WO2015087657A1 - 二次電池とその製造方法 - Google Patents
二次電池とその製造方法 Download PDFInfo
- Publication number
- WO2015087657A1 WO2015087657A1 PCT/JP2014/079965 JP2014079965W WO2015087657A1 WO 2015087657 A1 WO2015087657 A1 WO 2015087657A1 JP 2014079965 W JP2014079965 W JP 2014079965W WO 2015087657 A1 WO2015087657 A1 WO 2015087657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- material layer
- positive electrode
- current collector
- thickness
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000011149 active material Substances 0.000 claims abstract description 183
- 239000010410 layer Substances 0.000 claims description 226
- 239000002356 single layer Substances 0.000 claims description 46
- 239000007774 positive electrode material Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 20
- 239000007773 negative electrode material Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000003779 heat-resistant material Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 229910015868 MSiO Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000000457 gamma-lactone group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000002116 nanohorn Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/586—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
- H01M50/595—Tapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/136—Flexibility or foldability
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a secondary battery in which a positive electrode and a negative electrode overlap each other with a separator interposed therebetween and a method for manufacturing the same.
- Secondary batteries can be broadly classified into wound type and stacked type.
- the battery element of the wound secondary battery has a structure in which a long positive electrode sheet and a negative electrode sheet are wound a plurality of times in a state of being overlapped while being separated by a separator.
- the battery element of the stacked secondary battery has a structure in which positive electrode sheets and negative electrode sheets are alternately and repeatedly stacked while being separated by a separator.
- an active material is used to connect an electrode terminal to an application portion in which an active material (including a binder or a mixture containing a conductive material) is applied to a current collector. And an uncoated portion that is not coated.
- one end of the positive electrode terminal is electrically connected to the uncoated portion of the positive electrode sheet, and the other end is drawn out of the outer container (exterior case).
- the battery element is enclosed in the outer container so that one end of the negative electrode terminal is electrically connected to the uncoated portion of the negative electrode sheet and the other end is drawn out of the outer container.
- an electrolytic solution is sealed together with the battery element.
- Secondary batteries have a tendency to increase in capacity year by year. Along with this, the heat generated in the event of a short circuit becomes larger and the danger increases. Therefore, battery safety measures are becoming more and more important.
- Patent Document 1 discloses a technique for forming an insulating member at a boundary portion between a coated portion and an uncoated portion in order to prevent a short circuit between the positive electrode and the negative electrode.
- Patent Document 2 discloses a configuration in which an active material formed on a current collector has a multilayer structure.
- positive electrodes 1 and negative electrodes 6 are alternately stacked via separators 20, and active material 2 is placed on current collector 3 of positive electrode 1.
- An insulating member 40 is formed to cover the boundary portion 4 between the applied portion and the uncoated portion where the active material 2 is not applied.
- the insulating members 40 are repeatedly stacked at the same position as viewed in plan. For this reason, the thickness of the battery element partially increases at the position where the insulating member 40 is disposed, and the energy density per volume decreases.
- the battery element in order to stabilize the electrical characteristics and reliability of the secondary battery, it is preferable to fix the battery element with a tape or the like and press the battery element with a uniform pressure.
- an insulating member such as Patent Document 1
- the battery element cannot be uniformly pressed due to the difference in thickness between the portion where the insulating member 40 exists and the portion where the insulating member 40 does not exist. There is a risk that the quality of the battery may be degraded, such as variations in battery life and cycle characteristics.
- Patent Document 2 it is possible to prevent the end portion of the active material application portion from protruding and damaging the separator to cause a short circuit inside the battery. However, it is impossible to prevent an increase in the thickness of the battery element due to the provision of the insulating member and a deterioration in battery quality due to the fact that the battery elements cannot be pressed evenly. In the first place, since it is not assumed at all in Patent Document 2 that the boundary portion between the coated portion and the uncoated portion of the active material is covered by the insulating member, the same is seen in plan view in the stacked secondary battery as described above. There is no recognition of the problems associated with repeatedly laminating the insulating members at the positions.
- an object of the present invention is to solve the above-described problems, prevent a short circuit between the positive electrode and the negative electrode by an insulating member, and suppress an increase in volume and deformation of the battery element, so that electrical characteristics and reliability can be achieved. It is to provide a high quality secondary battery and a method for manufacturing the same.
- the secondary battery of the present invention includes a battery element in which positive electrodes and negative electrodes are alternately stacked via separators, and each of the positive electrode and the negative electrode is a current collector and an active material formed on the current collector. Including layers.
- the active material layer includes a first active material layer and a second active material layer partially or entirely located on the first active material layer The end position of the first active material layer and the end position of the second active material layer are shifted in a plane, and the application portion where the active material layer is formed and the active material layer is not formed.
- An insulating member is disposed so as to cover a boundary portion with the application portion, and an average thickness of a multilayer portion in which both the first active material layer and the second active material layer are laminated on the current collector, The difference from the thickness of the active material layer in the portion where the insulating member is located on the active material layer is 50% or more of the thickness of the insulating member.
- the present invention it is possible to suppress the increase in the volume of the battery element due to the insulating member and the distortion of the battery element, so that it is possible to obtain a high-quality secondary battery excellent in energy density.
- FIG. 1B is a sectional view taken along line AA in FIG. 1A. It is an expanded sectional view which shows the principal part of one Embodiment of the secondary battery of this invention. It is an expanded sectional view which shows the positive electrode of one Embodiment of the secondary battery of this invention. It is an enlarged view which describes the actual shape of the positive electrode shown to FIG. 3A. It is a top view which shows the positive electrode formation process of the manufacturing method of the secondary battery of this invention. It is a top view which shows the process of following the manufacturing method of the secondary battery of this invention of FIG. It is a top view which shows the process of following the manufacturing method of the secondary battery of this invention of FIG.
- FIG. 6A It is a top view which shows the positive electrode cut
- FIG. 1A is a plan view seen from above perpendicular to the main surface (flat surface) of the secondary battery
- FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
- the lithium ion secondary battery 100 of the present invention includes an electrode laminate (battery element) in which a plurality of positive electrodes (positive electrode sheets) 1 and negative electrodes (negative electrode sheets) 6 are laminated with separators 20 interposed therebetween. .
- This electrode laminate is housed in an outer container made of the flexible film 30 together with the electrolytic solution.
- One end of a positive electrode terminal 11 is connected to the positive electrode 1 of the electrode laminate, and one end of a negative electrode terminal 16 is connected to the negative electrode 6.
- the other end side of the positive electrode terminal 11 and the other end side of the negative electrode terminal 16 are each drawn out of the flexible film 30.
- FIG. 1B a part of each layer constituting the electrode stack (a layer located in the middle part in the thickness direction) is not shown, and the electrolytic solution is shown.
- the positive electrode 1 includes a positive electrode current collector (positive electrode current collector) 3 and a positive electrode active material layer (positive electrode active material layer) 2 applied to the positive electrode current collector 3.
- a positive electrode current collector positive electrode current collector
- a positive electrode active material layer positive electrode active material layer
- an application portion where the positive electrode active material layer 2 is formed and an unapplied portion where the positive electrode active material layer 2 is not formed are aligned along the longitudinal direction.
- the negative electrode 6 includes a negative electrode current collector (negative electrode current collector) 8 and a negative electrode active material layer (negative electrode active material layer) 7 applied to the negative electrode current collector 8.
- the coated portion and the uncoated portion are positioned side by side along the longitudinal direction.
- the uncoated portions of the positive electrode 1 and the negative electrode 6 are used as tabs for connecting to electrode terminals (the positive electrode terminal 11 or the negative electrode terminal 16).
- the positive electrode tabs connected to the positive electrode 1 are gathered on the positive electrode terminal 11 and connected together with the positive electrode terminal 11 by ultrasonic welding or the like.
- the negative electrode tabs connected to the negative electrode 6 are gathered on the negative electrode terminal 16 and are connected together with the negative electrode terminal 16 by ultrasonic welding or the like.
- the other end portion of the positive electrode terminal 11 and the other end portion of the negative electrode terminal 16 are respectively drawn out of the exterior container.
- the outer dimension of the coating part (negative electrode active material layer 7) of the negative electrode 6 is larger than the outer dimension of the coating part (positive electrode active material layer 2) of the positive electrode 1 and smaller than or equal to the outer dimension of the separator 20.
- the positive electrode active material layer 2 having a multilayer structure is formed on both surfaces of the positive electrode current collector 3. Specifically, the positive electrode active material mixture is applied on the positive electrode current collector 3 to form the first active material layer 2a, and the positive electrode active material mixture is further formed on the first active material layer 2a. The material mixture is applied, and the second active material layer 2b is laminated.
- the active material mixture for the positive electrode of the first active material layer 2a and the active material mixture for the positive electrode of the second active material layer 2b may be the same or different.
- the terminal position 2a1 of the first active material layer 2a is located closer to the outer edge side of the battery element than the terminal position 2b1 of the second active material layer 2b. Therefore, the positive electrode active material layer 2 includes a multilayer portion M in which both the first active material layer 2 a and the second active material layer 2 b are stacked on the positive electrode current collector 3, and the positive electrode current collector 3. And a single layer portion S in which only the first active material layer 2a is formed, and the thickness of the single layer portion S is thinner than the thickness of the multilayer portion M.
- the second active material layer 2b includes an inclined portion 2b2 extending from the boundary position between the multilayer portion M and the single layer portion S.
- An insulating member 40 for preventing a short circuit with the negative electrode terminal 16 is formed so as to cover (which coincides with 2a1).
- the insulating member 40 covers the boundary portion 4 between the uncoated portion (positive electrode tab) and the positive electrode active material 2 (the first active material layer 2a in the single layer portion of the positive electrode active material layer 2 in this embodiment). It is formed across both.
- the sum of the thickness of the positive electrode active material layer 2 (single layer portion S made of the first active material layer 2a) and the thickness of the insulating member 40 in the portion where the insulating member 40 is located on the positive electrode active material layer 2 is: It is smaller than the average thickness of the multilayer portion M of the positive electrode active material layer 2. Therefore, the positive electrode 1 is not partially thick at the portion where the insulating member 40 is disposed.
- the positive electrode 1, the negative electrode 6, and the separator 20 are illustrated so as not to be in contact with each other for the sake of clarity.
- the inclined portion 2b2 extending from the boundary position between the multilayer portion M of the positive electrode active material layer 2 and the single-layer portion S to the average thickness portion of the multilayer portion M is provided. .
- the inclined portion 2b2 is provided at the end of the second active material layer 2b, and the average angle formed with respect to the positive electrode current collector 3 is 20 degrees or more, more preferably 25 degrees or more.
- the surfaces of the positive electrode current collector 3 and the positive electrode active material layer 2 have a certain degree of unevenness, and their contours are not completely straight lines. Varies somewhat depending on the measurement site.
- an angle ⁇ formed by a straight line substantially along the surface of the positive electrode current collector 3 and a straight line substantially along the surface of the inclined portion 2b2 is defined as 20 degrees or more (preferably 25 degrees or more). Yes.
- the length of the inclined portion 2b2 along the longitudinal direction of the positive electrode current collector 3 is preferably 0.2 mm or less.
- the average thickness of the first active material layer 2a is 0.1 mm
- the average thickness of the second active material layer 2b is 0.04 mm. Therefore, the average thickness of the multilayer part M is 0.14 mm.
- the length of the inclined portion 2b2 along the longitudinal direction of the positive electrode current collector 3 is 0.06 mm
- the length of the single layer portion S along the longitudinal direction of the positive electrode current collector 3 is 1 mm.
- the thickness of the insulating member 40 formed over the single layer portion M and the uncoated portion is 0.03 mm.
- the thickness of the positive electrode active material layer 2 (single layer portion S made of the first active material layer 2 a) and the thickness of the insulating member 40 in the portion where the insulating member 40 is located on the positive electrode active material layer 2. Is 0.13 mm, which is smaller than the average thickness (0.14 mm) of the multilayer portion M of the positive electrode active material layer 2. Accordingly, since the positive electrode 1 is not partially thick in the portion where the insulating member 40 is disposed, the decrease in energy density per volume can be suppressed, and the battery elements can be pressed evenly, and variations in electrical characteristics and It is possible to suppress deterioration in battery quality such as deterioration in cycle characteristics.
- the inclined portion 2b2 and the single layer portion S are lower in density than the multilayer portion M.
- an intermediate layer may be interposed between the first active material layer 2a and the second active material layer 2b.
- the intermediate layer may be present on the surface of the first active material layer 2a.
- the layer having such a configuration is also referred to as a “single layer portion S”.
- the negative electrode 6 of the present embodiment has a single-layer negative electrode active material layer 7 formed on both surfaces of the negative electrode current collector 8, and no insulating member 40 is provided.
- examples of the active material constituting the positive electrode active material layer 2 include LiCoO 2 , LiNiO 2 , LiNi (1-x) CoO 2 , and LiNi x (CoAl) (1-x) O 2.
- Li 2 MO 3 -LiMO 2 LiNi 1/3 Co 1/3 Mn 1/3 O 2 and other layered oxide materials, LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn ( 2-x) M x O spinel type material such as 4, olivine-based material such as LiMPO 4, Li 2 MPO 4 F, fluoride olivine-based material, such as Li 2 MSiO 4 F, vanadium oxide system such as V 2 O 5 A material etc. are mentioned, The 1 type of these, or 2 or more types of mixtures can be used.
- carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, alloy materials such as silicon and tin, An oxide material such as Nb 2 O 5 or TiO 2 or a composite thereof can be used.
- the active material mixture constituting the positive electrode active material layer 2 and the negative electrode active material layer 7 is obtained by appropriately adding a binder, a conductive aid or the like to the above-described active material.
- a conductive support agent 1 type in carbon black, carbon fiber, or graphite can be used, or a combination of 2 or more types can be used.
- the binder polyvinylidene fluoride, polytetrafluoroethylene, carboxymethylcellulose, modified acrylonitrile rubber particles, and the like can be used.
- the positive electrode current collector 3 aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used, and aluminum is particularly preferable.
- the negative electrode current collector 8 copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
- Examples of the electrolytic solution include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
- cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
- EMC ethyl methyl carbonate
- DMC diethyl carbonate
- DPC dipropyl carbonate
- One or a mixture of two or more organic solvents such as chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers and cyclic etherscan be used
- the separator 20 is mainly made of a resin porous film, woven fabric, non-woven fabric, and the like, and as its resin component, for example, a polyolefin resin such as polypropylene or polyethylene, a polyester resin, an acrylic resin, a styrene resin, or a nylon resin is used. it can.
- a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
- the separator 20 may be formed with a layer containing inorganic particles, and examples of the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc. It is preferable to contain TiO 2 or Al 2 O 3 .
- a case or a can case made of the flexible film 30 can be used as the outer container, and the flexible film 30 is preferably used from the viewpoint of reducing the weight of the battery.
- the flexible film 30 a film in which a resin layer is provided on the front and back surfaces of a metal layer serving as a base material can be used.
- a metal layer having a barrier property such as prevention of leakage of the electrolytic solution or entry of moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
- a heat-fusible resin layer such as a modified polyolefin is provided.
- An exterior container is formed by making the heat-fusible resin layers of the flexible film 30 face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
- a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body that is the surface opposite to the surface on which the heat-fusible resin layer is formed.
- the positive electrode terminal 11 can be made of aluminum or an aluminum alloy
- the negative electrode terminal 16 can be made of copper, a copper alloy, or those plated with nickel.
- the other end side of each terminal 11 and 16 is pulled out of the exterior container.
- a heat-sealable resin can be provided in advance at a location corresponding to a portion of each terminal 11, 16 that is thermally welded to the outer peripheral portion of the outer container.
- the insulating member 40 formed so as to cover the boundary portion 4 between the coated portion and the uncoated portion of the positive electrode active material layer 2 polyimide, glass fiber, polyester, polypropylene, or a material containing these can be used.
- the insulating member 40 can be formed by applying heat to the tape-shaped resin member and welding the tape-shaped resin member to the boundary portion 4 or by applying a gel-like resin to the boundary portion 4 and then drying.
- edges of the first active material layer 2 a and the second active material layer 2 b of the positive electrode active material layer 2 do not necessarily have to be arranged in parallel with each other on the positive electrode current collector 3.
- the boundary portion 4 between the coated portion and the uncoated portion of the positive electrode 1 and the end portion of the negative electrode 6 are not curved in a straight line perpendicular to the direction in which the current collectors 3 and 8 extend, but in a rounded curved shape. It may be. It goes without saying that in any of the positive electrode active material layer 2 and the negative electrode active material layer 7, for example, inevitable inclination, unevenness, roundness, etc. of each layer due to manufacturing variations and layer forming ability may occur.
- a first active material layer 2a is applied to a long belt-like positive electrode current collector 3 for producing a plurality of positive electrodes (positive electrode sheets) 1, and then a second The positive electrode active material layer 2 is formed by forming the active material layer 2b.
- the positive electrode active material layer 2 is formed on both surfaces of the positive electrode current collector 3.
- the detailed shape and dimensions of the positive electrode active material layer 2 are as described with reference to FIGS. 3A and 3B.
- the insulating member 40 is formed so as to cover the boundary portion 4.
- One end 40a of the insulating member 40 is located on the single layer portion S of the positive electrode active material layer 2, and the other end is located on the uncoated portion (see FIGS. 2 and 3A). If the thickness of the insulating member 40 is small, there is a possibility that sufficient insulation cannot be ensured. Therefore, the thickness is preferably 10 ⁇ m or more. Moreover, since the effect which suppresses the increase in the thickness of the electrode laminated body by this invention is not fully exhibited if the thickness of the insulating member 40 is too large, the insulating member 40 is the average thickness of the multilayer part M of the positive electrode active material 2. Smaller is better.
- the thickness of the insulating member 40 is 90% or less of the average thickness of the multilayer part M of the positive electrode active material 2, more preferably 60% or less of the average thickness of the multilayer part M.
- the end of the coated portion (first active material layer 2a) at the boundary portion 4 with the uncoated portion is substantially perpendicular to the positive electrode current collector 3. It may be inclined.
- the positive electrode current collector 3 is cut and divided along a cutting line 90 shown by a broken line in FIG. 6A, and the desired size shown in FIG. 6B is obtained. A positive electrode 1 is obtained.
- the cutting line 90 is a virtual line and is not actually formed.
- a negative electrode active material layer 7 is intermittently applied to both surfaces of a large-area negative electrode current collector 8 for manufacturing a plurality of negative electrodes (negative electrode sheets) 6.
- the negative electrode active material layer 7 has a single layer structure, and an end thereof (an end portion of the coating portion) may be slightly inclined or may be substantially perpendicular to the negative electrode current collector 8. .
- the negative electrode current collector 8 is cut and divided along a cutting line 91 shown by a broken line in FIG. 8A, and the desired size shown in FIG. 8B is obtained.
- a negative electrode 6 is obtained.
- the cutting line 91 is a virtual line and is not actually formed.
- the electrode stack shown is formed.
- the electrode laminate is accommodated in an outer container made of the flexible film 30 together with the electrolytic solution, and sealed to form the secondary battery 100 shown in FIGS. 1A and 1B.
- the increase in thickness due to the insulating member 40 formed so as to cover the boundary portion 4 between the coated portion and the uncoated portion of the positive electrode 1 is determined by the single layer portion S of the positive electrode active material layer 2.
- the thickness is absorbed (cancelled) by being thin compared to the multilayer portion M, and the electrode stack is not partially thickened. Therefore, the electrode stack can be pressed and held evenly, and the electric characteristics vary. And quality degradation such as degradation of cycle characteristics can be suppressed.
- the double-side coated part of the negative electrode 6 is cut and terminated at a position facing the non-coated part (positive electrode tab) of the positive electrode 1, and as shown in FIG.
- the negative electrode active material 7 is present on the front and back of the negative electrode current collector 8 and there is no uncoated part.
- an uncoated portion serving as a negative electrode tab is provided at the end of the negative electrode 6 that does not face the uncoated portion of the positive electrode 1.
- each member in the present invention means an average value of measured values at any three or more locations unless otherwise specified.
- FIG. 9 is a diagram showing an example of the configuration of a die coater that performs intermittent application.
- the slurry flow path of the die coater that performs intermittent coating includes a die head 500, a coating valve 502 connected to the die head 500, a pump 503, and a tank 504 that stores the slurry 10.
- a return valve 505 is provided between the tank 504 and the application valve 502.
- the application valve can be a motor valve, an electromagnetic valve, an air valve, or other various valve means.
- the motor valve can accurately change the open / close state of the valve even during application of the slurry 10. Therefore, by maintaining the viscosity of the slurry 10 at 5000 to 1000 cps (measured at 20 ° C. with an E-type viscometer), the angle formed by the surface to be coated and the inclined portion at the coating start end of the active material is 20 degrees or more. It becomes possible to do.
- the second active material layer can be applied by applying the first active material layer on the long current collector side and drying it by a continuous application method.
- the planar position of the end portion (termination position) of the second active material layer does not coincide with the planar position of the end portion (termination position) of the first active material layer, and thus the longitudinal direction of the current collector
- a slurry having a viscosity of 5000 to 10000 cps may be applied so as to shift in a direction perpendicular to the above.
- the active thickness is determined based on the average thickness of the single layer portion S where only one of the first active material layer and the second active material layer is formed.
- the distance (the length of the inclined portion along the longitudinal direction of the current collector) that shifts to the average thickness of the multilayer portion M on which the material layers are stacked can be very small.
- the thickness of the active material layer shifts from a thin part to a thick part.
- the distance required for the similar thickness transition is set to about 0.about.20 mm.
- this distance (the length of the inclined portion along the longitudinal direction of the current collector) is 0.01 to 0.5 mm. Is more preferable, and 0.01 to 0.1 mm is more preferable.
- the thickness of the active material layer is arbitrary and is not particularly limited, but is used for applications such as portable electronic devices, electric bicycles, electric assist bicycles, stationary charging devices, electric vehicles, and hybrid vehicles.
- the active material layer located on at least one surface of the current collector is preferably about 5 to 200 ⁇ m. This numerical value is the thickness of the active material layer located on one side of the current collector, and is not the sum of the thicknesses of the active material layers located on both sides of the current collector.
- the difference in thickness between the multilayer portion M in which both the first active material layer and the second active material layer are laminated and the single layer portion S in which only one of the active material layers is formed is the insulating member. If the thickness is larger than 40, an increase in the thickness of the battery element due to the insulating member 40 can be prevented, which is extremely effective. However, even if the difference in thickness between the multilayer portion M and the single layer portion S is smaller than the thickness of the insulating member 40, for example, the difference in thickness between the multilayer portion M and the single layer portion S is 50 of the thickness of the insulating member 40. If it is% or more, an increase in the local thickness of the battery element can be kept small, and a certain effect can be obtained.
- the difference in thickness between the multilayer portion M and the single layer portion S is preferably equal to or less than the thickness of the insulating member 40 plus 50 ⁇ m, and the thickness of the insulating member is added 25 ⁇ m. More preferably, the thickness is less than or equal to the thickness.
- the difference in thickness between the multilayer portion M and the single layer portion S is preferably 10 ⁇ m to 70 ⁇ m, more preferably 20 ⁇ m to 45 ⁇ m. preferable.
- the difference in thickness between the multilayer portion M and the single layer portion S is preferably 20 ⁇ m to 90 ⁇ m, and more preferably 40 ⁇ m to 65 ⁇ m.
- the distance between the end portion (terminal position) of the application portion of the first active material layer and the end portion (termination position) of the application portion of the second active material layer, that is, the single-layer portion S where the insulating member is formed The length of is not particularly limited, but considering the energy density per unit volume of the battery element, it is preferably 0.5 to 5 mm, more preferably 0.5 to 3 mm. In this case, as in the above-described embodiment (FIGS. 2 to 3), the end portion of the application portion of the second active material layer is located on the first active material layer, and the single layer portion S is the first active material. As shown in another embodiment (FIG.
- the end of the application part of the second active material layer exceeds the end of the application part of the first active material layer as in the other embodiment described later.
- the single layer portion S is composed of the second active material layer may be arbitrarily selected.
- the end of the application portion of the second active material layer is located on the first active material layer.
- the single layer portion S is preferably composed of the first active material layer. In particular, such a configuration is effective when the distance from the thin single layer portion S to the thick multilayer portion M is suppressed to 0.5 mm or less.
- the end position of each active material layer (planar position of the end of the application part) may be different or coincide on both sides of the current collector.
- one or both of the first active material layer and the second active material layer are one or more fillers such as alumina, titania, zirconia, and magnesia, or these as raw materials. It can be set as the structure containing these ceramics and these combination. Thereby, heat resistance improves and the safety
- the boundary between the active material coated part and the uncoated part (the part where the current collector is exposed) Since the surface of the active material layer near the end of the insulating member to which particularly great stress is applied due to the thermal contraction of the disposed insulating member is located in a portion where the thickness from the current collector surface is small, the surface of the active material layer This is because there is no risk of contact with the opposing electrodes. Further, either one of the first active material layer and the second active material layer contains a heat-resistant material, and the other does not contain a heat-resistant material, or the amount of the heat-resistant material is smaller than that of the one active material layer.
- the amount of decrease in the active material corresponding to the ratio including the heat-resistant material can be minimized, and the decrease in energy density due to the incorporation of the heat-resistant material can be minimized.
- a thickness corresponding to the capacity per unit weight of the active material is necessary from the viewpoint of safety.
- the end of the second active material layer is located on the first active material layer and the second active material layer contains a heat-resistant material (for example, alumina)
- the second active material layer Since the distance from the coating end portion (terminal position) to the average thickness portion of the multilayer portion is extremely short, there are few portions where the thickness of the layer containing the heat-resistant material is thin, and the safety effect is extremely great.
- the end of the application portion of the second active material layer 2b is located on the first active material layer 2a, and the single layer portion is composed of the first active material layer 2a.
- the second active material layer 2b extends beyond the end of the coating portion of the first active material layer 2a, and the single layer portion is composed of the second active material layer 2b. It can also be.
- the inclined portion 2b2 extending from the boundary position between the multilayer portion M and the single-layer portion S is provided in an intermediate portion of the second active material layer 2b, and the shape and dimensions thereof are the first portion located in the lower layer. It generally follows the edge of the application part of the active material layer 2a.
- the average thickness of the first active material layer 2a is 0.04 mm
- the average thickness of the second active material layer 2b is 0.1 mm. Therefore, the average thickness of the multilayer part M is 0.14 mm.
- the length of the inclined portion 2b2 along the longitudinal direction of the positive electrode current collector 3 is 0.06 mm
- the length of the single layer portion S along the longitudinal direction of the positive electrode current collector 3 is 1 mm.
- the thickness of the insulating member 40 formed over the single layer portion S and the uncoated portion is 0.03 mm.
- the thickness of the positive electrode active material layer 2 (single layer portion S formed of the second active material layer 2 b) and the thickness of the insulating member 40 in the portion where the insulating member 40 is located on the positive electrode active material layer 2. Is 0.13 mm, which is smaller than the average thickness (0.14 mm) of the multilayer portion M of the positive electrode active material layer 2. Accordingly, since the positive electrode 1 is not partially thick in the portion where the insulating member 40 is disposed, the decrease in energy density per volume can be suppressed, and the battery elements can be pressed evenly, and variations in electrical characteristics and It is possible to suppress deterioration in battery quality such as deterioration in cycle characteristics.
- the inclined portion 2b2 and the single layer portion S are lower in density than the multilayer portion M.
- the insulating member 40 is provided only on the positive electrode 1 and the insulating member is not provided on the negative electrode 6, and the positive electrode active material layer 2 is the first active material layer 2 a and the first active material layer 2 a.
- the structure in which the negative electrode active material layer 7 has a single-layer structure with a multilayer structure including two active material layers 2b has been described.
- the insulating member 40 is provided only in the negative electrode 6, the insulating member is not provided in the positive electrode 1, the positive electrode active material layer 2 has a single-layer structure, and the negative electrode active material layer 7 includes the first active material layer. It can also be set as the structure which is a multilayer structure which consists of a 2nd active material layer.
- both the positive electrode 1 and the negative electrode 6 are provided with an insulating member 40, and both the positive electrode active material layer 2 and the negative electrode active material layer 7 are multilayers composed of a first active material layer and a second active material layer. It is also possible to adopt a structure that is a structure. Regardless of the configuration, in the active material layer having a multilayer structure, a part of the insulating member is disposed on the single layer portion S and insulated by the difference in thickness between the multilayer portion M and the single layer portion S. By absorbing (offset) at least a part of the increase in thickness due to the member, an effect of suppressing the increase in thickness of the battery element can be obtained.
- the present invention is useful for a lithium ion secondary battery and a manufacturing method thereof, but is also effective when applied to a secondary battery other than a lithium ion battery and a manufacturing method thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
また、特許文献2には、集電体上に形成される活物質が多層構造である構成が開示されている。
[二次電池の構成]
図1A,1Bは、本発明の製造方法によって製造される積層型のリチウムイオン二次電池の構成の一例を模式的に示している。図1Aは二次電池の主面(扁平な面)に対して垂直上方から見た平面図であり、図1Bは図1AのA-A線断面図である。
図2では、見やすくするために、正極1と負極6とセパレータ20とがそれぞれ互いに接触していないように図示しているが、実際にはこれらは密着して積層されている。
まず、図4に示すように、複数の正極(正極シート)1を製造するための長尺の帯状の正極集電体3に、第1の活物質層2aを塗布し、続いて第2の活物質層2bを形成することにより、正極活物質層2を形成する。この正極活物質層2は正極集電体3の両面に形成される。図4では明確ではないが、正極活物質層2の詳細な形状および寸法は、図3A,3Bを参照して説明した通りである。次に、図5に示すように、境界部分4を覆うように絶縁部材40を形成する。絶縁部材40の一方の端部40aは正極活物質層2の単層部分Sの上に位置しており、他方の端部は未塗布部上に位置している(図2,3A参照)。絶縁部材40の厚さが小さいと、絶縁性を十分に確保できないおそれがあるので、厚さは10μm以上であることが好ましい。また、絶縁部材40の厚さが大き過ぎると、本発明による電極積層体の厚さの増大を抑制する効果が十分に発揮されないため、絶縁部材40は正極活物質2の多層部分Mの平均厚さよりも小さい方が良い。好ましくは、絶縁部材40の厚さは正極活物質2の多層部分Mの平均厚さの90%以下、より好ましくは多層部分Mの平均厚さの60%以下である。未塗布部との境界部分4における塗布部(第1の活物質層2a)の端部は、正極集電体3に対して実質的に垂直に切り立っていても、図2,3Aに示すように傾斜していてもよい。その後、個々の積層型電池に使用する正極1を得るために、図6Aに破線で示す切断線90に沿って正極集電体3を裁断して分割し、図6Bに示す所望の大きさの正極1を得る。切断線90は仮想的な線であって実際には形成されない。
前記した本発明の二次電池の製造方法のうち、電極の詳細な作製方法について説明する。
集電体上に多層構造(2層構造)の活物質層を形成するための装置としては、ドクターブレードや、ダイコータや、グラビアコータや、転写方式や蒸着方式などの様々な塗布方法を実施する装置や、これらの塗布装置の組み合わせを用いることが可能である。本発明において活物質の塗布端部を精度良く形成するためには、ダイコータを用いることが特に好ましい。ダイコータによる活物質の塗布方式としては、大別して、長尺の集電体の長手方向に沿って連続的に活物質を形成する連続塗布方式と、集電体の長手方向に沿って活物質の塗布部と未塗布部を交互に繰り返して形成する間欠塗布方式の2種類がある。
各活物質層の終端位置(塗布部の端部の平面的な位置)は、集電体の両面で異なっていても一致していてもよい。
前記した実施形態の変形例として、第1の活物質層と第2の活物質層のいずれか一方または両方が、アルミナ、チタニア、ジルコニア、マグネシアなどの1種以上のフィラー、またはこれらを原料として得られるセラミックや、これらの組み合わせを含む構成とすることができる。それにより、耐熱性が向上し、万一電池が短絡した場合の安全性を向上させることができる。これは、耐熱性のフィラー等が含まれるため耐熱性が向上する上に、熱が加わった際に活物質の塗布部と未塗布部(集電体が露出している部分)の境界部分に配置された絶縁部材が熱収縮することによって特に大きなストレスが加わる絶縁部材の端部付近の活物質層表面が、集電体表面からの厚さが小さい部分に位置するため、その活物質層表面が、対向する電極に接触するおそれがないからである。さらに、第1の活物質層と第2の活物質層のいずれか一方が耐熱性材料を含み、他方が耐熱性材料を含まないか、あるいは一方の活物質層よりも少ない量の耐熱性材料を含むようにすることで、耐熱性材料を含む割合に対応する活物質の減少量を最小限にすることができ、耐熱性材料を混入することによるエネルギー密度の低下を最小限に抑制することが可能である。
具体的には、上層(表面層)となる第2の活物質層にアルミナの粒子を分散させた構成とすることができる(それ以外の構成および製造方法は前記したものと同じであるため説明を省略する)。
図2~3に示す実施形態では、第1の活物質層2a上に第2の活物質層2bの塗布部の端部が位置し、単層部分が第1の活物質層2aから構成されている。しかし、図10に示すように、第2の活物質層2bが第1の活物質層2aの塗布部の端部を越えて延出し、単層部分が第2の活物質層2bからなる構成にすることもできる。その場合、多層部分Mの、単層部分Sとの境界位置から延びる傾斜部2b2は、第2の活物質層2bの中間部分に設けられ、その形状および寸法は、下層に位置する第1の活物質層2aの塗布部の端部に概ね倣う。
Claims (12)
- 正極と負極とがセパレータを介して交互に積層された電池素子を含み、
前記正極と前記負極はそれぞれ、集電体と、該集電体上に形成されている活物質層とを含み、
前記正極と前記負極のいずれか一方または両方において、前記活物質層が、第1の活物質層と、一部または全部が前記第1の活物質層上に位置する第2の活物質層とを含む多層構造であり、前記第1の活物質層の終端位置と前記第2の活物質層の終端位置は平面的にずれており、前記活物質層が形成されている塗布部と前記活物質層が形成されていない未塗布部との境界部分を覆うように絶縁部材が配置されており、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さと、前記絶縁部材が前記活物質層上に位置する部分における前記活物質層の厚さとの差が、前記絶縁部材の厚さの50%以上である、二次電池。 - 前記絶縁部材が前記活物質層上に位置する部分における前記活物質層の厚さと前記絶縁部材の厚さの和が、前記活物質層の、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さよりも小さい、請求項1に記載の二次電池。
- 前記多層構造の活物質層は、前記多層部分と、前記集電体上に前記第1の活物質層と前記第2の活物質層のいずれか一方のみが形成されている、前記多層部分よりも薄い単層部分とを含み、前記多層部分は、前記単層部分との境界位置から延びる傾斜部を備えている、請求項1または2に記載の二次電池。
- 前記多層構造の活物質層の前記傾斜部が前記集電体に対してなす平均角度は20度以上である、請求項3に記載の二次電池。
- 前記傾斜部が前記集電体に対してなす平均角度は25度以上である、請求項4に記載の二次電池。
- 前記傾斜部は、前記多層部分の前記単層部分との境界位置から前記多層部分の前記平均厚さの部分に至るまでの範囲に設けられている、請求項3から5のいずれか1項に記載の二次電池。
- 前記傾斜部の、前記集電体の長手方向に沿う長さは0.2mm以下である、請求項3から6のいずれか1項に記載の二次電池。
- 前記絶縁部材は前記活物質層の前記単層部分と前記未塗布部とにまたがって形成される、請求項1から7のいずれか1項に記載の二次電池。
- 正極用の集電体の両面に正極用の活物質層を形成して正極を形成するステップと、負極用の集電体の両面に負極用の活物質層を形成して負極を形成するステップと、前記正極と前記負極とをセパレータを介して交互に積層するステップと、前記正極と前記負極のいずれか一方または両方に、前記活物質層が形成されている塗布部と前記活物質層が形成されていない未塗布部との境界部分を覆うように絶縁部材を配置するステップと、を含み、
前記正極を形成するステップと前記負極を形成するステップのいずれか一方または両方では、前記集電体上に第1の活物質層を形成し、その後に、一部または全部が前記第1の活物質層上に位置するように、かつ終端位置が前記第1の活物質層の終端位置と平面的に異なる位置になるように第2の活物質層を形成して多層構造を形成し、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さと、前記絶縁部材が前記活物質層上に位置する部分における前記活物質層の厚さとの差が、前記絶縁部材の厚さの50%以上になるようにする、二次電池の製造方法。 - 前記正極を形成するステップと前記負極を形成するステップのいずれか一方または両方では、前記集電体上に第1の活物質層を形成し、その後に、一部または全部が前記第1の活物質層上に位置するように、かつ終端位置が前記第1の活物質層の終端位置と平面的に異なる位置になるように第2の活物質層を形成して多層構造を形成し、前記絶縁部材が前記活物質層の上に位置する部分における前記活物質層の厚さと前記絶縁部材の厚さの和が、前記活物質層の、前記集電体上に前記第1の活物質層と前記第2の活物質層の両方が積層されている多層部分の平均厚さよりも小さくなるようにする、請求項9に記載の二次電池の製造方法。
- 前記多層部分と、前記集電体上に前記第1の活物質層と前記第2の活物質層のいずれか一方のみが形成されている、前記多層部分よりも薄い単層部分とを含み、前記多層部分が、前記単層部分との境界位置から延びる傾斜部を備えるように、前記多層構造の活物質層を形成する、請求項9または10に記載の二次電池の製造方法。
- 前記第2の活物質層は、活物質と結合剤と溶媒とを含み粘度が5000cps以上かつ10000cps以下である合剤を塗布することによって形成される、請求項9から11のいずれか1項に記載の二次電池の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/036,122 US20160294015A1 (en) | 2013-12-12 | 2014-11-12 | Secondary battery and production method therefor |
CN201480067167.8A CN105794022B (zh) | 2013-12-12 | 2014-11-12 | 二次电池及其制造方法 |
JP2015552371A JP6521323B2 (ja) | 2013-12-12 | 2014-11-12 | 二次電池とその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-257197 | 2013-12-12 | ||
JP2013257197 | 2013-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087657A1 true WO2015087657A1 (ja) | 2015-06-18 |
Family
ID=53370972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079965 WO2015087657A1 (ja) | 2013-12-12 | 2014-11-12 | 二次電池とその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160294015A1 (ja) |
JP (1) | JP6521323B2 (ja) |
CN (1) | CN105794022B (ja) |
WO (1) | WO2015087657A1 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016067706A1 (ja) * | 2014-10-27 | 2016-05-06 | Necエナジーデバイス株式会社 | 二次電池用電極の製造方法、二次電池用電極、および二次電池 |
JP2016207286A (ja) * | 2015-04-15 | 2016-12-08 | 日産自動車株式会社 | 電極および電池 |
JP2017064926A (ja) * | 2015-09-28 | 2017-04-06 | 東レフィルム加工株式会社 | 熱転写性積層フィルムおよびそれを用いて構成された二次電池 |
JP2017143006A (ja) * | 2016-02-10 | 2017-08-17 | 株式会社Gsユアサ | 蓄電素子 |
JP2017143003A (ja) * | 2016-02-10 | 2017-08-17 | 株式会社Gsユアサ | 蓄電素子 |
WO2017154312A1 (ja) * | 2016-03-11 | 2017-09-14 | Necエナジーデバイス株式会社 | 電気化学デバイス用電極と電気化学デバイスの製造方法 |
WO2017154313A1 (ja) * | 2016-03-11 | 2017-09-14 | Necエナジーデバイス株式会社 | 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法 |
WO2017163846A1 (ja) * | 2016-03-24 | 2017-09-28 | Necエナジーデバイス株式会社 | リチウムイオン二次電池、電極及びその製造方法 |
WO2018179205A1 (ja) * | 2017-03-30 | 2018-10-04 | 日本電気株式会社 | 電池用電極、その製造方法及び電極製造装置 |
WO2020067378A1 (ja) * | 2018-09-28 | 2020-04-02 | 積水化学工業株式会社 | リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
JP2020518958A (ja) * | 2017-10-27 | 2020-06-25 | エルジー・ケム・リミテッド | リチウム金属負極構造体の製造方法およびリチウム金属負極構造体 |
JPWO2021106860A1 (ja) * | 2019-11-27 | 2021-06-03 | ||
CN113097427A (zh) * | 2021-03-30 | 2021-07-09 | 珠海冠宇电池股份有限公司 | 一种负极片及电池 |
CN113097428A (zh) * | 2021-03-30 | 2021-07-09 | 珠海冠宇电池股份有限公司 | 一种负极片、电池及负极片的制备方法 |
US11557794B2 (en) | 2018-12-27 | 2023-01-17 | Panasonic Intellectual Property Management Co., Ltd. | Solid-state battery and method of manufacture thereof |
JP2023514835A (ja) * | 2020-04-02 | 2023-04-11 | 寧徳新能源科技有限公司 | 電極片、電気化学装置及びそれを含む電子装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102619895B1 (ko) * | 2016-08-01 | 2024-01-02 | 삼성에스디아이 주식회사 | 이차 전지 |
WO2019093836A1 (ko) * | 2017-11-09 | 2019-05-16 | 주식회사 엘지화학 | 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지 |
JP2019153434A (ja) | 2018-03-01 | 2019-09-12 | 株式会社東芝 | 積層体及び二次電池 |
CN110660956B (zh) * | 2018-10-17 | 2024-10-18 | 宁德时代新能源科技股份有限公司 | 二次电池及其电极构件 |
CN109244475B (zh) * | 2018-11-05 | 2024-06-21 | 宁德新能源科技有限公司 | 电化学装置及包含其的电子装置 |
CN117374218A (zh) * | 2018-11-05 | 2024-01-09 | 宁德新能源科技有限公司 | 正极极片、电化学装置及包含其的电子装置 |
CN110943222B (zh) * | 2019-04-15 | 2021-01-12 | 宁德时代新能源科技股份有限公司 | 一种电极极片和电化学装置 |
KR20220115812A (ko) | 2020-01-02 | 2022-08-18 | 닝더 엠프렉스 테크놀로지 리미티드 | 음극 및 이를 포함하는 전기 화학 디바이스 |
CN111162275B (zh) * | 2020-01-02 | 2021-01-19 | 宁德新能源科技有限公司 | 一种负极和包含该负极的电化学装置 |
CN111326711B (zh) * | 2020-04-02 | 2024-10-15 | 宁德新能源科技有限公司 | 电极极片、电化学装置及包含其的电子装置 |
JP2024506877A (ja) * | 2021-12-06 | 2024-02-15 | エルジー エナジー ソリューション リミテッド | 電極組立体、その製造方法、およびこれを含むリチウム二次電池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151535A (ja) * | 2001-11-08 | 2003-05-23 | Tdk Corp | 電気化学デバイス |
JP2004259625A (ja) * | 2003-02-26 | 2004-09-16 | Sanyo Electric Co Ltd | 非水電解質二次電池、及びそれに使用する電極の製造方法 |
JP2008277207A (ja) * | 2007-05-07 | 2008-11-13 | Sony Corp | 巻回型非水電解質二次電池 |
JP2012156093A (ja) * | 2011-01-28 | 2012-08-16 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
JP2012164470A (ja) * | 2011-02-04 | 2012-08-30 | Sanyo Electric Co Ltd | 積層式電池およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7097673B2 (en) * | 2001-06-07 | 2006-08-29 | 3M Innovative Properties Company | Coating edge control |
JP4297133B2 (ja) * | 2006-05-15 | 2009-07-15 | ソニー株式会社 | リチウムイオン電池 |
US8465872B2 (en) * | 2007-04-09 | 2013-06-18 | Kao Corporation | Positive electrode active material sintered body for battery |
JP5108588B2 (ja) * | 2008-03-31 | 2012-12-26 | 古河電池株式会社 | 二次電池用正極板およびその製造方法 |
JP5471018B2 (ja) * | 2009-04-30 | 2014-04-16 | 日産自動車株式会社 | 双極型電極の製造方法、双極型電極、双極型二次電池の製造方法、双極型二次電池、組電池、および車両 |
-
2014
- 2014-11-12 WO PCT/JP2014/079965 patent/WO2015087657A1/ja active Application Filing
- 2014-11-12 US US15/036,122 patent/US20160294015A1/en not_active Abandoned
- 2014-11-12 JP JP2015552371A patent/JP6521323B2/ja active Active
- 2014-11-12 CN CN201480067167.8A patent/CN105794022B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151535A (ja) * | 2001-11-08 | 2003-05-23 | Tdk Corp | 電気化学デバイス |
JP2004259625A (ja) * | 2003-02-26 | 2004-09-16 | Sanyo Electric Co Ltd | 非水電解質二次電池、及びそれに使用する電極の製造方法 |
JP2008277207A (ja) * | 2007-05-07 | 2008-11-13 | Sony Corp | 巻回型非水電解質二次電池 |
JP2012156093A (ja) * | 2011-01-28 | 2012-08-16 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
JP2012164470A (ja) * | 2011-02-04 | 2012-08-30 | Sanyo Electric Co Ltd | 積層式電池およびその製造方法 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016067706A1 (ja) * | 2014-10-27 | 2016-05-06 | Necエナジーデバイス株式会社 | 二次電池用電極の製造方法、二次電池用電極、および二次電池 |
US10497987B2 (en) | 2014-10-27 | 2019-12-03 | Envision Aesc Energy Devices Ltd. | Production method of electrode for secondary battery, electrode for secondary battery, and secondary battery |
JP2016207286A (ja) * | 2015-04-15 | 2016-12-08 | 日産自動車株式会社 | 電極および電池 |
JP2017064926A (ja) * | 2015-09-28 | 2017-04-06 | 東レフィルム加工株式会社 | 熱転写性積層フィルムおよびそれを用いて構成された二次電池 |
JP2021184397A (ja) * | 2016-02-10 | 2021-12-02 | 株式会社Gsユアサ | 蓄電素子 |
JP2017143006A (ja) * | 2016-02-10 | 2017-08-17 | 株式会社Gsユアサ | 蓄電素子 |
JP2017143003A (ja) * | 2016-02-10 | 2017-08-17 | 株式会社Gsユアサ | 蓄電素子 |
JP7099602B2 (ja) | 2016-02-10 | 2022-07-12 | 株式会社Gsユアサ | 蓄電素子 |
JPWO2017154313A1 (ja) * | 2016-03-11 | 2019-01-24 | Necエナジーデバイス株式会社 | 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法 |
CN108780877A (zh) * | 2016-03-11 | 2018-11-09 | Nec能源元器件株式会社 | 电化学装置和电化学装置用电极的制造方法 |
CN108780876A (zh) * | 2016-03-11 | 2018-11-09 | Nec能源元器件株式会社 | 电化学器件用电极、电化学器件、以及制造电化学器件用电极和电化学器件的方法 |
JPWO2017154312A1 (ja) * | 2016-03-11 | 2019-01-24 | Necエナジーデバイス株式会社 | 電気化学デバイス用電極と電気化学デバイスの製造方法 |
WO2017154313A1 (ja) * | 2016-03-11 | 2017-09-14 | Necエナジーデバイス株式会社 | 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法 |
WO2017154312A1 (ja) * | 2016-03-11 | 2017-09-14 | Necエナジーデバイス株式会社 | 電気化学デバイス用電極と電気化学デバイスの製造方法 |
JPWO2017163846A1 (ja) * | 2016-03-24 | 2019-02-07 | Necエナジーデバイス株式会社 | リチウムイオン二次電池、電極及びその製造方法 |
WO2017163846A1 (ja) * | 2016-03-24 | 2017-09-28 | Necエナジーデバイス株式会社 | リチウムイオン二次電池、電極及びその製造方法 |
WO2018179205A1 (ja) * | 2017-03-30 | 2018-10-04 | 日本電気株式会社 | 電池用電極、その製造方法及び電極製造装置 |
JPWO2018179205A1 (ja) * | 2017-03-30 | 2020-01-09 | 日本電気株式会社 | 電池用電極、その製造方法及び電極製造装置 |
US11228029B2 (en) | 2017-10-27 | 2022-01-18 | Lg Chem, Ltd. | Method for producing lithium metal negative electrode structure and lithium metal negative electrode structure |
JP2020518958A (ja) * | 2017-10-27 | 2020-06-25 | エルジー・ケム・リミテッド | リチウム金属負極構造体の製造方法およびリチウム金属負極構造体 |
JP7045555B2 (ja) | 2017-10-27 | 2022-04-01 | エルジー エナジー ソリューション リミテッド | リチウム金属負極構造体の製造方法およびリチウム金属負極構造体 |
WO2020067378A1 (ja) * | 2018-09-28 | 2020-04-02 | 積水化学工業株式会社 | リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
JPWO2020067378A1 (ja) * | 2018-09-28 | 2021-02-15 | 積水化学工業株式会社 | リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
US11557794B2 (en) | 2018-12-27 | 2023-01-17 | Panasonic Intellectual Property Management Co., Ltd. | Solid-state battery and method of manufacture thereof |
JP7197725B2 (ja) | 2019-11-27 | 2022-12-27 | ビークルエナジージャパン株式会社 | 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法 |
CN114503299A (zh) * | 2019-11-27 | 2022-05-13 | 日本汽车能源株式会社 | 二次电池用电极、具有其的二次电池和二次电池用电极的制造方法 |
JPWO2021106860A1 (ja) * | 2019-11-27 | 2021-06-03 | ||
WO2021106860A1 (ja) * | 2019-11-27 | 2021-06-03 | ビークルエナジージャパン株式会社 | 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法 |
JP2023021331A (ja) * | 2019-11-27 | 2023-02-10 | ビークルエナジージャパン株式会社 | 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法 |
JP7404493B2 (ja) | 2019-11-27 | 2023-12-25 | ビークルエナジージャパン株式会社 | 二次電池用電極、それを備えた二次電池、および二次電池用電極の製造方法 |
JP2023514835A (ja) * | 2020-04-02 | 2023-04-11 | 寧徳新能源科技有限公司 | 電極片、電気化学装置及びそれを含む電子装置 |
JP7469489B2 (ja) | 2020-04-02 | 2024-04-16 | 寧徳新能源科技有限公司 | 電極片、電気化学装置及びそれを含む電子装置 |
CN113097428A (zh) * | 2021-03-30 | 2021-07-09 | 珠海冠宇电池股份有限公司 | 一种负极片、电池及负极片的制备方法 |
CN113097427A (zh) * | 2021-03-30 | 2021-07-09 | 珠海冠宇电池股份有限公司 | 一种负极片及电池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015087657A1 (ja) | 2017-03-16 |
JP6521323B2 (ja) | 2019-05-29 |
US20160294015A1 (en) | 2016-10-06 |
CN105794022A (zh) | 2016-07-20 |
CN105794022B (zh) | 2018-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015087657A1 (ja) | 二次電池とその製造方法 | |
JP6381045B2 (ja) | 二次電池 | |
JP6621765B2 (ja) | 二次電池 | |
JP6418650B2 (ja) | 積層型二次電池および電極の製造方法 | |
JP6292678B2 (ja) | 二次電池と電極の製造方法 | |
JP6572204B2 (ja) | 二次電池とその製造方法 | |
WO2018079817A1 (ja) | 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法 | |
WO2016067706A1 (ja) | 二次電池用電極の製造方法、二次電池用電極、および二次電池 | |
WO2017154312A1 (ja) | 電気化学デバイス用電極と電気化学デバイスの製造方法 | |
CN107615523B (zh) | 二次电池电极、二次电池制造方法及制造装置 | |
US20190074509A1 (en) | Electrode for electrochemical device, electrochemical device, and method of manufacturing the electrode and electrochemical device | |
WO2019093226A1 (ja) | リチウムイオン二次電池 | |
JP2018045952A (ja) | 電極及び電気化学デバイスの製造方法と電極ロール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14869319 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15036122 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015552371 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14869319 Country of ref document: EP Kind code of ref document: A1 |