WO2015147122A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2015147122A1
WO2015147122A1 PCT/JP2015/059286 JP2015059286W WO2015147122A1 WO 2015147122 A1 WO2015147122 A1 WO 2015147122A1 JP 2015059286 W JP2015059286 W JP 2015059286W WO 2015147122 A1 WO2015147122 A1 WO 2015147122A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
current collector
negative electrode
solid
secondary battery
Prior art date
Application number
PCT/JP2015/059286
Other languages
English (en)
French (fr)
Inventor
健児 岡本
高野 靖
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to KR1020167026394A priority Critical patent/KR102350322B1/ko
Priority to CN201580012833.2A priority patent/CN106068577B/zh
Priority to EP15769914.1A priority patent/EP3125351B1/en
Priority to JP2016510462A priority patent/JP6639383B2/ja
Priority to US15/129,695 priority patent/US20170179519A1/en
Publication of WO2015147122A1 publication Critical patent/WO2015147122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an all solid state secondary battery.
  • an all-solid-state lithium ion secondary battery in order to reduce the grain boundary resistance of the electrode material made of a granular material, it is pressure-molded with the electrode material sandwiched between the positive electrode current collector and the negative electrode current collector. .
  • the sulfide inorganic solid electrolyte when a sulfide inorganic solid electrolyte is used as the electrode material, the sulfide inorganic solid electrolyte has high binding force and ductility, so that the adhesion between the particles in the electrode material is improved by the pressure molding. Further, since the sulfide inorganic solid electrolyte has a lower ionic conductivity than the oxide inorganic solid electrolyte, the above-described pressure molding is important. Furthermore, by using a material having high adhesion for the positive electrode current collector and the negative electrode current collector, the electrical resistance between the positive electrode current collector and the negative electrode current collector and the electrode material is reduced.
  • an all-solid-state lithium ion secondary battery using a sulfide inorganic solid electrolyte as an electrode material warps to the positive electrode side or the negative electrode side by the pressure molding. This warping is not a problem when the maximum outer length of the all-solid-state lithium ion secondary battery is small, but the amount of bending is not a problem when the maximum outer length is large. If this warpage is corrected, the electrode material may be cracked.
  • a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated on both sides of the positive electrode current collector.
  • a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated on both sides of the positive electrode current collector.
  • the all-solid-state secondary battery is a single cell, it has the advantages that the manufacturing process is shortened and the wiring is simplified.
  • the all solid lithium ion secondary battery described in Patent Document 1 is premised on being a multilayer cell. In other words, the all-solid lithium ion secondary battery has a problem that it cannot be made into a single cell.
  • an object of the present invention is to provide a single-cell all-solid-state secondary battery capable of suppressing warpage.
  • an all-solid-state secondary battery of the present invention is provided with a positive electrode layer and a negative electrode layer that are disposed and pressed on a positive electrode current collector and a negative electrode current collector, respectively,
  • An all-solid-state secondary battery comprising a solid electrolyte layer disposed between a positive electrode layer and a negative electrode layer, The positive electrode layer and the negative electrode layer have a sulfide inorganic solid electrolyte, The positive electrode current collector and the negative electrode current collector have a peel strength of 0.2 N / mm or more from the sulfide inorganic solid electrolyte by a peel test.
  • the all-solid-state secondary battery of the present invention according to claim 2 is the all-solid-state secondary battery of the invention according to claim 1, wherein the solid electrolyte layer is made of a sulfide inorganic solid electrolyte.
  • the all solid state secondary battery of the present invention according to claim 3 is the all solid state secondary battery according to claim 1 or 2, wherein the positive electrode current collector is tin or etched aluminum.
  • the negative electrode current collector is roughened copper.
  • the warpage of the positive electrode current collector and the positive electrode layer and the warpage of the negative electrode current collector and the negative electrode layer are offset in a single cell. be able to.
  • an all solid state secondary battery according to an embodiment of the present invention will be described with reference to the drawings.
  • an all-solid secondary battery an all-solid secondary battery using a lithium ion conductive material as a solid electrolyte, that is, an all-solid lithium ion secondary battery will be described.
  • a lithium ion conductive solid electrolyte layer (hereinafter simply referred to as a solid electrolyte layer 3) is disposed (laminated) between the positive electrode layer 2 and the negative electrode layer 4.
  • the positive electrode current collector 1 is disposed on the surface of the positive electrode layer 2 opposite to the solid electrolyte layer 3
  • the negative electrode current collector 5 is disposed on the surface of the negative electrode layer 4 opposite to the solid electrolyte layer 3. (Laminated).
  • the positive electrode layer 2 and the negative electrode layer 4 are layers to be electrodes, that is, electrode layers.
  • the said positive electrode layer 2 and the negative electrode layer 4 are mentioned later in detail, all have a sulfide inorganic solid electrolyte.
  • the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are all formed from a powder material.
  • the insulating film 6 may be disposed on the outer periphery of the positive electrode layer 2.
  • the positive electrode layer 2 disposed on the surface of the positive electrode current collector 1 is pressure-molded, the positive electrode layer 2 is compressed in the thickness (lamination) direction as shown in FIG. Although it tries to expand in the width direction, it receives the frictional force F from the positive electrode current collector 1 in the opposite direction of the width direction and cannot expand in the width direction. For this reason, a residual stress that tends to expand in the width direction is generated in the positive electrode layer 2. However, as shown in FIG. 4, the positive electrode layer 2 that has been subjected to pressure molding is released from the residual stress and tends to expand in the width direction.
  • the peel strength of the positive electrode current collector 1 from the sulfide inorganic solid electrolyte by the peel test is less than 0.2 N / mm
  • the positive electrode current collector 1 and the positive electrode layer 2 (having the sulfide inorganic solid electrolyte) Low adhesion.
  • the positive electrode layer 2 expands while sliding on the surface of the positive electrode current collector 1, and thus does not affect the shape of the positive electrode current collector 1.
  • the peel strength of the positive electrode current collector 1 from the sulfide inorganic solid electrolyte by the peel test is 0.2 N / mm or more, the adhesion between the positive electrode current collector 1 and the positive electrode layer 2 is high.
  • the positive electrode layer 2 expands while biting into the surface of the positive electrode current collector 1, so that the positive electrode current collector 1 is warped.
  • the contents described above are not only for the positive electrode current collector 1 and the positive electrode layer 2 but also for the negative electrode current collector 5 and the negative electrode layer 4 although not shown.
  • the present invention cancels the warpage of the positive electrode current collector 1 and the positive electrode layer 2 and the warpage of the negative electrode current collector 5 and the negative electrode layer 4. It is intended to suppress warping as.
  • the positive electrode layer 2 a mixture of a positive electrode active material and a lithium ion conductive solid electrolyte is used.
  • the weight ratio of the positive electrode active material and the lithium ion conductive solid electrolyte in the mixture is, for example, 7: 3.
  • the positive electrode active material includes lithium-nickel composite oxide (LiNi x M 1-x O 2 ; M is Co, Al, Mn, V, Cr, Mg, Ca, Ti, Zr, Nb, Mo, and W Among these, materials usually used for the positive electrode active material in the battery field, such as at least one element), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), are used.
  • the negative electrode layer 4 a mixture of a negative electrode active material and a lithium ion conductive solid electrolyte is used.
  • the weight ratio of the negative electrode active material and the lithium ion conductive solid electrolyte in the mixture is, for example, 6: 4.
  • the negative electrode active material includes natural graphite, artificial graphite, carbon materials such as graphite carbon fiber or resin-fired carbon, silicon, tin, lithium, oxide, sulfide, nitride, alloy, powder, foil, etc. Regardless of the shape, a material usually used for a negative electrode active material in the battery field is used.
  • the lithium ion conductive solid electrolytes of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are usually used in the field of lithium ion batteries, materials composed of organic compounds, inorganic compounds, and both organic and inorganic compounds. The materials that are used are used. Further, among inorganic compounds, for example, a sulfide system such as Li 2 S—P 2 S 5 is superior in ion conductivity as compared with other inorganic compounds.
  • the positive electrode current collector 1 and the negative electrode current collector 5 are made of untreated surface tin, etched aluminum having a large number of sponge-like pores formed on the surface by etching (see FIG. 8), or a pyramidal shape on the surface. For example, roughened copper (see FIG. 9) in which many low pyramids are formed is used. Moreover, these are a plate-shaped body, a foil-shaped body, a film-formed body, or a metal foil composite. This metal foil composite is a composite obtained by applying a surface coat to a metal foil. For example, a carbon coat is applied to the surface of a stainless steel foil.
  • the positive electrode current collector 1 and the negative electrode current collector 5 may be the same or different.
  • the peel strength from the sulfide inorganic solid electrolyte by the peel test is high (0.2 N / mm or more). Become.
  • Li 2 S—P 2 S 5 layer L (not the layer made of the same material as the positive electrode layer 2 or the negative electrode layer 4) is used as the layer constituting the test piece of the peel test will be described.
  • the binding force between the powders becomes small. This binding force is smaller than the adhesion between the electrode mixture and the current collectors 1 and 5. For this reason, when a layer made of an electrode mixture is used as the layer constituting the test piece, the layer made of the electrode mixture breaks (also referred to as delamination) in the peel test. Separation with current collectors 1 and 5 does not occur. Therefore, the value measured by the peel test is not the peel strength between the layer made of the electrode mixture and the current collectors 1 and 5, but the delamination strength of the layer made of the electrode mixture.
  • the peel test is a 90 ° peel test, it is intended to peel in the thickness (lamination) direction.
  • the layer which consists of electrode compound materials peels in a peel test.
  • an actual all solid lithium ion secondary battery tends to expand in the width direction instead of the thickness (lamination) direction, and thus the electrode material does not delaminate. Therefore, it is considered that even if any of the layers made of the electrode mixture and the Li 2 S—P 2 S 5 layer L is in close contact with the current collectors 1, 5, it has an equivalent adhesion force.
  • the value obtained by dividing the average value of the load obtained by the above measurement by the length in the short direction of the test piece is the peel strength by the peel test (more precisely, 90 ° peel test).
  • the positive electrode layer 2 is formed on the surface of the positive electrode current collector 1 by a dry film forming method.
  • the solid electrolyte layer 3 is formed on the surface of the positive electrode layer 2 opposite to the positive electrode current collector 1 by a dry film forming method.
  • the negative electrode layer 4 is formed on the surface of the solid electrolyte layer 3 opposite to the positive electrode layer 2 by a dry film forming method.
  • the negative electrode collector 5 is laminated
  • the warpage of the positive electrode current collector 1 and the positive electrode layer 2 and the warpage of the negative electrode current collector 5 and the negative electrode layer 4 are offset in a single cell. Even if there is, the warp can be suppressed.
  • the positive electrode layer 2 is a 50 mm square, LiNi 0.8 Co 0.15 Al 0.05 O 2 (particle size: 6 ⁇ m) is used as the positive electrode active material of the positive electrode layer 2, and the lithium ion conductive solid of the positive electrode layer 2 Li 2 S (80 mol%)-P 2 S 5 (20 mol%) was used as the electrolyte.
  • the solid electrolyte layer 3 was 54 mm square, and Li 2 S (80 mol%)-P 2 S 5 (20 mol%) was used for the solid electrolyte layer 3.
  • the negative electrode layer 4 is 54 mm square, graphite (particle size 25 ⁇ m) is used as the negative electrode active material of the negative electrode layer 4, and Li 2 S (80 mol%)-P 2 S is used as the lithium ion conductive solid electrolyte of the negative electrode layer 4. 5 (20 mol%) was used.
  • Comparative Example 2 Stainless steel foil (material with low adhesion) was used for the positive electrode current collector, and roughened copper foil (material with high adhesion) was used for the negative electrode current collector. According to the all-solid-state lithium ion secondary battery according to Comparative Example 2, although not shown, the amount of bending due to warpage was the same as that of Comparative Example 1.
  • Etched aluminum (a material with high adhesion) was used for the positive electrode current collector 1
  • roughened copper foil (a material with high adhesion) was used for the negative electrode current collector 5. According to the all-solid-state lithium ion secondary battery of Example 1, the amount of bending due to warpage could be suppressed to 5 to 6 mm, which is about 1/3 of the comparative example (FIG. 14).
  • Tin highly adhesive material
  • roughened copper foil highly adhesive material
  • the peel strength of the body 5 from the sulfide inorganic solid electrolyte by the peel test may be 0.2 N / mm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極集電体(1)および負極集電体(5)にそれぞれ配置されるとともに加圧されてなる正極層(2)および負極層(4)と、これら正極層(2)および負極層(4)の間に配置される固体電解質層(3)とを具備する全固体リチウムイオン二次電池である。上記正極層(2)および負極層(4)は、硫化物無機固体電解質を有し、上記正極集電体(1)および負極集電体(5)は、ピール試験による硫化物無機固体電解質との剥離強度が0.2N/mm以上である。

Description

全固体二次電池
 本発明は、全固体二次電池に関するものである。
 近年、スマートフォン・タブレット端末・ノートパソコンなどの情報関連機器や通信機器の高機能化に伴い、長時間使用が可能であり、小型・軽量で安全性の高い二次電池が強く要望されている。また、自動車業界においても、電気自動車用やハイブリッド自動車用の高出力且つ高容量の電池の開発が進められている。これらの要望に応え得る電池として、特に全固体リチウムイオン二次電池(全固体二次電池の1つ)が安全性の面からも注目を集めている。
 全固体リチウムイオン二次電池では、粒状物からなる電極材料の粒界抵抗を低減させるために、正極集電体および負極集電体の間に電極材料が挟み込まれた状態で加圧成型される。
 特に、電極材料に硫化物無機固体電解質を用いると、硫化物無機固体電解質が高い結着力および延性を有するので、上記加圧成型により電極材料における粒子同士の密着性が向上する。また、硫化物無機固体電解質は、酸化物無機固体電解質と比べてイオン伝導度が低いので、上記加圧成型が重要になる。さらに、正極集電体および負極集電体に密着性の高い材料を用いることで、正極集電体および負極集電体と電極材料と間における電気抵抗が小さくなる。
 しかしながら、電極材料に硫化物無機固体電解質を用いた全固体リチウムイオン二次電池は、上記加圧成型により、正極側または負極側に反ることになる。この反りは、全固体リチウムイオン二次電池の最大外形長が小さい場合だと、湾曲量が小さく問題にならないが、最大外形長が大きい場合だと、湾曲量が大きく問題になる。そして、この反りを矯正すれば、電極材料に割れの発生するおそれがある。
 このような反りを防止する全固体リチウムイオン二次電池として、正極集電体の両面それぞれに、正極活物質層、固体電解質層、負極活物質層、および負極集電体を積層したものが提案されている(例えば、特許文献1参照)。
日本国特開2001-126756号公報
 ところで、全固体二次電池は、単セルであれば、製造工程が短縮され、且つ配線が単純になるという利点を有する。しかしながら、上記特許文献1に記載の全固体リチウムイオン二次電池は、複層セルであることを前提としている。言い換えれば、上記全固体リチウムイオン二次電池だと、単セルにすることができないという問題がある。
 そこで、本発明は、反りを抑えることができる単セルの全固体二次電池を提供することを目的とする。
 上記課題を解決するため、請求項1に係る本発明の全固体二次電池は、正極集電体および負極集電体にそれぞれ配置されるとともに加圧されてなる正極層および負極層と、これら正極層および負極層の間に配置される固体電解質層とを具備する全固体二次電池であって、
 上記正極層および負極層は、硫化物無機固体電解質を有し、
 上記正極集電体および負極集電体は、ピール試験による硫化物無機固体電解質との剥離強度が0.2N/mm以上であるものである。
 また、請求項2に係る本発明の全固体二次電池は、請求項1に係る発明の全固体二次電池において、固体電解質層は、硫化物無機固体電解質からなるものである。
 さらに、請求項3に係る本発明の全固体二次電池は、請求項1または2に係る発明の全固体二次電池において、正極集電体は、錫またはエッチドアルミニウムであり、
 負極集電体は、粗化銅であるものである。
 上記全固体二次電池によると、単セルにおいて、正極集電体および正極層の反りと、負極集電体および負極層との反りとが相殺されるので、単セルであっても反りを抑えることができる。
本発明の実施の形態に係る全固体リチウムイオン二次電池の概略構成を示す断面図である。 同全固体リチウムイオン二次電池における正極層の加圧成型による反りを説明するための断面図であり、加圧される前の状態を示す。 同全固体リチウムイオン二次電池における正極層の加圧成型による反りを説明するための断面図であり、加圧されている状態を示す。 同全固体リチウムイオン二次電池における正極層の加圧成型による反りを説明するための断面図であり、加圧された後の状態を示す。 同全固体リチウムイオン二次電池における正極層の加圧成型による反りを説明するための断面図であり、正極集電体および正極層の密着性が低い場合を示す。 同全固体リチウムイオン二次電池における正極層の加圧成型による反りを説明するための断面図であり、正極集電体および正極層の密着性が高い場合を示す。 同全固体リチウムイオン二次電池の反りが抑えられる原理を説明するための断面図である。 同全固体リチウムイオン二次電池における正極(負極)集電体の表面近傍を示す拡大斜視図であり、正極集電体がエッチドアルミニウムの場合を示す。 同全固体リチウムイオン二次電池における正極(負極)集電体の表面近傍を示す拡大斜視図であり、負極集電体が粗化銅の場合を示す。 90°ピール試験を説明するための側面図であり、剥離する前の状態を示す。 90°ピール試験を説明するための側面図であり、剥離している状態を示す。 90°ピール試験を説明するための側面図であり、剥離した後の状態を示す。 比較例1に係る全固体リチウムイオン二次電池の写真である。 本発明の実施例1に係る全固体リチウムイオン二次電池の写真である。
 以下、本発明の実施の形態に係る全固体二次電池について図面に基づき説明する。なお、本実施の形態では、全固体二次電池の一例として、固体電解質にリチウムイオン伝導性のものを用いた全固体二次電池、すなわち全固体リチウムイオン二次電池について説明する。
 まず、本実施の形態に係る全固体リチウムイオン二次電池の基本的構成について説明する。
 この全固体リチウムイオン二次電池は、図1に示すように、正極層2と負極層4との間にリチウムイオン伝導性固体電解質層(以下では単に、固体電解質層3という)が配置(積層)され、また正極層2の固体電解質層3とは反対側の表面に正極集電体1が、負極層4の固体電解質層3とは反対側の表面に負極集電体5が、それぞれ配置(積層)されたものである。上記正極層2および負極層4は、当然ながら電極となる層、つまり電極層である。また、上記正極層2および負極層4は、詳しくは後述するが、いずれも硫化物無機固体電解質を有する。なお、上記正極層2、固体電解質層3および負極層4は、いずれも粉末材料から形成されたものである。また、正極層2の外周に絶縁フィルム6を配置してもよい。
 次に、本発明の要旨について説明する。
 図2に示すように、正極集電体1の表面に配置された正極層2を加圧成型すると、図3に示すように、上記正極層2は、厚さ(積層)方向に圧縮するとともに幅方向に膨張しようとするが、正極集電体1から幅方向の反対向きに摩擦力Fを受けて、幅方向に膨張できない。このため、正極層2には、幅方向に膨張しようとする残留応力が発生する。しかしながら、図4に示すように、加圧成型を終えた正極層2は、上記残留応力が解放されて、幅方向に膨張しようとする。
 ここで、正極集電体1のピール試験による硫化物無機固体電解質との剥離強度が0.2N/mm未満である場合、正極集電体1および正極層2(硫化物無機固体電解質を有する)の密着性が低い。この場合、図5に示すように、正極層2は、正極集電体1の表面を滑りながら膨張するので、正極集電体1の形状に影響を与えない。これに対して、正極集電体1のピール試験による硫化物無機固体電解質との剥離強度が0.2N/mm以上である場合、正極集電体1および正極層2の密着性が高い。この場合、図6に示すように、正極層2は、正極集電体1の表面に食い込んだまま膨張するので、正極集電体1に反りを発生させる。上述した内容は、正極集電体1および正極層2についてだけでなく、図示しないが、負極集電体5および負極層4についても同様である。
 本発明は、図7に示すように、正極集電体1および正極層2の反りと、負極集電体5および負極層4の反りと相殺することで、全固体リチウムイオン二次電池の全体としての反りを抑えようとするものである。
 以下、上記全固体リチウムイオン二次電池の詳細な構成について説明する。
 上記正極層2には、正極活物質とリチウムイオン伝導性固体電解質との混合物が用いられる。上記混合物における、正極活物質とリチウムイオン伝導性固体電解質との重量比は、例えば7:3である。ここで、正極活物質には、リチウム・ニッケル複合酸化物(LiNi1-x;MはCo,Al,Mn,V,Cr,Mg,Ca,Ti,Zr,Nb,MoおよびWのうち少なくとも1つの元素)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)など、電池分野において正極活物質に通常用いられている材料が用いられる。
 上記負極層4には、負極活物質とリチウムイオン伝導性固体電解質との混合物が用いられる。上記混合物における、負極活物質とリチウムイオン伝導性固体電解質との重量比は、例えば6:4である。ここで、負極活物質には、天然黒鉛、人造黒鉛、黒鉛炭素繊維または樹脂焼成炭素などの炭素材料、シリコン、錫、リチウム、酸化物、硫化物、窒化物、合金など、粉体や箔などの形状にかかわらず、電池分野において負極活物質に通常用いられている材料が用いられる。
 ここで、正極層2、固体電解質層3、負極層4のリチウムイオン伝導性固体電解質には、有機化合物、無機化合物、有機および無機の両化合物からなる材料、リチウムイオン電池分野で通常用いられている材料などが用いられる。また、無機化合物のうち、例えばLiS-Pなどの硫化物系は、他の無機化合物と比べてイオン伝導性に優れる。
 上記正極集電体1および負極集電体5には、表面未処理の錫、エッチングにより表面にスポンジ状の細孔が多数形成されたエッチドアルミニウム(図8参照)、または表面にピラミッド状の低角錐が多数形成された粗化銅(図9参照)などが用いられる。また、これらは、板状体、箔状体、成膜体、または金属箔複合体などである。この金属箔複合体は、金属箔に表面コートを施した複合体であり、例えば、ステンレス箔の表面にカーボンコートを施したものである。上記正極集電体1および負極集電体5は、同一のものが用いられてもよく、異なるものが用いられてもよい。このような正極集電体1および負極集電体5とすることにより、ピール試験(正確には90°ピール試験)による硫化物無機固体電解質との剥離強度が高く(0.2N/mm以上)なる。
 以下、上記正極集電体(負極集電体)の硫化物無機固体電解質との剥離強度を計測するためのピール試験(正確には90°ピール試験)について説明する。
 図10に示すように、50mm(短手方向)×100mm(長手方向)の集電体1,5(正極集電体1または負極集電体5)に、LiS-P層Lを14mg/cmで均一の厚さに形成した。こうして得られたものを厚さ(積層)方向に300MPaで加圧して、試験片とした。
 ここで、上記ピール試験の試験片を構成する層にLiS-P層L(正極層2または負極層4と同一材料からなる層ではなく)を用いた理由について説明する。
 正極層2または負極層4と同一材料(以下では電極合材という)を加圧成型したものは、粉体同士の結着力が小さくなる。この結着力は、電極合材からなる層と集電体1,5との密着力よりも小さい。このため、上記試験片を構成する層に電極合材からなる層を用いた場合、ピール試験において、電極合材からなる層が破断(層間剥離ともいう)するので、電極合材からなる層と集電体1,5との剥離が発生しない。したがって、ピール試験により計測される値は、電極合材からなる層と集電体1,5との剥離強度ではなく、電極合材からなる層の層間剥離強度となるからである。
 また、上記ピール試験は、正確には90°ピール試験であるから、厚さ(積層)方向に剥離させようとするものである。このため、上記試験片を構成する層に電極合材からなる層を用いた場合、ピール試験において、電極合材からなる層が層間剥離する。これに対して、実際の全固体リチウムイオン二次電池は、図6で説明したように、厚さ(積層)方向ではなく幅方向に膨張しようとするので、電極材料が層間剥離しない。したがって、集電体1,5に密着させる層が電極合材からなる層およびLiS-P層Lのいずれであっても、同等の密着力を有すると考えられるからである。
 上記試験片におけるLiS-P層Lの一端部(長手方向)を試験台Bに接着剤Aで固定するとともに、上記試験片の他端部(長手方向)をチャックCで引っ張る。なお、チャックCで引っ張る方向は、試験台Bの面に対して常に直交させる。すると、図11に示すように、LiS-P層Lは、一端部が試験台Bに固定されるとともに他端部が引っ張られるので、いずれ破断する。その後、試験台Bに固定されたLiS-P層Lと、集電体1,5とが剥離し始める。この際に、チャックCで負荷が計測される。そして、図12に示すように、上記剥離が終了すると、上記計測も終了する。
 こうして上記計測で得られた負荷の平均値を、試験片の短手方向における長さで除した値が、ピール試験(正確には90°ピール試験)による剥離強度となる。
 以下、上記全固体リチウムイオン二次電池の製造方法について説明する。
 まず、正極集電体1の表面に、乾式成膜法により正極層2を形成する。次に、正極層2の正極集電体1とは反対側の表面に、乾式成膜法により固体電解質層3を形成する。その後、固体電解質層3の正極層2とは反対側の表面に、乾式成膜法により負極層4を形成する。そして、負極層4の固体電解質層3とは反対側の表面に負極集電体5を積層し、正極層2に98kN/cm(10tf/cm,980MPa)の圧力が作用するように、正極集電体1および負極集電体5から厚さ(積層)方向に加圧する。こうして、全固体リチウムイオン二次電池が製造される。
 上記全固体リチウムイオン二次電池によると、単セルにおいて、正極集電体1および正極層2の反りと、負極集電体5および負極層4との反りとが相殺されるので、単セルであっても反りを抑えることができる。
 以下、上記実施の形態をより具体的に示した実施例に係る全固体リチウムイオン二次電池と、比較例に係る全固体リチウムイオン二次電池とについて説明する。なお、以下の実施例および比較例では、いずれも、次の条件を満たすものとした。
(1)正極層2を50mm角とし、正極層2の正極活物質にLiNi0.8Co0.15Al0.05(粒径6μm)を用い、正極層2のリチウムイオン伝導性固体電解質にLiS(80mol%)-P(20mol%)を用いた。
(2)固体電解質層3を54mm角とし、固体電解質層3にLiS(80mol%)-P(20mol%)を用いた。
(3)負極層4を54mm角とし、負極層4の負極活物質にグラファイト(粒径25μm)を用い、負極層4のリチウムイオン伝導性固体電解質にLiS(80mol%)-P(20mol%)を用いた。
 [比較例1]
 正極集電体にエッチドアルミニウム(密着性の高い材料)を用い、負極集電体に電解銅箔(密着性の低い材料)を用いた。本比較例1に係る全固体リチウムイオン二次電池によると、反りによる湾曲量が15~20mmとなった(図13)。
 [比較例2]
 正極集電体にステンレス箔(密着性の低い材料)を用い、負極集電体に粗化銅箔(密着性の高い材料)を用いた。本比較例2に係る全固体リチウムイオン二次電池によると、図示しないが、反りによる湾曲量が上記比較例1と同様になった。
 正極集電体1にエッチドアルミニウム(密着性の高い材料)を用い、負極集電体5に粗化銅箔(密着性の高い材料)を用いた。本実施例1に係る全固体リチウムイオン二次電池によると、反りによる湾曲量を上記比較例の1/3程度である5~6mmに抑えることができた(図14)。
 正極集電体1に錫(密着性の高い材料)を用い、負極集電体5に粗化銅箔(密着性の高い材料)を用いた。本実施例2に係る全固体リチウムイオン二次電池によると、図示しないが、反りによる湾曲量を上記実施例1と同等に抑えることができた。
 このように、上記実施例および比較例に係る全固体リチウムイオン二次電池を対比すると明らかであるが、上記実施例に係る全固体リチウムイオン二次電池によると、単セルであっても反りを抑えることができた。
 ところで、上記実施の形態および実施例では、全固体二次電池の一例として全固体リチウムイオン二次電池について説明したが、これに限定されるものではなく、全固体二次電池であればよい。
 また、上記実施の形態および実施例では、正極集電体1および負極集電体5の具体的な材料について説明したが、これに限定されるものではなく、正極集電体1および負極集電体5のピール試験(正確には90°ピール試験)による硫化物無機固体電解質との剥離強度が0.2N/mm以上であればよい。

Claims (3)

  1.  正極集電体および負極集電体にそれぞれ配置されるとともに加圧されてなる正極層および負極層と、これら正極層および負極層の間に配置される固体電解質層とを具備する全固体二次電池であって、
     上記正極層および負極層は、硫化物無機固体電解質を有し、
     上記正極集電体および負極集電体は、ピール試験による硫化物無機固体電解質との剥離強度が0.2N/mm以上であることを特徴とする全固体二次電池。
  2.  固体電解質層は、硫化物無機固体電解質からなることを特徴とする請求項1に記載の全固体二次電池。
  3.  正極集電体は、錫またはエッチドアルミニウムであり、
     負極集電体は、粗化銅であることを特徴とする請求項1または2に記載の全固体二次電池。
     
PCT/JP2015/059286 2014-03-28 2015-03-26 全固体二次電池 WO2015147122A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167026394A KR102350322B1 (ko) 2014-03-28 2015-03-26 전고체 2차전지
CN201580012833.2A CN106068577B (zh) 2014-03-28 2015-03-26 全固态二次电池及其制造方法
EP15769914.1A EP3125351B1 (en) 2014-03-28 2015-03-26 All-solid-state secondary battery
JP2016510462A JP6639383B2 (ja) 2014-03-28 2015-03-26 全固体二次電池
US15/129,695 US20170179519A1 (en) 2014-03-28 2015-03-26 All-solid-state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-067318 2014-03-28
JP2014067318 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147122A1 true WO2015147122A1 (ja) 2015-10-01

Family

ID=54195629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059286 WO2015147122A1 (ja) 2014-03-28 2015-03-26 全固体二次電池

Country Status (6)

Country Link
US (1) US20170179519A1 (ja)
EP (1) EP3125351B1 (ja)
JP (1) JP6639383B2 (ja)
KR (1) KR102350322B1 (ja)
CN (1) CN106068577B (ja)
WO (1) WO2015147122A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157271A (ja) * 2016-02-29 2017-09-07 日立造船株式会社 全固体二次電池およびその製造方法
JP2017183121A (ja) * 2016-03-31 2017-10-05 日立造船株式会社 全固体二次電池の製造方法
EP3425719A4 (en) * 2016-02-29 2019-09-18 Hitachi Zosen Corporation FULLY SOLID RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME
US11145907B2 (en) * 2017-03-28 2021-10-12 Sanyo Electric Co., Ltd. Method for producing secondary battery having negative electrode with different surface roughnesses
US11476503B2 (en) 2018-12-12 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. All-solid-state battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446873B2 (en) * 2016-12-30 2019-10-15 Intel Corporation Solid-state battery
JP7100798B2 (ja) * 2018-01-09 2022-07-14 トヨタ自動車株式会社 非水電解液二次電池
KR20220132175A (ko) * 2021-03-23 2022-09-30 주식회사 엘지에너지솔루션 습윤 상태의 전극 시편에 대한 접착력 측정 시스템 및 이를 이용한 습윤 상태의 전극 시편에 대한 접착력 측정 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171814A (ja) * 1995-01-25 1997-06-30 Ricoh Co Ltd リチウム二次電池用負極および該負極を用いたリチウム二次電池
JP2009289534A (ja) * 2008-05-28 2009-12-10 Idemitsu Kosan Co Ltd 全固体リチウム電池用電極、全固体リチウム電池および装置
WO2011064842A1 (ja) * 2009-11-25 2011-06-03 トヨタ自動車株式会社 電極積層体の製造方法および電極積層体
JP2013105679A (ja) * 2011-11-15 2013-05-30 Sumitomo Electric Ind Ltd 非水電解質電池用電極、及び非水電解質電池、並びに電動車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126756A (ja) 1999-10-25 2001-05-11 Kyocera Corp リチウム固体電解質電池およびその製造方法
JP5679748B2 (ja) * 2010-09-21 2015-03-04 日立造船株式会社 全固体電池の製造方法
WO2012073678A1 (ja) * 2010-11-29 2012-06-07 Jsr株式会社 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池
JP5902287B2 (ja) * 2012-03-16 2016-04-13 株式会社東芝 リチウムイオン伝導性硫化物、固体電解質二次電池および電池パック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171814A (ja) * 1995-01-25 1997-06-30 Ricoh Co Ltd リチウム二次電池用負極および該負極を用いたリチウム二次電池
JP2009289534A (ja) * 2008-05-28 2009-12-10 Idemitsu Kosan Co Ltd 全固体リチウム電池用電極、全固体リチウム電池および装置
WO2011064842A1 (ja) * 2009-11-25 2011-06-03 トヨタ自動車株式会社 電極積層体の製造方法および電極積層体
JP2013105679A (ja) * 2011-11-15 2013-05-30 Sumitomo Electric Ind Ltd 非水電解質電池用電極、及び非水電解質電池、並びに電動車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157271A (ja) * 2016-02-29 2017-09-07 日立造船株式会社 全固体二次電池およびその製造方法
EP3425719A4 (en) * 2016-02-29 2019-09-18 Hitachi Zosen Corporation FULLY SOLID RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME
US11101497B2 (en) 2016-02-29 2021-08-24 Hitachi Zosen Corporation All-solid state secondary battery and method for manufacturing same
JP2017183121A (ja) * 2016-03-31 2017-10-05 日立造船株式会社 全固体二次電池の製造方法
US11145907B2 (en) * 2017-03-28 2021-10-12 Sanyo Electric Co., Ltd. Method for producing secondary battery having negative electrode with different surface roughnesses
US11476503B2 (en) 2018-12-12 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. All-solid-state battery

Also Published As

Publication number Publication date
JPWO2015147122A1 (ja) 2017-04-13
EP3125351A4 (en) 2017-02-01
EP3125351B1 (en) 2019-06-05
EP3125351A1 (en) 2017-02-01
CN106068577B (zh) 2019-09-24
CN106068577A (zh) 2016-11-02
KR20160138967A (ko) 2016-12-06
US20170179519A1 (en) 2017-06-22
KR102350322B1 (ko) 2022-01-11
JP6639383B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6639383B2 (ja) 全固体二次電池
CN107683543B (zh) 全固态二次电池及其制造方法
JP5636965B2 (ja) リチウムイオン二次電池用電極体の製造方法、及びリチウムイオン二次電池の製造方法
JP6576072B2 (ja) 全固体二次電池の製造方法
JP7148600B2 (ja) 固体電池
WO2017163846A1 (ja) リチウムイオン二次電池、電極及びその製造方法
KR102514166B1 (ko) 적층 전지 및 그 제조 방법
JP2015162353A (ja) 全固体電池の製造方法
JP6324296B2 (ja) 全固体二次電池
JP6943208B2 (ja) 全固体電池の製造方法および全固体電池
JP6070471B2 (ja) 全固体リチウム二次電池及び全固体リチウム二次電池の製造方法
WO2017187494A1 (ja) 全固体二次電池
US11302958B2 (en) Method and apparatus for producing all-solid-state battery
JP2012059472A (ja) 二次電池用電極の製造方法
JP2018147621A (ja) 全固体電池の製造方法
JP6895761B2 (ja) 全固体電池の製造方法
CN111886742B (zh) 固体电池
JP2015103432A (ja) 全固体電池の製造方法
KR101592812B1 (ko) 2차 전지 및 그 제작방법
JP6937124B2 (ja) 全固体二次電池の製造方法
CN112005420B (zh) 固体电池
US20230318028A1 (en) Solid-state secondary battery and method of manufacturing solid-state secondary battery
JP2011086546A (ja) リチウム電池及びそれを用いた電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167026394

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016510462

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769914

Country of ref document: EP