WO2017163846A1 - リチウムイオン二次電池、電極及びその製造方法 - Google Patents

リチウムイオン二次電池、電極及びその製造方法 Download PDF

Info

Publication number
WO2017163846A1
WO2017163846A1 PCT/JP2017/008812 JP2017008812W WO2017163846A1 WO 2017163846 A1 WO2017163846 A1 WO 2017163846A1 JP 2017008812 W JP2017008812 W JP 2017008812W WO 2017163846 A1 WO2017163846 A1 WO 2017163846A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
layer
positive electrode
heat
Prior art date
Application number
PCT/JP2017/008812
Other languages
English (en)
French (fr)
Inventor
和矢 三村
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to US16/087,357 priority Critical patent/US20210210761A1/en
Priority to JP2018507188A priority patent/JPWO2017163846A1/ja
Publication of WO2017163846A1 publication Critical patent/WO2017163846A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, an electrode, and a manufacturing method thereof.
  • Lithium-ion secondary batteries are small, lightweight, and have a high energy density. Therefore, power sources for portable devices such as smartphones and game devices, power sources for driving motors mounted on vehicles, power sources for commercial power backup applications, and homes It is widely used for storage batteries that cover a part of electricity in buildings and buildings.
  • a positive electrode and a negative electrode are alternately stacked via a separator, or a stack of positive and negative electrodes via a separator is wound to form a power generation element part. Is common.
  • the positive electrode and the negative electrode facing each other prevent the deposition of lithium accompanying the charging / discharging of the battery by increasing the area of the active material layer on the negative electrode side.
  • the positive electrode and negative electrode of a lithium ion secondary battery are coated with a slurry containing an active material, a binder, etc. on one or both sides of a long foil-like current collector, and dried continuously or intermittently. It is formed with.
  • the active material layer is further compressed to increase the mutual adhesion between the active material particles and between the active material particles and the current collector, to reduce the electrical contact resistance, and to improve the energy density.
  • the positive electrode and the negative electrode are provided with a portion where the active material layer is present on the foil-shaped current collector and a portion where the active material layer is not present. Is done.
  • the power generation element is housed in the outer case together with the electrolytic solution, and the electrode terminals are drawn out of the outer case.
  • Patent Document 1 a technique for attaching an insulating tape to a portion where the thickness of the active material at the boundary portion is reduced has also been proposed.
  • Patent Document 2 In order to suppress thermal runaway when a short circuit occurs between the positive electrode and the negative electrode through the separator at the main surface portion where the electrode active material layer faces through the separator, Forming a heat-resistant layer containing insulating particles on the active material, and interposing a heat-resistant layer to suppress thermal runaway due to a short circuit between the positive and negative electrodes even if the separator shrinks or disappears excessively at high temperatures A technique is disclosed (Patent Document 2).
  • FIG. 9 is an enlarged cross-sectional view showing an end portion of an electrode when a heat-resistant layer is formed on the electrode in a related lithium ion secondary battery.
  • FIG. 10 is an enlarged cross-sectional view showing an end portion of an electrode when a heat-resistant layer and an insulating layer are formed on the electrode in a related lithium ion secondary battery.
  • an object of the present invention is to provide an electrode and a secondary battery that do not impede electrical characteristics even when a heat-resistant layer and an insulating layer are provided and have high safety.
  • a lithium ion secondary battery is provided in which a part or all of the insulating layer is covered and a heat resistant layer is formed to cover the surface of the positive electrode active material layer, and the heat resistant layer includes
  • An electrode having an active material layer formed on at least one surface of a current collector and an active material layer containing a first resin, and an active material layer non-forming portion where no active material layer is formed, A boundary portion between the active material layer and the active material layer non-forming portion is covered with an insulating layer, and the insulating layer includes a third resin, There is provided an electrode in which a heat-resistant layer covering the surface of the active material layer is formed, the heat-resistant layer and the insulating layer overlap at an end of the active material layer, and the heat-resistant layer contains a fourth resin.
  • a method for manufacturing the above electrode Forming an active material layer on the current collector; and forming an insulating layer at an end of the active material layer so as to cover a boundary between the active material layer forming portion and the non-forming portion on the current collector When, And a step of forming a heat-resistant layer on the active material layer.
  • An electrode having an active material layer formed on at least one surface of a current collector and an active material layer containing a first resin, and an active material layer non-forming portion where no active material layer is formed, A boundary portion between the active material layer and the active material layer non-forming portion is covered with an insulating layer, and the insulating layer includes a third resin, An electrode is provided that covers a part or all of the insulating layer and a heat-resistant layer that covers a surface of the active material layer, and the heat-resistant layer contains a fourth resin.
  • the lithium ion secondary battery according to the first aspect can be configured as follows.
  • the insulating layer covers the boundary between the formed part and the non-formed part of the positive electrode active material layer on at least one surface of the positive electrode current collector.
  • a heat-resistant layer that covers the positive electrode active material layer is formed, and the heat-resistant layer covers a part (end part) or the whole of the insulating layer.
  • it can coat
  • covers the said positive electrode active material layer can be formed, and the said insulating layer can comprise a part (edge part) of the said heat-resistant layer.
  • it can be coated with a heat-resistant layer and an insulating layer so that the surface of the positive electrode active material layer is not exposed.
  • the positive electrode active material layer may have an inclined portion whose thickness decreases toward the end of the positive electrode active material layer on the non-formed part side.
  • one end of the insulating layer may be located at the inclined portion, and the other end of the insulating layer may be formed on the surface of the positive electrode current collector (a portion where the positive electrode active material layer is not formed).
  • the slope can be further provided with a step.
  • This step can be formed by a portion including a surface having a large inclination angle with respect to the current collector plane and a surface following this surface having a small inclination angle, such as a portion indicated by reference numeral 2s in FIG.
  • This step corresponds to a concave portion that exists along the longitudinal direction of the inclined portion (the direction along the end of the positive electrode active material layer: from the front to the back in FIG. 4), and the depth of the concave portion is The depth is preferably equal to or greater than the thickness of the insulating layer or heat-resistant layer on the positive electrode active material layer, and more preferably about the same as the total thickness of the insulating layer and heat-resistant layer on the positive electrode active material layer.
  • the depth of the recess is preferably equal to or less than the total thickness of the insulating layer and the heat-resistant layer on the positive electrode active material layer plus the thickness of the insulating layer or the heat-resistant layer.
  • the first resin, the third resin, and the fourth resin are preferably fluorine-based resins.
  • One end of the heat-resistant layer is located on the surface of the positive electrode active material layer of the inclined portion, and one end of the heat-resistant layer can be covered with the insulating layer (for example, the configuration shown in FIG. 3).
  • One end of the insulating layer is positioned on the surface of the positive electrode active material layer of the inclined portion, and the one end of the insulating layer can be covered with the heat-resistant layer (for example, the configuration shown in FIG. 2).
  • the electrode according to the second aspect can be configured as follows.
  • the insulating layer covers a boundary portion between the forming portion and the non-forming portion of the active material layer on at least one surface on the current collector.
  • a heat-resistant layer that covers the active material layer is formed, and the heat-resistant layer covers a part or all of the insulating layer.
  • FIG. 2 it can be covered with a heat-resistant layer and an insulating layer so that the surface of the active material layer is not exposed.
  • the heat-resistant layer that covers the active material layer is formed, and the insulating layer covers a part of the heat-resistant layer.
  • it can be coated with a heat-resistant layer and an insulating layer so that the surface of the active material layer is not exposed.
  • the active material layer may have an inclined portion whose thickness decreases toward the end of the active material layer on the non-formed part side.
  • one end of the insulating layer may be positioned on the inclined portion, and the other end of the insulating layer may be formed on the surface of the current collector (the non-active material layer forming portion).
  • the slope can be further provided with a step.
  • This step can be formed by a portion including a surface having a large inclination angle with respect to the current collector plane and a surface following this surface having a small inclination angle, such as a portion indicated by reference numeral 2s in FIG.
  • This step corresponds to a concave portion existing along the longitudinal direction of the inclined portion (direction along the edge of the active material layer: from the front to the back in FIG. 4), and the depth of this concave portion is the active depth.
  • the depth is preferably equal to or greater than the thickness of the insulating layer or heat-resistant layer on the material layer, and more preferably about the same as the total thickness of the insulating layer and heat-resistant layer on the active material layer.
  • the depth of the recess is preferably equal to or less than the total thickness of the insulating layer and the heat resistant layer on the active material layer plus the thickness of the insulating layer or the heat resistant layer.
  • the increase in local thickness can be suppressed.
  • a more reliable battery can be obtained. Can be provided.
  • the first resin, the third resin, and the fourth resin are preferably fluorine-based resins.
  • One end of the heat-resistant layer is located on the surface of the active material layer of the inclined portion, and one end of the heat-resistant layer can be covered with the insulating layer.
  • One end of the insulating layer is positioned on the surface of the active material layer of the inclined portion, and the one end of the insulating layer can be covered with the heat-resistant layer.
  • the resin contained in each layer bonds the mutual layers to improve adhesion, It is possible to provide a lithium ion secondary battery that does not easily peel even between the layer and the heat-resistant layer.
  • the heat-resistant layer can be formed so as to overlap with part or all of the insulating layer, high positioning efficiency can be obtained because it does not require positioning accuracy as in the past.
  • the total thickness of the active material layer, the heat-resistant layer, and the insulating layer is the portion where the heat-resistant layer and the insulating layer overlap on the active material layer on at least one surface of the current collector.
  • the thickness is preferably smaller than the thickness of the other portion where the active material layer and the heat-resistant layer overlap.
  • the thickness of the insulating layer portion on the current collector is smaller than the total thickness of the active material layer, the heat resistant layer, and the insulating layer in the portion where the heat resistant layer and the insulating layer overlap on the active material layer.
  • the electrode according to the embodiment of the present invention can be formed by a manufacturing method including the following steps.
  • step (C) By performing the step (C) prior to the step (B), it is possible to form an insulating layer that covers a part of the heat-resistant layer and covers the boundary between the formed part of the active material layer and the non-formed part (for example, FIG. 3). ).
  • FIG. 1 schematically shows a configuration example of a lithium ion secondary battery.
  • a lithium ion secondary battery 100 includes a power generation element in which a plurality of positive electrodes 1 and negative electrodes 6 are alternately stacked with separators 20 interposed therebetween, or alternatively, positive electrodes 1 and negative electrodes 6 A power generation element wound with the separator 20 stacked thereon can be used.
  • This power generation element is housed in an outer container together with the electrolytic solution.
  • the exterior container is formed of a flexible film 30.
  • One end of the positive electrode terminal 11 is connected to the positive electrode 1 of the power generation element, and one end of the negative electrode terminal 16 is connected to the negative electrode 6.
  • the other end side of the positive electrode terminal 11 and the other end side of the negative electrode terminal 16 are respectively connected to the outer container. Has been pulled out of.
  • the positive electrode 1 includes a positive electrode current collector 3, a positive electrode active material layer 2 formed of a mixture containing an active material and a binder, and a non-forming portion of the positive electrode active material layer.
  • the negative electrode 6 includes the negative electrode active material layer 2 and a portion where the negative electrode active material layer is not formed.
  • the positive electrode terminal 11 is fixed to the non-formed portion of the positive electrode active material layer by ultrasonic welding or the like, and has an electrical connection.
  • the negative electrode terminal 16 is electrically connected with the non-formation part of a negative electrode active material layer.
  • the non-formation part of the positive electrode active material layer and the non-formation part of the negative electrode active material layer are connected to electrode terminals of the respective polarities for each layer.
  • a wound type battery since a pair of positive and negative electrodes are wound, in FIG. 1, one or two active material layer non-formed portions and electrode terminals are connected for each turn. However, it is not always necessary to make electrical connections from a plurality of locations.
  • FIG. 2 is an enlarged cross-sectional view schematically showing an end portion of the electrode according to the first embodiment of the present invention.
  • the insulating layer 9 covers the boundary 4 between the positive electrode active material layer forming portion and the non-forming portion of the positive electrode 1 and is formed across the forming portion and the non-forming portion. Further, the heat-resistant layer 5 is formed on the positive electrode active material. ing. In FIG. 2, the end portion of the insulating layer 9 located on the positive electrode active material layer side is covered with the heat-resistant layer 5.
  • the boundary portion between the portion where the insulating layer is present and the portion where the insulating layer is not present in the active material layer can be covered. Even when the surface tension acts on the boundary portion of the insulating layer and rises, the boundary portion is covered with the heat-resistant layer, so that the surface becomes smooth and works in the direction of suppressing local unevenness of the electrode. That is, it is possible to suppress local unevenness on the electrode without increasing the positional accuracy of the boundary portion of the insulating layer.
  • the negative electrode active material layer 7 is opposed to the position where the positive electrode active material layer 2 exists, and has an outer dimension larger than the outer periphery of the positive electrode active material layer.
  • the separator 20 has a shape that is equal to or larger than the outer periphery of the negative electrode active material layer.
  • Examples of the positive electrode active material include layered structure materials such as lithium nickelate, lithium cobaltate, and lithium nickel cobaltate, spinel structure materials such as lithium manganate, and olivine materials such as iron phosphate. A plurality of these may be mixed.
  • the positive electrode active material layer is added to the positive electrode active material as appropriate by adding a binder, a conductive additive, etc., mixed and dispersed with a solvent to form a slurry, and a positive electrode current collector with a doctor blade, die coater, gravure coater, transfer, vapor deposition, etc. It can be obtained by coating and drying using
  • the negative electrode active material layer can also be obtained by applying a binder, a conductive additive, etc. to the negative electrode active material as appropriate, mixing and dispersing with a solvent into a slurry, and applying and drying the negative electrode current collector in the same manner as the positive electrode. it can.
  • the binder is fluorine resin, acrylic resin, epoxy resin, styrene resin, urethane resin, phenol resin, butadiene resin, cellulose resin, polyolefin resin, polyester resin, polyurethane resin, etc. Alternatively, those modified or copolymerized can be used alone or in combination.
  • the separator is made of a resin porous film, woven fabric, non-woven fabric, or the like, and the separator may contain inorganic particles as necessary.
  • the heat-resistant layer can contain insulating oxides, nitrides, sulfides, carbides, etc., and preferably contains insulating particles such as titanium oxide, aluminum oxide, and magnesium oxide.
  • the heat-resistant layer can be formed by applying a dispersion of insulating particles together with a binder on the positive electrode active material layer and drying. By using the same resin as the active material layer for the heat resistant layer, the bonding property between the insulating particles of the heat resistant layer and the adhesion between the insulating particles and the active material layer are maintained.
  • the insulating layer is made of fluorine resin, acrylic resin, epoxy resin, styrene resin, urethane resin, phenol resin, butadiene resin, cellulose resin, polyolefin resin, polyester resin, polyurethane resin, or the like. Those obtained by modifying or copolymerizing these can be used alone or in combination, and can be formed by applying a solution dissolved or dispersed in a solvent according to the resin and volatilizing the solvent, or by melting at a high temperature It can be formed by applying and cooling, applying pressure, irradiating with ultraviolet rays, or reacting with moisture in the air.
  • a resin of the same system as the resin component contained in the active material layer or the heat-resistant layer, and the resin dissolved in a solvent is applied.
  • a resin that can be dried the resin penetrates into the voids of the active material layer and the heat-resistant layer, and is particularly effective in improving the adhesion.
  • the resin components used for the insulating layer, the heat-resistant layer, and the active material layer may be different types or the same type.
  • Each of the positive electrode active material layer and the negative electrode active material layer is compressed together with the current collector to form a desired density.
  • the heat-resistant layer may be arbitrarily formed either before or after the active material layer is compressed, but it is preferable to adjust the density by applying compression or the like to the heat-resistant layer.
  • the outer container a case made of the flexible film 30 or a can case with little bending can be used, and the flexible film 30 is preferably used from the viewpoint of reducing the weight of the battery.
  • the positive electrode terminal 11 can be made of aluminum or an aluminum alloy
  • the negative electrode terminal 16 can be made of copper, a copper alloy, or those plated with nickel.
  • FIG. 3 is an enlarged cross-sectional view schematically showing an end portion of the electrode according to the second embodiment of the present invention.
  • the heat-resistant layer 15 is formed on the surface of the positive electrode active material layer 2, and the end of the positive electrode active material layer covers the boundary between the active material layer forming part and the non-formed part, and the heat-resistant layer An insulating layer 19 is formed to cover a part of the insulating layer 19.
  • the heat-resistant layer 15 covers at least the central portion of the active material layer 2 and is a portion of the thickness decreasing portion. It is formed so as to cover part or all.
  • One end of the heat-resistant layer 15 in the cross section in FIG. 3 is preferably located at a portion where the thickness of the active material layer is reduced. This is because, when an electrode to be described later is cut into a desired shape, the probability that insulating particles and the like are dropped from the heat-resistant layer can be reduced by cutting at a position not including the heat-resistant layer.
  • the heat-resistant layer When the heat-resistant layer is also located in a portion where the thickness of the active material layer decreases, in the step of compressing the electrode, the active material layer and the heat-resistant layer having a constant thickness extend in a direction parallel to the current collector. For this reason, stress may be applied to the portion of the heat-resistant layer formed in the portion where the thickness decreases, and the insulating particles may easily fall off.
  • the insulating layer 19 is further formed on the heat-resistant layer of the portion where the thickness is reduced, an effect of suppressing the falling off of the insulating particles and the like can be obtained.
  • FIG. 4 is an enlarged cross-sectional view schematically showing an end portion of the electrode according to the third embodiment of the present invention.
  • a step 2 s is formed at the slope of the end of the positive electrode active material layer, and one end of the insulating layer 29 is located at the step, and the insulating layer 29 covers the boundary 4 of the active material layer. The other end is disposed on the current collector.
  • One end side of the insulating layer is covered with a heat-resistant layer 25. Since the insulating layer 29 and the heat-resistant layer 25 overlap on the stepped portion, it is possible to suppress the occurrence of local thickness increase due to the insulating layer and the heat-resistant layer. In addition, since the thickness of the insulating layer disposed in the portion can be increased by forming the step, it is possible to provide a safer electrode and battery.
  • FIG. 5 to FIG. 8 are diagrams showing the manufacturing process of the lithium ion secondary battery of the present invention.
  • a composite mixed positive electrode of LiNi 0.8 Co 0.1 Mn 0.1 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the positive electrode active material, carbon black as the conductive agent, and PVdF as the binder (Polyvinylidene fluoride) was used to prepare a slurry in which these mixture components were dispersed in an organic solvent.
  • the positive electrode active material layer 2 shown in FIG. 5 is formed by applying the slurry to a long positive electrode current collector having a thickness of 20 ⁇ m mainly composed of aluminum with a die coater and winding the slurry in one direction while drying. Formed on both sides of the current collector.
  • a positive electrode active material non-formation part in which no positive electrode active material is formed is provided at both ends of the positive electrode current collector 3 in the width direction, and a boundary located at the boundary between the positive electrode active material layer 2 and the positive electrode active material non-formation part
  • the part 4 is also arranged in parallel with the long longitudinal direction of the current collector.
  • an insulating layer 9 was formed so as to cover the end of the positive electrode active material layer, the boundary portion 4, and a part of the positive electrode current collector non-formation portion.
  • the insulating layer 9 was formed by applying a liquid obtained by dissolving PVdF in a solvent along the longitudinal direction of the current collector, and drying to volatilize the solvent component.
  • the heat-resistant layer 5 was formed so as to cover the central portion in the width direction of the positive electrode active material layer and a part of the insulating layer.
  • the heat-resistant layer was formed by applying and drying a slurry obtained by dispersing Al 2 O 3 in a solvent together with PVdF.
  • the sheet on which the positive electrode active material layer, the insulating layer, and the heat resistant layer were formed was compressed to form an electrode sheet having a desired density of 80 ⁇ m on one side of the positive electrode current collector.
  • the film thickness from the central part of the positive electrode active material layer to the boundary between the formed part and the non-formed part of the positive electrode active material layer was measured, and the presence or absence of the insulating particles from the heat-resistant layer was observed.
  • an electrode piece as shown in FIGS. 8A and 8B was cut out to obtain a positive electrode piece.
  • a negative electrode active material graphite is used, styrene butadiene rubber is used as a binder, and a slurry-like negative electrode mixture dispersed in water is applied to a negative electrode current collector having a thickness of 15 ⁇ m with a die coater, dried, and compressed.
  • the lithium ion battery produced as described above was subjected to a charge / discharge cycle test, and after confirming the capacity retention rate after 300 cycles at 45 ° C., the battery element was taken out and the portion where the insulating layer was formed was observed.
  • the cycle test charging was performed up to an upper limit voltage of 4.2 V under a constant current charging condition of 1 C, followed by a constant voltage charging of 4.2 V, and charging was performed for a total of 2.5 hours. Subsequently, constant current discharge was performed up to 2.5 V at 1 C, and this was defined as one cycle.
  • Example 2 A heat-resistant layer was formed on the surface of the positive electrode active material layer 2 shown in FIG. 5, and the end portion in the width direction of the current collector in the heat-resistant layer was disposed at a portion where the thickness of the positive electrode active material layer was reduced.
  • the insulating layer is arranged so as to cover the boundary between the positive electrode active material layer forming part and the non-forming part, with one end of the insulating layer covering the heat-resistant layer and the other end positioned on the current collector, and the other examples
  • Example 2 A heat-resistant layer was formed on the surface of the positive electrode active material layer 2 shown in FIG. 5, and the end portion in the width direction of the current collector in the heat-resistant layer was disposed at a portion where the thickness of the positive electrode active material layer was reduced.
  • the insulating layer is arranged so as to cover the boundary between the positive electrode active material layer forming part and the non-forming part, with one end of the insulating layer covering the heat-resistant layer and the other end positioned on the current collector, and the other examples
  • Example 3 After applying the positive electrode active material layer, a heat-resistant layer was formed in a wet state, and then dried and compressed. Further, a stacked lithium ion secondary battery having an end corresponding to FIG. 3 was prepared and evaluated in the same manner as in Example 2, except that an insulating layer was formed at the boundary between the active material layer forming portion and the non-forming portion. .
  • Example 4 Except that the step portion is formed on the slope of the end portion of the positive electrode active material, one end of the insulating layer is located at the step portion, and the one end of the insulating layer and the one end of the heat-resistant layer overlap with each other at the step portion.
  • Example 4 a stacked lithium ion secondary battery having an end corresponding to FIG. 4 was produced and evaluated.
  • Example 1 An insulating tape having a two-layer structure of an acrylic adhesive layer and a polypropylene layer is used as an insulating layer at the end of the positive electrode active material layer, and the acrylic adhesive material layer faces the positive electrode active material layer side so as to cover the boundary portion 4. Then, a laminated lithium ion secondary battery was prepared and evaluated in the same manner as in Example 1 except that the heat resistant layer was formed so as to cover the end of the insulating tape.
  • a lithium ion secondary battery is a lithium ion battery in which a positive electrode and a negative electrode are arranged to face each other, and is particularly suitable for ensuring the safety of a battery using an active material having a high energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

集電体の少なくとも一方の面に形成された活物質および第1の樹脂を含む活物質層と、活物質層が形成されていない活物質層非形成部と、を有する電極であって、前記活物質層と活物質層非形成部との境界部が絶縁層に覆われ、当該絶縁層は第3の樹脂を含み、前記活物質層の表面を被覆する耐熱層が形成され、前記活物質層の端部で該耐熱層と前記絶縁層が重なり、前記耐熱層は第4の樹脂を含む電極。

Description

リチウムイオン二次電池、電極及びその製造方法
 本発明は、リチウムイオン二次電池、電極及びその製造方法に関する。
 リチウムイオン二次電池は、小型、軽量でエネルギー密度が大きいことから、スマートフォンやゲーム機器などの携帯機器の電源、車両に搭載するモーターを駆動する電源、商用電源のバックアップ用途の電源、さらには家屋やビル等の電気の一部をまかなう蓄電池など幅広く利用されている。
 リチウムイオン電池は、正極と負極とがセパレータを介して交互に積層されるか、または正極と負極とをセパレータを介して重ねたものが捲回されるかして発電要素部分が形成されるのが一般的である。対面する正極と負極とは、負極側の活物質層の面積を大きくすることで電池の充放電に伴うリチウムの析出を防止するのが一般的である。
 リチウムイオン二次電池の正極や負極の電極は、長尺で箔状の集電体の片面または両面に活物質、結着剤などを含有するスラリーを連続的または間欠的に塗布、乾燥することで形成されている。活物質層はさらに圧縮され、活物質粒子同士の相互の、および活物質粒子と集電体との密着性を高め、電気的接触抵抗を小さくするとともに、エネルギー密度の向上が図られている。
 正極と負極は、箔状の集電体に活物質層が存在する部分と、存在しない部分とを備え、活物質が存在しない部分は電極引き出しタブとして発電要素部から引き出されて電極端子と接続される。発電要素は電解液とともに外装ケースに収容され、電極端子が外装ケースの外部に引き出される構造となる。
 近年、電池のエネルギー密度の向上に伴い、電池の安全性の向上も一層強く求められている。安全対策の一つとして、活物質層が存在しない集電体の部分が対向する異極性と接触することを抑制するために、活物質層が形成された部分と形成されていない部分の境界に絶縁部材を形成する技術が提案されている。これにより、何らかの原因で電池が発熱してセパレータが収縮し、活物質層よりもセパレータが小さくなってしまっても、絶縁部材によって短絡を防ぐことができる。なお、絶縁部材は活物質層が形成された部分と形成されていない部分の境界部分にのみ局所的に形成されるため、電極を積層または捲回する際に絶縁部材のある部分と無い部分とで発電要素の厚みに不均一を生じさせ、電池特性を低下させる可能性がある。そのため、境界部の活物質の厚みを小さくした部分に絶縁テープを貼り付ける技術も提案されている(特許文献1)。
 また、別の安全対策のひとつとして、電極活物質層がセパレータを介して対面する主面の部分で、セパレータを貫通して正極負極間の短絡が生じたときの熱暴走を抑制するために、活物質上に絶縁性の粒子等を含有する耐層などを形成し、セパレータが高温で過剰に収縮あるいは消失しても正極と負極間の短絡による熱暴走を抑制するための耐熱層を介在させる技術が開示されている(特許文献2)。
 図9は関連するリチウムイオン二次電池における、電極に耐熱層を形成した場合の電極端部を示す拡大断面図である。図10は、関連するリチウムイオン二次電池における、電極に耐熱層および絶縁層を形成した場合の電極端部を示す拡大断面図である。
国際公開第2013/137385号 特開平7-220759号公報
 しかし、活物質層上に絶縁性の粒子等を含有する耐熱層および絶縁テープを形成する場合には、耐熱層と絶縁テープとの密着性が悪く、両者が接触した部分で耐熱層と絶縁テープが剥離してしまう可能性がある。剥離した絶縁テープや、耐熱層に含まれるセラミック粒子が発電要素に付着すると、電気特性やサイクル特性を阻害することがある。一方で、耐熱層と絶縁テープとを接触させないようにして、両者のあいだに隙間を生じさせ過ぎると、安全性の面では十分とはいえない。
 そこで本発明の目的は、耐熱層および絶縁層を設けても、電気特性を阻害せず、安全性が高い電極および二次電池を提供することにある。
 本発明の一態様によれば、
 正極集電体の少なくとも一方の面に形成された正極活物質および第1の樹脂を含む正極活物質層と、正極活物質層が形成されていない正極活物質層非形成部と、を有する正極と、
 負極集電体の少なくとも一方の面に形成された負極活物質および第2の樹脂を含む負極活物質層と、負極活物質層が形成されていない負極活物質層非形成部と、を有する負極と、
 セパレータと、を備え、
 正極と負極とがセパレータを介して対向するリチウムイオン二次電池であって、
 前記正極活物質層と正極活物質層非形成部との境界部が絶縁層に覆われ、当該記絶縁層は第3の樹脂を含み、
 前記正極活物質層の表面を被覆する耐熱層が形成され、前記正極活物質層の端部で該耐熱層と前記絶縁層が重なり、前記耐熱層は第4の樹脂を含む、リチウムイオン二次電池を提供される。
 本発明の他の態様によれば、
 正極集電体の少なくとも一方の面に形成された正極活物質および第1の樹脂を含む正極活物質層と、正極活物質層が形成されていない正極活物質層非形成部と、を有する正極と、
 負極集電体の少なくとも一方の面に形成された負極活物質および第2の樹脂を含む負極活物質層と、負極活物質層が形成されていない負極活物質層非形成部と、を有する負極と、
 セパレータと、を備え、
 正極と負極とがセパレータを介して対向するリチウムイオン二次電池であって、
 前記正極活物質層と正極活物質層非形成部との境界部が絶縁層に覆われ、当該記絶縁層は第3の樹脂を含み、
 前記絶縁層の一部または全部を被覆するとともに、前記正極活物質層の表面を被覆する耐熱層が形成され、前記耐熱層は第4の樹脂を含む、リチウムイオン二次電池を提供される。
 本発明の他の態様によれば、
 集電体の少なくとも一方の面に形成された活物質および第1の樹脂を含む活物質層と、活物質層が形成されていない活物質層非形成部と、を有する電極であって、
 前記活物質層と活物質層非形成部との境界部が絶縁層に覆われ、当該記絶縁層は第3の樹脂を含み、
 前記活物質層の表面を被覆する耐熱層が形成され、前記活物質層の端部で該耐熱層と前記絶縁層が重なり、前記耐熱層は第4の樹脂を含む、電極が提供される。
 本発明の他の態様によれば、上記の電極の製造方法であって、
 集電体上に活物質層を形成する工程と
 前記集電体上の前記活物質層の形成部と非形成部の境界を覆うように前記活物質層の端部に絶縁層を形成する工程と、
 前記活物質層上に耐熱層を形成する工程とを含む、電極の製造方法が提供される。
 本発明の他の態様によれば、
 集電体の少なくとも一方の面に形成された活物質および第1の樹脂を含む活物質層と、活物質層が形成されていない活物質層非形成部と、を有する電極であって、
 前記活物質層と活物質層非形成部との境界部が絶縁層に覆われ、当該記絶縁層は第3の樹脂を含み、
 前記絶縁層の一部または全部を被覆するとともに、前記活物質層の表面を被覆する耐熱層が形成され、前記耐熱層は第4の樹脂を含む、電極が提供される。
 本発明の実施形態によれば、耐熱層および絶縁層を設けても、電気特性を阻害せず、安全性が高い電極および二次電池を提供することができる。
本発明の一実施形態によるリチウムイオン二次電池の基本構造の一例を模式的に表した概略断面図である。 本発明の第1の実施形態による電極の端部を模式的に示す拡大断面図である。 本発明の第2の実施形態による電極の端部を模式的に示す拡大断面図である。 本発明の第3の実施形態による電極の端部を模式的に示す拡大断面図である。 本発明の実施形態による電極の製造過程を説明するための模式図である。 本発明の実施形態による電極の製造過程を説明するための模式図である。 本発明の実施形態による電極の製造過程を説明するための模式図である。 本発明の実施形態による電極の製造過程を説明するための模式図である。 本発明の実施形態による電極の製造過程を説明するための模式図である。 関連するリチウムイオン二次電池における、電極に耐熱層を形成した場合の電極端部を示す拡大断面図である。 関連するリチウムイオン二次電池における、電極に耐熱層および絶縁層を形成した場合の電極端部を示す拡大断面図である。
 第1の態様によるリチウムイオン二次電池は以下の構成にすることができる。
 前記絶縁層は、正極集電体上の少なくとも一方の面において、前記正極活物質層の形成部と非形成部の境界部を覆っている。
 また、前記正極活物質層を被覆する耐熱層が形成され、該耐熱層が、前記絶縁層の一部(端部)又は全部を被覆する構成にできる。例えば、図2に示すように、正極活物質層の表面が露出しないように耐熱層と絶縁層で被覆することができる。
 あるいは、前記正極活物質層を被覆する前記耐熱層が形成され、前記絶縁層が、前記耐熱層の一部(端部)を被覆する構成にできる。例えば、図3に示すように、正極活物質層の表面が露出しないように耐熱層と絶縁層で被覆することができる。
 前記正極活物質層は、前記正極活物質層の非形成部側の端部に向かって厚みが小さくなる傾斜部を有することができる。
 その場合、前記絶縁層の一端が前記傾斜部に位置し、前記絶縁層の他端が正極集電体の表面(正極活物質層の非形成部)に形成されていてもよい。
 前記傾斜部に、さらに段差を備えることができる。この段差は、例えば、図4の符号2sで示される部分のように、集電体平面に対する傾斜角が大きい面とこの面に続く傾斜角が小さい面を含む部分で形成できる。この段差は、傾斜部の長手方向(正極活物質層の端部に沿った方向:図4においては紙面の手前から奥方向)に沿って存在する凹部に相当し、この凹部の深さは、正極活物質層上の絶縁層または耐熱層の厚みと同じかそれ以上の深さであることが好ましく、正極活物質層上の絶縁層と耐熱層の合計の厚みと同程度がより好ましい。その際、この凹部の深さは、正極活物質層上の絶縁層と耐熱層の合計の厚みにさらに絶縁層または耐熱層の厚みを加えた厚み以下が好ましい。この凹部において、絶縁層の端部と耐熱層の端部を重ねることにより、局所的な厚みの増加を抑えることができ、結果、より信頼性の高い電池を提供できる。
 前記第1の樹脂、前記第3の樹脂および前記第4の樹脂はフッ素系樹脂であることが好ましい。
 前記耐熱層の一端が前記傾斜部の正極活物質層の表面に位置し、当該耐熱層の一端を前記絶縁層が被覆することができる(例えば図3に示す構成)。
 前記絶縁層の一端が前記傾斜部の正極活物質層の表面に位置し、当該絶縁層の一端を前記耐熱層が被覆することができる(例えば図2に示す構成)。
 第2の態様による電極は以下の構成にすることができる。
 前記絶縁層は、集電体上の少なくとも一方の面において、前記活物質層の形成部と非形成部の境界部を覆っている。
 また、前記活物質層を被覆する耐熱層が形成され、該耐熱層が、前記絶縁層の一部又は全部を被覆する構成にできる。例えば、図2に示すように、活物質層の表面が露出しないように耐熱層と絶縁層で被覆することができる。
 あるいは、前記活物質層を被覆する前記耐熱層が形成され、前記絶縁層が、前記耐熱層の一部を被覆する構成にできる。例えば、図3に示すように、活物質層の表面が露出しないように耐熱層と絶縁層で被覆することができる。
 前記活物質層は、前記活物質層の非形成部側の端部に向かって厚みが小さくなる傾斜部を有することができる。
 その場合、前記絶縁層の一端が前記傾斜部に位置し、前記絶縁層の他端が集電体の表面(活物質層の非形成部)に形成されていてもよい。
 前記傾斜部に、さらに段差を備えることができる。この段差は、例えば、図4の符号2sで示される部分のように、集電体平面に対する傾斜角が大きい面とこの面に続く傾斜角が小さい面を含む部分で形成できる。この段差は、傾斜部の長手方向(活物質層の端部に沿った方向:図4においては紙面の手前から奥方向)に沿って存在する凹部に相当し、この凹部の深さは、活物質層上の絶縁層または耐熱層の厚みと同じかそれ以上の深さであることが好ましく、活物質層上の絶縁層と耐熱層の合計の厚みと同程度がより好ましい。その際、この凹部の深さは、活物質層上の絶縁層と耐熱層の合計の厚みにさらに絶縁層または耐熱層の厚みを加えた厚み以下が好ましい。この凹部において、絶縁層の端部と耐熱層の端部を重ねることにより、局所的な厚みの増加を抑えることができ、結果、このような電極を用いることにより、より信頼性の高い電池を提供できる。
 前記第1の樹脂、前記第3の樹脂および前記第4の樹脂はフッ素系樹脂であることが好ましい。
 前記耐熱層の一端が前記傾斜部の活物質層の表面に位置し、当該耐熱層の一端を前記絶縁層が被覆することができる。
 前記絶縁層の一端が前記傾斜部の活物質層の表面に位置し、当該絶縁層の一端を前記耐熱層が被覆することができる。
 本発明の実施形態によれば、活物質層、絶縁層、耐熱層を含む電極を形成しても、それぞれの層に含まれる樹脂が、相互の層を結合して密着性を高めるため、絶縁層と耐熱層との間でも剥離を起こしにくいリチウムイオン二次電池を提供することが可能となる。
 また、耐熱層を、絶縁層の一部または全部と重ねて形成することが可能なことから、これまでのような位置決め精度を必要としないため、高い生産性を得ることが可能となる。
 また、耐熱層と絶縁層の一端を、活物質層の端部の厚みが小さい部分(傾斜部分)に配置することにより、発電要素における局所的な厚み増加を抑制することが可能となる。発電要素は外装ケースなどから活物質層全面に対して均等に圧力が加わっていると、経時的な電気特性が安定する傾向にあるため、局所的な厚みの増加を発生させないことで、信頼性の高い電池を提供することが可能になる。局所的な厚みの増加を発生させないためには、集電体の少なくとも一面において、活物質層上で耐熱層と絶縁層とが重なる部分で、活物質層と耐熱層と絶縁層との合計厚みが、活物質層と耐熱層が重なる他の部分の厚みより小さいことが好ましい。その際、活物質層上で耐熱層と絶縁層とが重なる部分での、活物質層と耐熱層と絶縁層との合計厚みより、集電体上の絶縁層部分の厚みが小さいことが好ましい。
 また、電極シートをロール状に巻き取った際に、局所的に厚みの大きな部分がないので、ロール状に巻き取った電極で発生するクラック等の発生を抑制することも可能となる。
 また、活物質層の端部において耐熱層上に絶縁層を重ねる場合(最表面側に絶縁層を形成する場合)には、耐熱層に含まれるセラミック粒子等の脱落を防ぐ効果を得ることができる。
 本発明の実施形態による電極は、以下の工程を含む製造方法により形成することができる。
(A)集電体上に活物質層を形成する工程、
(B)前記集電体上の前記活物質層の形成部と非形成部の境界を覆うように前記活物質層の端部に絶縁層を形成する工程、
(C)前記活物質層上に耐熱層を形成する工程。
 工程(B)を工程(C)より先に行うことにより、絶縁層の一部または全部を被覆するとともに、活物質層の表面を被覆する耐熱層を形成できる(例えば図2)。
 工程(C)を工程(B)より先に行うことにより、耐熱層の一部を被覆するとともに、活物質層の形成部と非形成部の境界部を覆う絶縁層を形成できる(例えば図3)。
 以下、本発明の実施形態について図面を用いて説明する。
 図1は、リチウムイオン二次電池の構成例を模式的に示している。
 本発明の実施形態によるリチウムイオン二次電池100は、正極1と負極6とがセパレータ20を介して交互に複数層積層された発電要素を備え、または、これに代えて正極1と負極6とがセパレータ20を重ねられて捲回された発電要素を用いることができる。この発電要素は電解液と共に外装容器に収容される。図1において外装容器は可撓性フィルム30で形成されている。発電要素の正極1には正極端子11の一端が、負極6には負極端子16の一端がそれぞれ接続されており、正極端子11の他端側および負極端子16の他端側は、それぞれ外装容器の外部に引き出されている。
 正極1は、正極集電体3と、活物質や結着剤を含む合材で形成された正極活物質層2と、正極活物質層の非形成部とを備えている。同様に、負極6は、負極活物質層2と負極活物質層の非形成部とを備えている。
 正極端子11は正極活物質層の非形成部と超音波溶接等で固定され、電気的な接続を得ている。同様に、負極端子16は負極活物質層の非形成部と電気的に接続されている。積層型の電池においては、図1に示すように1層ごとに正極活物質層の非形成部および負極活物質層の非形成部が、それぞれの極性の電極端子と接続されている。一方、捲回型電池の場合には、1対の正極と負極とが捲回されているので、図1では1周ごとに1~2箇所の活物質層の非形成部と電極端子を接続していることになるが、必ずしも複数個所から電気的な接続を取る必要はない。
 図2は、本発明の第一の実施の形態に関する電極端部を模式的に示す拡大断面図である。
 絶縁層9が正極1の正極活物質層の形成部と非形成部の境界部4を覆い、形成部と非形成部にまたがって形成され、さらに、正極活物質上に耐熱層5が形成されている。図2においては、正極活物質層側に位置する絶縁層9の端部が、耐熱層5によって被覆されている。
 耐熱層は絶縁層を形成した後から配置されているので、活物質層における絶縁層の存在する部分と存在しない部分との境界部を覆うことができる。絶縁層の境界部に表面張力が働いて盛り上がっていた場合でも、境界部は耐熱層によって覆われるので表面は滑らかになり、電極の局所的な凹凸を抑制する方向にはたらくことになる。すなわち、絶縁層の境界部の位置精度を高めなくとも、電極に局所的な凹凸を生じさせることを抑制することが可能となる。
 負極活物質層7は、正極活物質層2が存在する位置に対向させ、正極活物質層の外周よりも大きな外形寸法を備えている。セパレータ20は、負極活物質層の外周に等しい形状をしているか、それよりも大きな形状を備えている。
 正極活物質は、例えばニッケル酸リチウム、コバルト酸リチウム、ニッケルコバルト酸リチウムなどの層状構造系の材料や、マンガン酸リチウムなどのスピネル系構造系の材料、リン酸鉄などのオリビン系材料などが挙げられ、これらを複数混合してもよい。
 正極活物質層は、正極活物質に結着剤や導電助剤等を適宜加え、溶媒と共に混合分散してスラリー化し、正極集電体にドクターブレード、ダイコータ、グラビアコータ、転写、蒸着などの方式を用いて塗布、乾燥して得ることができる。
 負極活物質層も、負極活物質に結着剤や導電助剤等を適宜加え、溶媒と共に混合分散してスラリー化したものを、正極同様に負極集電体に塗布、乾燥して得ることができる。
 結着剤は、フッ素系樹脂、アクリル系樹脂、エポキシ系樹脂、スチレン系樹脂、ウレタン系樹脂、フェノール系樹脂、ブタジエン系樹脂、セルロース系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂等、またはこれらを変性、共重合等したものを単体または複合的に用いることができる。
 セパレータは樹脂製の多孔膜、織布、不織布等からなり、必要に応じて、セパレータにも無機物粒子を含ませてもよい。
 耐熱層は、絶縁性の酸化物、窒化物、硫化物、炭化物などを含ませることができ、酸化チタン、酸化アルミニウム、酸化マグネシウムなどの絶縁性粒子を含ませるのが好ましい。
 絶縁性粒子を結着剤ととともに分散したものを、正極活物質層上に塗布、乾燥するなどして耐熱層を形成することができる。耐熱層にも活物質層と同様の樹脂を用いて、耐熱層の絶縁性粒子同士の結合性および、当該絶縁性粒子と活物質層との密着性が保持される。
 絶縁層は、フッ素系樹脂、アクリル系樹脂、エポキシ系樹脂、スチレン系樹脂、ウレタン系樹脂、フェノール系樹脂、ブタジエン系樹脂、セルロース系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂等、またはこれらを変性、共重合等したものを単体または複合的に用いることができ、樹脂に応じて溶媒中に溶解、分散したものを塗布し、溶媒を揮発させて形成したり、高温で溶融したものを塗布して冷却して形成したり、圧力を加えたり、紫外線を照射したり、空気中の水分と反応させたりして形成することができる。活物質層および耐熱層との剥離を低減するためには、活物質層や耐熱層に含まれる樹脂成分と同系統の樹脂を選定するのが好ましく、また樹脂を溶媒中に溶解したものを塗布、乾燥可能な樹脂を選択することで、活物質層や耐熱層の空隙への樹脂の浸透が生じて密着性を高めるのに特に効果的である。絶縁層、耐熱層、活物質層に用いられる樹脂成分は、それぞれ違う種類であっても、同一種類であっても構わない。
 正極活物質層および負極活物質層はそれぞれ、集電体とともに圧縮されて所望の密度に形成される。このとき、耐熱層は活物質層が圧縮される前後いずれかで任意に形成すればよいが、耐熱層にも圧縮等を加えることで密度調整を行うことが好ましい。
 外装容器には可撓性フィルム30からなるケースや、撓みの少ない缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルム30を用いることが好ましい。
 正極端子11には、アルミニウムやアルミニウム合金で構成されたもの、負極端子16には銅や銅合金あるいはそれらにニッケルメッキを施したものなどを用いることができる。
 図3は、本発明の第二の実施の形態に関する電極端部を模式的に示す拡大断面図である。
 本実施の形態においては、正極活物質層2の表面に耐熱層15が形成され、正極活物質層の端部には、活物質層の形成部と非形成部の境界を覆い、かつ耐熱層の一部を覆う絶縁層19が形成されている。
 電極活物質層の端部を、活物質層から境界部に向かって厚みを減少させながら形成した場合には、耐熱層15は少なくとも活物質層2の中央部を覆い、厚みが減少する部分の一部または全部を覆うように形成される。図3における断面の耐熱層15の一端は、活物質層の厚みが減少している部分に位置するのが好ましい。後述する電極を所望の形状に切り出す場合、耐熱層を含まない位置で切断することで、耐熱層から絶縁性の粒子等が脱落する確率を低減することができるためである。
 耐熱層が活物質層の厚みが減少する部分にも位置している場合、電極を圧縮する工程において、厚みが一定の部分の活物質層および耐熱層が、集電体と平行な方向に延びようとするため、厚みが減少する部分に形成された耐熱層の部分にストレスが加わり、絶縁性粒子が脱落しやすい状態になる場合がある。本発明の実施形態では、厚みが減少する部分の耐熱層の上に絶縁層19をさらに形成しているので、絶縁性粒子等の脱落を抑制する効果も得ることができる。また、ポリプロピレンなどの基材の片面に粘着層を形成した絶縁テープを貼り付けた場合には、テープの端部の段差が局所的な凹凸を引き起こす原因となり易いが、樹脂を塗布、乾燥することで極端な段差を発生させずに形成することができる。
 図4は、本発明の第三の実施の形態に関する電極端部を模式的に示す拡大断面図である。
 本実施の形態においては、正極活物質層の端部の傾斜に段差部2sを形成し、当該段差部に絶縁層29の一端が位置し、当該絶縁層29は活物質層の境界4を覆い、他端が集電体上に位置して配置されている。絶縁層の一端側は耐熱層25によって被覆されている。段差部上で絶縁層29および耐熱層25が重なるため、絶縁層や耐熱層による局所的な厚み増加の発生を抑制することが可能となる。また、段差を形成したぶんだけ、当該部分に配置する絶縁層の厚みを大きくすることも可能となるので、より安全性の高い電極および電池を提供することが可能となる。
 (実施例1)
 図5~図8は本発明のリチウムイオン二次電池の製造過程を示す図である。
 正極極活物質としてLiNi0.8Co0.1Mn0.1とLiNi0.8Co0.15Al0.05の複合混合正極を用い、導電剤としてカーボンブラック、バインダーとしてPVdF(ポリフッ化ビニリデン)を用い、これらの合剤成分を有機溶媒中に分散したスラリーを準備した。当該のスラリーをアルミニウムを主成分とする厚さ20μmの長尺の正極集電体にダイコータで塗布、乾燥しながら一方向にロール状に巻き取ることで図5に示す正極活物質層2を正極集電体の両面に形成した。正極集電体3の幅方向の両端には正極活物質が形成されていない正極活物質の非形成部が設けられ、正極活物質層2と正極活物質の非形成部の境界に位置する境界部4も、集電体の長尺長手方向と平行に配置される。
 次いで図6に示すように、正極活物質層の端部と、境界部4と正極集電体非形成部の一部を覆うように絶縁層9を形成した。絶縁層9の形成は、PVdFを溶媒中に溶解した液体を集電体の長手方向に沿って塗布し、乾燥して溶媒成分を揮発させることで行った。
 次いで図7に示すように正極活物質層の幅方向の中央部分と、絶縁層の一部とを被覆するように耐熱層5を形成した。耐熱層にはAlをPVdFとともに溶媒中に分散してスラリー化したものを塗布、乾燥することで形成した。
 正極活物質層、絶縁層、耐熱層が形成されたシートを圧縮して正極集電体の片側における厚さが80μmで所望の密度を備えた電極シートを形成した。
 正極活物質層の中央部と、正極活物質層の形成部と非形成部の境界に至るまでの膜厚を測定し、耐熱層からの絶縁性粒子の脱落の有無を観察した。
 この電極シートから、図8(a)および図8(b)に示すような電極片を切り出し、正極電極片とした。
 負極活物質としては、黒鉛を用い、バインダーとしてスチレンブタジエンゴムを用い、水に分散したスラリー状の負極合剤を厚さ15μmの負極集電体にダイコータで塗布、乾燥、圧縮したのち、所定の形状に切断することで集電体の片側における負極活物質層の厚さが50μmの負極片を得た。
 正極片20枚と負極片21枚とを厚さ25μmのポリプロピレンを主成分とするセパレータを介して積層し、電解液とともに外装容器に収容することで積層型リチウムイオン二次電池を形成した。なお、外装容器からは発電要素の正極と電気的に接続された正極端子および負極と電気的と電気的に接続された負極端子とを引き出した。
 以上のように作成したリチウムイオン電池について、充放電サイクル試験を行い、45℃で300サイクル後に容量維持率を確認するとともに、電池要素を取り出して絶縁層を形成した部分の観察を行った。サイクル試験は、1Cの定電流充電条件で上限電圧4.2Vまで充電し、続いて4.2Vの定電圧充電を行い、計2.5時間の充電を行った。続いて1Cで定電流放電を2.5Vまで行い、これを1サイクルとした。
 (実施例2)
 図5に示す正極活物質層2の表面に耐熱層を形成し、耐熱層における集電体の幅方向の端部が正極活物質層の厚みが小さくなる部分に位置するように配置した。次いで絶縁層を正極活物質層の形成部と非形成部の境界を覆い、絶縁層の一端が耐熱層を被覆し、他端が集電体上に位置するように配置し、他は実施例1と同様にして図3に相当する端部を備えた積層型リチウムイオン二次電池を作製、評価した。
 (実施例3)
 正極活物質層を塗布したのち、ウェットの状態で耐熱層を形成し、その後乾燥、圧縮した。さらに活物質層の形成部と非形成部との境界に絶縁層を形成した以外、実施例2と同様に図3に相当する端部を備えた積層型リチウムイオン二次電池を作製、評価した。
 (実施例4)
 正極活物質の端部の傾斜に段差部を形成し、当該段差部に絶縁層の一端が位置し、この段差部で絶縁層の当該一端と耐熱層の一端が重なるように配置した以外は、実施例1と同様にして図4に相当する端部を備えた積層型リチウムイオン二次電池を作製、評価した。
 (比較例1)
 正極活物質層の端部に、絶縁層としてアクリル系粘着層とポリプロピレン層の2層構造からなる絶縁テープを、アクリル系粘着材層が正極活物質層側に向いて、境界部4を覆うように配置し、その後、耐熱層を絶縁テープの端部を被覆するように形成した以外は、実施例1と同様にして積層型リチウムイオン二次電池を作製、評価した。
 実施例1~4において、耐熱層および絶縁層が形成された部分においても電極中央部の耐熱層および活物質層が配置された位置での厚さよりも大きくなる部分や、耐熱層からの絶縁性粒子の脱落も観察されなかった。また、サイクル特性はいずれも300サイクル後で初期の85%以上を維持することができた。
 比較例1においては、300サイクル後の一部の電池で絶縁部材と耐熱層との剥離が確認され、サイクル特性が80%以下になるものが確認された。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 本発明の実施形態によるリチウムイオン二次電池は、正極と負極を対向配置するリチウムイオン電池であって、特に高エネルギー密度を有する活物質材料を用いた電池の安全性確保に好適である。
 この出願は、2016年3月24日に出願された日本出願特願2016-60266を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 正極
 2 正極活物質層
 2s 段差
 3 正極集電体
 4 境界部
 5、15、25、105 耐熱層
 6 負極
 7 負極活物質層
 8 負極集電体
 9、19、29、109 絶縁層
 11 正極端子
 16 負極端子
 20 セパレータ
 100 リチウムイオン二次電池

Claims (11)

  1.  正極集電体の少なくとも一方の面に形成された正極活物質および第1の樹脂を含む正極活物質層と、正極活物質層が形成されていない正極活物質層非形成部と、を有する正極と、
     負極集電体の少なくとも一方の面に形成された負極活物質および第2の樹脂を含む負極活物質層と、負極活物質層が形成されていない負極活物質層非形成部と、を有する負極と、
     セパレータと、を備え、
     正極と負極とがセパレータを介して対向するリチウムイオン二次電池であって、
     前記正極活物質層と正極活物質層非形成部との境界部が絶縁層に覆われ、当該記絶縁層は第3の樹脂を含み、
     前記正極活物質層の表面を被覆する耐熱層が形成され、前記正極活物質層の端部で該耐熱層と前記絶縁層が重なり、前記耐熱層は第4の樹脂を含む、リチウムイオン二次電池。
  2.  前記正極活物質層は、前記正極活物質層の非形成部側の端部に向かって厚みが小さくなる傾斜部を有する、請求項1に記載のリチウムイオン二次電池。
  3.  前記絶縁層の一端が前記傾斜部に位置し、前記絶縁層の他端が正極集電体の表面に形成されている、請求項2に記載のリチウムイオン二次電池。
  4.  前記傾斜部に、さらに段差を備える、請求項2又は3に記載のリチウムイオン二次電池。
  5.  前記第1の樹脂、前記第3の樹脂および前記第4の樹脂はフッ素系樹脂である、請求項1乃至4のいずれか1項に記載のリチウムイオン二次電池。
  6.  集電体の少なくとも一方の面に形成された活物質および第1の樹脂を含む活物質層と、活物質層が形成されていない活物質層非形成部と、を有する電極であって、
     前記活物質層と活物質層非形成部との境界部が絶縁層に覆われ、当該記絶縁層は第3の樹脂を含み、
     前記活物質層の表面を被覆する耐熱層が形成され、前記活物質層の端部で該耐熱層と前記絶縁層が重なり、前記耐熱層は第4の樹脂を含む、電極。
  7.  前記活物質層は、前記活物質層の非形成部側の端部に向かって厚みが小さくなる傾斜部を有する、請求項6に記載の電極。
  8.  前記絶縁層の一端が前記傾斜部に位置し、前記絶縁層の他端が集電体の表面に形成されている、請求項7に記載の電極。
  9.  前記傾斜部に、さらに段差を備える、請求項7又は8に記載の電極。
  10.  前記第1の樹脂、前記第3の樹脂および前記第4の樹脂はフッ素系樹脂である、請求項6乃至9のいずれか1項に記載の電極。
  11.  請求項6に記載の電極の製造方法であって、
     集電体上に活物質層を形成する工程と
     前記集電体上の前記活物質層の形成部と非形成部の境界を覆うように前記活物質層の端部に絶縁層を形成する工程と、
     前記活物質層上に耐熱層を形成する工程とを含む、電極の製造方法。
PCT/JP2017/008812 2016-03-24 2017-03-06 リチウムイオン二次電池、電極及びその製造方法 WO2017163846A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/087,357 US20210210761A1 (en) 2016-03-24 2017-03-06 Lithium ion secondary battery, electrode and method for producing same
JP2018507188A JPWO2017163846A1 (ja) 2016-03-24 2017-03-06 リチウムイオン二次電池、電極及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016060266 2016-03-24
JP2016-060266 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163846A1 true WO2017163846A1 (ja) 2017-09-28

Family

ID=59900105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008812 WO2017163846A1 (ja) 2016-03-24 2017-03-06 リチウムイオン二次電池、電極及びその製造方法

Country Status (3)

Country Link
US (1) US20210210761A1 (ja)
JP (1) JPWO2017163846A1 (ja)
WO (1) WO2017163846A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151833A1 (ko) * 2018-02-01 2019-08-08 주식회사 엘지화학 리튬 이차전지용 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JP2020072007A (ja) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 電極板、これを用いた電池、電極板の製造方法、これを用いた電池の製造方法、ダイヘッド
CN111386625A (zh) * 2017-11-21 2020-07-07 理百思特有限公司 具有设置为最外面电极的负电极的电极组件及包括其的锂离子二次电池
CN112018447A (zh) * 2019-05-29 2020-12-01 远景Aesc日本有限公司 锂离子二次电池元件、电池和制造该电池元件的方法
CN112331903A (zh) * 2019-08-05 2021-02-05 丰田自动车株式会社 非水电解质二次电池
JPWO2020067378A1 (ja) * 2018-09-28 2021-02-15 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
KR20210065033A (ko) * 2019-11-26 2021-06-03 도요타 지도샤(주) 비수 전해질 이차 전지
WO2021196116A1 (zh) * 2020-04-02 2021-10-07 宁德新能源科技有限公司 电极极片、电化学装置及包含其的电子装置
WO2023132531A1 (ko) * 2022-01-07 2023-07-13 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 이의 제조방법
WO2024143954A1 (ko) * 2022-12-26 2024-07-04 주식회사 엘지에너지솔루션 이차전지용 전극 제조 방법 및 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024502801A (ja) * 2021-10-21 2024-01-23 エルジー エナジー ソリューション リミテッド 電極組立体およびそれを含む電池セル
CN217507578U (zh) * 2022-05-13 2022-09-27 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池和用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250968A (ja) * 2009-04-10 2010-11-04 Panasonic Corp リチウムイオン二次電池
JP2011076836A (ja) * 2009-09-30 2011-04-14 Panasonic Corp 二次電池用電極および二次電池
JP2013196781A (ja) * 2012-03-15 2013-09-30 Nissan Motor Co Ltd 電気デバイス用正極およびこれを用いた電気デバイス
WO2015087657A1 (ja) * 2013-12-12 2015-06-18 Necエナジーデバイス株式会社 二次電池とその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (ja) * 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
US6391488B1 (en) * 1999-07-09 2002-05-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte cell
JP4649993B2 (ja) * 2005-01-12 2011-03-16 パナソニック株式会社 リチウム二次電池およびその製造方法
WO2015064586A1 (ja) * 2013-10-30 2015-05-07 日産自動車株式会社 電極、および電極を有する電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250968A (ja) * 2009-04-10 2010-11-04 Panasonic Corp リチウムイオン二次電池
JP2011076836A (ja) * 2009-09-30 2011-04-14 Panasonic Corp 二次電池用電極および二次電池
JP2013196781A (ja) * 2012-03-15 2013-09-30 Nissan Motor Co Ltd 電気デバイス用正極およびこれを用いた電気デバイス
WO2015087657A1 (ja) * 2013-12-12 2015-06-18 Necエナジーデバイス株式会社 二次電池とその製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240106091A1 (en) * 2017-11-21 2024-03-28 Libest Inc. Electrode assembly having negative electrode disposed as outermost electrode, and lithium-ion secondary battery having same
US11870103B2 (en) * 2017-11-21 2024-01-09 Libest Inc. Electrode assembly having negative electrode disposed as outermost electrode, and lithium-ion secondary battery having same
CN111386625A (zh) * 2017-11-21 2020-07-07 理百思特有限公司 具有设置为最外面电极的负电极的电极组件及包括其的锂离子二次电池
US20200280042A1 (en) * 2017-11-21 2020-09-03 Libest Inc. Electrode assembly having negative electrode disposed as outermost electrode, and lithium-ion secondary battery having same
US20200373558A1 (en) * 2018-02-01 2020-11-26 Lg Chem, Ltd. Electrode for Lithium Secondary Battery, Method of Preparing the Same and Lithium Secondary Battery Including the Same
US12057566B2 (en) 2018-02-01 2024-08-06 Lg Energy Solution, Ltd. Electrode for lithium secondary battery, method of preparing the same and lithium secondary battery including the same
WO2019151833A1 (ko) * 2018-02-01 2019-08-08 주식회사 엘지화학 리튬 이차전지용 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JPWO2020067378A1 (ja) * 2018-09-28 2021-02-15 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP7155881B2 (ja) 2018-10-31 2022-10-19 トヨタ自動車株式会社 電極板、これを用いた電池、電極板の製造方法、これを用いた電池の製造方法、ダイヘッド
US11695120B2 (en) 2018-10-31 2023-07-04 Toyota Jidosha Kabushiki Kaisha Electrode sheet, battery incorporating the electrode sheet, method for manufacturing the electrode sheet, method for manufacturing the battery incorporating the electrode sheet, and die head
US11695121B2 (en) 2018-10-31 2023-07-04 Toyota Jidosha Kabushiki Kaisha Electrode sheet, battery incorporating the electrode sheet, method for manufacturing the electrode sheet, method for manufacturing the battery incorporating the electrode sheet, and die head
US11811067B2 (en) 2018-10-31 2023-11-07 Toyota Jidosha Kabushiki Kaisha Die head and die coater
JP2020072007A (ja) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 電極板、これを用いた電池、電極板の製造方法、これを用いた電池の製造方法、ダイヘッド
EP3745495A1 (en) * 2019-05-29 2020-12-02 Envision AESC Japan Ltd. Lithium ion secondary battery element, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery element
CN112018447A (zh) * 2019-05-29 2020-12-01 远景Aesc日本有限公司 锂离子二次电池元件、电池和制造该电池元件的方法
US11764405B2 (en) 2019-05-29 2023-09-19 Aesc Japan Ltd. Lithium ion secondary battery element including negative electrode with negative electrode active material layer tapered part having smaller density than negative electrode active material layer flat part
CN112331903A (zh) * 2019-08-05 2021-02-05 丰田自动车株式会社 非水电解质二次电池
KR20210065033A (ko) * 2019-11-26 2021-06-03 도요타 지도샤(주) 비수 전해질 이차 전지
KR102506723B1 (ko) 2019-11-26 2023-03-06 도요타 지도샤(주) 비수 전해질 이차 전지
WO2021196116A1 (zh) * 2020-04-02 2021-10-07 宁德新能源科技有限公司 电极极片、电化学装置及包含其的电子装置
WO2023132531A1 (ko) * 2022-01-07 2023-07-13 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 이의 제조방법
WO2024143954A1 (ko) * 2022-12-26 2024-07-04 주식회사 엘지에너지솔루션 이차전지용 전극 제조 방법 및 장치

Also Published As

Publication number Publication date
US20210210761A1 (en) 2021-07-08
JPWO2017163846A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2017163846A1 (ja) リチウムイオン二次電池、電極及びその製造方法
JP6608862B2 (ja) ナノ多孔性セパレータ層を利用するリチウム電池
JP6027136B2 (ja) 電極組立体の製造方法、及びこれを用いて製造された電極組立体
JP6249493B2 (ja) 非水電解液二次電池
EP3121891B1 (en) Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
WO2015087657A1 (ja) 二次電池とその製造方法
US20030224242A1 (en) Lithium ion secondary battery
US20160181650A1 (en) Secondary battery
JP2007329050A (ja) シート状電池及びその製造方法
KR20150051046A (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
KR101387137B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
CN115461909A (zh) 一种电化学装置及包含该电化学装置的电子装置
TWI398031B (zh) 鋰離子電池組
WO2018180599A1 (ja) 二次電池
WO2018155175A1 (ja) 二次電池の製造方法
JP2016152221A (ja) 二次電池および二次電池の製造方法
CN114586217A (zh) 电化学装置及包括该电化学装置的电子装置
JP5128008B1 (ja) 非水電解質二次電池
JP5829564B2 (ja) 電極構造およびそれを用いた蓄電デバイス
JP2020135979A (ja) 二次電池用極板群、二次電池用極板群の製造方法、及び二次電池
US20240304824A1 (en) Stacked battery
WO2024048136A1 (ja) リチウム二次電池および複合部材
JP2011096504A (ja) 非水電解質二次電池およびその製造方法
KR20160024088A (ko) 이차전지용 전극조립체
JP2024127442A (ja) 積層電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769891

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769891

Country of ref document: EP

Kind code of ref document: A1