WO2017154313A1 - 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法 - Google Patents

電気化学デバイス用電極および電気化学デバイスとそれらの製造方法 Download PDF

Info

Publication number
WO2017154313A1
WO2017154313A1 PCT/JP2016/088710 JP2016088710W WO2017154313A1 WO 2017154313 A1 WO2017154313 A1 WO 2017154313A1 JP 2016088710 W JP2016088710 W JP 2016088710W WO 2017154313 A1 WO2017154313 A1 WO 2017154313A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode
current collector
lower active
Prior art date
Application number
PCT/JP2016/088710
Other languages
English (en)
French (fr)
Inventor
政則 平井
佐藤 健治
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to US16/083,783 priority Critical patent/US20190074509A1/en
Priority to CN201680083370.3A priority patent/CN108780876A/zh
Priority to JP2018504013A priority patent/JPWO2017154313A1/ja
Publication of WO2017154313A1 publication Critical patent/WO2017154313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode for an electrochemical device, an electrochemical device, and a production method thereof.
  • Electrochemical devices such as secondary batteries, which are widely used as power sources for portable electronic devices such as mobile phones, digital cameras, and laptop computers, and power sources for vehicles and households, can be broadly classified into wound type and stacked type. Can be classified.
  • a wound electrochemical device has a structure in which a pair of long electrode sheets (a positive electrode sheet and a negative electrode sheet) are wound with a separator interposed therebetween.
  • a laminated electrochemical device has a structure in which a plurality of pairs of electrode sheets, that is, a plurality of positive electrode sheets and a plurality of negative electrode sheets are alternately and repeatedly laminated via separators.
  • the wound electrochemical device one long positive electrode sheet and one long negative electrode sheet are required, whereas in the stacked electrochemical device, many small positive sheets and many small sizes are required. Negative electrode sheet is required.
  • An electrode sheet for an electrochemical device is used to connect an electrode terminal to an application portion in which an active material (including a mixture containing a binder or a conductive material) is applied to a current collector. And an unapplied portion where no substance is applied.
  • a general electrode manufacturing method includes discharging and attaching an active material to a current collector from a die head. When manufacturing electrodes for stacked electrochemical devices, the active material is intermittently discharged from the die head to the current collector while moving the long sheet-shaped current collector relative to the die head. There is a method in which an active material layer is formed by adhesion, and a current collector on which the active material layer is formed is cut to obtain individual electrodes.
  • Patent Document 1 discloses a secondary battery in which an electrode has an active material layer having a two-layer structure. Further, Patent Document 2 discloses the use of a plurality of die heads. The invention described in Patent Document 2 is not for manufacturing an electrode in which an active material layer is formed on a current collector.
  • the formation of the active material layer does not end immediately when the discharge of the active material from the die head is stopped, The formation of the active material layer continues even after the die head stops discharging the active material. That is, even after the die head stops discharging the active material, the active material remaining in the discharge port of the die head and the periphery thereof is dragged along with the movement of the current collector and adheres to the current collector. As a result, an active material layer longer than a desired length is formed. Therefore, the excess active material layer formed after the stop of the discharge of the active material from the die head is removed and removed from the completed electrode and discarded. The amount of current collectors and active materials that are discarded when a large number of electrodes are formed from a long current collector increases, resulting in a large increase in manufacturing cost due to waste of materials.
  • a tape-like insulating member that covers the boundary portion between the coated portion and the uncoated portion is disposed to prevent a short circuit between the positive electrode and the negative electrode.
  • the electrode In order to prevent an increase in thickness, the electrode has a two-layer structure.
  • coating liquids having different compositions are applied in multiple layers in the same process, but it is not considered to suppress dragging of the active material even after the discharge of the active material from the die head is stopped.
  • an object of the present invention is to provide an electrode for an electrochemical device and an electric device capable of suppressing the formation of an unnecessarily large active material layer on a current collector and reducing the manufacturing cost by reducing unnecessary portions to be discarded. It is to provide a chemical device and a manufacturing method thereof.
  • the active material layer is in contact with the lower active material on the current collector.
  • the thickness of the lower active material layer is thinner than the thickness of the upper active material layer.
  • the end portion of the upper active material layer coincides with the end portion of the lower active material layer or is positioned in front of the end portion of the lower active material layer.
  • the method for producing an electrode for an electrochemical device comprising a current collector and an active material layer made of an active material applied to the current collector according to the present invention includes a step of forming a lower active material layer on the current collector. And a step of forming an upper active material layer overlying the lower active material layer, and a step of cutting the current collector on which the lower active material layer and the upper active material layer are formed.
  • the lower active material layer is thinner than the upper active material layer.
  • the upper active material layer is formed so that the end of the upper active material layer coincides with the end of the lower active material layer in the longitudinal direction of the current collector. It is formed so as to be positioned in front of the end portion.
  • the present invention it is possible to reduce the manufacturing cost by suppressing the formation of an unnecessarily large active material layer on the current collector and reducing unnecessary portions to be discarded.
  • FIG. 1a, 1b It is a top view which shows the secondary battery which is an example of the electrochemical device of this invention. It is the sectional view on the AA line of FIG. It is an enlarged view which shows the principal part of the positive electrode of the secondary battery shown to FIG. 1a, 1b. It is an enlarged view which shows the principal part of the negative electrode of the secondary battery shown to FIG. 1a, 1b. It is the schematic which shows the coating apparatus used for the manufacturing method of the electrode for electrochemical devices of this invention. It is an enlarged view which shows the formation process of the lower active material layer of the positive electrode shown in FIG. It is an enlarged view which shows the formation process of the upper active material layer of the positive electrode shown in FIG.
  • FIG. 1 It is an enlarged view which shows the formation process of the active material layer of the positive electrode of a comparative example. It is a top view which shows the cutting process for manufacturing the positive electrode of the comparative example shown in FIG. It is a top view which shows the cutting process for manufacturing the positive electrode shown in FIG. It is a top view which shows the cutting process for manufacturing the positive electrode of other embodiment of this invention.
  • FIG. 1a and 1b schematically show a secondary battery 1 which is an example of the electrochemical device of the present invention.
  • FIG. 1a is a plan view of the main surface (flat surface) of the secondary battery 1 viewed from vertically above
  • FIG. 1b is a cross-sectional view taken along line AA of FIG. 1a.
  • FIG. 2 is an enlarged view of the positive electrode 2
  • FIG. 3 is an enlarged view of the negative electrode 3.
  • the secondary battery 1 of the present invention includes an electrode laminate (electric storage element) 17 in which two types of electrodes, that is, a positive electrode (positive electrode sheet) 2 and a negative electrode (negative electrode sheet) 3 are alternately overlapped with a separator 4 interposed therebetween. .
  • the electrode laminate 17 is housed in an outer container 14 made of a flexible film (laminate film) 6 together with the electrolytic solution 5.
  • One end of a positive electrode terminal 7 is connected to the positive electrode 2 of the electrode laminate 17, and one end of a negative electrode terminal 8 is connected to the negative electrode 3.
  • the other end portion of the positive electrode terminal 7 and the other end portion of the negative electrode terminal 8 are each drawn out of the exterior container 14 made of the flexible film 6.
  • the electrolyte solution 5 is shown by omitting a part of each layer constituting the electrode laminate 17 (a layer located in an intermediate portion in the thickness direction).
  • the positive electrode 2, the negative electrode 3, the separator 4, and the flexible film 6 are illustrated so as not to be in contact with each other.
  • Either one or both of the positive electrode 2 and the positive electrode 3 includes two or more active material layers.
  • the positive electrode 2 includes a positive electrode current collector (positive electrode current collector) 9 and a positive electrode active material layer (positive electrode active material layer) 10 applied to the positive electrode current collector 9.
  • the front and back surfaces of the positive electrode current collector 9 have a coated portion where the positive electrode active material layer 10 is formed and an uncoated portion where the positive electrode active material layer 10 is not formed.
  • the lower active material layer 10a and the upper active material layer 10b are laminated as shown in FIG.
  • the lower active material layer 10a has a smaller thickness than the upper active material layer 10b, and is preferably 20 ⁇ m or less.
  • the 3 includes a negative electrode current collector (negative electrode current collector) 11 and a negative electrode active material layer (negative electrode active material layer) 12 applied to the negative electrode current collector 11. Including.
  • the negative electrode current collector 11 has a coated portion and a non-coated portion on the front and back surfaces.
  • the negative electrode active material layer 12 is composed of two layers, it has a two-layer structure in which a lower active material layer 12a and an upper active material layer 12b are stacked, and the lower active material layer 12a is more than the upper active material layer 12b.
  • the thickness is small, preferably 20 ⁇ m or less.
  • the uncoated portions (current collectors 9 and 11) of the positive electrode 2 and the negative electrode 3 are used as electrode tabs (positive electrode tab and negative electrode tab) for connection with electrode terminals (positive electrode terminal 7 and negative electrode terminal 8).
  • the positive electrode tabs of the positive electrode 2 (the positive electrode current collector 9 of the uncoated part) are gathered together on one end part of the positive electrode terminal 7 to constitute an aggregate part, and this aggregate part is a metal piece (support tab) 13 and the positive electrode terminal 7 are connected to each other by ultrasonic welding or the like at a position where they overlap each other.
  • the negative electrode tabs of the negative electrode 3 are gathered together on one end portion of the negative electrode terminal 8 to form a collective portion, and this collective portion is connected to the metal piece (support tab) 13 and It is sandwiched between the negative electrode terminals 8 and connected to each other by ultrasonic welding or the like at a position where they overlap each other.
  • the other end of the positive electrode terminal 7 and the other end of the negative electrode terminal 8 extend to the outside of the outer container 14 made of the flexible film 6.
  • the outer dimension of the coating part (negative electrode active material layer 12) of the negative electrode 3 is preferably larger than the outer dimension of the coating part (positive electrode active material layer 10) of the positive electrode 2 and smaller than or equal to the outer dimension of the separator 4.
  • the electrode laminate 17 is covered with the flexible film 6 from both sides of the main surface (flat surface), and the flexible films 6 that overlap on the outer periphery of the electrode laminate 17 are overlapped. Are joined and sealed. As a result, an outer container 14 that houses the electrode laminate 17 and the electrolyte 5 is formed.
  • the flexible film 6 is a laminate film in which resin layers are provided on both surfaces of a metal foil as a base material, and at least the inner resin layer is made of a heat-fusible resin such as a modified polyolefin. . Then, the inner resin layer made of the heat-fusible resin is heated and melted in a state of being in direct contact with each other, and the outer container 14 whose outer periphery is sealed is formed by heat-sealing with each other.
  • examples of the active material constituting the positive electrode active material layer 10 include LiCoO 2 , LiNiO 2 , LiMn 2 O 2 , Li 2 MO 3 —LiMO 2 , LiNi 1/3 Co 1/3.
  • Layered oxide materials such as Mn 1/3 O 2 , spinel materials such as LiMn 2 O 4 , olivine materials such as LiMPO 4 , fluoride olivine materials such as Li 2 MPO 4 F and Li 2 MSiO 4 F
  • examples thereof include vanadium oxide materials such as materials and V 2 O 5 .
  • a part of elements constituting these active materials may be substituted with other elements, and Li may have an excessive composition.
  • One or a mixture of two or more of these active materials can be used.
  • carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, alloy materials such as silicon and tin, An oxide material such as Nb 2 O 5 or TiO 2 or a composite thereof can be used.
  • the active material mixture constituting the positive electrode active material layer 10 and the negative electrode active material layer 12 is obtained by appropriately adding a binder, a conductive auxiliary agent, or the like to each of the active materials described above.
  • a conductive support agent 1 type in carbon black, carbon fiber, or graphite can be used, or a combination of 2 or more types can be used.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, carboxymethyl cellulose, styrene butadiene rubber, modified acrylonitrile rubber particles, and the like can be used.
  • any of the positive electrode active material layer 10 and the negative electrode active material layer 12 for example, inevitable inclination, unevenness, roundness, etc. of each layer due to manufacturing variations and layer forming ability may occur.
  • the positive electrode current collector 9 aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used, and aluminum is particularly preferable.
  • the negative electrode current collector 11 copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • Examples of the electrolytic solution 5 include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
  • One or more organic solvents such as chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers, cyclic ethers, etc. Mixtures can be used.
  • lithium salts can be dissolved in these organic solvents.
  • the separator 4 is mainly composed of a resin porous film, woven fabric, non-woven fabric, etc., and as its resin component, for example, polyolefin resin such as polypropylene and polyethylene, polyester resin, acrylic resin, styrene resin, nylon resin, aramid resin (aromatic resin) Polyamide resin), polyimide resin, or the like can be used.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc. Among them, it is preferable that TiO 2 or Al 2 O 3 is included.
  • the exterior container 14 is a lightweight exterior case made of the flexible film 6, and the flexible film 6 is a laminated film in which resin layers are provided on both surfaces of a metal foil serving as a base material.
  • a metal foil having a barrier property for preventing leakage of the electrolytic solution 5 and moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • At least one surface of the metal foil is provided with a heat-fusible resin layer such as a modified polyolefin.
  • the exterior container 14 is formed by making the heat-fusible resin layers of the flexible film 6 face each other and heat-sealing the periphery of the portion that houses the electrode laminate 17.
  • a resin layer such as a nylon film, a polyethylene terephthalate film, or a polyester film can be provided on the surface of the metal foil opposite to the surface on which the heat-fusible resin layer 6 b is formed as the surface of the outer container 14.
  • each terminal 7, 8 is drawn out of the outer container 14.
  • a heat-sealable resin (sealing material 18) can be provided in advance at locations corresponding to the portions of the terminals 7 and 8 that are thermally welded to the outer peripheral portion of the outer casing 14.
  • the support tab 13 prevents damage to the electrode tabs (current collectors 9 and 11) and improves the reliability of connection between the electrode tabs and the electrode terminals (the positive electrode terminal 7 and the negative electrode terminal 8). And having resistance to the electrolytic solution 5 is desirable.
  • Preferred materials for forming the support tab 13 include aluminum, nickel, copper, stainless steel (SUS), and the like.
  • FIG. 4 is a schematic view showing a coating apparatus used in the method for producing an electrode for an electrochemical device of the present invention, and specifically shows a coating part of a die coater.
  • the two die heads 15a and 15b and a conveying device for example, a conveying device for conveying the current collectors 9 and 11 so as to pass through the positions facing both the die heads 15a and 15b.
  • Electrodes 2 and 3 shown in FIGS. 2 and 3 are manufactured using a coating apparatus (die coater) including a back roll 16 and the like.
  • the die heads 15 a and 15 b are arranged so that the active material discharge ports of the die heads 15 a and 15 b face the cylindrical back roll 16, and the positive electrode current collector is disposed between the die heads 15 a and 15 b and the back roll 16.
  • the body 9 or the negative electrode current collector 11 is disposed. Since the active material is applied when the current collector is wound (conveyed) in one direction, the active material layer can be formed in the longitudinal direction on the current collector.
  • the die heads 15a and 15b do not necessarily have to be disposed at a position where the back roll 16 is present, and may be disposed and applied at a position where the space between the conveying rollers (not shown) is floating.
  • FIG. 5a is a schematic view in which a coating finish portion is enlarged in a state where the lower active material layer 10a of the positive electrode 2 is formed
  • FIG. 5b shows that the upper active material layer 10b is formed on the lower active material layer 10a.
  • FIG. 4 shows that a positive active material is applied from a die head 15a located upstream in the transport direction to form a lower active material layer 10a (see FIG. 5a).
  • a positive electrode active material is applied from the die head 15b located on the downstream side in the transport direction to form an upper active material layer 10b on the lower active material layer 10a, and the positive electrode active material layer 10 having a two-layer structure is formed.
  • the active material is discharged from the two die heads 15a and 15b shown in FIGS. 5a and 5b to the conveyed positive electrode current collector 9, and the upper active material layer 10b is continuously formed while the lower active material layer 10a is wet.
  • a semi-dry state in which a part of the solvent is volatilized may be used.
  • the lower active material layer 10a is preferably a thinner layer than the upper active material layer 10b because the productivity is increased.
  • the supply of the active material to the die head is stopped when the active material layer 10 having a predetermined length is formed.
  • the discharge of the active material from the die head does not stop immediately.
  • the discharge amount gradually decreases, and finally the discharge of the active material from the die head is stopped.
  • the thickness of the active material layer 10 formed on the current collector 9 gradually decreases (layer thickness decreasing portion R 1 shown in FIG. 6). In this way, when the discharge of the active material from the die head is stopped, the formation of the active material layer 10 is expected to end.
  • the formation of the active material layer 10 is not stopped even when the discharge of the active material from the die head is stopped.
  • the active material layer 10 continues to be formed. The reason is that after the discharge of the active material from the die head is stopped, the active material remaining in the discharge port of the die head and its surroundings is dragged toward the current collector side as the current collector moves with respect to the die head. This is because it adheres to the electric body.
  • the supply of the active material to the die head from the stop in addition to the layer thickness reduced portion R 1 to the discharge of the active material is stopped, since the drag portion R 2 is formed, is longer active material layer 10 more than necessary It is formed.
  • the surplus portion (excess formed portion) of the active material layer 10 is cut, discarded as an unnecessary portion, and removed from the completed electrode.
  • the current collector 9 on which the active material layer 10 is formed is cut along the cutting lines 19 to form individual electrodes (positive electrodes) 2 (the cutting lines 19 are It is a virtual line and not actually formed).
  • the dragging portion R 2 at the end portion of the active material layer 10 is an unnecessary portion added to the desired length of the active material layer 10, and the thin active material layer 10 is present, so that it is formed next. Nor can it be used as part of an electrode tab. Therefore, the drag portion R 2 is removed without being utilized in the electrode. As shown in FIG. 7, the portion R 2 dragging not used as part of the electrode is long, many quantity of collector 9 and active material is discarded are removed, the manufacturing cost is high. Further, the number of electrodes 2 that can be manufactured from the current collector 9 having the same length is small, and the production efficiency is poor. End of such a drag moiety R 2 is the active material layer 10 from occurring, that is, the end portion on the side where the coating of the active material is completed.
  • the length of the trailing portion R 2 of the end portion of the active material layer 10 becomes more prominent as the thickness of the active material layer 10 to be formed increases.
  • a drag portion R 2 having a length of about 5 mm (excessive) Active material layer) is formed.
  • thin the thickness of the active material layer 10 to be formed is shortened length of the drag moiety R 2.
  • the length of the trailing portion R 2 is about 1 mm.
  • the active material layer 10 formed on the current collector 9 has a two-layer structure, and the thickness of the lower active material layer 10a is made thinner than that of the upper active material layer 10b.
  • the degree of Shitakatsu material layer 10a thickness of less than 20 [mu] m the length of the portion R 2 dragging as described above is about 1 mm. Since the lower active material layer 10a alone cannot secure a sufficient thickness of the active material layer 10 to be formed on the current collector 9, the upper active material layer 10b is formed on the lower active material layer 10a to The entire material layer 10 is formed to a desired thickness.
  • the thickness of the lower active material layer 10 a is set to 20 ⁇ m or less as described above, and the thickness of the upper active material layer 10 b is set to 100 ⁇ m. Make it more than that. According to this arrangement, the drag portion R 2 of the Shitakatsu material layer 10a on the collector 9 is suppressed to about 1 mm.
  • the length of the drag portion R 2 which is formed after stopping the active material discharged from the die head 15b is when applied directly to the collector foil is about 3 ⁇ 4 mm although it may occur, it is formed on the lower active material layer 10a so as not to protrude outside the lower active material layer 10a in a plan view by forming on the lower active material layer. Can do.
  • the amount of the positive electrode active material layer 10 as a whole is discarded as an unnecessary portion, and the manufacturing cost can be kept low. That is, 3 of Uekatsu material layer 10b having a length of ⁇ 4 mm portion of the drag moiety R 2, overlies the layer thickness reduced portion R 1 of the Shitakatsu material layer 10a, the positive electrode active material layer 10 It is within the range of the desired length.
  • the total thickness of the positive electrode active material layer 10 in this portion since the sum of Uekatsu thickness of drag portion R 2 of the material layer 10b and the Shitakatsu material layer 10a thickness reduced portion thickness R 1 of The positive electrode active material layer 10 as a whole has a certain thickness and does not significantly impair the function as the positive electrode 2. Therefore, the part of the portion R 2 dragging of Uekatsu material layer 10b, it is not necessary to remove the electrodes of the completed state, is available as part of the positive electrode active material layer 10. It is preferable that the electrode is removed from the completed electrode only in the drag portion R 2 (about 1 mm in length) of the lower active material layer 10a. The current collector 9 and the active material are effectively used, and the manufacturing cost is reduced.
  • the thickness of the lower active material layer 10a is preferably 20 ⁇ m or less, and preferably 200% or less of the particle size (for example, 10 to 15 ⁇ m) of the active material. Further, the ratio of the thickness of the lower active material layer 10a to the upper active material layer 10b is 1: 5 to 1: 7, that is, the thickness of the lower active material layer 10a is equal to the thickness of the upper active material layer 10b. It is preferably 1/5 to 1/7.
  • the Uekatsu material layer 10b, the portion R 2 dragging formed after stopping the active material discharged from the die head 15b is protruded outside of Shitakatsu material layer 10a in a plan view
  • the end portion of the upper active material layer 10b coincides with the end portion of the lower active material layer 10a, or is more than the end portion of the lower active material layer 10a. Position it in front. This is realized by preliminarily estimating the length of the portion formed after stopping the discharge of the active material and stopping the discharge of the active material early.
  • stopping the discharge of the active material to form a Uekatsu material layer 10b may be the timing at which the terminal end of the Shitakatsu material layer 10a including a drag moiety R 2 reaches a position facing the die head 15b, Uekatsu substance carried out at an earlier timing (to subsequently Uekatsu material layer time 10b continues to be formed after the discharge of the active material has been completed) over time drag portion R 2 of the layer 10b is formed.
  • the thickness of each layer illustrated in the above description is a thickness in a completed state, that is, a thickness in a state where the active material is dried and solidified, and a thickness before the active material is applied and solidified is Bigger than that.
  • the thickness before the active material is applied and solidified is about 35 to 40 ⁇ m.
  • the thickness before the active material is applied and solidified is set to about 150 ⁇ m.
  • the positive electrode active material layer 10 having the two-layer structure described above can be formed on both surfaces of the positive electrode current collector 9 to obtain the positive electrode 2 shown in FIG. 3, but only one surface has the two-layer structure. It doesn't matter. Further, by the same process as described above, the negative electrode 3 in which the two-layered negative electrode active material layer 12 is formed on both surfaces of the negative electrode current collector 11 as shown in FIG. 4 can be obtained. As shown in FIGS. 1 a and 1 b, these positive electrodes 2 and negative electrodes 3 are alternately stacked via separators 4, and a positive electrode terminal 7 and a negative electrode terminal 8 are connected.
  • a plurality of positive electrode tabs (positive electrode current collectors 9) of the positive electrodes 2 are closely overlapped on one end of the positive electrode terminal 7, and a metal piece (support tab) 13 is further stacked thereon. Then, these are joined together.
  • joining by ultrasonic welding is often employed. That is, ultrasonic welding can be performed by applying vibration while pressing and pressing a horn and an anvil (not shown) to the positive terminal 7 and the support tab 13 that sandwich a plurality of positive tabs.
  • the negative electrode 3 similarly to the positive electrode 2, an aggregated portion in which a plurality of uncoated portions (negative electrode current collectors) 11 are overlapped can be sandwiched between the support tab 13 and the negative electrode terminal 8 and ultrasonic welding can be performed.
  • the positive electrode 2 and negative electrode 3 are dragged portion R 2 is suppressed, it utilizes a current collector 9 and 11 of the start end portion side of the space-efficient active material 10, 12 as the electrode tabs.
  • the positive electrode terminal 7 is connected to the uncoated part (positive electrode current collector 9) of the positive electrode 2 and the negative electrode terminal 8 is connected to the uncoated part (negative electrode current collector 11) of the negative electrode 3 to complete the electrode.
  • the laminated body 17 is covered with the flexible film 6 from above and below its main surface (flat surface). Then, on the outside of the outer peripheral edge of the electrode laminate 17 in plan view, pressure and heat are applied to the portion where the flexible films 6 overlap with each other except for a part, The heat-fusible resins constituting the resin layer 6b are bonded together by heat-sealing.
  • the positive electrode terminal 7 and the negative electrode terminal 8 are fixed to the outer peripheral portion of the flexible film 6 via a sealing material (sealant) 18 provided in advance.
  • a sealing material silant
  • the portion where pressure and heat are not applied among the portions where the flexible films 6 overlap is left as an opening portion (injection port portion) that remains unbonded.
  • an inlet portion is formed in a part of any one of the outer containers 14 excluding the side where the positive electrode terminal 7 is arranged and the side where the negative electrode terminal 8 is arranged. Then, the electrolytic solution 5 is injected into the exterior container 14 from the injection port portion. Since all the sides other than the inlet portion are already sealed, the injected electrolyte 5 does not leak.
  • the electrolyte solution 5 does not permeate into a portion where the flexible films 6 overlap each other on the side that is already sealed. Thereafter, pressure and heat are applied to the injection port portion, and the heat-fusible resins constituting the resin layer 6b on the inner side of the flexible film 6 are bonded to each other by heat-sealing.
  • FIG. 9 shows another embodiment of the electrode for an electrochemical device of the present invention.
  • the current collector on the terminal end side of the active material is used as an electrode tab. Since the drag portion R 2 of the end portion of the active material as described above is small, it is possible to provide electrodes tabs to the terminal end side. In this arrangement, since it not removed even partial R 2 dragging short Shitakatsu material layer 10a, even better production efficiency. Further, in this configuration, when the tape-like insulating member is disposed so as to cover the boundary portion of the terminal portion of the active material layer, the insulating member is disposed in the thin dragging portion R 2 , thereby depending on the thickness of the insulating member. it is suppressed that the overall electrode stack becomes thicker, drag moiety R 2 can be effectively utilized.
  • the ratio of the charge capacity A of the negative electrode 3 to the charge capacity C of the positive electrode 2 is set to A / C> 1. Since this A / C balance is preferably established not only for the entire electrode but also locally, it is necessary to increase the area of the negative electrode so that the negative electrode always faces the portion where the positive electrode faces. It is common.
  • the large drag portion R 2 exists in the positive electrode 2.
  • the drag portion R 2 of the positive electrode active material layer 10 is small, the drag within the negative electrode formed on larger size than the positive electrode is present fits, A / C balance is not reversed. Thereby, an uncoated part can be used as an electrode tab. That is, as shown in FIG. 9, the electrode tab can be formed on the terminal end side of the positive electrode active material layer 10.
  • the electrode stack 17 in which a plurality of positive electrodes 2 and a plurality of negative electrodes 3 are alternately and repeatedly stacked via separators 4 is used as a power storage element.
  • the present invention is also applicable to a power storage element in which only one positive electrode 2 and only one negative electrode 3 are overlapped via a separator 4.
  • the present invention is particularly useful for lithium ion secondary batteries, but is also effective when applied to secondary batteries other than lithium ion batteries and electrochemical devices other than batteries such as capacitors (capacitors).
  • the present invention has been described with reference to the embodiment.
  • the present invention is not limited to the configuration of the above-described embodiment, and the configuration and details of the present invention are within the scope of the technical idea of the present invention.
  • Various changes that can be understood by those skilled in the art can be made.
  • Electrolyte Flexible film (laminate film) 7 Positive terminal (electrode terminal) 8 Negative terminal (electrode terminal) 9 Current collector for positive electrode (positive electrode current collector) 10 Active material layer for positive electrode (positive electrode active material layer) 11 Current collector for negative electrode (negative electrode current collector) 12 Active material layer for negative electrode (negative electrode active material layer) 13 Metal piece (support tab) 14 exterior container 15a, 15b die head 16 roller 17 electrode laminated body (storage element) 18 Sealant 19 Cutting line

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

集電体9と、集電体9に塗布されている活物質からなる活物質層10とを含む、電気化学デバイス用電極2において、活物質層10は、集電体9の上に密着する下活物質層10aと、下活物質層10aを介して集電体9の上に配置されている上活物質層10bとを含む。下活物質層10aの厚さは、上活物質層10bの厚さよりも薄い。集電体9の長手方向において、上活物質層10bの終端部は下活物質層10aの終端部と一致するか、または下活物質層10aの終端部よりも手前に位置する。

Description

電気化学デバイス用電極および電気化学デバイスとそれらの製造方法
 本発明は電気化学デバイス用電極および電気化学デバイスとそれらの製造方法に関する。
 携帯電話、デジタルカメラ、ラップトップコンピュータなどの携帯型電子機器の電源や、車両用や家庭用の電源として広く普及している二次電池等の電気化学デバイスは、大別して捲回型と積層型に分類できる。巻回型の電気化学デバイスは、1対の長尺の電極シート(正極シートおよび負極シート)が、セパレータを介して重ね合わせられた状態で、巻回された構造を有する。一方、積層型の電気化学デバイスは、複数対の電極シート、すなわち複数の正極シートと複数の負極シートがセパレータを介して交互に繰り返し積層された構造を有する。巻回型の電気化学デバイスでは、1つの長尺の正極シートと1つの長尺の負極シートが必要であるのに対し、積層型の電気化学デバイスでは、多数の小型の正極シートと多数の小型の負極シートが必要である。
 電気化学デバイス用の電極シートは、集電体に、活物質(結着剤や導電材などを含む合剤である場合も含む)が塗布された塗布部と、電極端子を接続するために活物質が塗布されていない未塗布部とを備えている。一般的な電極の製造方法は、ダイヘッドから集電体に対して活物質を吐出して付着させることを含む。積層型の電気化学デバイス用の電極を製造する際には、長尺のシート状の集電体をダイヘッドに対して移動させながらダイヘッドから集電体に対して間欠的に活物質を吐出して付着させて活物質層を形成し、活物質層が形成された集電体を切断して個別の電極を得る方法がある。間欠的に活物質層を形成する場合、長尺の集電体に連続的に活物質を吐出するのに比べて、活物質層の周縁部分が増えるため、様々な工夫がなされている。その1つとして、電極を多層に形成する技術が知られている。
 特許文献1は、電極が2層構造の活物質層を有する二次電池を開示している。また、複数のダイヘッドを用いることが、特許文献2に開示されている。特許文献2に記載されている発明は、集電体の上に活物質層が形成された電極を製造するためのものではない。
国際公開第2015/087657号公報 特開2000-185254号公報
 ダイヘッドから集電体に対して活物質を間欠的に吐出して活物質層を形成する場合、ダイヘッドからの活物質の吐出を停止した時点で直ちに活物質層の形成が終了することはなく、ダイヘッドが活物質の吐出を停止した後にも活物質層の形成が続行する。すなわち、ダイヘッドが活物質の吐出を停止した後にも、ダイヘッドの吐出口およびその周辺に残存している活物質が、集電体の移動に伴って引きずられて集電体上に付着する。その結果、所望の長さよりも長い活物質層が形成される。従って、ダイヘッドからの活物質の吐出の停止以降に形成された余分な活物質層は切除されて、完成状態の電極からは取り除かれて廃棄される。長尺の集電体から多数の電極を形成する際に廃棄される集電体および活物質の量が多くなり、材料の無駄に伴う製造コストの上昇が大きい。
 特許文献1に記載されている電極には、正極と負極の短絡を防ぐために塗布部と未塗布部の境界部分を覆うテープ状の絶縁部材が配置されており、この絶縁部材による電池の部分的な厚さの増大を防ぐために、電極が2層構造になっている。しかしこの構成でも、ダイヘッドからの活物質の吐出を停止した後にも活物質が引きずられ、集電体の長手方向に沿って必要以上に大きな活物質層が形成されてしまうことを抑制することは考慮されていなかった。そのため、廃棄される不要部分が多く製造コストが高くなる可能性があった。特許文献2は、異なる組成の塗布液を同一工程で多層に塗布するものだが、ダイヘッドからの活物質の吐出を停止した後にも活物質が引きずられることを抑制することは考慮されていない。
 そこで、本発明の目的は、集電体上に必要以上に大きな活物質層が形成されることを抑え、廃棄される不要部分を減らすことにより製造コストの低減が図れる電気化学デバイス用電極および電気化学デバイスとそれらの製造方法を提供することにある。
 本発明の、集電体と、集電体に塗布されている活物質からなる活物質層とを含む、電気化学デバイス用電極において、活物質層は、集電体の上に密着する下活物質層と、下活物質層を介して集電体の上に配置されている上活物質層とを含む。下活物質層の厚さは、上活物質層の厚さよりも薄い。集電体の長手方向において、上活物質層の終端部は下活物質層の終端部と一致するか、または下活物質層の終端部よりも手前に位置する。
 本発明の、集電体と、集電体に塗布されている活物質からなる活物質層とを含む、電気化学デバイス用電極の製造方法は、集電体に下活物質層を形成する工程と、下活物質層の上に重ねて上活物質層を形成する工程と、下活物質層と上活物質層が形成された集電体を切断する工程とを含む。下活物質層は上活物質層よりも薄い。上活物質層を形成する工程では、上活物質層を、集電体の長手方向において、上活物質層の終端部が下活物質層の終端部と一致するか、または下活物質層の終端部よりも手前に位置するように形成する。
 本発明によると、集電体上に必要以上に大きな活物質層が形成されることを抑え、廃棄される不要部分を減らすことにより製造コストの低減が図れる。
本発明の電気化学デバイスの一例である二次電池を示す平面図である。 図1aのA-A線断面図である。 図1a,1bに示す二次電池の正極の要部を示す拡大図である。 図1a,1bに示す二次電池の負極の要部を示す拡大図である。 本発明の電気化学デバイス用電極の製造方法に用いられる塗工装置を示す概略図である。 図2に示す正極の下活物質層の形成工程を示す拡大図である。 図2に示す正極の上活物質層の形成工程を示す拡大図である。 比較例の正極の活物質層の形成工程を示す拡大図である。 図6に示す比較例の正極を製造するための切断工程を示す平面図である。 図2に示す正極を製造するための切断工程を示す平面図である。 本発明の他の実施形態の正極を製造するための切断工程を示す平面図である。
 以下、本発明の実施形態について図面を参照して説明する。
 [二次電池の構成]
 図1a,1bは、本発明の電気化学デバイスの一例である二次電池1を模式的に示している。図1aは二次電池1の主面(平坦な面)に対して垂直上方から見た平面図であり、図1bは図1aのA-A線断面図である。図2は正極2の拡大図、図3は負極3の拡大図である。
 本発明の二次電池1は、2種類の電極、すなわち正極(正極シート)2と負極(負極シート)3とがセパレータ4を介して交互に重なり合う電極積層体(蓄電要素)17を備えている。この電極積層体17は電解液5とともに、可撓性フィルム(ラミネートフィルム)6からなる外装容器14内に収納されている。電極積層体17の正極2には正極端子7の一端部が、負極3には負極端子8の一端部がそれぞれ接続されている。正極端子7の他端部および負極端子8の他端部は、それぞれ可撓性フィルム6からなる外装容器14の外部に引き出されている。図1bでは、電極積層体17を構成する各層の一部(厚さ方向の中間部に位置する層)を図示省略して、電解液5を示している。図1bでは、見やすくするために、正極2と負極3とセパレータ4と可撓性フィルム6がそれぞれ互いに接触していないように図示しているが、実際にはこれらは密着して積層されている。
 正極2および正極3のいずれか一方また両方は2層以上の活物質層を含む。
 正極2は、正極用の集電体(正極集電体)9と、その正極集電体9に塗布された正極用の活物質層(正極活物質層)10とを含む。正極集電体9の表面と裏面には、正極活物質層10が形成された塗布部と正極活物質層10が形成されていない未塗布部を有する。図1a,1bには詳細に示されていないが、正極活物質層10が2層で構成される場合は、図2に示すように、下活物質層10aと上活物質層10bとが積層された2層構造であり、下活物質層10aは上活物質層10bよりも厚みが小さく、好ましくは20μm以下である。同様に、図3に示す負極3は、負極用の集電体(負極集電体)11とその負極集電体11に塗布された負極用の活物質層(負極活物質層)12とを含む。負極集電体11の表面と裏面には塗布部と未塗布部を有する。負極活物質層12が2層で構成される場合は、下活物質層12aと上活物質層12bとが積層された2層構造であり、下活物質層12aは上活物質層12bよりも厚みが小さく、好ましくは20μm以下である。
 正極2と負極3のそれぞれの未塗布部(集電体9,11)は、電極端子(正極端子7、負極端子8)と接続するための電極タブ(正極タブ、負極タブ)として用いられる。図1bの場合、正極2の正極タブ(未塗布部の正極集電体9)同士は正極端子7の一端部上にまとめられて集合部を構成し、この集合部が金属片(サポートタブ)13と正極端子7とに挟まれ、これらが互いに重なり合う位置で超音波溶接等により互いに接続されている。同様に、負極3の負極タブ(未塗布部の負極集電体11)同士は負極端子8の一端部上にまとめられて集合部を構成し、この集合部が金属片(サポートタブ)13と負極端子8とに挟まれ、これらが互いに重なり合う位置で超音波溶接等により互いに接続されている。正極端子7の他端部および負極端子8の他端部は、可撓性フィルム6からなる外装容器14の外部にそれぞれ延びている。
 負極3の塗布部(負極活物質層12)の外形寸法は正極2の塗布部(正極活物質層10)の外形寸法よりも大きく、セパレータ4の外形寸法よりも小さいか等しいことが好ましい。
 フィルム外装二次電池1では、電極積層体17をその主面(平坦な面)の両側から可撓性フィルム6によって覆い、電極積層体17の外周縁部の外側において重なり合う可撓性フィルム6同士を接合して封止している。それによって、電極積層体17と電解液5を収容する外装容器14が形成されている。一般的に、可撓性フィルム6は、基材となる金属箔の両面にそれぞれ樹脂層が設けられたラミネートフィルムであり、少なくとも内側の樹脂層は、変性ポリオレフィンなどの熱融着性樹脂からなる。そして、熱融着性樹脂からなる内側の樹脂層同士を直接接触させた状態で加熱して溶融させ、互いに熱融着させることにより、外周が封止された外装容器14が形成される。
 本実施形態の二次電池において、正極活物質層10を構成する活物質としては、例えばLiCoO、LiNiO、LiMn、LiMO-LiMO、LiNi1/3Co1/3Mn1/3などの層状酸化物系材料や、LiMnなどのスピネル系材料、LiMPOなどのオリビン系材料、LiMPOF、LiMSiOFなどのフッ化オリビン系材料、Vなどの酸化バナジウム系材料などが挙げられる。各正極活物質において、これらの活物質を構成する元素の一部が他の元素で置換されていてもよく、また、Liが過剰組成となっていてもよい。そして、これらの活物質のうちの1種、または2種以上の混合物を使用することができる。
 負極活物質層12を構成する活物質としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料や、リチウム金属材料、シリコンやスズなどの合金系材料、NbやTiOなどの酸化物系材料、あるいはこれらの複合物を用いることができる。
 正極活物質層10および負極活物質層12を構成する活物質合剤は、前述したそれぞれの活物質に、結着剤や導電助剤等が適宜加えられたものである。導電助剤としては、カーボンブラック、炭素繊維、または黒鉛などのうちの1種、または2種以上の組み合せを用いることができる。また、結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、カルボキシメチルセルロース、スチレンブタジエンゴム、変性アクリロニトリルゴム粒子などを用いることができる。
 正極活物質層10と負極活物質層12のいずれにおいても、例えば製造上のばらつきや層形成能力に起因する不可避な各層の傾斜や凹凸や丸み等が生じていても構わない。
 正極集電体9としては、アルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金等を用いることができ、特にアルミニウムが好ましい。負極集電体11としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金を用いることができる。
 電解液5としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類や、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類や、脂肪族カルボン酸エステル類や、γ-ブチロラクトン等のγ-ラクトン類や、鎖状エーテル類、環状エーテル類、などの有機溶媒のうちの1種、または2種以上の混合物を使用することができる。さらに、これらの有機溶媒にリチウム塩を溶解させることができる。
 セパレータ4は主に樹脂製の多孔膜、織布、不織布等からなり、その樹脂成分として、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ナイロン樹脂、アラミド樹脂(芳香族ポリアミド樹脂)、またはポリイミド樹脂等を用いることができる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータ4には無機物粒子を含む層を形成してもよい。無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。
 外装容器14は、可撓性フィルム6からなる軽量の外装ケースであり、可撓性フィルム6は、基材となる金属箔の両面にそれぞれ樹脂層が設けられたラミネートフィルムである。金属箔には、電解液5の漏出や外部からの水分の浸入を防止するためのバリア性を有するものを選択することができ、アルミニウムやステンレス鋼などを用いることができる。
金属箔の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルム6の熱融着性樹脂層同士を対向させ、電極積層体17を収納する部分の周囲を熱融着することで外装容器14が形成される。金属箔の、熱融着性樹脂層6bが形成された面と反対側の面には、外装容器14の表面として、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
 正極端子7としては、アルミニウムやアルミニウム合金で構成されたものを用いることができる。負極端子8としては、銅や銅合金、あるいはそれらにニッケルメッキを施したものや、ニッケルなどを用いることができる。それぞれの端子7,8の他端部側は外装容器14の外部に引き出される。それぞれの端子7,8の、外装容器14の外周部分の熱溶着される部分に対応する箇所には、熱融着性の樹脂(封止材18)を予め設けておくことができる。
 サポートタブ13は、電極タブ(集電体9,11)の損傷を防止し、電極タブと電極端子(正極端子7および負極端子8)との接続の信頼性を向上させるものであり、薄く強度があり、電解液5への耐性があるものが望ましい。サポートタブ13を形成する好ましい材料としてはアルミニウム、ニッケル、銅、ステンレス(SUS)などが挙げられる。
 [二次電池の製造方法]
 図4は、本発明の電気化学デバイス用電極の製造方法に用いられる塗工装置を示す概略図であり、具体的にはダイコータの塗工部分を模式的に表したものである。
 二次電池1の製造にあたって、図4に示すように2つのダイヘッド15a,15bと、両ダイヘッド15a,15bに対向する位置を通るように集電体9,11を搬送するための搬送装置(例えばバックロール16等)を含む塗工装置(ダイコータ)を用いて、図2,3に示す電極2,3を製造する。
 図4においては、ダイヘッド15a、15bは、それぞれダイヘッド15a,15bの活物質の吐出口が円筒状のバックロール16に向かうように配置され、ダイヘッド15a,15bとバックロール16の間に正極集電体9または負極集電体11が配置されている。活物質は集電体が一方向に巻取(搬送)される際に塗布されるため、活物質層を集電体上の長尺方向に形成していくことができる。なお、ダイヘッド15a,15bは必ずしもバックロール16のある箇所に配置する必要はなく、搬送ローラ(不図示)のあいだをフロートしている箇所に配置し、塗布してもよい。
 正極2を例に挙げて説明する。
 図5aは正極2の下活物質層10aが形成された状態の、塗布の塗り終わり部分を拡大した模式図であり、図5bは下活物質層10aの上に上活物質層10bを形成した状態の、塗布の塗り終わり部分を拡大した模式図である。
 図4に示すように、正極集電体9を搬送しながら、搬送方向の上流側に位置するダイヘッド15aから正極活物質を塗布して、下活物質層10aを形成する(図5a参照)。続いて、搬送方向の下流側に位置するダイヘッド15bから正極活物質を塗布して、下活物質層10aの上に上活物質層10bを形成して、2層構造の正極活物質層10を形成する(図5b参照)。搬送される正極集電体9に図5a,5bに示す2つのダイヘッド15a,15bから活物質を吐出して、下活物質層10aがウェットの状態で上活物質層10bを連続して形成することができるが、一部溶媒が揮発した半乾燥の状態でも構わない。下活物質層10aは上活物質層10bよりも薄い層であることが、生産性が高くなるので好ましい。この2層構造の正極活物質層10の技術的意義について説明する。
 ダイヘッドから活物質を塗布して集電体9上に活物質層10を形成する場合、所定の長さの活物質層10が形成されたらダイヘッドへの活物質の供給を停止するが、その時に直ちにダイヘッドからの活物質の吐出が止まるわけではない。ダイヘッドへの活物質の供給を停止すると、徐々に吐出量が減少していき、最終的にはダイヘッドからの活物質の吐出が停止する。この吐出量の減少に合わせて、集電体9上に形成される活物質層10の厚さが徐々に小さくなる(図6に示す層厚減少部分R)。こうしてダイヘッドからの活物質の吐出が停止すると活物質層10の形成が終了すると期待されるが、実際には、ダイヘッドからの活物質の吐出が停止しても活物質層10の形成は終了せず、引き続き活物質層10が形成され続ける。その理由は、ダイヘッドからの活物質の吐出が停止した後に、ダイヘッドの吐出口およびその周囲に残存している活物質が、集電体のダイヘッドに対する移動に伴って集電体側に引きずられて集電体上に付着するからである。このように、ダイヘッドからの活物質の吐出が停止した後に活物質層が形成された部分を、図6に引きずり部分Rとして示している。ダイヘッドへの活物質の供給を停止してから活物質の吐出が停止するまでの層厚減少部分Rに加えて、引きずり部分Rが形成されるため、必要以上に長い活物質層10が形成される。たとえば、この活物質層10の余剰部分(余分に形成された部分)は切断されて、不要部分として廃棄され、完成状態の電極からは取り除かれる。例えば、図7に示すように、活物質層10が形成された集電体9を切断線19に沿って切断することにより、個々の電極(正極)2を形成している(切断線19は仮想的な線であって実際に形成されるわけではない)。この時、活物質層10の終端部の引きずり部分Rは、所望の活物質層10の長さに追加された不要な部分であり、薄い活物質層10が存在するため、次に形成する電極のタブの一部として使用することもできない。従って、この引きずり部分Rは、電極に利用されずに除去される。図7に示すように、電極の一部として使用されない引きずり部分Rが長いと、除去されて廃棄される集電体9および活物質の量が多く、製造コストが高い。また、同じ長さの集電体9から製造できる電極2の数が少なく、生産効率が悪い。このような引きずり部分Rが生じるのは活物質層10の終端部、すなわち活物質の塗布が終了する側の端部である。活物質層10の始端部、すなわち活物質の塗布が開始する側の端部には、図2,3の左側に示すように引きずり部分は生じず、下活物質層10aの始端部と上活物質層10bの始端部は、長手方向にほぼ一致する位置にある。活物質層の始端部は比較的急峻に立ち上がっており、無駄なスペースが生じない。
 本願の発明者が検討した結果、活物質層10の終端部の引きずり部分Rの長さは、形成する活物質層10の厚さが大きいほど顕著になることが判った。例えば、図6,7に示すように、厚さ120μm程度の活物質層10を形成する場合には、ダイヘッドからの活物質の吐出を停止した後に長さ5mm程度の引きずり部分R(余分な活物質層)が形成される。これに対し、形成する活物質層10の厚さが薄ければ、引きずり部分Rの長さが短くなる。例えば、厚さ20μm程度の活物質層10を形成する場合の終端部の引きずり部分Rの長さは1mm程度である。
 そこで、本実施形態では、集電体9上に形成する活物質層10を2層構造にして、下活物質層10aの厚さを上活物質層10bよりも薄くしている。集電体9上に、厚さ20μm以下程度の下活物質層10aを形成すると、前述したように引きずり部分Rの長さは1mm程度になる。下活物質層10aだけでは、集電体9上に形成すべき活物質層10の十分な厚さが確保できないので、下活物質層10aの上に上活物質層10bを形成して、活物質層10全体を所望の厚さに形成している。具体的には、正極2に厚さ120μm程度の正極活物質層10が必要な場合、前述したように下活物質層10aの厚さを20μm以下とし、上活物質層10bの厚さは100μm以上程度にする。この構成によると、集電体9上の下活物質層10aの引きずり部分Rは1mm程度に抑えられる。一方、上活物質層10bは比較的厚いので、ダイヘッド15bからの活物質吐出を停止した後に形成される引きずり部Rの長さは、集電箔に直接塗布した場合には3~4mm程度生じる可能性があるが、下活物質層上に形成することで、平面的に見て下活物質層10aの外側にはみ出すことなく、下活物質層10aの上に形成されるようにすることができる。
 図8に示す切断線19に沿って切断して個々の正極2を得る際に、正極活物質層10全体としては、不要部分として廃棄される量が小さく、製造コストが低く抑えられる。すなわち、3~4mmの長さを有する上活物質層10bの引きずり部分Rの一部は、下活物質層10aの層厚減少部分Rの上に重なっており、正極活物質層10の所望の長さの範囲内に入っている。しかも、この部分の正極活物質層10の全体の厚さは、上活物質層10bの引きずり部分Rの厚さと下活物質層10aの層厚減少部分Rの厚さの合計であるので、正極活物質層10全体としてある程度の厚さを確保しており、正極2としての機能をあまり損なわない。従って、上活物質層10bの引きずり部分Rの一部は、完成状態の電極から取り除く必要は無く、正極活物質層10の一部として利用可能である。完成状態の電極から除去した方が好ましいのは、概ね下活物質層10aの引きずり部分R(長さ1mm程度)のみであり、集電体9および活物質が有効に活用され、製造コストを低く抑えられる。下活物質層10aの厚さは、20μm以下が好ましく、また、活物質の粒径(例えば10~15μm)の200%以下であることが好ましい。さらに、下活物質層10aと上活物質層10bの厚さの比は1:5~1:7であること、すなわち、下活物質層10aの厚さは上活物質層10bの厚さの1/5~1/7であることが好ましい。
 このように、本実施形態では、上活物質層10bの、ダイヘッド15bからの活物質吐出を停止した後に形成される引きずり部分Rが、平面的に見て下活物質層10aの外側にはみ出さないようにする、すなわち、集電体9の長手方向において、上活物質層10bの終端部は下活物質層10aの終端部と一致するか、または下活物質層10aの終端部よりも手前に位置するようにする。これは、活物質吐出停止後に形成される部分の長さを予め見込んで、早めに活物質吐出を停止することによって実現する。言い換えると、上活物質層10bを形成する活物質の吐出の停止は、引きずり部分Rを含む下活物質層10aの終端部がダイヘッド15bに対向する位置に到達するタイミングよりも、上活物質層10bの引きずり部分Rが形成される時間(活物質の吐出が終了した後に引き続いて上活物質層10bが形成され続ける時間)以上早いタイミングで行う。また、ダイヘッド15bへの活物質の供給の停止は、引きずり部分Rを含む下活物質層10aの終端部がダイヘッド15bに対向する位置に到達するタイミングよりも、活物質の供給を停止してからダイヘッド15bからの活物質の吐出が終了するまでの時間と上活物質層10bの引きずり部分Rが形成される時間(活物質の吐出が終了した後に引き続いて上活物質層10bが形成され続ける時間)とを合計した時間以上早いタイミングで行う。上活物質層10bの塗布厚みを100μmとする場合、下活物質層10aの終端部よりも3mm手前の位置で活物質の吐出が停止する(層厚減少部分Rが終了する)ように、ダイヘッド15bを制御する。なお、以上の説明で例示した各層の厚さは、完成状態の厚さ、すなわち活物質が乾燥して固化した状態の厚さであり、活物質が塗布されて固化される前の厚さはそれよりも大きい。例えば、厚さ20μmの下活物質層10aを形成する場合は、活物質が塗布されて固化される前の厚さは35~40μm程度にする。また、厚さ100μmの上活物質層10bを形成する場合は、活物質が塗布されて固化される前の厚さは150μm程度にする。
 以上説明した2層構造の正極活物質層10の形成を正極集電体9の両面に行って、図3に示す正極2とすることができるが、2層構造であるのは一方の面だけでも構わない。また、前述したのと同様の工程によって、図4に示すように負極集電体11の両面に2層構造の負極活物質層12がそれぞれ形成された負極3とすることができる。図1a,1bに示すように、これらの正極2と負極3とを、セパレータ4を介して交互に積層し、正極端子7および負極端子8を接続する。具体的には、複数の正極2の正極タブ(正極集電体9)を正極端子7の一端部の上に密接に重ね合わせ、さらにその上に金属片(サポートタブ)13を重ねて配置してから、これらを一括して接合する。電極タブと電極端子との接合方法は複数あるが、超音波溶着による接合が採用されることが多い。すなわち、複数の正極タブを挟み込む正極端子7とサポートタブ13に、図示しないホーンとアンビルをそれぞれ押し当てて加圧しながら振動を加えて超音波溶接することができる。負極3においても、正極2と同様に、複数の未塗布部(負極集電体)11を重ね合わせた集合部をサポートタブ13と負極端子8で挟み込み、超音波溶接することができる。本実施形態では、正極2および負極3において、引きずり部分Rが抑制され、スペース効率の良い活物質10,12の始端部側の集電体9,11を電極タブとして利用している。
 このようにして正極2の未塗布部(正極集電体9)に正極端子7が接続され、かつ負極3の未塗布部(負極集電体11)に負極端子8が接続されて完成した電極積層体17を、その主面(平坦な面)の上下から可撓性フィルム6によって覆う。そして、平面的に見て電極積層体17の外周縁部の外側において、可撓性フィルム6同士が重なり合う部分に、一部を除いて圧力と熱を加えて、可撓性フィルム6の内側の樹脂層6bを構成する熱融着性樹脂を互いに熱融着させて接合する。この時、正極端子7と負極端子8は、予め設けられた封止材(シーラント)18を介して可撓性フィルム6の外周部に固着させる。一方、可撓性フィルム6同士が重なり合う部分のうち、圧力と熱を加えていない部分は、非接合のままの開口部分(注入口部分)として残る。一般的には、外装容器14のうち、正極端子7が配置される辺と負極端子8が配置される辺とを除く辺のうち、いずれか1辺の一部に注入口部分を形成する。そして、注入口部分から外装容器14の内部に電解液5を注入する。注入口部分以外の辺はすべて既に封止されているので、注入した電解液5が漏れることはない。また、既に封止されている辺において、可撓性フィルム6同士が重なり合う部分に電解液5が浸入することはない。その後、注入口部分に圧力と熱を加えて、可撓性フィルム6の内側の樹脂層6bを構成する熱融着性樹脂を互いに熱融着させて接合する。
 図9には、本発明の電気化学デバイス用電極の他の実施形態を示している。この実施形態では、正極2および負極3において、活物質の終端部側の集電体を電極タブとして利用している。前述したように活物質の終端部の引きずり部分Rが小さいため、この終端部側に電極タブを設けることができる。この構成では、下活物質層10aの短い引きずり部分Rも除去しないので、製造効率がさらに良い。また、この構成において活物質層の終端部の境界部分を覆うようにテープ状の絶縁部材を配置する場合には、薄い引きずり部分Rに絶縁部材を配置することにより、絶縁部材の厚さによって電極積層体全体が厚くなることが抑えられ、引きずり部分Rが有効に利用できる。
 電気化学デバイスの一例であるリチウムイオン二次電池では、充電時に放出されたリチウムを負極3によって受け入れるが、仮に負極3の充電容量Cが小さいと、リチウムを十分に受け入れられず、負極3の表面にリチウムが析出するという問題が生じる可能性がある。従って、負極3の表面へのリチウム析出を防止するために、負極3の充電容量Aと正極2の充電容量Cの比をA/C>1に設定することが知られている。このA/Cバランスは電極全体だけではなく、局部的にも成立させておくのが好ましいため、正極が対向する部分には必ず負極が対向するように、負極の面積を大きくしておくのが一般的である。したがって、正極2に大きな引きずり部分Rが存在するのは好ましくなかった。本発明では、正極活物質層10の引きずり部Rが小さいため、正極より大きい寸法に形成された負極が存在する範囲内に引きずりが収まり、A/Cバランスが逆転することはない。これにより、未塗布部を電極タブとして使用できる。すなわち、図9に示すように、電極タブを正極活物質層10の終端部側に形成することができる。
 前述した実施形態では、複数の正極2と複数の負極3がセパレータ4を介して交互に繰り返し積層された電極積層体17を、蓄電要素として用いている。しかし、1枚のみの正極2と1枚のみの負極3がセパレータ4を介して重なり合う蓄電要素にも適用可能である。また、本発明はリチウムイオン二次電池に特に有用であるが、リチウムイオン電池以外の二次電池や、キャパシタ(コンデンサ)等の電池以外の電気化学デバイスに適用しても有効である。
 以上、実施形態を参照して本発明を説明したが、本発明は上記した実施形態の構成に限られるものではなく、本発明の構成や細部に、本発明の技術的思想の範囲内で、当業者が理解し得る様々な変更を施すことができる。
 本出願は、2016年3月11日に出願された日本特許出願2016-48644号を基礎とする優先権を主張し、日本特許出願2016-48644号の開示の全てをここに取り込む。
1   二次電池(電気化学デバイス)
2   正極(正極シート)
3   負極(負極シート)
4   セパレータ
5   電解液
6   可撓性フィルム(ラミネートフィルム)
7   正極端子(電極端子)
8   負極端子(電極端子)
9   正極用の集電体(正極集電体)
10  正極用の活物質層(正極活物質層)
11  負極用の集電体(負極集電体)
12  負極用の活物質層(負極活物質層)
13  金属片(サポートタブ)
14  外装容器
15a,15b  ダイヘッド
16  ローラー
17  電極積層体(蓄電要素)
18  封止材(シーラント)
19  切断線

Claims (15)

  1.  集電体と、前記集電体に塗布されている活物質からなる活物質層とを含む、電気化学デバイス用電極であって、
     前記活物質層は、前記集電体の上に密着する下活物質層と、前記下活物質層を介して前記集電体の上に配置されている上活物質層とを含み、前記下活物質層の厚さは、前記上活物質層の厚さよりも薄く、前記集電体の長手方向において、前記上活物質層の終端部は前記下活物質層の終端部と一致するか、または前記下活物質層の終端部よりも手前に位置する、電気化学デバイス用電極。
  2.  前記上活物質層の終端部は、平面的に見て前記下活物質層の終端部の外側にはみ出していない、請求項1に記載の電気化学デバイス用電極。
  3.  前記下活物質層の厚さは20μm以下である、請求項1または2に記載の電気化学デバイス用電極。
  4.  前記下活物質層の厚さは、前記活物質の粒径の200%以下である、請求項1から3のいずれか1項に記載の電気化学デバイス用電極。
  5.  前記下活物質層と前記上活物質層の厚さの比は、1:5~1:7である、請求項1から4のいずれか1項に記載の電気化学デバイス用電極。
  6.  請求項1から5のいずれか1項に記載の電気化学デバイス用電極からなる正極および負極と、前記正極と前記負極の間に配置されているセパレータとからなる電極積層体と、
     前記電極積層体を収容する外装容器と、
     前記電極積層体とともに前記外装容器の内部に収容されている電解液と、
     を含む電気化学デバイス。
  7.  集電体と、前記集電体に塗布されている活物質からなる活物質層とを含む、電気化学デバイス用電極の製造方法であって、
     前記集電体に下活物質層を形成する工程と、前記下活物質層の上に重ねて上活物質層を形成する工程と、前記下活物質層と前記上活物質層が形成された前記集電体を切断する工程とを含み、
     前記下活物質層は前記上活物質層よりも薄く、
     前記上活物質層を形成する工程では、前記上活物質層を、前記集電体の長手方向において、前記上活物質層の終端部が前記下活物質層の終端部と一致するか、または前記下活物質層の終端部よりも手前に位置するように形成する、電気化学デバイス用電極の製造方法。
  8.  前記上活物質層を形成する工程では、平面的に見て前記上活物質層の終端部が前記下活物質層の終端部の外側にはみ出さないように前記上活物質層を形成する、請求項7に記載の電気化学デバイス用電極の製造方法。
  9.  前記集電体に下活物質層を形成する工程では、搬送されている前記集電体に向けてダイヘッドから活物質を吐出して前記集電体に付着させ、
     前記上活物質層を形成する工程では、前記下活物質層が形成された状態で搬送されている前記集電体に向けて、前記下活物質層の形成に用いられた前記ダイヘッドよりも前記集電体の搬送方向の下流側に位置するダイヘッドから活物質を吐出して前記集電体の前記下活物質層に付着させる、請求項7または8に記載の電気化学デバイス用電極の製造方法。
  10.  前記下活物質層を形成する工程では、厚さ20μm以下の前記下活物質層を形成する、請求項7から9のいずれか1項に記載の電気化学デバイス用電極の製造方法。
  11.  前記下活物質層を形成する工程では、厚さが前記活物質の粒径の200%以下である前記下活物質層を形成する、請求項7から10のいずれか1項に記載の電気化学デバイス用電極の製造方法。
  12.  前記下活物質層を形成する工程では、前記上活物質層を形成する工程で形成される前記上活物質層の厚さの1/5~1/7の厚さの前記下活物質層を形成する、請求項7から11のいずれか1項に記載の電気化学デバイス用電極の製造方法。
  13.  前記上活物質層を形成する工程において、前記上活物質層を形成する活物質を吐出するダイヘッドからの前記活物質の吐出の停止は、前記下活物質層の終端部が当該ダイヘッドに対向する位置に到達するタイミングよりも、前記活物質の吐出が終了した後に引き続いて前記上活物質層が形成され続ける時間以上早いタイミングで行う、請求項7から12のいずれか1項に記載の電気化学デバイス用電極の製造方法。
  14.  前記上活物質層を形成する工程において、前記上活物質層を形成する活物質を吐出するダイヘッドへの前記活物質の供給の停止は、前記下活物質層の終端部が当該ダイヘッドに対向する位置に到達するタイミングよりも、前記活物質の供給を停止してから前記ダイヘッドからの前記活物質の吐出が終了するまでの時間と前記活物質の吐出が終了した後に引き続いて前記上活物質層が形成され続ける時間とを合計した時間以上早いタイミングで行う、請求項13に記載の電気化学デバイス用電極の製造方法。
  15.  請求項7から14のいずれか1項に記載の電気化学デバイス用電極の製造方法によって正極および負極を製造することと、
     前記正極と前記負極とをセパレータを介して交互に積層して電極積層体を形成することと、
     前記電極積層体を電解液を外装容器内に収容することと、
     を含む電気化学デバイスの製造方法。
PCT/JP2016/088710 2016-03-11 2016-12-26 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法 WO2017154313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/083,783 US20190074509A1 (en) 2016-03-11 2016-12-26 Electrode for electrochemical device, electrochemical device, and method of manufacturing the electrode and electrochemical device
CN201680083370.3A CN108780876A (zh) 2016-03-11 2016-12-26 电化学器件用电极、电化学器件、以及制造电化学器件用电极和电化学器件的方法
JP2018504013A JPWO2017154313A1 (ja) 2016-03-11 2016-12-26 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016048644 2016-03-11
JP2016-048644 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154313A1 true WO2017154313A1 (ja) 2017-09-14

Family

ID=59790149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088710 WO2017154313A1 (ja) 2016-03-11 2016-12-26 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法

Country Status (4)

Country Link
US (1) US20190074509A1 (ja)
JP (1) JPWO2017154313A1 (ja)
CN (1) CN108780876A (ja)
WO (1) WO2017154313A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247671A (zh) * 2017-09-21 2020-06-05 应用材料公司 锂阳极装置堆叠制造
JP2021182562A (ja) * 2018-08-21 2021-11-25 エムテックスマート株式会社 蓄電池の製造方法、蓄電池、全固体電池
JP2022543417A (ja) * 2020-06-25 2022-10-12 エルジー エナジー ソリューション リミテッド バインダー層が形成された電極及びその製造方法
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631840B2 (en) 2019-04-26 2023-04-18 Applied Materials, Inc. Surface protection of lithium metal anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270023A (ja) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd 非水電解質二次電池用電極の製造方法
JP2014199714A (ja) * 2011-08-09 2014-10-23 パナソニック株式会社 非水電解質二次電池用負極およびその非水電解質二次電池
WO2015087657A1 (ja) * 2013-12-12 2015-06-18 Necエナジーデバイス株式会社 二次電池とその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786581B2 (ja) * 2007-03-29 2011-10-05 Tdk株式会社 リチウムイオン二次電池用又は電気化学キャパシタ用電極、及び当該電極を備えるリチウムイオン二次電池又は電気化学キャパシタ
JP5517320B1 (ja) * 2013-05-24 2014-06-11 太陽誘電株式会社 電気化学デバイス用電極、電気化学デバイス及び電気化学デバイス用電極の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270023A (ja) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd 非水電解質二次電池用電極の製造方法
JP2014199714A (ja) * 2011-08-09 2014-10-23 パナソニック株式会社 非水電解質二次電池用負極およびその非水電解質二次電池
WO2015087657A1 (ja) * 2013-12-12 2015-06-18 Necエナジーデバイス株式会社 二次電池とその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
CN111247671A (zh) * 2017-09-21 2020-06-05 应用材料公司 锂阳极装置堆叠制造
CN111247671B (zh) * 2017-09-21 2023-11-24 应用材料公司 锂阳极装置堆叠制造
US11888109B2 (en) 2017-09-21 2024-01-30 Applied Materials, Inc. Lithium anode device stack manufacturing
JP2021182562A (ja) * 2018-08-21 2021-11-25 エムテックスマート株式会社 蓄電池の製造方法、蓄電池、全固体電池
JP7411250B2 (ja) 2018-08-21 2024-01-11 エムテックスマート株式会社 蓄電池の製造方法、蓄電池、全固体電池
JP2022543417A (ja) * 2020-06-25 2022-10-12 エルジー エナジー ソリューション リミテッド バインダー層が形成された電極及びその製造方法
JP7376686B2 (ja) 2020-06-25 2023-11-08 エルジー エナジー ソリューション リミテッド バインダー層が形成された電極及びその製造方法

Also Published As

Publication number Publication date
CN108780876A (zh) 2018-11-09
US20190074509A1 (en) 2019-03-07
JPWO2017154313A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6521323B2 (ja) 二次電池とその製造方法
JP6418650B2 (ja) 積層型二次電池および電極の製造方法
JP6381045B2 (ja) 二次電池
JP6621765B2 (ja) 二次電池
WO2017154313A1 (ja) 電気化学デバイス用電極および電気化学デバイスとそれらの製造方法
JP7002094B2 (ja) 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
JP6292678B2 (ja) 二次電池と電極の製造方法
WO2017154312A1 (ja) 電気化学デバイス用電極と電気化学デバイスの製造方法
WO2015129320A1 (ja) 二次電池用電極および二次電池とそれらの製造方法
WO2016067706A1 (ja) 二次電池用電極の製造方法、二次電池用電極、および二次電池
WO2016208238A1 (ja) 電気化学デバイスの製造方法
WO2016186209A1 (ja) 二次電池用の電極および二次電池の製造方法と製造装置
WO2017098995A1 (ja) 電気化学デバイスとその製造方法
JP2018045952A (ja) 電極及び電気化学デバイスの製造方法と電極ロール
JPWO2018051850A1 (ja) 電池用電極の製造方法及び電池用電極の製造装置及び電池用電極及び電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504013

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893637

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893637

Country of ref document: EP

Kind code of ref document: A1