WO2012124108A1 - 固体電池、及び固体電池の製造方法 - Google Patents

固体電池、及び固体電池の製造方法 Download PDF

Info

Publication number
WO2012124108A1
WO2012124108A1 PCT/JP2011/056427 JP2011056427W WO2012124108A1 WO 2012124108 A1 WO2012124108 A1 WO 2012124108A1 JP 2011056427 W JP2011056427 W JP 2011056427W WO 2012124108 A1 WO2012124108 A1 WO 2012124108A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
positive electrode
solid
negative electrode
layer
Prior art date
Application number
PCT/JP2011/056427
Other languages
English (en)
French (fr)
Inventor
三宅 秀明
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180069030.2A priority Critical patent/CN103443994B/zh
Priority to PCT/JP2011/056427 priority patent/WO2012124108A1/ja
Priority to JP2013504485A priority patent/JP5652541B2/ja
Priority to US14/003,017 priority patent/US9818996B2/en
Publication of WO2012124108A1 publication Critical patent/WO2012124108A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a solid battery sealed under reduced pressure in an exterior material, and a method for manufacturing the solid battery.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • the lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween. Further, as the electrolyte provided in the electrolyte layer, for example, a non-aqueous liquid or solid is used. When a liquid (hereinafter referred to as “electrolytic solution”) is used as the electrolyte, the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte (hereinafter referred to as “solid electrolyte”) is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery in a form provided with a layer containing a solid electrolyte that is nonflammable has been proposed.
  • a bipolar electrode in which a positive electrode is formed on one surface of a current collector and a negative electrode is formed on the other surface is sandwiched with an electrolyte layer.
  • the bipolar secondary battery element is disposed between the bipolar secondary battery element and the outer packaging material more than the outer packaging material.
  • Patent Document 1 discloses a unit cell in which a positive electrode layer, an electrolyte layer, and a negative electrode layer are stacked, and a seal portion disposed around the unit cell in a cross-sectional view perpendicular to the stacking direction of the unit cells.
  • a battery having a configuration including the unit cell and a pair of current collectors sandwiching the seal portion is disclosed. By providing the seal portion in this manner, adjacent current collectors can be insulated.
  • an exterior material as disclosed in Patent Document 1
  • the space surrounded by the exterior material hereinafter referred to as “inside the exterior material”
  • the seal portion disposed at the outer edge portion of the unit cell prevents the gas from flowing, so that the gas in the space surrounded by the seal portion cannot escape.
  • the gas in the exterior material may expand during heat generation, or the gas in the exterior material may react with the constituent members of the battery. .
  • the present invention relates to a solid state battery that is sealed under reduced pressure in an exterior material, the solid battery capable of exhausting the gas in the exterior material when the inside of the exterior material is decompressed, and a method for producing the solid battery.
  • the issue is to provide.
  • a first aspect of the present invention includes a laminate including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and a cross section in a direction perpendicular to the stacking direction of the laminate.
  • a single cell comprising an insulating portion disposed on the outer periphery of the laminated body and a pair of current collectors sandwiching the laminated body and the insulating portion as viewed, and the single cell is decompressed in an exterior material. It is a solid state battery characterized in that it is sealed and the insulating part has a vent hole.
  • vent hole means a hole through which a gas in the exterior material can pass when the interior of the exterior material is depressurized in the manufacturing process of the solid battery of the present invention.
  • the air hole of the insulating portion is crushed.
  • vent hole is crushed means that the vent hole that had air permeability before the production of the solid battery of the present invention was crushed in the production process of the solid battery of the present invention, It means that the air permeability of the vent is lost.
  • breathability means the property of allowing gas to pass from one space partitioned by an insulating portion to the other space. Usually, even if a member having such a vent hole is crushed by pressurization or heating, it is possible to find a trace of the vent hole.
  • the solid state battery according to the first aspect of the present invention may have a form in which a plurality of unit cells are sealed under reduced pressure in an exterior material.
  • a laminate including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and a cross-sectional view in a direction perpendicular to the lamination direction of the laminate.
  • Manufacturing a unit cell comprising an insulating part having a vent and a pair of current collectors sandwiching the layered body and the insulating unit, disposed on the outer periphery of the laminate, and the unit cell as an exterior material
  • a method for producing a solid state battery comprising: a step of sealing under reduced pressure inside, and a step of crushing a vent hole of an insulating portion.
  • crushing the air vent means that the air permeability of the air vent is lost.
  • a solid state battery sealed under reduced pressure in an exterior material the solid state battery capable of extracting gas in the exterior material when decompressing the interior of the exterior material, and a method for producing the solid battery Can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a solid state battery 10 of the present invention according to one embodiment.
  • 2A to 2E are diagrams for explaining the manufacturing process of the solid state battery 10.
  • FIG. 3A is a view taken in the direction of arrows IIIA-IIIA in FIG.
  • FIG. 3B is a view taken along the arrow IIIB-IIIB in FIG. It is sectional drawing which shows schematically the solid battery 20 of this invention concerning other embodiment.
  • the solid battery of the present invention is a lithium ion secondary battery having a solid electrolyte layer.
  • FIG. 1 is a cross-sectional view schematically showing a solid state battery 10 of the present invention according to one embodiment.
  • the vertical direction of the drawing in FIG. 1 is the stacking direction.
  • a solid battery 10 includes a laminated body 4 including a positive electrode layer 1, a negative electrode layer 2, and an electrolyte layer 3 disposed between the positive electrode layer 1 and the negative electrode layer 2, and a laminated body 4.
  • a cell comprising: an insulating portion 6 disposed on the outer periphery of the laminated body 4 in a cross-sectional view in a direction orthogonal to the laminating direction; and a pair of current collectors 5 and 5 sandwiching the laminated body 4 and the insulating portion 6. 8 is provided.
  • the unit cell 8 is hermetically sealed in the exterior material 7.
  • the current collector 5 in contact with the positive electrode layer 1 is referred to as a positive electrode current collector 5a
  • the current collector 5 in contact with the negative electrode layer 2 is referred to as a negative electrode current collector 5b.
  • the insulating part 6 is composed of the first insulating layer 6a and the second insulating layer 6b, and a part of the insulating part 6 on the positive electrode current collector 5a side is referred to as a first insulating layer 6a.
  • a part of the insulating portion 6 on the negative electrode current collector 5b side may be referred to as a second insulating layer 6b.
  • the solid battery 10 also includes a positive electrode terminal 8a (see FIG. 3A) connected to the positive electrode current collector 5a and a negative electrode terminal 8b (see FIG. 3B) connected to the negative electrode current collector 5b. I have.
  • the positive electrode current collector 5 a and the negative electrode current collector 5 b can be made of a known conductive material that can be used as a positive electrode current collector or a negative electrode current collector of a lithium ion secondary battery.
  • a conductive material include one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Examples of the metal material to be included are illustrated.
  • the form of the positive electrode current collector 5a and the negative electrode current collector 5b can be, for example, a metal foil or a metal mesh.
  • the insulating part 6 includes a first insulating layer 6a and a second insulating layer 6b. Moreover, the 1st insulating layer 6a and the 2nd insulating layer 6b are provided with the crushed ventilation hole.
  • the “crushed vent” is a hole having air permeability before the solid battery 10 is manufactured, and is a hole that has lost air permeability by being crushed in the manufacturing process of the solid battery 10 as will be described later. Means. Note that “breathability” means a property that allows gas to pass from one space partitioned by the insulating portion 6 to the other space as will be described later.
  • the air holes provided in the members used for the first insulating layer 6a and the second insulating layer 6b are formed in the exterior material 7 (enclosed by the insulation portion 6) when the interior of the exterior material 7 is decompressed in the manufacturing process of the solid battery 10 described later. It is sufficient that the gas can be passed through the space and can be crushed by pressurization and / or heating.
  • a form of such a vent hole there are a hole configured by connecting a plurality of bubbles, a straight through hole, and the like.
  • the first insulating layer 6a and the second insulating layer 6b have air permeability and can be lost by pressurization and / or heating, etc., when the solid battery 10 is used. It can be made of a known insulating material that can withstand this environment. Examples of such an insulating material include a polyurethane sponge having open cells, a polyamideimide resin, an epoxy resin, and a fluorine resin.
  • Positive electrode layer 1 As the positive electrode active material contained in the positive electrode layer 1, a known active material that can be contained in the positive electrode layer of the lithium ion secondary battery can be appropriately used. Examples of such a positive electrode active material include lithium cobaltate (LiCoO 2 ). Moreover, as the electrolyte contained in the positive electrode layer 1, a known electrolyte that can be contained in the positive electrode layer of the battery can be appropriately used.
  • organic solid electrolytes such as polyethylene oxide can be exemplified.
  • the positive electrode layer 1 may contain a binder that binds the positive electrode active material and the electrolyte and a conductive material that improves conductivity.
  • Examples of the binder that can be contained in the positive electrode layer 1 include butylene rubber, and examples of the conductive material that can be contained in the positive electrode layer 1 include carbon black.
  • a solvent used when manufacturing the positive electrode layer 1 the well-known solvent which can be used when adjusting the slurry used at the time of positive electrode layer preparation of a lithium ion secondary battery can be used suitably. As such a solvent, heptane and the like can be exemplified.
  • the negative electrode active material contained in the negative electrode layer 2 As the negative electrode active material contained in the negative electrode layer 2, a known active material that can be contained in the negative electrode layer of the lithium ion secondary battery can be appropriately used. Examples of such an active material include graphite.
  • the electrolyte contained in the negative electrode layer 5 As the electrolyte contained in the negative electrode layer 5, a known electrolyte that can be contained in the negative electrode layer of the lithium ion secondary battery can be appropriately used.
  • the said inorganic solid electrolyte, organic solid electrolyte, etc. which can be contained in the positive electrode layer 1 can be illustrated.
  • the negative electrode layer 2 may contain a binder for binding the negative electrode active material and the electrolyte and a conductive material for improving conductivity.
  • binder and conductive material that can be contained in the negative electrode layer 2 examples include the binder and conductive material that can be contained in the positive electrode layer 1.
  • the binder and conductive material that can be contained in the positive electrode layer 1 examples include the binder and conductive material that can be contained in the positive electrode layer 1.
  • the said solvent etc. which can be used when producing the positive electrode layer 1 can be illustrated.
  • Solid electrolyte layer 3 Examples of the solid electrolyte contained in the solid electrolyte layer 3 include the inorganic solid electrolyte and the organic solid electrolyte that can be contained in the positive electrode layer 1. Moreover, as a solvent used when producing the solid electrolyte layer 3, the said solvent etc. which can be used when producing the positive electrode layer 1 can be illustrated.
  • the packaging material 7 can withstand the environment during use of the lithium ion secondary battery, has a property of not allowing gas or liquid to permeate, and can be sealed without particular limitation. Can do.
  • Examples of the material constituting the exterior material 7 include known metal foils typified by aluminum foils, films made of resins typified by polyethylene, polyvinyl fluoride, polyvinylidene chloride, and the like. Examples thereof include a metal-deposited film in which a metal such as aluminum is deposited on the surface thereof.
  • FIG. 1 illustrates a form in which the exterior material 7 is composed of a single bag-like member. However, the exterior material 7 has a form in which the cell 8 is sandwiched between two films. Further, it may be composed of a plurality of members.
  • the positive electrode terminal 8a and the negative electrode terminal 8b can be made of a material having good electrical conductivity that can withstand the environment when the solid battery 10 is used, and can cope with the force applied when the solid battery 10 is used. It is preferable to comprise by the material which has intensity
  • the positive electrode current collector 5a can be formed so as to partially protrude, and the protruding portion can be used as the positive electrode terminal 8a, and the negative electrode current collector 5b can be partially protruded.
  • the protruding portion can be used as the negative electrode terminal 8b.
  • the manufacturing method of such a solid battery 10 is not particularly limited, for example, it can be manufactured through the following steps.
  • FIG. 2 (A) to 2 (E) are diagrams for explaining a manufacturing process of the solid state battery 10.
  • 3A is a view taken in the direction of arrows IIIA-IIIA in FIG. 2A
  • FIG. 3B is a view taken in the direction of arrows IIIB-IIIB in FIG. 2A to 2E and the back / front direction of FIG. 3A and FIG. 3B are stacking directions.
  • the first insulating layer 6a is formed on the outer edge of the positive electrode current collector 5a to which the positive electrode terminal 8a is connected by a known method such as thermocompression bonding. .
  • a masking material is disposed on the surface of the first insulating layer 6a, and the positive electrode layer 1 is formed on the surface of the positive electrode current collector 5a surrounded by the first insulating layer 6a.
  • the positive electrode layer 1 is, for example, a well-known method such as a doctor blade method in which a positive electrode slurry prepared by dispersing at least a positive electrode active material and a solid electrolyte in a solvent is applied to the entire surface of the positive electrode current collector 5a surrounded by the first insulating layer 6a. It can be formed by applying the method and evaporating the solvent. In this way, as shown in FIGS. 2A and 3A, the first stacked body 4a including the positive electrode layer 1, the positive electrode current collector 5a, and the first insulating layer 6a can be manufactured. it can.
  • the second insulating layer 6b is formed by a known method similar to that for the first insulating layer 6a, as shown in FIGS. 2A and 3B. Form on the outer edge.
  • a masking material is disposed on the surface of the second insulating layer 6b, and the negative electrode layer 2 is formed on the surface of the negative electrode current collector 5b surrounded by the second insulating layer 6b.
  • the negative electrode layer 2 is, for example, a well-known method such as a doctor blade method in which a negative electrode slurry prepared by dispersing at least a negative electrode active material and a solid electrolyte in a solvent is applied to the entire surface of the negative electrode current collector 5b surrounded by the second insulating layer 6b. It can be formed by applying the method and evaporating the solvent.
  • a known method such as a doctor blade method
  • the solid electrolyte layer 3 can be formed on the negative electrode layer 2 through a process of volatilizing the solvent.
  • the second stacked body 4b including the negative electrode layer 2, the negative electrode current collector 5b, and the second insulating layer 6b can be manufactured. it can.
  • the masking material of the first laminate 4a and the second laminate 4b produced as described above is removed, and the positive electrode layer 1 and the solid electrolyte layer 3 face each other as shown in FIG. In this manner, the first stacked body 4a and the second stacked body 4b are stacked.
  • the first laminated body 4a and the second laminated body 4b are accommodated in an exterior material 7 having an exhaust port 7a for vacuuming.
  • an exterior material 7 having an exhaust port 7a for vacuuming.
  • at least a part of the positive electrode terminal 8 a and the negative electrode terminal 8 b is not accommodated in the exterior material 7.
  • the exterior material 7 is evacuated (depressurized).
  • the vacuuming pressure is not particularly limited, and can be, for example, about 0.1 MPa.
  • the inner side is the outer side (outer peripheral side, the end in the left-right direction in FIG. 2B) viewed from the stacking direction of the first stack 4a and the second stack 4b. B) the central portion in the left-right direction. Therefore, the first insulating layer 6 a and the second insulating layer 6 b are more easily pressed by the exterior material 7 than the positive electrode layer 1 and the solid electrolyte layer 3. As a result, as shown in FIG. 2C, a space S defined by the first insulating layer 6a, the second insulating layer 6b, the positive electrode layer 1, and the solid electrolyte layer 3 is formed.
  • the conventional solid battery may cause problems such as expansion of the gas in the exterior material during heat generation, and reaction of the gas in the exterior material and the constituent members of the battery. Further, if the gas in the space S remains, there is a possibility that the battery performance may be deteriorated due to the insufficient interface formed between the solid electrolyte layer and the positive electrode layer or the negative electrode layer.
  • the first insulating layer 6a and the second insulating layer 6b have vent holes, so that the gas in the space S is exhausted as shown in FIG. be able to.
  • the exhaust port 7a of the exterior material 7 can be sealed by, for example, heat welding.
  • the solid battery 10 can be manufactured as shown in FIG. 2 (E) by applying pressure in the stacking direction using appropriate pressure members 20 and 20.
  • the pressure applied in this pressurizing step can be appropriately determined according to the form of the solid battery to be produced.
  • the pressure can be set to 1 MPa or more and 500 MPa or less, for example.
  • the method of crushing the air holes of the first insulating layer 6a and the second insulating layer 6b is not limited to pressurization, and the air holes of the first insulating layer 6a and the second insulating layer 6b can be formed by applying pressure while heating or heating. May be crushed.
  • the solid state battery of the present invention by forming the insulating portion with the insulating member having the air hole, the gas in the exterior material can be exhausted during the manufacturing process as described above. Therefore, the solid state battery of the present invention can prevent the gas in the exterior material from expanding during heat generation or the like, and the reaction of the gas in the exterior material and the members constituting the battery. Further, the solid electrolyte layer and the positive electrode layer or the negative electrode layer can be brought into close contact with each other to improve battery performance. Further, as described above, the solid battery of the present invention can insulate the current collectors by crushing the ventilation holes of the insulating portion in the manufacturing process.
  • the insulating part 6 is constituted by the first insulating layer 6a formed on the positive electrode current collector 5a and the second insulating layer 6b formed on the negative electrode current collector 5b.
  • the solid battery of the present invention is not limited to this form.
  • the insulating part may be composed of one member. In this case, the insulating part may be formed only on one of the positive electrode current collector and the negative electrode current collector in the manufacturing process.
  • the first insulating layer 6a is formed prior to the positive electrode layer 1 and the second insulating layer 6b is formed prior to the negative electrode layer 2 in the manufacturing process.
  • the solid battery is not limited to this form.
  • an insulating layer may be formed on the outer periphery thereof, and after forming the negative electrode layer on the current collector, the insulating layer may be formed on the outer periphery thereof.
  • an insulating layer may be formed on the outer periphery thereof.
  • the negative electrode layer and the solid electrolyte layer on the current collector the insulating layer may be formed on the outer periphery thereof. Good.
  • FIG. 4 is a cross-sectional view schematically showing a solid state battery 20 according to another embodiment of the present invention.
  • a plurality of bipolar electrodes in which the positive electrode layer 1 is formed on one surface of the current collector 5 and the negative electrode layer 2 is formed on the other surface of the current collector 5 are prepared.
  • a solid battery 20 in which a plurality of single cells are accommodated in the exterior member 17 can be obtained.
  • a method for forming the insulating portion 6, a method for sealing under reduced pressure in the exterior material 17, and the like can be the same as those for the solid battery 10 described above.
  • the substantially rectangular parallelepiped unit cell 8 is illustrated, but the unit cell used in the present invention is not limited to this shape.
  • the unit cell may have other shapes such as a cylindrical shape or a hexagonal column shape.
  • the single battery 8 that is a lithium ion secondary battery is provided, but a battery to which the present invention is applicable is not limited to this mode.
  • the unit cell according to the present invention may be configured such that ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions and potassium ions.
  • the positive electrode active material, the solid electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.
  • the single battery in the present invention can be a primary battery.
  • the solid state battery of the present invention can be used as a power source for portable devices, electric vehicles, hybrid vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

外装材内に減圧密封された固体電池であって、外装材内を減圧する際に外装材内の気体を抜き切ることが可能な固体電池、並びに該固体電池の製造方法を提供することを課題とする。正極層、負極層、並びに、正極層及び負極層の間に配設された電解質層を備えた積層体と、積層体の積層方向に直交する方向の断面視において積層体の外周に配設された絶縁部と、積層体及び絶縁部を挟持する一対の集電体と、を備える単電池を備えており、単電池が外装材内に減圧密封されており、絶縁部が潰された通気孔を備えていることを特徴とする、固体電池とし、正極層、負極層、並びに、正極層及び負極層の間に配設された電解質層を備えた積層体と、積層体の積層方向に直交する方向の断面視において積層体の外周に配設された、通気孔を有する絶縁部と、積層体及び絶縁部を挟持する一対の集電体と、を備える単電池を作製する工程と、単電池を外装材内に減圧密封する工程と、絶縁部の通気孔を潰す工程とを備えていることを特徴とする、固体電池の製造方法とする。

Description

固体電池、及び固体電池の製造方法
 本発明は、外装材内に減圧密封された固体電池、及び該固体電池の製造方法に関する。
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられる。また、電解質層に備えられる電解質としては、例えば非水系の液体や固体が用いられる。電解質に液体(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質(以下において、「固体電解質」という。)は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体電解質を含有する層が備えられる形態のリチウムイオン二次電池が提案されている。
 このようなリチウムイオン二次電池に関する技術として、例えば特許文献1には、集電体の一方の面に正極が形成され、他方の面に負極が形成された双極型電極を、電解質層を挟んで少なくとも2層以上直列に積層した双極型二次電池要素を、外装材に密封してなる双極型二次電池モジュールにおいて、双極型二次電池要素と外装材との間に前記外装材よりも引張応力が高い部材を挿入することを特徴とする双極型二次電池モジュールが記載されている。
特開2008-140633号公報
 上記特許文献1には、正極層、電解質層、及び負極層を積層した単電池と、該単電池の積層方向に直交する方向の断面視において該単電池の周囲に配設されたシール部と、該単電池及び該シール部を挟持する一対の集電体とを備えた形態の電池が開示されている。このようにシール部を設けることによって、隣接する集電体間を絶縁することができる。しかしながら、このような形態の電池を特許文献1に開示されているように外装材に減圧密封する場合、外装材で囲まれた空間(以下、「外装材内」という。)を減圧する際に外装材内の気体を十分に抜き切れない虞があるという問題があった。単電池の外縁部に配設されたシール部(絶縁体)が気体の流通を妨げることによって、該シール部によって囲まれた空間の気体が抜けなくなるからである。
 上記のように外装材内に気体が残存すると、発熱時に外装材内の気体が膨張したり、外装材内の気体と電池の構成部材とが反応したりする等の問題を生じる虞があった。
 そこで本発明は、外装材内に減圧密封された固体電池であって、外装材内を減圧する際に外装材内の気体を抜き切ることが可能な固体電池、及び該固体電池の製造方法を提供することを課題とする。
 上記課題を解決するために、本発明は以下の構成をとる。すなわち、
  本発明の第1の態様は、正極層、負極層、並びに、正極層及び負極層の間に配設された電解質層を備えた積層体と、該積層体の積層方向に直交する方向の断面視において積層体の外周に配設された絶縁部と、該積層体及び該絶縁部を挟持する一対の集電体と、を備える単電池を備えており、該単電池が外装材内に減圧密封されており、絶縁部が通気孔を備えていることを特徴とする、固体電池である。
 ここに、「通気孔」とは、本発明の固体電池の製造過程において外装材内を減圧する際に外装材内の気体を通すことができる孔を意味する。
 本発明の第1の態様の固体電池において、絶縁部が有する通気孔が潰されていることが好ましい。
 ここに、「通気孔が潰されている」とは、本発明の固体電池を製造する前には通気性を有していた通気孔を、本発明の固体電池の製造過程において潰すことにより、該通気孔の通気性が失われていることを意味する。なお、「通気性」とは、絶縁部で区切られた一方の空間から他方の空間へと気体を通すことができる性質を意味する。通常、このような通気孔を有していた部材は、加圧や加熱等して該通気孔を潰したとしても、該通気孔が存在していた痕跡を見つけることが可能である。
 本発明の第1の態様の固体電池は、外装材内に複数の上記単電池が減圧密封された形態とすることもできる。
 本発明の第2の態様は、正極層、負極層、並びに、正極層及び負極層の間に配設された電解質層を備えた積層体と、積層体の積層方向に直交する方向の断面視において積層体の外周に配設された、通気孔を有する絶縁部と、積層体及び絶縁部を挟持する一対の集電体と、を備える単電池を作製する工程と、該単電池を外装材内に減圧密封する工程と、絶縁部の通気孔を潰す工程と、を備えていることを特徴とする、固体電池の製造方法である。
 ここに、「通気孔を潰す」とは、通気孔の通気性を失わせることを意味する。
 本発明によれば、外装材内に減圧密封された固体電池であって、外装材内を減圧する際に外装材内の気体を抜き切ることが可能な固体電池、及び該固体電池の製造方法を提供することができる。
一つの実施形態にかかる本発明の固体電池10を概略的に示す断面図である。 図2(A)乃至図2(E)は、固体電池10の製造工程を説明する図である。 図3(A)は、図2(A)のIIIA-IIIA矢視図である。図3(B)は、図2(A)のIIIB-IIIB矢視図である。 他の実施形態にかかる本発明の固体電池20を概略的に示す断面図である。
 本発明の上記した作用及び利得は、次に説明する発明を実施するための形態から明らかにされる。以下、本発明を図面に示す実施形態に基づき説明する。ただし、本発明はこれら実施形態に限定されるものではない。なお、図面は、図示と理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を実物のそれから変更し、誇張している場合がある。また、各図面において同様の構成のものには同じ符号を付している。さらに、見易さのために簡略化して示したり、繰り返しとなる符号を一部省略したり、詳細には説明しない構成部材の図示を省略していたりする場合がある。
 以下の本発明の説明では、本発明の固体電池が固体電解質層を有するリチウムイオン二次電池である形態について主に説明する。
 図1は一つの実施形態にかかる本発明の固体電池10を概略的に示す断面図である。図1の紙面上下方向が、積層方向である。
 図1に示すように、固体電池10は、正極層1、負極層2、並びに、正極層1及び負極層2の間に配設された電解質層3を備えた積層体4と、積層体4の積層方向に直交する方向の断面視において積層体4の外周に配設された絶縁部6と、積層体4及び絶縁部6を挟持する一対の集電体5、5と、を備える単電池8を備えている。また、単電池8は、外装材7内に減圧密封されている。以下の固体電池10の説明において、正極層1に接触している集電体5を正極集電体5aといい、負極層2に接触している集電体5を負極集電体5bということがある。また、固体電池10では、絶縁部6が第1絶縁層6a及び第2絶縁層6bから構成されており、正極集電体5a側の絶縁部6の一部を第1絶縁層6aといい、負極集電体5b側の絶縁部6の一部を第2絶縁層6bということがある。なお、固体電池10は、正極集電体5aに接続された正極端子8a(図3(A)参照)、及び負極集電体5bに接続された負極端子8b(図3(B)参照)も備えている。
 (正極集電体5a、負極集電体5b)
  固体電池10において、正極集電体5aや負極集電体5bは、リチウムイオン二次電池の正極集電体や負極集電体として使用可能な公知の導電性材料によって構成することができる。そのような導電性材料としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。また、正極集電体5a及び負極集電体5bの形態は、例えば、金属箔や金属メッシュ等とすることができる。
 (絶縁部6)
  絶縁部6は、第1絶縁層6a及び第2絶縁層6bから構成されている。また、第1絶縁層6a及び第2絶縁層6bは、潰された通気孔を備えている。「潰された通気孔」とは、固体電池10を製造する前には通気性を有する孔であり、後に説明するように固体電池10の製造過程において潰されることにより、通気性を失った孔を意味する。なお、「通気性」とは、後に説明するように絶縁部6で区切られた一方の空間から他方の空間へと気体を通すことができる性質を意味する。通常、このような通気孔を有していた部材は、加圧や加熱等して該通気孔を潰したとしても、該通気孔が存在していた痕跡を見つけることが可能である。第1絶縁層6a及び第2絶縁層6bに用いられる部材が備える通気孔は、後に説明する固体電池10の製造過程で外装材7内を減圧する際に外装材7内(絶縁部6で囲まれた空間)の気体を通すことができ、加圧及び/又は加熱することによって潰せる程度の大きさであればよい。このような通気孔の形態としては、複数の気泡が一繋がりになることによって構成される孔や、直線状の貫通孔等がある。このような第1絶縁層6a及び第2絶縁層6bは、通気性を有するとともに、加圧及び/又は加熱する等して該通気性を失わせることが可能であり、固体電池10の使用時の環境に耐え得る公知の絶縁性材料によって構成することができる。そのような絶縁性材料としては、例えば、連続気泡を有するポリウレタンスポンジ、ポリアミドイミド樹脂、エポキシ樹脂、フッ素樹脂等を挙げることができる。
 (正極層1)
  正極層1に含有させる正極活物質としては、リチウムイオン二次電池の正極層に含有させることが可能な公知の活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)等を例示することができる。また、正極層1に含有させる電解質としては、電池の正極層に含有させることが可能な公知の電解質を適宜用いることができる。そのような電解質としては、LiPO等の酸化物系固体電解質、LiPSや、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物系固体電解質(例えば、質量比で、LiS:P=75:25となるようにLiS及びPを混合して作製した硫化物固体電解質)等の無機固体電解質のほか、ポリエチレンオキサイド等の有機固体電解質を例示することができる。このほか、正極層1には、正極活物質や電解質を結着させるバインダーや導電性を向上させる導電材が含有されていてもよい。正極層1に含有させることが可能なバインダーとしては、ブチレンゴム等を例示することができ、正極層1に含有させることが可能な導電材としては、カーボンブラック等を例示することができる。また、正極層1を作製する際に用いる溶媒としては、リチウムイオン二次電池の正極層作製時に用いるスラリーを調整する際に使用可能な公知の溶媒を適宜用いることができる。そのような溶媒としては、ヘプタン等を例示することができる。
 (負極層2)
  負極層2に含有させる負極活物質としては、リチウムイオン二次電池の負極層に含有させることが可能な公知の活物質を適宜用いることができる。そのような活物質としては、グラファイト等を例示することができる。また、負極層5に含有させる電解質としては、リチウムイオン二次電池の負極層に含有させることが可能な公知の電解質を適宜用いることができる。そのような電解質としては、正極層1に含有させることが可能な上記無機固体電解質や有機固体電解質等を例示することができる。このほか、負極層2には、負極活物質や電解質を結着させるバインダーや導電性を向上させる導電材が含有されていてもよい。負極層2に含有させることが可能なバインダーや導電材としては、正極層1に含有させることが可能な上記バインダーや導電材等を例示することができる。また、負極層3を作製する際に用いる溶媒としては、正極層1を作製する際に使用可能な上記溶媒等を例示することができる。
 (固体電解質層3)
  固体電解質層3に含有させる固体電解質としては、正極層1に含有させることが可能な上記無機固体電解質や有機固体電解質等を例示することができる。また、固体電解質層3を作製する際に用いる溶媒としては、正極層1を作製する際に使用可能な上記溶媒等を例示することができる。
 (外装材7)
  外装材7は、リチウムイオン二次電池の使用時の環境に耐えることができ、気体や液体を透過させない性質を有し、且つ、密封することができるものを、特に限定されることなく用いることができる。このような外装材7を構成するものとしては、アルミニウム箔等に代表される公知の金属箔や、ポリエチレン、ポリフッ化ビニルやポリ塩化ビニリデン等に代表される樹脂からなるフィルムのほか、これらのフィルムの表面にアルミニウム等の金属を蒸着させた金属蒸着フィルム等を例示することができる。なお、図1には外装材7が一つの袋状の部材で構成される形態を例示しているが、外装材7は2枚のフィルムで単電池8を挟んで包むような形態であってもよく、さらに複数の部材で構成されていてもよい。
 (正極端子8a、負極端子8b)
  正極端子8a及び負極端子8bは、固体電池10の使用時の環境に耐え得る良好な電気伝導性を有する材料によって構成することができ、固体電池10の使用時に付与される力にも対応可能な強度及び柔軟性を有する材料によって構成することが好ましい。例えば、図3に示したように、正極集電体5aを一部が突出するように形成し、該突出部分を正極端子8aとすることができ、負極集電体5bを一部が突出するように形成し、該突出部分を負極端子8bとすることができる。
 このような固体電池10の製造方法はとくに限定されないが、例えば以下の工程を経て製造することができる。
 図2(A)乃至図2(E)は固体電池10の製造工程を説明する図である。図3(A)は、図2(A)のIIIA-IIIA矢視図であり、図3(B)は、図2(A)のIIIB-IIIB矢視図である。図2(A)乃至図2(E)の紙面上下方向、並びに、図3A及び図3Bの紙面奥/手前方向が、積層方向である。
 図2(A)及び図3(A)に示すように、第1絶縁層6aは、例えば熱圧着等の公知の方法によって、正極端子8aが接続された正極集電体5aの外縁に形成する。第1絶縁層6aを形成した後、第1絶縁層6aの表面にマスキング材を配置して、第1絶縁層6aによって囲まれた正極集電体5aの表面に正極層1を形成する。正極層1は、例えば、少なくとも正極活物質及び固体電解質を溶媒に分散して作製した正極スラリーを、第1絶縁層6aによって囲まれた正極集電体5aの表面全体にドクターブレード法等の公知の方法で塗布し、溶媒を揮発させる過程を経ることによって形成することができる。このようにして、図2(A)及び図3(A)に示すように、正極層1、正極集電体5a、及び第1絶縁層6aを備えた第1積層体4aを作製することができる。
 一方、第2絶縁層6bは、第1絶縁層6aと同様の公知の方法によって、図2(A)及び図3(B)に示すように、負極端子8bが接続された負極集電体5bの外縁に形成する。第2絶縁層6bを形成した後、第2絶縁層6bの表面にマスキング材を配置して、第2絶縁層6bによって囲まれた負極集電体5bの表面に負極層2を形成する。負極層2は、例えば、少なくとも負極活物質及び固体電解質を溶媒に分散して作製した負極スラリーを、第2絶縁層6bによって囲まれた負極集電体5bの表面全体にドクターブレード法等の公知の方法で塗布し、溶媒を揮発させる過程を経ることによって形成することができる。
 また、上記のようにして負極層2及び第2絶縁層6bを形成したら、例えば、第2絶縁層6bの表面にマスキング材を配置したまま、少なくとも固体電解質を溶媒に分散して作製した電解質スラリーを、負極層2の表面へドクターブレード法等の公知の方法で塗布し、溶媒を揮発させる過程を経ることにより、負極層2上に固体電解質層3を形成することができる。このようにして、図2(A)及び図3(B)に示すように、負極層2、負極集電体5b、及び第2絶縁層6bを備えた第2積層体4bを作製することができる。
 次に、上記のようにして作製した第1積層体4a及び第2積層体4bのマスキング材を除去して、図2(A)に示すように正極層1と固体電解質層3とが面するように、第1積層体4a及び第2積層体4bを積層する。
 その後、図2(B)に示すように、第1積層体4a及び第2積層体4bを、真空引きするための排気口7aを有する外装材7内に収容する。このとき、正極端子8a及び負極端子8bの少なくとも一部を外装材7内に収容しないようにする。そして、外装材7内を真空引き(減圧)する。この真空引きの圧力は特に限定されず、例えば、0.1MPa程度とすることができる。
 上記のように外装材7内を減圧すると、第1積層体4aと第2積層体4bとが外装材7によって圧力を加えられる。このとき、第1積層体4a及び第2積層体4bの積層方向から見た外側(外周側。図2(B)の左右方向の端部。)の方に、内側(中心側。図2(B)の左右方向の中心部。)よりも強い圧縮力がかかりやすくなる。そのため、正極層1及び固体電解質層3よりも、第1絶縁層6a及び第2絶縁層6bの方が外装材7によって押さえつけられ易くなる。その結果、図2(C)に示すように、第1絶縁層6a、第2絶縁層6b、正極層1、及び固体電解質層3で画定される空間Sが形成される。
 このとき、従来の固体電池のように第1絶縁層6a及び第2絶縁層6bが通気孔を有していなければ、空間S内の気体を抜き切ることができなくなる。そのため、従来の固体電池では、発熱時に外装材内の気体が膨張したり、外装材内の気体と電池の構成部材とが反応したりする等の問題を生じる虞があった。また、空間S内の気体が残ると、固体電解質層と正極層又は負極層との間で界面が十分に形成されないことによって電池性能が低下する虞があった。一方、本発明の固体電池では、第1絶縁層6a及び第2絶縁層6bが通気孔を有していることによって、図2(D)に示したように、空間S内の気体を抜き切ることができる。
 外装材7内を減圧した後は、図2(D)に示したように、外装材7の排気口7aを例えば熱溶着することによって密封することができる。その後、適切な加圧部材20、20を用いて積層方向に加圧することによって、図2(E)に示したように、固体電池10を製造することができる。この加圧工程において、第1絶縁層6a及び第2絶縁層6bの通気孔が潰される。この加圧工程で加える圧力は、製造する固体電池の形態等に応じて適宜決定することができる。当該圧力は、例えば、1MPa以上500MPa以下とすることができる。なお、第1絶縁層6a及び第2絶縁層6bの通気孔を潰す方法は加圧に限定されず、加熱又は加熱しながら加圧することによって第1絶縁層6a及び第2絶縁層6bの通気孔を潰してもよい。
 このように、本発明の固体電池によれば、通気孔を有する絶縁部材で絶縁部を構成することによって、上述したように製造過程において外装材内の気体を抜き切ることが可能である。そのため、本発明の固体電池は、発熱時等に外装材内の気体が膨張することや、外装材内の気体と電池を構成する部材とが反応することを防止できる。また、固体電解質層と正極層又は負極層とを密着させ、電池性能を向上させることができる。また、上述したように製造過程において絶縁部の通気孔を潰すことによって、本発明の固体電池は集電体同士を絶縁することができる。
 本発明に関する上記説明では、製造過程において、正極集電体5a上に形成された第1絶縁層6aと、負極集電体5b上に形成された第2絶縁層6bとによって絶縁部6が構成される形態を例示したが、本発明の固体電池は当該形態に限定されない。例えば、絶縁部は1の部材で構成されていてもよく、この場合は、製造過程において正極集電体又は負極集電体の一方にのみ絶縁部を形成する形態としてもよい。
 また、本発明に関する上記説明では、製造過程において、正極層1より先に第1絶縁層6aを形成し、負極層2より先に第2絶縁層6bを形成する形態を例示したが、本発明の固体電池は当該形態に限定されない。例えば、集電体上に正極層を形成した後にその外周に絶縁層を形成してもよく、集電体上に負極層を形成した後にその外周に絶縁層を形成してもよく、集電体上に正極層及び固体電解質層を形成した後にその外周に絶縁層を形成してもよく、集電体上に負極層及び固体電解質層を形成した後にその外周に絶縁層を形成してもよい。
 また、本発明に関する上記説明では、外装材7内に1つの単電池8が収容されている形態を例示したが、本発明は当該形態に限定されない。本発明では、1の外装材内に2以上の単電池が収容されていても良い。図4は、他の実施形態にかかる本発明の固体電池20を概略的に示す断面図である。例えば、図4に示したように、集電体5の一方の面に正極層1が形成され、該集電体5の他方の面に負極層2が形成された双極型電極を複数用意し、電解質層3を挟んでそれらを配置することによって、外装材17内に複数の単電池が収容された固体電池20とすることもできる。固体電池20の製造過程において、絶縁部6の形成方法や外装材17内に減圧密封する方法等は、上記した固体電池10と同様とすることができる。
 また、本発明に関する上記説明では、略直方体形状の単電池8を例示したが、本発明で用いられる単電池は当該形状に限定されない。単電池は円柱形状や六角柱形状等、他の形状とすることも可能である。
 また、本発明に関する上記説明では、リチウムイオン二次電池である単電池8が備えられている形態を例示したが、本発明を適用可能な電池は当該形態に限定されない。本発明における単電池は、正極層と負極層との間を、リチウムイオン以外のイオンが移動する形態とすることも可能である。そのようなイオンとしては、ナトリウムイオンやカリウムイオン等を例示することができる。リチウムイオン以外のイオンが移動する形態とする場合、正極活物質、固体電解質、及び、負極活物質は、移動するイオンに応じて適宜選択すれば良い。また、本発明における単電池は、一次電池とすることも可能である。
 本発明の固体電池は、携帯機器、電気自動車、ハイブリッド車等の電源として用いることができる。
 1 正極層
 2 負極層
 3 固体電解質層
 4a 第1積層体
 4b 第2積層体
 4 積層体
 5 集電体
 6 絶縁部
 6a 第1絶縁層
 6b 第2絶縁層
 7 外装材
 8 素電池
 10 固体電池
 17 外装材
 20 固体電池

Claims (4)

  1.  正極層、負極層、並びに、前記正極層及び前記負極層の間に配設された電解質層を備えた積層体と、
     前記積層体の積層方向に直交する方向の断面視において前記積層体の外周に配設された絶縁部と、
     前記積層体及び前記絶縁部を挟持する一対の集電体と、
    を備える単電池を備えており、
     前記単電池が外装材内に減圧密封されており、
     前記絶縁部が通気孔を備えていることを特徴とする、固体電池。
  2.  前記通気孔が潰されていることを特徴とする、請求項1に記載の固体電池。
  3.  前記外装材内に複数の前記単電池が減圧密封されていることを特徴とする、請求項1又は2に記載の固体電池。
  4.  正極層、負極層、並びに、前記正極層及び前記負極層の間に配設された電解質層を備えた積層体と、前記積層体の積層方向に直交する方向の断面視において前記積層体の外周に配設された、通気孔を有する絶縁部と、前記積層体及び前記絶縁部を挟持する一対の集電体と、を備える単電池を作製する工程と、
     前記単電池を外装材内に減圧密封する工程と、
     前記絶縁部の前記通気孔を潰す工程と、
    を備えていることを特徴とする、固体電池の製造方法。
PCT/JP2011/056427 2011-03-17 2011-03-17 固体電池、及び固体電池の製造方法 WO2012124108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180069030.2A CN103443994B (zh) 2011-03-17 2011-03-17 固体电池和固体电池的制造方法
PCT/JP2011/056427 WO2012124108A1 (ja) 2011-03-17 2011-03-17 固体電池、及び固体電池の製造方法
JP2013504485A JP5652541B2 (ja) 2011-03-17 2011-03-17 固体電池、及び固体電池の製造方法
US14/003,017 US9818996B2 (en) 2011-03-17 2011-03-17 Solid battery and method for manufacturing solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056427 WO2012124108A1 (ja) 2011-03-17 2011-03-17 固体電池、及び固体電池の製造方法

Publications (1)

Publication Number Publication Date
WO2012124108A1 true WO2012124108A1 (ja) 2012-09-20

Family

ID=46830236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056427 WO2012124108A1 (ja) 2011-03-17 2011-03-17 固体電池、及び固体電池の製造方法

Country Status (4)

Country Link
US (1) US9818996B2 (ja)
JP (1) JP5652541B2 (ja)
CN (1) CN103443994B (ja)
WO (1) WO2012124108A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010786A (ja) * 2015-06-23 2017-01-12 日立造船株式会社 全固体二次電池およびその製造方法
JP2017117672A (ja) * 2015-12-24 2017-06-29 アルプス電気株式会社 全固体蓄電デバイスおよびその製造方法
WO2017187494A1 (ja) * 2016-04-26 2017-11-02 日立造船株式会社 全固体二次電池
JP2021525444A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021525443A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh セル縁部封止体を有するバイポーラセルを含むバッテリ
JP2021525442A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ
JP2021526295A (ja) * 2018-05-30 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170263981A1 (en) * 2016-03-11 2017-09-14 Hitachi Metals, Ltd. Bipolar laminated all-solid-state lithium-ion rechargeable battery and method for manufacturing same
KR102508381B1 (ko) * 2016-12-16 2023-03-08 히다치 조센 가부시키가이샤 전고체 2차전지 및 그 제조방법
US11362371B2 (en) * 2017-02-14 2022-06-14 Volkswagen Ag Method for manufacturing electric vehicle battery cells with polymer frame support
US11362338B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Electric vehicle battery cell with solid state electrolyte
US11870028B2 (en) 2017-02-14 2024-01-09 Volkswagen Ag Electric vehicle battery cell with internal series connection stacking
CN108933226B (zh) * 2017-05-23 2020-06-16 辉能科技股份有限公司 可挠曲式电池结构
KR102440680B1 (ko) * 2017-05-24 2022-09-05 현대자동차주식회사 쇼트 방지형 전고체 전지의 제조 방법
KR102518686B1 (ko) * 2017-10-31 2023-04-05 현대자동차주식회사 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지
CN108400378A (zh) * 2018-03-15 2018-08-14 清陶(昆山)能源发展有限公司 一种柔性的全固态锂离子电池及其制备方法
DE112019001560T5 (de) * 2018-03-28 2021-01-21 Honda Motor Co., Ltd. Feststoff-Batteriemodul
JP7262018B2 (ja) * 2018-05-23 2023-04-21 パナソニックIpマネジメント株式会社 電池および積層電池
CN112154561A (zh) * 2018-05-30 2020-12-29 罗伯特·博世有限公司 包括具有由支撑框架支撑的边缘绝缘装置的双极电池单元的电池
JP7178339B2 (ja) * 2019-12-17 2022-11-25 本田技研工業株式会社 固体電池および固体電池の製造方法
CN112615043A (zh) * 2020-08-26 2021-04-06 清陶(昆山)能源发展有限公司 一种全固态锂离子电池
JP2022153742A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 電池セル及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133220A (ja) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp リチウムイオン二次電池
JP2005149891A (ja) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd バイポーラ電池、及びそれを用いた組電池
JP2005251465A (ja) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd バイポーラ電池
JP2010146899A (ja) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd リチウムイオン二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591540A (en) 1995-06-26 1997-01-07 Motorola, Inc. Packaging for an electrochemical device and device using same
CN1189246A (zh) * 1995-06-26 1998-07-29 摩托罗拉公司 电化学装置的封装及使用它的设备
JP5456954B2 (ja) 2006-11-30 2014-04-02 日産自動車株式会社 双極型二次電池のモジュール構造
JP5441143B2 (ja) 2008-02-22 2014-03-12 Necエナジーデバイス株式会社 モバイル機器用リチウム二次電池
US8658296B2 (en) * 2010-02-25 2014-02-25 Samsung Sdi Co., Ltd. Rechargeable battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133220A (ja) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp リチウムイオン二次電池
JP2005149891A (ja) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd バイポーラ電池、及びそれを用いた組電池
JP2005251465A (ja) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd バイポーラ電池
JP2010146899A (ja) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd リチウムイオン二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010786A (ja) * 2015-06-23 2017-01-12 日立造船株式会社 全固体二次電池およびその製造方法
US10651506B2 (en) 2015-06-23 2020-05-12 Hitachi Zosen Corporation All-solid-state secondary battery and method of producing the same
JP2017117672A (ja) * 2015-12-24 2017-06-29 アルプス電気株式会社 全固体蓄電デバイスおよびその製造方法
WO2017187494A1 (ja) * 2016-04-26 2017-11-02 日立造船株式会社 全固体二次電池
JP2021525444A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP2021525443A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh セル縁部封止体を有するバイポーラセルを含むバッテリ
JP2021525442A (ja) * 2018-05-30 2021-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ
JP2021526295A (ja) * 2018-05-30 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ
JP6997346B2 (ja) 2018-05-30 2022-01-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 縁部絶縁デバイスを有するバイポーラセルを含むバッテリ
JP7105924B2 (ja) 2018-05-30 2022-07-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ
JP7150883B2 (ja) 2018-05-30 2022-10-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング セル縁部封止体を有するバイポーラセルを含むバッテリ
JP7280287B2 (ja) 2018-05-30 2023-05-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ

Also Published As

Publication number Publication date
US20130344357A1 (en) 2013-12-26
JP5652541B2 (ja) 2015-01-14
CN103443994B (zh) 2015-09-30
CN103443994A (zh) 2013-12-11
JPWO2012124108A1 (ja) 2014-07-17
US9818996B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
JP5652541B2 (ja) 固体電池、及び固体電池の製造方法
JP5610057B2 (ja) 固体電池
US9099694B2 (en) Method of manufacturing electrode body
JP5720779B2 (ja) バイポーラ全固体電池
JP2018133175A (ja) ラミネート全固体電池の製造方法
KR101517062B1 (ko) 이차전지의 제조방법
JP2007188746A (ja) バイポーラ電池、組電池及びそれらの電池を搭載した車両
JP2013008550A (ja) 二次電池およびその製造方法
JP2007194090A (ja) 双極型電池、電池モジュール、および組電池
JP2013093291A (ja) 電池
CN112424975A (zh) 固体电池用正极、固体电池用正极的制造方法、及固体电池
JP2006202680A (ja) ポリマー電池
JP2013093216A (ja) 電池
JP2008310987A (ja) 電池
WO2012160661A1 (ja) 電池及びその製造方法
JP7209660B2 (ja) 電池の製造方法および電池
JP2012221580A (ja) 固体電池
JP5181422B2 (ja) 双極型二次電池
JP2012142099A (ja) 二次電池およびその製造方法
JP2011119093A (ja) 固体電池モジュールの製造方法、及び当該製造方法により得られる固体電池モジュール
JP5141316B2 (ja) 固体型電池
JP2018107125A (ja) 電池セルのための電極スタックを製造する方法、及び、電池セル
WO2013008816A1 (ja) 電池
US10403920B2 (en) Fuel battery cell
JP2013101860A (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504485

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14003017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860804

Country of ref document: EP

Kind code of ref document: A1