WO2022270042A1 - 電池の製造方法 - Google Patents

電池の製造方法 Download PDF

Info

Publication number
WO2022270042A1
WO2022270042A1 PCT/JP2022/011262 JP2022011262W WO2022270042A1 WO 2022270042 A1 WO2022270042 A1 WO 2022270042A1 JP 2022011262 W JP2022011262 W JP 2022011262W WO 2022270042 A1 WO2022270042 A1 WO 2022270042A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
battery
laminate
electrode layer
negative electrode
Prior art date
Application number
PCT/JP2022/011262
Other languages
English (en)
French (fr)
Inventor
浩一 平野
一裕 森岡
覚 河瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP22827963.4A priority Critical patent/EP4362159A1/en
Priority to CN202280041850.9A priority patent/CN117480662A/zh
Priority to JP2023529551A priority patent/JPWO2022270042A1/ja
Publication of WO2022270042A1 publication Critical patent/WO2022270042A1/ja
Priority to US18/528,701 priority patent/US20240100730A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D11/00Combinations of several similar cutting apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/086Means for treating work or cutting member to facilitate cutting by vibrating, e.g. ultrasonically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a method for manufacturing a battery.
  • Patent Document 1 a unit battery is laminated by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. is disclosed.
  • Patent Literature 2 discloses a battery manufacturing method in which the voltage is measured after the end of a battery cell is cut, and the end of the battery cell is cut again when the voltage gradually decreases.
  • Patent Document 2 does not disclose a cutting method that can suppress the occurrence of burrs and sagging on the cut surface.
  • the present disclosure aims to solve the above problems, and aims to provide a method for manufacturing a battery that can achieve both high capacity density and high reliability of the battery.
  • a method for manufacturing a battery according to an aspect of the present disclosure includes a laminate including at least one battery cell having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer.
  • the surface roughness of one cut surface is Rz1, Rz1 ⁇ W ⁇ 5Rz1 is satisfied.
  • both high capacity density and high reliability of the battery can be achieved.
  • FIG. 1A is a cross-sectional view showing a cross-sectional configuration of a battery according to Embodiment 1.
  • FIG. 1B is a top view of the battery according to Embodiment 1.
  • FIG. 2A is a cross-sectional view showing a cross-sectional configuration of a laminate according to Embodiment 1.
  • FIG. 2B is a top view of the laminate according to Embodiment 1.
  • FIG. 3 is a cross-sectional view for explaining the method for manufacturing the battery according to Embodiment 1.
  • FIG. FIG. 4 is a top view for explaining another example of the second direction in the second cutting step.
  • FIG. 5 is a cross-sectional view showing a cross-sectional configuration of a laminate according to Embodiment 2.
  • FIG. FIG. 6 is a cross-sectional view showing a cross-sectional configuration of another laminate according to Embodiment 2.
  • FIG. FIG. 7 is a cross-sectional view for explaining a method for manufacturing a battery according to Embod
  • a method for manufacturing a battery according to an aspect of the present disclosure includes a laminate including at least one battery cell having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer.
  • the surface roughness of one cut surface is Rz1, Rz1 ⁇ W ⁇ 5Rz1 is satisfied.
  • the method for manufacturing a battery according to this aspect can achieve both high capacity density and high reliability of the battery.
  • the W may be three times or less the thickness of the laminate.
  • the flatness of the second cut surface can be improved, the occurrence of burrs and sagging can be suppressed, and the quality of the second cut surface can be improved.
  • first cutting step and the second cutting step may be performed continuously as a series of steps.
  • the laminate can be cut continuously without intervening other processes, so productivity can be improved.
  • first direction in which cutting of the laminate proceeds at the first cutting position and a first direction in which cutting of the laminate proceeds at the second cutting position
  • the two directions may be different.
  • the second direction may be a direction perpendicular to the first direction.
  • the laminate can be cut by changing the cutting direction between the first cutting step and the second cutting step, so that the laminate can be cut by adjusting the direction according to the quality of the cut surface, ease of cutting, and the like.
  • the second direction may be a direction perpendicular to the stacking direction of the stack.
  • the burrs or the like are formed so as to extend perpendicularly to the stacking direction of the laminate. Therefore, the occurrence of short circuits is suppressed, and the reliability of the manufactured battery can be improved.
  • the at least one battery cell may be a plurality of battery cells, and the plurality of battery cells may be stacked.
  • the laminate may be cut by shearing.
  • the laminate can be cut simply by shearing the laminate with a knife, and deterioration of the battery cells is less likely to occur, so the productivity and effective volume of the battery can be improved.
  • the laminate may be cut with an ultrasonic cutter.
  • the surface roughness of the second cut surface may be equal to or less than the thickness of the solid electrolyte layer. Further, for example, the second cut surface may be flat.
  • the surface roughness of the second cut surface is equal to or less than the thickness of the solid electrolyte layer, even if convex portions are formed on one of the positive electrode layer and the negative electrode layer on the second cut surface, deformation or the like may occur. Since the convex portion does not reach the other side, it is possible to effectively suppress the occurrence of a short circuit.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • the x-axis, y-axis and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the x-axis and the y-axis respectively coincide with the directions parallel to the first side of the rectangle and the second side orthogonal to the first side.
  • the z-axis coincides with the lamination direction of each layer of the laminate and battery.
  • the "stacking direction” corresponds to the direction normal to the main surfaces of the current collector and the active material layer.
  • plane view means when viewed from a direction perpendicular to the main surface of the battery or laminate. It should be noted that when “a plane view of a certain plane” is described, such as “a plan view of a cut surface”, it means that the “certain plane” is viewed from the front.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the stacking structure. It is used as a term defined by a relative positional relationship. Also, the terms “above” and “below” are used only when two components are spaced apart from each other and there is another component between them, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other. In the following description, the negative side of the z-axis is called “lower” or “lower”, and the positive side of the z-axis is called “upper” or “upper”.
  • FIG. 1A is a cross-sectional view showing the cross-sectional configuration of battery 1 according to the present embodiment.
  • FIG. 1B is a top view of battery 1 according to the present embodiment. Note that FIG. 1A shows a cross section along line Ia-Ia in FIG. 1B.
  • battery 1 As shown in FIGS. 1A and 1B, battery 1 according to the present embodiment has positive electrode layer 11, negative electrode layer 12, and solid electrolyte layer 13 positioned between positive electrode layer 11 and negative electrode layer 12.
  • a battery cell 10 a positive electrode current collector 14 , and a negative electrode current collector 15 are provided.
  • the battery 1 is, for example, an all-solid battery.
  • the plan view shape of the battery 1 is, for example, a rectangle.
  • the shape of the battery 1 is, for example, a flat rectangular parallelepiped.
  • flat means that the thickness (that is, the length in the z-axis direction) is shorter than each side (that is, each length in the x-axis direction and the y-axis direction) or the maximum width of the main surface.
  • the plan view shape of the battery 1 may be a square, a parallelogram, a rhombus, or any other quadrangle, or a hexagon, octagon, or any other polygon.
  • the shape of the battery 1 is, for example, a rectangular parallelepiped shape, but may be another shape such as a cubic shape, a truncated square pyramid shape, or a polygonal columnar shape.
  • the thickness of each layer is exaggerated in order to make the layer structure of the battery 1 easier to understand.
  • positive electrode current collector 14 positive electrode layer 11, solid electrolyte layer 13, negative electrode layer 12, and negative electrode current collector 15 have the same shape and size, and their contours match. ing.
  • the battery 1 has parallel principal surfaces 16 and 17 facing each other with the battery cell 10 interposed therebetween, and four side surfaces connecting the principal surfaces 16 and 17 .
  • Main surface 16 is the top surface of battery 1 .
  • Main surface 17 is the bottom surface of battery 1 .
  • Each of the four side surfaces extends vertically from each side of the main surface 17 toward the main surface 16, for example.
  • the four sides of the battery 1 are, for example, two pairs of sides parallel to each other.
  • One pair of side surfaces of the two pairs of side surfaces are the second cut surfaces 120 and 120a formed in the second cutting step, which will be described later.
  • At least one of the side surfaces of the battery 1 may be the second cut surface.
  • all side surfaces of the battery 1 may be the second cut surface.
  • the battery cell 10 is positioned between the positive electrode current collector 14 and the negative electrode current collector 15 .
  • the battery 1 includes one battery cell 10, the number of battery cells 10 is not limited to one, and may be two or more.
  • the battery according to the present embodiment may be a stacked battery in which a plurality of battery cells 10 are stacked with at least one of positive electrode current collector 14 and negative electrode current collector 15 interposed therebetween.
  • the battery 1 is manufactured by cutting the end of a laminate 1a, which will be described later.
  • the stacking configuration of the battery 1 is the same as the stacking configuration of the laminate 1a. Details of each layer of the battery 1 will be described later as an explanation of the laminate 1a.
  • a tab or lead which is an electrode taken out to the outside, may be connected to at least one of the positive electrode current collector 14 and the negative electrode current collector 15 .
  • the battery 1 may be laminated with an exterior body, or the battery 1 may be resin-sealed.
  • at least a part of the second cut surfaces 120 and 120a may be covered with an insulating member to protect the cut surfaces.
  • the insulating member a material having at least electrical insulation is used, and a material having impact resistance, heat resistance, flexibility and gas barrier properties may be used.
  • polymers such as epoxy resins, acrylic resins, methacrylic resins, aramid resins, polyimide resins, or inorganic adhesive materials can be used.
  • the manufacturing method of the battery 1 according to the present embodiment includes, for example, a laminate forming process, a first cutting process, and a second cutting process.
  • FIG. 2A is a cross-sectional view showing the cross-sectional structure of the laminate 1a according to this embodiment.
  • FIG. 2B is a top view of the laminate 1a according to this embodiment. It should be noted that FIG. 2A represents a cross section along line IIa-IIa of FIG. 2B. In addition, in FIG. 2B, the plan view shape of the battery cell 10 is indicated by broken lines.
  • laminate 1a In the layered body forming process, the layered body 1a is formed. As shown in FIGS. 2A and 2B, laminate 1a according to the present embodiment includes positive electrode layer 11, negative electrode layer 12, and solid electrolyte layer 13 positioned between positive electrode layer 11 and negative electrode layer 12. A battery cell 10 having a positive electrode current collector 14 and a negative electrode current collector 15 are provided.
  • the laminate 1a has parallel main surfaces 16a and 17a facing each other with the battery cell 10 interposed therebetween.
  • the main surface 16a is the uppermost surface of the laminate 1a.
  • the main surface 17a is the bottom surface of the laminate 1a.
  • the positive electrode layer 11 is located between the positive electrode current collector 14 and the solid electrolyte layer 13 .
  • the positive electrode layer 11 is arranged in contact with the main surface of the positive electrode current collector 14 on the negative electrode layer 12 side. Note that another layer such as a conductive bonding layer may be provided between the positive electrode layer 11 and the positive electrode current collector 14 .
  • the positive electrode layer 11 contains a positive electrode material such as a positive electrode active material.
  • a positive electrode material such as a positive electrode active material.
  • Various materials capable of extracting and inserting metal ions such as lithium ions or magnesium ions can be used as the material of the positive electrode active material.
  • the positive electrode active material in the case of a material that can desorb and insert lithium ions, examples include lithium cobaltate composite oxide (LCO), lithium nickelate composite oxide (LNO), lithium manganate composite oxide (LMO), ), lithium-manganese-nickel composite oxide (LMNO), lithium-manganese-cobalt composite oxide (LMCO), lithium-nickel-cobalt composite oxide (LNCO), lithium-nickel-manganese-cobalt composite oxide (LNMCO ), and lithium-nickel-cobalt-aluminum composite oxide (LNCAO).
  • LCO lithium cobaltate composite oxide
  • LNO lithium nickelate composite oxide
  • LMO lithium manganate composite oxide
  • the material contained in the positive electrode layer 11 may include, for example, a solid electrolyte such as an inorganic solid electrolyte.
  • a solid electrolyte such as an inorganic solid electrolyte.
  • a sulfide solid electrolyte for example, a mixture of lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) can be used.
  • a sulfide solid electrolyte such as Li 2 S—SiS 2 , Li 2 S—B 2 S 3 or Li 2 S—GeS 2 may be used.
  • a sulfide to which at least one of 3 N, LiCl, LiBr, Li 3 PO 4 and Li 4 SiO 4 is added may be used.
  • oxide solid electrolyte for example, Li7La3Zr2O12 ( LLZ ), Li1.3Al0.3Ti1.7 ( PO4 ) 3 ( LATP ) or (La,Li) TiO3 ( LLTO) and the like are used.
  • the surface of the positive electrode active material may be covered with a solid electrolyte.
  • the material contained in the positive electrode layer 11 includes at least one of a conductive material such as acetylene black, Ketjenblack (registered trademark), and carbon nanofiber, and a binding binder such as polyvinylidene fluoride. It may be
  • the positive electrode layer 11 is produced by applying a paste-like paint in which the material contained in the positive electrode layer 11 is kneaded together with a solvent onto the main surface of the positive electrode current collector 14 and drying it.
  • the positive electrode layer 11 coated onto the positive electrode current collector 14, also called a positive electrode plate may be pressed after drying.
  • the thickness of the positive electrode layer 11 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the negative electrode layer 12 is located between the negative electrode current collector 15 and the solid electrolyte layer 13 .
  • the negative electrode layer 12 is arranged in contact with the main surface of the negative electrode current collector 15 on the positive electrode layer 11 side. Moreover, the negative electrode layer 12 is arranged to face the positive electrode layer 11 . Note that another layer such as a conductive bonding layer may be provided between the negative electrode layer 12 and the negative electrode current collector 15 .
  • the negative electrode layer 12 contains, for example, a negative electrode active material as an electrode material.
  • a negative electrode active material as an electrode material.
  • Various materials capable of extracting and inserting ions such as lithium ions or magnesium ions may be used as materials for the negative electrode active material.
  • the negative electrode active material contained in the negative electrode layer 12 in the case of a material capable of withdrawing and inserting lithium ions, examples include single substances such as graphite, metallic lithium, and silicon, mixtures thereof, and lithium-titanium oxide ( LTO) can be used.
  • a solid electrolyte such as an inorganic solid electrolyte may be used.
  • the inorganic solid electrolyte for example, the inorganic solid electrolytes exemplified as the material contained in the positive electrode layer 11 can be used.
  • the material contained in the negative electrode layer 12 may include at least one of a conductive material such as acetylene black, ketjen black, and carbon nanofiber, and a binding binder such as polyvinylidene fluoride. good.
  • the negative electrode layer 12 is produced by applying a paste-like paint in which the material contained in the negative electrode layer 12 is kneaded together with a solvent onto the main surface of the negative electrode current collector 15 and drying it.
  • the negative electrode layer 12 coated onto the negative current collector 15, also called a negative electrode plate may be pressed after drying.
  • the thickness of the negative electrode layer 12 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the positive electrode layer 11 is in contact with the main surface of the positive electrode current collector 14 .
  • the positive electrode current collector 14 may include a current collector layer, which is a layer containing a conductive material and provided in a portion in contact with the positive electrode layer 11 .
  • the negative electrode layer 12 is in contact with the main surface of the negative electrode current collector 15 .
  • the negative electrode current collector 15 may include a current collector layer, which is a layer containing a conductive material and provided in a portion in contact with the negative electrode layer 12 .
  • the positive electrode current collector 14 and the negative electrode current collector 15 are conductive foil-shaped, plate-shaped, or mesh-shaped members, respectively.
  • the positive electrode current collector 14 and the negative electrode current collector 15 may each be, for example, a conductive thin film.
  • Examples of materials that constitute the positive electrode current collector 14 and the negative electrode current collector 15 include metals such as stainless steel (SUS), aluminum (Al), copper (Cu), and nickel (Ni).
  • the positive electrode current collector 14 and the negative electrode current collector 15 may be formed using different materials.
  • each of the positive electrode current collector 14 and the negative electrode current collector 15 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, but is not limited to this.
  • the solid electrolyte layer 13 is arranged between the positive electrode layer 11 and the negative electrode layer 12 . Solid electrolyte layer 13 is in contact with each of positive electrode layer 11 and negative electrode layer 12 .
  • the solid electrolyte layer 13 is a layer containing an electrolyte material. As the electrolyte material, generally known battery electrolytes can be used.
  • the thickness of the solid electrolyte layer 13 may be 5 ⁇ m or more and 300 ⁇ m or less, or may be 5 ⁇ m or more and 100 ⁇ m or less.
  • the solid electrolyte layer 13 contains a solid electrolyte.
  • a solid electrolyte such as an inorganic solid electrolyte can be used.
  • the inorganic solid electrolyte the inorganic solid electrolytes exemplified as the material contained in the positive electrode layer 11 can be used.
  • the solid electrolyte layer 13 may contain a binding binder such as polyvinylidene fluoride.
  • the solid electrolyte layer 13 is produced by applying a paste-like paint in which the material contained in the solid electrolyte layer 13 is kneaded together with a solvent onto the main surface of the positive electrode layer 11 and/or the negative electrode layer 12 and drying the coating.
  • the solid electrolyte layer 13 may be produced by applying the paste-like coating material on the release film and drying it.
  • the laminate 1a is manufactured by stacking the positive electrode current collector 14, the positive electrode layer 11, the solid electrolyte layer 13, the negative electrode layer 12, and the negative electrode current collector 15 in this order and pressurizing and crimping them.
  • a method of pressurization for example, flat press, roll press or isostatic press can be used.
  • heating may be performed during pressurization. The heating temperature may be set within a range in which the material of each layer does not undergo a chemical change due to heat.
  • the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 are maintained in the form of parallel plates. As a result, it is possible to suppress the occurrence of cracks or collapse due to bending.
  • the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 may be combined and smoothly curved.
  • the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 are provided on the same side surface, but the present invention is not limited to this.
  • the positions of the side surfaces of the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 may be different.
  • at least one side surface of the positive electrode layer 11 and the negative electrode layer 12 is covered with the solid electrolyte layer 13 , and the solid electrolyte layer 13 is the positive electrode current collector 14 and the negative electrode current collector 15 . may be in contact with at least one of
  • the laminate 1a for example, there is a portion where the positive electrode layer 11 is not provided on the main surface of the positive electrode current collector 14 on the battery cell 10 side.
  • the laminate 1a for example, there is a portion where the negative electrode layer 12 is not provided on the main surface of the negative electrode current collector 15 on the battery cell 10 side.
  • the solid electrolyte layer 13 may be in contact with at least one of the portion of the positive electrode current collector 14 not provided with the positive electrode layer 11 and the portion of the negative electrode current collector 15 not provided with the negative electrode layer 12 .
  • FIG. 3 is a cross-sectional view for explaining the manufacturing method of the battery 1 according to this embodiment.
  • the laminate 1a formed in the laminate forming step is cut at first cutting positions 111 and 111a indicated by broken lines in the figure, and the first Cut surfaces 110 and 110a are formed. Thereby, the laminated body 1b shown in FIG. 3(b) is formed.
  • the first cut surfaces 110 and 110a are side surfaces connecting the main surface 16b and the main surface 17b of the laminate 1b.
  • the laminate 1a is cut at the first cutting position 111 passing through the positive electrode layer 11, the negative electrode layer 12 and the solid electrolyte layer 13 of the battery cell 10.
  • the positive electrode current collector 14 and the negative electrode current collector 15 are collectively cut to form a planar first cut surface 110 .
  • the first cutting position 111 is a position passing through the two main surfaces 16a and 17a of the laminate 1a.
  • the direction in which first cut surface 110 extends is not particularly limited.
  • the first cutting plane 110 is, for example, orthogonal to the main surfaces 16a and 17a.
  • the first cutting position 111 is not particularly limited.
  • the first cutting position 111 may be a position where the end of the laminate 1a is cut, or a position where the laminate 1a is divided into a plurality of laminates.
  • the cutting method in the first cutting step for example, shearing with a blade, cutting with an end mill, grinding, laser cutting, or jet cutting can be used, but is not limited to these methods. From the standpoint of improving productivity and effective volume, the cutting method in the first cutting step may be shearing for cutting using a knife or the like.
  • first cutting step for example, when the position of the laminate 1a is used as a reference, cutting proceeds along the first direction C10, which is a constant direction, at the first cutting position 111.
  • the direction in which cutting progresses is, for example, in the case of shearing using a blade, the direction in which the blade moves relative to the laminate 1a when viewed from above with respect to the first cut surface 110 to be formed.
  • the first direction C10 is, for example, a direction orthogonal to the main surfaces 16a and 17a when the first cut surface 110 is viewed in plan, in other words, a direction parallel to the stacking direction of the stack 1a.
  • the laminate 1a can be cut along the direction connecting the main surface 16a and the main surface 17a at the shortest distance, so the productivity of the battery 1 is improved.
  • the first direction C10 is not particularly limited, and may be a direction that intersects a direction perpendicular to the main surfaces 16a and 17a.
  • the laminate 1b formed in the first cutting step is cut into the first cut surface 110 inside the first cut surfaces 110 and 110a. and 110a at distances W and Wa, respectively, to form second cutting planes 120 and 120a, indicated by dashed lines in the figure.
  • the battery 1 shown in FIG. 3(c) is formed.
  • the laminated body 1b is cut at a second cutting position 121 located inside the first cutting surface 110 by a distance W to obtain a flat surface.
  • a second cutting surface 120 having a shape is formed.
  • a distance W is the distance between the first cut surface 110 and the second cut surface 120 to be formed. Since the second cutting plane 120 is formed at the second cutting position 121 , the distance W can also be said to be the distance between the first cutting plane 110 and the second cutting position 121 .
  • the second cutting position 121 is a position that does not pass through the first cutting plane 110 .
  • the first cutting plane 110 and the second cutting plane 120 (in other words, the second cutting position 121) may be parallel. As a result, the distance between the first cutting plane 110 and the second cutting position 121 becomes constant, so that the quality of the second cutting plane is stabilized and the volume cut in the second cutting process can be reduced.
  • the positive electrode layer 11, the negative electrode layer 12, the solid electrolyte layer 13, the positive electrode current collector 14, and the negative electrode current collector, which are all the constituent elements of the laminate 1b, are separated from each other.
  • the body 15 is collectively cut to form a second cut surface 120 .
  • the second cutting position 121 is a position passing through the two main surfaces 16b and 17b of the laminate 1b.
  • the second cutting position 121 is near the first cutting plane 110 .
  • the relationship between the surface roughness Rz1 of the first cut surface 110 and the distance W satisfies Rz1 ⁇ W ⁇ 5Rz1 .
  • the laminate 1b is cut by setting the second cutting position 121 at a position inside the distance W from the top edge of the first cut surface 110, which satisfies the above relationship. If the distance W is less than or equal to the surface roughness Rz 1 of the first cut surface 110, burrs and the like present on the surface of the first cut surface 110 may not be sufficiently removed.
  • the surface roughness Rz1 of the first cut surface 110 is difficult to decrease, and the effects of the present disclosure are difficult to obtain.
  • the relationship between the surface roughness Rz1 of the first cut surface 110 and the distance W satisfies, for example, Rz1 ⁇ W ⁇ 5Rz1 at any position.
  • surface roughness such as surface roughness Rz 1 is maximum height roughness measured by a measuring method conforming to JIS B0601 2013.
  • the relationship between the surface roughness Rz1 of the first cut surface 110 and the distance W may satisfy Rz1 ⁇ W ⁇ 4Rz1 .
  • the distance W between the first cut surface 110 and the second cut position 121 may be three times or less the thickness of the laminate 1b, or may be two times or less. Thereby, the surface roughness Rz2 of the second cut surface 120 can be reduced more effectively.
  • the second cut surface 120 is orthogonal to, for example, the main surfaces 16b and 17b of the laminate 1b.
  • the positions of the end surfaces of the respective layers of the battery 1 exposed at the second cut surface 120 are aligned when viewed from the stacking direction, so that the effective volume of the battery can be increased.
  • the side surfaces of the positive electrode layer 11, the negative electrode layer 12, the solid electrolyte layer 13, the positive electrode current collector 14, and the negative electrode current collector 15 of the battery 1 are exposed and flush.
  • the side surfaces of the positive electrode layer 11, the negative electrode layer 12, the solid electrolyte layer 13, the positive electrode current collector 14, and the negative electrode current collector 15 on the second cut surface 120 The positions match.
  • the cutting method in the second cutting step for example, shearing with a knife, cutting with an end mill, grinding, laser cutting, or jet cutting can be used, but is not limited to these methods.
  • the cutting method in the second cutting step may be shearing for cutting using a knife or the like.
  • the temperature of the laminate 1b is less likely to rise during cutting, and the battery cell 10 is less likely to deteriorate during cutting.
  • the shearing may be cutting using an ultrasonic cutter that cuts by transmitting high-frequency vibration to the cutting edge.
  • the second cutting step for example, when the position of the laminate 1b is used as a reference, cutting proceeds along the second direction C20, which is a constant direction, at the second cutting position 121.
  • the direction in which cutting progresses is similar to the first direction C10. This is the direction of relative movement.
  • the second direction C20 is, for example, a direction orthogonal to the main surfaces 16b and 17b when the second cut surface 120 is viewed from above. Therefore, the second direction C20 is parallel to and the same direction as the first direction C10.
  • the laminate 1b can be cut along the direction connecting the main surface 16b and the main surface 17b at the shortest distance, so the productivity of the battery 1 is improved.
  • the second direction C20 is not particularly limited, and the first direction C10 and the second direction C20 are not limited to a parallel positional relationship.
  • FIG. 4 is a top view for explaining another example of the second direction in the second cutting step.
  • the first direction C10 and the second direction C21 are not parallel but different directions.
  • the second direction C21 is a direction perpendicular to the first direction C10 and a direction perpendicular to the lamination direction of the laminate 1b (for example, the longitudinal direction of the first cut surface 110). With such first direction C10 and second direction C21, it becomes easy to arrange the first cutting position 111 at an arbitrary position of the laminate 1a in the first cutting step.
  • the direction in which the cutting progresses in the second cutting step is perpendicular to the stacking direction of the laminate 1b, even if burrs or the like are generated by cutting, the burrs or the like are formed so as to extend perpendicularly to the stacking direction. Therefore, the occurrence of short circuits between the layers of the laminate 1b is suppressed, and the reliability of the battery 1 can be improved.
  • the 1st direction C10 and the 2nd direction C21 are different directions, it does not restrict to the above-mentioned example. Since the first direction C10 and the second direction C21 are different, the direction is adjusted according to the quality of the cut surface, the ease of cutting, etc., in the first cutting step and the second cutting step, and the laminate 1a and the The laminate 1b can be cut.
  • the surface roughness Rz2 of the second cut surface 120 may be, for example, greater than 0 and equal to or less than the thickness of the solid electrolyte layer 13 . Since the surface roughness Rz2 of the second cut surface 120 is equal to or less than the thickness of the solid electrolyte layer 13, even if a convex portion is formed on one of the positive electrode layer 11 and the negative electrode layer 12 on the second cut surface 120, Since the convex portion does not reach the other side when deformation or the like occurs, it is possible to effectively suppress the occurrence of a short circuit. Also, the surface roughness Rz2 of the second cut surface 120 may be smaller than the thickness of the solid electrolyte layer 13 .
  • the surface roughness Rz2 of the second cut surface 120 may be 30 ⁇ m or less, or may be 20 ⁇ m or less. Also, the second cut surface 120 may be flat. Thereby, the reliability of the battery 1 can be improved.
  • "flat" means substantially flat, and means that the surface roughness Rz2 is 10 ⁇ m or less, for example.
  • the first cutting step and the second cutting step may be performed continuously as a series of steps. This can improve productivity.
  • performing continuously as a series of steps means that, between the first cutting step and the second cutting step, without performing other steps such as processing or measuring the laminate 1a, the first cutting step is performed. It means performing a first cutting step and a second cutting step.
  • the laminate 1a may be fixed for cutting, and the second cutting step may be performed while maintaining the fixation after the laminate 1a is cut.
  • the first cutting step and the second cutting step may be performed by a cutting device in a continuous production line.
  • the second cutting step may be performed within one minute after the first cutting step is finished.
  • the battery 1 having the second cut surfaces 120 and 120a as shown in FIG. 3(c) is manufactured.
  • the formation of the first cut surface 110 and the second cut surface 120 is mainly described, but the same applies to the first cut surface 110a and the second cut surface 120a, so detailed description is omitted.
  • the number of the first cut surface and the number of the second cut surface are two, respectively, but the present invention is not limited to this, and the number of each should be at least one.
  • at least one side surface of the battery 1 according to the present embodiment should be the second cut surface. From the viewpoint of further improving capacity density and reliability, all side surfaces of battery 1 may be the second cut surface.
  • second cut surface 120 is formed at the first cutting step in which first cut surface 110 is formed and at second cutting position 121 close to first cut surface 110 .
  • a second cutting step is performed.
  • the ratio of the effective volume, which is the volume that contributes to power generation, in the battery 1 can be improved.
  • the relationship between the surface roughness Rz 1 of the first cut surface 110 and the distance W satisfies Rz 1 ⁇ W ⁇ 5Rz 1 , so that burrs and sagging formed in the first cutting step are eliminated.
  • Embodiment 2 Next, a method for manufacturing a battery according to Embodiment 2 will be described.
  • the second embodiment differs from the first embodiment in the number of battery cells included in the laminate. The differences will be described below, and the description of the common points will be omitted or simplified.
  • FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the laminate 2a according to this embodiment.
  • the layered body 2a is formed in the layered body forming step, and the layered body 2a is cut in the first cutting step.
  • the laminate 2 a has a plurality of battery cells 10 , positive electrode current collectors 14 and negative electrode current collectors 15 .
  • the plurality of battery cells 10 are stacked such that adjacent battery cells 10 are electrically connected via current collectors.
  • the negative electrode layer 12 is arranged on the upper and lower main surfaces of the negative electrode current collector 15 .
  • the plurality of battery cells 10 are stacked so as to be electrically connected in parallel by electrically connecting the same poles of the adjacent battery cells 10 via the current collector. Therefore, the stacking order is reversed between adjacent battery cells 10 .
  • Each battery cell 10 is sandwiched between a positive electrode current collector 14 and a negative electrode current collector 15 without interposing other battery cells 10 .
  • the negative electrode layer 12 is produced by coating both main surfaces of the negative electrode current collector 15 with a paste-like paint in which the material contained in the negative electrode layer 12 is kneaded together with a solvent and then drying.
  • a paste-like paint in which the material contained in the negative electrode layer 12 is kneaded together with a solvent and then drying.
  • the negative electrode layer 12 coated onto the negative current collector 15, also called a negative electrode plate may be pressed after drying.
  • the solid electrolyte layer 13 and the positive electrode layer 11 are manufactured by the same method as in the first embodiment. Moreover, the laminated body 2a is crimped by a method similar to that of the first embodiment.
  • the laminated body 2a may have a structure in which the positions of the negative electrode layer 12 and the positive electrode layer 11 are exchanged.
  • the number of the plurality of battery cells 10 is two, the number may be three or more.
  • the number of battery cells 10 can be increased by arranging the positive electrode layers 11 on both sides of the positive electrode current collector 14 and stacking the battery cells 10 .
  • the plurality of battery cells 10 are laminated so as to be electrically connected in series by electrically connecting different polarities of adjacent battery cells 10 via current collectors.
  • the positive electrode layer 11 is arranged on one main surface of at least one of the positive electrode collector 14 or the negative electrode collector 15, and the negative electrode layer 12 is arranged on the other main surface.
  • FIG. 6 is a cross-sectional view showing the cross-sectional structure of the laminate 3a according to this embodiment.
  • the laminate 3a may be cut in the first cutting step.
  • the laminate 3 a includes a plurality of laminates 1 a each having a battery cell 10 and a conductive layer 31 .
  • a plurality of laminates 1 a are laminated such that adjacent laminates 1 a are electrically connected via conductive layers 31 .
  • the conductive layer 31 is located between adjacent laminates 1a among the plurality of laminates 1a.
  • the positive electrode current collector 14 is arranged on one main surface of the conductive layer 31, and the negative electrode current collector 15 is arranged on the other main surface. That is, in the laminate 3a, the different polarities of adjacent battery cells 10 of the plurality of battery cells 10 are electrically connected via the positive electrode current collector 14, the negative electrode current collector 15, and the conductive layer 31. and stacked so as to be electrically connected in series. Therefore, the stacking order of the plurality of stacked bodies 1a is the same.
  • the material of the conductive layer 31 is not particularly limited, and for example, a conductive adhesive having electrical conductivity and adhesiveness is used.
  • a conductive adhesive for example, a mixture of metal particles and resin, a conductive polymer, or a low melting point metal can be used.
  • the laminate 3a may not include the conductive layer 31, and the positive electrode current collector 14 and the negative electrode current collector 15 may be directly joined between the adjacent laminates 1a.
  • the laminate 3a is formed by, for example, coating a conductive adhesive as a material for the conductive layer 31 on the positive electrode current collector 14 or the negative electrode current collector 15 of the laminate 1a formed by the above-described method, and laminating two layers. It is produced by bonding bodies 1a together via a conductive adhesive.
  • the number of the plurality of laminates 1a is two, but may be three or more. By increasing the number of laminated bodies 1a and conductive layers 31 to be joined, the number of the plurality of laminated bodies 1a in the laminated body 3a can be adjusted.
  • the plurality of battery cells 10 are electrically connected to the positive electrode current collector 14 or the negative electrode current collector 15 via the conductive layer 31 so that the same electrodes of the adjacent battery cells 10 are electrically connected to each other. , may be stacked so as to be electrically connected in parallel.
  • a laminated battery having a structure in which a plurality of battery cells 10 are laminated is manufactured. can do.
  • FIG. 7 is a cross-sectional view for explaining the manufacturing method of the battery according to this embodiment.
  • the laminate 2a is cut at first cutting positions 211 and 211a indicated by dashed lines in the figure to form first cut surfaces.
  • the cut laminate 2a is further cut at second cutting positions 221 and 221a shown by dashed lines in the drawing inside the first cutting plane to form second cutting planes.
  • all of the plurality of battery cells 10 included in the stacked body 2a are collectively cut. It is as explained in.
  • a lithium cobalt oxide powder as a positive electrode active material, a lithium sulfide-diphosphorus pentasulfide mixture as a solid electrolyte, and a xylene solvent are mixed to form a slurry, and the slurry is applied to an aluminum foil having a thickness of 12 ⁇ m as a positive electrode current collector.
  • a positive electrode plate having a positive electrode layer was produced by drying after processing.
  • the graphite powder as the negative electrode active material, the same solid electrolyte as above, and the xylene solvent are mixed to form a slurry, and the slurry is applied to a stainless steel foil having a thickness of 15 ⁇ m as the negative electrode current collector and then dried to form a negative electrode.
  • a negative electrode plate having a layer was prepared.
  • the same solid electrolyte and xylene solvent as above were mixed to form a slurry, and the slurry was applied onto the negative electrode layer and then dried to prepare a solid electrolyte layer.
  • the positive electrode plate and the negative electrode plate were laminated so as to sandwich the solid electrolyte layer on the negative electrode layer, and pressure was applied under heating conditions of 120° C. to produce a laminate.
  • the thickness of the laminate at this time was 150 ⁇ m.
  • the thickness of the solid electrolyte layer was 30 ⁇ m.
  • the produced laminate was cut with a shear to form a first cut surface.
  • the surface roughness Rz1 of the first cut surface was measured using a laser microscope (manufactured by Keyence Corporation).
  • the surface roughness Rz1 of the formed first cut surface was 84 ⁇ m.
  • the laminate having the first cut surface is cut in a direction perpendicular to the first cut surface, divided into 15 pieces, and 15 about 15 mm squares each having the divided first cut surface are evaluated.
  • a laminate for use was obtained.
  • Example 1 Next, at a second cutting position 100 ⁇ m inside from the first cutting surface, the laminate for evaluation is cut using an ultrasonic cutter to form a second cutting surface, and the battery in which the second cutting surface is formed got That is, the second cutting step was performed under the condition that the distance W between the first cut surface and the second cut surface to be formed was 100 ⁇ m. The same operation was repeated 3 times using different laminates for evaluation to prepare 3 batteries.
  • the surface roughness Rz2 of the second cut surface of the produced battery was measured using a laser microscope (manufactured by Keyence Corporation). Further, whether or not the battery was short-circuited was evaluated by measuring the potential difference between the positive electrode layer and the negative electrode layer of the manufactured battery with a tester.
  • Table 1 shows the measurement results of the surface roughness Rz2 of the second cut surface and the short-circuit evaluation results.
  • the surface roughness Rz2 of the second cut surface in Table 1 is the average value of three batteries.
  • the number of short circuits in Table 1 is the number of batteries confirmed to have short circuits among the three batteries.
  • Table 1 also shows the surface roughness Rz 1 of the first cut surface, the distance W, W/Rz 1 , and W/T where T is the thickness of the laminate for evaluation.
  • the surface roughness Rz2 of the second cut surface was 9 ⁇ m, and the number of short circuits was zero.
  • Example 2 A battery was produced in the same manner as in Example 1, except that the distance W was changed to 200 ⁇ m.
  • the surface roughness Rz2 of the second cut surface of the battery produced in the same manner as in Example 1 was measured and the short circuit was evaluated.
  • Table 1 shows the measurement results of the surface roughness Rz2 of the second cut surface and the short-circuit evaluation results. As shown in Table 1, in the battery of Example 2 , the surface roughness Rz2 of the second cut surface was 6 ⁇ m, and the number of short circuits was zero.
  • Example 3 A battery was produced in the same manner as in Example 1, except that the distance W was changed to 300 ⁇ m.
  • the surface roughness Rz2 of the second cut surface of the battery produced in the same manner as in Example 1 was measured and the short circuit was evaluated.
  • Table 1 shows the measurement results of the surface roughness Rz2 of the second cut surface and the short-circuit evaluation results. As shown in Table 1, in the battery of Example 3, the surface roughness Rz2 of the second cut surface was 10 ⁇ m, and the number of short circuits was zero.
  • Example 4 A battery was produced in the same manner as in Example 1, except that the distance W was changed to 400 ⁇ m.
  • the surface roughness Rz2 of the second cut surface of the battery produced in the same manner as in Example 1 was measured and the short circuit was evaluated.
  • Table 1 shows the measurement results of the surface roughness Rz2 of the second cut surface and the short-circuit evaluation results. As shown in Table 1, in the battery of Example 4, the surface roughness Rz2 of the second cut surface was 18 ⁇ m, and the number of short circuits was zero.
  • Example 1 A battery was produced in the same manner as in Example 1, except that the distance W was changed to 500 ⁇ m. In addition, the surface roughness Rz2 of the second cut surface of the battery produced in the same manner as in Example 1 was measured and the short circuit was evaluated. Table 1 shows the measurement results of the surface roughness Rz2 of the second cut surface and the short-circuit evaluation results. As shown in Table 1, in the battery of Comparative Example 1, the surface roughness Rz2 of the second cut surface was 55 ⁇ m, and the number of short circuits was two.
  • the batteries in Examples 1 to 4 in which the second cut surface was formed under the condition that W/Rz 1 was greater than 1 and less than 5, that is, Rz 1 ⁇ W ⁇ 5Rz 1 , were subjected to the second cut. Since the surface roughness Rz2 of the surface was small and was equal to or less than the thickness of the solid electrolyte layer and no short circuit occurred, it was found that high reliability could be achieved. Also, in this case, the distance W is three times or less the thickness T of the laminate for evaluation.
  • the surface of the second cut surface Since the roughness Rz2 is 10 ⁇ m or less and the substantially flat second cut surface is formed, it was found that particularly high reliability can be achieved. Also, in this case, the distance W is less than or equal to twice the thickness T of the laminate for evaluation.
  • a battery according to the present disclosure can be used, for example, as a battery for electronic equipment, electric appliances, electric vehicles, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層と、を有する少なくとも1つの電池セルを備える積層体を第1切断位置で切断して第1切断面を形成する第1切断工程と、前記第1切断工程で切断された前記積層体を前記第1切断面よりも内側の第2切断位置で切断して第2切断面を形成する第2切断工程と、を含み、前記第2切断工程において、前記第1切断面と形成される前記第2切断面との間の距離をWとし、前記第1切断面の表面粗さをRz1とした場合に、Rz1<W<5Rz1を満たす。

Description

電池の製造方法
 本開示は、電池の製造方法に関するものである。
 従来、集電体および活物質層が積層された電池が知られている。
 例えば、特許文献1には、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成される単位電池を積層してなる電池積層体が開示されている。
特開2020-13729号公報 特開2015-76315号公報
 電池の容量密度を高めるためには、発電に寄与する有効体積を向上させることが求められる。そのためには、電池セルを切断して、発電に寄与しない部分を除去することが有効である。しかしながら、電池セルを切断した場合、切断面に電池構成要素のバリおよび垂れ下がり(いわゆる、ダレ)が発生し、短絡が発生しやすくなるため、電池としての動作信頼性が低くなるという課題がある。例えば、特許文献2では、電池セルの端部を切断後に電圧を測定し、電圧が徐々に低下する場合には電池セルの端部を再度切断する電池の製造方法が開示されている。しかしながら、特許文献2には切断面のバリおよびダレの発生を抑制できるような切断方法に関しては開示されていない。
 本開示は上記の課題を解決するもので、電池の高容量密度と高信頼性とを両立することができる電池の製造方法を提供することを目的とする。
 本開示の一態様に係る電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層と、を有する少なくとも1つの電池セルを備える積層体を第1切断位置で切断して第1切断面を形成する第1切断工程と、前記第1切断工程で切断された前記積層体を前記第1切断面よりも内側の第2切断位置で切断して第2切断面を形成する第2切断工程と、を含み、前記第2切断工程において、前記第1切断面と形成される前記第2切断面との間の距離をWとし、前記第1切断面の表面粗さをRzとした場合に、Rz<W<5Rzを満たす。
 本開示によれば、電池の高容量密度と高信頼性とを両立することができる。
図1Aは、実施の形態1に係る電池の断面構成を示す断面図である。 図1Bは、実施の形態1に係る電池の上面図である。 図2Aは、実施の形態1に係る積層体の断面構成を示す断面図である。 図2Bは、実施の形態1に係る積層体の上面図である。 図3は、実施の形態1に係る電池の製造方法を説明するための断面図である。 図4は、第2切断工程における第2方向の別の例を説明するための上面図である。 図5は、実施の形態2に係る積層体の断面構成を示す断面図である。 図6は、実施の形態2に係る別の積層体の断面構成を示す断面図である。 図7は、実施の形態2に係る電池の製造方法を説明するための断面図である。
 (本開示の概要)
 本開示の一態様に係る電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層と、を有する少なくとも1つの電池セルを備える積層体を第1切断位置で切断して第1切断面を形成する第1切断工程と、前記第1切断工程で切断された前記積層体を前記第1切断面よりも内側の第2切断位置で切断して第2切断面を形成する第2切断工程と、を含み、前記第2切断工程において、前記第1切断面と形成される前記第2切断面との間の距離をWとし、前記第1切断面の表面粗さをRzとした場合に、Rz<W<5Rzを満たす。
 これにより、第1切断工程および第2切断工程において、積層体を切断することで電池の発電に寄与しない部分を除去する等が可能であるため、電池に占める発電に寄与する体積である有効体積の比率を向上させることができる。また、第2切断工程において、Rz<W<5Rzを満たす条件で積層体を切断することで、第2切断面の平坦性を向上させるとともに、第2切断面に発生する積層体の構成要素のバリおよびダレの数および大きさを抑制し、正極層と負極層との間の短絡の発生を抑制することができる。従って、本態様に係る電池の製造方法によって、電池の高容量密度と高信頼性とを両立することができる。
 また、例えば、前記Wは、前記積層体の厚さの3倍以下であってもよい。
 これにより、第2切断面の平坦性を向上させるとともに、バリおよびダレの発生を抑制し、第2切断面の品質を向上させることができる。
 また、例えば、前記第1切断工程と前記第2切断工程とは、一連の工程として連続的に実施してもよい。
 これにより、他の工程を挟まずに連続して積層体を切断できるため、生産性を高めることができる。
 また、例えば、前記積層体の位置を基準とした場合に、前記第1切断位置において前記積層体の切断が進行する第1方向と、前記第2切断位置において前記積層体の切断が進行する第2方向とは異なっていてもよい。また、例えば、前記第2方向は、前記第1方向に垂直な方向であってもよい。
 これらにより、第1切断工程と第2切断工程とで切断する方向を変えて積層体を切断できるため、切断面の品質および切断の容易性等に応じた方向に調整して積層体を切断できる。
 また、例えば、前記第2方向は、前記積層体の積層方向に垂直な方向であってもよい。
 これにより、第2切断工程において、バリ等が発生しても、バリ等は積層体の積層方向に直交して延びるように形成される。そのため、短絡の発生が抑制され、製造される電池の信頼性を高めることができる。
 また、例えば、前記少なくとも1つの電池セルは、複数の電池セルであり、前記複数の電池セルは、積層されていてもよい。
 これにより、複数の電池セルが積層された積層体において、複数の電池セルの間および各電池セル内において正極層と負極層との間の短絡を抑制することができるとともに、電池に占める有効体積比率を向上させることができる。そのため、高容量または高出力である積層型の電池の高容量密度と高信頼性とを両立することができる。
 また、例えば、前記第1切断工程および前記第2切断工程それぞれにおいて、せん断加工により前記積層体を切断してもよい。
 これにより、刃物によって積層体をせん断するだけで切断でき、電池セルの劣化が生じにくいため、電池の生産性および有効体積を向上できる。
 また、例えば、前記第2切断工程において、超音波カッターにより前記積層体を切断してもよい。
 これにより、第2切断面の平坦性をさらに向上できる。
 また、例えば、前記第2切断面の表面粗さは、前記固体電解質層の厚さ以下であってもよい。また、例えば、前記第2切断面は平坦であってもよい。
 これにより、電池の信頼性をさらに向上できる。例えば、第2切断面の表面粗さが固体電解質層の厚さ以下であれば、第2切断面において正極層および負極層の一方に凸部が形成されていても、変形等が生じた場合に当該凸部が他方に届かないため、短絡の発生を効果的に抑制できる。
 以下本開示の実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、工程、工程の順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行、垂直または直交などの要素間の関係性を示す用語、および、矩形または円形などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書および図面において、x軸、y軸およびz軸は、三次元直交座標系の三軸を示している。x軸およびy軸はそれぞれ、電池の平面視形状が矩形である場合に、当該矩形の第一辺、および、当該第一辺に直交する第二辺に平行な方向に一致する。z軸は、積層体および電池の各層の積層方向に一致する。
 また、本明細書において、「積層方向」は、集電体および活物質層の主面法線方向に一致する。また、本明細書において、「平面視」とは、特に断りのない限り、電池または積層体の主面に対して垂直な方向から見たときのことをいう。なお、「切断面の平面視」などのように、「ある面の平面視」と記載されている場合は、当該「ある面」を正面から見たときのことをいう。
 また、本明細書において、「上方」および「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」および「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。以下の説明では、z軸の負側を「下方」または「下側」とし、z軸の正側を「上方」または「上側」とする。
 (実施の形態1)
 [構成]
 まず、実施の形態1に係る電池の構成について、図1Aおよび図1Bを用いて説明する。
 図1Aは、本実施の形態に係る電池1の断面構成を示す断面図である。図1Bは、本実施の形態に係る電池1の上面図である。なお、図1Aは、図1BのIa-Ia線における断面を表している。
 まず、電池1の概要について説明する。
 図1Aおよび図1Bに示されるように、本実施の形態に係る電池1は、正極層11、負極層12、および、正極層11と負極層12との間に位置する固体電解質層13を有する電池セル10と、正極集電体14と、負極集電体15と、を備える。電池1は、例えば、全固体電池である。
 電池1の平面視形状は、例えば、矩形である。電池1の形状は、例えば、扁平な直方体状である。ここで、扁平とは、厚み(すなわち、z軸方向の長さ)が主面の各辺(すなわち、x軸方向およびy軸方向の各々の長さ)または最大幅より短いことを意味する。電池1の平面視形状は、正方形、平行四辺形またはひし形などの他の四角形であってもよく、六角形または八角形などの他の多角形であってもよい。また、電池1の形状は、例えば、直方体状であるが、立方体状、四角錘台状または多角形柱状等の他の形状であってもよい。なお、本明細書において図1Aなどの断面図では、電池1の層構造を分かりやすくするため、各層の厚みを誇張して図示している。
 電池1では、平面視において、正極集電体14、正極層11、固体電解質層13、負極層12および負極集電体15の各々の形状および大きさが同じであり、各々の輪郭が一致している。
 電池1は、電池セル10を挟んで対向した平行な主面16および17と、主面16と主面17とを繋ぐ4つの側面と、を有する。主面16は、電池1の最上面である。主面17は、電池1の最下面である。
 4つの側面のそれぞれは、例えば、主面17の各辺から垂直に主面16へ向かって延びている。電池1の4つの側面は、例えば、互いに平行な2対の側面である。2対の側面のうち1対の側面は、後述する第2切断工程で形成された第2切断面120および120aである。電池1は、側面のうち少なくとも1つが第2切断面であればよい。また、容量密度と信頼性とを高める観点から、電池1は、全ての側面が第2切断面であってもよい。
 電池セル10は、正極集電体14と負極集電体15との間に位置する。なお、電池1は、1つの電池セル10を備えるが、電池セル10の数は1つに限らず2つ以上であってもよい。例えば、本実施の形態に係る電池は、複数の電池セル10が、正極集電体14および負極集電体15の少なくとも一方を間に介して積層された積層型の電池であってもよい。
 電池1は、後述する積層体1aの端部を切断することにより製造される。電池1の積層構成は、積層体1aの積層構成と同じである。電池1の各層の詳細については、積層体1aの説明として後述する。
 本実施の形態に係る電池1には、さらに外部への取り出し電極であるタブまたはリードが正極集電体14および負極集電体15の少なくとも一方に接続されてもよい。また、電池1の気密性を保ち、かつ、電池1を保護するため、電池1が外装体によってラミネートされてもよく、電池1が樹脂封止されてもよい。また、切断面の保護のため、第2切断面120および120aの少なくとも一部が絶縁部材で被覆されていてもよい。絶縁部材としては、少なくとも電気的絶縁性を有する材料が用いられ、耐衝撃性、耐熱性、柔軟性およびガスバリア性を有する材料が用いられてもよい。絶縁部材としては、例えばエポキシ樹脂、アクリル樹脂、メタクリル樹脂、アラミド樹脂、ポリイミド樹脂などのポリマーまたは無機系接着材料が使用できる。
 [電池の製造方法]
 次に、本実施の形態に係る電池1の製造方法について、図2A、図2B、図3および図4を用いて説明する。
 本実施の形態に係る電池1の製造方法は、例えば、積層体形成工程と、第1切断工程と、第2切断工程と、を含む。
 まず、積層体形成工程について説明する。
 図2Aは、本実施の形態に係る積層体1aの断面構成を示す断面図である。図2Bは、本実施の形態に係る積層体1aの上面図である。なお、図2Aは、図2BのIIa-IIa線における断面を表している。また、図2Bには、電池セル10の平面視形状が破線で示されている。
 積層体形成工程では、積層体1aを形成する。図2Aおよび図2Bに示されるように、本実施の形態に係る積層体1aは、正極層11、負極層12、および、正極層11と負極層12との間に位置する固体電解質層13を有する電池セル10と、正極集電体14と、負極集電体15と、を備える。
 積層体1aは、電池セル10を挟んで対向した平行な主面16aおよび17aを有する。主面16aは、積層体1aの最上面である。主面17aは、積層体1aの最下面である。
 正極層11は、正極集電体14と固体電解質層13との間に位置する。正極層11は、正極集電体14の、負極層12側の主面に接して配置されている。なお、正極層11と正極集電体14との間に導電性の接合層等の他の層が設けられていてもよい。
 正極層11は、例えば正極活物質などの正極材料を含む。正極活物質の材料としては、リチウムイオンまたはマグネシウムイオンなどの金属イオンを離脱および挿入することができる各種材料が用いられうる。正極活物質としては、リチウムイオンを離脱および挿入することができる材料の場合、例えば、コバルト酸リチウム複合酸化物(LCO)、ニッケル酸リチウム複合酸化物(LNO)、マンガン酸リチウム複合酸化物(LMO)、リチウム-マンガン-ニッケル複合酸化物(LMNO)、リチウム-マンガン-コバルト複合酸化物(LMCO)、リチウム-ニッケル-コバルト複合酸化物(LNCO)、リチウム-ニッケル-マンガン-コバルト複合酸化物(LNMCO)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LNCAO)などの正極活物質が用いられうる。
 また、正極層11の含有材料としては、例えば、無機系固体電解質などの固体電解質が含まれていてもよい。無機系固体電解質としては、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質としては、例えば、硫化リチウム(LiS)および五硫化二リン(P)の混合物が用いられうる。また、硫化物固体電解質としては、LiS-SiS、LiS-BまたはLiS-GeSなどの硫化物が用いられてもよく、上記硫化物に添加剤としてLiN、LiCl、LiBr、LiPOおよびLiSiOのうち少なくとも1種が添加された硫化物が用いられてもよい。
 酸化物固体電解質としては、例えば、LiLaZr12(LLZ)、Li1.3Al0.3Ti1.7(PO(LATP)または(La,Li)TiO(LLTO)などが用いられる。
 正極活物質の表面は、固体電解質で被覆されていてもよい。
 また、正極層11の含有材料としては、例えばアセチレンブラック、ケッチェンブラック(登録商標)およびカーボンナノファイバーなどの導電材、ならびに、例えばポリフッ化ビニリデンなどの結着用バインダーなどのうちの少なくとも1つが含まれていてもよい。
 例えば、正極層11の含有材料を溶媒と共に練り込んだペースト状の塗料を、正極集電体14の主面上に塗工し乾燥させることにより、正極層11が作製される。正極層11の密度を高めるために、乾燥後に、正極板とも称される正極集電体14上に塗工された正極層11をプレスしておいてもよい。正極層11の厚みは、例えば5μm以上300μm以下であるが、これに限らない。
 負極層12は、負極集電体15と固体電解質層13との間に位置する。負極層12は、負極集電体15の、正極層11側の主面に接して配置されている。また、負極層12は、正極層11に対向して配置されている。なお、負極層12と負極集電体15との間に導電性の接合層等の他の層が設けられていてもよい。
 負極層12は、例えば、電極材料として負極活物質を含む。負極活物質の材料としては、リチウムイオンまたはマグネシウムイオンなどのイオンを離脱および挿入することができる各種材料が用いられうる。負極層12に含有される負極活物質としては、リチウムイオンを離脱および挿入することができる材料の場合、例えば、グラファイト、金属リチウム、シリコンなどの単物質やその混合物、あるいはリチウム-チタン酸化物(LTO)などの負極活物質が用いられうる。
 また、負極層12の含有材料としては、例えば、無機系固体電解質などの固体電解質が用いられてもよい。無機系固体電解質としては、例えば、正極層11の含有材料として例示した無機系固体電解質が用いられうる。
 また、負極層12の含有材料としては、例えばアセチレンブラック、ケッチェンブラックおよびカーボンナノファイバーなどの導電材、ならびに、例えばポリフッ化ビニリデンなどの結着用バインダーなどのうちの少なくとも1つが含まれていてもよい。
 例えば、負極層12の含有材料を溶媒と共に練り込んだペースト状の塗料を、負極集電体15の主面上に塗工し乾燥させることにより、負極層12が作製される。負極層12の密度を高めるために、乾燥後に、負極板とも称される負極集電体15上に塗工された負極層12をプレスしておいてもよい。負極層12の厚みは、例えば5μm以上300μm以下であるが、これに限らない。
 正極集電体14の主面には、正極層11が接触している。なお、正極集電体14は、正極層11に接する部分に設けられた、導電性材料を含む層である集電体層を含んでもよい。負極集電体15の主面には、負極層12が接触している。なお、負極集電体15は、負極層12に接する部分に設けられた、導電性材料を含む層である集電体層を含んでもよい。
 正極集電体14と負極集電体15とはそれぞれ、導電性を有する箔状、板状または網目状の部材である。正極集電体14と負極集電体15とはそれぞれ、例えば、導電性を有する薄膜であってもよい。正極集電体14と負極集電体15とを構成する材料としては、例えば、ステンレス(SUS)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)などの金属が用いられうる。正極集電体14と負極集電体15とは、異なる材料を用いて形成されていてもよい。
 正極集電体14および負極集電体15の各々の厚みは、例えば5μm以上100μm以下であるが、これに限らない。
 固体電解質層13は、正極層11と負極層12との間に配置される。固体電解質層13は、正極層11と負極層12との各々に接する。固体電解質層13は、電解質材料を含む層である。電解質材料としては、一般に公知の電池用の電解質が用いられうる。固体電解質層13の厚みは、5μm以上300μm以下であってもよく、または、5μm以上100μm以下であってもよい。
 固体電解質層13は、固体電解質を含む。固体電解質としては、例えば、無機系固体電解質などの固体電解質が用いられうる。無機系固体電解質としては、正極層11の含有材料として例示した無機系固体電解質が用いられうる。
 なお、固体電解質層13は、電解質材料に加えて、例えばポリフッ化ビニリデンなどの結着用バインダーなどを含有してもよい。
 例えば、固体電解質層13の含有材料を溶媒と共に練り込んだペースト状の塗料を、正極層11および/または負極層12の主面上に塗工し乾燥させることにより、固体電解質層13が作製される。あるいは、前記ペースト状の塗料を離型性フィルム上に塗工し乾燥させることにより、固体電解質層13を作製してもよい。
 例えば、正極集電体14、正極層11、固体電解質層13、負極層12および負極集電体15をこの順に重ねて加圧して圧着することで積層体1aが製造される。加圧の方法としては、例えば平板プレス、ロールプレスまたは静水圧プレスが使用できる。また、各層の密着性および密度を向上させる観点から、加圧時に加熱してもよい。加熱温度は、各層の材料が熱による化学変化を起こさない範囲で設定すればよく、例えば60℃以上200℃以下である。
 また、本実施の形態では、正極層11、負極層12および固体電解質層13は平行平板状に維持されている。これにより、湾曲による割れまたは崩落の発生を抑制することができる。なお、正極層11、負極層12および固体電解質層13を合わせて滑らかに湾曲させてもよい。
 また、電池セル10において、正極層11、負極層12および固体電解質層13は、それぞれの側面が同一面に設けられているが、これに限定されない。例えば、平面視において、正極層11、負極層12および固体電解質層13それぞれの側面の位置は異なっていてもよい。また、例えば、電池セル10において、正極層11および負極層12のうちの少なくとも一方の側面が固体電解質層13で覆われ、固体電解質層13が正極集電体14および負極集電体15のうちの少なくとも一方と接していてもよい。
 また、積層体1aにおいて、例えば、正極集電体14の電池セル10側の主面には、正極層11が設けられていない部分が存在している。また、積層体1aにおいて、例えば、負極集電体15の電池セル10側の主面には、負極層12が設けられていない部分が存在している。このように、積層体1aでは、集電体上に正極層11および負極層12が存在せず、電池として機能しない領域が存在するが、後述するように積層体1aの端部を切除することで電池1の容量密度を向上できる。なお、固体電解質層13は、正極集電体14の正極層11が設けられていない部分および負極集電体15の負極層12が設けられていない部分の少なくとも一方と接していてもよい。
 次に、第1切断工程および第2切断工程について説明する。
 図3は、本実施の形態に係る電池1の製造方法を説明するための断面図である。
 第1切断工程では、図3の(a)に示されるように、積層体形成工程で形成された積層体1aを、図において破線で示される第1切断位置111および111aにおいて切断し、第1切断面110および110aを形成する。これにより、図3の(b)に示される積層体1bが形成される。第1切断面110および110aは、積層体1bの主面16bと主面17bとを繋ぐ側面である。
 第1切断工程では、例えば、電池セル10の正極層11、負極層12および固体電解質層13を通る第1切断位置111で積層体1aを切断する。具体的には、第1切断工程においては、図3の(a)および(b)に示されるように、積層体1aの全ての構成要素である正極層11、負極層12、固体電解質層13、正極集電体14および負極集電体15を一括で切断して平面状の第1切断面110を形成する。第1切断位置111は、積層体1aの2つの主面16aおよび17aを通る位置である。第1切断面110の延びる方向は特に限定されない。第1切断面110は、例えば、主面16aおよび17aに対して直交する。
 また、第1切断位置111は、特に限定されない。第1切断位置111は、積層体1aの端部を切除する位置であってもよく、積層体1aを複数の積層体に分割する位置であってもよい。
 第1切断工程における切断の方法としては、例えば、刃物によるせん断、エンドミルによる切削、研削、レーザー切断またはジェット噴射切断等を使用することができるが、これらの方法に限定されない。生産性および有効体積の向上の観点から、第1切断工程における切断の方法は、刃物等を用いて切断するせん断加工であってもよい。
 また、第1切断工程では、例えば、積層体1aの位置を基準とした場合に、第1切断位置111において、一定の方向である第1方向C10に沿って切断が進行する。切断が進行する方向は、例えば、刃物を用いたせん断加工の場合、形成される第1切断面110に対して平面視した場合に積層体1aに対して刃物が相対的に移動する方向である。第1方向C10は、例えば、第1切断面110を平面視した場合に主面16aおよび17aと直交する方向、言い換えると、積層体1aの積層方向と平行な方向である。これにより、最短距離で主面16aと主面17aとを結ぶ方向に沿って積層体1aを切断できるため、電池1の生産性が向上する。なお、第1方向C10は、特に制限されず、主面16aおよび17aと直交する方向に交差する方向であってもよい。
 次に、第2切断工程では、図3の(b)に示されるように、第1切断工程で形成された積層体1bを、第1切断面110および110aより内側で、第1切断面110および110aからそれぞれ距離WおよびWa離れた、図において破線で示される第2切断位置121および121aで切断して第2切断面120および120aを形成する。これにより、図3の(c)に示される電池1が形成される。
 第2切断工程においては、図3の(b)および(c)に示されるように、積層体1bを、第1切断面110より距離Wだけ内側の第2切断位置121で切断して、平面状の第2切断面120を形成する。距離Wは、第1切断面110と形成される第2切断面120との間の距離である。第2切断位置121に第2切断面120が形成されるため、距離Wは、第1切断面110と第2切断位置121との間の距離であるとも言える。第2切断位置121は、第1切断面110を通らない位置である。第1切断面110と第2切断面120(言い換えると第2切断位置121)とは平行であってよい。これにより、第1切断面110と第2切断位置121との距離が一定になるため、第2切断面の品質が安定するとともに、第2切断工程において切除される体積を減らすことができる。
 また、第2切断工程では、例えば、第1切断工程と同様に、積層体1bの全ての構成要素である正極層11、負極層12、固体電解質層13、正極集電体14および負極集電体15を一括で切断して第2切断面120を形成する。第2切断位置121は、積層体1bの2つの主面16bおよび17bを通る位置である。
 第2切断位置121は、第1切断面110の近傍である。第2切断工程において、第1切断面110の表面粗さRzと距離Wとの関係は、Rz<W<5Rzを満たす。例えば、第2切断工程において、第1切断面110の上端辺から上述の関係となる距離W内側の位置に第2切断位置121を設定して、積層体1bを切断する。距離Wが第1切断面110の表面粗さRz以下である場合、第1切断面110の表面に存在するバリ等が十分に除去できないおそれがある。また、距離Wが第1切断面110の表面粗さRzの5倍以上である場合、第2切断面120の表面粗さRzが小さくなりにくく、本開示の効果が得られにくくなる。第1切断面110の表面粗さRzと距離Wとの関係は、例えば、いずれの位置においてもRz<W<5Rzを満たす。なお、本明細書において、表面粗さRz等の表面粗さは、JIS B0601 2013に準拠した測定法で測定される最大高さ粗さである。
 また、第2切断面の平坦性を向上させる観点からは、第1切断面110の表面粗さRzと距離Wとの関係は、Rz<W<4Rzを満たしてもよい。
 また、第1切断面110と第2切断位置121との距離Wは、積層体1bの厚さの3倍以下であってもよく、2倍以下であってもよい。これにより、より効果的に第2切断面120の表面粗さRzを小さくできる。
 また、第2切断面120は、例えば、積層体1bの主面16bおよび17bに対して直交する。これにより、第2切断面120に露出する電池1の各層の端面の位置が積層方向から見た場合に揃うため、電池の有効体積を高めることができる。例えば、第2切断面120においては、電池1の正極層11、負極層12、固体電解質層13、正極集電体14および負極集電体15それぞれの側面が露出し、面一である。また、例えば、電池1の積層方向から見た場合に、第2切断面120において、正極層11、負極層12、固体電解質層13、正極集電体14および負極集電体15それぞれの側面の位置は一致している。
 第2切断工程における切断の方法としては、例えば、刃物によるせん断、エンドミルによる切削、研削、レーザー切断またはジェット噴射切断等を使用することができるが、これらの方法に限定されない。生産性および有効体積の向上の観点から、第2切断工程における切断の方法は、刃物等を用いて切断するせん断加工であってもよい。また、せん断加工では、切断時に積層体1bの温度が上がりにくく、切断時に電池セル10が劣化しにくい。また、第2切断面120の平坦性を向上できる観点から、せん断加工は、高い周波数の振動を刃先に伝えて切断する超音波カッターを用いた切断であってもよい。
 また、第2切断工程では、例えば、積層体1bの位置を基準とした場合に、第2切断位置121において一定の方向である第2方向C20に沿って切断が進行する。切断が進行する方向は、第1方向C10と同様に、例えば、刃物を用いたせん断加工の場合、形成される第2切断面120に対して平面視した場合に積層体1bに対して刃物が相対的に移動する方向である。第2方向C20は、例えば、第2切断面120を平面視した場合に主面16bおよび17bと直交する方向である。そのため、第2方向C20は、第1方向C10と平行であり、同じ方向である。これにより、最短距離で主面16bと主面17bとを結ぶ方向に沿って積層体1bを切断できるため、電池1の生産性が向上する。なお、第1方向C10と第2方向C20との関係を比較する場合、第1切断位置111と第2切断位置121とが平行ではない場合も、第1切断位置111と第2切断位置121とが平行であると仮定して比較する。
 また、第2方向C20は特に制限されず、第1方向C10と第2方向C20とは、平行な位置関係に限らない。図4は、第2切断工程における第2方向の別の例を説明するための上面図である。図4に示されるように、第1方向C10と第2方向C21とは平行ではなく、異なる方向である。具体的には、第2方向C21は、第1方向C10に垂直な方向であり、積層体1bの積層方向に垂直な方向(例えば、第1切断面110の長手方向)である。このような第1方向C10および第2方向C21であることにより、第1切断工程において第1切断位置111を積層体1aの任意の位置に配置することが容易となる。また、第2切断工程において切断が進行する方向が積層体1bの積層方向と直交するため、切断によってバリ等が発生してもバリ等は積層方向に直交して延びるように形成される。そのため、積層体1bの各層間の短絡の発生が抑制され、電池1の信頼性を高めることができる。なお、第1方向C10と第2方向C21とが、異なる方向である場合、上述の例に限らない。第1方向C10と第2方向C21とが異なることで、第1切断工程と第2切断工程とで、切断面の品質および切断の容易性等に応じた方向に調整して、積層体1aおよび積層体1bを切断できる。
 第2切断面120の表面粗さRzは、例えば、0より大きく、固体電解質層13の厚さ以下であってもよい。第2切断面120の表面粗さRzが固体電解質層13の厚さ以下であることにより、第2切断面120において正極層11および負極層12の一方に凸部が形成されていても、変形等が生じた場合に当該凸部が他方に届かないため、短絡の発生を効果的に抑制できる。また、第2切断面120の表面粗さRzは、固体電解質層13の厚さより小さくてもよい。
 また、第2切断面120の表面粗さRzは、30μm以下であってもよく、20μm以下であってもよい。また、第2切断面120は平坦であってもよい。これにより、電池1の信頼性を高めることができる。なお、本明細書において、平坦であるとは、実質的に平坦であることを意味し、例えば、表面粗さRzが10μm以下であることを意味する。
 また、第1切断工程と第2切断工程とは、一連の工程として連続的に実施してもよい。これにより生産性を向上できる。ここで、一連の工程として連続的に実施するとは、第1切断工程と第2切断工程との間に、積層体1aに対して加工または測定等を行う他の工程を実施することなく、第1切断工程と第2切断工程とを実施することを意味する。例えば、第1切断工程において、積層体1aを切断するために固定し、積層体1aの切断後も固定を保持したまま第2切断工程を実施してもよい。また、第1切断工程と第2切断工程とが、連続した製造ラインにおける切断装置で実施されてもよい。また、第1切断工程の終了後、1分以内に第2切断工程を実施してもよい。
 以上のような工程を経て、図3の(c)に示されるような第2切断面120および120aを有する電池1が製造される。
 なお、上記説明では、第1切断面110および第2切断面120の形成について主に説明したが、第1切断面110aおよび第2切断面120aについても同様であるため、詳細な説明は省略する。また、本実施の形態においては第1切断面および第2切断面の数は、それぞれ2面であるが、これに限定されるものではなく、それぞれ少なくとも1面以上であればよい。つまり、本実施の形態に係る電池1における側面は、少なくとも1つの側面が第2切断面であればよい。容量密度および信頼性をさらに向上させる観点からは、電池1の全ての側面が第2切断面であってもよい。
 本実施の形態に係る電池1の製造方法によれば、第1切断面110が形成される第1切断工程と、第1切断面110に近接した第2切断位置121で第2切断面120が形成される第2切断工程とが実施される。これにより、電池1の発電に寄与しない部分を除去する等が可能であるため、電池1に占める発電に寄与する体積である有効体積の比率を向上させることができる。さらに、第2切断工程において、第1切断面110の表面粗さRzと距離Wとの関係がRz<W<5Rzを満たすことにより、第1切断工程で形成されるバリおよびダレが形成されやすい第1切断面110近傍を切除し、バリおよびダレが少なく第1切断面110よりも平坦な第2切断面120を有する電池1を製造することができる。これにより、電池1の高容量密度と高信頼性とを両立することができる。
 (実施の形態2)
 次に、実施の形態2に係る電池の製造方法について説明する。実施の形態2では、実施の形態1に対し、積層体が有する電池セルの数が異なる。以下、相違点について説明を行い、共通点の説明を省略もしくは簡略化する。
 図5は、本実施の形態に係る積層体2aの断面構成を示す断面図である。本実施の形態においては、積層体形成工程において積層体2aを形成し、第1切断工程において、積層体2aを切断する。図5に示されるように、積層体2aは、複数の電池セル10と正極集電体14と負極集電体15とを有する。複数の電池セル10は、隣り合う電池セル10が集電体を介して電気的に接続されるように積層されている。積層体2aにおいて、負極集電体15の上下の主面に負極層12が配置されている。つまり、複数の電池セル10は、隣り合う電池セル10の同極同士が集電体を介して電気的に接続されることで、電気的に並列接続されるように積層されている。そのため、隣り合う電池セル10では、積層順が逆転している。各電池セル10は、他の電池セル10を介さず、正極集電体14と負極集電体15とに挟まれている。
 負極層12の含有材料を溶媒と共に練り込んだペースト状の塗料を、負極集電体15の両方の主面上に塗工し乾燥させることにより、負極層12が作製される。負極層12の密度を高めるために、乾燥後に、負極板とも称される負極集電体15上に塗工された負極層12をプレスしておいてもよい。
 固体電解質層13および正極層11は、実施の形態1と同様な方法で製造される。また、積層体2aは、実施の形態1と同様な方法で圧着される。
 なお、積層体2aは、負極層12と正極層11との位置を入れ替えた構造であってもよい。また、積層体2aにおいて、複数の電池セル10の数は2つであるが、3つ以上であってもよい。例えば、正極集電体14にも両面に正極層11を配置して、電池セル10を積層することで、複数の電池セル10の数を増やすことができる。また、積層体2aにおいて、複数の電池セル10は、隣り合う電池セル10の異極同士が集電体を介して電気的に接続されることで、電気的に直列接続されるように積層されていてもよい。この場合、少なくとも1つの正極集電体14または負極集電体15の一方の主面には正極層11が配置され、他方の主面には負極層12が配置される。
 また、複数の電池セル10を積層する場合、導電層を介して積層させてもよい。図6は、本実施の形態に係る積層体3aの断面構成を示す断面図である。本実施の形態においては、第1切断工程において積層体3aを切断してもよい。
 図6に示されるように、積層体3aは、それぞれが電池セル10を有する複数の積層体1aと導電層31とを備える。複数の積層体1aは、隣り合う積層体1aが導電層31を介して電気的に接続されるように積層されている。つまり、導電層31は、複数の積層体1aのうちの隣り合う積層体1aの間に位置する。積層体3aにおいて、導電層31の一方の主面には正極集電体14が配置され、他方の主面には負極集電体15が配置されている。つまり、積層体3aにおいては、複数の電池セル10は、隣り合う電池セル10の異極同士が正極集電体14、負極集電体15および導電層31を介して電気的に接続されることで、電気的に直列接続されるように積層されている。そのため、複数の積層体1aの積層順はそれぞれ同じである。
 導電層31の材料としては、特に限定されず、例えば、電気伝導性と接着性とを有する導電性接着剤が用いられる。導電性接着剤としては、例えば、金属粒子と樹脂との混合体、導電性高分子または低融点金属を使用することができる。また、積層体3aは、導電層31を備えていなくてもよく、隣り合う積層体1aの間で、正極集電体14と負極集電体15とが直接接合されていてもよい。
 積層体3aは、例えば、上述の方法で形成された積層体1aの正極集電体14上または負極集電体15上に導電層31の材料として導電性接着剤を塗工し、2つ積層体1aを、導電性接着剤を介して接合させることで作製される。
 なお、積層体3aにおいて、複数の積層体1aの数は2つであるが、3つ以上であってもよい。接合する積層体1aおよび導電層31の数を増やすことで、積層体3aにおける複数の積層体1aの数は調整可能である。また、積層体3aにおいて、複数の電池セル10は、隣り合う電池セル10の同極同士が正極集電体14または負極集電体15と導電層31と介して電気的に接続されることで、電気的に並列接続されるように積層されていてもよい。
 このように作製された積層体2aまたは積層体3aを用いて、第1切断工程および第2切断工程を実施することで、複数の電池セル10が積層された構造を有する積層型の電池を製造することができる。
 図7は、本実施の形態に係る電池の製造方法を説明するための断面図である。図7に示されるように、第1切断工程では図において破線で示される第1切断位置211および211aで積層体2aを切断して第1切断面を形成する。次いで、第2切断工程では第1切断面よりも内側の図において破線で示される第2切断位置221および221aで、切断された積層体2aをさらに切断して第2切断面を形成する。この際、第1切断工程および第2切断工程では、積層体2aが備える複数の電池セル10の全てを一括して切断する、第1切断工程および第2切断工程の詳細は、実施の形態1において説明した通りである。上述と同様の第1切断工程および第2切断工程を経て電池を製造することで、製造される積層型の電池の高容量密度と高信頼性とを両立することができる。積層体3aを用いた場合にも同様に、製造される積層型の電池の高容量密度と高信頼性とを両立することができる。
 (実施例)
 以下、本開示の詳細を、実施例に基づき、具体的に説明する。なお、本開示は、以下の実施例によって何ら限定されるものではない。
 [評価用積層体の作製]
 正極活物質であるコバルト酸リチウム粉末、固体電解質である硫化リチウム-五硫化二リン混合体およびキシレン溶媒を混合してスラリー化し、正極集電体である厚さ12μmのアルミ箔に当該スラリーを塗工してから乾燥させて正極層を有する正極板を作製した。
 また、負極活物質であるグラファイト粉末、上記と同じ固体電解質およびキシレン溶媒を混合してスラリー化し、負極集電体である厚さ15μmのステンレス箔に当該スラリーを塗工してから乾燥させて負極層を有する負極板を作製した。
 次いで、上記と同じ固体電解質およびキシレン溶媒を混合してスラリー化し、当該スラリーを負極層の上に塗工してから乾燥させて固体電解質層を作製した。そして、正極板と負極板とを負極層上の固体電解質層を挟むように積層し、120℃で加熱する条件で加圧して積層体を作製した。このときの積層体の厚さは、150μmであった。また、固体電解質層の厚さは、30μmであった。
 作製した積層体をシャーにより切断して第1切断面を形成した。第1切断面の表面粗さRzを、レーザー顕微鏡(キーエンス社製)を用いて測定した。形成した第1切断面の表面粗さRzは84μmであった。
 さらに、第1切断面を形成した積層体を、第1切断面に直交する方向に切断して、15個に分割し、分割された第1切断面をそれぞれ有する15個の約15mm角の評価用積層体を得た。
 [実施例1]
 次に、第1切断面から100μm内側の第2切断位置で、超音波カッターを用いて評価用積層体を切断することで、第2切断面を形成し、第2切断面が形成された電池を得た。つまり、第1切断面と形成される第2切断面との間の距離Wが100μmである条件で、上述の第2切断工程を実施した。それぞれ別の評価用積層体を用いて同様の操作を3回繰り返し、3個の電池を作製した。
 作製した電池の第2切断面の表面粗さRzを、レーザー顕微鏡(キーエンス社製)を用いて測定した。また、作製した電池の正極層と負極層との間の電位差をテスタで測定することで、電池が短絡しているか否かを評価した。第2切断面の表面粗さRzの測定結果および短絡の評価結果を表1に示す。表1における第2切断面の表面粗さRzは、3個の電池の平均値である。また、表1における短絡数は、3個の電池のうちの短絡が確認された電池の数である。また、表1には、第1切断面の表面粗さRz、距離W、W/Rz、評価用積層体の厚さをTとした場合のW/Tについても示されている。
 表1に示されるように、実施例1における電池では、第2切断面の表面粗さRzは9μmであり、短絡数は0個であった。
 [実施例2]
 距離Wを200μmに変えた以外は、実施例1と同様の方法で電池を作製した。また、実施例1と同様の方法で作製した電池の第2切断面の表面粗さRzの測定および短絡の評価を行った。第2切断面の表面粗さRzの測定結果および短絡の評価結果を表1に示す。表1に示されるように、実施例2における電池では、第2切断面の表面粗さRzは6μmであり、短絡数は0個であった。
 [実施例3]
 距離Wを300μmに変えた以外は、実施例1と同様の方法で電池を作製した。また、実施例1と同様の方法で作製した電池の第2切断面の表面粗さRzの測定および短絡の評価を行った。第2切断面の表面粗さRzの測定結果および短絡の評価結果を表1に示す。表1に示されるように、実施例3における電池では、第2切断面の表面粗さRzは10μmであり、短絡数は0個であった。
 [実施例4]
 距離Wを400μmに変えた以外は、実施例1と同様の方法で電池を作製した。また、実施例1と同様の方法で作製した電池の第2切断面の表面粗さRzの測定および短絡の評価を行った。第2切断面の表面粗さRzの測定結果および短絡の評価結果を表1に示す。表1に示されるように、実施例4における電池では、第2切断面の表面粗さRzは18μmであり、短絡数は0個であった。
 [比較例1]
 距離Wを500μmに変えた以外は、実施例1と同様の方法で電池を作製した。また、実施例1と同様の方法で作製した電池の第2切断面の表面粗さRzの測定および短絡の評価を行った。第2切断面の表面粗さRzの測定結果および短絡の評価結果を表1に示す。表1に示されるように、比較例1における電池では、第2切断面の表面粗さRzは55μmであり、短絡数は2個であった。
Figure JPOXMLDOC01-appb-T000001
 [まとめ]
 以上のように、W/Rzが1より大きく5より小さい、つまりRz<W<5Rzを満たす条件で第2切断面を形成した実施例1から実施例4における電池は、第2切断面の表面粗さRzが小さく固体電解質層の厚さ以下であり、短絡も発生していないことから、高い信頼性を実現できることが分かった。また、この場合には、距離Wは、評価用積層体の厚さTの3倍以下である。
 また、W/Rzが1より大きく4より小さい、つまりRz<W<4Rzを満たす条件で第2切断面を形成した実施例1から実施例3における電池は、第2切断面の表面粗さRzが10μm以下であって、実質的に平坦な第2切断面が形成されていることから、特に高い信頼性を実現できることが分かった。また、この場合には、距離Wは、評価用積層体の厚さTの2倍以下である。
 これに対して、W/Rzが5以上である、Rz<W<5Rzを満たさない条件で第2切断面を形成した比較例1における電池は、第2切断面の表面粗さRzが実施例1から実施例4における電池よりも大きく、短絡が発生した。よって、比較例1における電池の作製条件では、実施例1から実施例4と比べて、電池の信頼性が低下することが分かった。このように、評価用積層体を単に2回切断するだけでは、電池の信頼性を高めることができない場合があり、Rz<W<5Rzを満たす条件で2回目の切断を行うことで、電池の信頼性を高めることができることが確認できた。
 (他の実施の形態)
 以上、本開示に係る電池および電池の製造方法について、実施の形態および実施例に基づいて説明したが、本開示は、これらの実施の形態および実施例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 また、上記の実施の形態は、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る電池は、例えば、電子機器、電気器具装置および電気車両などの電池として利用することができる。
 1 電池
 1a、1b、2a、3a 積層体
 10 電池セル
 11 正極層
 12 負極層
 13 固体電解質層
 14 正極集電体
 15 負極集電体
 16、16a、16b、17、17a、17b 主面
 110、110a 第1切断面
 111、111a、211、211a 第1切断位置
 120、120a 第2切断面
 121、121a、221、221a 第2切断位置
 31 導電層
 C10 第1方向
 C20、C21 第2方向
 W、Wa 距離

Claims (11)

  1.  正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層と、を有する少なくとも1つの電池セルを備える積層体を第1切断位置で切断して第1切断面を形成する第1切断工程と、
     前記第1切断工程で切断された前記積層体を前記第1切断面よりも内側の第2切断位置で切断して第2切断面を形成する第2切断工程と、を含み、
     前記第2切断工程において、前記第1切断面と形成される前記第2切断面との間の距離をWとし、前記第1切断面の表面粗さをRzとした場合に、Rz<W<5Rzを満たす、
     電池の製造方法。
  2.  前記Wは、前記積層体の厚さの3倍以下である、
     請求項1に記載の電池の製造方法。
  3.  前記第1切断工程と前記第2切断工程とは、一連の工程として連続的に実施する、
     請求項1または2に記載の電池の製造方法。
  4.  前記積層体の位置を基準とした場合に、前記第1切断位置において前記積層体の切断が進行する第1方向と、前記第2切断位置において前記積層体の切断が進行する第2方向とは異なる、
     請求項1から3のいずれか一項に記載の電池の製造方法。
  5.  前記第2方向は、前記第1方向に垂直な方向である、
     請求項4に記載の電池の製造方法。
  6.  前記第2方向は、前記積層体の積層方向に垂直な方向である、
     請求項4または5に記載の電池の製造方法。
  7.  前記少なくとも1つの電池セルは、複数の電池セルであり、
     前記複数の電池セルは積層されている、
     請求項1から6のいずれか一項に記載の電池の製造方法。
  8.  前記第1切断工程および前記第2切断工程それぞれにおいて、せん断加工により前記積層体を切断する、
     請求項1から7のいずれか一項に記載の電池の製造方法。
  9.  前記第2切断工程において、超音波カッターにより前記積層体を切断する、
     請求項1から8のいずれか一項に記載の電池の製造方法。
  10.  前記第2切断面の表面粗さは、前記固体電解質層の厚さ以下である、
     請求項1から9のいずれか一項に記載の電池の製造方法。
  11.  前記第2切断面は平坦である、
     請求項1から10のいずれか一項に記載の電池の製造方法。
PCT/JP2022/011262 2021-06-21 2022-03-14 電池の製造方法 WO2022270042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22827963.4A EP4362159A1 (en) 2021-06-21 2022-03-14 Method for manufacturing battery
CN202280041850.9A CN117480662A (zh) 2021-06-21 2022-03-14 电池的制造方法
JP2023529551A JPWO2022270042A1 (ja) 2021-06-21 2022-03-14
US18/528,701 US20240100730A1 (en) 2021-06-21 2023-12-04 Method for manufacturing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-102254 2021-06-21
JP2021102254 2021-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/528,701 Continuation US20240100730A1 (en) 2021-06-21 2023-12-04 Method for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2022270042A1 true WO2022270042A1 (ja) 2022-12-29

Family

ID=84544596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011262 WO2022270042A1 (ja) 2021-06-21 2022-03-14 電池の製造方法

Country Status (5)

Country Link
US (1) US20240100730A1 (ja)
EP (1) EP4362159A1 (ja)
JP (1) JPWO2022270042A1 (ja)
CN (1) CN117480662A (ja)
WO (1) WO2022270042A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160501A (ja) * 1999-12-02 2001-06-12 Matsushita Electric Ind Co Ltd 積層体およびこれを用いた電子部品の製造方法
JP2003288895A (ja) * 2002-03-27 2003-10-10 Kyocera Corp 積層型電池用発電要素の製造方法
JP2008159539A (ja) * 2006-12-26 2008-07-10 Toyota Motor Corp 電極板及び電極板の製造方法、この電極板を用いた電池、この電池を搭載した車両、並びに、この電池を搭載した電池搭載機器
JP2015076315A (ja) 2013-10-10 2015-04-20 トヨタ自動車株式会社 全固体電池の製造方法
WO2019131503A1 (ja) * 2017-12-28 2019-07-04 日立造船株式会社 全固体電池、その製造方法および加工装置
JP2020013729A (ja) 2018-07-19 2020-01-23 トヨタ自動車株式会社 直列積層型全固体電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160501A (ja) * 1999-12-02 2001-06-12 Matsushita Electric Ind Co Ltd 積層体およびこれを用いた電子部品の製造方法
JP2003288895A (ja) * 2002-03-27 2003-10-10 Kyocera Corp 積層型電池用発電要素の製造方法
JP2008159539A (ja) * 2006-12-26 2008-07-10 Toyota Motor Corp 電極板及び電極板の製造方法、この電極板を用いた電池、この電池を搭載した車両、並びに、この電池を搭載した電池搭載機器
JP2015076315A (ja) 2013-10-10 2015-04-20 トヨタ自動車株式会社 全固体電池の製造方法
WO2019131503A1 (ja) * 2017-12-28 2019-07-04 日立造船株式会社 全固体電池、その製造方法および加工装置
JP2020013729A (ja) 2018-07-19 2020-01-23 トヨタ自動車株式会社 直列積層型全固体電池の製造方法

Also Published As

Publication number Publication date
CN117480662A (zh) 2024-01-30
US20240100730A1 (en) 2024-03-28
EP4362159A1 (en) 2024-05-01
JPWO2022270042A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
US11233274B2 (en) Battery and battery manufacturing method
CN108963320B (zh) 电池
JP7437710B2 (ja) 積層電池
US20230387473A1 (en) Battery and method for manufacturing battery
US20240258666A1 (en) Battery and method for manufacturing battery
JP7378097B2 (ja) 積層電池
WO2021131094A1 (ja) 電池
JP7178633B2 (ja) 全固体電池およびその製造方法
JP7117588B2 (ja) 全固体電池およびその製造方法
WO2022259664A1 (ja) 電池および電池の製造方法
WO2022270042A1 (ja) 電池の製造方法
US20220344633A1 (en) Method of manufacturing solid-state battery and solid-state battery
WO2021199720A1 (ja) 積層電池の製造方法及び積層電池
WO2021210446A1 (ja) 電池
CN115380417A (zh) 电池
WO2021199721A1 (ja) 積層電池の製造方法
WO2023058295A1 (ja) 電池および電池の製造方法
WO2023145223A1 (ja) 電池および電池の製造方法
WO2021131095A1 (ja) 電池の製造方法
WO2022172618A1 (ja) 電池および電池の製造方法
WO2023053639A1 (ja) 電池および電池の製造方法
WO2023013233A1 (ja) 電池
WO2022239525A1 (ja) 電池
WO2023053636A1 (ja) 電池および電池の製造方法
WO2022145120A1 (ja) 電池、積層電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041850.9

Country of ref document: CN

Ref document number: 2023529551

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022827963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022827963

Country of ref document: EP

Effective date: 20240122