WO2017187494A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2017187494A1
WO2017187494A1 PCT/JP2016/062974 JP2016062974W WO2017187494A1 WO 2017187494 A1 WO2017187494 A1 WO 2017187494A1 JP 2016062974 W JP2016062974 W JP 2016062974W WO 2017187494 A1 WO2017187494 A1 WO 2017187494A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid
electrode
current collector
electrode layer
Prior art date
Application number
PCT/JP2016/062974
Other languages
English (en)
French (fr)
Inventor
士軒 梁
英之 福井
高野 靖
健児 岡本
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to US16/096,032 priority Critical patent/US20190140249A1/en
Priority to PCT/JP2016/062974 priority patent/WO2017187494A1/ja
Priority to EP16900367.0A priority patent/EP3451435A4/en
Priority to CN201680084819.8A priority patent/CN109075396A/zh
Priority to KR1020187031296A priority patent/KR20190002492A/ko
Publication of WO2017187494A1 publication Critical patent/WO2017187494A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state secondary battery.
  • a solid electrolyte is disposed between a positive electrode material and a negative electrode material, and a current collector is disposed on the outer surface of each of the electrode materials.
  • each constituent layer of the battery is formed by spraying a powder material on a base material together with a carrier gas while charging, and attaching and forming a film by electrostatic force.
  • a carrier gas for example, a gas
  • the powder layer is formed with a uniform thickness, the pressurizing force is uniformly applied to the whole during pressure molding, and an all-solid-state secondary battery having excellent performance can be obtained.
  • the powder layer extends in the lateral direction due to the force applied during pressure molding. That is, when a force is applied to the powder layer in the vertical direction, a maximum stress is generated in the vertical direction and a stress is also generated in the lateral direction (the spreading direction).
  • the frictional force is applied during pressing, so there is no extension in the lateral direction, but when the pressing is finished and the powder layer is removed from the press pin, the residual stress is released and the powder layer is moved in the horizontal direction. Start to stretch. Since the powder layer and the current collector are in close contact with each other by pressurization, when the powder layer extends laterally, the current collector is also extended accordingly.
  • an object of the present invention is to provide an all-solid-state secondary battery excellent in performance by suppressing internal short-circuit that occurs after pressure molding.
  • An all solid state secondary battery includes a first electrode body of a positive electrode or a negative electrode having a first composite current collecting member and a first electrode layer, A negative electrode or a positive electrode second electrode body having a second composite current collecting member and a second electrode layer;
  • the first composite current collecting member includes a plate-shaped first current collector and a plate-shaped first insulating member bonded to a peripheral portion of the surface of the first current collector via a first adhesive layer.
  • the first electrode layer is laminated on the surface of the first current collector and inward of the first insulating member
  • the second composite current collecting member includes a plate-like second current collector and a plate-like second insulating member bonded to a peripheral portion of the surface of the second current collector via a second adhesive layer.
  • the second electrode layer is laminated on the surface of the second current collector and inward of the second insulating member, A solid electrolyte layer disposed between the first electrode layer and the second electrode layer; A side end surface of the solid electrolyte layer is positioned outward from at least one side end surface of the first electrode layer and the second electrode layer,
  • Each of the current collectors is provided with a strain-absorbing region that can be deformed by disposing the adhesive layers separately from the inner end portions of the insulating members.
  • At least one inner side end portion of the first insulating member and the second insulating member is disposed in contact with the side end surface of the solid electrolyte layer.
  • the distance from the side end surface of the solid electrolyte layer to the side end surface of the first electrode layer or the second electrode layer is 6 mm or less.
  • the separation distance between the adhesive layer and the inner end of the insulating member in each composite current collecting member is preferably 1 to 15 mm.
  • the surface of the first current collector and the second current collector is subjected to roughening treatment.
  • the present invention also includes a laminated all solid state secondary battery in which a plurality of the above all solid state secondary batteries are laminated.
  • the wrinkles of the current collector at the periphery of the powder layer generated by the pressing force applied to the all-solid-state secondary battery are diffused in the strain absorption region. It is possible to suppress the occurrence of deformation such as wrinkles in the body layer portion, and thus it is possible to prevent the occurrence of an internal short circuit due to the destruction of the layer structure at the periphery of the powder layer.
  • the all-solid-state secondary battery according to the present embodiment generally has a plate-shaped first current collector and a plate-shaped first insulation bonded to the periphery of the surface of the first current collector via a first adhesive layer.
  • a first composite current collecting member having a member, and a first positive electrode or a negative electrode having a first electrode layer laminated on a surface of the first composite current collector member and the first current collector and inward of the first insulating member.
  • 2nd current collection member which has 1 electrode body, plate-like 2nd current collector, and plate-like 2nd insulating member adhered to the peripheral part of the surface of the 2nd current collector via the 2nd adhesion layer
  • a negative electrode or positive electrode second electrode body having a second electrode layer laminated on the surface of the second composite current collector member and the second current collector and inward of the second insulating member;
  • a solid electrolyte layer disposed between the two electrode layers, the side end surface of the solid electrolyte layer being at least one of the first electrode layer and the second electrode layer
  • Each of the current collectors between the adhesive layer and the insulating member is insulated from each other by being positioned outward from the end face and each adhesive layer being disposed away from the inner end of each insulating member.
  • Each is provided with a strain absorbing region that is not fixed to the member and can be deformed.
  • the all solid state secondary battery 1 is a lithium ion secondary battery having a circular shape in plan view.
  • the drawing shows a case where the first electrode body 10 is placed on a horizontal plane with the first electrode body 10 facing down.
  • the first electrode body 10 will be described as a positive electrode
  • the second electrode body 30 will be described as a negative electrode.
  • the all-solid-state secondary battery 1 of the present embodiment includes a first electrode body 10 that functions as a positive electrode, a solid electrolyte layer 20 that is stacked on the first electrode body 10, and a solid electrolyte layer 20. It is comprised by the 2nd electrode body 30 which functions as a negative electrode laminated
  • the first electrode body 10 includes a first composite current collecting member 13 including a thin plate-like first current collector 11 and a thin plate-like first insulating member 12 bonded to a peripheral portion of the surface of the first current collector 11.
  • the first composite current collecting member 13 and the first electrode layer 14 are laminated on the surface of the first current collector 11 and inward of the first insulating member 12. That is, a first opening 15 that exposes the first current collector 11 is formed at the center of the first composite current collecting member 13.
  • the second electrode body 30 has the same structure as the first electrode body 10, and the second composite current collecting member 33 is formed by adhering the second insulating member 32 to the peripheral portion of the surface of the second current collector 31. And a second electrode layer 34 laminated on the surface of the second composite current collecting member 33 and inward of the second current collector 31.
  • a first insulating member 12 is disposed on the periphery of the surface of the first current collector (also referred to as a positive electrode current collector) 11 with a predetermined width through the first adhesive layer 2, and the first composite current collector.
  • a member (also referred to as a positive electrode composite current collecting member) 13 is configured.
  • a first electrode layer 10 is configured by arranging a first electrode layer (also referred to as a positive electrode layer) 14 in a first opening 15 formed in the central portion of the first composite current collecting member 13.
  • the solid electrolyte layer 20 is disposed on the first electrode body 10.
  • the solid electrolyte layer 20 is formed by applying (disposing) a solid electrolyte powder in contact with the upper surface of the first electrode layer 14 in the first electrode body 10.
  • the second electrode body 30 is disposed on the solid electrolyte layer 20 in contact therewith. That is, the second electrode layer (also referred to as a negative electrode layer) 34 constituting the second electrode body 30 is disposed in contact with the upper surface of the solid electrolyte layer 20. Then, a second current collector (also referred to as a negative electrode current collector) 31 exposed from the second opening 35 formed in the central portion of the second insulating member 32 is in contact with the upper surface of the second electrode layer 34. Be placed.
  • the first electrode layer 14, the solid electrolyte layer 20, and the second electrode layer 34 may be collectively referred to as a powder layer P as necessary.
  • the powder layer P has the largest outer diameter of the solid electrolyte layer 20 and the smallest outer diameter of the first electrode layer 14 in plan view. That is, as shown in FIG. 1, the side end surfaces of the first electrode layer 14 and the second electrode layer 34 are located inward from the side end surfaces of the solid electrolyte layer 20. Accordingly, the probability of direct contact is greatly reduced even if the arrangement of the first electrode layer 14 and the second electrode layer 34 is slightly shifted due to positioning errors during actual production, so that the occurrence of a short circuit is almost prevented. Can do. It is not necessary to increase this distance more than necessary.
  • the central portion where three layers exist is thickest, but the peripheral portion is thin. Therefore, when the high-pressure press is performed by sandwiching the powder layer P with a press pin made of high-hardness metal, the pressing force is supported by the thickest portion, and the peripheral portion is not applied with much force. In other words, the powders are not sufficiently fixed at the peripheral portion where the pressing force is low, and the layer structure is easily broken due to impact or deformation of the current collector. For this reason, it is preferable that the distance from the side end surface of the solid electrolyte layer 20 to the side end surface of the first electrode layer 14 or the second electrode layer 34 is 6 mm or less.
  • a first adhesive layer 2 for bonding the first insulating member 12 to the first current collector 11 and a second adhesive layer 3 for bonding the second insulating member 32 to the second current collector 31 are provided.
  • a third adhesive layer 4 for bonding the first insulating member 12 and the second insulating member 32 is provided. Since the first adhesive layer 2, the second adhesive layer 3 and the third adhesive layer 4 are all arranged around the powder layer P, the central portion has the third opening 5 to the fifth opening 7, respectively. is doing.
  • the size of each electrode layer 14, 34, the size of the current collectors 11, 31, the current collector 11, is determined as follows. However, since the all-solid-state secondary battery 1 shown in the present embodiment has a circular shape in plan view, the size will be specifically described using a diameter and a radius. Each member will be described as being stacked with the centers aligned.
  • the inner end of the first insulating member 12 (the inner surface of the first opening 15) is in contact with the first electrode layer 14 or the side end of the solid electrolyte layer 20. Yes. Further, the inner side end portion (the inner surface of the second opening 35) of the second insulating member 32 is in contact with the side end portion of the powder layer P (particularly the solid electrolyte layer 20) or a predetermined distance. Have been separated. In the present embodiment, a case is shown in which the difference between the radius of the second opening 35 of the second insulating member 32 and the radius of the outer periphery of the powder layer P (particularly the solid electrolyte layer 20) is 0 mm, that is, in contact. Yes.
  • the difference between the radius of the second opening 35 and the radius of the outer periphery of the solid electrolyte layer 20 should be set to a positioning tolerance (for example, 0 mm to 2 mm).
  • a positioning tolerance for example, 0 mm to 2 mm.
  • the solid electrolyte layer 20 is not sandwiched between the third adhesive layer 4 and the second composite current collecting member 33, and no adhesion failure occurs.
  • the first adhesive layer 2 is from the inner end of the first insulating member 12 (the inner surface of the first opening 15), and the second adhesive layer 3 is from the second insulating member 32.
  • the strain absorbing region 16 can be deformed by being not fixed to each insulating member therebetween. , 36 respectively. That is, the predetermined distance is a distance from the inner side end portion of the first insulating member 12 to the inner side end portion of the first adhesive layer 2 in the strain absorption region 16, and in the strain absorption region 36, the second distance. This is the distance from the inner end of the insulating member 32 to the inner end of the second adhesive layer 3.
  • the predetermined distance in FIG. 2, the difference d 1 between the radius r 2 of the inner circumferential inner circumference of radius r 1 and the first adhesive layer 2 of the first insulating member 12, FIG. in 3, a difference d 2 between the radius r 4 inner periphery of the inner circumference of the radius r 3 of the second adhesive layer 3 of the second insulating member 32.
  • the range of the predetermined distance is preferably 1 mm to 15 mm.
  • the preferable range of the predetermined distance between the strain absorption regions 16 and 36 does not change depending on the dimensions of the all-solid-state secondary battery 1.
  • the dimensions of the all solid state secondary battery 1 are such that the outer diameter is about 30 mm to 300 mm and the thickness is about 50 ⁇ m to 500 ⁇ m.
  • the material of each member which comprises the all-solid-state secondary battery 1 is demonstrated.
  • the first current collector 11 and the second current collector 31 copper (Cu), magnesium (Mg), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc
  • a thin plate or foil made of (Zn), aluminum (Al), germanium (Ge), indium (In), lithium (Li), tin (Sn), or an alloy thereof is used.
  • the thin plate member and the foil member have a thickness in the range of 5 ⁇ m to 100 ⁇ m.
  • aluminum foil is used as the first current collector (positive electrode) 11
  • copper foil is used as the second current collector (negative electrode) 31.
  • the first current collector 11 and the second current collector 31 are preferably those whose surfaces have been subjected to a roughening treatment.
  • the roughening process is a process for increasing the surface roughness by etching or the like.
  • the first current collector 11 has an etched aluminum foil (also called etched aluminum foil), and the second current collector 31 has an etched copper foil (roughened). (Also referred to as copper foil).
  • the insulating members 12 and 32 plate-like members made of a polymer material such as a PET film are used.
  • the hole formed by the etching is crushed by the pressurization when the all-solid-state secondary battery 1 is manufactured, and the electrode layers 14 and 34 are used as materials. It becomes easy to bite and the current collector and the electrode layer are easily integrated.
  • the electrode layers 14 and 34 are made of a mixed material obtained by mixing an electrode active material that secures an electron conduction path between particles and a solid electrolyte having ion conductivity at a predetermined ratio in order to perform an oxidation-reduction reaction for sending and receiving electrons. Is a layer.
  • a solid electrolyte having lithium ion conductivity with the electrode active material, ion conductivity can be imparted in addition to electron conductivity, and an ion conduction path can be secured between the particles.
  • the electrode (positive electrode) active material suitable for the first electrode layer (positive electrode layer) 14 is not particularly limited as long as it can insert and release lithium ions.
  • the positive electrode active material lithium-nickel composite oxide (LiNi x M 1-x O 2 , where M is Co, Al, Mn, V, Cr, Mg, Ca, Ti, Zr, Nb, Mo, and W Layered oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate (LiFePO 4 ) having an olivine structure.
  • Solid solutions such as lithium manganate having a spinel structure (LiMn 2 O 4 , Li 2 MnO 3 , LiMO 2 ) and mixtures thereof, and sulfides such as sulfur (S) and lithium sulfide (Li 2 S) It can also be used.
  • the positive electrode active material specifically, lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , hereinafter referred to as NCA-based composite oxide) May be used).
  • an electrode (negative electrode) active material suitable for the second electrode layer (negative electrode layer) 34 for example, a carbon material such as natural graphite, artificial graphite, graphitic carbon fiber, resin-fired carbon, or a solid electrolyte is mixed.
  • An alloy material is used. Examples of alloy materials include lithium alloys (LiAl, LiZn, Li 3 Bi, Li 3 Cd, Li 3 Sb, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, Li 0.17 C, LiC. 6 ), and metal oxides such as lithium titanate (Li 4 Ti 5 O 12 ) and Zn.
  • the negative electrode active material is natural or artificial graphite.
  • zirconia zirconia
  • alumina Al 2 O 3
  • lithium titanate Li 4 Ti 5 O 12
  • lithium niobate Li 4 NbO 3
  • carbon What coated each (C) etc. can be used as each electrode active material.
  • Solid electrolytes are broadly classified into organic polymer electrolytes (also referred to as organic solid electrolytes), inorganic inorganic solid electrolytes, and the like, and any of them may be used as the solid electrolyte.
  • organic solid electrolytes are roughly classified into oxide-based materials and sulfide-based materials, and any of them may be used.
  • the inorganic solid electrolyte can be appropriately selected from crystalline or amorphous ones. That is, the solid electrolyte can be appropriately selected from materials composed of organic compounds, inorganic compounds, or mixtures thereof.
  • examples of materials that can be used as the solid electrolyte include lithium-containing metal oxides such as Li 2 —SiO 2 and Li 2 —SiO 2 —P 2 O 5 (one or more metals), Li x P y O 1-z N 2 containing lithium metal nitrides such as, Li 2 S-P 2 S 5 based, Li 2 S-SiS 2 system, Li 2 S-B 2 S 3 system, Li 2 S-GeS 2 system, Li 2 S-SiS 2 -LiI system, Li 2 S-SiS 2 -Li 3 PO 4 based, Li 2 S-Ge 2 S 2 system, Li 2 S-GeS 2 -P 2 S 5 based, Li 2 S-GeS 2 -ZnS-based lithium-containing sulfide-based glass such as, and PEO (polyethylene oxide), PVDF (polyvinylidene fluoride), lithium phosphate (Li 3 PO 4), lithium such as lithium titanium oxide Arm containing transition metal
  • the solid electrolyte suitable for the solid electrolyte layer 20 may be the same as or different from the solid electrolyte used in the first electrode layer 14 and the second electrode layer 34.
  • known bonding methods such as heat fusion and pressure-sensitive bonding are used.
  • the material used for bonding may be liquid, solid, or the like, but in the present embodiment, each of the adhesive layers 2, 3, and 4 is made of a pressure-sensitive adhesive for ease of handling.
  • the current collectors 11 and 31 of the all-solid-state secondary battery 1 are extended by being pressurized, and wrinkles appear on the current collectors 11 and 31.
  • the all-solid-state secondary battery 1 includes the above-described configuration, in particular, the strain-absorbing areas 16 and 36, the all-solid-state secondary battery 1 is positively applied when a pressing force is applied to the all-solid-state secondary battery 1. In particular, by gently causing deformation such as swell and wrinkle, biting into the powder layer P is suppressed.
  • the strain absorption regions 16 and 36 are not bonded (fixed) to the current collectors 11 and 31, when the current collector is extended by pressurization, the strain absorption regions 16 and 36 are insulating members. You can slide on 12,32. For this reason, deformation such as swell and wrinkle due to elongation can be gently caused (dispersed), so that local deep wrinkles can be suppressed. Therefore, the powder layer P is pressurized without collapsing, and the internal short circuit of the battery can be suppressed. As a result, deformation such as distortion and warpage of the entire battery during and after pressure molding is also suppressed.
  • the all solid state secondary battery 1 having the above configuration is connected as a single cell in parallel or in series.
  • a so-called stacked type all-solid secondary battery 100 in which a plurality of layers are stacked can also be produced.
  • FIG. 4 shows a case where they are stacked in series, and a laminate pack with a laminate 102 with an electronic take-out tab lead 101 is shown. At this time, if the curved battery is forced to be flattened and laminated, the powder layer P will crack and cause an internal short circuit.
  • the secondary battery 100 can be easily manufactured, and even when the all-solid-state secondary battery 1 of the present embodiment is used as the stacked-type all-solid-state secondary battery 100, the occurrence of an internal short circuit can be suppressed.
  • the assembly method is also the same.
  • the second insulating member 12 having the first opening 15 at the center and the second opening 35 having the second opening 35.
  • the insulating member 32 is bonded via the first adhesive layer 2 and the second adhesive layer 3. At this time, the first current collector 11 and the second current collector 31 are exposed at the positions of the first opening 15 and the second opening 35.
  • an electrode mixture powder which is a material of the first electrode layer 14 is laminated on the surface of the first current collector 11 in the opening 15 of the first composite current collecting member 13, and the first electrode layer 14 is formed.
  • solid electrolyte powder is laminated on the first electrode layer 14 to form the solid electrolyte layer 20.
  • a second electrode layer 34 is formed by laminating powder of an electrode mixture, which is a material of the second electrode layer 34, on the surface of the solid electrolyte layer 20.
  • this laminate is referred to as a main laminate X. Note that a known method such as coating is used as a method of laminating the powder.
  • the third adhesive layer 4 is provided on the surface of the second insulating member 32 of the second composite current collecting member 33 (the surface on the side where the second current collector 31 is not adhered).
  • this laminate is referred to as a sub laminate Y.
  • a battery is obtained by pressing the main laminate X and the sub laminate Y in an overlapped state and bonding them to each other via the third adhesive layer 4.
  • This pressing is performed in two stages. Is called. That is, first, the sub laminate Y is mounted on the upper surface of the main laminate X via the third adhesive layer 4, and a temporary pressing is performed by applying a small pressing force from above with a press pin. In this temporary press, an elastic member is provided on the press pin side, and the air present in each laminate is gradually pushed out and brought into close contact with each other.
  • the second current collector 31 is deformed along the surface shape of the second electrode layer 34 via an elastic member, and the third adhesive layer 4 provided on the second composite current collector 33 has the first composite current collector.
  • the second current collector 31 is wrapped around the main laminate X by being crimped to the electric member 13. In other words, the composite current collecting members 13 and 33 are in a state where the powder layer P is sealed.
  • the powder layer P When the pressing is completed and the pressing force is removed, the powder layer P swells upward and tries to extend in the lateral direction. However, in the lateral direction, since the powder layer P is pushed into the surfaces of the current collectors 11 and 31, the current collectors 11 and 31 are pulled in the lateral direction (outside) by a force to extend. Although deformation such as wrinkles occurs around the electrode layers 14 and 34, the deformation is absorbed by the strain absorption regions 16 and 36 provided around the electrode layers 14 and 34. Therefore, the powder layer P is prevented from collapsing at the peripheral portions of the electrode layers 14 and 34, and the occurrence of an internal short circuit in the battery is suppressed.
  • Example 1, Comparative Example 1, and Example 2 according to the present invention will be described. However, Example 1, Comparative Example 1 and Example 2 were all performed in a nitrogen atmosphere having a dew point of ⁇ 70 ° C. or less.
  • Example 1 First, a first current collector 11 having a circular shape in plan view having a diameter of 66 mm, a first insulating member 12 having a square shape in plan view having a side of 70 mm, and a first annular member having a circular shape in plan view having an outer diameter of 64 mm and an inner diameter of 60 mm.
  • the first composite current collecting member 13 is assembled using the adhesive layer 2.
  • the first insulating member 12 is provided with a first opening 15 having a circular shape in plan view with a diameter of 52 mm.
  • the second current collector 31 having a circular shape in plan view having a diameter of 70 mm
  • the second insulating member 32 having a square shape in plan view having a side of 80 mm
  • a second annular member having a circular shape in plan view having an outer diameter of 60 mm and an inner diameter of 54 mm.
  • the second composite current collector 33 is assembled using the adhesive layer 3.
  • the second insulating member 32 is provided with a second opening 35 having a circular shape in a plan view having a diameter of 54 mm.
  • a roughened aluminum foil having a thickness of 20 ⁇ m is used for the first current collector 11, and a roughened copper foil having a thickness of 18 ⁇ m is used for the second current collector 31. It was. Further, a PET film having a thickness of 50 ⁇ m was used for the insulating members 12 and 32, and a pressure-sensitive adhesive film (double-sided adhesive tape) having a thickness of 30 ⁇ m was used for the adhesive layers 2, 3 and 4.
  • a first electrode mixture is applied (laminated) onto the first current collector 11 exposed from the first opening 15 of the first composite current collecting member 13, and a first electrode having a diameter of 50 mm in a circular shape in plan view is applied.
  • One electrode layer 14 was formed.
  • a solid electrolyte was applied (laminated) on the first electrode layer 14 to form a solid electrolyte layer 20 having a circular shape in plan view with a diameter of 54 mm.
  • the 2nd electrode compound material was apply
  • the first electrode mixture an NCA-based composite oxide as a positive electrode active material and Li 2 S (80 mol%)-P 2 S 5 (20 mol%) glass ceramic as a solid electrolyte in a ratio of 7: 3. What was mixed with was used.
  • the second electrode mixture is a mixture of graphite powder as the negative electrode active material and Li 2 S (80 mol%)-P 2 S 5 (20 mol%) glass ceramic as the solid electrolyte in a ratio of 6: 4. Was used. Li 2 S (80 mol%)-P 2 S 5 (20 mol%) glass ceramic was used for the solid electrolyte of the solid electrolyte layer 20.
  • the powder of the 1st electrode compound material, the solid electrolyte, and the 2nd electrode compound material was each apply
  • the coating amount of the first electrode layer 14 is 23 mg / cm 2
  • the coating amount of the second electrode layer 34 is 30 mg / cm 2
  • the coating amount of the solid electrolyte is 14 mg / cm 2 .
  • This coating amount may be appropriately changed depending on the desired thickness of the layer after pressure molding.
  • the thickness of the first electrode layer 14 is about 70 ⁇ m
  • the thickness of the second electrode composite layer 34 is about 130 ⁇ m
  • the thickness of the solid electrolyte layer is about 90 ⁇ m.
  • the third adhesive layer 4 is provided.
  • the third adhesive layer 4 has an annular shape in plan view with an outer diameter of 68 mm and an inner diameter of 64 mm.
  • the second composite current collecting member 33 is laminated so that the third adhesive layer 4 is in contact with the second electrode layer 34, and the second composite current collecting member 33 side is interposed between the pressing member 51 and the elastic member 52.
  • the all-solid-state secondary battery 1 was produced by pressing. That is, in the first embodiment, the first current collector 11 is provided with strain absorption regions 16 and 36 of 8 mm, and the second current collector 31 is 10 mm. At this time, pressure is 10t / cm 2, pressing time was 30 seconds.
  • the pressed all-solid secondary battery 1 is sandwiched between a pair of stainless steel plates with a side of 70 mm and a thickness of 0.3 mm, sandwiched between laminate films equipped with tab leads for electrical extraction, and the surroundings are heat-sealed under vacuum To make a laminate pack.
  • the same all-solid-state secondary battery 1 was produced.
  • the voltage between the tab tabs for taking out electricity was measured with a tester to determine the presence or absence of a short circuit from the initial electromotive voltage.
  • the electromotive voltage of a normal battery is usually 0.4 to 0.6 V
  • a battery having an initial electromotive voltage of less than 0.2 V was determined to be a short circuit.
  • two of them showed an initial electromotive voltage of less than 0.2 V, and it was recognized that an internal short circuit occurred.
  • the internal short circuit occurrence rate is 10%, it can be seen that the internal short circuit is considerably suppressed.
  • Comparative Example 1 As Comparative Example 1, as shown below, an all-solid secondary battery in which only the size of each member was changed with respect to Example 1 was produced. That is, it is the same as that of Example 1 except the following things, such as the evaluation method of the material of each member, thickness, the presence or absence of a short circuit.
  • a first current collector 11 having a circular shape in a plan view having a diameter of 64 mm
  • a first insulating member 12 having a square shape in a plan view having a side of 70 mm
  • a first annular member having a circular shape in a plan view having an outer diameter of 62 mm and an inner diameter of 58 mm.
  • the first composite current collecting member 13 is assembled using the adhesive layer 2.
  • the first insulating member 12 is provided with a first opening 15 having a circular shape in a plan view having a diameter of 58 mm, which is equal to the inner diameter of the first adhesive layer 2.
  • a second current collector 31 having a circular shape in plan view with a diameter of 70 mm
  • a second insulating member 32 having a quadrangular shape in plan view with a side of 80 mm
  • a second annular member in a plan view with an outer diameter of 66 mm and an inner diameter of 62 mm.
  • the second composite current collecting member 33 is assembled using the adhesive layer 3.
  • the second insulating member 32 is provided with a second opening 35 having a circular shape in plan view and a diameter of 62 mm, which is equal to the inner diameter of the second adhesive layer 3.
  • a first electrode mixture is applied (laminated) onto the first current collector 11 exposed from the first opening 15 of the first composite current collecting member 13, and the first electrode layer 14 having a diameter of 50 mm is formed. Formed.
  • a solid electrolyte was applied (laminated) on the first electrode layer 14 to form a solid electrolyte layer 20 having a diameter of 58 mm.
  • the 2nd electrode compound material was apply
  • the third adhesive layer 4 is provided.
  • the third adhesive layer 4 has an annular shape in plan view with an outer diameter of 66 mm and an inner diameter of 62 mm.
  • the second composite current collecting member 33 is laminated so that the third adhesive layer 4 is in contact with the second electrode layer 34, and the second composite current collecting member 33 side is interposed between the pressing member 51 and the elastic member 52.
  • the all-solid-state secondary battery 1 was produced by pressing. That is, in the all-solid-state secondary battery 1 of this comparative example, the diameter of the first opening 15 and the inner diameter of the first adhesive layer 2 are the same as the diameter of the second opening 35 and the inner diameter of the second adhesive layer 3. Since the current collectors 11 and 31 are equal to each other, the current collectors 11 and 31 do not include the strain absorption regions 16 and 36 at all. When 13 identical all-solid-state secondary batteries 1 were produced, an internal short circuit occurred in 10 of them. That is, it was found that the short circuit occurrence rate was 77%, and the occurrence of internal short circuits was not suppressed.
  • Example 2 Seven all-solid-state secondary batteries 1 identical to those in Example 1 were produced as a single cell, and the seven all-solid-state secondary batteries 1 were laminated in series, and then hermetically sealed with a laminate film. One secondary battery 100 was produced. The charge / discharge curve of the all-solid-state secondary battery 1 at that time is shown in FIG. It can be seen from FIG. 6 that this stacked all-solid secondary battery 100 operated normally.
  • the solid electrolyte layer 20 is larger than the first electrode layer 14 and the second electrode layer 34 has been described.
  • the solid electrolyte layer 20 includes the first electrode layer 14 and the first electrode layer 14. It is sufficient that it is larger than at least one of the two electrode layers 34.
  • the all-solid-state secondary battery 1 has a circular shape in plan view, but is not limited thereto.
  • the opening may be polygonal.
  • the planar view shape of the all-solid-state secondary battery 1 may be different from the planar view shape of the openings 15 and 35 of the insulating members 12 and 32.
  • the maximum value among the distances from the center of gravity to each vertex is used.
  • the sizes of the solid electrolyte layer, the first electrode layer, and the second electrode layer are respectively the outer edges. Defined by the inner area enclosed.
  • corners of the powder layer P may be chamfered in order to further suppress internal short circuit of the battery.
  • the chamfered shape at least one of a flat surface and a curved surface is used.
  • the chamfering is provided by a known method.
  • the chamfering is provided by pressing and compacting the powder layer P only with a pressure sufficient to form only the powder layer P, and then cutting the corners using a tool such as sandpaper. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

全固体二次電池(1)は、第1集電体(11)および第1電極層(14)を具備する第1電極体(10)と、第2集電体(31)および第2電極層(34)を具備する第2電極体(30)と、両電極層(14),(34)の間に配置された固体電解質層(20)とを備える。第1集電体(11)の周辺部には第1接着層(2)を介して第1絶縁部材(12)が設けられる。第2集電体(31)の周辺部には第2接着層(3)を介して第2絶縁部材(32)が設けられる。固体電解質層(20)の側方端面は、第1電極層(14)および第2電極層(34)の少なくとも一方の側方端面よりも外方に位置される。各接着層(2),(3),(4)が各絶縁部材(12),(32)の内方側端部からそれぞれ離して配置されることにより、両集電体は変形自在な歪吸収領域(16),(36)をそれぞれ備える。

Description

全固体二次電池
 本発明は全固体二次電池に関する。
 従来の全固体二次電池としては、正極材と負極材との間に固体電解質が配置されるとともにこれら各極材の外面にそれぞれ集電体が配置されている。このような全固体二次電池の製造方法としては、粉体材料を帯電させつつ搬送用ガスと共に基材に吹き付け、静電気力により、付着・成膜させることにより、電池の各構成層を形成するものがある(例えば特許文献1)。この方法によれば、均一な厚さで粉体層が形成されるので、加圧成形時に、加圧力が全体に均一に掛かることになり、優れた性能を有する全固体二次電池が得られる。
日本国特開2010-282803号公報
 しかし、上述したような製造方法で得られた全固体二次電池においても、かなりの頻度で内部短絡が発生していた。
 このため、本発明者等は、鋭意検討の結果、内部短絡の機構を解明し、本発明を完成するに至った。
 この内部短絡の機構としては、加圧成形時に加えられた力による粉体層の横方向への延びが考えられる。すなわち、粉体層に垂直に力が掛かると垂直方向に最大応力が発生するとともに、横方向(広がる方向)にも応力が発生する。加圧中は摩擦力が働いているので横方向への延びは無いが、加圧が終了して粉体層をプレスピンから外すと、残留した応力が解放されて粉体層が横方向に延び始める。加圧により粉体層と集電体は密着しているので、粉体層が横に延びると集電体もそれに合わせて延ばされる。しかし、粉体層部分が最も厚いので加圧により発生する応力は粉体層に集中し、粉体層の周囲に配置された絶縁部材には応力が殆ど発生しないので、絶縁部材は変形しない。そして、この絶縁部材に集電体が接着されているので、この集電体における粉体層の周縁部と絶縁部材の接着部との間に、大きなしわが発生する。このしわが粉体層周縁部の層構造を破壊し、内部短絡の原因になっていた。
 そこで、本発明は、上記内部短絡の機構に鑑み、加圧成形後に発生する内部短絡を抑制し、性能に優れた全固体二次電池を提供することを目的とする。
 本発明に係る全固体二次電池は、第1複合集電部材および第1電極層を有する、正極または負極の第1電極体と、
 第2複合集電部材および第2電極層を有する、負極または正極の第2電極体とを備え、
 前記第1複合集電部材は、板状の第1集電体と、当該第1集電体の表面の周辺部に第1接着層を介して接着される板状の第1絶縁部材とを有し、
 前記第1電極層は、前記第1集電体の表面でかつ前記第1絶縁部材よりも内方に積層されるものであり、
 前記第2複合集電部材は、板状の第2集電体と、当該第2集電体の表面の周辺部に第2接着層を介して接着される板状の第2絶縁部材とを有し、
 前記第2電極層は、前記第2集電体の表面でかつ前記第2絶縁部材よりも内方に積層されるものであり、
 前記第1電極層および前記第2電極層の間に配置された固体電解質層を備え、
 前記固体電解質層の側方端面は、前記第1電極層および前記第2電極層の少なくとも一方の側方端面よりも外方に位置され、
 各接着層が各絶縁部材の内方側端部からそれぞれ離して配置されることにより、両集電体は変形自在な歪吸収領域をそれぞれ備えたことを特徴とする。
 また、第1絶縁部材および第2絶縁部材のうち、少なくとも一方の内方側端部が、固体電解質層の側方端面に対して、接触して配置されていることが好ましい。
 また、固体電解質層の側方端面から、第1電極層または第2電極層の側方端面までの距離が、6mm以下であることが好ましい。
 また、各複合集電部材における接着層と絶縁部材の内方側端部との離間距離は、1~15mmであることが好ましい。
 また、第1集電体および第2集電体は、その表面に粗化処理が施されたものであることが好ましい。
 また、本発明には、上記の全固体二次電池を複数個積層した積層型の全固体二次電池も含まれる。
 本発明の全固体二次電池によれば、全固体二次電池に押圧力が加えられたことにより発生する粉体層周縁部の集電体のしわが歪吸収領域で拡散されるので、粉体層部分でしわなどの変形が発生するのを抑制でき、したがって粉体層周縁部での層構造の破壊に起因する内部短絡が発生するのを防止することができる。
本発明の実施の形態に係る全固体二次電池の断面図である。 同全固体二次電池の第1電極側から見た平面図である。 同全固体二次電池の第2電極側から見た平面図である。 同全固体二次電池を複数積層してできた積層型の全固体二次電池の断面図である。 本発明の実施の形態に係る全固体二次電池の製造方法における押圧の直前の状態を示す部分断面図である。 実施例2に係る積層型の全固体二次電池の充放電曲線を示すグラフである。
[実施の形態]
 本発明に係る全固体二次電池の実施の形態を、図1~図4を用いて詳細に説明する。
 本実施の形態の全固体二次電池は、概して、板状の第1集電体および第1集電体の表面の周辺部に第1接着層を介して接着される板状の第1絶縁部材を有する第1複合集電部材と、第1複合集電部材および第1集電体の表面でかつ第1絶縁部材よりも内方に積層される第1電極層を有する正極または負極の第1電極体と、板状の第2集電体および第2集電体の表面の周辺部に第2接着層を介して接着される板状の第2絶縁部材を有する第2複合集電部材と、第2複合集電部材および第2集電体の表面でかつ第2絶縁部材よりも内方に積層される第2電極層を有する負極または正極の第2電極体と、第1および第2電極層の間に配置された固体電解質層と、を備え、固体電解質層の側方端面は、第1電極層および第2電極層の少なくとも一方の側方端面よりも外方に位置され、各接着層が各絶縁部材の内方側端部からそれぞれ離して配置されることにより、接着層と絶縁部材との間における各集電体は、各絶縁部材に固定されないことで変形自在にされた歪吸収領域をそれぞれ備えたものである。
 以下、より具体化した全固体二次電池の構造について説明する。本実施の形態においては、全固体二次電池1は平面視円形状のリチウムイオン二次電池である。図面には、水平面に第1電極体10を下側にして載置した場合を示す。第1電極体10を正極、第2電極体30を負極として説明する。
 図1に示すように、本実施の形態の全固体二次電池1は、正極として機能する第1電極体10と、第1電極体10に積層される固体電解質層20と、固体電解質層20に積層される負極として機能する第2電極体30で構成されている。
 第1電極体10は、薄板状の第1集電体11および第1集電体11の表面の周辺部に接着される薄板状の第1絶縁部材12から成る第1複合集電部材13と、第1複合集電部材13および第1集電体11の表面でかつ第1絶縁部材12よりも内方に積層される第1電極層14とで構成される。すなわち、第1複合集電部材13の中央部には、第1集電体11を露出させる第1開口部15がそれぞれ形成される。なお、第2電極体30は第1電極体10と同一の構造であり、第2集電体31の表面の周辺部に第2絶縁部材32が接着されてできた第2複合集電部材33と、第2複合集電部材33の表面でかつ第2集電体31よりも内方に積層される第2電極層34とで構成される。
 第1集電体(正極集電体ともいう)11の表面の周辺部には、所定幅で以って第1接着層2を介して第1絶縁部材12が配置されて第1複合集電部材(正極複合集電部材ともいう)13が構成される。また、第1複合集電部材13の中央部に形成される第1開口部15に第1電極層(正極層ともいう)14が配置されて第1電極体10が構成される。
 また、第1電極体10の上に固体電解質層20が配置される。固体電解質層20は、第1電極体10における第1電極層14の上面に固体電解質の粉体が接触して塗布(配置)されて形成されている。
 そして、固体電解質層20の上に第2電極体30が接触して配置される。すなわち、固体電解質層20の上面に、第2電極体30を構成する第2電極層(負極層ともいう)34が接触して配置される。そして、第2電極層34の上面に、第2絶縁部材32の中央部に形成される第2開口部35から露出した第2集電体(負極集電体ともいう)31が接触するように配置される。
 以下、必要に応じて、第1電極層14、固体電解質層20および第2電極層34を併せて粉体層Pと称することがある。
 粉体層Pは、平面視において、固体電解質層20の外径が最も大きく、第1電極層14の外径が最も小さくされている。すなわち、図1に示すように、第1電極層14および第2電極層34の側方端面は、固体電解質層20の側方端面よりも内方に位置されている。したがって、実際の生産時における位置決め誤差により、第1電極層14と第2電極層34の配置が多少ずれても直接接触する確率は大幅に低下するため、短絡が発生するのを殆ど防止することができる。なお、この距離を必要以上に大きくする必要はない。すなわち、粉体層Pは3層存在する中央部分が最も厚くなるが、周縁部は薄くなる。したがって、この粉体層Pを高硬度金属製のプレスピンで挟んで高圧プレスを行った場合、押圧力は最も厚い部分で支えられて周縁部には力があまり掛からなくなる。言い換えれば、押圧力が低い周縁部では粉体同士の固着が不十分となり、衝撃や集電体の変形により層構造が破壊され易くなる。このため、固体電解質層20の側方端面から、第1電極層14または第2電極層34の側方端面までの距離が6mm以下であることが好ましい。
 第1集電体11に第1絶縁部材12を接着する第1接着層2、および第2集電体31に第2絶縁部材32を接着する第2接着層3が設けられている。また、第1絶縁部材12と第2絶縁部材32とを接着する第3接着層4が設けられている。第1接着層2、第2接着層3および第3接着層4は、いずれも粉体層Pの周囲に配置されるため、中央部に第3開口部5~第5開口部7をそれぞれ有している。
 ここで、第1電極体10の上方に第2電極体30が押圧されて積層されるため、各電極層14,34の大きさ、集電体11,31の大きさ、集電体11,31の周辺部に配置される絶縁部材12,32の内周側の大きさつまり絶縁部材12,32に設けられる開口部15,35の大きさは次の通り決定される。ただし、本実施の形態で示す全固体二次電池1は、平面視円形状であるため、大きさについては、具体的には直径や半径を用いて説明する。また、各部材は中心を一致させた状態で積層されているものとして説明する。
 すなわち、図1に示すように、第1絶縁部材12の内方側端部(第1開口部15の内面)は、第1電極層14または固体電解質層20の側方端部と接触している。また、第2絶縁部材32の内方側端部(第2開口部35の内面)は、粉体層P(特に固体電解質層20)の側方端部に接触されるか、または所定距離だけ離されている。本実施の形態においては、第2絶縁部材32の第2開口部35の半径と粉体層P(特に固体電解質層20)の外周の半径との差が0mmすなわち接触している場合を示している。
 このように、第2開口部35の内径と固体電解質層20の外径とをほぼ一致させることにより、第1電極層14よりも外方側の圧力のかかりにくい領域(非加圧領域)を最小にすることができるため、内部短絡が発生することを抑制できる。
 なお、製作時における粉体層Pの塗布位置決め精度を勘案すれば、第2開口部35の半径と固体電解質層20の外周の半径との差を位置決め公差程度(例えば0mm~2mm)に設定すれば、第3接着層4と第2複合集電部材33との間に固体電解質層20が挟み込まれることがなくなり、接着不良は生じない。
 両集電体11,31は、第1接着層2が第1絶縁部材12の内方側端部(第1開口部15の内面)から、第2接着層3が第2絶縁部材32の内方側端部(第2開口部35の内面)から、それぞれ所定距離だけ離間して配置されることにより、その間において、各絶縁部材にそれぞれ固定されないことで、変形自在にされた歪吸収領域16,36をそれぞれ備えている。すなわち、所定距離とは、歪吸収領域16においては第1絶縁部材12の内方側端部から第1接着層2の内方側端部までの距離であり、歪吸収領域36においては第2絶縁部材32の内方側端部から第2接着層3の内方側端部までの距離である。より具体的には、所定距離とは、図2においては、第1絶縁部材12の内周の半径rと第1接着層2の内周の半径rとの差dであり、図3においては、第2絶縁部材32の内周の半径rと第2接着層3の内周の半径rとの差dである。この所定距離の範囲は、1mm~15mmであることが好ましい。この歪吸収領域16,36の所定距離の好適な範囲は、全固体二次電池1の寸法によって変化しない。なお、本実施の形態においては、全固体二次電池1の寸法は、外径が30mm~300mmの程度で、厚さが50μm~500μmの程度の大きさのものである。
 以下、全固体二次電池1を構成する各部材の材料について説明する。
 第1集電体11および第2集電体31としては、銅(Cu)、マグネシウム(Mg)、ステンレス鋼、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、リチウム(Li)、錫(Sn)またはこれらの合金等から成る薄板状体、箔状体が用いられる。ここで、薄板状体および箔状体は、その厚さが5μm~100μmの範囲内のものである。本実施の形態においては、第1集電体(正極)11としてはアルミニウム箔、第2集電体(負極)31としては銅箔を採用している。さらに、第1集電体11および第2集電体31は、粉体層Pとの密着性向上の観点から、その表面に粗化処理が施されたものであることが好ましい。粗化処理とは、エッチングなどで表面粗さを大きくする処理である。本実施の形態においては、第1集電体11には、エッチング処理されたアルミニウム箔(エッチドアルミ箔ともいう)が、第2集電体31には、エッチング処理された銅箔(粗化銅箔ともいう)がそれぞれ用いられる。絶縁部材12,32には、PETフィルムなどの高分子材料でできた板状部材が用いられる。
 このようにエッチング処理を施された集電体を用いることによって、全固体二次電池1を作製する際の加圧で、エッチングによりできた孔部が潰され、電極層14,34の材料に喰い付きやすくなり、集電体と電極層とが一体化されやすくなる。
 電極層14,34は、電子を送り出し受け取る酸化還元反応を行うために粒子間に電子伝導パスを確保する電極活物質とイオン伝導性を有する固体電解質とを所定の割合で混合した混合材から成る層である。このように電極活物質にリチウムイオン伝導性を有する固体電解質を混合することにより、電子伝導性に加えてイオン伝導性を付与し、粒子間にイオン伝導パスを確保することができる。
 第1電極層(正極層)14に適した電極(正極)活物質としては、リチウムイオンの挿入離脱が可能なものであればよく、特に限定されない。例えば、正極活物質としては、リチウム・ニッケル複合酸化物(LiNi1-x、ただしMはCo、Al、Mn、V、Cr、Mg、Ca、Ti、Zr、Nb、MoおよびWのうち少なくとも1つの元素)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)などの層状酸化物、オリビン構造を持つリン酸鉄リチウム(LiFePO)、スピネル構造を持つマンガン酸リチウム(LiMn、LiMnO、LiMO)などの固溶体やそれらの混合物、さらに硫黄(S)、硫化リチウム(LiS)などの硫化物などを用いることもできる。本実施の形態においては、正極活物質として、具体的には、リチウム・ニッケル・コバルト・アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05、以下NCA系複合酸化物と称することがある。)を採用している。
 一方、第2電極層(負極層)34に適した電極(負極)活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料や、固体電解質と合材化される合金系材料が用いられる。合金系材料としては、例えば、リチウム合金(LiAl,LiZn,LiBi,LiCd,LiSb,LiSi,Li4.4Pb,Li4.4Sn,Li0.17C,LiCなど)や、チタン酸リチウム(LiTi12)、Znなどの金属酸化物などが挙げられる。本実施の形態においては、負極活物質は、天然・人造などの黒鉛である。
 また、正極活物質および負極活物質の表面に、ジルコニア(ZrO)、アルミナ(Al)、チタン酸リチウム(LiTi12)、ニオブ酸リチウム(LiNbO)、炭素(C)などをそれぞれコーティングしたものをそれぞれの電極活物質として使用することができる。
 固体電解質は、有機系のポリマー電解質(有機固体電解質ともいう)、無機系の無機固体電解質などに大別されるが、固体電解質として、いずれを用いても構わない。また、無機固体電解質は、酸化物系の材料および硫化物系の材料に大別されるが、いずれを用いても構わない。さらに、無機固体電解質においては、結晶性または非晶質のもののうちから適宜選択することができる。すなわち、固体電解質は、有機化合物、無機化合物またはこれらの混合物から成る材料から適宜選択することができる。より具体的には、固体電解質として用いることのできる材料としては、例えば、Li-SiO、Li-SiO-Pなどのリチウム含有金属酸化物(金属は一種以上)、Li1-zなどのリチウム含有金属窒化物、LiS-P系、LiS-SiS系、LiS-B系、LiS-GeS系、LiS-SiS-LiI系、LiS-SiS-LiPO系、LiS-Ge系、LiS-GeS-P系、LiS-GeS-ZnS系などのリチウム含有硫化物系ガラス、およびPEO(ポリエチレンオキシド)、PVDF(ポリフッ化ビニリデン)、リン酸リチウム(LiPO)、リチウムチタン酸化物などのリチウム含有遷移金属酸化物などが挙げられる。なお、本実施の形態においては、固体電解質としては、高いイオン伝導性を有する硫化物系ガラスをベースとした硫化物系無機固体電解質のうち、LiS-P系ガラスを採用している。
 なお、固体電解質層20に適した固体電解質は、第1電極層14および第2電極層34で用いられる固体電解質と同一または異なるものであってもよい。
 ところで、各集電体11,31と各絶縁部材12,32との接着には、熱融着および感圧接着などの公知の接着方法が用いられる。接着に用いられる材料も、液体、固体などの状態は問わないが、本実施の形態においては、各接着層2,3,4は、取扱いの容易さから感圧接着材でできている。
 一般に、全固体二次電池1の集電体11,31は加圧されることで延び、集電体11,31にしわが現れる。このしわが深くなればなるほど、粉体層Pへの食い込みにより粉体層Pが崩れ、内部短絡の原因となる。
 しかし、全固体二次電池1が、上記構成、特に歪吸収領域16,36を備えることによって、歪吸収領域16,36にて、全固体二次電池1に押圧力が加えられた際に積極的にうねりやしわなどの変形を緩やかに起こさせることで、粉体層Pへの食い込みを抑制する。具体的には、歪吸収領域16,36は、集電体11,31に接着(固定)されていないため、集電体が加圧により延びたときに、歪吸収領域16,36が絶縁部材12,32上をすべることができる。そのため、延びに起因するうねりやしわなどの変形を緩やかに起こす(分散させる)ことができるため、局所的に深いしわができるのを抑制することができる。したがって、粉体層Pが崩れることなく加圧され、電池の内部短絡を抑制することができる。また、その結果、加圧成形時および加圧成形後における電池全体の例えば歪や反りなどの変形も抑制される。
 また、用途によっては、所望の出力電圧や所望の電池容量を満たすため、図4に示すように、上記構成を備えた全固体二次電池1を単セルとして、並列または直列に接続されるように、複数個積層したいわゆる積層型の全固体二次電池100を作成することもできる。図4には、直列に積層した場合を示し、電子取り出し用タブリード101付きのラミネート102でラミネートパックしたものを示した。このとき、湾曲した電池を無理に平坦にして積層しようとすると、粉体層Pが割れ内部短絡の原因となる。積層する際に、補剛材などを使用して湾曲を抑制する方法もあるが、補剛材の重量と体積とが、重量当りまたは体積当りのエネルギー密度を低下させるため実用的ではない。しかし、本実施の形態の全固体二次電池1によれば、加圧成形時および加圧成形後における電池1全体の例えば歪や反りなどの変形が発生しにくいため、積層型の全固体二次電池100を容易に作製することができ、本実施の形態の全固体二次電池1を積層型の全固体二次電池100として用いる場合にも、内部短絡の発生を抑制することができる。
 ここで、上記全固体二次電池1の製造方法について簡単に説明する。
 図5に示すように、まず、第1複合集電部材13および第2複合集電部材33をそれぞれ組み立てる。なお、第1複合集電部材13および第2複合集電部材33は同一の構成であるため、組立方法も同一となる。
 すなわち、第1集電体11および第2集電体31の表面に、その周辺に沿って、中央部に第1開口部15を有する第1絶縁部材12および第2開口部35を有する第2絶縁部材32を第1接着層2および第2接着層3を介して接着する。このとき、第1集電体11および第2集電体31は第1開口部15および第2開口部35の位置にて露出された状態となる。
 次に、第1複合集電部材13の開口部15内の第1集電体11の表面に第1電極層14の材料である電極合材の粉体を積層して第1電極層14を形成する。そして、第1電極層14に固体電解質の粉体を積層して固体電解質層20を形成する。この固体電解質層20の表面に第2電極層34の材料である電極合材の粉体を積層して第2電極層34を形成する。以下、便宜上、この積層体を主積層体Xと称する。なお、粉体の積層の方法は、塗布などの公知の方法が用いられる。
 一方、第2複合集電部材33の第2絶縁部材32の表面(第2集電体31が接着されていない側の面)に第3接着層4を設ける。以下、便宜上、この積層体を副積層体Yと称する。
 そして、上記主積層体Xと副積層体Yとを重ねた状態で押圧して第3接着層4を介して互いに接着させることにより、電池を得ることになるが、この押圧は2段階で行われる。
 すなわち、まず、主積層体Xの上面に、第3接着層4を介して副積層体Yを載置し、プレスピンによりその上方から小さい押圧力を掛けて仮プレスを行う。この仮プレスにおいては、プレスピン側に弾性部材が設けられており、各積層体に存在している空気が徐々に押し出されて互いに密着される。勿論、第2集電体31は、弾性部材を介して第2電極層34の表面形状に沿って変形され、第2複合集電部材33に設けられた第3接着層4が第1複合集電部材13に圧着され、第2集電体31が主積層体Xを包み込んだ状態となる。言い換えれば、複合集電部材13,33同士が粉体層Pを密封した状態となる。
 次に、この状態の積層体X,Yの上方から、さらに大きい押圧力を掛けて本プレスを行い強固に一体化する。このとき、粉体層Pは集電体11,31の表面に押し込まれるため、電導性が向上される。
 そして、本プレスが済み、押圧力が取り除かれると、粉体層Pは上方向に膨らむとともに、横方向については伸びようとする。しかし、横方向については、粉体層Pが集電体11,31の表面に押し込まれているため、集電体11,31は、伸びようとする力により横方向(外側)に引っ張られて電極層14,34の周囲にしわなどの変形が発生するが、この変形は、その周囲に設けられた歪吸収領域16,36により吸収される。したがって、電極層14,34の周縁部で粉体層Pが崩壊するのが防止され、電池内で内部短絡が発生するのが抑制される。
 以下、本発明に係る実施例1、比較例1および実施例2について説明する。ただし、実施例1、比較例1および実施例2は、いずれも露点が-70℃以下の窒素雰囲気下にて行った。
 実施例1
 まず、直径66mmの平面視円形状の第1集電体11と、一辺が70mmの平面視正方形状の第1絶縁部材12と、外径が64mmで内径が60mmの平面視円環状の第1接着層2とを用いて、第1複合集電部材13を組み立てる。第1絶縁部材12には、直径52mmの平面視円形状の第1開口部15が設けられている。また、直径70mmの平面視円形状の第2集電体31と、一辺が80mmの平面視正方形状の第2絶縁部材32と、外径が60mmで内径が54mmの平面視円環状の第2接着層3とを用いて、第2複合集電体33を組み立てる。第2絶縁部材32には、直径54mmの平面視円形状の第2開口部35が設けられている。
 ここで、第1集電体11には、厚さ20μmの粗化処理されたアルミ箔が用いられ、第2集電体31には、厚さ18μmの粗化処理された銅箔が用いられた。また、絶縁部材12,32には、厚さ50μmのPETフィルムが用いられ、接着層2,3,4には、厚さ30μmの感圧接着フィルム(両面接着テープ)が用いられた。
 次に、第1複合集電部材13の第1開口部15から露出された第1集電体11の上に第1電極合材を塗布(積層)し、平面視円形状の直径50mmの第1電極層14を形成した。第1電極層14の上に固体電解質を塗布(積層)し、直径54mmの平面視円形状の固体電解質層20を形成した。そして、固体電解質層20の上に第2電極合材を塗布(積層)し、直径52mmの平面視円形状の第2電極層34を形成した。
 ここで、第1電極合材としては、正極活物質としてNCA系複合酸化物と、固体電解質としてLiS(80mol%)-P(20mol%)ガラスセラミックとを7:3の割合で混合したものを用いた。また、第2電極合材としては、負極活物質として黒鉛粉末と、固体電解質としてLiS(80mol%)-P(20mol%)ガラスセラミックとを6:4の割合で混合したものを用いた。そして、固体電解質層20の固体電解質には、LiS(80mol%)-P(20mol%)ガラスセラミックを用いた。
 また、第1電極合材、固体電解質および第2電極合材の粉体は、静電スクリーン印刷法を用いてそれぞれ塗布された。第1電極層14の塗布量は23mg/cm、第2電極層34の塗布量は30mg/cm、固体電解質の塗布量は14mg/cmである。この塗布量は、加圧成形後の層の所望の厚さによって適宜変更すればよい。なお、実施例1においては、第1電極層14の厚さは約70μm、第2電極合層34の厚さは約130μm、固体電解質層の厚さは約90μmである。
 第2複合集電部材33の第2集電体31が当接していない側の面に、第1複合集電部材13と第2複合集電部材33とを接着するため第3接着層4を設ける。第3接着層4は、外径が68mmで内径が64mmの平面視円環状を成す。
 第2複合集電部材33を、第3接着層4が第2電極層34に当接するように積層し、押圧部材51を用いて弾性部材52を介して、第2複合集電部材33側から押圧し、全固体二次電池1を作製した。すなわち、実施例1において、第1集電体11に8mm、第2集電体31に10mmの歪吸収領域16,36をそれぞれ備えている。このとき、加圧力は10t/cm、加圧時間は30秒であった。
 加圧された全固体二次電池1を、一辺が70mm厚さ0.3mmの一対のステンレス板で挟み、電気取り出し用タブリードが具備されたラミネートフィルムで挟み、真空下で、周囲を熱融着することによりラミネートパックをした。
 これと同一の全固体二次電池1を作製した。
 各全固体二次電池1に対して、電気取り出し用タブリード間の電圧をテスターで測定することにより、初期起電圧から短絡の有無を判定した。一般に正常な電池の起電圧は通常0.4~0.6Vであるため、初期起電圧が0.2V未満の電池を短絡と判定した。その結果、2個が0.2V未満の初期起電圧を示し、内部短絡が発生したと認定された。しかし、内部短絡発生率は10%であるため、内部短絡はかなり抑制されていることが分かる。
 比較例1
 比較例1として、以下に示すように、実施例1に対して、各部材の大きさのみを変更した全固体二次電池を作製した。すなわち、各部材の材料、厚み、短絡の有無の評価方法など、以下に示す事以外は、実施例1と同一である。
 まず、直径64mmの平面視円形状の第1集電体11と、一辺が70mmの平面視四角形状の第1絶縁部材12と、外径が62mmで内径が58mmの平面視円環状の第1接着層2を用いて、第1複合集電部材13を組み立てる。第1絶縁部材12には、第1接着層2の内径と等しい直径58mmの平面視円形状の第1開口部15が設けられている。また、直径70mmの平面視円形状の第2集電体31と、一辺が80mmの平面視四角形状の第2絶縁部材32と、外径が66mmで内径が62mmの平面視円環状の第2接着層3を用いて、第2複合集電部材33を組み立てる。第2絶縁部材32には、第2接着層3の内径と等しい直径62mmの平面視円形状の第2開口部35が設けられている。
 次に、第1複合集電部材13の第1開口部15から露出された第1集電体11の上に第1電極合材を塗布(積層)し、直径50mmの第1電極層14を形成した。第1電極層14の上に固体電解質を塗布(積層)し、直径58mmの固体電解質層20を形成した。そして、固体電解質層20の上に第2電極合材を塗布(積層)し、直径54mmの第2電極層34を形成した。
 第2複合集電部材33の第2集電体31が当接していない側の面に、第1複合集電部材13と第2複合集電部材33とを接着するため第3接着層4を設ける。第3接着層4は、外径が66mmで内径が62mmの平面視円環状を成す。
 第2複合集電部材33を、第3接着層4が第2電極層34に当接するように積層し、押圧部材51を用いて弾性部材52を介して、第2複合集電部材33側から押圧し、全固体二次電池1を作製した。すなわち、この比較例の全固体二次電池1は、第1開口部15の直径と第1接着層2の内径とが、第2開口部35の直径と第2接着層3の内径とが、それぞれ等しいため、各集電体11,31は、歪吸収領域16,36を一切備えていない。これと同一の全固体二次電池1を13個作製したところ、そのうち10個に内部短絡が発生した。すなわち、短絡発生率は77%であり、内部短絡の発生が抑制されていないことが分かった。
 実施例2
 実施例1と同一の全固体二次電池1を単セルとして7個作製し、7個の全固体二次電池1を直列に積層してから、ラミネートフィルムで密封包装し、積層型の全固体二次電池100を1つ作製した。そのときの全固体二次電池1の充放電曲線を図6に示す。図6から、この積層型の全固体二次電池100は正常に作動したことが分かる。
 変形例
 上述した本実施の形態においては、下側に第1電極体10として正極体を配置する場合について説明したが、当然、下側に第1電極体10として負極体を配置しても構わない。
 また、上述した本実施の形態においては、固体電解質層20が、第1電極層14および第2電極層34よりも大きい場合について説明したが、固体電解質層20は、第1電極層14および第2電極層34の少なくとも一方よりも大きければよい。
 また、本実施の形態においては、全固体二次電池1の平面視形状が円形状であるものを例示したが、これに限定されない。例えば、平面視形状が多角形状の場合、開口部も多角形状でも構わない。また、全固体二次電池1の平面視形状と、各絶縁部材12,32の開口部15,35の平面視形状とは、異ならせてもよい。この平面視多角形状の場合の大きさとしては、重心から各頂点までの距離のうち最大値が用いられる。ここで、平面視多角形状のうち四角形の場合において、粉体層Pが平面視矩形状を成すときには、上記の固体電解質層、第1電極層および第2電極層の大きさは、それぞれ外縁で囲まれる内側の面積によって規定される。
 また、平面視多角形状の場合において、電池の内部短絡をさらに抑制するため、粉体層Pの角部を面取りしてもよい。面取りの形状としては、平面および曲面の少なくとも一方が用いられる。なお、面取りは、公知の方法によって設けられるが、例えば、粉体層Pのみを成形する程度の圧力でプレスして押し固めた後、サンドペーパーなどの工具を用いて角部を削って設けられる。

Claims (6)

  1.  第1複合集電部材および第1電極層を有する、正極または負極の第1電極体と、
     第2複合集電部材および第2電極層を有する、負極または正極の第2電極体とを備え、
     前記第1複合集電部材は、板状の第1集電体と、当該第1集電体の表面の周辺部に第1接着層を介して接着される板状の第1絶縁部材とを有し、
     前記第1電極層は、前記第1集電体の表面でかつ前記第1絶縁部材よりも内方に積層されるものであり、
     前記第2複合集電部材は、板状の第2集電体と、当該第2集電体の表面の周辺部に第2接着層を介して接着される板状の第2絶縁部材とを有し、
     前記第2電極層は、前記第2集電体の表面でかつ前記第2絶縁部材よりも内方に積層されるものであり、
     前記第1電極層および前記第2電極層の間に配置された固体電解質層を備え、
     前記固体電解質層の側方端面は、前記第1電極層および前記第2電極層の少なくとも一方の側方端面よりも外方に位置され、
     各接着層が各絶縁部材の内方側端部からそれぞれ離して配置されることにより、両集電体は変形自在な歪吸収領域をそれぞれ備えたことを特徴とする全固体二次電池。
  2.  第1絶縁部材および第2絶縁部材のうち、少なくとも一方の内方側端部が、固体電解質層の側方端面に対して、接触して配置されていることを特徴とする請求項1に記載の全固体二次電池。
  3.  固体電解質層の側方端面から、第1電極層または第2電極層の側方端面までの距離が、6mm以下であることを特徴とする請求項2に記載の全固体二次電池。
  4.  各複合集電部材における接着層と絶縁部材の内方側端部との離間距離は、1~15mmであることを特徴とする請求項1乃至3のいずれか一項に記載の全固体二次電池。
  5.  第1集電体および第2集電体は、その表面に粗化処理が施されたものであることを特徴とする請求項1乃至3のいずれか一項に記載の全固体二次電池。
  6.  請求項1乃至3のいずれか一項に記載の全固体二次電池を複数個積層したことを特徴とする全固体二次電池。
PCT/JP2016/062974 2016-04-26 2016-04-26 全固体二次電池 WO2017187494A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/096,032 US20190140249A1 (en) 2016-04-26 2016-04-26 All-solid-state secondary battery
PCT/JP2016/062974 WO2017187494A1 (ja) 2016-04-26 2016-04-26 全固体二次電池
EP16900367.0A EP3451435A4 (en) 2016-04-26 2016-04-26 SOLID-SECONDARY BATTERY
CN201680084819.8A CN109075396A (zh) 2016-04-26 2016-04-26 全固态二次电池
KR1020187031296A KR20190002492A (ko) 2016-04-26 2016-04-26 전고체 이차전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062974 WO2017187494A1 (ja) 2016-04-26 2016-04-26 全固体二次電池

Publications (1)

Publication Number Publication Date
WO2017187494A1 true WO2017187494A1 (ja) 2017-11-02

Family

ID=60160251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062974 WO2017187494A1 (ja) 2016-04-26 2016-04-26 全固体二次電池

Country Status (5)

Country Link
US (1) US20190140249A1 (ja)
EP (1) EP3451435A4 (ja)
KR (1) KR20190002492A (ja)
CN (1) CN109075396A (ja)
WO (1) WO2017187494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823075A4 (en) * 2018-07-13 2022-06-29 Hitachi Zosen Corporation Installation for manufacturing all-solid secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110688A1 (ja) 2016-12-16 2018-06-21 日立造船株式会社 全固体二次電池およびその製造方法
WO2019072393A1 (en) * 2017-10-12 2019-04-18 Hp Indigo B.V. ELECTROPHOTOGRAPHIC INK COMPOSITION
CN113764675A (zh) * 2018-08-28 2021-12-07 宁德新能源科技有限公司 极片和电化学装置
GB2597984A (en) * 2020-08-13 2022-02-16 Dyson Technology Ltd Solid state thin film battery and method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114497A1 (ja) * 2011-02-24 2012-08-30 トヨタ自動車株式会社 固体電池
WO2012124108A1 (ja) * 2011-03-17 2012-09-20 トヨタ自動車株式会社 固体電池、及び固体電池の製造方法
JP2014222564A (ja) * 2013-05-13 2014-11-27 日立造船株式会社 全固体電池並びに全固体電池の製造方法及び全固体電池の製造装置
JP2016091750A (ja) * 2014-11-04 2016-05-23 日立造船株式会社 全固体二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042916A1 (de) * 2005-09-08 2007-03-22 Degussa Ag Stapel aus abwechselnd übereinander gestapelten und fixierten Separatoren und Elektroden für Li-Akkumulatoren
JP5515267B2 (ja) * 2008-10-07 2014-06-11 日産自動車株式会社 非水電解質二次電池
US8579994B2 (en) * 2009-05-11 2013-11-12 Toyota Jidosha Kabushiki Kaisha Method for producing a solid-state cell and a solid-state cell
JP5414371B2 (ja) * 2009-06-04 2014-02-12 出光興産株式会社 全固体リチウムイオン二次電池の製造方法
JP5397475B2 (ja) * 2009-09-17 2014-01-22 株式会社村田製作所 電池間分離構造体とそれを備えた積層型固体二次電池
JP5644858B2 (ja) * 2010-08-09 2014-12-24 株式会社村田製作所 積層型固体電池
WO2013035795A1 (ja) * 2011-09-08 2013-03-14 日本ゼオン株式会社 二次電池用スラリー
JP5776722B2 (ja) * 2013-04-24 2015-09-09 日産自動車株式会社 非水電解質二次電池
JP6608188B2 (ja) * 2015-06-23 2019-11-20 日立造船株式会社 全固体二次電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114497A1 (ja) * 2011-02-24 2012-08-30 トヨタ自動車株式会社 固体電池
WO2012124108A1 (ja) * 2011-03-17 2012-09-20 トヨタ自動車株式会社 固体電池、及び固体電池の製造方法
JP2014222564A (ja) * 2013-05-13 2014-11-27 日立造船株式会社 全固体電池並びに全固体電池の製造方法及び全固体電池の製造装置
JP2016091750A (ja) * 2014-11-04 2016-05-23 日立造船株式会社 全固体二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3451435A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823075A4 (en) * 2018-07-13 2022-06-29 Hitachi Zosen Corporation Installation for manufacturing all-solid secondary battery

Also Published As

Publication number Publication date
US20190140249A1 (en) 2019-05-09
EP3451435A1 (en) 2019-03-06
EP3451435A4 (en) 2019-11-20
KR20190002492A (ko) 2019-01-08
CN109075396A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN107683543B (zh) 全固态二次电池及其制造方法
JP6324296B2 (ja) 全固体二次電池
JP6576072B2 (ja) 全固体二次電池の製造方法
JP7162109B2 (ja) 全固体二次電池の製造方法
WO2017187494A1 (ja) 全固体二次電池
JP6095472B2 (ja) 全固体電池の製造方法及び全固体電池の製造装置
JP6726503B2 (ja) 全固体二次電池およびその製造方法
WO2015147122A1 (ja) 全固体二次電池
CN110114931B (zh) 全固态电池的制造方法及其制造装置
JP6895761B2 (ja) 全固体電池の製造方法
CN110544772A (zh) 电池
KR101592812B1 (ko) 2차 전지 및 그 제작방법
WO2023017791A1 (ja) 全固体電池
JP2023077228A (ja) 構成単位セル、全固体電池積層体、及び全固体電池積層体の製造方法
JP2022139307A (ja) 固体電池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187031296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016900367

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016900367

Country of ref document: EP

Effective date: 20181126

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP