WO2015087657A1 - 二次電池とその製造方法 - Google Patents

二次電池とその製造方法 Download PDF

Info

Publication number
WO2015087657A1
WO2015087657A1 PCT/JP2014/079965 JP2014079965W WO2015087657A1 WO 2015087657 A1 WO2015087657 A1 WO 2015087657A1 JP 2014079965 W JP2014079965 W JP 2014079965W WO 2015087657 A1 WO2015087657 A1 WO 2015087657A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
positive electrode
current collector
thickness
Prior art date
Application number
PCT/JP2014/079965
Other languages
English (en)
French (fr)
Inventor
伸 田中
正明 松宇
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to US15/036,122 priority Critical patent/US20160294015A1/en
Priority to CN201480067167.8A priority patent/CN105794022B/zh
Priority to JP2015552371A priority patent/JP6521323B2/ja
Publication of WO2015087657A1 publication Critical patent/WO2015087657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery in which a positive electrode and a negative electrode overlap each other with a separator interposed therebetween and a method for manufacturing the same.
  • Secondary batteries can be broadly classified into wound type and stacked type.
  • the battery element of the wound secondary battery has a structure in which a long positive electrode sheet and a negative electrode sheet are wound a plurality of times in a state of being overlapped while being separated by a separator.
  • the battery element of the stacked secondary battery has a structure in which positive electrode sheets and negative electrode sheets are alternately and repeatedly stacked while being separated by a separator.
  • an active material is used to connect an electrode terminal to an application portion in which an active material (including a binder or a mixture containing a conductive material) is applied to a current collector. And an uncoated portion that is not coated.
  • one end of the positive electrode terminal is electrically connected to the uncoated portion of the positive electrode sheet, and the other end is drawn out of the outer container (exterior case).
  • the battery element is enclosed in the outer container so that one end of the negative electrode terminal is electrically connected to the uncoated portion of the negative electrode sheet and the other end is drawn out of the outer container.
  • an electrolytic solution is sealed together with the battery element.
  • Secondary batteries have a tendency to increase in capacity year by year. Along with this, the heat generated in the event of a short circuit becomes larger and the danger increases. Therefore, battery safety measures are becoming more and more important.
  • Patent Document 1 discloses a technique for forming an insulating member at a boundary portion between a coated portion and an uncoated portion in order to prevent a short circuit between the positive electrode and the negative electrode.
  • Patent Document 2 discloses a configuration in which an active material formed on a current collector has a multilayer structure.
  • positive electrodes 1 and negative electrodes 6 are alternately stacked via separators 20, and active material 2 is placed on current collector 3 of positive electrode 1.
  • An insulating member 40 is formed to cover the boundary portion 4 between the applied portion and the uncoated portion where the active material 2 is not applied.
  • the insulating members 40 are repeatedly stacked at the same position as viewed in plan. For this reason, the thickness of the battery element partially increases at the position where the insulating member 40 is disposed, and the energy density per volume decreases.
  • the battery element in order to stabilize the electrical characteristics and reliability of the secondary battery, it is preferable to fix the battery element with a tape or the like and press the battery element with a uniform pressure.
  • an insulating member such as Patent Document 1
  • the battery element cannot be uniformly pressed due to the difference in thickness between the portion where the insulating member 40 exists and the portion where the insulating member 40 does not exist. There is a risk that the quality of the battery may be degraded, such as variations in battery life and cycle characteristics.
  • Patent Document 2 it is possible to prevent the end portion of the active material application portion from protruding and damaging the separator to cause a short circuit inside the battery. However, it is impossible to prevent an increase in the thickness of the battery element due to the provision of the insulating member and a deterioration in battery quality due to the fact that the battery elements cannot be pressed evenly. In the first place, since it is not assumed at all in Patent Document 2 that the boundary portion between the coated portion and the uncoated portion of the active material is covered by the insulating member, the same is seen in plan view in the stacked secondary battery as described above. There is no recognition of the problems associated with repeatedly laminating the insulating members at the positions.
  • an object of the present invention is to solve the above-described problems, prevent a short circuit between the positive electrode and the negative electrode by an insulating member, and suppress an increase in volume and deformation of the battery element, so that electrical characteristics and reliability can be achieved. It is to provide a high quality secondary battery and a method for manufacturing the same.
  • the secondary battery of the present invention includes a battery element in which positive electrodes and negative electrodes are alternately stacked via separators, and each of the positive electrode and the negative electrode is a current collector and an active material formed on the current collector. Including layers.
  • the active material layer includes a first active material layer and a second active material layer partially or entirely located on the first active material layer The end position of the first active material layer and the end position of the second active material layer are shifted in a plane, and the application portion where the active material layer is formed and the active material layer is not formed.
  • An insulating member is disposed so as to cover a boundary portion with the application portion, and an average thickness of a multilayer portion in which both the first active material layer and the second active material layer are laminated on the current collector, The difference from the thickness of the active material layer in the portion where the insulating member is located on the active material layer is 50% or more of the thickness of the insulating member.
  • the present invention it is possible to suppress the increase in the volume of the battery element due to the insulating member and the distortion of the battery element, so that it is possible to obtain a high-quality secondary battery excellent in energy density.
  • FIG. 1B is a sectional view taken along line AA in FIG. 1A. It is an expanded sectional view which shows the principal part of one Embodiment of the secondary battery of this invention. It is an expanded sectional view which shows the positive electrode of one Embodiment of the secondary battery of this invention. It is an enlarged view which describes the actual shape of the positive electrode shown to FIG. 3A. It is a top view which shows the positive electrode formation process of the manufacturing method of the secondary battery of this invention. It is a top view which shows the process of following the manufacturing method of the secondary battery of this invention of FIG. It is a top view which shows the process of following the manufacturing method of the secondary battery of this invention of FIG.
  • FIG. 6A It is a top view which shows the positive electrode cut
  • FIG. 1A is a plan view seen from above perpendicular to the main surface (flat surface) of the secondary battery
  • FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
  • the lithium ion secondary battery 100 of the present invention includes an electrode laminate (battery element) in which a plurality of positive electrodes (positive electrode sheets) 1 and negative electrodes (negative electrode sheets) 6 are laminated with separators 20 interposed therebetween. .
  • This electrode laminate is housed in an outer container made of the flexible film 30 together with the electrolytic solution.
  • One end of a positive electrode terminal 11 is connected to the positive electrode 1 of the electrode laminate, and one end of a negative electrode terminal 16 is connected to the negative electrode 6.
  • the other end side of the positive electrode terminal 11 and the other end side of the negative electrode terminal 16 are each drawn out of the flexible film 30.
  • FIG. 1B a part of each layer constituting the electrode stack (a layer located in the middle part in the thickness direction) is not shown, and the electrolytic solution is shown.
  • the positive electrode 1 includes a positive electrode current collector (positive electrode current collector) 3 and a positive electrode active material layer (positive electrode active material layer) 2 applied to the positive electrode current collector 3.
  • a positive electrode current collector positive electrode current collector
  • a positive electrode active material layer positive electrode active material layer
  • an application portion where the positive electrode active material layer 2 is formed and an unapplied portion where the positive electrode active material layer 2 is not formed are aligned along the longitudinal direction.
  • the negative electrode 6 includes a negative electrode current collector (negative electrode current collector) 8 and a negative electrode active material layer (negative electrode active material layer) 7 applied to the negative electrode current collector 8.
  • the coated portion and the uncoated portion are positioned side by side along the longitudinal direction.
  • the uncoated portions of the positive electrode 1 and the negative electrode 6 are used as tabs for connecting to electrode terminals (the positive electrode terminal 11 or the negative electrode terminal 16).
  • the positive electrode tabs connected to the positive electrode 1 are gathered on the positive electrode terminal 11 and connected together with the positive electrode terminal 11 by ultrasonic welding or the like.
  • the negative electrode tabs connected to the negative electrode 6 are gathered on the negative electrode terminal 16 and are connected together with the negative electrode terminal 16 by ultrasonic welding or the like.
  • the other end portion of the positive electrode terminal 11 and the other end portion of the negative electrode terminal 16 are respectively drawn out of the exterior container.
  • the outer dimension of the coating part (negative electrode active material layer 7) of the negative electrode 6 is larger than the outer dimension of the coating part (positive electrode active material layer 2) of the positive electrode 1 and smaller than or equal to the outer dimension of the separator 20.
  • the positive electrode active material layer 2 having a multilayer structure is formed on both surfaces of the positive electrode current collector 3. Specifically, the positive electrode active material mixture is applied on the positive electrode current collector 3 to form the first active material layer 2a, and the positive electrode active material mixture is further formed on the first active material layer 2a. The material mixture is applied, and the second active material layer 2b is laminated.
  • the active material mixture for the positive electrode of the first active material layer 2a and the active material mixture for the positive electrode of the second active material layer 2b may be the same or different.
  • the terminal position 2a1 of the first active material layer 2a is located closer to the outer edge side of the battery element than the terminal position 2b1 of the second active material layer 2b. Therefore, the positive electrode active material layer 2 includes a multilayer portion M in which both the first active material layer 2 a and the second active material layer 2 b are stacked on the positive electrode current collector 3, and the positive electrode current collector 3. And a single layer portion S in which only the first active material layer 2a is formed, and the thickness of the single layer portion S is thinner than the thickness of the multilayer portion M.
  • the second active material layer 2b includes an inclined portion 2b2 extending from the boundary position between the multilayer portion M and the single layer portion S.
  • An insulating member 40 for preventing a short circuit with the negative electrode terminal 16 is formed so as to cover (which coincides with 2a1).
  • the insulating member 40 covers the boundary portion 4 between the uncoated portion (positive electrode tab) and the positive electrode active material 2 (the first active material layer 2a in the single layer portion of the positive electrode active material layer 2 in this embodiment). It is formed across both.
  • the sum of the thickness of the positive electrode active material layer 2 (single layer portion S made of the first active material layer 2a) and the thickness of the insulating member 40 in the portion where the insulating member 40 is located on the positive electrode active material layer 2 is: It is smaller than the average thickness of the multilayer portion M of the positive electrode active material layer 2. Therefore, the positive electrode 1 is not partially thick at the portion where the insulating member 40 is disposed.
  • the positive electrode 1, the negative electrode 6, and the separator 20 are illustrated so as not to be in contact with each other for the sake of clarity.
  • the inclined portion 2b2 extending from the boundary position between the multilayer portion M of the positive electrode active material layer 2 and the single-layer portion S to the average thickness portion of the multilayer portion M is provided. .
  • the inclined portion 2b2 is provided at the end of the second active material layer 2b, and the average angle formed with respect to the positive electrode current collector 3 is 20 degrees or more, more preferably 25 degrees or more.
  • the surfaces of the positive electrode current collector 3 and the positive electrode active material layer 2 have a certain degree of unevenness, and their contours are not completely straight lines. Varies somewhat depending on the measurement site.
  • an angle ⁇ formed by a straight line substantially along the surface of the positive electrode current collector 3 and a straight line substantially along the surface of the inclined portion 2b2 is defined as 20 degrees or more (preferably 25 degrees or more). Yes.
  • the length of the inclined portion 2b2 along the longitudinal direction of the positive electrode current collector 3 is preferably 0.2 mm or less.
  • the average thickness of the first active material layer 2a is 0.1 mm
  • the average thickness of the second active material layer 2b is 0.04 mm. Therefore, the average thickness of the multilayer part M is 0.14 mm.
  • the length of the inclined portion 2b2 along the longitudinal direction of the positive electrode current collector 3 is 0.06 mm
  • the length of the single layer portion S along the longitudinal direction of the positive electrode current collector 3 is 1 mm.
  • the thickness of the insulating member 40 formed over the single layer portion M and the uncoated portion is 0.03 mm.
  • the thickness of the positive electrode active material layer 2 (single layer portion S made of the first active material layer 2 a) and the thickness of the insulating member 40 in the portion where the insulating member 40 is located on the positive electrode active material layer 2. Is 0.13 mm, which is smaller than the average thickness (0.14 mm) of the multilayer portion M of the positive electrode active material layer 2. Accordingly, since the positive electrode 1 is not partially thick in the portion where the insulating member 40 is disposed, the decrease in energy density per volume can be suppressed, and the battery elements can be pressed evenly, and variations in electrical characteristics and It is possible to suppress deterioration in battery quality such as deterioration in cycle characteristics.
  • the inclined portion 2b2 and the single layer portion S are lower in density than the multilayer portion M.
  • an intermediate layer may be interposed between the first active material layer 2a and the second active material layer 2b.
  • the intermediate layer may be present on the surface of the first active material layer 2a.
  • the layer having such a configuration is also referred to as a “single layer portion S”.
  • the negative electrode 6 of the present embodiment has a single-layer negative electrode active material layer 7 formed on both surfaces of the negative electrode current collector 8, and no insulating member 40 is provided.
  • examples of the active material constituting the positive electrode active material layer 2 include LiCoO 2 , LiNiO 2 , LiNi (1-x) CoO 2 , and LiNi x (CoAl) (1-x) O 2.
  • Li 2 MO 3 -LiMO 2 LiNi 1/3 Co 1/3 Mn 1/3 O 2 and other layered oxide materials, LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn ( 2-x) M x O spinel type material such as 4, olivine-based material such as LiMPO 4, Li 2 MPO 4 F, fluoride olivine-based material, such as Li 2 MSiO 4 F, vanadium oxide system such as V 2 O 5 A material etc. are mentioned, The 1 type of these, or 2 or more types of mixtures can be used.
  • carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, alloy materials such as silicon and tin, An oxide material such as Nb 2 O 5 or TiO 2 or a composite thereof can be used.
  • the active material mixture constituting the positive electrode active material layer 2 and the negative electrode active material layer 7 is obtained by appropriately adding a binder, a conductive aid or the like to the above-described active material.
  • a conductive support agent 1 type in carbon black, carbon fiber, or graphite can be used, or a combination of 2 or more types can be used.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, carboxymethylcellulose, modified acrylonitrile rubber particles, and the like can be used.
  • the positive electrode current collector 3 aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used, and aluminum is particularly preferable.
  • the negative electrode current collector 8 copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • Examples of the electrolytic solution include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
  • EMC ethyl methyl carbonate
  • DMC diethyl carbonate
  • DPC dipropyl carbonate
  • One or a mixture of two or more organic solvents such as chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers and cyclic etherscan be used
  • the separator 20 is mainly made of a resin porous film, woven fabric, non-woven fabric, and the like, and as its resin component, for example, a polyolefin resin such as polypropylene or polyethylene, a polyester resin, an acrylic resin, a styrene resin, or a nylon resin is used. it can.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the separator 20 may be formed with a layer containing inorganic particles, and examples of the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc. It is preferable to contain TiO 2 or Al 2 O 3 .
  • a case or a can case made of the flexible film 30 can be used as the outer container, and the flexible film 30 is preferably used from the viewpoint of reducing the weight of the battery.
  • the flexible film 30 a film in which a resin layer is provided on the front and back surfaces of a metal layer serving as a base material can be used.
  • a metal layer having a barrier property such as prevention of leakage of the electrolytic solution or entry of moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • a heat-fusible resin layer such as a modified polyolefin is provided.
  • An exterior container is formed by making the heat-fusible resin layers of the flexible film 30 face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body that is the surface opposite to the surface on which the heat-fusible resin layer is formed.
  • the positive electrode terminal 11 can be made of aluminum or an aluminum alloy
  • the negative electrode terminal 16 can be made of copper, a copper alloy, or those plated with nickel.
  • the other end side of each terminal 11 and 16 is pulled out of the exterior container.
  • a heat-sealable resin can be provided in advance at a location corresponding to a portion of each terminal 11, 16 that is thermally welded to the outer peripheral portion of the outer container.
  • the insulating member 40 formed so as to cover the boundary portion 4 between the coated portion and the uncoated portion of the positive electrode active material layer 2 polyimide, glass fiber, polyester, polypropylene, or a material containing these can be used.
  • the insulating member 40 can be formed by applying heat to the tape-shaped resin member and welding the tape-shaped resin member to the boundary portion 4 or by applying a gel-like resin to the boundary portion 4 and then drying.
  • edges of the first active material layer 2 a and the second active material layer 2 b of the positive electrode active material layer 2 do not necessarily have to be arranged in parallel with each other on the positive electrode current collector 3.
  • the boundary portion 4 between the coated portion and the uncoated portion of the positive electrode 1 and the end portion of the negative electrode 6 are not curved in a straight line perpendicular to the direction in which the current collectors 3 and 8 extend, but in a rounded curved shape. It may be. It goes without saying that in any of the positive electrode active material layer 2 and the negative electrode active material layer 7, for example, inevitable inclination, unevenness, roundness, etc. of each layer due to manufacturing variations and layer forming ability may occur.
  • a first active material layer 2a is applied to a long belt-like positive electrode current collector 3 for producing a plurality of positive electrodes (positive electrode sheets) 1, and then a second The positive electrode active material layer 2 is formed by forming the active material layer 2b.
  • the positive electrode active material layer 2 is formed on both surfaces of the positive electrode current collector 3.
  • the detailed shape and dimensions of the positive electrode active material layer 2 are as described with reference to FIGS. 3A and 3B.
  • the insulating member 40 is formed so as to cover the boundary portion 4.
  • One end 40a of the insulating member 40 is located on the single layer portion S of the positive electrode active material layer 2, and the other end is located on the uncoated portion (see FIGS. 2 and 3A). If the thickness of the insulating member 40 is small, there is a possibility that sufficient insulation cannot be ensured. Therefore, the thickness is preferably 10 ⁇ m or more. Moreover, since the effect which suppresses the increase in the thickness of the electrode laminated body by this invention is not fully exhibited if the thickness of the insulating member 40 is too large, the insulating member 40 is the average thickness of the multilayer part M of the positive electrode active material 2. Smaller is better.
  • the thickness of the insulating member 40 is 90% or less of the average thickness of the multilayer part M of the positive electrode active material 2, more preferably 60% or less of the average thickness of the multilayer part M.
  • the end of the coated portion (first active material layer 2a) at the boundary portion 4 with the uncoated portion is substantially perpendicular to the positive electrode current collector 3. It may be inclined.
  • the positive electrode current collector 3 is cut and divided along a cutting line 90 shown by a broken line in FIG. 6A, and the desired size shown in FIG. 6B is obtained. A positive electrode 1 is obtained.
  • the cutting line 90 is a virtual line and is not actually formed.
  • a negative electrode active material layer 7 is intermittently applied to both surfaces of a large-area negative electrode current collector 8 for manufacturing a plurality of negative electrodes (negative electrode sheets) 6.
  • the negative electrode active material layer 7 has a single layer structure, and an end thereof (an end portion of the coating portion) may be slightly inclined or may be substantially perpendicular to the negative electrode current collector 8. .
  • the negative electrode current collector 8 is cut and divided along a cutting line 91 shown by a broken line in FIG. 8A, and the desired size shown in FIG. 8B is obtained.
  • a negative electrode 6 is obtained.
  • the cutting line 91 is a virtual line and is not actually formed.
  • the electrode stack shown is formed.
  • the electrode laminate is accommodated in an outer container made of the flexible film 30 together with the electrolytic solution, and sealed to form the secondary battery 100 shown in FIGS. 1A and 1B.
  • the increase in thickness due to the insulating member 40 formed so as to cover the boundary portion 4 between the coated portion and the uncoated portion of the positive electrode 1 is determined by the single layer portion S of the positive electrode active material layer 2.
  • the thickness is absorbed (cancelled) by being thin compared to the multilayer portion M, and the electrode stack is not partially thickened. Therefore, the electrode stack can be pressed and held evenly, and the electric characteristics vary. And quality degradation such as degradation of cycle characteristics can be suppressed.
  • the double-side coated part of the negative electrode 6 is cut and terminated at a position facing the non-coated part (positive electrode tab) of the positive electrode 1, and as shown in FIG.
  • the negative electrode active material 7 is present on the front and back of the negative electrode current collector 8 and there is no uncoated part.
  • an uncoated portion serving as a negative electrode tab is provided at the end of the negative electrode 6 that does not face the uncoated portion of the positive electrode 1.
  • each member in the present invention means an average value of measured values at any three or more locations unless otherwise specified.
  • FIG. 9 is a diagram showing an example of the configuration of a die coater that performs intermittent application.
  • the slurry flow path of the die coater that performs intermittent coating includes a die head 500, a coating valve 502 connected to the die head 500, a pump 503, and a tank 504 that stores the slurry 10.
  • a return valve 505 is provided between the tank 504 and the application valve 502.
  • the application valve can be a motor valve, an electromagnetic valve, an air valve, or other various valve means.
  • the motor valve can accurately change the open / close state of the valve even during application of the slurry 10. Therefore, by maintaining the viscosity of the slurry 10 at 5000 to 1000 cps (measured at 20 ° C. with an E-type viscometer), the angle formed by the surface to be coated and the inclined portion at the coating start end of the active material is 20 degrees or more. It becomes possible to do.
  • the second active material layer can be applied by applying the first active material layer on the long current collector side and drying it by a continuous application method.
  • the planar position of the end portion (termination position) of the second active material layer does not coincide with the planar position of the end portion (termination position) of the first active material layer, and thus the longitudinal direction of the current collector
  • a slurry having a viscosity of 5000 to 10000 cps may be applied so as to shift in a direction perpendicular to the above.
  • the active thickness is determined based on the average thickness of the single layer portion S where only one of the first active material layer and the second active material layer is formed.
  • the distance (the length of the inclined portion along the longitudinal direction of the current collector) that shifts to the average thickness of the multilayer portion M on which the material layers are stacked can be very small.
  • the thickness of the active material layer shifts from a thin part to a thick part.
  • the distance required for the similar thickness transition is set to about 0.about.20 mm.
  • this distance (the length of the inclined portion along the longitudinal direction of the current collector) is 0.01 to 0.5 mm. Is more preferable, and 0.01 to 0.1 mm is more preferable.
  • the thickness of the active material layer is arbitrary and is not particularly limited, but is used for applications such as portable electronic devices, electric bicycles, electric assist bicycles, stationary charging devices, electric vehicles, and hybrid vehicles.
  • the active material layer located on at least one surface of the current collector is preferably about 5 to 200 ⁇ m. This numerical value is the thickness of the active material layer located on one side of the current collector, and is not the sum of the thicknesses of the active material layers located on both sides of the current collector.
  • the difference in thickness between the multilayer portion M in which both the first active material layer and the second active material layer are laminated and the single layer portion S in which only one of the active material layers is formed is the insulating member. If the thickness is larger than 40, an increase in the thickness of the battery element due to the insulating member 40 can be prevented, which is extremely effective. However, even if the difference in thickness between the multilayer portion M and the single layer portion S is smaller than the thickness of the insulating member 40, for example, the difference in thickness between the multilayer portion M and the single layer portion S is 50 of the thickness of the insulating member 40. If it is% or more, an increase in the local thickness of the battery element can be kept small, and a certain effect can be obtained.
  • the difference in thickness between the multilayer portion M and the single layer portion S is preferably equal to or less than the thickness of the insulating member 40 plus 50 ⁇ m, and the thickness of the insulating member is added 25 ⁇ m. More preferably, the thickness is less than or equal to the thickness.
  • the difference in thickness between the multilayer portion M and the single layer portion S is preferably 10 ⁇ m to 70 ⁇ m, more preferably 20 ⁇ m to 45 ⁇ m. preferable.
  • the difference in thickness between the multilayer portion M and the single layer portion S is preferably 20 ⁇ m to 90 ⁇ m, and more preferably 40 ⁇ m to 65 ⁇ m.
  • the distance between the end portion (terminal position) of the application portion of the first active material layer and the end portion (termination position) of the application portion of the second active material layer, that is, the single-layer portion S where the insulating member is formed The length of is not particularly limited, but considering the energy density per unit volume of the battery element, it is preferably 0.5 to 5 mm, more preferably 0.5 to 3 mm. In this case, as in the above-described embodiment (FIGS. 2 to 3), the end portion of the application portion of the second active material layer is located on the first active material layer, and the single layer portion S is the first active material. As shown in another embodiment (FIG.
  • the end of the application part of the second active material layer exceeds the end of the application part of the first active material layer as in the other embodiment described later.
  • the single layer portion S is composed of the second active material layer may be arbitrarily selected.
  • the end of the application portion of the second active material layer is located on the first active material layer.
  • the single layer portion S is preferably composed of the first active material layer. In particular, such a configuration is effective when the distance from the thin single layer portion S to the thick multilayer portion M is suppressed to 0.5 mm or less.
  • the end position of each active material layer (planar position of the end of the application part) may be different or coincide on both sides of the current collector.
  • one or both of the first active material layer and the second active material layer are one or more fillers such as alumina, titania, zirconia, and magnesia, or these as raw materials. It can be set as the structure containing these ceramics and these combination. Thereby, heat resistance improves and the safety
  • the boundary between the active material coated part and the uncoated part (the part where the current collector is exposed) Since the surface of the active material layer near the end of the insulating member to which particularly great stress is applied due to the thermal contraction of the disposed insulating member is located in a portion where the thickness from the current collector surface is small, the surface of the active material layer This is because there is no risk of contact with the opposing electrodes. Further, either one of the first active material layer and the second active material layer contains a heat-resistant material, and the other does not contain a heat-resistant material, or the amount of the heat-resistant material is smaller than that of the one active material layer.
  • the amount of decrease in the active material corresponding to the ratio including the heat-resistant material can be minimized, and the decrease in energy density due to the incorporation of the heat-resistant material can be minimized.
  • a thickness corresponding to the capacity per unit weight of the active material is necessary from the viewpoint of safety.
  • the end of the second active material layer is located on the first active material layer and the second active material layer contains a heat-resistant material (for example, alumina)
  • the second active material layer Since the distance from the coating end portion (terminal position) to the average thickness portion of the multilayer portion is extremely short, there are few portions where the thickness of the layer containing the heat-resistant material is thin, and the safety effect is extremely great.
  • the end of the application portion of the second active material layer 2b is located on the first active material layer 2a, and the single layer portion is composed of the first active material layer 2a.
  • the second active material layer 2b extends beyond the end of the coating portion of the first active material layer 2a, and the single layer portion is composed of the second active material layer 2b. It can also be.
  • the inclined portion 2b2 extending from the boundary position between the multilayer portion M and the single-layer portion S is provided in an intermediate portion of the second active material layer 2b, and the shape and dimensions thereof are the first portion located in the lower layer. It generally follows the edge of the application part of the active material layer 2a.
  • the average thickness of the first active material layer 2a is 0.04 mm
  • the average thickness of the second active material layer 2b is 0.1 mm. Therefore, the average thickness of the multilayer part M is 0.14 mm.
  • the length of the inclined portion 2b2 along the longitudinal direction of the positive electrode current collector 3 is 0.06 mm
  • the length of the single layer portion S along the longitudinal direction of the positive electrode current collector 3 is 1 mm.
  • the thickness of the insulating member 40 formed over the single layer portion S and the uncoated portion is 0.03 mm.
  • the thickness of the positive electrode active material layer 2 (single layer portion S formed of the second active material layer 2 b) and the thickness of the insulating member 40 in the portion where the insulating member 40 is located on the positive electrode active material layer 2. Is 0.13 mm, which is smaller than the average thickness (0.14 mm) of the multilayer portion M of the positive electrode active material layer 2. Accordingly, since the positive electrode 1 is not partially thick in the portion where the insulating member 40 is disposed, the decrease in energy density per volume can be suppressed, and the battery elements can be pressed evenly, and variations in electrical characteristics and It is possible to suppress deterioration in battery quality such as deterioration in cycle characteristics.
  • the inclined portion 2b2 and the single layer portion S are lower in density than the multilayer portion M.
  • the insulating member 40 is provided only on the positive electrode 1 and the insulating member is not provided on the negative electrode 6, and the positive electrode active material layer 2 is the first active material layer 2 a and the first active material layer 2 a.
  • the structure in which the negative electrode active material layer 7 has a single-layer structure with a multilayer structure including two active material layers 2b has been described.
  • the insulating member 40 is provided only in the negative electrode 6, the insulating member is not provided in the positive electrode 1, the positive electrode active material layer 2 has a single-layer structure, and the negative electrode active material layer 7 includes the first active material layer. It can also be set as the structure which is a multilayer structure which consists of a 2nd active material layer.
  • both the positive electrode 1 and the negative electrode 6 are provided with an insulating member 40, and both the positive electrode active material layer 2 and the negative electrode active material layer 7 are multilayers composed of a first active material layer and a second active material layer. It is also possible to adopt a structure that is a structure. Regardless of the configuration, in the active material layer having a multilayer structure, a part of the insulating member is disposed on the single layer portion S and insulated by the difference in thickness between the multilayer portion M and the single layer portion S. By absorbing (offset) at least a part of the increase in thickness due to the member, an effect of suppressing the increase in thickness of the battery element can be obtained.
  • the present invention is useful for a lithium ion secondary battery and a manufacturing method thereof, but is also effective when applied to a secondary battery other than a lithium ion battery and a manufacturing method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 二次電池が、正極1と負極6とがセパレータ20を介して交互に積層された電池素子を含み、正極1と負極6は、集電体3,8と、集電体3,8上に形成された活物質層2,7を含む。正極の負極の一方または両方において、活物質層2が、第1の活物質層2aとその上に位置する第2の活物質層2bとを含む多層構造であり、第1の活物質層2aの終端位置と第2の活物質層2bの終端位置はずれており、活物質層の塗布部と未塗布部との境界部分4を覆う絶縁部材40が配置され、集電体3上に両活物質層2a,2bが積層された多層部分の平均厚さと、絶縁部材40が活物質層2上に位置する部分における活物質層2の厚さとの差が、絶縁部材40の厚さの50%以上である。

Description

二次電池とその製造方法
 本発明は、正極と負極とがセパレータを介して重なり合っている二次電池とその製造方法に関する。
 二次電池は、携帯電話、デジタルカメラ、ラップトップコンピュータなどのポータブル機器の電源としてはもちろん、車両や家庭用の電源として広く普及してきており、なかでも、高エネルギー密度で軽量なリチウムイオン二次電池は、生活に欠かせないエネルギー蓄積デバイスになっている。
 二次電池は大別して捲回型と積層型に分類できる。捲回型二次電池の電池素子は、長尺の正極シートと負極シートとがセパレータによって隔離されつつ重ね合わされた状態で複数回巻き回された構造を有する。積層型二次電池の電池素子は、正極シートと負極シートとがセパレータによって隔離されながら交互に繰り返し積層された構造を有する。正極シートおよび負極シートは、集電体に、活物質(結着剤や導電材などを含む合剤である場合も含む)が塗布された塗布部と、電極端子を接続するために活物質が塗布されていない未塗布部とを備えている。
 捲回型二次電池と積層型二次電池のいずれにおいても、正極端子の一端が正極シートの未塗布部に電気的に接続されて他端が外装容器(外装ケース)の外部に引き出され、負極端子の一端が負極シートの未塗布部に電気的に接続されて他端が外装容器の外部に引き出されるように、電池素子が外装容器内に封入されている。外装容器内には電池素子とともに電解液も封入されている。二次電池は年々大容量化する傾向にあり、これに伴って、仮に短絡が発生した場合の発熱がより大きくなり危険が増すため、電池の安全対策がますます重要になっている。
 安全対策の例として、特許文献1には、正極と負極との間の短絡を防止するために、塗布部と未塗布部の境界部分に絶縁部材を形成する技術が開示されている。
 また、特許文献2には、集電体上に形成される活物質が多層構造である構成が開示されている。
特開2012-164470号公報 特開2010-262773号公報
 特許文献1に開示された技術では、図11に示すように、正極1と負極6とがセパレータ20を介して交互に積層されており、正極1の集電体3上に、活物質2が塗布された塗布部と活物質2が塗布されていない未塗布部との境界部分4を覆う絶縁部材40が形成されている。積層型二次電池においては、平面的に見て同じ位置で絶縁部材40が繰り返し積層される。このため、絶縁部材40の配置される位置において電池素子の厚さが部分的に大きくなり、体積あたりのエネルギー密度が低下する。
 また、二次電池は、電気的な特性や信頼性を安定させるために、電池素子をテープ等で固定して電池素子を均一な圧力で押さえることが好ましい。しかし、積層型二次電池に特許文献1のような絶縁部材を用いると、絶縁部材40が存在する部分と存在しない部分との厚みの差により電池素子を均等に押さえることが出来なくなり、電気特性のばらつきやサイクル特性の低下など、電池の品質の低下を招くおそれがある。
 特許文献2では、活物質の塗布部の端部が突出してセパレータを破損し電池内部で短絡が生じることを防ぐことができる。しかし、絶縁部材を設けることに伴う電池素子の厚さの増大や、電池素子を均等に押さえられないことによる電池の品質の低下を防ぐことはできない。そもそも特許文献2には、絶縁部材によって活物質の塗布部と未塗布部との境界部分を覆うことは全く想定されていないため、前記したように積層型二次電池において平面的に見て同じ位置で絶縁部材が繰り返し積層されることに伴う不具合については全く認識されていない。
 そこで本発明の目的は、前記した問題点を解決して、絶縁部材によって正極と負極との間の短絡を防止するとともに、電池素子の体積の増大や変形を抑制して、電気特性および信頼性の高い高品質の二次電池とその製造方法を提供することにある。
 本発明の二次電池は、正極と負極とがセパレータを介して交互に積層された電池素子を含み、正極と負極はそれぞれ、集電体と、該集電体上に形成されている活物質層とを含む。正極と負極のいずれか一方または両方において、活物質層が、第1の活物質層と、一部または全部が第1の活物質層上に位置する第2の活物質層とを含む多層構造であり、第1の活物質層の終端位置と第2の活物質層の終端位置は平面的にずれており、活物質層が形成されている塗布部と活物質層が形成されていない未塗布部との境界部分を覆うように絶縁部材が配置されており、集電体上に第1の活物質層と第2の活物質層の両方が積層されている多層部分の平均厚さと、絶縁部材が活物質層上に位置する部分における活物質層の厚さとの差が、絶縁部材の厚さの50%以上である。
 本発明によると、絶縁部材による電池素子の体積の増加や電池素子の歪みを抑制することが可能であるため、エネルギー密度に優れた高品質の二次電池を得ることができる。
本発明の積層型二次電池の基本構造を表す平面図である。 図1AのA-A線断面図である。 本発明の二次電池の一実施形態の要部を示す拡大断面図である。 本発明の二次電池の一実施形態の正極を示す拡大断面図である。 図3Aに示す正極の実際の形状を記す拡大図である。 本発明の二次電池の製造方法の正極形成工程を示す平面図である。 本発明の二次電池の製造方法の図4に続く工程を示す平面図である。 本発明の二次電池の製造方法の図5に続く工程を示す平面図である。 図6Aに示す工程で切断されて形成された正極を示す平面図である。 本発明の二次電池の製造方法の負極形成工程を示す平面図である。 本発明の二次電池の製造方法の図7に続く工程を示す平面図である。 図8Aに示す工程で切断されて形成された負極を示す平面図である。 活物質の間欠塗布に用いられる装置の一例を模式的に示すブロック図である。 本発明の二次電池の他の実施形態の正極を示す拡大断面図である。 関連技術の積層型二次電池の要部を示す拡大断面図である。
 以下、本発明の実施形態について図面を用いて説明する。
 [二次電池の構成]
 図1A,1Bは、本発明の製造方法によって製造される積層型のリチウムイオン二次電池の構成の一例を模式的に示している。図1Aは二次電池の主面(扁平な面)に対して垂直上方から見た平面図であり、図1Bは図1AのA-A線断面図である。
 本発明のリチウムイオン二次電池100は、正極(正極シート)1と負極(負極シート)6とが、セパレータ20を介して交互に複数層積層された電極積層体(電池素子)を備えている。この電極積層体は電解液と共に、可撓性フィルム30からなる外装容器に収納されている。電極積層体の正極1には正極端子11の一端が、負極6には負極端子16の一端がそれぞれ接続されている。正極端子11の他端側および負極端子16の他端側は、それぞれ可撓性フィルム30の外部に引き出されている。図1Bでは、電極積層体を構成する各層の一部(厚さ方向の中間部に位置する層)を図示省略して、電解液を示している。
 正極1は、正極用の集電体(正極集電体)3とその正極集電体3に塗布された正極用の活物質層(正極活物質層)2とを含む。正極集電体3の表面と裏面には、正極活物質層2が形成された塗布部と正極活物質層2が形成されていない未塗布部とが、長手方向に沿って並んで位置する。同様に、負極6は、負極用の集電体(負極集電体)8とその負極集電体8に塗布された負極用の活物質層(負極活物質層)7とを含む。負極集電体8の表面と裏面には塗布部と未塗布部とが、長手方向に沿って並んで位置する。
 正極1と負極6のそれぞれの未塗布部は、電極端子(正極端子11または負極端子16)と接続するためのタブとして用いられる。正極1に接続される正極タブ同士は正極端子11上にまとめられ、正極端子11とともに超音波溶接等で互いに接続される。負極6に接続される負極タブ同士は負極端子16上にまとめられ、負極端子16とともに超音波溶接等で互いに接続される。そのうえで、正極端子11の他端部および負極端子16の他端部は外装容器の外部にそれぞれ引き出されている。
 負極6の塗布部(負極活物質層7)の外形寸法は正極1の塗布部(正極活物質層2)の外形寸法よりも大きく、セパレータ20の外形寸法よりも小さいか等しい。
 図2に示すように、本実施形態の正極1では、正極集電体3の両面に多層構造の正極活物質層2が形成されている。具体的には、正極集電体3上に正極用の活物質合剤が塗布されて第1の活物質層2aが形成され、さらにこの第1の活物質層2aの上に正極用の活物質合剤が塗布されて、第2の活物質層2bが積層されている。第1の活物質層2aの正極用の活物質合剤と第2の活物質層2bの正極用の活物質合剤は、同じであっても異なっていてもよい。本実施形態では、第1の活物質層2aの終端位置2a1が第2の活物質層2bの終端位置2b1よりも、電池素子の外縁側に位置している。そのため、この正極活物質層2は、正極集電体3上に第1の活物質層2aと第2の活物質層2bの両方が積層されている多層部分Mと、正極集電体3上に第1の活物質層2aのみが形成されている単層部分Sとを含み、単層部分Sの厚さは多層部分Mの厚さよりも薄い。そして、第2の活物質層2bは、多層部分Mと単層部分Sとの境界位置から延びる傾斜部2b2を備えている。
 そして、正極活物質層2が形成されている塗布部と、正極活物質層2が形成されていない未塗布部の間の境界部分4(本実施形態では第1の活物質層2aの終端位置2a1と一致する)を覆うように、負極端子16との短絡を防止するための絶縁部材40が形成されている。この絶縁部材40は境界部分4を覆うように、未塗布部(正極タブ)と正極活物質2(本実施形態では正極活物質層2の単層部分の第1の活物質層2a)との双方にまたがって形成されている。この絶縁部材40が正極活物質層2上に位置する部分における、正極活物質層2(第1の活物質層2aからなる単層部分S)の厚さと絶縁部材40の厚さの和が、正極活物質層2の多層部分Mの平均厚さよりも小さい。従って、絶縁部材40が配置された部分において正極1が部分的に厚くなってはいない。
 図2では、見やすくするために、正極1と負極6とセパレータ20とがそれぞれ互いに接触していないように図示しているが、実際にはこれらは密着して積層されている。
 次に、図3A,3Bを参照して、正極活物質層2の詳細な構成について説明する。本実施形態では、前記したように、正極活物質層2の多層部分Mの単層部分Sとの境界位置から多層部分Mの平均厚さの部分に至るまで延びる傾斜部2b2が設けられている。この傾斜部2b2は第2の活物質層2bの端部に設けられており、正極集電体3に対してなす平均角度は20度以上、より好ましくは25度以上である。実際には、図3Bに示すように、正極集電体3および正極活物質層2の表面はそれぞれある程度の凹凸を有しており、それらの輪郭は完全な直線ではないため、両者のなす角度は測定部位によって多少変動する。そこで、ここでは、平均角度として、正極集電体3の表面に概ね沿う直線と傾斜部2b2の表面に概ね沿う直線とのなす角度αを20度以上(好ましくは25度以上)と規定している。この傾斜部2b2の、正極集電体3の長手方向に沿う長さは0.2mm以下であることが好ましい。
 図3A,3Bに示す具体的な例では、第1の活物質層2aの平均厚さは0.1mm、第2の活物質層2bの平均厚さは0.04mmである。従って、多層部分Mの平均厚さは0.14mmである。傾斜部2b2の、正極集電体3の長手方向に沿う長さは0.06mm、単層部分Sの、正極集電体3の長手方向に沿う長さは1mmである。そしてこの単層部分Mと未塗布部にまたがって形成されている絶縁部材40の厚さは、0.03mmである。この構成によると、絶縁部材40が正極活物質層2上に位置する部分における、正極活物質層2(第1の活物質層2aからなる単層部分S)の厚さと絶縁部材40の厚さの和は0.13mmであり、正極活物質層2の多層部分Mの平均厚さ(0.14mm)よりも小さい。従って、絶縁部材40が配置された部分において正極1が部分的に厚くなっていないので、体積あたりのエネルギー密度の低下が抑えられるとともに、電池素子を均等に押さえることができ、電気特性のばらつきやサイクル特性の低下などの電池の品質低下を抑制できる。なお、傾斜部2b2および単層部分Sは、多層部分Mに比べて低密度である。なお、本明細書及び図面では省略しているが、第1の活物質層2aと第2の活物質層2bとの間に中間層が介在する場合もある。第1の活物質層2aの表面にこの中間層が存在している場合もあり得るが、ここでは、便宜上、そのような構成の層も「単層部分S」と称している。
 本実施形態の負極6は、負極集電体8の両面に単層の負極活物質層7が形成されたものであり、絶縁部材40は設けられていない。
 本実施形態の二次電池において、正極活物質層2を構成する活物質としては、例えばLiCoO、LiNiO、LiNi(1-x)CoO、LiNi(CoAl)(1-x)、LiMO-LiMO、LiNi1/3Co1/3Mn1/3などの層状酸化物系材料や、LiMn、LiMn1.5Ni0.5、LiMn(2-x)などのスピネル系材料、LiMPOなどのオリビン系材料、LiMPOF、LiMSiOFなどのフッ化オリビン系材料、Vなどの酸化バナジウム系材料などが挙げられ、これらのうちの1種、または2種以上の混合物を使用することができる。
 負極活物質層7を構成する活物質としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料や、リチウム金属材料、シリコンやスズなどの合金系材料、NbやTiOなどの酸化物系材料、あるいはこれらの複合物を用いることができる。
 正極活物質層2および負極活物質層7を構成する活物質合剤は、前記した活物質に、結着剤や導電助剤等が適宜加えられたものである。導電助剤としては、カーボンブラック、炭素繊維、または黒鉛などのうちの1種、または2種以上の組み合せを用いることができる。また、結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子などを用いることができる。
 正極集電体3としては、アルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金等を用いることができ、特にアルミニウムが好ましい。負極集電体8としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金を用いることができる。
 電解液としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類や、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類や、脂肪族カルボン酸エステル類や、γ-ブチロラクトン等のγ-ラクトン類や、鎖状エーテル類、環状エーテル類、などの有機溶媒のうちの1種、または2種以上の混合物を使用することができる。さらに、これらの有機溶媒にリチウム塩を溶解させることができる。
 セパレータ20は主に樹脂製の多孔膜、織布、不織布等からなり、その樹脂成分として、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等を用いることができる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータ20には無機物粒子を含む層を形成してもよく、無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。
 外装容器には可撓性フィルム30からなるケースや缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルム30を用いることが好ましい。可撓性フィルム30には、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼などを用いることができる。金属層の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルム30の熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
 正極端子11には、アルミニウムやアルミニウム合金で構成されたもの、負極端子16には銅や銅合金あるいはそれらにニッケルメッキを施したものなどを用いることができる。それぞれの端子11,16の他端部側は外装容器の外部に引き出される。それぞれの端子11,16の、外装容器の外周部分の熱溶着される部分に対応する箇所には、熱融着性の樹脂をあらかじめ設けることができる。
 正極活物質層2の塗布部と未塗布部の境界部分4を覆うように形成される絶縁部材40には、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレン、あるいはこれらを含む材料を用いることができる。テープ状の樹脂部材に熱を加えて境界部分4に溶着させたり、ゲル状の樹脂を境界部分4に塗布してから乾燥させたりすることで絶縁部材40を形成することができる。
 なお、正極活物質層2の第1の活物質層2aおよび第2の活物質層2bの端縁は必ずしも正極集電体3上に互いに平行に配置されている必要はない。正極1の塗布部と未塗布部との境界部分4や、負極6の端部は、それらの端縁が集電体3,8の延びる方向に直交する直線状でなく丸みを帯びた曲線状であってもよい。正極活物質層2と負極活物質層7のいずれにおいても、例えば製造上のばらつきや層形成能力に起因する不可避な各層の傾斜や凹凸や丸み等が生じていても構わないことは言うまでもない。
 [二次電池の製造方法]
 まず、図4に示すように、複数の正極(正極シート)1を製造するための長尺の帯状の正極集電体3に、第1の活物質層2aを塗布し、続いて第2の活物質層2bを形成することにより、正極活物質層2を形成する。この正極活物質層2は正極集電体3の両面に形成される。図4では明確ではないが、正極活物質層2の詳細な形状および寸法は、図3A,3Bを参照して説明した通りである。次に、図5に示すように、境界部分4を覆うように絶縁部材40を形成する。絶縁部材40の一方の端部40aは正極活物質層2の単層部分Sの上に位置しており、他方の端部は未塗布部上に位置している(図2,3A参照)。絶縁部材40の厚さが小さいと、絶縁性を十分に確保できないおそれがあるので、厚さは10μm以上であることが好ましい。また、絶縁部材40の厚さが大き過ぎると、本発明による電極積層体の厚さの増大を抑制する効果が十分に発揮されないため、絶縁部材40は正極活物質2の多層部分Mの平均厚さよりも小さい方が良い。好ましくは、絶縁部材40の厚さは正極活物質2の多層部分Mの平均厚さの90%以下、より好ましくは多層部分Mの平均厚さの60%以下である。未塗布部との境界部分4における塗布部(第1の活物質層2a)の端部は、正極集電体3に対して実質的に垂直に切り立っていても、図2,3Aに示すように傾斜していてもよい。その後、個々の積層型電池に使用する正極1を得るために、図6Aに破線で示す切断線90に沿って正極集電体3を裁断して分割し、図6Bに示す所望の大きさの正極1を得る。切断線90は仮想的な線であって実際には形成されない。
 また、図7に示すように、複数の負極(負極シート)6を製造するための大面積の負極集電体8の両面に負極活物質層7を間欠的に塗布する。負極活物質層7は単層構造であり、その端部(塗布部の端部)は、僅かに傾斜していても、負極集電体8に対して実質的に垂直に切り立っていてもよい。
 その後、個々の積層型電池に使用する負極6を得るために、図8Aに破線で示す切断線91に沿って負極集電体8を裁断して分割し、図8Bに示す所望の大きさの負極6を得る。切断線91は仮想的な線であって実際には形成されない。
 このようにして形成された、図6Bに示す正極1と図8Bに示す負極6とを、セパレータ20を介して交互に積層し、正極端子11および負極端子16を接続することにより、図2に示す電極積層体が形成される。この電極積層体を電解液とともに、可撓性フィルム30からなる外装容器に収容し、封止することによって、図1A,1Bに示す二次電池100が形成される。
 この二次電池100によると、正極1の塗布部と未塗布部の境界部分4を覆うように形成された絶縁部材40による厚さの増加分が、正極活物質層2の単層部分Sが多層部分Mに比べて厚さが薄いことによって吸収(相殺)され、電極積層体を部分的に厚くすることがないため、電極積層体を均等に押さえて保持することができ、電気特性のばらつきやサイクル特性の低下などの品質低下を抑えることができる。
 なお、図8Bに示す例では、正極1の未塗布部(正極タブ)に対向する位置において、負極6の両面塗布部が切断されて終端しており、図2に示すように正極1の未塗布部に対向する位置では、負極集電体8の表裏に負極活物質7が存在し未塗布部が存在しない構成になっている。ただし、負極6の、正極1の未塗布部に対向する位置に、未塗布部が存在する構成にすることもできる。なお、図8Bに示すように、負極6の、正極1の未塗布部に対向しない端部には負極タブとなる未塗布部が設けられている。
 本発明での各部材の厚さや距離などは、特に断りが無い限りは、任意の3点以上の場所における測定値の平均値を意味する。
 [電極の詳細な作製方法]
 前記した本発明の二次電池の製造方法のうち、電極の詳細な作製方法について説明する。
 集電体上に多層構造(2層構造)の活物質層を形成するための装置としては、ドクターブレードや、ダイコータや、グラビアコータや、転写方式や蒸着方式などの様々な塗布方法を実施する装置や、これらの塗布装置の組み合わせを用いることが可能である。本発明において活物質の塗布端部を精度良く形成するためには、ダイコータを用いることが特に好ましい。ダイコータによる活物質の塗布方式としては、大別して、長尺の集電体の長手方向に沿って連続的に活物質を形成する連続塗布方式と、集電体の長手方向に沿って活物質の塗布部と未塗布部を交互に繰り返して形成する間欠塗布方式の2種類がある。
 図9は、間欠塗布を行うダイコータの構成の一例を示す図である。図9に示すように、間欠塗布を行うダイコータのスラリー流路には、ダイヘッド500と、ダイヘッド500に連結された塗布弁502と、ポンプ503と、スラリー10を溜めるタンク504を有している。また、タンク504と塗布弁502との間にはリターン弁505を有している。この構成において、塗布弁にはモーター弁や、電磁弁や、エア弁や、その他の様々な弁手段を用いることができる。ただし、特に上層(第2の活物質層)の塗布部の端部の形状および寸法を精度良く制御するためには、塗布弁502にモーター弁を使用するのが好ましい。モーター弁は、スラリー10の塗布中でも弁の開閉状態を精度良く変化させることができる。従って、スラリー10の粘度を5000~1000cps(E型粘度計にて20℃で測定)に保つことで、活物質の塗布開始端部の被塗布面と傾斜部とのなす角度を20度以上にすることが可能となる。
 また、連続塗布方式により、長尺状の集電体側に第1の活物質層を塗布して乾燥してから、第2の活物質層を塗布することもできる。その場合、第2の活物質層の端部(終端位置)の平面的な位置が第1の活物質層の端部(終端位置)の平面的な位置と一致せず集電体の長手方向に対して垂直な方向にずれるように、粘度5000~10000cpsのスラリーを塗布すればよい。
 間欠塗布方式と連続塗布方式のいずれであっても、第1の活物質層または第2の活物質層のいずれか一方だけが形成されている単層部分Sでの平均厚さから、両活物質層が積層されている多層部分Mの平均厚さに移行する距離(傾斜部の、集電体の長手方向に沿う長さ)を非常に小さくすることが可能である。たとえば、ダイヘッドから吐出されるスラリー10の流量等を制御して、所望の厚さの単層の活物質層を形成するには、活物質層の厚さが薄い部分から厚い部分に移行するために必要な距離が2~20mm程度であったものが、本発明によれば、同様な厚さの移行に必要な距離(傾斜部の、集電体の長手方向に沿う長さ)を0.01mm~2mm程度に抑えることが可能になる。この傾斜部の安定性と、電池素子の単位体積あたりのエネルギー密度を考慮すると、この距離(傾斜部の、集電体の長手方向に沿う長さ)は0.01~0.5mmであることが好ましく、0.01~0.1mmであるとより好ましい。
 なお、活物質層の厚さは任意であり、特に限定されるものではないが、携帯電子機器、電動自転車、電動アシスト自転車、定地用充電機器、電気自動車、ハイブリッド自動車などの用途に用いられる場合には、電池容量や重量の観点から、集電体の少なくとも一方の面上に位置する活物質層が5~200μm程度であると好ましい。なお、この数値は、集電体の片面に位置する活物質層の厚さであり、集電体の両面に位置する活物質層の厚さの合計ではない。
 第1の活物質層と第2の活物質層の両方が積層された多層部分Mと、いずれか一方の活物質層のみが形成された単層部分Sとの厚さの差が、絶縁部材40の厚さよりも大きければ、絶縁部材40による電池素子の厚さの増大を防ぐことができるため、極めて効果的である。ただし、多層部分Mと単層部分Sの厚さの差が絶縁部材40の厚さよりも小さくても、例えば多層部分Mと単層部分Sの厚さの差が絶縁部材40の厚さの50%以上であれば、電池素子の局所的な厚さの増大を小さく抑えることができ、ある程度の効果が得られる。一方、多層部分Mと単層部分Sの厚さの差が大きい場合であっても、多層部分Mの厚さが大きい場合には、局所的な厚さの増大は防げるが電池素子全体が厚くなるため好ましくなく、また単層部分Sが薄すぎると活物質本来の機能が不十分になるため好ましくない。そのような観点から、多層部分Mと単層部分Sの厚さの差は、絶縁部材40の厚さに50μmを加えた厚さ以下であるのが好ましく、絶縁部材の厚さに25μmを加えた厚さ以下であるとより好ましい。これらの要件を考慮すると、厚さ20μmの絶縁部材を用いる場合には、多層部分Mと単層部分Sの厚さの差が10μm~70μmであるのが好ましく、20μm~45μmであるのがより好ましい。また、厚さ40μmの絶縁部材を用いる場合には、多層部分Mと単層部分Sの厚さの差が20μm~90μmであるのが好ましく、40μm~65μmであるのがより好ましい。
 第1の活物質層の塗布部の端部(終端位置)と第2の活物質層の塗布部の端部(終端位置)との間の距離、すなわち絶縁部材が形成される単層部分Sの長さは任意であり、特に限定されないが、電池素子の単位体積あたりのエネルギー密度を考慮すると、0.5~5mmであるのが好ましく、0.5~3mmであるとより好ましい。この場合、前記した実施形態(図2~3)のように第2の活物質層の塗布部の端部が第1の活物質層上に位置し、単層部分Sが第1の活物質層から構成されるか、後述する他の実施形態(図10)のように第2の活物質層の塗布部の端部が第1の活物質層の塗布部の端部を越えて集電体上に位置し、単層部分Sが第2の活物質層から構成されるかは、任意に選択すればよい。ただし、薄い単層部分Sから厚い多層部分Mに移行するまでの距離をより短くするためには、第2の活物質層の塗布部の端部が第1の活物質層上に位置し、単層部分Sが第1の活物質層から構成されるのが好ましい。特に、薄い単層部分Sから厚い多層部分Mに移行するまでの距離を0.5mm以下に抑える場合には、このような構成が有効である。
 各活物質層の終端位置(塗布部の端部の平面的な位置)は、集電体の両面で異なっていても一致していてもよい。
 [変形例]
 前記した実施形態の変形例として、第1の活物質層と第2の活物質層のいずれか一方または両方が、アルミナ、チタニア、ジルコニア、マグネシアなどの1種以上のフィラー、またはこれらを原料として得られるセラミックや、これらの組み合わせを含む構成とすることができる。それにより、耐熱性が向上し、万一電池が短絡した場合の安全性を向上させることができる。これは、耐熱性のフィラー等が含まれるため耐熱性が向上する上に、熱が加わった際に活物質の塗布部と未塗布部(集電体が露出している部分)の境界部分に配置された絶縁部材が熱収縮することによって特に大きなストレスが加わる絶縁部材の端部付近の活物質層表面が、集電体表面からの厚さが小さい部分に位置するため、その活物質層表面が、対向する電極に接触するおそれがないからである。さらに、第1の活物質層と第2の活物質層のいずれか一方が耐熱性材料を含み、他方が耐熱性材料を含まないか、あるいは一方の活物質層よりも少ない量の耐熱性材料を含むようにすることで、耐熱性材料を含む割合に対応する活物質の減少量を最小限にすることができ、耐熱性材料を混入することによるエネルギー密度の低下を最小限に抑制することが可能である。
 具体的には、上層(表面層)となる第2の活物質層にアルミナの粒子を分散させた構成とすることができる(それ以外の構成および製造方法は前記したものと同じであるため説明を省略する)。
 耐熱性材料を含む活物質層が耐熱性の効果を得るためには、安全性の観点から、活物質の単位重量あたりの容量に応じた厚さが必要となるが、本変形例のように、第1の活物質層の上に第2の活物質層の端部が位置し、その第2の活物質層が耐熱材料(例えばアルミナ)を含む場合には、第2の活物質層の塗布端部(終端位置)から多層部分の平均厚さの部分に移行するまでの距離が極めて短いので、耐熱材料を含む層の厚さが薄い部分が少なく、安全面の効果が極めて大きい。
 [他の実施形態]
 図2~3に示す実施形態では、第1の活物質層2a上に第2の活物質層2bの塗布部の端部が位置し、単層部分が第1の活物質層2aから構成されている。しかし、図10に示すように、第2の活物質層2bが第1の活物質層2aの塗布部の端部を越えて延出し、単層部分が第2の活物質層2bからなる構成にすることもできる。その場合、多層部分Mの、単層部分Sとの境界位置から延びる傾斜部2b2は、第2の活物質層2bの中間部分に設けられ、その形状および寸法は、下層に位置する第1の活物質層2aの塗布部の端部に概ね倣う。
 一例としては、第1の活物質層2aの平均厚さは0.04mm、第2の活物質層2bの平均厚さは0.1mmである。従って、多層部分Mの平均厚さは0.14mmである。傾斜部2b2の、正極集電体3の長手方向に沿う長さは0.06mm、単層部分Sの、正極集電体3の長手方向に沿う長さは1mmである。そしてこの単層部分Sと未塗布部にまたがって形成されている絶縁部材40の厚さは、0.03mmである。この構成によると、絶縁部材40が正極活物質層2上に位置する部分における、正極活物質層2(第2の活物質層2bからなる単層部分S)の厚さと絶縁部材40の厚さの和は0.13mmであり、正極活物質層2の多層部分Mの平均厚さ(0.14mm)よりも小さい。従って、絶縁部材40が配置された部分において正極1が部分的に厚くなっていないので、体積あたりのエネルギー密度の低下が抑えられるとともに、電池素子を均等に押さえることができ、電気特性のばらつきやサイクル特性の低下などの電池の品質低下を抑制できる。なお、傾斜部2b2および単層部分Sは、多層部分Mに比べて低密度である。
 以上の説明においては、主に、正極1のみに絶縁部材40が設けられて負極6には絶縁部材が設けられない構成であって、正極活物質層2が第1の活物質層2aと第2の活物質層2bとからなる多層構造であり、負極活物質層7が単層構造である構成について説明した。ただし、負極6のみに絶縁部材40が設けられて正極1には絶縁部材が設けられず、正極活物質層2が単層構造であって、負極活物質層7が第1の活物質層と第2の活物質層とからなる多層構造である構成にすることもできる。また、正極1と負極6のいずれにも絶縁部材40が設けられ、正極活物質層2と負極活物質層7のいずれも、第1の活物質層と第2の活物質層とからなる多層構造である構成にすることもできる。いずれの構成であっても、多層構造になっている活物質層において、絶縁部材の一部を単層部分S上に配置して、多層部分Mと単層部分Sの厚さの差によって絶縁部材による厚さの増大の少なくとも一部を吸収(相殺)することにより、電池素子の厚さの増大を抑制する効果が得られる。
 本発明はリチウムイオン二次電池とその製造方法に有用であるが、リチウムイオン電池以外の二次電池とその製造方法に適用しても有効である。
 以上、いくつかの実施形態を参照して本発明を説明したが、本発明は上記した実施形態の構成に限られるものではなく、本発明の構成や細部に、本発明の技術的思想の範囲内で、当業者が理解し得る様々な変更を施すことができる。
 本出願は、2013年12月12日に出願された日本特許出願2013-257197号を基礎とする優先権を主張し、日本特許出願2013-257197号の開示の全てをここに取り込む。

Claims (12)

  1.  正極と負極とがセパレータを介して交互に積層された電池素子を含み、
     前記正極と前記負極はそれぞれ、集電体と、該集電体上に形成されている活物質層とを含み、
     前記正極と前記負極のいずれか一方または両方において、前記活物質層が、第1の活物質層と、一部または全部が前記第1の活物質層上に位置する第2の活物質層とを含む多層構造であり、前記第1の活物質層の終端位置と前記第2の活物質層の終端位置は平面的にずれており、前記活物質層が形成されている塗布部と前記活物質層が形成されていない未塗布部との境界部分を覆うように絶縁部材が配置されており、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さと、前記絶縁部材が前記活物質層上に位置する部分における前記活物質層の厚さとの差が、前記絶縁部材の厚さの50%以上である、二次電池。
  2.  前記絶縁部材が前記活物質層上に位置する部分における前記活物質層の厚さと前記絶縁部材の厚さの和が、前記活物質層の、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さよりも小さい、請求項1に記載の二次電池。
  3.  前記多層構造の活物質層は、前記多層部分と、前記集電体上に前記第1の活物質層と前記第2の活物質層のいずれか一方のみが形成されている、前記多層部分よりも薄い単層部分とを含み、前記多層部分は、前記単層部分との境界位置から延びる傾斜部を備えている、請求項1または2に記載の二次電池。
  4.  前記多層構造の活物質層の前記傾斜部が前記集電体に対してなす平均角度は20度以上である、請求項3に記載の二次電池。
  5.  前記傾斜部が前記集電体に対してなす平均角度は25度以上である、請求項4に記載の二次電池。
  6.  前記傾斜部は、前記多層部分の前記単層部分との境界位置から前記多層部分の前記平均厚さの部分に至るまでの範囲に設けられている、請求項3から5のいずれか1項に記載の二次電池。
  7.  前記傾斜部の、前記集電体の長手方向に沿う長さは0.2mm以下である、請求項3から6のいずれか1項に記載の二次電池。
  8.  前記絶縁部材は前記活物質層の前記単層部分と前記未塗布部とにまたがって形成される、請求項1から7のいずれか1項に記載の二次電池。
  9.  正極用の集電体の両面に正極用の活物質層を形成して正極を形成するステップと、負極用の集電体の両面に負極用の活物質層を形成して負極を形成するステップと、前記正極と前記負極とをセパレータを介して交互に積層するステップと、前記正極と前記負極のいずれか一方または両方に、前記活物質層が形成されている塗布部と前記活物質層が形成されていない未塗布部との境界部分を覆うように絶縁部材を配置するステップと、を含み、
     前記正極を形成するステップと前記負極を形成するステップのいずれか一方または両方では、前記集電体上に第1の活物質層を形成し、その後に、一部または全部が前記第1の活物質層上に位置するように、かつ終端位置が前記第1の活物質層の終端位置と平面的に異なる位置になるように第2の活物質層を形成して多層構造を形成し、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さと、前記絶縁部材が前記活物質層上に位置する部分における前記活物質層の厚さとの差が、前記絶縁部材の厚さの50%以上になるようにする、二次電池の製造方法。
  10.  前記正極を形成するステップと前記負極を形成するステップのいずれか一方または両方では、前記集電体上に第1の活物質層を形成し、その後に、一部または全部が前記第1の活物質層上に位置するように、かつ終端位置が前記第1の活物質層の終端位置と平面的に異なる位置になるように第2の活物質層を形成して多層構造を形成し、前記絶縁部材が前記活物質層の上に位置する部分における前記活物質層の厚さと前記絶縁部材の厚さの和が、前記活物質層の、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さよりも小さくなるようにする、請求項9に記載の二次電池の製造方法。
  11.  前記多層部分と、前記集電体上に前記第1の活物質層と前記第2の活物質層のいずれか一方のみが形成されている、前記多層部分よりも薄い単層部分とを含み、前記多層部分が、前記単層部分との境界位置から延びる傾斜部を備えるように、前記多層構造の活物質層を形成する、請求項9または10に記載の二次電池の製造方法。
  12.  前記第2の活物質層は、活物質と結合剤と溶媒とを含み粘度が5000cps以上かつ10000cps以下である合剤を塗布することによって形成される、請求項9から11のいずれか1項に記載の二次電池の製造方法。
PCT/JP2014/079965 2013-12-12 2014-11-12 二次電池とその製造方法 WO2015087657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/036,122 US20160294015A1 (en) 2013-12-12 2014-11-12 Secondary battery and production method therefor
CN201480067167.8A CN105794022B (zh) 2013-12-12 2014-11-12 二次电池及其制造方法
JP2015552371A JP6521323B2 (ja) 2013-12-12 2014-11-12 二次電池とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-257197 2013-12-12
JP2013257197 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015087657A1 true WO2015087657A1 (ja) 2015-06-18

Family

ID=53370972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079965 WO2015087657A1 (ja) 2013-12-12 2014-11-12 二次電池とその製造方法

Country Status (4)

Country Link
US (1) US20160294015A1 (ja)
JP (1) JP6521323B2 (ja)
CN (1) CN105794022B (ja)
WO (1) WO2015087657A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067706A1 (ja) * 2014-10-27 2016-05-06 Necエナジーデバイス株式会社 二次電池用電極の製造方法、二次電池用電極、および二次電池
JP2016207286A (ja) * 2015-04-15 2016-12-08 日産自動車株式会社 電極および電池
JP2017064926A (ja) * 2015-09-28 2017-04-06 東レフィルム加工株式会社 熱転写性積層フィルムおよびそれを用いて構成された二次電池
JP2017143006A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子
JP2017143003A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子
WO2017154312A1 (ja) * 2016-03-11 2017-09-14 Necエナジーデバイス株式会社 電気化学デバイス用電極と電気化学デバイスの製造方法
WO2017154313A1 (ja) * 2016-03-11 2017-09-14 Necエナジーデバイス株式会社 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法
WO2017163846A1 (ja) * 2016-03-24 2017-09-28 Necエナジーデバイス株式会社 リチウムイオン二次電池、電極及びその製造方法
WO2018179205A1 (ja) * 2017-03-30 2018-10-04 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
WO2020067378A1 (ja) * 2018-09-28 2020-04-02 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2020518958A (ja) * 2017-10-27 2020-06-25 エルジー・ケム・リミテッド リチウム金属負極構造体の製造方法およびリチウム金属負極構造体
JPWO2021106860A1 (ja) * 2019-11-27 2021-06-03
CN113097427A (zh) * 2021-03-30 2021-07-09 珠海冠宇电池股份有限公司 一种负极片及电池
CN113097428A (zh) * 2021-03-30 2021-07-09 珠海冠宇电池股份有限公司 一种负极片、电池及负极片的制备方法
US11557794B2 (en) 2018-12-27 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state battery and method of manufacture thereof
JP2023514835A (ja) * 2020-04-02 2023-04-11 寧徳新能源科技有限公司 電極片、電気化学装置及びそれを含む電子装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619895B1 (ko) * 2016-08-01 2024-01-02 삼성에스디아이 주식회사 이차 전지
WO2019093836A1 (ko) * 2017-11-09 2019-05-16 주식회사 엘지화학 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지
JP2019153434A (ja) 2018-03-01 2019-09-12 株式会社東芝 積層体及び二次電池
CN110660956B (zh) * 2018-10-17 2024-10-18 宁德时代新能源科技股份有限公司 二次电池及其电极构件
CN109244475B (zh) * 2018-11-05 2024-06-21 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN117374218A (zh) * 2018-11-05 2024-01-09 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN110943222B (zh) * 2019-04-15 2021-01-12 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
KR20220115812A (ko) 2020-01-02 2022-08-18 닝더 엠프렉스 테크놀로지 리미티드 음극 및 이를 포함하는 전기 화학 디바이스
CN111162275B (zh) * 2020-01-02 2021-01-19 宁德新能源科技有限公司 一种负极和包含该负极的电化学装置
CN111326711B (zh) * 2020-04-02 2024-10-15 宁德新能源科技有限公司 电极极片、电化学装置及包含其的电子装置
JP2024506877A (ja) * 2021-12-06 2024-02-15 エルジー エナジー ソリューション リミテッド 電極組立体、その製造方法、およびこれを含むリチウム二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151535A (ja) * 2001-11-08 2003-05-23 Tdk Corp 電気化学デバイス
JP2004259625A (ja) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd 非水電解質二次電池、及びそれに使用する電極の製造方法
JP2008277207A (ja) * 2007-05-07 2008-11-13 Sony Corp 巻回型非水電解質二次電池
JP2012156093A (ja) * 2011-01-28 2012-08-16 Sanyo Electric Co Ltd 非水電解液二次電池
JP2012164470A (ja) * 2011-02-04 2012-08-30 Sanyo Electric Co Ltd 積層式電池およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097673B2 (en) * 2001-06-07 2006-08-29 3M Innovative Properties Company Coating edge control
JP4297133B2 (ja) * 2006-05-15 2009-07-15 ソニー株式会社 リチウムイオン電池
US8465872B2 (en) * 2007-04-09 2013-06-18 Kao Corporation Positive electrode active material sintered body for battery
JP5108588B2 (ja) * 2008-03-31 2012-12-26 古河電池株式会社 二次電池用正極板およびその製造方法
JP5471018B2 (ja) * 2009-04-30 2014-04-16 日産自動車株式会社 双極型電極の製造方法、双極型電極、双極型二次電池の製造方法、双極型二次電池、組電池、および車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151535A (ja) * 2001-11-08 2003-05-23 Tdk Corp 電気化学デバイス
JP2004259625A (ja) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd 非水電解質二次電池、及びそれに使用する電極の製造方法
JP2008277207A (ja) * 2007-05-07 2008-11-13 Sony Corp 巻回型非水電解質二次電池
JP2012156093A (ja) * 2011-01-28 2012-08-16 Sanyo Electric Co Ltd 非水電解液二次電池
JP2012164470A (ja) * 2011-02-04 2012-08-30 Sanyo Electric Co Ltd 積層式電池およびその製造方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067706A1 (ja) * 2014-10-27 2016-05-06 Necエナジーデバイス株式会社 二次電池用電極の製造方法、二次電池用電極、および二次電池
US10497987B2 (en) 2014-10-27 2019-12-03 Envision Aesc Energy Devices Ltd. Production method of electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2016207286A (ja) * 2015-04-15 2016-12-08 日産自動車株式会社 電極および電池
JP2017064926A (ja) * 2015-09-28 2017-04-06 東レフィルム加工株式会社 熱転写性積層フィルムおよびそれを用いて構成された二次電池
JP2021184397A (ja) * 2016-02-10 2021-12-02 株式会社Gsユアサ 蓄電素子
JP2017143006A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子
JP2017143003A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子
JP7099602B2 (ja) 2016-02-10 2022-07-12 株式会社Gsユアサ 蓄電素子
JPWO2017154313A1 (ja) * 2016-03-11 2019-01-24 Necエナジーデバイス株式会社 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法
CN108780877A (zh) * 2016-03-11 2018-11-09 Nec能源元器件株式会社 电化学装置和电化学装置用电极的制造方法
CN108780876A (zh) * 2016-03-11 2018-11-09 Nec能源元器件株式会社 电化学器件用电极、电化学器件、以及制造电化学器件用电极和电化学器件的方法
JPWO2017154312A1 (ja) * 2016-03-11 2019-01-24 Necエナジーデバイス株式会社 電気化学デバイス用電極と電気化学デバイスの製造方法
WO2017154313A1 (ja) * 2016-03-11 2017-09-14 Necエナジーデバイス株式会社 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法
WO2017154312A1 (ja) * 2016-03-11 2017-09-14 Necエナジーデバイス株式会社 電気化学デバイス用電極と電気化学デバイスの製造方法
JPWO2017163846A1 (ja) * 2016-03-24 2019-02-07 Necエナジーデバイス株式会社 リチウムイオン二次電池、電極及びその製造方法
WO2017163846A1 (ja) * 2016-03-24 2017-09-28 Necエナジーデバイス株式会社 リチウムイオン二次電池、電極及びその製造方法
WO2018179205A1 (ja) * 2017-03-30 2018-10-04 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
JPWO2018179205A1 (ja) * 2017-03-30 2020-01-09 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
US11228029B2 (en) 2017-10-27 2022-01-18 Lg Chem, Ltd. Method for producing lithium metal negative electrode structure and lithium metal negative electrode structure
JP2020518958A (ja) * 2017-10-27 2020-06-25 エルジー・ケム・リミテッド リチウム金属負極構造体の製造方法およびリチウム金属負極構造体
JP7045555B2 (ja) 2017-10-27 2022-04-01 エルジー エナジー ソリューション リミテッド リチウム金属負極構造体の製造方法およびリチウム金属負極構造体
WO2020067378A1 (ja) * 2018-09-28 2020-04-02 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JPWO2020067378A1 (ja) * 2018-09-28 2021-02-15 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
US11557794B2 (en) 2018-12-27 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state battery and method of manufacture thereof
JP7197725B2 (ja) 2019-11-27 2022-12-27 ビークルエナジージャパン株式会社 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法
CN114503299A (zh) * 2019-11-27 2022-05-13 日本汽车能源株式会社 二次电池用电极、具有其的二次电池和二次电池用电极的制造方法
JPWO2021106860A1 (ja) * 2019-11-27 2021-06-03
WO2021106860A1 (ja) * 2019-11-27 2021-06-03 ビークルエナジージャパン株式会社 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法
JP2023021331A (ja) * 2019-11-27 2023-02-10 ビークルエナジージャパン株式会社 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法
JP7404493B2 (ja) 2019-11-27 2023-12-25 ビークルエナジージャパン株式会社 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法
JP2023514835A (ja) * 2020-04-02 2023-04-11 寧徳新能源科技有限公司 電極片、電気化学装置及びそれを含む電子装置
JP7469489B2 (ja) 2020-04-02 2024-04-16 寧徳新能源科技有限公司 電極片、電気化学装置及びそれを含む電子装置
CN113097428A (zh) * 2021-03-30 2021-07-09 珠海冠宇电池股份有限公司 一种负极片、电池及负极片的制备方法
CN113097427A (zh) * 2021-03-30 2021-07-09 珠海冠宇电池股份有限公司 一种负极片及电池

Also Published As

Publication number Publication date
JPWO2015087657A1 (ja) 2017-03-16
JP6521323B2 (ja) 2019-05-29
US20160294015A1 (en) 2016-10-06
CN105794022A (zh) 2016-07-20
CN105794022B (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2015087657A1 (ja) 二次電池とその製造方法
JP6381045B2 (ja) 二次電池
JP6621765B2 (ja) 二次電池
JP6418650B2 (ja) 積層型二次電池および電極の製造方法
JP6292678B2 (ja) 二次電池と電極の製造方法
JP6572204B2 (ja) 二次電池とその製造方法
WO2018079817A1 (ja) 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
WO2016067706A1 (ja) 二次電池用電極の製造方法、二次電池用電極、および二次電池
WO2017154312A1 (ja) 電気化学デバイス用電極と電気化学デバイスの製造方法
CN107615523B (zh) 二次电池电极、二次电池制造方法及制造装置
US20190074509A1 (en) Electrode for electrochemical device, electrochemical device, and method of manufacturing the electrode and electrochemical device
WO2019093226A1 (ja) リチウムイオン二次電池
JP2018045952A (ja) 電極及び電気化学デバイスの製造方法と電極ロール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036122

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015552371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869319

Country of ref document: EP

Kind code of ref document: A1