実施形態2に係る全固体電池の構造を示す断面図である。 図9の全固体電池の製造における切り落とし工程を示す全固体電池の断面図である。 本発明の実施形態3に係る全固体電池の構造を示す断面図である。 図11に示す全固体電池の外周端部が切り落とされる前の構造を示す平面図である。 図12のA-A線矢視断面図である。 本発明の実施形態4に係る全固体電池の構造を示す池の構造を示す断面図である。 図14に示す全固体電池が大面積の全固体電池から切り出される前の構造を示す池の構造を示す断面図である。 図15に示す全固体電池に含まれる積層体を作製するために図2に示す装置に用いられるスクリーンの構造を示す平面図である。 本発明の実施形態5に係る精密打ち抜き装置を示す図である。 実施形態5に係る他の精密打ち抜き装置を示す図である。 実施形態5の比較例に係る精密打ち抜き装置を示す図である。
 〔実施形態1〕
 本発明の実施形態1について図1~図8に基づいて説明すると、以下の通りである。
 本実施形態を含む各実施形態では、全固体電池の一例として、リチウムイオン伝導性の固体電解質を用いた全固体二次電池、すなわち全固体リチウムイオン二次電池について説明する。ただし、本発明に係る全固体電池は、全固体リチウムイオン二次電池に限定されるものではないことは勿論である。
 図1は、実施形態1に係る全固体電池101の構造を示す断面図である。
 図1に示すように、全固体電池101は、全固体電池1~5と、正極集電体6と、負極集電体7と、パッケージ8とを備えている。全固体電池101は、単独でも、電池として作動する複数の全固体電池1~5を並列に接続した構成となっている。なお、全固体電池101は、全固体電池1~5を直列に接続することで構成されてもよい。また、図1において、全固体電池1~5、正極集電体6および負極集電体7は、便宜上、互いに間隔をおいて描かれているが、それぞれ隣り合うもの同士で接触している。後述する図8についても、図1と同様に描いている。
 パッケージ8は、全固体電池1~5を内蔵する箱状の筐体である。
 全固体電池1~5は、負極側から全固体電池1、全固体電池2、全固体電池3、全固体電池4および全固体電池5の順に配置されている。
 全固体電池1は、正極集電体11と、積層体12と、負極集電体13とが、この順に積層されることで構成されている。
 全固体電池2は、正極集電体21と、積層体22と、負極集電体23とが、この順に積層されることで構成されている。
 全固体電池3は、正極集電体31と、積層体32と、負極集電体33とが、この順に積層されることで構成されている。
 全固体電池4は、正極集電体41と、積層体42と、負極集電体43とが、この順に積層されることで構成されている。
 全固体電池5は、正極集電体51と、積層体52と、負極集電体53とが、この順に積層されることで構成されている。
 全固体電池1は、全固体電池1の負極集電体13が負極側に位置するように配置されている。全固体電池5は、全固体電池5の正極集電体51が正極側に位置するように配置されている。また、全固体電池1,2は、全固体電池1の正極集電体11と全固体電池2の正極集電体21とが対向するように配置されている。また、全固体電池2,3は、全固体電池2の負極集電体23と全固体電池3の負極集電体33とが対向するように配置されている。また、全固体電池3,4は、全固体電池3の正極集電体31と全固体電池4の正極集電体41とが対向するように配置されている。また、全固体電池4,5は、全固体電池4の負極集電体43と全固体電池5の負極集電体53とが対向するように配置されている。
 全固体電池1~5の平面形状は、方形(例えば正方形)であるが、全固体電池1~5がパッケージ8内に収納可能となるような形状であれば方形に限定されない。例えば、全固体電池1~5の平面形状は、円形、多角形、直線と曲線とからなる形状などであってもよい。ただし、通常、全固体電池1~5は、すべて同じ平面形状および同じ大きさ(面積)となるように形成されている。
 積層体12,22,32,42,52は、それぞれ正極層(第1電極層)と、正極層の極性と反対の極性を有する負極(第2電極層)と、正極層および負極層の間に介在する固体電解質層とを含んでおり、これらが積層された構造体である。
 正極層は、正極活物質と固体電解質との合材(混合物)、または正極活物質のみによって形成されている。上記の合材における正極活物質と固体電解質との重量比は、例えば7:3である。正極活物質には、全固体電池分野において正極活物質に通常用いられている材料を用いることができる。正極活物質としては、リチウム含有酸化物(例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2など))などを用いることができる。
 負極層は、負極活物質と固体電解質との合材(混合物)、または負極活物質のみによって形成されている。上記の合材における負極活物質と固体電解質との重量比は、例えば6:4である。負極活物質には、全固体電池分野において負極活物質に通常用いられている材料を用いることができる。負極活物質としては、黒鉛(天然黒鉛、人造黒鉛など)、炭素材料(黒鉛炭素繊維、樹脂焼成炭素など)、錫、リチウム、酸化物、硫化物、窒化物、合金などを、粉体や箔などの形状に関わらず用いることができる。
 正極層、固体電解質層および負極層に用いられる固体電解質には、リチウムイオン電池分野で通常用いられている材料などが用いられる。このような固体電解質としては、有機化合物、無機化合物、有機および無機の両化合物からなる材料が挙げられる。また、無機化合物のうち、LiS-Pなどの硫化物は、他の無機化合物と比べてイオン伝導性に優れる。
 正極合材および負極合材の混合方式は特に問わないが、本実施形態では、すべてボールミルによって混合したものを用いる。
 正極集電体6は、正極集電体61~63によって構成されている。正極集電体61は、パッケージ8の正極側の内面と、全固体電池5の正極集電体51との間に、正極集電体51と接触するように配置されている。正極集電体62は、全固体電池3の正極集電体31と、全固体電池4の正極集電体41との間に両者に接触するように配置されている。正極集電体63は、全固体電池1の正極集電体11と、全固体電池2の正極集電体21との間に両者に接触するように配置されている。また、正極集電体61~63の端部には正極端子60が接続されている。正極端子60は、パッケージ8の一部、例えばパッケージ8の側面における全固体電池5の一端部側の付近から外部に露出するように配置されている。これにより、正極集電体6は、外部の所定箇所と電気的に接続されることが可能となる。
 負極集電体7は、負極集電体71~73によって構成されている。負極集電体71は、パッケージ8の負極側の内面と、全固体電池1の負極集電体13との間に、負極集電体13と接触するように配置されている。負極集電体72は、全固体電池2の負極集電体23と、全固体電池3の負極集電体33との間に両者に接触するように配置されている。負極集電体73は、全固体電池4の負極集電体43と、全固体電池5の負極集電体53との間に両者に接触するように配置されている。また、負極集電体71~73の端部には負極端子70が接続されている。負極端子70は、パッケージ8の一部、例えばパッケージ8の側面における全固体電池1の一端部側(正極端子60と反対側)の付近から外部に露出するように配置されている。これにより、負極集電体7は、外部の所定箇所と電気的に接続されることが可能となる。
 なお、図1に示す構造では、正極端子60および負極端子70が、図示の容易さのため、パッケージ8の両側に分けて配置されている。しかしながら、正極端子60および負極端子70が配置される位置は、上記の位置に限定されず、パッケージ8のどこであっても構わない。また、正極端子60および負極端子70によって集電を行う箇所は、正負極につき1つずつとは限らない。正負極のそれぞれから、複数箇所で集電を行うこともできる。
 また、図示はしないが、パッケージ8(少なくとも内面)は、絶縁を有するように形成されることが好ましい。あるいは、パッケージ8と全固体電池1~5との間、またはパッケージ8と正極集電体61~63および負極集電体71~73との間に絶縁体を挿入することが好ましい。
 正極集電体6、負極集電体7、正極端子60および負極端子70は、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、錫、またはこれらのいずれかの合金を材料として形成される。また、正極集電体61~63および負極集電体71~73の形態は、板状体、箔状体、粉体、成膜体などである。本実施形態において、正極集電体61~63は、アルミ箔で形成され、負極集電体71~73は、銅箔で形成されている。正極集電体6、負極集電体7、正極端子60および負極端子70を形成する材料は、いずれもある程度の靭性や剛性を有することが好ましい。
 上記のように、全固体電池1~5は、正極集電体11,21,31,41,51が正極端子60によって相互に接続されるとともに、負極集電体13,23,33,43,53が負極端子70によって相互に接続されることにより、並列に接続されている。
 なお、本実施形態の全固体電池101は全固体電池1~5を備えるが、全固体電池の数は5層に限定されない。また、全固体電池101は、5層の全固体電池1~5が積層される奇数層の構造である。これに対し、全固体電池101は、偶数層の全固体電池を有する構造であってもよい。
 続いて、上記のように構成される全固体電池101の製造について説明する。
 図2は、実施形態1に係る全固体電池101の積層体12,22,32,42,52の成膜方法を示す図である。積層体12,22,32,42,52の成膜方法については、必要に応じて、公知の静電力を用いた粉体成膜方法(例えば静電塗装や静電スクリーン成膜法(印刷法))を使用してもよい。以下の説明では、積層体12,22,32,42,52を静電スクリーン成膜法によって形成する方法について述べる。なお、後述する実施形態2に係る全固体電池の積層体も以下の成膜方法によって形成される。
 まず、積層体12,22,32,42,52を静電スクリーン成膜法によって作製する。
 本実施形態において採用した静電スクリーン成膜法では、図2に示す装置を用いる。この装置は、多孔性のスクリーン201と、成膜する被印刷物を載置する台座部となる基板Bとを備え、スクリーン201に直流電源DCの負極が接続され、基板Bに直流電源DCの正極が接続されている。なお、スクリーン201に直流電源DCの正極が接続され、基板Bに直流電源DCの負極が接続されていてもよい。また、スクリーン201と被印刷物との間に電位差が生じればよいことから、必ずしも一方を正極に接続し他方を負極に接続しなくてもよく、いずれか一方をグランド(アース)電位としてもよい。
 スクリーン201には、例えば、市販のスクリーン印刷用のメッシュを用いることができる。メッシュの開口形状を適宜変更することにより、粉体を任意の形状に成形することができる。本実施形態では、300/inchのメッシュ数、30μmの線径、および55μmのオープニングを有するメッシュを採用した。このメッシュは、導電性を有しておれば、材質は問わない。本実施形態で採用した上記のメッシュは、一般的なSUSメッシュである。
 なお、スクリーン201として用いるメッシュについては、粉体や環境に応じて、メッシュ数、線径、オープニング、材質などを適宜選定することが好ましい。
 このような装置において、刷込体203によって粉体202をスクリーン201に刷り込ませることで、粉体202をスクリーン201に接触させる。これにより、粉体202が帯電する。帯電した粉体202は、スクリーン201を介して落下すると、被印刷物に静電誘導されて付着する。このようにして、積層体12,22,32,42,52のそれぞれの正極層、固体電解質層、および負極層が成膜される。
 各層の形成を、図2に示す装置2を用いて、支持板上に正極層を形成する工程から行う。支持板は、基板、集電体、積層体を支持する。また、支持板自身が基板や、集電体の機能を果たしても良い。ここで、スクリーン201と基板Bとの間の距離を10mmとし、印加電圧を5kVとする。
 次に、正極層の上に、正極層と同じ正膜方法で固体電解質層を形成する。
 最後に、固体電解質層上に、正極層と同じ成膜方法で負極層を成膜する。
 なお、各層の作製は上記の成膜順序に限らず、いずれの層から成膜を開始してもよい。また、必要に応じて、正極層、固体電解質層、負極層の単体を成膜した後にそれぞれを加圧して平坦化させておいてもよい。
 そして、支持板上に3つの層が積層された積層体を加圧することで一体化した積層体を得ることができる。
 積層体の加圧処理に際して、まず、粉体層である各層の内部に残存する気体や空隙を予め無くすために、減圧環境下で各層に対して仮加圧を行うことが望ましい。仮加圧においては、各層に対して11.6kNの圧力を3秒間加える。
 次に、積層体に対して本加圧を行う。本加圧においては、積層体に対して数t/cmの圧力を数秒~数十秒程度加える。本加圧においては、積層体に負極集電体を積層した状態で加圧してもよい。
 上記の加圧によって圧縮された積層体は、それぞれ、正極層、固体電解質層および負極層が強固に一体化される。また、正極層、固体電解質層および負極層は、数十μm~百数十μm適度に薄く形成される。また、各層を合計した厚みは、100~400μm程度に薄くなる。
 ただし、本実施形態では、積層体における各層の重量、各層の厚みまたは各層間の重量の比などは特定の範囲に限定されない。また、正極層の厚みに対する負極層の厚みの比は、1.0以上であることが好ましい。
 さらに、上記の加圧処理によって得られた積層体の外周端部を切り落とすことによって、積層体12,22,32,42,52のそれぞれを得る。
 ここで、積層体の作製について、より詳細に説明する。図3の(a)~(d)は、全固体電池101の第1の製造方法における各工程を示す図である。図4の(a)~(d)は、全固体電池101の第2の製造方法における各工程を示す図である。図3および図4においては、各工程を平面図および側面図にて示している。図5は、全固体電池101の製造に用いられる精密打ち抜き装置を示す図である。図6は、全固体電池101の製造における積層体501からチョコレートブレイク法による分割で外周端部を切り落とす状態を示す図である。図7は、全固体電池101の製造における積層体501からチョコレートブレイク法による他の分割で外周端部を切り落とす状態を示す図である。
 第1の製造方法において、図3の(a)に示すように、正方形に形成した支持板301(支持板)の上に、図2に示す装置を用いて、正極層302を正方形に形成する。ここでは、正極層302を、支持板301よりも小さい面積の正方形を成すように、かつ、正極層302の外周端部が、支持板301の外周端部から所定の幅で内側に退いた位置に在るように形成する。ここで、必要に応じて、正極層302を加圧する。
 次に、図3の(b)に示すように、正極層302の上に、固体電解質層303を、正極層302と同じ形状および同じ大きさに形成する。ここでは、固体電解質層303を、固体電解質層303の外周端部が正極層302の外周端部と重なるように形成する。ここで、必要に応じて、固体電解質層303を加圧する。
 さらに、図3の(c)に示すように、固体電解質層303の上に、負極層304を、正極層302および固体電解質層303と同じ形状および同じ大きさに形成する。ここでは、負極層304を、負極層304の外周端部が固体電解質層303の外周端部と重なるように形成する。また、必要に応じて、負極層304を加圧する。
 このようにして、正極層302、固体電解質層303および負極層304が支持板301上に積層された積層体310を作製する(積層体形成工程)。さらに、積層体310を上述のように加圧(仮加圧および本加圧)することにより、支持板301、正極層302、固体電解質層303および負極層304が強固に一体化された積層体310が得られる。
 そして、図3の(d)に示すように、二点鎖線にて示す正方形を成す切り落とし外形306で、積層体310から外周端部を切り落として(切り落とし工程)、不要部分を取り除いた積層体311を得る。この積層体311から支持板301を取り外して積層体12,22,32,42,52が得られる。また、この切り落とし工程において、切り落とす部分を一点鎖線にて示す分割線L1で複数の部分に併せて分割してもよい。これにより、複数の分割積層体が得られる。このような分割積層体を積層体12,22,32,42,52として用いてもよい。
 第1の製造方法では、積層体310において、正極層302、固体電解質層303および負極層304は、各層が重なり合う界面が同じ面積になるように形成される。この状態では、各層の成膜時のアライメント精度や、成膜精度、端部と中央部の加圧ムラなどによって、積層体311の端部で粉体の崩れが発生したり、正極層を形成する正極活物質と負極層を形成する負極活物質とが短絡したりという可能性が高くなってしまう。
 そこで、積層体310の周辺部(切り落とし外形306よりも外側の部分)を切り落とす。これにより得られた積層体311において、正極層、固体電解質層および負極層は、加圧によって均一に押し固められた緻密な構造を有する部分であり、外周端部における崩れが生じにくい。したがって、積層体311の外周端部における端部崩れや短絡を防止することができる。
 第2の製造方法において、図4の(a)に示すように、正方形に形成した支持板301の上に、図2に示す装置を用いて、正極層312(第1電極層)を正方形に形成する。ここでは、正極層312を、支持板301よりも小さく、さらに上記の正極層312よりも小さい面積の正方形を成すように、かつ、正極層312の外周端部が、支持板301の外周端部から所定の幅で内側に退いた位置に在るように形成する。ここで、必要に応じて、正極層312を加圧する。
 次に、図4の(b)に示すように、正極層312の上に、固体電解質層313を、正極層312と同じ形状に、かつ正極層312よりも大きく形成する。ここでは、固体電解質層313を、固体電解質層313の外周端部が正極層302の外周端部より外側に位置することで、正極層312の全体を覆うように形成する。また、必要に応じて、固体電解質層313を加圧する。
 さらに、図4の(c)に示すように、固体電解質層313の上に、負極層314を、固体電解質層303と同じ平面形状および同じ平面大きさに形成する。ここでは、負極層314を、負極層314の外周端部が固体電解質層313の外周端部と重なるように形成する。あるいは、図示はしないが、負極層314を、負極層314の外周端部が、正極層312の外周端部と固体電解質層313の外周端部との間に位置するように形成してもよい。ここで、必要に応じて、負極層314を加圧する。
 このようにして、正極層312、固体電解質層313および負極層314が支持板301上に積層された積層体320を作製する(積層体形成工程)。さらに、積層体320を上述のように加圧することにより、支持板301、正極層312、固体電解質層313および負極層314が強固に一体化された積層体320が得られる。
 そして、図4の(d)に示すように、二点鎖線にて示す正方形を成す切り落とし外形316で、積層体320から外周端部を切り落として(切り落とし工程)、不要部分を取り除いた積層体321を得る。切り落とし外形316は、支持板301、固体電解質層313および負極層314のそれぞれの外周端部より内側に位置し、かつ正極層312の外周端部の外側(正極層312の存在しない領域)に位置している。この積層体321は、正極集電体11,21,31,41,51がそれぞれ付属した積層体12,22,32,42,52として用いられる。また、この切り落とし工程において、切り出す部分を一点鎖線にて示す分割線L2で複数の部分に併せて分割してもよい。これにより、複数の分割積層体が得られる。このような分割積層体を積層体12,22,32,42,52として用いてもよい。
 上記のようにして得られた積層体321において、各層の上面の面積は、正極層が最も小さく、かつ固体電解質層が最も大きいか、あるいは正極層が最も小さく、かつ固体電解質層と負極層とが等しい。これにより、切り落とし面において正極層が固体電解質層に覆われている。それゆえ、正極層の正極活物質と負極層の負極活物質とが接触する可能性をほぼ無くすことができる。したがって、積層体321の信頼性を向上させることができる。
 第1および第2の製造方法において、積層体310,320の外周端部を切り落とす方法については、特に限定されない。積層体310,320からの外周端部の切り落としは、以下のように打ち抜きによって行うのが最も簡単である。
 本実施形態では、図5に示すように、パンチ401、ダイ402および押さえ板403によって構成された精密打ち抜き装置400を用いて切り落としを行う。図5に示すような形状の打ち抜き金型(パンチ401、ダイ402、押さえ板403など)を用いることで、1枚の積層体310,320から、1度の打ち抜きによって積層体311,321を得ることができる。
 打ち抜きの条件は、打ち抜かれる積層体310,320の材料および厚み、積層体の加圧力などにもよる。パンチ401およびダイ402の間のクリアランスCは、0~数百μmとし、パンチ401の挿入速度Vを数~数十mm/secとすることが好ましい。クリアランスCが大きいと、バリが出やすいので、クリアランスCはできるだけ小さい方がよい。クリアランスCが小さいほどパンチ401の刃先401aおよびダイ402の刃先402aが傷みやすくなる。本実施形態では、クリアランスCを3μmとし、パンチ401の挿入速度Vを30mm/secとする。
 また、ダイ402には、逃げ面402bが設けられている。逃げ面402bを形成する逃げ角θ1は数度程度である。逃げ面402bにより、ダイ402の内周壁で積層体310,320の断面が荒れることを抑制できる。
 逃げ面402は、ダイ402の上端付近から下端にかけて形成されていてもよい。ただし、逃げ面402がこのように形成されると、ダイ402の寿命が短くなる。そこで、ダイ402の寿命を伸ばすには、逃げ面402は、図5に示すように、ダイ402の内周壁における中間部より下側に形成されることが好ましい。また、ダイ402の内周壁における中間部より上側は、パンチ401の外周壁とほぼ平行な平行面として形成される。
 なお、パンチ401の下死点において、パンチ401の下端面が上記の平行面の下端よりも下に達するように、パンチ401を駆動する。
 積層体310,320は、加圧処理によって非常に固くなっており、パンチ401による打ち抜きにも充分耐える強度を有する。
 なお、押さえ板403を設けなくても打ち抜きを行うことができる。
 また、押さえ板403によって積層体310,320が押えられた状態で、正極層302,312と、負極層304,314とがそれぞれ短絡しないように、適切な箇所を絶縁しておくことが好ましい。打ち抜き時にも、パンチ401やダイ402によって短絡が起こらないよう、パンチ401、ダイ402などに短絡防止措置を施しておくことが好ましい。短絡防止措置としては、例えば、押さえ板403の絶縁化と、パンチ401およびダイ402の表面におけるコーティングとが挙げられる。
 また、切り落としを、トムソン刃やその他の刃を用いて行ってもよいし、刃以外の手段として、レーザー、シャーリング、裁断機などを用いて行ってもよい。
 本実施形態では、図6および図7に示すように、チョコレートブレイク法による分割で積層体310,320から外周端部を切り落としてもよい。チョコレートブレイク法を適用するには、例えばカッター刃などで積層体310,320における支持板301の表面に切り落とし外形306,316上に分割溝を設け、積層体310,320に衝撃や曲げなどによる曲げモーメントを加える。これにより、積層体310,320を分割溝に沿って破断することができる。当然ながら、所望の形状に分割溝を設けることで、所望の形状に積層体311,321を切り出すことができる。
 例えば、図6に示すように、積層体501の分割溝501aの両側に曲げモーメントを加えることにより、積層体501を破断してもよい。具体的には、積層体501における支持板(例えば上述の支持板301)の一方の面に分割溝501a(溝)が形成されている。このため、支持板の他方の面(支持板と正極層もしくは負極層との間の界面の部分である層面)には分割溝501aが形成されていない。
 このような積層体501に対し、分割溝501aの両側に曲げモーメントを加え、分割溝501aに応力を集中させることにより、積層体501を破断する。力を加える手法は上記のような方法に限らず、曲げ応力、せん断応力、あるいはその両方が分割溝51aの周辺に作用する方法であれば、いかなる方法によって積層体501に力を加えても構わない。
 例えば、図7に示すように、第1押さえ板601および第2押さえ板602で固定した状態で積層体501を破断してもよい。具体的には、分割溝501aより一方側に所定距離をおいた位置で、積層体501を第1押さえ板601および第2押さえ板602で挟み込んで固定し、分割溝501aより他方側に所定距離をおいた位置で荷重を加える。これにより、積層体501を破断する。
 分割溝501aは、積層体501を形成する材料や、積層体501の厚み、積層体501の成形時に与えられる加圧力などにもよるが、1mm未満の幅と、積層体501の総厚みの1/10以下の深さとを有していることが好ましい。
 なお、分割溝501aは上記のようなカッター刃などによる切欠きでなくとも、いかなる方法で設けても構わない。例えば、分割溝501aの形状に合った凸部を有する型を積層体501に押し付けることにより分割溝501aを形成してもよいし、ロータリー刃(ローラに刃が設けられたもの)を用いて分割溝501aを形成してもよい。
 また、分割溝501aは、正極層、負極層、支持板(正極集電体または負極集電体(正極集電箔または負極集電箔)を含む)のいずれの表面に設けられていても構わない。ただし、正極集電箔または負極集電箔の表面に分割溝501aを設ける場合、正極層または負極層と集電箔とが密着していることが好ましい。
 以上のようにして周辺部が切り出されることにより、積層体12,22,32,42,52が得られる。これらの積層体12,22,32,42,52に対し、必要に応じて端部の保護(被覆)を行う。特に、上述した第1の製造方法によって、正極層、固体電解質層、負極層の各層間の界面の面積が等しくなるように積層体321を切り落とした場合には、端部での粉体崩れや短絡を防ぐために、この工程を行うことが好ましい。
 被覆材料は、製造する電池の用途に応じて選定する必要があるが、基本的には、光硬化樹脂、熱硬化樹脂、2液硬化樹脂、ゴム、シリコーン、セラミックなどの絶縁材料から選定することができる。本実施形態では、固体電解質と反応せず、なるべく低温で硬化する被覆材料として、光硬化性樹脂を選定した。積層体321の端部に塗布した光硬化性樹脂に紫外線などを照射することで積層体321の端部の保護構造を形成する。
 最終的な製品が、複数の積層体321を積層したものである場合(容量および出力が1セルでは足りない場合)は、積層体321を複数積層してから端部の保護構造を形成してもよいし、端部の保護構造を形成した積層体321を複数積層してもよい。
 以上の工程を経て得られた積層体12,22,32,42,52のそれぞれに、正極集電体11,21,31,41,51および負極集電体13,23,33,43,53を形成して全固体電池1~5を得る。そして、全固体電池1~5を、さらに積層した状態でパッケージ8内に封止することにより、全固体電池101が完成する。
 続いて、全固体電池1~5の積層および封止について説明する。
 ここでは、全固体電池101が全固体リチウムイオン二次電池である場合について説明する。全固体リチウムイオン二次電池は、複数の全固体電池を直列接続しなくとも電圧は得られる反面、各積層体を並列に接続しなければ大きな電流値が得られない。そこで、以下に説明する例では、図1に示すように、全固体電池1~5が並列に接続される構造について、説明する。
 なお、全固体電池1~5を直列接続する場合は、並列接続の場合と同様の方法でも接続できるし、正負極を同方向に揃えるように全固体電池1~5を単純に積層していくだけでも接続できる。
 全固体電池1~5(正極集電体、負極集電体、端部被覆の有無は問わない)を並列に接続するためには、例えば図1に示すように、全固体電池1~5の隣り合うもの同士を、正負極が反対の方向に向くように積層することが好ましい。より具体的には、全固体電池1が負極側に負極層を有し、正極側に正極層を有していれば、全固体電池2は、負極側に正極層を有し、正極側に負極層を有し、全固体電池3は、負極側に負極層を有し、正極側に正極層を有するというように配置される。
 また、正極集電体61~63を、全固体電池1~5のそれぞれの正極層に、適切な位置で、かつ少なくとも一部で接触するように配置する。また、負極集電体71~73を、全固体電池1~5のそれぞれの負極層に、適切な位置で、かつ少なくとも一部で接触するように配置する。具体的には、全固体電池1の負極層に接触する位置に負極集電体71を配置し、全固体電池2,3のそれぞれの負極層に接触する位置に負極集電体72を配置し、全固体電池4,5のそれぞれの負極層に接触する位置に負極集電体73を配置する。また、全固体電池5の正極層に接触する位置に正極集電体61を配置し、全固体電池4,3のそれぞれの正極層に接触する位置に正極集電体62を配置し、全固体電池2,1のそれぞれの正極層に接触する位置に正極集電体63を配置する。
 そして、正極集電体61~63をそれぞれ正極端子60と接合し、負極集電体71~73をそれぞれ負極端子70と接合する。正極集電体61~63同士および負極集電体71~73同士の接続、正極集電体61~63と正極端子60との接続、ならびに負極集電体71~73と負極端子70との接続は、超音波溶着、抵抗溶着、レーザー溶着のような溶着技術を用いることができる。しかしながら、これらの接続は、当該溶接技術に限らず、その他の手法で行ってもよい。例えば、接触抵抗を十分低減できるのであれば、導電性接着剤での接着、カシメやねじ止めなどの物理接触だけでも問題はない。
 なお、前述した積層体310,320の支持板301を正極集電体11,21,31,41,51とする場合、正極集電体11,21,31,41,51のいずれかを正極集電体61~63と兼用してもよい。例えば、正極集電体61~63がそれぞれ正極集電体51,31,11に一体に形成されているとする。この場合、正極集電体41が正極集電体62を兼ねる正極集電体31に接触するように全固体電池4を配置し、正極集電体21が正極集電体63を兼ねる正極集電体11に接触するように全固体電池2を配置する。また、正極集電体61~63がそれぞれ正極集電体51,41,21に一体に形成されているとする。この場合、正極集電体31が正極集電体62を兼ねる正極集電体41に接触するように全固体電池3を配置し、正極集電体11が正極集電体63を兼ねる正極集電体21に接触するように全固体電池1を配置する。
 いずれの場合でも、正極集電体61~63を兼ねる正極集電体を形成するには、前述の積層体310,320からの外周端部の切り落としでは、支持板301において正極端子60と接続する接続部分を切り落とさずに残しておく必要がある。あるいは、正極集電体が上記の接続部分を有していない場合は、正極集電体と正極端子60とを何らかの接続部材で電気的に接続する必要がある。
 以上のように、本実施形態に係る全固体電池101の製造方法は、正極層と、負極層と、正極層および負極層の間に介在する固体電解質層とを含む積層体を形成する積層体形成工程と、積層体の外周端部を切り落とすことにより粉体材料を含む積層体を形成する切り落とし工程と、を含む。
 これにより、積層体は、各層の成膜時のアライメント精度や、成膜精度、端部と中央部の加圧ムラなどによって崩れやすくなっている外周端部を除去できるため、崩れにくい新たな外周端部を得ることができる。それゆえ、外周端部の崩れによる電極間での短絡を防止することができる。
 また、上記の製造方法は、積層体を加圧する加圧工程をさらに含んでいてもよい。これにより、積層体の状態を全体に均一にすることができる。
 また、上記の製造方法では、積層体の外周端部の切り落としを刃または抜型によって行ってもよい。これにより、一度で外周端部を切り落とすことができる。したがって、切り落としを効率的に行うことができる。
 また、積層体は、一方の面に溝が形成され、かつ他方の面に前記積層体の層面(積層体と支持板との間の界面の部分)が接した支持板(支持板301)を有し、上記の製造方法では、チョコレートブレイク法によって積層体を分割してもよい。これにより、支持板の溝に沿って積層体を容易に分割することができる。したがって、大掛かりな装置を用いることなく、外周端部を切り出すことができる。
 また、上記の製造方法では、切り落とし工程において、外周端部の切り落としと、積層体の複数部分への分割とを同時に行ってもよい。これにより、外周端部の切り落としと同時に、分割された複数の積層体を得ることができる。したがって、複数の電池を容易に製造することができる。
 (全固体電池の比較)
 図8は、本実施形態の比較例に係る全固体電池102の構造を示す断面図である。
 ここで、上述した第1および第2の製造方法により製造した全固体電池101と、比較例に係る全固体電池102との比較について説明する。
 〈実施例1〉
 本実施例では、積層体310を用いて第1の製造方法によって作製された全固体電池101について説明する。
 本実施例では、図3の(a)~(c)に示す工程において、正極層302、固体電解質層303および負極層304を、各層間の界面の面積が同じになるように形成した。ただし、本実施例では、図3の(d)に示すように、積層体310の外周端部を切り落とすため、極論すれば、切り落とし箇所よりも外側はどのような状態であっても構わない。したがって、これら3層の大小や形状を制限する必要はない。
 また、本実施例では、例えば、支持板301としての正極集電体の上に、正極層302と、固体電解質層303と、負極層304とをこの順に、粉体層として形成した。粉体層の形成方法は、上述した通りである。なお、負極層304の上に負極集電体を載置(または一体化)してもよい。また、本加圧においては、負極層304の上に負極集電体となる金属箔を重ねて加圧することが好ましい。加圧後には、この金属箔を除去してもよい。
 その後、積層体310の外周端部を切り出すことで、端部崩れや端部短絡を生じない、所望の形状(例えば正方形)かつ所望の面積の積層体311を得ることができた。
 なお、不要な支持板301(集電体)を切り落とし工程によって除去できる。それゆえ、製造の信頼性を向上させるために、大きい支持板301を用いて、支持板301のハンドリングをしやすくすることもできる。
 このようにして得た積層体311を5枚作製し、必要に応じて端部保護を行うことで得た全固体電池1~5を、並列に接続して全固体電池101を製造した。
 得られた積層体311は、外形50mm×50mmの正方形を成しており、100%の有効面積率(充放電可能面積率)を有する。パッケージ8を含む全固体電池101の外形寸法は55mm×55mm×2.5mmであり、全固体電池101の重量は約10gであった。また、パッケージ8の内部には、パッケージ面内が絶縁処理されている以外には、端部短絡を防止するための、不要な絶縁体なども存在しない。
 〈実施例2〉
 本実施例では、積層体320を用いて第2の製造方法によって作製された全固体電池101について説明する。
 実施例1によって、積層体310の周辺部を切り出すことによって、粉体膜形成時や粉体膜加圧時に起こる端部崩れなどはなくすことができた。しかしながら、切り落とし時に、正極層302と負極層304との短絡などが起こる可能性もある。固体電解質層303が薄くなればなるほど、切り落としによる短絡の可能性が高まる。
 そこで、本実施例では、図4の(a)~(c)に示すように、正極層312(あるいは負極層304)を最も小さく形成し、その上面および側面を覆うように固体電解質層313を形成した。ここでは、正極層312を固体電解質層313で覆うために、図2に示す装置において、固体電解質層313における、正極層312の側面を覆う被覆部分を成膜するためのスクリーン201を用い、当該被覆部分を成膜する工程を追加した。ただし、この構成を得る方法は、これに限らず、他のいかなる方法であってもよい。
 上記のようにして、正極層312の上面の面積が最も小さく、かつ固体電解質層313の上面の面積が最も大きくなるように、積層体320を作製した。また、正極層312の上面の面積が最も小さく、かつ固体電解質層313および負極層314の上面の面積が最も大きくなるように、積層体320も作製した。そして、図4の(d)に示すように、正極層312の存在しない箇所(ここでは支持板301上で固体電解質層313および負極層314のみが存在する箇所)で外周端部を切り落とした。これにより、切り落としのせん断によって、正極活物質と負極活物質とが接触する可能性をほぼ無くすことができる。
 なお、実施例1と同じく、不要な支持板301(集電体)を切り落とし工程によって除去できる。それゆえ、製造の信頼性を向上させるために、大きい支持板301を用いて、支持板301のハンドリングをしやすくすることもできる。
 このようにして得た積層体321を5枚作製し、必要に応じてそれぞれの積層体321に端部保護を行うことで得た積層体12,22,32,42,52を用いて全固体電池1~5を作製した。そして、全固体電池1~5を並列に接続して全固体電池101を製造した。
 得られた積層体321は、外形50mm×50mmの正方形を成しており、周辺部の僅かな範囲に正極層のない箇所があるため、96%(49mm×49mm)の有効面積率を有する。パッケージ8を含む全固体電池101の外形寸法は、55mm×55mm×2.5mmである。また、全固体電池101の重量は約10gであった。さらに、パッケージ8の内部には、パッケージ面内が絶縁処理されている以外には、端部短絡を防止するための、不要な絶縁体なども存在しない。
 実施例2のような構造の積層体321を実現するためには、図4の(a)~(c)に示すように、成膜工程に工夫を必要とするか、あるいは工程数を増やす必要がある。このため、固体電解質層の厚さ、切り落としによる短絡の発生率などを鑑み、実際の電池製造には実施例1および2のいずれを選択するかを決定すればよい。
 〈比較例〉
 比較例として、従来の製造方法で製造した全固体電池102について説明する。
 図8に示すように、全固体電池102は、全固体電池1A~5Aと、正極集電体6と、負極集電体7と、パッケージ8とを備えている。
 全固体電池1A~5Aは、負極側から全固体電池1A、全固体電池22A、全固体電池3A、全固体電池4Aおよび全固体電池5Aの順に配置されている。
 全固体電池1Aは、正極集電体111と、積層体12と、負極集電体113とが、この順に積層されることで構成されている。
 全固体電池2Aは、正極集電体121と、積層体22と、負極集電体123とが、この順に積層されることで構成されている。
 全固体電池3Aは、正極集電体131と、積層体32と、負極集電体133とが、この順に積層されることで構成されている。
 全固体電池4Aは、正極集電体141と、積層体42と、負極集電体143とが、この順に積層されることで構成されている。
 全固体電池5Aは、正極集電体151と、積層体52と、負極集電体153とが、この順に積層されることで構成されている。
 正極集電体111,121,131,141,151と、負極集電体113,123,133,143,153とは、それぞれ積層体12,22,32,42,52よりも界面の面積が広く形成されている。また、正極集電体111,121,131,141,151および負極集電体113,123,133,143,153は、外周端部が積層体12,22,32,42,52の外周端部より外側に突出するように配置されている。
 上記のように構成される全固体電池102では、積層体の状態から外周端部を切り落として全固体電池1A~5Aを作製しない。このため、正極集電体111,121,131,141,151および負極集電体113,123,133,143,153の外形が、実施例1,2の正極集電体11,21,31,41,51および負極集電体13,23,33,43,53の外形より大きくなる。得られた全固体電池1A~5Aの外形は、51mm×51mmであり、周辺部の僅かな範囲に正極層のない箇所があるため、有効面積率(充放電可能面積率)は92%(49mm×49mm)となった。
 また、全固体電池102では、集電体の切り落としも行わないため、端部崩れ防止用の絶縁体(図示せず)や、ハンドリング代などを残したまま全固体電池1A~5Aをパッケージングしなくてはならない。そのため、パッケージ8を含む全固体電池102の外形寸法は、66mm×66mm×2.5mmとなり、全固体電池102の重量は約15gとなった。また、良品率を向上させるために集電体を大きくし、ハンドリング性を少し向上させることもできる。その反面、パッケージ容積や重量が大きくなり、さらにエネルギ密度が低下してしまう。
 〈比較結果〉
 実施例1および2で製造した全固体電池101と、比較例で製造した全固体電池102とを、恒温槽内において25℃で維持し、0.05mA/cmの電流で、充電終止電圧4.2Vまで充電し、次いで0.05mA/cmの電流で、放電終止電圧2.8Vまで放電した。このときの実施例結果を表1に示す。
 表1より、実施例1および2に係る全固体電池101は、比較例に係る全固体電池102と比べてパッケージ8の容積が小さくなり、電池重量も軽量となることが分かる。そのため、容積当たり、重量当たりのエネルギ密度も、実施例1,2の方が大きくなっている。
 また、比較例に係る全固体電池102では、端部崩れや端部での短絡、面内の加圧ムラによる粉体層の密度ムラなどが起こりやすいため、良品率が65%と低めだった。これに対し、実施例1に係る全固体電池101の良品率は85%であり、実施例2に係る全固体電池101の良品率は90%であり、それぞれ大幅に改善されていることが分かる。
Figure JPOXMLDOC01-appb-T000001
 このように、比較例に示すような従来の全固体電池102では、最終的な製品(電池)に占める充放電に寄与しない容積(絶縁体、電極層の無い端部、封止部など)が大きくなってしまう。これにより、重量当たりあるいは容積あたりの、エネルギ密度あるいは出力密度の大きな電池を製造することが難しい。
 これに対し、本実施例(本実施形態)に係る全固体電池101の製造方法は、電極層(正極層,負極層)の端部での短絡によって歩留りが下がることなく、かつ重量当たりあるいは容積あたりの、エネルギ密度あるいは出力密度の大きな電池を製造できる。
 〔実施形態2〕
 本発明の実施形態2について図9および図10に基づいて説明すると、以下の通りである。なお、本実施形態において、実施形態1における構成要素と同一の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
 図9は、実施形態2に係る全固体電池90の構造を示す断面図である。
 図9に示すように、全固体電池90は、負極集電体91(支持板)と、負極層92と、固体電解質層93と、正極層94と、正極集電体95とがこの順に積層されて成る構造を有している。
 負極集電体91は、実施形態1の全固体電池101における負極集電体71~73を形成する材料と同じ材料によって形成されている。正極集電体95は、全固体電池101の正極集電体61~63を形成する材料と同じ材料によって形成されている。
 正極層94(第1電極層)は、全固体電池101の正極層を形成する材料と同じ材料によって形成されている。負極層92(第2電極層)は、正極層94と反対の極性を有し、全固体電池101の負極層を形成する材料と同じ材料によって形成されている。固体電解質層93は、負極層92と正極層94との間に介在しており、全固体電池101の固体電解質層を形成する材料と同じ材料によって形成されている。
 正極層94、固体電解質層93および負極層92は、いずれも上面および下面を有している。正極集電体95、正極層94、固体電解質層93、負極層92、負極集電体91の順にそれぞれの上面の面積が大きくなる。また、正極層94の下面と固体電解質層93の上面との間の界面の面積が、固体電解質層93の下面と負極層92の上面との間の界面の面積よりも小さい。
 全固体電池90の側面は、全体に連続的に傾斜する単一の平坦面を形成している。全固体電池90の側面は、連続的に傾斜していればよく、湾曲形状の面(凸面または凹面)を形成していてもよい。凸面状に形成された全固体電池90の側面は、端部崩れを起こしにくい。なお、全固体電池90の側面の傾斜の形態については、図9に示すような単一の平坦面(傾斜面)が全体に形成される形態には限定されない。
 例えば、側面には、それぞれ異なる傾斜角度を有する複数の傾斜面(多段傾斜面)が連続して全体に形成されてもよい。各傾斜面の傾斜角度は、特定の角度に限定されず、様々な要因に応じて設定できる。また、隣り合う傾斜面の境界の位置は、側面のいずれの位置にあってもよい。
 また、側面は曲面形状に傾斜していてもよい。曲面形状は、特定の形状に限定されず、上記の湾曲形状などであってもよい。
 また、側面の一部に傾斜面が形成されていてもよい。この傾斜面が形成される範囲は、特定の範囲に限定されることはなく、側面の中間部分であってもよいし、側面の両方の端部側であってもよいし、両方の端部のうちのいずれか一方側であってもよい。このような側面も傾斜しているといえる。
 上記のような各種の形態で形成される側面は、後述する図10に示す刃701aのように、側面の形状に応じた内側の形状を有する刃で全固体電池190の外周端部を切り落とすことにより得られる。換言すれば、刃の形状の設計により、所望の形状の側面を得ることができる。例えば、上記の多段傾斜面を側面に形成する場合、多段傾斜面の各傾斜面に対応する複数の傾斜面を内側に有する刃を用いて切り落としを行う。
 続いて、上記のように構成される全固体電池90の製造について説明する。
 図10は、全固体電池90の製造における切り落とし工程を示す全固体電池190の断面図である。
 まず、実施形態1で図3および図4を参照して説明した積層体310,320を作製する方法と同様にして、積層体を作成し、さらに負極集電体91および正極集電体95を配置して図10に示す全固体電池190を作製する(積層体形成工程)。負極集電体91上に、負極層92と、固体電解質層93と、正極層94と、正極集電体95とを順次積層して、全固体電池190を得る。
 全固体電池190の形成においては、各層を形成段階で加圧する。あるいは、負極層92、固体電解質層93および正極層94からなる3層の積層体を形成して、この積層体を加圧してから、負極集電体91上に配置し、当該積層体上に正極集電体95を形成してもよい。
 次に、積層体を含む全固体電池190の外周端部を切り落とす(切り落とし工程)。これにより、ほぼ均一に粉体層が加圧されることで端部まで均一な全固体電池90を得ることができる。
 また、切り落とし工程後の全固体電池90の側面を、樹脂、ゴム、セラミックなどの絶縁体で保護することが好ましい。
 本実施形態では、図10に示すように、パンチ701およびダイ702を有する精密打ち抜き装置を用いて上記の切り落としを行う。図10に示すような形状の打ち抜き金型を用いることで、1枚の全固体電池190から、1度の打ち抜きによって全固体電池90を得ることができる。また、パンチ701の刃701aは、少なくとも内側が刃先に向かって薄くなる内刃を有しているが、両刃を有していてもよい。このようなパンチ701を用いて切り落としを行うことにより、刃の両側で側面が傾斜した全固体電池90を得ることができる。それゆえ、図3の(d)および図4の(d)に示す分割線L1,L2における分割を容易に実現することができる。
 なお、切り落としは、全固体電池90の切断面を図10に示すように傾斜するように全固体電池190を切断できれば、パンチ701以外の刃やレーザーなどを用いてもよい。
 上記の製造方法によって製造される全固体電池90は、各層が重なり合う界面の方向の面積について、正極層94が負極層92よりも小さく、かつ正極層94および負極層92ともに厚み方向で一定でない。
 ところで、リチウムイオン電池では、負極が対向しない余剰正極部があると、余剰正極部の近傍の負極層の端部で浮遊状の金属リチウムが析出して短絡を起こしやすくなる。析出したリチウムによって電極間の短絡が生じると、電池として機能しなくなる。このため、リチウムイオン電池では、一般に正極層よりも負極層の面積が大きくなるように構成されている。
 また、1層ずつ層を重ねると、端部の層が重ならない部分が無駄になる。負極層を大きく作製しても、負極層の上の正極層の位置がずれると、正極層から出たリチウムイオンを負極層で吸収できなくなるので、負極層を大きくした意味がない。このため、正極層の配置(アライメント)誤差を考慮して、負極層を大きく形成している。これが、無駄に負極層を大きくしており、電池サイズを大きくしている。
 これに対し、本実施形態に係る全固体電池90は、その側面が傾斜している。これにより、積層体の外周端面に各層が突出する部分が生じることがない。これにより、正極層および負極層を1層ずつ重ねる従来の全固体電池のように、正極層および負極層の突出する部分の崩れによる正極層と負極層との間の短絡を回避することができる。
 なお、本実施形態では、負極層92の上面の面積が正極層94の上面の面積よりも大きいが、正極層94の上面の面積が負極層92の上面の面積よりも大きくてもよい。
 〔実施形態3〕
 本発明の実施形態3について図2、図10~図13に基づいて説明すると、以下の通りである。なお、本実施形態において、実施形態1における構成要素と同一の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
 図11は、実施形態4に係る全固体電池800の構造を示す断面図である。
 図11に示すように、全固体電池800は、正極集電体801と、正極層802と、固体電解質層803と、負極層804と、負極集電体805とがこの順に積層されて成る構造を有している。正極層802、固体電解質層803および負極層804は、全固体電池800において積層体806を形成している。
 正極集電体801は、全固体電池101の正極集電体61~63を形成する材料と同じ材料によって形成されている。負極集電体805は、実施形態1の全固体電池101における負極集電体71~73を形成する材料と同じ材料によって形成されている。
 正極層802(第1電極層)は、全固体電池101の正極層を形成する材料と同じ材料によって形成されている。負極層804(第2電極層)は、正極層802と反対の極性を有し、全固体電池101の負極層を形成する材料と同じ材料によって形成されている。固体電解質層803は、正極層802と負極層804との間に介在しており、全固体電池101の固体電解質層を形成する材料と同じ材料によって形成されている。
 続いて、上記のように構成される全固体電池800の製造について説明する。
 図12は、全固体電池800の外周端部が切り落とされる前の構造を示す平面図である。図13は、図12のA-A線矢視断面図である。
 図12および図13に示すように、まず、正方形を成す正極集電体801の上に、積層体806を形成しうる領域に開口部807aを有する絶縁部材807を配置して、下部接着層808によって接着する。絶縁部材807は、正極集電体801よりも小さい面積の正方形を成すように形成され、かつ、絶縁部材807の外周端部が、正極集電体801の外周端部から所定の幅で内側に退いた位置に在るように配置される。また、開口部807aを形成する内周端部が、それよりも外周側の板状に形成された部分よりも厚く形成されている。
 次に、正極集電体801の表面における、絶縁部材807の開口部807aの領域に、図2に示す装置を用いて、積層体805を形成する。まず、正極集電体801上に、正極層802を形成する。ここで、必要に応じて、正極層802を加圧する。
 続いて、正極層802の上に、固体電解質層803を、正極層802の表面を覆うとともに、絶縁部材807の内周面および上面を覆うように形成する。ここで、必要に応じて、固体電解質層803を加圧する。
 さらに、固体電解質層803の上に、負極層804を形成する。また、必要に応じて、負極層804を加圧する。
 そして、負極層804の上に、上部接着層809が形成された負極集電体805を配置し、上部接着層809によって絶縁部材807の板状部分に接着させる。この接着においては、負極集電体805の内面側の空気を吸引しながら、負極集電体805を低圧で仮加圧する。その後、内部の空気を吸引しながら、高圧で本加圧を行う。
 このようにして、正極層802、固体電解質層803および負極層804が正極集電体801上に積層され、かつ、負極集電体805が形成された全固体電池810を作製する(積層体形成工程)。
 なお、図12においては、負極集電体805の下層の構造がわかるように、負極集電体805を省略している。
 ここで、全固体電池810において、絶縁部材807を含む外周端部は、充放電に寄与しないだけでなく、厚みが中央部と異なり十分に押し固められず脆い可能性がある。このため、当該外周端部を、図10に示す精密打ち抜き装置を用いて切り落とす。
 切り落としにおいては、まず、上部接着層809上の切り落とし箇所C1で、それよりも外周側の部分を切り落とした後に、積層体805の外周端部付近の切り落とし箇所C2で、それよりも外周側の部分を切り落とす(切り落とし工程)。
 このようにして、単体の全固体電池800が得られる。
 上記の外周端部の切り落としにおいては、全固体電池810において、切り落とされる外周端部より内側の部分の剛性が、外周端部の剛性より高い状態で外周端部を切り落とす。
 これにより、全固体電池810から切り出す全固体電池800よりも、外周端部を脆くして、外周端部の切り落とし時に生じる積層体805の歪みを外周端部に吸収させることができる。
 これを実現するために、外周端部が剛性の高い高剛性部材を含む場合、外周端部の切り落としに先立って、高剛性部材を切り落とす。具体的には、全固体電池800の周囲の外周端部に含まれる、剛性の高い絶縁部材807(高剛性部材)の大半を含む部分を切り落とし箇所C1で切り落とす。
 これにより、外周端部の残りの部分を切り落とし箇所C2で切り落とすときの、残りの部分の剛性を低下させることができる。
 また、外周端部の残りの部分を切り落とし箇所C2で切り落とすとき、剛性が均一である積層体805において、その残りの部分(周囲部分)の面積が、周囲部分より内側の切り出される全固体電池800(内側部分)の面積以下となるように、周囲部分の外形、すなわち積層体805の外周の形状を形成しておく。例えば、全固体電池800を50mm角に切り出す場合、周囲部分の面積が2500mm2以下となる周囲の外形、すなわち積層体805が少なくとも70.7mm角の寸法を有するように、積層体805を形成することが望ましい。
 積層体805のように同じ材料で形成され、かつ、同じ圧力で加圧されたような層では、周囲部分の面積が内側部分の面積よりも大きくなると、切り落としのときに、周囲部分が脆くなくなって、内側部分で生じた歪みが周囲部分に逃げにくい。これに対し、上記のように、外周部分の面積が内側部分の面積以下になるように積層体805の外周形状を切り落とし箇所C2の位置に対して形成する。これにより、周囲部分の切り落としのときに、周囲部分が脆くなって、内側部分で生じた歪みが周囲部分に逃げやすくなる。
 また、外周端部を切り落とす前の積層体805への加圧は、積層体805の面積が加圧により変動しない程度の圧力で行うことが好ましい。
 これにより、積層体805から切り出された全固体電池800の変形を抑制することができる。
 また、切り落とし箇所C2で周囲部分を切り落とす速度が500mm/sec以下であることが好ましく、当該速度が50mm/sec以下であることがより好ましい。
 金属材料などの硬質の材料を切り落とす場合、打抜きを含むせん断加工は、加工速度が速いほうが良いとされている。積層体805を形成する粉体材料は、全固体電池800において押し固められているとは言え、金属材料に比べると、刃を入れると割れやすい特性を有する。また、微小粉体同士の結びつきも、金属結合のように強くないため、速い加工により衝撃が加わると崩れやすくなる。
 したがって、上記のように切り落とす速度を遅くすることにより、粉体材料からなる積層体805を崩すような衝撃を加えず、緩やかに積層体805を割段するようにせん断することができる。切り落とす速度が50mm/sec以下であることにより、切り落としによる積層体805の崩れをほぼ抑制することができる。
 〔実施形態4〕
 本発明の実施形態4について図2、図10、図14~図16に基づいて説明すると、以下の通りである。なお、本実施形態において、実施形態1における構成要素と同一の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
 図14は、実施形態4に係る全固体電池900の構造を示す平面図である。
 図14に示すように、全固体電池900は、正極集電体901と、正極層902と、固体電解質層903と、負極層904と、負極集電体905とがこの順に積層されて成る構造を有している。正極層902、固体電解質層903および負極層904は、全固体電池900において積層体906を形成している。
 正極集電体901は、全固体電池101の正極集電体61~63を形成する材料と同じ材料によって形成されている。負極集電体905は、実施形態1の全固体電池101における負極集電体71~73を形成する材料と同じ材料によって形成されている。
 正極層902(第1電極層)は、全固体電池101の正極層を形成する材料と同じ材料によって形成されている。負極層904(第2電極層)は、正極層902と反対の極性を有し、全固体電池101の負極層を形成する材料と同じ材料によって形成されている。固体電解質層903は、正極層902と負極層904との間に介在しており、全固体電池101の固体電解質層を形成する材料と同じ材料によって形成されている。
 固体電解質層903は、うねり(起伏)を有する起伏膜として形成されている。具体的には、固体電解質層903は、外周部に厚く形成された厚膜部903aと、厚膜部903aの内側に形成された薄膜部903bとを有している。
 ここで、正極層902、固体電解質層903および負極層904の厚さが全て100μmであり、積層体905が300μmの均一な厚さを有する平板状に形成されているとする。積層体905がこのような形状を有し、固体電解質層903がうねりを有するには、次式を満たす必要がある。
  Wp-Wv/T=0.1~2.0〔μm〕
 上式において、Wpは厚膜部903aの固体電解質層903の平均膜厚となる基準位置に対する最大の高さを表し、Wvは上記の基準位置に対する最大の低さを表している。また、Tは固体電解質層903の平均膜厚(μm)を表している。
 なお、正極層902、固体電解質層903および負極層904のいずれか1層についてのWp-Wvは、200μmであるとき、積層体905が上記の平板状となるための、ほぼ最大値となる。
 積層体906において、うねりを有するのは、固体電解質層903以外に、正極層902であってもよいし、負極層904であってもよい。また、積層体906において、うねりを有するのは、正極層902、固体電解質層903および負極層904のうち少なくともいずれか1つであってもよい。いずれの構成においても、積層体906が均一の厚さを有する平板状に形成されている必要がある。
 続いて、上記のように構成される全固体電池900の製造について説明する。
 図15は、全固体電池100が全固体電池910から切り出される前の構造を示す平面図である。図16は、図15に示す全固体電池910に含まれる積層体を作製するために図2に示す装置に用いられるスクリーン201の構造を示す平面図である。
 図15に示すように、正方形を成す正極集電体901の上に、図2に示す装置を用いて、正極層902、固体電解質層903および負極層904を形成する。まず、正極集電体901の正極層902を形成する。ここで、必要に応じて、正極層902を加圧する。
 続いて、正極層902の上に、固体電解質層903を形成する。ここで、必要に応じて、固体電解質層803を加圧する。
 固体電解質層903の形成には、図16に示すスクリーン201を用いる。スクリーン201は、正方形を成すスクリーン枠201aを有している。スクリーン枠201aの内側には、粉体材料を落下させない未開口部201bが形成され、未開口部201bの内側には、さらに開口部201c,201dが形成されている。正方形を成す開口部201cには、正方形を成す複数の開口部201dが配列されている(図16に示す例では3行3列の構成)。
 開口部201c,201dは、粉体材料を落下させるために、前述のメッシュによって形成されている。開口部201cは、厚膜部903aを形成するために設けられており、メッシュ数が少なく、かつ大きいオープニングを有している。これに対し、開口部201dは、薄膜部903bを形成するために設けられており、メッシュ数が多く、かつ小さいオープニングを有している。開口部201cについては、オープニング104μm、メッシュ数190/inch、線径29μm、開口率61.1%が好適である。また、開口部201dについては、オープニング55μm、メッシュ数302/inch、線径29μm、開口率42.9%が好適である。なお、これらの値は、あくまでも一例である。
 上記のように、固体電解質層903を形成するために、粉体材料を落下させる量が部位に応じて異なるように構成されるスクリーン201を用いる。これにより、開口部201cにおける、外周の領域と、隣接する開口部201dの間の領域には、多くの粉体材料が落下する一方、開口部201dには少ない粉体材料が落下する。これにより、図15に示すように、固体電解質層903においては、厚膜部903aと薄膜部903bとが交互に形成される。
 さらに、固体電解質層903の上に、負極層904を形成する。また、必要に応じて、負極層904を加圧する。
 そして、負極層904の上に、負極集電体905を形成する。負極集電体905を低圧で仮加圧した後、高圧で本加圧を行う。
 このようにして、正極層902、固体電解質層903および負極層904が正極集電体901上に積層され、かつ、負極集電体905が形成された大面積の全固体電池910を作製する(積層体形成工程)。この全固体電池910は、複数の全固体電池900を含んでいる。
 そして、図15に示すように、正方形を成す切り落とし箇所Cで全固体電池910の外周端部を切り落とす(切り落とし工程)。また、この切り落とし工程において、正方形を成す切り落とし箇所Cを複数の正方形に区画する分割線(例えば図3の(d)に示すような分割線L1)で複数の部分に併せて分割してもよい。これにより、複数の単体の全固体電池900が分割積層体として得られる。
 一般の全固体電池においては、固体電解質層が薄い方が好ましいため、複数の全固体電池を切り出すときには、せん断力などによって切り出し面の変形が起こり、固体電解質層を超えて正極層と負極層とが短絡する可能性があった。また、製品としての全固体電池に衝撃や振動が加わったときには、特に積層体において、各層が崩れやすい端部においても、固体電解質層が薄いために、正極層と負極層との短絡が発生するおそれがあった。
 これに対し、上述した本実施形態に係る全固体電池900の製造方法では、固体電解質層903における、全固体電池910における切り落とし箇所Cと分割線とに、固体電解質層903の平均膜厚より厚い厚膜部903aを形成する。また、固体電解質層903の外周部に形成される厚膜部903aの内側には、固体電解質層903の平均膜厚より薄い薄膜部903bを形成する。
 これにより、全固体電池910から複数の全固体電池900の切り出しが厚膜部903aにおいて行われる。それゆえ、せん断による切り出し面の変形を抑制することができる。したがって、固体電解質層を超えて正極層と負極層とが短絡する可能性を低減することができる。しかも、固体電解質層903の大部分を薄く形成することができる。
 また、全固体電池900における固体電解質層903における外周部(厚膜部903b)の厚さが中央部(薄膜部903b)の厚さより大きくなる。これにより、積層体906が崩れやすい全固体電池900端部において、固体電解質層903が厚膜部903aを有するので、製品としての全固体電池900に衝撃や振動が加わっても、正極層902と負極層904との短絡の可能性を低減することができる。
 ところで、全固体電池900の充電時に正極から負極へリチウムイオンが移動する際、負極が正極より小さい場合、または正極合材層が対向する領域に負極合材層が無い場合では、リチウムイオンが行き場をなくすことにより電析(電解析出)が発生する。電析が発生すると、電池特性が低下するだけでなく、電析箇所を通じて正電極と負電極とが微小短絡するおそれがある。
 これに対し、全固体電池900の平面上のいずれの部位においても、負極活物質量が正極活物質量より多い。これにより、正極活物質に対向する負極活物質量を多くすることができる。したがって、電析の発生を抑制することができる。
 〔実施形態5〕
 本発明の実施形態5について図17~図19に基づいて説明すると、以下の通りである。なお、本実施形態において、実施形態1~4における構成要素と同一の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
 本実施形態では、脆弱性を有する積層体の打ち抜きに好適な精密打ち抜き装置について説明する。まず、従来の金型による精密打ち抜き装置について説明する。
 図19は、実施形態5の比較例に係る精密打ち抜き装置410を示す図である。
 図19に示すように、本比較例に係る従来の精密打ち抜き装置410は、適正なクリアランスCを確保するように配置されたパンチ411およびダイ412と、被加工材450をダイ413上で押さえる押さえ板413とを備えている。精密打ち抜き装置410は、パンチ411とダイ412との間に配置された板状の被加工材450を、パンチ411の下降によってクリアランスCの領域の近辺でせん断変形させることで切断する。
 被加工材450が通常の金属材料である場合、被加工材450を精密に打ち抜くには、クリアランスCの適正化と、押さえ板413による被加工材450の固定とが必須となる。特に、クリアランスCが適正であるか否かが、せん断作業の成否を決めるとされている。クリアランスCが小さいと、被加工材450の打ち抜き断面がえぐれる。一方、クリアランスCが大きいと、せん断力(切断)よりも曲げ力(変形)が大きくなるため、ダレやカエリが発生してしまう。押さえ板413は、被加工材450がせん断により切断される前に、被加工材450がパンチ411側に湾曲するなどの変形を抑えるために必要となる。
 また、一般に、パンチ411の下降速度(加工速度)を大きくすることで、打ち抜き精度が向上すると言われている。
 被加工材450が金属材料でなく、粉体を押し固めて作製されたような脆性材料によって形成されている場合、上記のような従来の精密打ち抜き装置410によっては、被加工材450を適正に打ち抜くことができない。
 脆性材料は大きく変形する前に割れてしまうため、クリアランスCはあまり重要でない上、押さえ板413で被加工材450の変形を抑制する必要もない。むしろ、押さえ板413によって被加工材450がなだらかに変形することが抑制されるため、被加工材450におけるクリアランスCの近傍のみに負担がかかり、クリアランスCの当該部分が崩されてしまう。また、加工速度を速くすると、パンチ411の衝撃によって被加工材450破壊されやすくなる。
 以上のように、脆性材料からなる被加工材450の打ち抜きの場合、通常の金属材料からなる被加工材450の打ち抜きとは、適正な打ち抜き条件が異なっており、このような適正な打ち抜き条件を見出すことが難しい。
 なお、打ち抜き精度の向上やせん断抵抗の低減を図るため、パンチ411のパンチ面は工具軸(パンチ411の中心軸)に対して垂直な面となるように形成する一方、被加工材450をダイ412上で傾けて配置する。このため、ダイ412において被加工材450を載置する載置面(上端面)にシャー角を設ける。これにより、線荷重を点荷重に変換することができる。ここで、パンチ411側でなくダイ412側にシャー角を設けるのは、パンチ411側を傾けると、打ち抜いた被加工材450に反り返りなどの変形が生じるためである。
 続いて、本実施形態に係る精密打ち抜き装置について説明する。
 図17は、実施形態5に係る精密打ち抜き装置400Aを示す図である。
 図17に示すように、精密打ち抜き装置400A(加工装置)は、パンチ404と、ダイ402とを備えている。
 ダイ402は、上述した実施形態1における精密打ち抜き装置400にも含まれており、パンチ404が挿入される空間を形成する内周壁に、刃先402a(刃)と、逃げ面402bを有している。
 パンチ404は、工具軸(パンチ404の中心軸)に対して傾斜した面となるようにシャー角を有している。
 なお、パンチ404がシャー角を有する代わりに、上述した精密打ち抜き装置410のダイ412の上端面がシャー角を有するのと同様、ダイ402の上端面がシャー角を有していてもよい。また、ダイ402およびパンチ404の両方がシャー角を有していてもよい。特に、パンチ404がシャー角を有することが好ましい。つまり、外形抜きおよび穴あけのいずれにも関わらず、ダイ402の上端面とパンチ404のパンチ面(パンチ404における刃を有する下端面)との間にシャー角が設けられていることが好ましい。これにより、打ち抜き推力を低減させたり、打ち抜き精度を向上させたりすることができる。
 ダイ402およびパンチ404の間のクリアランスCは、厳密に規定する必要はなく、数~数十μm程度に設定される。
 精密打ち抜き装置400Aは、付随する周辺装置406を含んでいてもよい。周辺装置406は、除去機構、清掃機構、搬送機構、被位置決め機構などを含んでいる。除去機構は、パンチ404に残る残存物を掻き落とす機構である。清掃機構は、被加工材450の打ち抜きで発生する微粉を清掃する機構である。搬送機構は、被加工材450をダイ402まで搬送するとともに、ダイ402上の打ち抜き後の被加工材450を他の工程の装置へと搬送する機構である。被位置決め機構は、ダイ402上において被加工材450を所定の加工位置に位置決めする機構である。
 上記のように構成される精密打ち抜き装置400Aによる被加工材450の打ち抜きについて説明する。
 ここでの被加工材450は、例えば、実施形態1において精密打ち抜き装置400によって打ち抜かれた積層体310,320のように、脆性材料を含むシート状の材料である。
 被加工材450は、ダイ402上に自由支持される。あるいは、被加工材450は、図示しない押さえ板によって、打ち抜き時に生じる変形を抑制しない程度の緩やかに支持されてもよい。すなわち、ダイ402は、パンチ404による打ち抜きのために被加工材450の変形を抑制しないように保持している。
 パンチ404の挿入速度Vは、100mm/sec以下であるが、好ましくは50mm/sec以下、さらに好ましくは25mm/sec以下の低速である。
 打ち抜きにおいては、まず、所望の打ち抜きサイズ(製品サイズ)よりも少し大きい範囲で被加工材450を打ち抜き、打ち抜いた被加工材450をさらに所望の打ち抜きサイズに打ち抜く。このように、複数回の打ち抜きを行うことにより、脆性材料をより精度良く打ち抜くことができる。
 ところで、実施形態3では、粉体材料のような脆性材料を含む全固体電池810から所望の形状の全固体電池800を製品として切り出す場合、切り出し部分の剛性よりも、当該部分から切り落とされる外周端部の剛性が低い状態で切り出しを行う。これにより、切り出し時に生じる歪みを外周端部に吸収させ、製品に損傷や不良を生じないようにすることができる。
 しかしながら、このように製品となる部分とその周囲とで剛性を異ならせることは、場合によっては手間のかかることである。したがって、製品部分の周囲に残る残存物の幅を小さくすることで、周囲の剛性を製品部分の剛性よりも小さくすることが現実的となる。
 ただし、脆性材料を含むシートの外周端部は、構造的に不安定となりやすい。このために、製品の切り出し形状よりわずかに(数mm程度)大きいシートを製造した場合は、切り出される製品部分の外周端部もやはり不安定となってしまう。そこで、ある程度大きな面積でシートを形成しておき、構造的に安定なシート中央部のみを切出すことで、安定した製品が得られる。
 したがって、例えば、打ち抜きによって製品の切り出しを行う場合には、上述した精密打ち抜き装置400Aによる打ち抜き工程を少なくとも2度実施する必要がある。具体的には、製品より少し大きめにシートを打ち抜き、打ち抜かれたシートを製品形状に打ち抜く。
 引き続き、本実施形態に係る精密打ち抜き装置について説明する。
 図18は、実施形態5に係る他の精密打ち抜き装置400Bを示す図である。
 図18に示すように、精密打ち抜き装置400B(加工装置)は、パンチ404と、ダイ405とを備えている。
 ダイ405は、内周壁に、複数の刃として、上段刃405aと、中段刃405bと、下段刃405cとを有している。
 上段刃405aは、最も上段に位置するダイ405の上端面に設けられている。中段刃405bは、上段刃405aの下方に設けられている。中段刃405bは、上段刃405aよりも、ダイ405の中心側に突出量D1で突出している。下段刃405cは、中段は405bの下方に設けられている。下段刃405cは、中段は405bよりも、ダイ405の中心側に突出量D2で突出している。突出量D1,D2は、サブmmから数十mmのオーダであり、より好ましくは0.3~0.5mmに設定されている。
 このような構造により、上段刃405aの開口面積が最も大きく、中段は405bの開口面積が次に大きく、下段刃405cの開口面積が最も小さい。換言すれば、ダイ405の上端面から下方に位置するほど開口面積が小さくなるように形成されている。
 上段刃405a、中段は405bおよび下段刃405cの形状は基本的には相似形である。ただし、下段刃405cが製品部分を切り出すことから、下段刃405cには、製品の外形を決定する意匠(微小な凹凸、微小なうねり、角部のアールなど)が施され、上段刃405aおよび中段は405bにはそのような意匠が施されなくてもよい。
 ダイ405の内周壁における下段刃405cの下方から下端にかけて逃げ面405dが形成されている。逃げ面405を形成する逃げ角θ2は、上述した精密打ち抜き装置400におけるダイ402の逃げ角θ1と同じく数度程度である。下段刃405cと逃げ面405の上端との間の狭い範囲は、パンチ404の外周壁とほぼ平行な平行面として形成される。
 精密打ち抜き装置400Aと同じく、パンチ404がシャー角を有する代わりに、ダイ405の上端面がシャー角を有していてもよい。また、ダイ405およびパンチ404の両方がシャー角を有していてもよい。つまり、外形抜きおよび穴あけのいずれにも関わらず、ダイ405の上端面とパンチ404のパンチ面との間にシャー角が設けられていることが好ましい。これにより、打ち抜き推力を低減させたり、打ち抜き精度を向上させたりすることができる。
 また、ダイ405およびパンチ404の間のクリアランスCは、精密打ち抜き装置400Aと同程度(数~数十μm)に設定される。
 なお、精密打ち抜き装置400Bも、精密打ち抜き装置400Aと同じく周辺装置406を含んでいてもよい。
 上記のように構成される精密打ち抜き装置400Bによる被加工材450の打ち抜きについて説明する。
 ここでの被加工材450は、例えば、精密打ち抜き装置400Aが打ち抜く被加工材450と同じく、脆性材料を含むシート状の材料である。
 被加工材450は、ダイ402上に自由支持される。あるいは、被加工材450は、図示しない押さえ板によって、打ち抜き時に生じる変形を抑制しない程度の緩やかに支持されてもよい。
 パンチ404がダイ405内に挿入されることにより、まず、被加工材450を上段刃405aで打ち抜く、これにより製品部分より二回り大きい部分が切り出される。さらに、パンチ404を下方に押し込むことにより、上段刃405aで打ち抜かれた部分から一回り大きい部分が切り出される。さらに、パンチ404を下方に押し込むことにより、中段は405bで打ち抜かれた部分から製品部分が切り出される。
 打ち抜きにおいては、まず、所望の打ち抜きサイズ(製品サイズ)よりも少し大きい範囲で被加工材450を打ち抜き、打ち抜いた被加工材450をさらに所望の打ち抜きサイズに打ち抜く。このように、複数回の打ち抜きを行うことにより、脆性材料をより精度良く打ち抜くことができる。
 このように、精密打ち抜き装置400Bによれば、粉体層のような脆性材料を含むシートを、簡単な形状であれば1台の装置で精密に打ち抜くことができる。これに対し、上述した精密打ち抜き装置400Aでは、複数回の打ち抜きを行うために、打ち抜きサイズに応じたパンチ404およびダイ402を用意する必要がある。これに対し、精密打ち抜き装置400Bでは、1種類のパンチ404およびダイ405を用意しておけばよい。したがって、加工装置の導入コストが低下するとともに、金型管理などが容易となる。
 なお、本実施形態の精密打ち抜き装置400A,400Bは、実施形態3および4における切り落とし加工にも利用することができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
90,101,800,900 全固体電池
92 負極層(第2電極層)
93 固体電解質層
94 正極層(第1電極層)
190 全固体電池(積層体)
310,320 積層体
301 支持板
302,312 正極層(第1電極層)
303,313 固体電解質層
304,314 負極層(第2電極層)
400A,400B 精密打ち抜き装置(加工装置)
402,405 ダイ
402a 刃先(刃)
402b,405d 逃げ面
404 パンチ
405a 上段刃(刃)
405b 中段刃(刃)
405a 下段刃(刃)
903 固体電解質層(起伏膜)
903a 厚膜部

Claims (15)

  1.  第1電極層と、前記第1電極層の極性と反対の極性を有する第2電極層と、前記第1電極層および前記第2電極層の間に介在する固体電解質層とを含む積層体を形成する積層体形成工程と、
     前記積層体の外周端部を切り落とす切り落とし工程と、を含み、
     前記積層体は粉体材料を含むことを特徴とする全固体電池の製造方法。
  2.  前記積層体を加圧する加圧工程をさらに含むことを特徴とする請求項1に記載の全固体電池の製造方法。
  3.  前記切り落とし工程後の前記積層体は、前記第1電極層と前記固体電解質層との界面の面積が、前記固体電解質層と前記第2電極層との界面の面積よりも小さく、かつ前記積層体の側面が傾斜していることを特徴とする請求項1または2に記載の全固体電池の製造方法。
  4.  前記切り落とし工程において、前記外周端部の切り落としを刃または抜型によって行うことを特徴とする請求項1から3のいずれか1項に記載の全固体電池の製造方法。
  5.  前記積層体は、一方の面に溝が形成され、かつ他方の面に前記積層体の層面が接した支持板を有し、
     前記切り落とし工程において、前記溝に沿って前記支持板および前記積層体を分割することを特徴とする請求項1から4のいずれか1項に記載の全固体電池の製造方法。
  6.  前記切り落とし工程において、前記外周端部の切り落としと、前記積層体の複数部分への分割とを同時に行うことを特徴とする請求項1から5のいずれか1項に記載の全固体電池の製造方法。
  7.  前記切り落とし工程において、前記積層体における切り落とされる前記外周端部より内側の部分の剛性が、前記外周端部の剛性よりも高い状態で前記外周端部を切り落とすことを特徴とする請求項1に記載の全固体電池の製造方法。
  8.  前記切り落とし工程において、前記外周端部が剛性の高い高剛性部材を含む場合、前記外周端部の切り落としに先立って、前記高剛性部材を切り落とすことを特徴とする請求項7に記載の全固体電池の製造方法。
  9.  請求項4に記載の全固体電池の製造方法における前記切り落とし工程で切り落としを行う加工装置であって、
     ダイと、
     ダイ上に配置された前記積層体を100mm/sec以下の速度で打ち抜くパンチと、を備え、
     前記ダイは、前記パンチが挿入される内周壁に逃げ面を有するとともに、前記パンチによる打ち抜きのために前記積層体の変形を抑制しないように保持していることを特徴とする加工装置。
  10.  前記ダイは、前記パンチが挿入される空間を形成する内周壁に複数の刃を有し、
     前記刃は、前記ダイの上端面から下方に位置するほど開口面積が小さくなるように形成されていることを特徴とする請求項9に記載の加工装置。
  11.  前記ダイは、前記パンチが挿入される内周壁に少なくとも1つの刃を有するとともに、前記刃の下側に逃げ面が形成されていることを特徴とする請求項9または10に記載の加工装置。
  12.  第1電極層と、前記第1電極層の極性と反対の極性を有する第2電極層と、前記第1電極層および前記第2電極層の間に介在する固体電解質層とが支持板上に積層された全固体電池であって、
     前記第1電極層と前記固体電解質層との界面の面積が、前記固体電解質層と前記第2電極層との界面の面積よりも小さく、
     前記全固体電池の側面は傾斜していることを特徴とする全固体電池。
  13.  第1電極層と、前記第1電極層の極性と反対の極性を有する第2電極層と、前記第1電極層および前記第2電極層の間に介在する固体電解質層とが支持板上に積層された全固体電池であって、
     前記第1電極層、前記第2電極層および前記固体電解質層の少なくともいずれか1層が起伏を有する起伏膜であり、かつ前記第1電極層、前記第2電極層および前記固体電解質層からなる積層体が平板状に形成されていることを特徴とする全固体電池。
  14.  前記固体電解質層の厚みが、外周部よりも、当該外周部の内側で薄いことを特徴とする請求項13に記載の全固体電池。
  15.  請求項13または14に記載の全固体電池を製造する全固体電池の製造方法であって、
     大面積の全固体電池から複数の単体の全固体電池を前記起伏膜の厚膜部において切り出すことを特徴とする全固体電池の製造方法。
PCT/JP2018/047234 2017-12-28 2018-12-21 全固体電池、その製造方法および加工装置 WO2019131503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019561643A JP7082142B2 (ja) 2017-12-28 2018-12-21 全固体電池、その製造方法および加工装置
CN201880083445.7A CN111527638B (zh) 2017-12-28 2018-12-21 全固态电池的制造方法
KR1020207021720A KR102544158B1 (ko) 2017-12-28 2018-12-21 전고체 전지, 그 제조방법 및 가공장치
US16/958,461 US20210057777A1 (en) 2017-12-28 2018-12-21 All-solid-state battery, method for manufacturing same, and processing device
EP18895450.7A EP3734741A4 (en) 2017-12-28 2018-12-21 SOLID STATE BATTERY, METHOD OF MANUFACTURING IT, AND PROCESSING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254792 2017-12-28
JP2017254792 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131503A1 true WO2019131503A1 (ja) 2019-07-04

Family

ID=67067406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047234 WO2019131503A1 (ja) 2017-12-28 2018-12-21 全固体電池、その製造方法および加工装置

Country Status (6)

Country Link
US (1) US20210057777A1 (ja)
EP (1) EP3734741A4 (ja)
JP (1) JP7082142B2 (ja)
KR (1) KR102544158B1 (ja)
CN (1) CN111527638B (ja)
WO (1) WO2019131503A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020013295A1 (ja) * 2018-07-13 2021-07-15 日立造船株式会社 全固体二次電池の製造設備
WO2022172612A1 (ja) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 電池、電池システムおよび電池の製造方法
WO2022239486A1 (ja) * 2021-05-13 2022-11-17 パナソニックIpマネジメント株式会社 電池および電池の製造方法
WO2022270042A1 (ja) * 2021-06-21 2022-12-29 パナソニックIpマネジメント株式会社 電池の製造方法
WO2023047931A1 (ja) 2021-09-27 2023-03-30 日立造船株式会社 固体電池、固体電池の製造方法および固体電池の製造装置
WO2023210139A1 (ja) 2022-04-28 2023-11-02 日立造船株式会社 固体電池の製造方法および固体電池の製造装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127984B (zh) * 2019-07-18 2024-07-16 株式会社村田制作所 固态电池
CN114203948A (zh) * 2021-11-23 2022-03-18 南昌大学 一种锂离子电池电极片/固态电解质复合膜、制备方法及其在锂离子电池中的应用
CN114447406B (zh) * 2022-01-28 2023-05-05 蜂巢能源科技(无锡)有限公司 全固态电芯及其制备方法和全固态电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053103A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 積層型電池の製造方法及び製造装置
JP2009544141A (ja) * 2006-07-18 2009-12-10 シンベット・コーポレイション フォトリソグラフィーによるソリッドステートマイクロ電池の製造、シンギュレーション及びパッシベーションの方法及び装置
JP2012520552A (ja) * 2009-03-16 2012-09-06 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ リチウムマイクロ電池及びその製造方法
JP2014120372A (ja) * 2012-12-18 2014-06-30 Toyota Motor Corp 全固体電池及びその製造方法
JP2014127260A (ja) * 2012-12-25 2014-07-07 Toyota Motor Corp 固体電解質電池の製造方法
JP2015026563A (ja) * 2013-07-29 2015-02-05 富士通株式会社 全固体二次電池とその製造方法、及び電子機器
JP2015125893A (ja) 2013-12-26 2015-07-06 トヨタ自動車株式会社 全固体電池の製造方法
JP2015162353A (ja) 2014-02-27 2015-09-07 トヨタ自動車株式会社 全固体電池の製造方法
WO2016208271A1 (ja) * 2015-06-23 2016-12-29 日立造船株式会社 全固体二次電池およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US875952A (en) * 1907-03-01 1908-01-07 Clayton Rockhill Projectile.
US3316382A (en) * 1963-09-30 1967-04-25 Glass Tite Ind Inc Assembly machine for electronic components
EP0875952B1 (fr) * 1997-04-23 2001-10-24 Hydro-Quebec Piles au lithium ultra-minces et à l'etat solide et procédé de fabrication
US20060042257A1 (en) * 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Combustor heat shield and method of cooling
CN101971407B (zh) * 2009-05-11 2013-05-22 丰田自动车株式会社 固体电池的制造方法和固体电池
EP2723371B1 (en) * 2011-06-24 2019-10-23 Merck Sharp & Dohme Corp. Hpv vaccine formulations comprising aluminum adjuvant and methods of producing same
US11773400B2 (en) * 2013-08-22 2023-10-03 E.I. Du Pont De Nemours And Company Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
JP2015050153A (ja) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 全固体電池用積層体
JP6048396B2 (ja) * 2013-12-26 2016-12-21 トヨタ自動車株式会社 全固体電池の製造方法
KR20150125893A (ko) 2014-04-29 2015-11-10 (주)열두시 사용자의 매장 혜택 사용 이력을 관리하는 방법 및 시스템
US9950508B2 (en) * 2014-07-04 2018-04-24 Hitachi Zosen Corporation Electrostatic screen printer
CN107408729B (zh) * 2015-09-17 2020-08-25 株式会社东芝 二次电池用复合电解质、二次电池及电池包
CN112189276A (zh) * 2018-05-14 2021-01-05 昭和电工材料株式会社 二次电池用电池构件的制造方法和二次电池
EP3823075A4 (en) * 2018-07-13 2022-06-29 Hitachi Zosen Corporation Installation for manufacturing all-solid secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544141A (ja) * 2006-07-18 2009-12-10 シンベット・コーポレイション フォトリソグラフィーによるソリッドステートマイクロ電池の製造、シンギュレーション及びパッシベーションの方法及び装置
JP2008053103A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 積層型電池の製造方法及び製造装置
JP2012520552A (ja) * 2009-03-16 2012-09-06 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ リチウムマイクロ電池及びその製造方法
JP2014120372A (ja) * 2012-12-18 2014-06-30 Toyota Motor Corp 全固体電池及びその製造方法
JP2014127260A (ja) * 2012-12-25 2014-07-07 Toyota Motor Corp 固体電解質電池の製造方法
JP2015026563A (ja) * 2013-07-29 2015-02-05 富士通株式会社 全固体二次電池とその製造方法、及び電子機器
JP2015125893A (ja) 2013-12-26 2015-07-06 トヨタ自動車株式会社 全固体電池の製造方法
JP2015162353A (ja) 2014-02-27 2015-09-07 トヨタ自動車株式会社 全固体電池の製造方法
WO2016208271A1 (ja) * 2015-06-23 2016-12-29 日立造船株式会社 全固体二次電池およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734741A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020013295A1 (ja) * 2018-07-13 2021-07-15 日立造船株式会社 全固体二次電池の製造設備
WO2022172612A1 (ja) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 電池、電池システムおよび電池の製造方法
WO2022239486A1 (ja) * 2021-05-13 2022-11-17 パナソニックIpマネジメント株式会社 電池および電池の製造方法
WO2022270042A1 (ja) * 2021-06-21 2022-12-29 パナソニックIpマネジメント株式会社 電池の製造方法
WO2023047931A1 (ja) 2021-09-27 2023-03-30 日立造船株式会社 固体電池、固体電池の製造方法および固体電池の製造装置
WO2023210139A1 (ja) 2022-04-28 2023-11-02 日立造船株式会社 固体電池の製造方法および固体電池の製造装置

Also Published As

Publication number Publication date
US20210057777A1 (en) 2021-02-25
JP7082142B2 (ja) 2022-06-07
CN111527638B (zh) 2024-09-20
EP3734741A1 (en) 2020-11-04
JPWO2019131503A1 (ja) 2020-12-17
EP3734741A4 (en) 2021-12-08
KR20200103778A (ko) 2020-09-02
CN111527638A (zh) 2020-08-11
KR102544158B1 (ko) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2019131503A1 (ja) 全固体電池、その製造方法および加工装置
US11233274B2 (en) Battery and battery manufacturing method
AU2017235770B2 (en) Method of fabricating an energy storage device
JP7018576B2 (ja) 電池、および、電池製造方法、および、電池製造装置
JP4893254B2 (ja) リチウム二次電池の製造方法およびリチウム二次電池
JP2023041827A (ja) 電池
KR20150002523A (ko) 세퍼레이터 절단공정을 포함하는 전극조립체의 제조방법
KR20130133639A (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2020013295A1 (ja) 全固体二次電池の製造設備
JP2018181528A (ja) 全固体電池及び全固体電池の製造方法
JP6324296B2 (ja) 全固体二次電池
WO2013031889A1 (ja) 電池用電極の製造方法
WO2022172619A1 (ja) 電池および電池の製造方法
WO2017187494A1 (ja) 全固体二次電池
CN111313079A (zh) 全固体电池
JP6895761B2 (ja) 全固体電池の製造方法
WO2021131094A1 (ja) 電池
JP2010205693A (ja) 集電層付き電極の製造方法、集電層付き電極および電池
WO2022259664A1 (ja) 電池および電池の製造方法
WO2021210446A1 (ja) 電池
CN115380417A (zh) 电池
JP7565525B2 (ja) 電池の製造方法
WO2022270042A1 (ja) 電池の製造方法
WO2022145120A1 (ja) 電池、積層電池及びその製造方法
WO2022172618A1 (ja) 電池および電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021720

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018895450

Country of ref document: EP

Effective date: 20200728