WO2021131095A1 - 電池の製造方法 - Google Patents

電池の製造方法 Download PDF

Info

Publication number
WO2021131095A1
WO2021131095A1 PCT/JP2020/016400 JP2020016400W WO2021131095A1 WO 2021131095 A1 WO2021131095 A1 WO 2021131095A1 JP 2020016400 W JP2020016400 W JP 2020016400W WO 2021131095 A1 WO2021131095 A1 WO 2021131095A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
current collector
active material
electrode active
layer
Prior art date
Application number
PCT/JP2020/016400
Other languages
English (en)
French (fr)
Inventor
覚 河瀬
一裕 森岡
明生 金山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021566783A priority Critical patent/JPWO2021131095A1/ja
Priority to CN202080072578.1A priority patent/CN114600269A/zh
Priority to EP20906641.4A priority patent/EP4084121A1/en
Publication of WO2021131095A1 publication Critical patent/WO2021131095A1/ja
Priority to US17/835,979 priority patent/US20220302490A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a battery manufacturing method.
  • Patent Documents 1 and 2 disclose a battery provided with an insulating layer.
  • Patent Document 3 discloses a method for manufacturing an all-solid-state battery, which includes a step of pressurizing a powder material when forming each layer of the all-solid-state battery.
  • an object of the present disclosure is to provide a method for manufacturing a battery capable of easily manufacturing a battery having a high volume energy density.
  • the method for manufacturing a battery according to one aspect of the present disclosure includes an insulating layer laminating step (a) of laminating an insulating layer on a part of at least one surface of at least one first current collector, an electrode active material layer, and a solid.
  • the electrode active material layer is the insulating layer of at least one power generation element portion in which the electrolyte layer and the counter electrode active material layer are laminated in this order, and the at least one first current collector on which the insulating layer is formed.
  • the power generation element laminating step (b) in which the at least one power generation element portion is laminated and the at least one first current collector in which the at least one power generation element portion is laminated are collectively laminated at a position where the insulating layer is divided.
  • the current collector laminating step (d) of laminating the electric bodies is included.
  • a battery having a high volumetric energy density can be easily manufactured.
  • FIG. 1 is a schematic top view showing an example of the battery according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a schematic cross-sectional view showing an example of a battery according to a comparative example.
  • FIG. 4 is a schematic cross-sectional view showing another example of the battery according to the comparative example.
  • FIG. 5 is a flowchart for explaining the method of manufacturing the battery according to the first embodiment.
  • FIG. 6A is a schematic view showing an example of a current collector in which an insulating layer according to the first embodiment is laminated.
  • FIG. 6B is a schematic view showing another example of the current collector in which the insulating layer according to the first embodiment is laminated.
  • FIG. 6A is a schematic view showing an example of a current collector in which an insulating layer according to the first embodiment is laminated.
  • FIG. 6B is a schematic view showing another example of the current collector in which the insulating
  • FIG. 6C is a schematic view showing another example of the current collector in which the insulating layer according to the first embodiment is laminated.
  • FIG. 7A is a schematic cross-sectional view showing an example of the laminated electrode plate according to the first embodiment.
  • FIG. 7B is a schematic cross-sectional view showing another example of the laminated electrode plate according to the first embodiment.
  • FIG. 7C is a schematic cross-sectional view showing another example of the laminated electrode plate according to the first embodiment.
  • FIG. 8 is a diagram for explaining a cutting step (c) in the battery manufacturing method according to the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing an example of the battery according to the first modification of the first embodiment.
  • FIG. 10 is a schematic cross-sectional view showing another example of the battery according to the first modification of the first embodiment.
  • FIG. 11 is a diagram for explaining a cutting step (c) in the battery manufacturing method according to the first modification of the first embodiment.
  • FIG. 12 is a schematic cross-sectional view showing an example of the battery according to the second embodiment.
  • FIG. 13 is a schematic cross-sectional view showing another example of the battery according to the second embodiment.
  • FIG. 14 is a flowchart for explaining the method of manufacturing the battery according to the second embodiment.
  • FIG. 15 is a schematic cross-sectional view showing an example of the multilayer electrode plate according to the second embodiment.
  • FIG. 16 is a schematic cross-sectional view showing an example of a laminated electrode plate according to the first modification of the second embodiment.
  • FIG. 17 is a schematic cross-sectional view showing an example of the multilayer electrode plate according to the first modification of the second embodiment.
  • FIG. 18 is a diagram for explaining a current collector stacking step (d) and a cutting step (c) in the battery manufacturing method according to the first modification of the second embodiment.
  • FIG. 19 is a schematic cross-sectional view showing an example of a laminated electrode plate having an insulating layer according to the second modification of the second embodiment.
  • FIG. 20 is a schematic cross-sectional view showing an example of a laminated electrode plate having no insulating layer according to the second modification of the second embodiment.
  • FIG. 21 is a schematic cross-sectional view showing an example of a multilayer electrode plate according to a modification 2 of the second embodiment.
  • FIG. 22 is a schematic cross-sectional view showing another example of the laminated electrode plate according to the second modification of the second embodiment.
  • FIG. 23 is a schematic cross-sectional view showing an example of the battery according to the second modification of the second embodiment.
  • FIG. 24 is a schematic cross-sectional view showing another example of the battery according to the second modification of the second embodiment.
  • FIG. 25 is a schematic cross-sectional view showing an example of the battery according to the third embodiment.
  • FIG. 26 is a schematic cross-sectional view showing another example of the battery according to the third embodiment.
  • the area of the negative electrode active material layer is generally larger than the area of the positive electrode active material layer. This stabilizes the performance of the battery by making the capacity of the negative electrode active material layer larger than the capacity of the positive electrode active material layer and suppressing the precipitation of metals derived from metal ions that were not incorporated into the negative electrode active material layer. Is the purpose.
  • Another object of the present invention is to improve the reliability of the battery by suppressing the concentration of the electric field on the end portion of the negative electrode active material layer and suppressing the growth of dendrites (precipitation of metal) at the end portion.
  • a solid electrolyte layer is arranged around the positive electrode active material layer arranged so as to face each other.
  • the positive electrode active material layer is not in contact with the end of the current collector, which is easily peeled off. Therefore, even if the end of the current collector is peeled off, the exposure of the positive electrode active material layer is suppressed. But it is increasing reliability.
  • the present disclosure provides a method for manufacturing a battery capable of easily manufacturing a battery having a high volume energy density.
  • the present invention provides a method for manufacturing a battery, which can easily manufacture a battery having a high volumetric energy density while being a highly reliable battery.
  • the method for manufacturing a battery according to one aspect of the present disclosure includes an insulating layer laminating step (a) of laminating an insulating layer on a part of at least one surface of at least one first current collector, an electrode active material layer, and a solid.
  • the electrode active material layer is the insulating layer of at least one power generation element portion in which the electrolyte layer and the counter electrode active material layer are laminated in this order, and the at least one first current collector on which the insulating layer is formed.
  • the power generation element laminating step (b) in which the at least one power generation element portion is laminated and the at least one first current collector in which the at least one power generation element portion is laminated are collectively laminated at a position where the insulating layer is divided.
  • the current collector laminating step (d) of laminating the electric bodies is included.
  • the first current collector in which the power generation element portions are laminated is collectively cut in the stacking direction at the position where the insulating layer is divided. Therefore, it is not necessary to stack each layer of the power generation element portion in the shape after cutting, so that the battery can be easily manufactured.
  • the battery in which the insulating layer is laminated on the end portion of the first current collector in a plan view. Is manufactured.
  • the electrode active material layer is laminated so as to cover the insulating layer laminated on the first current collector, at the end of the first current collector of the manufactured battery, the first current collector, The insulating layer and the electrode active material layer are laminated in this order. Therefore, even if the first current collector is peeled off at the end of the first current collector where peeling is likely to occur, the insulating layer is exposed, so that the exposure of the electrode active material layer is suppressed. As a result, damage or short circuit due to contact between the electrode active material layer and other members is less likely to occur. Therefore, a highly reliable battery can be manufactured.
  • the dimensions of the insulating layer can be determined simply by adjusting the cutting position. Therefore, the presence of the insulating layer suppresses the transfer of electrons between the electrode active material layer and the first current collector, and although a region in which the electrode active material layer is difficult to function as an electrode is formed, the dimensions of the insulating layer The area can be minimized by adjusting. Therefore, a battery having a high volume energy density can be easily manufactured.
  • the electrode active material layer may be a positive electrode active material layer
  • the counter electrode active material layer may be a negative electrode active material layer
  • the insulating layer is laminated on the end of the first current collector, the electrons from the first current collector do not reach the end of the positive electrode active material layer, so that the positive electrode active material layer at the end Function as an electrode is suppressed. That is, the substantial area of the positive electrode active material layer in a plan view is reduced, and the area of the positive electrode active material layer tends to be smaller than that of the negative electrode active material layer. Therefore, the capacity of the negative electrode active material layer tends to be substantially larger than the capacity of the positive electrode active material layer, so that precipitation of metal ion-derived metal that has not been incorporated into the negative electrode active material layer is suppressed, and the product is manufactured. The reliability of the battery can be further improved.
  • the at least one first current collector includes a plurality of first current collectors, and in the insulating layer laminating step (a), the said only on one surface of each of the plurality of first current collectors.
  • the power generation element laminating step (b) of laminating the insulating layer at least the above-mentioned at least each of the plurality of first current collectors in which the insulating layer is laminated so that the electrode active material layer covers the insulating layer.
  • the position of the insulating layer of each of the plurality of first laminated bodies overlaps with the first laminated body forming step (ba) for forming a plurality of first laminated bodies in which one power generation element portion is laminated.
  • the first laminated body laminating step (bb) of laminating the plurality of first laminated bodies is included, and in the first laminated body laminating step (bb), the first laminated body is included in the plurality of first laminated bodies and is adjacent to each other.
  • the plurality of first laminated bodies are laminated so that one of the two first laminated bodies is facing the other first current collector, and the cutting step (c) is performed.
  • the plurality of laminated first laminated bodies may be collectively cut in the stacking direction at a position where the insulating layer is divided.
  • first laminated bodies are laminated so that one electrode active material layer and the other opposite electrode active material layer of the adjacent first laminated bodies sandwich one first current collector.
  • Series-stacked batteries are manufactured. Further, by cutting the plurality of laminated first laminated bodies in the stacking direction at the positions where the insulating layers are divided, the plurality of first laminated bodies are cut at once. Therefore, in order to form a stacked battery, it is not necessary to individually stack single batteries formed in a desired shape, and the manufacturing efficiency of the battery is improved.
  • the at least one first current collector includes a plurality of first current collectors, and in the insulating layer laminating step (a), the said only on one surface of each of the plurality of first current collectors.
  • the insulating layer is laminated, and in the power generation element laminating step (b), the insulating layer is formed so that the counter electrode active material layer and the surface of the first current collector on which the insulating layer is not laminated face each other.
  • the second laminated body laminating step (bd) includes a second laminated body laminating step (bd) of laminating a plurality of the second laminated bodies so that the positions of the insulating layers of the two laminated bodies overlap each other. , The plurality of second layers so that one of the two second layers, which is included in the plurality of second layers and is adjacent to each other, covers the other insulating layer.
  • the laminated bodies may be laminated, and in the cutting step (c), the plurality of the laminated second laminated bodies may be collectively cut in the stacking direction at a position where the insulating layer is divided.
  • a plurality of second laminated bodies are laminated so that one electrode active material layer and the other opposite electrode active material layer of the adjacent second laminated bodies sandwich the other first current collector.
  • Series-stacked batteries are manufactured. Further, by cutting the plurality of laminated second laminated bodies in the stacking direction at the positions where the insulating layer is divided, the plurality of second laminated bodies are cut at once. Therefore, in order to form a stacked battery, it is not necessary to individually stack single batteries formed in a desired shape, and the manufacturing efficiency of the battery is improved.
  • the at least one power generation element portion includes two power generation element portions, and in the insulation layer lamination step (a), the insulation layer is laminated on both surfaces of the at least one first current collector.
  • the electrode active material layer forms the at least one first current collector, the two power generation element portions, and the third current collector on which the insulating layers are laminated.
  • the at least one first current collector is sandwiched between the two power generation elements so as to cover the insulating layer laminated on both sides of the at least one first current collector, and the insulating layer is laminated.
  • the at least one first current collector and the third current collector are laminated so as to sandwich one of the two power generation elements, and in the cutting step (c), the third current collector.
  • the at least one first current collector in which the two power generation element portions are laminated is collectively cut in the laminating direction at a position where the insulating layer is divided.
  • the second current collector may be laminated on the other side of the two power generation element portions on the side opposite to the first current collector.
  • the two power generation element parts and the first current collector are laminated so as to sandwich the first current collector between the electrode active material layers of the two power generation element parts, and a parallel laminated type battery is manufactured. Further, by cutting the first current collector in which the two power generation element portions are laminated in the stacking direction at the position where the insulating layer is divided, the two power generation element portions are cut at once. Therefore, in order to form a stacked battery, it is not necessary to individually stack single batteries formed in a desired shape, and the manufacturing efficiency of the battery is improved.
  • the electrode active material layer, the solid electrolyte layer, and the counterpolar active material layer are the at least one first current collector in the at least one power generation element portion. It may be formed by sequentially laminating the two.
  • the first current collector in which the power generation element portions are laminated is formed only by sequentially stacking the layers of the power generation element portion on the first current collector, so that the power generation element can be more easily formed on the first current collector.
  • the parts can be laminated.
  • the insulating layer laminating step (a) the insulating layer is laminated on at least one surface of the at least one first current collector in a grid pattern or a striped shape in a plan view, and the cutting step ( In c), the at least one first current collector on which the at least one power generation element portion is laminated may be collectively cut along the insulating layer.
  • the insulating layer is divided along the elongated direction of the insulating layer, so that the battery in which the insulating layer is formed can be easily formed along the end portion of the battery.
  • the insulating layer may contain a resin.
  • the bondability between the insulating layer and the first current collector and the electrode active material layer can be enhanced by the anchor effect in which the resin contained in the insulating layer bites into the first current collector and the electrode active material layer.
  • the insulating layer may contain a metal oxide.
  • the insulating layer becomes hard, so that even if the insulating layer is thinly formed during battery manufacturing, the insulating layer is not easily deformed when laminated with other layers, and a thin insulating layer having a uniform thickness is formed. it can.
  • the power generation element portion may be laminated by using a wet coating method.
  • each figure is not necessarily exactly illustrated.
  • substantially the same configuration is designated by the same reference numerals, and duplicate description is omitted or simplified.
  • the x-axis, y-axis, and z-axis indicate the three axes of the three-dimensional Cartesian coordinate system.
  • the z-axis direction is the battery stacking direction.
  • the positive direction of the z-axis is the upper side in the z-axis direction
  • the negative direction of the z-axis is the lower side in the z-axis direction.
  • planar view means a case where the battery is viewed along the z-axis.
  • the "thickness" in the present specification is the length of each layer in the stacking direction.
  • the terms “upper” and “lower” in the battery configuration do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but in the laminated configuration. It is used as a term defined by the relative positional relationship based on the stacking order. Also, the terms “upper” and “lower” are used not only when the two components are spaced apart from each other and another component exists between the two components, but also when the two components It also applies when the two components are placed in close contact with each other and touch each other.
  • the battery according to the first embodiment is a single battery including one electrode active material layer and one counter electrode active material layer.
  • FIG. 1 is a schematic top view showing an example of a battery according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the battery 50 includes an electrode layer 10, a counter electrode layer 20 arranged to face the electrode layer 10, and an electrode layer 10 and a counter electrode layer 20. It is provided with a solid electrolyte layer 30 located between the two. That is, the battery 50 has a structure in which the electrode layer 10, the solid electrolyte layer 30, and the counter electrode layer 20 are laminated in this order.
  • the electrode layer 10 includes the current collector 11, the electrode active material layer 12 located between the current collector 11 and the solid electrolyte layer 30, and the current collector 11 and the electrode at the end of the electrode layer 10 in a plan view. It has an insulating layer 13 located between the active material layer 12 and the active material layer 12.
  • the current collector 11 and the electrode active material layer 12 have the same shape and position in a plan view.
  • the counter electrode layer 20 has a current collector 21 and a counter electrode active material layer 22 located between the current collector 21 and the solid electrolyte layer 30.
  • the battery 50 is, for example, an all-solid-state battery.
  • the side surface of the battery 50 is parallel to the stacking direction.
  • the side surface of the battery 50 is a flat flat surface.
  • the side surface of the electrode layer 10, the side surface of the counter electrode layer 20, and the side surface of the solid electrolyte layer 30 are in a state where there is no step and are located on the same flat plane. That is, the side surface of the electrode layer 10, the side surface of the counter electrode layer 20, and the side surface of the solid electrolyte layer 30 are flush with each other.
  • the side surface is a surface of each component of the battery 50 that extends in a direction intersecting the main surface from an end portion of the main surface when a plane perpendicular to the stacking direction is used as the main surface.
  • each side surface of the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 are flush with each other and form the same flat plane.
  • the side surface of the battery 50 is, for example, a cut surface.
  • the side surface of the battery 50 is a surface formed by cutting with a blade such as a cutter, and is, for example, a surface having a cutting mark such as a fine groove.
  • the side surface of the electrode layer 10 and the side surface of the counter electrode layer 20 and the side surface of the solid electrolyte layer 30 can be easily made flush with each other.
  • the cut marks may be smoothed by polishing or the like.
  • the shape of the cut surface is not limited, but in the case of the battery 50, it is rectangular.
  • the side surfaces of the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 are exposed.
  • each layer that contributes to the charge / discharge performance of the battery 50 exists up to the end of the battery 50, so that the volumetric energy density of the battery 50 is improved.
  • the current collector 11, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 have the same shape and position in a plan view.
  • the plan view shape of the current collector 11, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 is rectangular, but is not particularly limited, and is circular, elliptical, or polygonal. And so on.
  • the current collector 11 is in contact with the lower surfaces of the electrode active material layer 12 and the insulating layer 13 and covers the lower surfaces of the electrode active material layer 12 and the insulating layer 13.
  • An insulating layer 13 is laminated on the end of the current collector 11 in a plan view.
  • the thickness of the current collector 11 is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • a known material can be used as the material of the current collector 11.
  • the current collector 11 for example, a foil-like body, a plate-like body, or a mesh-like body made of copper, aluminum, nickel, iron, stainless steel, platinum or gold, or an alloy of two or more of these is used. ..
  • the electrode active material layer 12 is laminated above the current collector 11 so as to cover the insulating layer 13 on the current collector 11.
  • the lower surface of the electrode active material layer 12 is also in contact with the current collector 11.
  • the upper surface of the electrode active material layer 12 is in contact with the solid electrolyte layer 30.
  • the electrode active material layer 12 and the counter electrode active material layer 22 face each other with the solid electrolyte layer 30 interposed therebetween.
  • the electrode active material layer 12 has a region that does not overlap with the insulating layer 13 in a plan view. Further, in a plan view, the electrode active material layer 12 and the counter electrode active material layer 22 have the same shape and position.
  • the thickness of the electrode active material layer 12 is, for example, 5 ⁇ m or more and 300 ⁇ m or less. The material used for the electrode active material layer 12 will be described later.
  • the insulating layer 13 is located between the current collector 11 and the electrode active material layer 12.
  • the upper surface of the insulating layer 13 and the inner side surface in a plan view are in contact with the electrode active material layer 12.
  • the insulating layer 13 is in contact with the electrode active material layer 12 at the end of the electrode layer 10 in a plan view.
  • the side surface of the insulating layer 13 and the side surface of the electrode active material layer 12 are flush with each other.
  • the lower surface of the insulating layer 13 is in contact with the current collector 11. Further, the insulating layer 13 overlaps with the counter electrode active material layer 22 in a plan view.
  • the insulating layer 13 is located on the outer peripheral portion of the electrode layer 10 in a plan view and has a frame shape. That is, the insulating layer 13 is located between the current collector 11 and the electrode active material layer 12 at all the ends in the direction perpendicular to the stacking direction of the electrode layer 10.
  • the insulating layer 13 contains, for example, at least one of a resin and a metal oxide.
  • the resin include silicone resin, epoxy resin, acrylic resin, polyimide resin and the like.
  • the resin may be a thermosetting resin or an ultraviolet curable resin.
  • the bondability between the insulating layer 13 and the current collector 11 and the electrode active material layer 12 is enhanced by an anchor effect in which the resin bites into the current collector 11 and the electrode active material layer 12. be able to.
  • the metal oxide include silicon oxide, titanium oxide, aluminum oxide and the like. Since the insulating layer 13 contains a metal oxide, the insulating layer 13 becomes hard. Therefore, even if the insulating layer 13 is thinly formed during the manufacture of the battery 50, the insulating layer 13 is deformed when laminated with another layer. It is difficult to form a thin insulating layer 13 having a uniform thickness.
  • the thickness of the insulating layer 13 is thinner than the thickness of the electrode active material layer 12, for example, sufficiently thinner than the thickness of the electrode active material layer 12. Since the thickness of the insulating layer 13 is thinner than the thickness of the electrode active material layer 12, the influence of the insulating layer 13 can be reduced even when a high-pressure pressing process is performed at the time of laminating the electrode active material layer 12 and the like. The electrode active material layer 12 and the like are easily compressed uniformly.
  • the thickness of the insulating layer 13 is, for example, 5 ⁇ m or less from the viewpoint that the electrode active material layer 12 and the like are easily compressed uniformly even when the high pressure press treatment is performed when the electrode active material layer 12 and the like are laminated.
  • the thickness of the insulating layer 13 may be 2 ⁇ m or less or 1 ⁇ m or less from the viewpoint of battery characteristics.
  • the insulating layer 13 is, for example, completely insulating, but may have slight conductivity depending on the constituent material and thickness of the insulating layer 13, depending on the required battery characteristics.
  • the insulating layer 13 is located in a region where the length from the outer circumference of the electrode active material layer 12 is 1 mm or less in a plan view, for example, from the viewpoint of the effective area contributing to power generation, that is, the volume energy density. ..
  • the width of the insulating layer 13 may be, for example, 1 mm or less, or 0.5 mm or less, from the viewpoint of volumetric energy density. It may be 0.1 mm or less. The width of the insulating layer 13 is changed, for example, depending on the required battery characteristics.
  • the current collector 21 is in contact with the upper surface of the counter electrode active material layer 22 and covers the upper surface of the counter electrode active material layer 22.
  • the thickness of the current collector 21 is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • the material of the current collector 21 the material of the current collector 11 described above can be used.
  • the counter electrode active material layer 22 is laminated on the solid electrolyte layer 30 and is arranged so as to face the electrode active material layer 12.
  • the upper surface of the counter electrode active material layer 22 is in contact with the current collector 21.
  • the thickness of the counter electrode active material layer 22 is, for example, 5 ⁇ m or more and 300 ⁇ m or less. The material used for the counter electrode active material layer 22 will be described later.
  • the solid electrolyte layer 30 is located between the electrode active material layer 12 and the counter electrode active material layer 22.
  • the thickness of the solid electrolyte layer 30 is, for example, 5 ⁇ m or more and 150 ⁇ m or less.
  • the solid electrolyte layer 30 contains at least a solid electrolyte, and may contain a binder material, if necessary.
  • the solid electrolyte layer 30 may contain a solid electrolyte having lithium ion conductivity.
  • the solid electrolyte known materials such as a lithium ion conductor, a sodium ion conductor, and a magnesium ion conductor can be used.
  • a solid electrolyte material such as a sulfide solid electrolyte, a halogen-based solid electrolyte, or an oxide solid electrolyte is used.
  • a sulfide solid electrolyte in the case of a material capable of conducting lithium ions, for example, a composite composed of lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5) is used.
  • Li 2 S-SiS 2, Li 2 S-B 2 S 3 or Li 2 S-GeS 2 may sulfide is used, such as, as an additive to the sulfide Sulfide to which at least one of 3 N, LiCl, LiBr, Li 3 PO 4 and Li 4 SiO 4 has been added may be used.
  • the oxide solid electrolyte in the case of a material capable of conducting lithium ions, for example, Li 7 La 3 Zr 2 O 12 (LLZ), Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) Alternatively, (La, Li) TiO 3 (LLTO) or the like is used.
  • LLZ Li 7 La 3 Zr 2 O 12
  • LATP Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3
  • (La, Li) TiO 3 (LLTO) or the like is used.
  • binder material for example, elastomers are used, and an organic compound such as polyvinylidene fluoride, acrylic resin or cellulose resin may be used.
  • one is a positive electrode layer having a positive electrode active material layer and the other is a negative electrode active material layer. It is a negative electrode layer to be provided.
  • the positive electrode active material layer contains at least a positive electrode active material, and may contain at least one of a solid electrolyte, a conductive auxiliary agent, and a binder material, if necessary.
  • the positive electrode active material a known material capable of occluding and releasing (inserting and desorbing, or dissolving and precipitating) lithium ions, sodium ions or magnesium ions can be used.
  • a material capable of releasing and inserting lithium ions for example, lithium cobalt oxide composite oxide (LCO), lithium nickel oxide composite oxide (LNO), lithium manganate composite oxide (LMO). ), Lithium-manganese-nickel composite oxide (LMNO), lithium-manganese-cobalt composite oxide (LMCO), lithium-nickel-cobalt composite oxide (LNCO) or lithium-nickel-manganese-cobalt composite oxide (LNMCO) ) Etc. are used.
  • the above-mentioned solid electrolyte material can be used.
  • the conductive auxiliary agent for example, a conductive material such as acetylene black, carbon black, graphite or carbon fiber is used.
  • the binder material the above-mentioned binder material can be used.
  • the negative electrode active material layer contains at least the negative electrode active material, and may contain at least one of the same solid electrolyte, conductive auxiliary agent, and binder material as the positive electrode active material layer, if necessary.
  • the negative electrode active material a known material capable of occluding and releasing (inserting and desorbing, or dissolving and precipitating) lithium ions, sodium ions or magnesium ions can be used.
  • a material capable of releasing and inserting lithium ions for example, a carbon material such as natural graphite, artificial graphite, graphite carbon fiber or resin calcined carbon, metallic lithium, a lithium alloy or a transition metal with lithium. Oxides with elements are used.
  • the area of the negative electrode active material layer is generally larger than the area of the positive electrode active material layer for the purpose of improving reliability. Furthermore, by arranging the end of the negative electrode active material layer outside the end of the positive electrode active material layer, electric field concentration on the end of the negative electrode active material layer is suppressed and dendrite growth (metal precipitation) is suppressed. it can.
  • batteries 950 and 950a according to a comparative example in which the area of the negative electrode active material layer is larger than the area of the positive electrode active material layer in a plan view will be described.
  • 3 and 4 are schematic cross-sectional views showing an example of a battery according to a comparative example.
  • the battery 950 includes a positive electrode layer 910, a negative electrode layer 920, and a solid electrolyte layer 930 located between the positive electrode layer 910 and the negative electrode layer 920.
  • the positive electrode layer 910 has a current collector 911 and a positive electrode active material layer 912 located between the current collector 911 and the solid electrolyte layer 930.
  • the negative electrode layer 920 has a current collector 921 and a negative electrode active material layer 922 located between the current collector 921 and the solid electrolyte layer 930.
  • the solid electrolyte layer 930 covers the side surfaces of the positive electrode active material layer 912 and the negative electrode active material layer 922, and is in contact with the current collector 911 and the current collector 921.
  • the area of the negative electrode active material layer 922 is larger than the area of the positive electrode active material layer 912, and the end portion of the negative electrode active material layer 922 is located outside the end portion of the positive electrode active material layer 912. To do. As described above, in the battery 950, the area of the negative electrode active material layer 922 is made larger than the area of the positive electrode active material layer 912 to suppress the precipitation of metal. Further, since the solid electrolyte layer 930 exists at the end of the battery 950, even when the current collector 911 and the current collector 921 are peeled off from the end, the positive electrode active material layer 912 and the negative electrode active material layer 922 remain. Exposure is suppressed.
  • the region 2C in which the positive electrode active material layer 912 and the negative electrode active material layer 922 are present functions as a battery.
  • the region 2A in which neither the positive electrode active material layer 912 nor the negative electrode active material layer 922 is present does not function as a battery.
  • the region 2B in which the negative electrode active material layer 922 exists but the positive electrode active material layer 912 does not exist also does not function as a battery.
  • Region 2B is a region corresponding to the area difference between the positive electrode active material layer 912 and the negative electrode active material layer 922. As the region 2B and the region 2A become wider in a plan view, the proportion of the region that does not contribute to power generation in the battery 950 increases, and the volumetric energy density of the battery 950 decreases.
  • the alignment accuracy required in the manufacturing process such as the process of laminating each layer becomes higher, and the required accuracy becomes higher, so that the number of steps such as inspection increases and the equipment cost increases. There is concern about an increase in the number of products.
  • the types and numbers of layers other than the current collectors 911 and 921 existing in the thickness direction are different, respectively. That is, there is one layer of only the solid electrolyte layer 930 in the region 2A, two layers of the negative electrode active material layer 922 and the solid electrolyte layer 930 in the region 2B, and the positive electrode active material layer 912 and the negative electrode in the region 2C. There are three layers, an active material layer 922 and a solid electrolyte layer 930.
  • a good interface between the powder materials for example, an interface with good bondability between the powder materials and low grain boundary resistance
  • the manufacturing process may include a high-pressure pressing process.
  • the types and numbers of the constituent layers are different, and the easiness of compression of each layer is also different. Therefore, when the entire battery 950 is pressed, there is a concern that the degree of compression differs in each region, that is, the battery 950 is not uniformly compressed. For example, in the regions 2A and 2B, the compression is insufficient as compared with the region 2C, and there is a concern that the reliability may be lowered such as peeling of each layer.
  • the region 2A having only the solid electrolyte layer 930 in the thickness direction is a portion that does not particularly contribute to the basic charge / discharge performance of the battery. Therefore, from the viewpoint of improving the volumetric energy density, the region 2A is smaller. Is preferable.
  • the battery 950a shown in FIG. 4 includes a positive electrode layer 910a having a current collector 911a and a positive electrode active material layer 912a, a negative electrode layer 920a having a current collector 921a and a negative electrode active material layer 922a, and a solid electrolyte layer 930a. Be prepared.
  • the battery 950a is different from the battery 950 in that the solid electrolyte layer 930a does not cover the side surface of the negative electrode active material layer 922a.
  • the battery 950a has a region 3A in which the positive electrode active material layer 912 and the negative electrode active material layer 922 do not exist, such as the region 2A, but the positive electrode active material layer 912a does not exist. Therefore, the region 3A does not contribute to power generation, and the same problem as that of the region 2B occurs in the region 3A of the battery 950a.
  • the battery 50 includes the electrode layer 10, the counter electrode layer 20 arranged to face the electrode layer 10, and the solid electrolyte layer 30 located between the electrode layer 10 and the counter electrode layer 20.
  • the electrode layer 10 includes the current collector 11, the electrode active material layer 12 located between the current collector 11 and the solid electrolyte layer 30, and the current collector 11 and the electrode at the end of the electrode layer 10 in a plan view. It has an insulating layer 13 located between the active material layer 12 and the active material layer 12.
  • the electrode active material layer 12 has a region that does not overlap with the insulating layer 13 in a plan view.
  • the side surface of the insulating layer 13 and the side surface of the electrode active material layer 12 are flush with each other. Further, the side surfaces of the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 are flush with each other.
  • the insulating layer 13 exists between the current collector 11 and the electrode active material layer 12, so that even if the current collector 11 is peeled off, the electrode active material is present.
  • the exposure of the layer 12 is suppressed, and damage or short circuit due to contact between the electrode active material layer 12 and other members is less likely to occur. Therefore, the reliability of the battery 50 is improved.
  • each layer may be cut at once.
  • the area of the insulating layer 13 can be easily adjusted to manufacture the battery 50. Therefore, the presence of the insulating layer 13 suppresses the transfer of electrons between the electrode active material layer 12 and the current collector 11, and although the electrode active material layer 12 forms a region in which it is difficult to function as an electrode, the insulating layer is formed. The area can be minimized by adjusting the area of. Therefore, the volumetric energy density of the battery can be increased.
  • the electrode active material layer 12 since the insulating layer 13 is located between the current collector 11 and the electrode active material layer 12, the electrode active material layer 12 also exists on the insulating layer 13. Therefore, even when the high-pressure press treatment is performed, all the regions are uniformly compressed as compared with the case where the solid electrolyte layer is present on the side surface of the electrode active material layer 12, for example, as in the case of the battery according to the above-mentioned comparative example. Easy to be done. Therefore, peeling of each layer of the battery 50 is unlikely to occur, and the reliability and volumetric energy density of the battery 50 can be improved by the high-pressure pressing process.
  • the electrode layer 10 including the electrode active material layer 12 is a positive electrode layer including a positive electrode active material layer
  • the counter electrode layer 20 including the counter electrode active material layer 22 is a negative electrode including a negative electrode active material layer. It is a layer.
  • the positive electrode active material layer in the region 1A shown in FIGS. 1 and 2 is an electrode. Hard to function as.
  • the positive electrode active material layer in region 1B functions as an electrode. Therefore, in the battery 50, the area 1A is difficult to function as a battery, and the area 1B functions as a battery.
  • the positive electrode active material layer and the negative electrode active material layer have the same area in a plan view, but the positive electrode active material layer in the region 1A is difficult to function as an electrode, so that the battery 50 is substantially
  • the effect of reducing the area of the positive electrode active material layer in a plan view can be obtained. That is, in the battery 50, even if the areas of the positive electrode active material layer and the negative electrode active material layer in the plan view are the same, metal precipitation is suppressed.
  • the shape and position of the positive electrode active material layer and the negative electrode active material layer in the plan view are the same and the insulating layer 13 is located at the end of the positive electrode layer (electrode layer 10), it is different from the end of the negative electrode active material layer.
  • the positive electrode active material layer at the opposite position does not easily function as an electrode. As a result, the electric field concentration on the end of the negative electrode active material layer is suppressed, and the dendrite growth at the end is suppressed. Therefore, the reliability of the battery 50 is improved.
  • the battery 50 can be easily manufactured.
  • the battery 50 can be easily manufactured by cutting a laminate in which a positive electrode layer (electrode layer 10), a solid electrolyte layer 30, and a negative electrode layer (counter electrode layer 20) are laminated in a region including an insulating layer 13. Will be done.
  • the method for manufacturing the battery 50 includes an insulating layer laminating step (a), a power generation element laminating step (b), a cutting step (c), and a current collector laminating step (d).
  • a insulating layer laminating step
  • b power generation element laminating step
  • c cutting step
  • d current collector laminating step
  • FIG. 5 is a flowchart for explaining a method of manufacturing a battery according to the present embodiment.
  • the insulating layer 13 is laminated on at least one surface of the current collector 11.
  • the current collector 11 is an example of the first current collector. Specifically, first, the current collector 11 is prepared (step S11 in FIG. 5). Then, the insulating layer 13 is laminated on at least one surface of the prepared current collector 11 (step S12 in FIG. 5). For example, the insulating layer 13 is laminated on the current collector 11 by forming the insulating layer 13 on the upper surface of the current collector 11.
  • FIG. 6A, 6B and 6C are schematic views showing an example of a current collector 11 on which the insulating layer 13 is laminated.
  • FIG. 6A (a) is a top view showing an example of the current collector 11 on which the insulating layer 13 is laminated
  • FIG. 6A (b) is shown by the VIa-VIa line of FIG. 6A (a). It is a cross-sectional view at the position.
  • the insulating layer 13 is formed in a grid pattern, for example, as shown in FIG. 6A.
  • FIG. 6B is a top view showing another example of the current collector 11 on which the insulating layer 13 is laminated. Although the cross-sectional view is not shown in FIG. 6B, the current collector 11 on which the insulating layer 13 shown in FIG.
  • the insulating layer 13 may be formed in a striped shape as shown in FIG. 6B.
  • the insulating layer 13 can be easily formed on the current collector 11.
  • the insulating layer 13 is divided along the elongated direction of the insulating layer 13, so that the battery 50 in which the insulating layer 13 is formed along the end portion of the battery 50 is formed. It can be easily formed.
  • the rectangular areas 1E and 1F shown by the dotted lines correspond to the size of one battery 50.
  • the current collector 11 may be laminated with the insulating layer 13 so that the current collector 11 can be divided into a plurality of batteries in a later manufacturing process.
  • FIG. 6C (a) is a top view showing still another example of the current collector 11 on which the insulating layer 13 is laminated
  • FIG. 6C (b) is FIG. It is sectional drawing at the position shown by the VIc line.
  • a grid-like insulating layer 13 having a plurality of types of patterns may be formed on the current collector 11.
  • the insulating layers 13 are laminated in a grid pattern or a stripe shape, and in the cutting step (c) described later, the insulating layers 13 are divided along the long direction of the grid or stripes of the insulating layer 13, respectively. It is possible to simultaneously manufacture a plurality of batteries 50 having the same shape or different shapes. This improves the manufacturing efficiency of the battery 50.
  • a coating process is used.
  • an insulating substance for example, a metal oxide
  • a high-precision coating method such as a gravure roll method or an inkjet method.
  • the insulating layer 13 can be obtained by applying the paint on the current collector 11 and drying it to evaporate the solvent.
  • the insulating layer 13 can be laminated thinly, so that the insulating layer 13 having a uniform thickness and a thin layer is formed.
  • the insulating layer 13 is not easily affected and the other layers are easily compressed uniformly. Further, by using such a high-precision coating method, the accuracy of the area of the electrode active material layer 12 which is substantially effective as an electrode can be improved.
  • the material of the insulating layer 13 When a resin is used as the material of the insulating layer 13, a solution in which the resin is dissolved or dispersed may be applied onto the current collector 11, or an ultraviolet curable resin or a thermosetting resin is used as the current collector. 11 may be applied and cured.
  • the formation of the insulating layer 13 is not limited to a continuous process such as a roll-to-roll method, and may be a batch process in which the insulating layer 13 is formed for each current collector 11.
  • a general organic solvent or an aqueous solvent for dispersing or dissolving a metal oxide or a resin can be used.
  • the power generation element portion 40 is formed by, for example, the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 being sequentially laminated on the current collector 11.
  • the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are laminated in this order on the current collector 11 on which the insulating layer 13 is laminated (steps S13 and S14 in FIG. 5). And S15).
  • the electrode active material layer 12 is laminated on the current collector 11 on which the insulating layer 13 is laminated so as to cover the insulating layer 13, and the solid electrolyte layer 30 and the counter electrode active material layer 22 are sequentially laminated.
  • the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 laminated in steps S13, S14, and S15 are subjected to a high-pressure press treatment (step S16 in FIG. 5). Further, if necessary, the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 laminated in steps S13, S14, and S15 are heat-treated. As a result, a laminated electrode plate in which the power generation element portion 40 is laminated on the current collector 11 on which the insulating layer 13 is laminated can be obtained.
  • FIG. 7A, 7B and 7C are schematic cross-sectional views showing an example of a laminated electrode plate according to the present embodiment.
  • the power generation element portion 40 in which the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are laminated in this order, and the insulating layer 13 are laminated. It is laminated on the current collector 11.
  • the laminated electrode plate 41 is formed so that the area and position of the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are the same in a plan view. Further, the upper surface of the counter electrode active material layer 22 is exposed.
  • the structure of the laminated electrode plate 41 is not limited to this example.
  • the laminated electrode is such that the side surface and the upper surface of the electrode active material layer 12 are covered with the solid electrolyte layer 30, and the side surface and the upper surface of the solid electrolyte layer 30 are covered with the counter electrode active material layer 22.
  • the plate 41a is formed.
  • the electrode active material layer 12 is covered with the solid electrolyte layer 30, the occurrence of a short circuit due to contact between the electrode active material layer 12 and the counter electrode active material layer 22 is suppressed in the power generation element lamination step (b). ..
  • the laminated electrode plate 41b is formed so that the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 have smaller areas in this order in a plan view.
  • the counter electrode active material layer 22 is located inside the solid electrolyte layer 30, and the solid electrolyte layer 30 is located inside the electrode active material layer. Since the counter electrode active material layer 22 is designed to be located inside the solid electrolyte layer 30, even if the stacking position in the plan view is deviated when the counter electrode active material layer 22 is laminated, the solid electrolyte layer 30 causes the electrode activity. The occurrence of a short circuit due to contact between the material layer 12 and the counter electrode active material layer 22 is suppressed.
  • the laminated electrode plate in the present embodiment may have any structure of the laminated electrode plates 41, 41a and 41b, and the power generation element portion 40 is laminated on the current collector 11 on which the insulating layer 13 is laminated. As long as it has a structure, it may have a structure other than the laminated electrode plates 41, 41a and 41b.
  • the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 constituting the power generation element portion 40 are respectively formed in order by using, for example, a wet coating method.
  • a wet coating method By using the wet coating method, the power generation element portion 40 can be easily laminated on the current collector 11.
  • a coating method such as a die coating method, a doctor blade method, a roll coater method, a screen printing method or an inkjet method is used, but the wet coating method is not limited to these methods.
  • the material forming each of the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 materials for each of the above-mentioned positive electrode active material layer, solid electrolyte layer 30, and negative electrode active material layer. And a solvent are appropriately mixed to obtain a slurry.
  • a known solvent used when producing a known all-solid-state battery for example, a lithium ion all-solid-state battery
  • a known all-solid-state battery for example, a lithium ion all-solid-state battery
  • the slurry of each layer obtained in the coating step is laminated and coated on the current collector 11 on which the insulating layer 13 is formed in the order of the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22. ..
  • the next layer may be laminated after the laminated coating of the layer previously laminated is completed, and the next layer may be applied in the middle of the laminated coating of the previously laminated layer. Laminate coating of layers may be initiated. That is, steps S13, S14 and S15 may be performed in parallel.
  • the slurry of each layer is sequentially coated, and after coating all the layers, for example, a heat treatment for removing the solvent and the binder material and a high-pressure press treatment for promoting the filling of the material for each layer are performed.
  • heat treatment and high pressure press treatment may be carried out for each coating of each layer. That is, step S16 may be performed between each of steps S13, S14, and S15.
  • the heat treatment and the high-pressure press treatment may be performed for each coating lamination of the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22, and the coating of any two layers may be performed. It may be carried out separately after laminating and after laminating one layer of coating, or may be carried out collectively after laminating all three layers of coating.
  • a roll press or a flat plate press is used for the high pressure press treatment. At least one of the heat treatment and the high pressure press treatment may not be performed.
  • the bondability of the interface between the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 is improved and the interface resistance is reduced. Can be done. Further, the bondability of the powder material used for the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 can be improved and the grain boundary resistance can be reduced. That is, a good interface is formed between each layer of the power generation element portion 40 and between the powder materials inside each layer.
  • the insulating layer laminating step (a) and the power generation element laminating step (b) may be performed by a single continuous process such as a roll-to-roll method.
  • FIG. 8 is a diagram for explaining a cutting step (c) in the battery manufacturing method according to the present embodiment.
  • the current collector 11 on which the power generation element portions 40 are laminated that is, the laminated electrode plates 41, 41a or 41b are collectively divided into the insulating layer 13. , Cut in the stacking direction (step S17 in FIG. 5). As shown in FIG.
  • the laminated electrode plate 41 is cut by a blade, a laser beam, or the like at the positions of broken lines C1, C2, C3, and C4 where the insulating layer 13 is arranged, for example.
  • the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30 and the counter electrode active material layer 22 are laminated in this order, and these are collectively laminated. Cut with.
  • the insulating layer 13 is laminated in a grid pattern or a stripe shape having long portions as shown in FIGS.
  • the power generation element portion 40 is laminated.
  • the current collectors 11 are collectively cut along the long direction of the grid or stripe of the insulating layer 13. As a result, the battery 50 in which the insulating layer 13 is located over the entire end portion of the manufactured battery 50 on the cut surface side can be obtained.
  • the current collector 21 is laminated as an additional current collector on the surface perpendicular to the stacking direction of the above (the surface on which the current collector 11 is not laminated) (step S18 in FIG. 5).
  • the additional current collector is an example of the second current collector.
  • the current collector 21 is joined to the upper surface of the exposed counter electrode active material layer 22 of the cut laminated electrode plate 41 by a press treatment or the like.
  • the press process is performed, for example, at a lower pressure than the high pressure press process in step S16. As a result, the battery 50 shown in FIGS. 2 and 3 is obtained.
  • the order of the cutting step (c) and the current collector laminating step (d) may be interchanged. That is, after the current collector 21 is laminated on the surface of the laminated electrode plate 41 before being cut in the cutting step (c), which is opposite to the current collector 11 side, the current collector 21
  • the laminated electrode plate 41 in which the above layers are laminated may be cut in the stacking direction at a position where the insulating layer 13 is divided.
  • a substrate or a housing having conductivity instead of the current collector 21 is on the side opposite to the current collector 11 side of the power generation element portion 40. It may be laminated on the surface.
  • the method for manufacturing the battery 50 includes a cutting step (c) of cutting the position where the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are laminated. Including. As a result, the side surfaces of the current collector 11, the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 are exposed at the ends in the direction perpendicular to the stacking direction. .. After cutting, a sealing member or the like covering the side surface may be arranged to protect the exposed side surface. That is, when the side surface is covered with another member such as a sealing member, the side surface of all the layers may not be exposed.
  • the current collector is included.
  • the ends of the insulating layer 13, the electrode active material layer 12, the solid electrolyte layer 30, the counter electrode active material layer 22, and the current collector 21 are exposed in the direction perpendicular to the stacking direction.
  • the manufacturing method of the battery 50 includes the insulating layer laminating step (a), the power generation element laminating step (b), the cutting step (c), and the current collection.
  • the body laminating step (d) is included.
  • the insulating layer laminating step (a) the insulating layer 13 is laminated on a part of at least one surface of the current collector 11.
  • the power generation element laminating step (b) the power generation element portion 40 in which the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are laminated in this order, and the current collector 11 in which the insulating layer 13 is formed are formed. Is laminated so that the electrode active material layer 12 covers the insulating layer 13.
  • the current collector 11 on which the power generation element portions 40 are laminated is cut in the stacking direction at a position where the insulating layer 13 is divided.
  • the current collector 21 is laminated on the surface of the power generation element portion 40 before or after being cut in the cutting step (c), which is opposite to the current collector 11 side.
  • the current collector 11 on which the power generation element portions 40 are laminated is collectively cut in the stacking direction at the position where the insulating layer 13 is divided. Therefore, it is not necessary to stack each layer of the power generation element portion 40 in the shape after cutting, so that the battery 50 can be easily manufactured.
  • the insulating layer 13 is laminated on the end portion of the current collector 11 in a plan view. Batteries are manufactured. Further, since the electrode active material layer 12 is laminated so as to cover the insulating layer 13 laminated on the current collector 11, at the end of the current collector 11 of the manufactured battery 50, the current collector 11 The insulating layer 13 and the electrode active material layer 12 are laminated in this order. Therefore, even if the current collector 11 is peeled off at the end of the current collector 11 where peeling is likely to occur, the insulating layer 13 is exposed, so that the exposure of the electrode active material layer 12 is suppressed. As a result, damage or short circuit due to contact between the electrode active material layer 12 and other members is less likely to occur. Therefore, a highly reliable battery can be manufactured.
  • the dimensions of the insulating layer 13 can be determined simply by adjusting the cutting position. Therefore, the presence of the insulating layer 13 suppresses the transfer of electrons between the electrode active material layer 12 and the current collector 11, and although the electrode active material layer 12 forms a region in which it is difficult to function as an electrode, the insulating layer is formed. The region can be minimized by adjusting the dimensions of 13. Therefore, the battery 50 having a high volume energy density can be easily manufactured.
  • the electrode active material layer 12 is the positive electrode active material layer and the counter electrode active material layer 22 is the negative electrode active material layer
  • the insulating layer 13 is laminated on the end portion of the current collector 11 to activate the positive electrode. Since the electrons from the current collector 11 do not reach the end of the material layer (electrode active material layer 12), the function of the positive electrode active material layer at the end as an electrode is suppressed. That is, the substantial area of the positive electrode active material layer in a plan view is reduced. Further, since the power generation element portion 40 is cut in the stacking direction, the positive electrode active material layer and the negative electrode active material layer (counterpolar active material layer 22) have the same shape and position in a plan view, and have the same area. ..
  • the positive electrode active material layer has a substantially smaller area (area that functions as an electrode) than the negative electrode active material layer, and is located inside the negative electrode active material layer in a plan view. As a result, the precipitation of metal on the negative electrode active material layer is suppressed as described above. Therefore, the reliability of the manufactured battery 50 is further improved.
  • the current collector 11 for example, the laminated electrode plates 41, 41a or 41b
  • the current collector 11 in which the power generation element portions 40 are laminated is cut at once, and the end portion of the current collector 11 is insulated.
  • a battery in which layers are laminated is obtained. Therefore, it is not necessary to individually stack the positive electrode active material layer and the negative electrode active material layer having different shapes for each cell, so that the battery 50 can be manufactured easily and with high production efficiency.
  • the electrode active material layer 12 is also laminated on the end of the current collector 11, so that the current collector 11 is collected.
  • a battery is manufactured in which the exposure of the electrode active material layer 12 cannot be suppressed when the end portion of the electric body 11 is peeled off, and there is no substantial difference in area between the electrode active material layer 12 and the counter electrode active material layer 22. To. Therefore, even if the battery can be easily manufactured, it is difficult to adopt it as a manufacturing method because the reliability of the battery is lowered.
  • the current collector 11 on which the power generation element portion 40 is laminated is cut at the position where the insulating layer 13 is divided. Therefore, by cutting the current collector 11 in which the power generation element portions 40 are laminated at once, a battery can be easily manufactured, the exposure of the electrode active material layer 12 is suppressed, and the function as an electrode of the electrode active material layer 12 is suppressed. It is possible to reduce the area to be generated and adjust the area of the insulating layer 13. In this way, the current collector stacking step (d) in which the insulating layer 13 is laminated on the current collector 11 and the current collector 11 in which the power generation element portion 40 is laminated are cut at the positions where the insulating layer 13 is divided. By combining with the step (c), it is possible to easily manufacture a battery having a high volumetric energy density while being a highly reliable battery.
  • the battery manufacturing method according to the present embodiment is not limited to the above example, and may be, for example, the manufacturing method shown below.
  • the current collector 11 having the shapes shown in FIGS. 2 and 3 is prepared.
  • the insulating layer 13 is laminated on the current collector 11 in the shape shown in FIGS. 2 and 3 by using a coating process or the like.
  • Each layer of the electrode active material layer 12 and the solid electrolyte layer 30 is laminated in this order on the entire surface of the current collector 11 on which the insulating layer 13 is laminated to obtain an electrode plate.
  • each layer of the counter electrode active material layer 22 and the solid electrolyte layer 30 is laminated in this order on the entire surface of the current collector 21 by laminating coating to obtain a counter electrode plate.
  • the battery 50 is obtained by pressing the laminated body from both sides in the stacking direction using a flat plate press.
  • the battery 50 forms a laminated body by laminating the insulating layer 13 and the power generation element portion 40 on a substrate different from the current collector, and if necessary, the laminated body at a position where the insulating layer 13 is divided. May be formed by cutting the laminated body in the stacking direction and then sandwiching the obtained laminated body between the current collector 11 and the current collector 21.
  • FIG. 9 is a schematic cross-sectional view showing an example of a battery according to this modified example.
  • the battery 51 differs from the battery 50 of the first embodiment in that the side surface of the battery 51 is inclined with respect to the stacking direction.
  • the battery 51 includes an electrode layer 10a, a counter electrode layer 20a arranged to face the electrode layer 10a, and a solid electrolyte layer 30a located between the electrode layer 10a and the counter electrode layer 20a.
  • the electrode layer 10a includes the current collector 11a, the electrode active material layer 12a located between the current collector 11a and the solid electrolyte layer 30a, and the current collector 11a and the electrode active material layer at the end of the electrode layer 10a. It has an insulating layer 13a located between it and 12a.
  • the counter electrode layer 20a has a current collector 21a and a counter electrode active material layer 22a located between the current collector 21a and the solid electrolyte layer 30a.
  • the side surface 51s connecting the two main surfaces which is the surface perpendicular to the stacking direction of the battery 51, is inclined in a direction in which the area of the counter electrode layer 20a in the plan view is larger than the area of the electrode layer 10a with respect to the stacking direction.
  • the side surface 51s is inclined in a direction in which the width of the counter electrode layer 20a is larger than the width of the electrode layer 10a in the cross section when the battery 51 is cut in the stacking direction with respect to the stacking direction.
  • the area of the main surface 22s of the counter electrode active material layer 22a on the electrode active material layer 12a side is larger than the area of the main surface 12s of the electrode active material layer 12a on the counter electrode active material layer 22a side. Further, when viewed from the stacking direction, the main surface 12s is located inside the main surface 22s.
  • the electrode layer 10a including the electrode active material layer 12a is a positive electrode layer including a positive electrode active material layer
  • the counter electrode layer 20a including the counter electrode active material layer 22a is a negative electrode layer including a negative electrode active material layer. is there. In this case, since the area of the negative electrode active material layer in the plan view is larger than the area of the positive electrode active material layer, metal precipitation is suppressed in the battery 50a.
  • the exposed surface of the solid electrolyte layer 30 becomes large, and the electrode active material layer 12a and the counter electrode active material layer 22a on the side surface 51s become large. The distance to and is longer. Therefore, the electrode active material layer 12a and the counter electrode active material layer 22a are less likely to come into contact with each other, and a short circuit is suppressed.
  • the side surface 51s of the battery 51 all the side surfaces 51s including the side surface 51s (not shown) are inclined in the stacking direction, and the area of the main surface 22s is larger than the area of the main surface 12s.
  • the side surfaces 51s of the battery 51 may not have all the side surfaces 51s inclined with respect to the stacking direction, and at least one side surface 51s may be inclined with respect to the stacking direction.
  • FIG. 10 is a schematic cross-sectional view showing another example of the battery according to this modified example.
  • the battery 52 includes an electrode layer 10b, a counter electrode layer 20b, and a solid electrolyte layer 30b.
  • the electrode layer 10b has a current collector 11b, an electrode active material layer 12b, and an insulating layer 13b.
  • the counter electrode layer 20b has a current collector 21b and a counter electrode active material layer 22b.
  • one side surface 52s is inclined in a direction in which the area of the counter electrode layer 20b in a plan view is larger than the area of the electrode layer 10b with respect to the stacking direction.
  • the batteries 51 and 52 are manufactured, for example, by cutting the battery 50 according to the first embodiment in a stacking direction and an inclined direction. Further, the batteries 51 and 52 may be manufactured by cutting in the stacking direction and the inclined direction in the cutting step (c) in the manufacturing method of the battery 50. That is, the side surfaces 51s and 52s may be cut surfaces. The shape of the cut surface is trapezium in the case of the battery 51 and rectangular in the case of the battery 52.
  • FIG. 11 is a diagram for explaining a cutting step (c) in the battery manufacturing method according to the present modification.
  • the batteries 51 and 52 are manufactured by being cut in a direction inclined by an angle ⁇ from the stacking direction in the above-mentioned cutting step (c).
  • the angle ⁇ may be determined from the width of the formed insulating layer, the target battery characteristics, and the like.
  • the angle ⁇ is, for example, less than 45 degrees.
  • the angle ⁇ may be 30 degrees or less. Further, when the angle ⁇ is zero degree, the battery 50 is manufactured.
  • the thickness of the battery is 0.1 mm and the width of the insulating layer from the side surface of the battery is 0.1 mm, if the angle of the cut surface is larger than 45 degrees, the insulating layer is removed by cutting, so that the insulating layer No effect.
  • the battery according to the second embodiment is a laminated battery in which a single battery is laminated.
  • the differences from the above-described first embodiment will be mainly described, and the description of the common points will be omitted or simplified as appropriate.
  • FIG. 12 is a schematic cross-sectional view showing an example of the battery according to the present embodiment.
  • the battery 100 has a structure in which single batteries having a structure that does not have a current collector 21 in the battery 50 according to the first embodiment are stacked.
  • the battery 100 includes a plurality of batteries 50a and a current collector 21.
  • the battery 50a has a structure including a counter electrode layer 23 that does not have a current collector 21 of the counter electrode layer 20 in the battery 50. That is, the battery 50a is arranged so as to face the electrode layer 10 and the electrode layer 10, and is located between the counter electrode layer 23 composed of the counter electrode active material layer 22 and the electrode layer 10 and the counter electrode layer 23. It includes a solid electrolyte layer 30.
  • the plurality of batteries 50a are laminated so that one of the adjacent batteries 50a, the current collector 11 and the other antipolar active material layer 22 face each other.
  • the function of the current collector 11 is shared by the adjacent batteries 50a.
  • the current collector 21 is laminated on the counter electrode active material layer 22 of the battery 50a which is laminated on the top.
  • the battery 100 becomes a series-stacked battery. As a result, it is possible to realize a series-stacked high-voltage battery 100 that exhibits the same effects as the battery 50 according to the first embodiment.
  • the number of stacked batteries 50a is 5, but it may be 2 or more and 4 or less, or 6 or more.
  • the battery 50b which is a single battery stacked on the top, is composed of the battery 50a and the current collector 21, and has the same laminated structure and shape as the battery 50 according to the first embodiment.
  • the side surface of the battery 100 is, for example, a cut surface. Further, the side surface of the battery 100 is a flat flat surface. In other words, the sides of the plurality of batteries 50a and the current collector 21 are flush with each other. Each layer may be exposed on the side surface of the battery 100, or a sealing member or the like may be provided.
  • FIG. 13 is a schematic cross-sectional view showing another example of the battery according to the present embodiment. As shown in FIG. 13, the battery 100a has a structure in which the side surface of the battery 100 is covered with the sealing member 60. That is, the side surface of each layer constituting the battery 100a is covered with the sealing member 60. As a result, in the battery 100a, the side surfaces of each layer are not exposed, so that the strength of the battery 100a is increased and the reliability of the battery 100a is improved.
  • the sealing member 60 of the battery 100a is formed by, for example, placing the battery 100 so that the side surface of the battery 100 faces upward, and applying the sealing member to the side surface from above with a dispenser or the like.
  • a material of a known sealing member for a battery for example, a lithium ion all-solid-state battery
  • the manufacturing method of the battery 100 is the same as the manufacturing method of the battery 50, that is, the insulating layer laminating step (a), the power generation element laminating step (b), the cutting step (c), and the current collector laminating step (d). including.
  • each step will be described in detail.
  • FIG. 14 is a flowchart for explaining a method of manufacturing a battery according to the present embodiment.
  • a plurality of current collectors 11 are prepared (step S21 in FIG. 14). Then, the insulating layer 13 is laminated only on one surface of each of the plurality of prepared current collectors 11 (step S22 in FIG. 14).
  • steps S21 and S22 the same method as in steps S11 and S12 described above can be used. As a result, for example, as shown in FIGS. 6A, 6B and 6C, a plurality of current collectors 11 on which the insulating layers 13 are laminated can be obtained.
  • the power generation element laminating step (b) includes a first laminated body forming step (ba) and a first laminated body laminating step (bb).
  • the first laminated body forming step (ba) a plurality of current collectors 11 in which the insulating layer 13 is laminated are laminated with the power generation element portion 40 so that the electrode active material layer 12 covers the insulating layer 13.
  • a laminated electrode plate (for example, the laminated electrode plate 41, 41a or 41b shown in FIGS. 7A, 7B and 7C) is formed.
  • the laminated electrode plates 41, 41a and 41b are examples of the first laminated body. Specifically, each layer of the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 is laminated in this order on each of the plurality of current collectors 11 on which the insulating layer 13 is laminated (FIG. 14). Steps S23, S24 and S25). Further, if necessary, the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 laminated in steps S23, S24, and S25 are each subjected to a high-pressure press treatment (step S26 in FIG. 14).
  • steps S23, S24, S25 and S26 the same method as in steps S13, S14, S15 and S16 described above can be used.
  • FIG. 15 is a schematic cross-sectional view showing an example of a multilayer electrode plate according to the present embodiment.
  • FIG. 15 shows a multilayer electrode plate 45 on which the laminated electrode plates 41 are laminated. As shown in FIG.
  • a plurality of counter electrode active material layers 22 of the adjacent laminated electrode plates 41 face the other current collector 11.
  • the laminated electrode plate 41 is laminated. For example, by performing a press process of pressing from both sides in the stacking direction of the plurality of laminated electrode plates 41, the plurality of laminated electrode plates 41 are joined to each other to form the multilayer electrode plate 45.
  • the multilayer electrode plate 45 among the adjacent laminated electrode plates 41, the current collector 11 of the upper laminated electrode plate 41 and the counter electrode active material layer 22 of the lower laminated electrode plate 41 are in contact with each other.
  • the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are subjected to a high-pressure press treatment when the laminated electrode plate 41 is formed, a press treatment is performed when forming the multilayer electrode plate 45. So no high pressure press is needed.
  • step S27 the pressure of the press process for joining the laminated electrode plates 41 to each other is lower than the pressure of the high pressure press process in step S26.
  • the multilayer electrode plate 45 can be formed without destroying the interface formed in the first laminated body forming step (ba).
  • the multilayer electrode plate 45 that is, the current collector 11 in which the power generation element portions 40 are laminated in the power generation element laminating step (b) are collectively divided into the insulating layer 13 in the laminating direction. Cut (step S28 in FIG. 14). As shown in FIG. 15, for example, at the positions of the broken lines C5, C6, C7 and C8 where the insulating layer 13 is arranged, the multilayer electrode plate 45 is cut by a blade, a laser beam or the like.
  • a plurality of laminated electrode plates 41 are laminated, and these are cut at once.
  • an additional current collector is placed on the surface of the multilayer electrode plate 45 after being cut in the cutting step (c) on the surface of the power generation element portion 40 opposite to the current collector 11.
  • the current collectors 21 are laminated (step S29 in FIG. 14). Specifically, in the cut multilayer electrode plate 45, among the plurality of laminated electrode plates 41, the other laminated electrode plates 41 are not laminated on the surface of the power generation element portion 40 opposite to the current collector 11.
  • the current collector 21 is joined to the surface of the laminated electrode plate 41 on the side opposite to the current collector 11 of the power generation element portion 40 by a press process or the like. In the example shown in FIG. 15, the current collector 21 is bonded onto the exposed counter electrode active material layer 22 on the upper surface of the laminated electrode plate 41 laminated on the top. As a result, the battery 100 shown in FIG. 12 is obtained.
  • the order of the cutting step (c) and the current collector laminating step (d) may be interchanged. That is, after the current collector 21 is laminated on the surface of the power generation element portion 40 of the multilayer electrode plate 45 before being cut in the cutting step (c), which is opposite to the current collector 11, the current collector 21 is formed.
  • the laminated multilayer electrode plate 45 may be cut in the stacking direction at a position where the insulating layer 13 is divided.
  • the direct stacking type high voltage battery 100 can be manufactured.
  • the method of manufacturing the battery according to this modification will be described.
  • the method for manufacturing the battery according to the present modification is different from the method for manufacturing the battery according to the second embodiment, and instead of the laminated electrode plate 41, power is generated on the surface of the current collector 11 where the insulating layer 13 is not laminated.
  • the difference is that the element portions 40 form a laminated electrode plate 42 in which the element portions 40 are laminated.
  • the insulating layer laminating step (a) is the same as the insulating layer laminating step (a) (steps S21 and S22 in FIG. 14) according to the second embodiment.
  • the power generation element laminating step (b) in this modification includes a second laminated body forming step (bc) and a second laminated body laminating step (bd).
  • FIG. 16 is a schematic cross-sectional view showing an example of a laminated electrode plate according to this modified example.
  • the insulating layer 13 so that the counter electrode active material layer 22 and the surface of the current collector 11 on which the insulating layer 13 is not laminated face each other.
  • a plurality of laminated electrode plates 42 in which power generation element portions 40 are laminated are formed on each of the plurality of current collectors 11 in which the above are laminated.
  • the laminated electrode plate 42 is an example of the second laminated body.
  • the laminated poles are laminated.
  • the plate 42 is formed.
  • the same method as in steps S15, S14, and S13 described above can be used.
  • a high-pressure press treatment is performed on each of the laminated counter electrode active material layer 22, the solid electrolyte layer 30, and the electrode active material layer 12.
  • the same method as in step S16 described above can be used.
  • heat treatment is performed on each of the laminated electrode active material layer 22, the solid electrolyte layer 30, and the electrode active material layer 12.
  • FIG. 17 is a schematic cross-sectional view showing an example of a multilayer electrode plate according to this modified example. As shown in FIG. 17, in the second laminated body laminating step (bd), a plurality of laminated bodies are laminated so that one electrode active material layer 12 of the adjacent laminated electrode plates 42 covers the other insulating layer 13. The electrode plates 42 are laminated.
  • the plurality of laminated electrode plates 42 are joined to each other to form the multilayer electrode plate 46.
  • the multilayer electrode plate 46 among the adjacent laminated electrode plates 42, the current collector 11 and the insulating layer 13 of the upper laminated electrode plate 42 are in contact with the electrode active material layer 12 of the lower laminated electrode plate 42. ..
  • a coating structure is formed in which the electrode active material layer 12 of the lower laminated electrode plate 42 of the adjacent laminated electrode plates 42 covers the insulating layer 13 of the upper laminated electrode plate 42. Will be done.
  • FIG. 18 is a diagram for explaining a current collector stacking step (d) and a cutting step (c) in the battery manufacturing method according to the present modification.
  • a current collector 11a having an insulating layer 13 laminated as an additional current collector is laminated on the multilayer electrode plate 46.
  • the current collector 11a on which the insulating layer 13 is laminated has, for example, the same shape and material as the current collector 11 on which the insulating layer 13 is laminated, which was formed in the insulating layer laminating step (a).
  • FIG. 18 is a diagram for explaining a current collector stacking step (d) and a cutting step (c) in the battery manufacturing method according to the present modification.
  • the body 11a is laminated. Further, in a plan view, the multilayer electrode plate 46 and the insulating layer 13 are laminated so that the positions of the insulating layer 13 of each of the plurality of laminated electrode plates 42 and the insulating layer 13 laminated on the current collector 11a overlap.
  • the electric body 11a is laminated. Specifically, in the multilayer electrode plate 46, among the plurality of laminated electrode plates 42, the laminated electrode plates 42 in which the other laminated electrode plates 42 are not laminated on the surface of the power generation element portion 40 opposite to the current collector 11.
  • the current collector 11a on which the insulating layer 13 is laminated by a press process or the like is joined to the surface of the power generation element portion 40 of 42 opposite to the current collector 11.
  • the multilayer electrode plate 46 that is, the current collector 11 on which the power generation element portion 40 is laminated is collectively divided into the insulating layer 13. , Cut in the stacking direction. Specifically, as shown in FIG. 18, for example, at the positions of the broken lines C9, C10, C11 and C12 where the insulating layer 13 is arranged, the multi-layer electrode plate 46 on which the current collector 11a is laminated is bladed or Cut with a laser beam or the like. At the positions of the broken lines C9, C10, C11 and C12, a plurality of laminated electrode plates 42 are laminated, and these are cut at once.
  • the battery 101 is a series-stacked battery like the battery 100.
  • the insulating layer 13 laminated on the current collector 11 located at the top or bottom in the stacking direction is exposed.
  • the order of the cutting step (c) and the current collector laminating step (d) may be interchanged.
  • the direct stacking type high voltage battery 101 can be manufactured.
  • the battery manufacturing method according to this modification will be described.
  • the method for manufacturing the battery according to the present modification is different from the method for manufacturing the battery according to the second embodiment in that the power generation element portion 40 is laminated on both sides of the current collector 11 in which the insulating layers 13 are laminated on both sides. Is different.
  • the insulating layers 13 are laminated on both sides of the current collector 11.
  • the positions of the insulating layers 13 laminated on both sides are the same in a plan view.
  • the same method as in steps S11 and S12 described above can be used.
  • the insulating layer 13 is also laminated on the surface of the current collector 11 on which the insulating layer 13 shown in FIGS. 6A, 6B or 6C is laminated, on which the insulating layer 13 is not laminated.
  • FIG. 19 is a schematic cross-sectional view showing an example of a laminated electrode plate having an insulating layer according to this modified example.
  • FIG. 20 is a schematic cross-sectional view showing an example of a laminated electrode plate having no insulating layer according to this modified example.
  • FIG. 21 is a schematic cross-sectional view showing an example of a multilayer electrode plate according to this modified example.
  • the laminated electrode plate 43a is formed by laminating and coating the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 on one surface of the current collector 11 in which the insulating layers 13 are laminated on both sides in this order. To form. That is, the power generation element 40 is laminated on one surface of the current collector 11 in which the insulation layer 13 is laminated on both sides so that the electrode active material layer 12 of the power generation element 40 covers the insulation layer 13. In the laminated electrode plate 43a, a coating structure is formed in which the electrode active material layer 12 covers the insulating layer 13.
  • a current collector 25 having the same plan view shape as the current collector 11 is prepared, and the counter electrode active material layer 22, the solid electrolyte layer 30, and the electrode active material layer 12 are placed on one surface of the current collector 25. Is laminated in this order to form a laminated electrode plate 43b. That is, the power generation element portion 40 is laminated on one surface of the current collector 25 so that the counter electrode active material layer 22 of the power generation element portion 40 faces the current collector 25.
  • the current collector 25 is an example of a third current collector.
  • the same method as in steps S13, S14 and S15 described above can be used. Further, if necessary, the laminated electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22 are each subjected to a high-pressure press treatment. Further, if necessary, heat treatment is performed on each of the laminated electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer 22.
  • the laminated electrode plate 43a and the laminated electrode plate 43b are alternately arranged so that the electrode active material layer 12 of the laminated electrode plate 43b covers the insulating layer 13 of the laminated electrode plate 43a.
  • a multilayer electrode plate 47 is formed.
  • the laminated electrode plates 43a and the laminated electrode plates 43b are alternately laminated so that the positions of the insulating layers 13 of the plurality of laminated electrode plates 43a overlap each other in a plan view.
  • the laminated electrode plate 43a and the laminated electrode plate 43b are joined to form the multilayer electrode plate 47.
  • FIG. 22 is a schematic cross-sectional view showing another example of the laminated electrode plate according to this modified example.
  • the laminated electrode plate 43c shown in FIG. 22 may be formed.
  • the electrode active material layer 12, the solid electrolyte layer 30, and the counter electrode active material layer are provided so that the electrode active material layer 12 covers the insulating layer 13 on both sides of the current collector 11 in which the insulating layers 13 are laminated on both sides. 22 is laminated and coated in this order to form a laminated body in which the power generation element portions 40 are laminated on both surfaces of the current collector 11.
  • each layer may be sequentially laminated and coated on one surface of the current collector 11, and the same may be applied to both surfaces of the current collector 11 at the same time.
  • the layers may be laminated and coated.
  • the laminated electrode plate 43c is formed by laminating the obtained laminated body on the current collector 25.
  • the laminated electrode plate 43c has a structure in which one laminated electrode plate 43a and a laminated electrode plate 43b are laminated, and may be formed by laminating one laminated electrode plate 43a and the laminated electrode plate 43b. ..
  • the multilayer electrode plate 47 is formed by laminating a plurality of laminated electrode plates 43c.
  • the multilayer electrode plate 47 has a structure in which a current collector 11 in which an insulating layer 13 is laminated, two power generation element portions 40, and a current collector 25 are laminated. Further, in the multilayer electrode plate 47, the current collector 11 is sandwiched between two power generation element portions 40 so that the electrode active material layer 12 covers the insulating layer 13 laminated on both sides of the current collector 11, and the insulating layer is formed.
  • the current collector 11 and the current collector 25 on which the 13 is laminated have a structure in which one of the two power generation element portions 40 is laminated so as to sandwich the current collector 11.
  • the current collector 21 is laminated on the opposite side of the two power generation element portions 40 located at the uppermost portion, opposite to the current collector 11.
  • the laminated electrode plates 43a and the laminated electrode plates 43b that are alternately laminated are 3 sets, but may be 1 set or more and 2 sets or less, and 4 sets. It may be the above.
  • the multilayer electrode plate 47 is composed of a set of laminated electrode plates 43a and a laminated electrode plate 43b, the multilayer electrode plate 47 has the same configuration as the laminated electrode plate 43c.
  • the cutting step (c) is performed.
  • the multilayer electrode plate 47 that is, the current collector 11 in which the current collector 25 and the two power generation element portions 40 are laminated in the power generation element stacking step (b) is collectively provided with the insulating layer 13. Cut in the stacking direction at the dividing position.
  • the multilayer electrode plate 47 is cut by a blade, a laser beam, or the like at the positions of the broken lines C13, C14, C15, and C16 where the insulating layer 13 is arranged.
  • a plurality of laminated electrode plates 43a and a plurality of laminated electrode plates 43b are laminated, and these are cut at once.
  • FIG. 23 is a schematic cross-sectional view showing an example of the battery according to the present modification. Through the current collector laminating step (d), the battery 102 shown in FIG. 23 is obtained.
  • the order of the cutting step (c) and the current collector laminating step (d) may be interchanged.
  • the battery 102 includes a plurality of batteries 50c and a current collector 21.
  • the battery 50c is located between the current collector 25, two opposite electrode active material layers 22 located above the current collector 25 and arranged to face each other, and two opposite electrode active material layers 22 so as to face each other.
  • An insulating layer 13 located between the current collector 11 and each of the current collector 11 and the two electrode active material layers 12 and laminated on the end of the current collector 11 in a plan view. Be prepared.
  • the plurality of batteries 50c are laminated so that one of the adjacent batteries 50c, the current collector 25, and the other antipolar active material layer 22 face each other.
  • the functions of the current collector 25 are shared by the adjacent batteries 50c.
  • the current collector 21 is laminated on the counter electrode active material layer 22 of the battery 50c which is laminated on the top.
  • the battery 102 has a structure in which the electrode active material layer 12 is laminated on both sides of the current collector 11, and the counter electrode active material layer 22 is laminated on both sides of the current collector 25. As a result, the battery 102 becomes a parallel laminated type battery.
  • the current collector 21 and the current collector 25 are electrically connected by a lead or the like, and the current collectors 11 are electrically connected to each other by a lead or the like, thereby functioning as a parallel laminated battery. ..
  • the number of stacked batteries 50c is three, but it may be one or more and two or less, or four or more.
  • the portion composed of the current collector 21, the counter electrode active material layer 22, the solid electrolyte layer 30, the electrode active material layer 12, the insulating layer 13, and the current collector 11 located on the upper side is the portion of the first embodiment. It has the same laminated structure and shape as the battery 50 according to the above.
  • the side surface of the battery 102 is a cut surface formed by the above-mentioned manufacturing method. Further, the side surfaces of the plurality of batteries 50b and the current collector 21 are flush with each other. That is, one flat flat surface is formed on the side surface of the battery 102. Each layer may be exposed on the side surface of the battery 102, or a sealing member or the like may be provided.
  • FIG. 24 is a schematic cross-sectional view showing another example of the battery according to the present modification. As shown in FIG. 24, the battery 102a has a structure in which the side surface of the battery 102 is coated with the sealing members 60a and 60b.
  • the side surface of the battery 102 covered by the sealing member 60a and the side surface of the battery 102 covered by the sealing member 60b are side surfaces arranged so as to face each other. It covers the side surface of the battery 102. Further, in the battery 102a, the entire side surface of the battery 102a is not covered with the sealing member 60a or 60b. For example, in order to connect the leads for extracting electricity as described above, the sealing member 60a does not cover the exposed portion of the current collector 25, and the sealing member 60b is a current collector. 11 does not cover the exposed portion.
  • FIG. 25 is a cross-sectional view showing a schematic configuration of the battery according to the present embodiment.
  • the battery 104 includes a plurality of batteries 50 according to the first embodiment, and has a structure in which a plurality of batteries 50 are stacked.
  • the plurality of batteries 50 are laminated so that one electrode layer 10 and the other counter electrode layer 20 of the batteries 50 adjacent to each other in the stacking direction face each other. That is, the battery 104 is a series-stacked battery.
  • the high voltage battery 104 can be realized by using the battery 50 according to the first embodiment.
  • the side surface of the battery 104 is a flat flat surface, in other words, the side surface of each of the plurality of batteries 50 is flush with each other.
  • the plurality of batteries 50 may be stacked so as to be offset in a direction perpendicular to the stacking direction in order to connect leads and the like.
  • the battery 104 is manufactured by stacking a plurality of batteries 50 so that one electrode layer 10 of the batteries 50 adjacent to each other in the stacking direction and the other counter electrode layer 20 face each other, for example. Further, in the laminated electrode plate 41 (see FIG. 7A) before being cut, the current collector 21 is laminated on the side opposite to the current collector 11 of the power generation element portion 40, and the current collector 21 is laminated.
  • the battery 104 may be manufactured by stacking a plurality of electrode plates 41 and then cutting the insulating layer 13 in the stacking direction at a position where the insulating layer 13 is divided.
  • the two current collectors 11 and 21 are adjacent to each other when the batteries 50 are stacked, a battery in which one of the adjacent current collectors 11 and 21 is not present may be used.
  • FIG. 26 is a cross-sectional view showing a schematic configuration of another example of the battery according to this modified example.
  • the battery 105 includes a plurality of batteries 51 according to the first modification of the first embodiment, and has a structure in which the plurality of batteries 51 are stacked.
  • the plurality of batteries 51 are laminated so that one electrode layer 10a and the other counter electrode layer 20a of the batteries 51 adjacent to each other in the stacking direction face each other. That is, the battery 105 is a series-stacked battery.
  • the high voltage battery 105 can be realized by using the battery 51 according to the first modification of the first embodiment.
  • the battery 104 and the battery 105 are series-stacked batteries, but may be parallel-stacked batteries having a structure in which electrode layers or counter electrode layers of adjacent single batteries are laminated so as to face each other.
  • a high-capacity battery can be realized in a parallel-stacked battery.
  • the battery is composed of a current collector, an insulating layer, an electrode active material layer, a solid electrolyte layer, and a counter electrode active material layer, but is not limited to this.
  • a bonding layer or the like for reducing electrical resistance and improving bonding strength may be provided between the layers of the battery as long as the battery characteristics are acceptable.
  • the battery is provided with an insulating layer located between the current collector and the electrode active material layer at the end of the electrode layer, but further, the current is collected at the end of the counter electrode layer.
  • a second insulating layer located between the body and the counter electrode active material layer may be provided.
  • the length of the second insulating layer from the outer periphery of the electrode active material layer in a plan view may be shorter than the length of the insulating layer from the outer periphery of the electrode active material layer.
  • the insulating layer is located on the outer peripheral portion of the electrode layer in a plan view and has a frame shape, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the current collector on the opposite electrode active material layer side of the battery is used. It does not have to be provided.
  • the counter electrode layer may be composed of the counter electrode active material layer.
  • the current collector, the electrode active material layer, the solid electrolyte layer and the counter electrode active material layer have the same shape and position in a plan view, but the present invention is not limited to this. At least one of the current collector, the electrode active material layer, the solid electrolyte layer and the counter electrode active material layer may have different shapes or positions in a plan view.
  • the current collector may have a terminal portion for being connected to a lead or the like, which protrudes from the end portion of the electrode active material layer in a plan view.
  • the current collector may have a region arranged outside the electrode active material layer in a plan view.
  • the power generation element portion is formed by sequentially laminating the electrode active material layer, the solid electrolyte layer, and the counter electrode active material layer on the current collector.
  • the electrode active material layer, the solid electrolyte layer, and the counter electrode active material layer are sequentially laminated on the sheet-shaped substrate to form the power generation element portion, and the formed power generation element portion is formed. May be removed from the substrate and laminated on the current collector.
  • the battery according to the present disclosure can be used as a secondary battery such as an all-solid-state battery used in various electronic devices or automobiles, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示は、体積エネルギー密度の高い電池を容易に製造できる電池の製造方法を提供する。本開示の電池(50)の製造方法は、少なくとも1つの第1集電体(11)の少なくとも一方の面の一部に絶縁層(13)を積層する絶縁層積層工程(a)と、電極活物質層(12)、固体電解質層(30)及び対極活物質層(22)がこの順で積層された少なくとも1つの発電要素部(40)と、絶縁層(13)が形成された少なくとも1つの第1集電体(11)とを、電極活物質層(12)が絶縁層(13)を被覆するように積層する発電要素積層工程(b)と、少なくとも1つの発電要素部(40)が積層された少なくとも1つの第1集電体(11)を一括で、絶縁層(13)を分割する位置で、積層方向に切断する切断工程(c)と、切断工程(c)において切断される前又は後の少なくとも1つの発電要素部(40)の少なくとも1つの第1集電体(11)側とは反対側に第2集電体(21)を積層する集電体積層工程(d)と、を含む。

Description

電池の製造方法
 本開示は、電池の製造方法に関する。
 特許文献1及び2には、絶縁層を備える電池が開示されている。
 また、特許文献3には、全固体電池の各層を形成する際に、粉末材料を加圧する工程を含む全固体電池の製造方法が開示されている。
国際公開第2012/164642号 特開2016-207286号公報 特開2012-089388号公報
 従来技術においては、電池の体積エネルギー密度の向上及び製造方法の容易化が求められている。そこで、本開示は、体積エネルギー密度の高い電池を容易に製造できる電池の製造方法を提供することを目的とする。
 本開示の一態様に係る電池の製造方法は、少なくとも1つの第1集電体の少なくとも一方の面の一部に絶縁層を積層する絶縁層積層工程(a)と、電極活物質層、固体電解質層及び対極活物質層がこの順で積層された少なくとも1つの発電要素部と、前記絶縁層が形成された前記少なくとも1つの第1集電体とを、前記電極活物質層が前記絶縁層を被覆するように積層する発電要素積層工程(b)と、前記少なくとも1つの発電要素部が積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層を分割する位置で、積層方向に切断する切断工程(c)と、前記切断工程(c)において切断される前又は後の前記少なくとも1つの発電要素部の前記少なくとも1つの第1集電体側とは反対側に第2集電体を積層する集電体積層工程(d)と、を含む。
 本開示によれば、体積エネルギー密度の高い電池を容易に製造することができる。
図1は、実施の形態1に係る電池の例を示す概略上面図である。 図2は、図1のII-II線で示される位置での断面図である。 図3は、比較例に係る電池の例を示す概略断面図である。 図4は、比較例に係る電池の別の例を示す概略断面図である。 図5は、実施の形態1に係る電池の製造方法を説明するためのフローチャートである。 図6Aは、実施の形態1に係る絶縁層が積層された集電体の例を示す概略図である。 図6Bは、実施の形態1に係る絶縁層が積層された集電体の別の例を示す概略図である。 図6Cは、実施の形態1に係る絶縁層が積層された集電体の別の例を示す概略図である。 図7Aは、実施の形態1に係る積層極板の例を示す概略断面図である。 図7Bは、実施の形態1に係る積層極板の別の例を示す概略断面図である。 図7Cは、実施の形態1に係る積層極板の別の例を示す概略断面図である。 図8は、実施の形態1に係る電池の製造方法における切断工程(c)を説明するための図である。 図9は、実施の形態1の変形例1に係る電池の例を示す概略断面図である。 図10は、実施の形態1の変形例1に係る電池の別の例を示す概略断面図である。 図11は、実施の形態1の変形例1に係る電池の製造方法における切断工程(c)を説明するための図である。 図12は、実施の形態2に係る電池の例を示す概略断面図である。 図13は、実施の形態2に係る電池の別の例を示す概略断面図である。 図14は、実施の形態2に係る電池の製造方法を説明するためのフローチャートである。 図15は、実施の形態2に係る多層極板の例を示す概略断面図である。 図16は、実施の形態2の変形例1に係る積層極板の例を示す概略断面図である。 図17は、実施の形態2の変形例1に係る多層極板の例を示す概略断面図である。 図18は、実施の形態2の変形例1に係る電池の製造方法における集電体積層工程(d)及び切断工程(c)を説明するための図である。 図19は、実施の形態2の変形例2に係る絶縁層を有する積層極板の例を示す概略断面図である。 図20は、実施の形態2の変形例2に係る絶縁層を有さない積層極板の例を示す概略断面図である。 図21は、実施の形態2の変形例2に係る多層極板の例を示す概略断面図である。 図22は、実施の形態2の変形例2に係る積層極板の別の例を示す概略断面図である。 図23は、実施の形態2の変形例2に係る電池の例を示す概略断面図である。 図24は、実施の形態2の変形例2に係る電池の別の例を示す概略断面図である。 図25は、実施の形態3に係る電池の例を示す概略断面図である。 図26は、実施の形態3に係る電池の別の例を示す概略断面図である。
 (本開示の基礎となった知見)
 固体電解質を含む固体電解質層を備える全固体電池等の電池を製造する場合、負極活物質層の面積を正極活物質層の面積よりも大きくすることが一般的である。これは負極活物質層の容量を正極活物質層の容量よりも大きくして、負極活物質層に取り込まれなかった金属イオン由来の金属の析出等を抑制することで電池の性能を安定化させることが目的である。また、負極活物質層の端部への電界集中を抑制して、端部でのデンドライト成長(金属の析出)を抑制することで、電池の信頼性を向上することも目的である。また、負極活物質層の面積を大きくする場合、対向して配置される正極活物質層の周囲には、例えば、固体電解質層が配置される。これにより、剥離しやすい集電体の端部に正極活物質層が接していないことになるため、集電体の端部が剥離した場合であっても正極活物質層の露出を抑制することでも信頼性を高めている。
 しかしながら、上述のように正極活物質層の面積と負極活物質層の面積とを精密に制御して電池を製造することは難しい。又は、信頼性の確保のために、正極活物質層の形成時の寸法精度も考慮に入れて正極活物質層を形成する必要がある。そのため、正極活物質層が小さくなり、電池の体積エネルギー密度が低下するという課題がある。また、正極活物質層の寸法精度を高めるためには、検査等の工程数の増加及び設備費用の増加が懸念される。
 そこで、本開示では、体積エネルギー密度の高い電池を容易に製造できる電池の製造方法を提供する。特に、信頼性の高い電池でありながら、体積エネルギー密度の高い電池を容易に製造できる電池の製造方法を提供する。
 本開示の一態様の概要は、以下の通りである。
 本開示の一態様に係る電池の製造方法は、少なくとも1つの第1集電体の少なくとも一方の面の一部に絶縁層を積層する絶縁層積層工程(a)と、電極活物質層、固体電解質層及び対極活物質層がこの順で積層された少なくとも1つの発電要素部と、前記絶縁層が形成された前記少なくとも1つの第1集電体とを、前記電極活物質層が前記絶縁層を被覆するように積層する発電要素積層工程(b)と、前記少なくとも1つの発電要素部が積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層を分割する位置で、積層方向に切断する切断工程(c)と、前記切断工程(c)において切断される前又は後の前記少なくとも1つの発電要素部の前記少なくとも1つの第1集電体側とは反対側に第2集電体を積層する集電体積層工程(d)と、を含む。
 これにより、発電要素部が積層された第1集電体が、絶縁層を分割する位置で、積層方向に一括で切断される。そのため、発電要素部の各層を切断後の形状で積層する必要がないため、容易に電池を製造できる。
 また、発電要素部が積層された第1集電体が、絶縁層を分割する位置で積層方向に切断されるため、平面視で第1集電体の端部に絶縁層が積層された電池が製造される。また、第1集電体に積層された絶縁層を被覆するように電極活物質層が積層されているため、製造される電池の第1集電体の端部では、第1集電体、絶縁層及び電極活物質層がこの順で積層される。そのため、剥離が生じやすい第1集電体の端部において、第1集電体が剥離しても、絶縁層が露出するため、電極活物質層の露出が抑制される。その結果、電極活物質層と他の部材との接触に起因した破損又は短絡等が生じにくくなる。よって、信頼性の高い電池を製造できる。
 また、切断位置を調整するだけで、絶縁層の寸法を決定できる。そのため、絶縁層が存在することで、電極活物質層と第1集電体との電子の授受が抑制され、電極活物質層が電極として機能しにくい領域が形成されるものの、絶縁層の寸法を調整することで当該領域を最小限に抑制できる。よって、体積エネルギー密度の高い電池を容易に製造できる。
 また、例えば、前記電極活物質層は、正極活物質層であり、前記対極活物質層は、負極活物質層であってもよい。
 これにより、絶縁層が第1集電体の端部に積層されていることにより、正極活物質層の端部に第1集電体からの電子が到達しないため、端部における正極活物質層の電極としての機能が抑制される。つまり、平面視での正極活物質層の実質的な面積が削減され、負極活物質層に比べて、正極活物質層の面積が狭くなりやい。よって、負極活物質層の容量が、正極活物質層の容量よりも実質的に大きくなりやすくなるため、負極活物質層に取り込まれなかった金属イオン由来の金属の析出が抑制され、製造される電池の信頼性をさらに高めることができる。
 また、例えば、前記少なくとも1つの第1集電体は複数の第1集電体を含み、前記絶縁層積層工程(a)において、前記複数の第1集電体それぞれの一方の面にのみ前記絶縁層を積層し、前記発電要素積層工程(b)は、前記電極活物質層が前記絶縁層を被覆するように、前記絶縁層が積層された前記複数の第1集電体それぞれに前記少なくとも1つの発電要素部を積層した複数の第1積層体を形成する第1積層体形成工程(ba)と、平面視で前記複数の第1積層体それぞれの前記絶縁層の位置が重なるように、前記複数の第1積層体を積層する第1積層体積層工程(bb)と、を含み、前記第1積層体積層工程(bb)では、前記複数の第1積層体に含まれ、かつ互いに隣接する2つの第1積層体のうちの一方の前記対極活物質層が、他方の前記第1集電体と対面するように、前記複数の第1積層体を積層し、前記切断工程(c)において、積層された前記複数の第1積層体を一括で、前記絶縁層を分割する位置で、積層方向に切断してもよい。
 これにより、隣り合う第1積層体のうちの、一方の電極活物質層と他方の対極活物質層とが一方の第1集電体を挟むように、複数の第1積層体が積層され、直列積層型の電池が製造される。また、積層された複数の第1積層体を、絶縁層を分割する位置で積層方向に切断することで、複数の第1積層体が一括で切断される。そのため、積層型の電池の形成のために、個別に目的の形状に形成した単電池を積層する必要がなく、電池の製造効率が向上する。
 また、例えば、前記少なくとも1つの第1集電体は複数の第1集電体を含み、前記絶縁層積層工程(a)において、前記複数の第1集電体それぞれの一方の面にのみ前記絶縁層を積層し、前記発電要素積層工程(b)は、前記対極活物質層と、前記第1集電体の前記絶縁層が積層されていない面とが対面するように、前記絶縁層が形成された前記複数の第1集電体それぞれに前記少なくとも1つの発電要素部を積層した複数の第2積層体を形成する第2積層体形成工程(bc)と、平面視で前記複数の第2積層体それぞれの前記絶縁層の位置が重なるように、複数の前記第2積層体を積層する第2積層体積層工程(bd)と、を含み、前記第2積層体積層工程(bd)では、前記複数の第2積層体に含まれ、かつ互いに隣接する2つの第2積層体のうちの一方の前記電極活物質層が、他方の前記絶縁層を被覆するように、前記複数の第2積層体を積層し、前記切断工程(c)において、積層された複数の前記第2積層体を一括で、前記絶縁層を分割する位置で、積層方向に切断してもよい。
 これにより、隣り合う第2積層体のうちの、一方の電極活物質層と他方の対極活物質層とが、他方の第1集電体を挟むように、複数の第2積層体が積層され、直列積層型の電池が製造される。また、積層された複数の第2積層体を、絶縁層を分割する位置で積層方向に切断することで、複数の第2積層体が一括で切断される。そのため、積層型の電池の形成のために、個別に目的の形状に形成した単電池を積層する必要がなく、電池の製造効率が向上する。
 また、例えば、前記少なくとも1つの発電要素部は、2つの発電要素部を含み、前記絶縁層積層工程(a)において、前記少なくとも1つの第1集電体の両面に前記絶縁層を積層し、前記発電要素積層工程(b)において、前記絶縁層が積層された前記少なくとも1つの第1集電体と、前記2つの発電要素部と、第3集電体とを、前記電極活物質層が前記少なくとも1つの第1集電体の両面に積層された前記絶縁層を被覆するように前記2つの発電要素部で前記少なくとも1つの第1集電体を挟み、且つ、前記絶縁層が積層された前記少なくとも1つの第1集電体と前記第3集電体とで前記2つの発電要素部のうちの一方を挟むように積層し、前記切断工程(c)において、前記第3集電体と前記2つの発電要素部とが積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層を分割する位置で、積層方向に切断し、前記集電体積層工程(d)において、前記2つの発電要素部のうちの他方の、前記第1集電体とは反対側に前記第2集電体を積層してもよい。
 これにより、2つの発電要素部の電極活物質層で第1集電体を挟むように、2つの発電要素部と第1集電体とが積層され、並列積層型の電池が製造される。また、2つの発電要素部が積層された第1集電体を、絶縁層を分割する位置で積層方向に切断することで、2つの発電要素部が一括で切断される。そのため、積層型の電池を形成するために、個別に目的の形状に形成した単電池を積層する必要がなく、電池の製造効率が向上する。
 また、例えば、前記発電要素積層工程(b)において、前記少なくとも1つの発電要素部は、前記電極活物質層、前記固体電解質層及び前記対極活物質層が、前記少なくとも1つの第1集電体に順次積層されることによって形成されてもよい。
 これにより、第1集電体上で発電要素部の各層を順次積層するだけで発電要素部が積層された第1集電体が形成されるため、より容易に第1集電体に発電要素部を積層することができる。
 また、例えば、 前記絶縁層積層工程(a)において、平面視で格子状又はストライプ状に、前記少なくとも1つの第1集電体の少なくとも一方の面に前記絶縁層を積層し、前記切断工程(c)において、前記少なくとも1つの発電要素部が積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層に沿って切断してもよい。
 これにより、絶縁層の長尺方向に沿って、絶縁層が分割されるため、電池の端部に沿って絶縁層の形成された電池を容易に形成することができる。
 また、例えば、前記絶縁層は、樹脂を含んでもよい。
 これにより、絶縁層に含まれる樹脂が第1集電体及び電極活物質層に食い込むアンカー効果等によって、絶縁層と第1集電体及び電極活物質層との接合性を高めることができる。
 また、例えば、前記絶縁層は、金属酸化物を含んでもよい。
 これにより、絶縁層が硬くなるため、電池の製造時に絶縁層を薄く形成した場合でも、他の層と積層される際に絶縁層が変形しにくく、均一な厚みの薄層の絶縁層が形成できる。
 また、例えば、前記発電要素積層工程(b)において、湿式コーティング法を用いて前記発電要素部が積層されてもよい。
 このように、電極活物質層、固体電解質層及び対極活物質層を、湿式コーティング法を用いて積層塗工することにより、各層の材料間の界面の接合性等が良好な電池を容易に形成することができる。
 以下、実施の形態について図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本開示を限定する主旨ではない。
 また、本明細書において、平行、面一などの要素間の関係性を示す用語、及び、平坦、矩形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、z軸方向を電池の積層方向としている。また、z軸の正の方向をz軸方向上側とし、z軸の負の方向をz軸方向下側としている。また、本明細書において「平面視」とは、z軸に沿って電池を見た場合を意味する。また、本明細書における「厚み」とは、各層の積層方向の長さである。
 また、本明細書において、電池の構成における「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 (実施の形態1)
 以下、実施の形態1に係る電池について説明する。実施の形態1に係る電池は、電極活物質層及び対極活物質層をそれぞれ1つずつ含む単電池である。
 [構成]
 まず、実施の形態1に係る電池の構成について図面を参照しながら説明する。図1は、本実施の形態に係る電池の例を示す概略上面図である。図2は、図1のII-II線で示される位置での断面図である。
 図1及び図2に示されるように、本実施の形態に係る電池50は、電極層10と、電極層10に対向して配置されている対極層20と、電極層10と対極層20との間に位置する固体電解質層30とを備える。つまり、電池50は、電極層10、固体電解質層30及び対極層20がこの順で積層された構造を有する。
 電極層10は、集電体11と、集電体11と固体電解質層30との間に位置する電極活物質層12と、平面視における電極層10の端部において、集電体11と電極活物質層12との間に位置する絶縁層13とを有する。集電体11と電極活物質層12とは、平面視において、同じ形状及び位置である。
 対極層20は、集電体21と、集電体21と固体電解質層30との間に位置する対極活物質層22とを有する。
 電池50は、例えば、全固体電池である。電池50の側面は、積層方向と平行である。また、電池50の側面は、平坦な平面である。言い換えると、電極層10の側面と対極層20の側面と固体電解質層30の側面とは、段差がない状態であり、同一の平坦な平面に位置する。つまり、電極層10の側面と対極層20の側面と固体電解質層30の側面とは、面一である。なお、側面とは、電池50の各構成要素において、積層方向と垂直な平面を主面とした場合、主面の端部から主面と交差する方向に延びる面である。また、電極層10の積層方向と垂直な方向の端部において、絶縁層13の側面と電極活物質層12の側面と集電体11の側面とが面一である。また、対極層20の積層方向と垂直な方向の端部において、対極活物質層22の側面と集電体21の側面とが面一である。つまり、電池50の積層方向と垂直な方向の端部において、集電体11、絶縁層13、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21のそれぞれの側面は、面一であり、同一の平坦な平面を形成している。これにより、電池50の各層の側面に段差がなく、凹凸が存在しないため、凹凸によって電池として機能しない空間が形成されず、実質的な電池50の体積エネルギー密度が向上する。また、各層を一括で切断する等によって各層の側面を面一にできるため、容易に絶縁層13の面積を調整して電池50を製造できる。
 電池50の側面は、例えば、切断面である。具体的には、電池50の側面は、カッター等の刃で切断されることによって形成される面であり、例えば、微細な溝等の切断痕を有する面である。このように、電池50に切断された切断面が形成されていることで、絶縁層13が形成される位置を調整できるため、電池50の充放電性能に寄与しない部分(絶縁層13の形成されている部分、詳細は後述)の面積を小さくすることができ、体積エネルギー密度を向上させることができる。また、切断面であることで、容易に、電極層10の側面と対極層20の側面と固体電解質層30の側面とを面一にすることができる。なお、切断痕は、研磨等によって平滑化されてもよい。切断面の形状は、制限されないが、電池50の場合には、矩形である。
 また、電池50において、集電体11、絶縁層13、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21それぞれの側面は露出している。これにより、電池50の端部まで、電池50の充放電性能に寄与する各層が存在するため、電池50の体積エネルギー密度が向上する。
 また、電池50において、集電体11、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21は、平面視で同じ形状及び位置である。また、集電体11、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21の平面視形状は矩形であるが、特に制限されず、円形、楕円形又は多角形等であってもよい。
 集電体11は、電極活物質層12及び絶縁層13の下面と接し、電極活物質層12及び絶縁層13の下面を覆っている。平面視での集電体11の端部には、絶縁層13が積層されている。集電体11の厚みは、例えば、5μm以上100μm以下である。
 集電体11の材料としては、公知の材料が用いられうる。集電体11には、例えば、銅、アルミニウム、ニッケル、鉄、ステンレス、白金若しくは金、又は、これらの2種以上の合金などからなる箔状体、板状体又は網目状体などが用いられる。
 電極活物質層12は、集電体11の上方で、集電体11上の絶縁層13を覆うように積層されている。電極活物質層12の下面は、集電体11とも接している。電極活物質層12の上面は、固体電解質層30と接する。電極活物質層12と対極活物質層22とは、固体電解質層30を挟んで対向している。電極活物質層12は、平面視で絶縁層13と重ならない領域を有する。また、平面視において、電極活物質層12と対極活物質層22とは、同じ形状及び位置である。電極活物質層12の厚みは、例えば5μm以上300μm以下である。電極活物質層12に用いられる材料については後述する。
 絶縁層13は、上述のように、集電体11と電極活物質層12との間に位置する。絶縁層13の上面及び平面視での内側の側面は、電極活物質層12と接する。絶縁層13は、平面視で電極層10の端部において電極活物質層12と接している。絶縁層13の側面と電極活物質層12の側面とは面一である。絶縁層13の下面は、集電体11と接する。また、絶縁層13は、平面視において、対極活物質層22と重なる。
 絶縁層13は、図示されている例では、平面視において、電極層10の外周部に位置し、枠状である。つまり、絶縁層13は、電極層10の積層方向と垂直な方向のすべての端部において、集電体11と電極活物質層12との間に位置する。
 絶縁層13は、例えば、樹脂及び金属酸化物の少なくとも一方を含む。樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂又はポリイミド樹脂等が挙げられる。樹脂は、熱硬化性樹脂又は紫外線硬化性樹脂であってもよい。絶縁層13が、樹脂を含むことにより、樹脂が集電体11及び電極活物質層12に食い込むアンカー効果等によって、絶縁層13と集電体11及び電極活物質層12との接合性を高めることができる。金属酸化物としては、例えば、酸化ケイ素、酸化チタン又は酸化アルミ等が挙げられる。絶縁層13が、金属酸化物を含むことにより、絶縁層13が硬くなるため、電池50の製造時に絶縁層13を薄く形成した場合でも、他の層と積層される際に絶縁層13が変形しにくく、均一な厚みの薄層の絶縁層13が形成できる。
 絶縁層13の厚みは、電極活物質層12の厚みよりも薄く、例えば、電極活物質層12の厚みと比較して十分薄い。絶縁層13の厚みは、電極活物質層12の厚みよりも薄いことにより、電極活物質層12等の積層時に高圧プレス処理を行う場合であっても、絶縁層13の影響を小さくできるため、電極活物質層12等が均一に圧縮されやすくなる。絶縁層13の厚みは、電極活物質層12等の積層時に高圧プレス処理を行う場合であっても、電極活物質層12等が均一に圧縮されやすくなる観点から、例えば、5μm以下である。絶縁層13の厚みは、電池特性の観点から、2μm以下であってもよく、1μm以下であってもよい。絶縁層13は、例えば、完全に絶縁性であるが、求められる電池特性によっては、絶縁層13の構成材料及び厚みによって僅かに導電性を有していてもよい。
 また、絶縁層13は、発電に寄与する有効面積の観点、すなわち体積エネルギー密度の観点から、例えば、平面視における、電極活物質層12の外周からの長さが、1mm以下の領域に位置する。また、絶縁層13が枠状又はライン状等で形成されている場合の絶縁層13の幅は、体積エネルギー密度の観点から、例えば、1mm以下であり、0.5mm以下であってもよく、0.1mm以下であってもよい。絶縁層13の幅は、例えば、求められる電池特性によって変更される。
 集電体21は、対極活物質層22の上面と接し、対極活物質層22の上面を覆っている。集電体21の厚みは、例えば、5μm以上100μm以下である。集電体21の材料としては、上述の集電体11の材料が用いられうる。
 対極活物質層22は、固体電解質層30上に積層され、電極活物質層12と対向して配置されている。対極活物質層22の上面は、集電体21と接する。対極活物質層22の厚みは、例えば5μm以上300μm以下である。対極活物質層22に用いられる材料については後述する。
 固体電解質層30は、電極活物質層12と対極活物質層22との間に位置する。固体電解質層30の厚みは、例えば5μm以上150μm以下である。
 固体電解質層30は、少なくとも固体電解質を含み、必要に応じて、バインダー材料を含んでいてもよい。固体電解質層30は、リチウムイオン伝導性を有する固体電解質を含んでいてもよい。
 固体電解質としては、リチウムイオン伝導体、ナトリウムイオン伝導体又はマグネシウムイオン伝導体など公知の材料が用いられうる。固体電解質には、例えば、硫化物固体電解質、ハロゲン系固体電解質又は酸化物固体電解質等の固体電解質材料が用いられる。硫化物固体電解質としては、リチウムイオンを伝導できる材料の場合、例えば、硫化リチウム(LiS)及び五硫化二リン(P)からなる合成物が用いられる。また、硫化物固体電解質としては、LiS-SiS、LiS-B又はLiS-GeSなどの硫化物が用いられてもよく、上記硫化物に添加剤としてLiN、LiCl、LiBr、LiPO及びLiSiOのうち少なくとも1種が添加された硫化物が用いられてもよい。
 酸化物固体電解質としては、リチウムイオンを伝導できる材料の場合、例えば、LiLaZr12(LLZ)、Li1.3Al0.3Ti1.7(PO(LATP)又は(La,Li)TiO(LLTO)などが用いられる。
 バインダー材料としては、例えば、エラストマー類が用いられ、ポリフッ化ビニリデン、アクリル樹脂又はセルロース樹脂などの有機化合物が用いられてもよい。
 本実施の形態において、電極活物質層12を備える電極層10及び対極活物質層22を備える対極層20のうち、一方が正極活物質層を備える正極層であり、他方が負極活物質層を備える負極層である。
 正極活物質層は、少なくとも正極活物質を含み、必要に応じて、固体電解質、導電助剤及びバインダー材料のうち少なくとも1つを含んでもよい。
 正極活物質としては、リチウムイオン、ナトリウムイオン又はマグネシウムイオンを吸蔵及び放出(挿入及び脱離、又は、溶解及び析出)できる公知の材料が用いられうる。正極活物質としては、リチウムイオンを離脱及び挿入することができる材料の場合、例えば、コバルト酸リチウム複合酸化物(LCO)、ニッケル酸リチウム複合酸化物(LNO)、マンガン酸リチウム複合酸化物(LMO)、リチウム‐マンガン‐ニッケル複合酸化物(LMNO)、リチウム‐マンガン‐コバルト複合酸化物(LMCO)、リチウム‐ニッケル‐コバルト複合酸化物(LNCO)又はリチウム‐ニッケル‐マンガン‐コバルト複合酸化物(LNMCO)などが用いられる。
 固体電解質としては、上述の固体電解質材料が用いられうる。また、導電助剤としては、例えば、アセチレンブラック、カーボンブラック、グラファイト又はカーボンファイバーなどの導電材料が用いられる。また、バインダー材料としては、上述のバインダー材料が用いられうる。
 負極活物質層は、少なくとも負極活物質を含み、必要に応じて、正極活物質層と同様の固体電解質、導電助剤及びバインダー材料のうち少なくとも1つを含んでもよい。
 負極活物質としては、リチウムイオン、ナトリウムイオン又はマグネシウムイオンを吸蔵及び放出(挿入及び脱離、又は、溶解及び析出)できる公知の材料が用いられうる。負極活物質としては、リチウムイオンを離脱及び挿入することができる材料の場合、例えば、天然黒鉛、人造黒鉛、黒鉛炭素繊維若しくは樹脂焼成炭素などの炭素材料、金属リチウム、リチウム合金又はリチウムと遷移金属元素との酸化物などが用いられる。
 電池を製造する場合、上述のように、信頼性の向上を目的として、平面視において、負極活物質層の面積を正極活物質層の面積よりも大きくすることが一般的である。さらに、負極活物質層の端部を正極活物質層の端部よりも外側に配置することで、負極活物質層の端部への電界集中を抑制してデンドライト成長(金属の析出)を抑制できる。
 ここで、平面視において、負極活物質層の面積が正極活物質層の面積よりも大きい、比較例に係る電池950及び950aについて説明する。図3及び図4は、比較例に係る電池の例を示す概略断面図である。
 図3に示されるように、電池950は、正極層910と、負極層920と、正極層910と負極層920との間に位置する固体電解質層930とを備える。正極層910は、集電体911と、集電体911と固体電解質層930との間に位置する正極活物質層912とを有する。負極層920は、集電体921と、集電体921と固体電解質層930との間に位置する負極活物質層922を有する。固体電解質層930は、正極活物質層912及び負極活物質層922の側面を覆い、集電体911及び集電体921と接している。電池950においては、平面視において、正極活物質層912の面積よりも負極活物質層922の面積が大きく、負極活物質層922の端部が正極活物質層912の端部よりも外側に位置する。このように、電池950では、正極活物質層912の面積よりも負極活物質層922の面積が大きくすることで、金属の析出を抑制している。また、電池950の端部に固体電解質層930が存在するため、端部から集電体911及び集電体921が剥離した場合であっても、正極活物質層912及び負極活物質層922が露出することが抑制される。
 正極活物質層912及び負極活物質層922が存在する領域2Cは、電池として機能する。一方、正極活物質層912及び負極活物質層922がいずれも存在しない領域2Aは、電池として機能しない。また、負極活物質層922が存在するものの、正極活物質層912が存在しない領域2Bも、電池として機能しない。領域2Bは、正極活物質層912と負極活物質層922との面積差に相当する領域である。平面視で領域2B及び領域2Aが広くなるほど、電池950における発電に寄与しない領域の割合が増加することになり、電池950の体積エネルギー密度が低下する。一方、平面視で領域2Bが狭くなるほど、各層を積層する工程等の製造工程で必要とされるアライメント精度が高くなり、要求精度が高くなることに伴う、検査等の工程数の増加及び設備費用の増加が懸念される。
 また、領域2A、2B及び2Cでは、それぞれ厚み方向に存在する集電体911及び921以外の層の種類と数とが異なる。すなわち、領域2Aには固体電解質層930のみの1層が存在し、領域2Bには負極活物質層922及び固体電解質層930の2層が存在し、領域2Cには正極活物質層912、負極活物質層922及び固体電解質層930の3層が存在する。粉体材料で構成される全固体電池では、粉体材料同士の良好な界面(例えば、粉体材料同士の接合性が良く、粒界抵抗が小さい界面)を形成するため、つまり電池の信頼性を向上させるため、また、高充填化して体積エネルギー密度を向上するため、製造工程に高圧プレス処理を含む場合がある。このとき、領域2A、2B及び2Cでは、構成する層の種類と数とが異なり、また各層の圧縮されやすさも異なる。そのため、電池950全体をプレスしたときに各領域において圧縮度が異なる、つまり、均一に圧縮されない懸念がある。例えば、領域2A及び2Bでは、領域2Cと比較して圧縮不足となり、各層の剥がれなどの信頼性の低下の懸念がある。
 つまり、電池950においては、電池950を容易に製造しにくく、且つ、信頼性の向上が不十分になる問題がある。また、厚み方向の層が固体電解質層930のみの領域2Aは、電池の基本的な充放電性能には特に寄与しない部分であるので、体積エネルギー密度を向上させる観点からは、領域2Aは少ない方が好ましい。
 また、図4に示される電池950aは、集電体911a及び正極活物質層912aを有する正極層910aと、集電体921a及び負極活物質層922aを有する負極層920aと、固体電解質層930aを備える。電池950aは、電池950と比べて、固体電解質層930aが負極活物質層922aの側面を被覆していない点で相違している。電池950aは、領域2Aのような正極活物質層912及び負極活物質層922がいずれも存在しない領域は有さないものの、正極活物質層912aが存在しない領域3Aを有する。そのため、領域3Aは、発電に寄与せず、領域2Bと同様の問題が、電池950aの領域3Aにおいても生じる。
 一方、電池50は、上述のように、電極層10と、電極層10に対向して配置されている対極層20と、電極層10と対極層20との間に位置する固体電解質層30とを備える。電極層10は、集電体11と、集電体11と固体電解質層30との間に位置する電極活物質層12と、平面視における電極層10の端部において、集電体11と電極活物質層12との間に位置する絶縁層13とを有する。電極活物質層12は、平面視で絶縁層13と重ならない領域を有する。絶縁層13の側面と電極活物質層12の側面とが面一である。さらには、集電体11、絶縁層13、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21のそれぞれの側面は、面一である。
 これにより、剥離が生じやすい集電体11の端部において、集電体11と電極活物質層12との間に絶縁層13が存在するため、集電体11が剥離しても電極活物質層12の露出が抑制され、電極活物質層12と他の部材との接触に起因した破損又は短絡等が生じにくくなる。よって、電池50の信頼性が向上する。
 集電体11、絶縁層13、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21のそれぞれの側面は、面一であるため、各層を一括で切断する等によって、容易に絶縁層13の面積を調整して電池50を製造できる。そのため、絶縁層13が存在することで、電極活物質層12と集電体11との電子の授受が抑制され、電極活物質層12が電極として機能しにくい領域が形成されるものの、絶縁層の面積を調整することで当該領域を最小限に抑制できる。よって、電池の体積エネルギー密度を高めることができる。
 また、集電体11と電極活物質層12との間に絶縁層13が位置するため、絶縁層13上にも電極活物質層12が存在する。そのため、高圧プレス処理を行う場合であっても、例えば、上述の比較例に係る電池のように電極活物質層12の側面に固体電解質層が存在する場合と比べ、全ての領域が均一に圧縮されやすい。よって、電池50の各層の剥がれなどが生じにくく、高圧プレス処理によって電池50の信頼性及び体積エネルギー密度を向上させることが可能である。
 また、電池50において、例えば、電極活物質層12を備える電極層10は、正極活物質層を備える正極層であり、対極活物質層22を備える対極層20は、負極活物質層を備える負極層である。この場合、絶縁層13に接する正極活物質層(電極活物質層12)には集電体11から直接電子が到達しないため、図1及び図2に示される領域1Aの正極活物質層は電極として機能しにくい。一方、領域1Bの正極活物質層は電極として機能する。そのため、電池50において、領域1Aは電池として機能しにくく、領域1Bは電池として機能する。電池50においては、平面視における正極活物質層及び負極活物質層(対極活物質層22)の面積が同じであるが、領域1Aにおける正極活物質層が電極として機能しにくいため、実質的に正極活物質層の平面視における面積を削減している効果が得られる。つまり、電池50においては、平面視における正極活物質層及び負極活物質層の面積が同じであっても、金属の析出が抑制される。
 また、平面視における正極活物質層及び負極活物質層の形状及び位置が同じであり、絶縁層13が正極層(電極層10)の端部に位置するため、負極活物質層の端部と対向する位置の正極活物質層は電極として機能しにくい。その結果、負極活物質層の端部への電界集中が抑制され、端部でのデンドライト成長が抑制される。よって、電池50の信頼性が向上する。
 さらに、電池50の製造において、実質的な正極活物質層の面積を絶縁層13によって調整可能であるため、正極活物質層及び負極活物質層の位置及び面積を精度良く形成する必要が無い。よって、電池50を容易に製造できる。例えば、正極層(電極層10)と固体電解質層30と負極層(対極層20)とが積層された積層体を、絶縁層13を含む領域で切断することで、電池50は、容易に製造される。
 [製造方法]
 次に、本実施の形態に係る電池の製造方法について説明する。なお、以下で説明する電池50の製造方法は一例であり、電池50の製造方法は、以下の例に限らない。
 電池50の製造方法は、絶縁層積層工程(a)と、発電要素積層工程(b)と、切断工程(c)と、集電体積層工程(d)とを含む。以下、各工程について、詳細に説明する。
 (1)絶縁層積層工程(a)
 まず、絶縁層積層工程(a)について説明する。図5は、本実施の形態に係る電池の製造方法を説明するためのフローチャートである。
 絶縁層積層工程(a)では、集電体11の少なくとも一方の面に絶縁層13を積層する。集電体11は、第1集電体の一例である。具体的には、まず、集電体11を準備する(図5のステップS11)。そして、準備した集電体11の少なくとも一方の面に、絶縁層13を積層する(図5のステップS12)。例えば、集電体11の上面に、絶縁層13を形成することで集電体11に絶縁層13を積層する。
 図6A、図6B及び図6Cは、絶縁層13が積層された集電体11の例を示す概略図である。図6Aの(a)は、絶縁層13が積層された集電体11の例を示す上面図であり、図6Aの(b)は、図6Aの(a)のVIa-VIa線で示される位置での断面図である。絶縁層13は、例えば、図6Aに示されるように、格子状に形成される。また、図6Bは、絶縁層13が積層された集電体11の別の例を示す上面図である。図6Bには、断面図が図示されていないが、図6Bに示される絶縁層13が積層された集電体11は、図6Aの(b)と同様の断面構造である。絶縁層13は、図6Bに示されるようにストライプ状に形成されてもよい。このような、格子又はストライプ等の長尺部分を有する比較的単純な平面視形状に絶縁層13を積層することで、容易に集電体11に絶縁層13を形成することができる。また、後述する切断工程(c)で、絶縁層13の長尺方向に沿って、絶縁層13が分割されることで、電池50の端部に沿って絶縁層13の形成された電池50を容易に形成することができる。図6A及び6Bにおいて、点線で記載されている矩形の領域1E及び1Fは、一つの電池50の大きさに相当する。このように、集電体11は、後の製造工程において、複数の電池に分割できるように、絶縁層13が積層されてもよい。
 また、図6Cの(a)は、絶縁層13が積層された集電体11のさらに別の例を示す上面図であり、図6Cの(b)は、図6Cの(a)のVIc-VIc線で示される位置での断面図である。図6Cに示されるように、複数種類のパターン(例えば、格子間隔)の格子状の絶縁層13が集電体11上に形成されてもよい。
 このように、絶縁層13が格子状又はストライプ状に積層され、後述する切断工程(c)において絶縁層13の格子又はストライプの長尺方向に沿って絶縁層13が分割されることで、それぞれが同じ形状又は異なる形状の複数の電池50を同時に製造することが可能である。これにより、電池50の製造効率が向上する。
 絶縁層13の形成方法については、様々なプロセスが考えられるが、量産性の観点からは、例えば、塗布プロセスが用いられる。例えば、ロールtoロール方式などの連続プロセスで、グラビアロール法又はインクジェット法等の高精度の塗工方法により、絶縁層13の材料として絶縁性物質(例えば、金属酸化物)を溶媒に分散させた塗料を集電体11上に塗布し、乾燥して溶媒を蒸発することで絶縁層13を得ることができる。これにより、絶縁層13を薄く積層することが可能であるため、厚みが均一で薄層の絶縁層13が形成される。そのため、後述する発電要素積層工程(b)で他の層を積層する際に高圧プレス処理を行う場合に、絶縁層13の影響を受けにくく、他の層が均一に圧縮されやすい。また、このような高精度の塗工方法を用いることで、実質的に電極として有効な電極活物質層12の面積の精度が高められる。
 絶縁層13の材料として、樹脂が用いられる場合には、樹脂を溶解又は分散させた溶液が集電体11上に塗布されてもよいし、紫外線硬化性樹脂又は熱硬化性樹脂が集電体11上に塗布されて、硬化処理が行われてもよい。なお、絶縁層13の形成は、ロールtoロール方式などの連続プロセスに限定されず、1枚の集電体11ごとに絶縁層13を形成するバッチ式プロセスであってもよい。
 絶縁層13の形成に用いられる溶媒には、金属酸化物又は樹脂を分散又は溶解させる一般的な有機溶媒又は水系溶媒等が用いられうる。
 (2)発電要素積層工程(b)
 次に発電要素積層工程(b)について説明する。発電要素積層工程(b)では、電極活物質層12、固体電解質層30及び対極活物質層22がこの順で積層された発電要素部40と、絶縁層積層工程(a)において絶縁層13が積層された集電体11とを、電極活物質層12が絶縁層13を被覆するように積層する。このように、発電要素積層工程(b)では、電極活物質層12が絶縁層13を被覆する被覆構造が形成される。発電要素積層工程(b)において、発電要素部40は、例えば、電極活物質層12、固体電解質層30及び対極活物質層22が、集電体11に順次積層されることによって形成される。具体的には、絶縁層13が積層された集電体11に、電極活物質層12、固体電解質層30及び対極活物質層22の各層をこの順で積層する(図5のステップS13、S14及びS15)。例えば、絶縁層13が積層された集電体11上に、絶縁層13を被覆するように電極活物質層12を積層し、さらに固体電解質層30及び対極活物質層22を順次積層する。さらに、必要に応じて、ステップS13、S14及びS15で積層された電極活物質層12、固体電解質層30及び対極活物質層22に高圧プレス処理を行う(図5のステップS16)。また、必要に応じて、ステップS13、S14及びS15で積層された電極活物質層12、固体電解質層30及び対極活物質層22に熱処理を行う。これにより、絶縁層13が積層された集電体11上に、発電要素部40が積層された積層極板が得られる。
 図7A、図7B及び図7Cは、本実施の形態に係る積層極板の例を示す概略断面図である。図7Aに示されるように、積層極板41では、電極活物質層12、固体電解質層30及び対極活物質層22がこの順で積層された発電要素部40が、絶縁層13が積層された集電体11上に積層されている。積層極板41は、電極活物質層12、固体電解質層30及び対極活物質層22それぞれの平面視での面積及び位置が同じになるように形成されている。また、対極活物質層22の上面は露出している。
 積層極板41の構造は、この例に限定されない。例えば、図7Bに示されるように、電極活物質層12の側面及び上面を固体電解質層30が被覆し、固体電解質層30の側面及び上面を対極活物質層22が被覆するように、積層極板41aは形成されている。これにより、電極活物質層12が固体電解質層30で被覆されるため、発電要素積層工程(b)において、電極活物質層12と対極活物質層22との接触による短絡の発生が抑制される。
 また、例えば、図7Cに示されるように、電極活物質層12、固体電解質層30及び対極活物質層22が、この順に平面視で小さい面積になるように、積層極板41bは形成されている。また、平面視において、対極活物質層22は固体電解質層30の内側に位置し、固体電解質層30は電極活物質層の内側に位置する。対極活物質層22が固体電解質層30の内側に位置する設計であるため、対極活物質層22を積層する際に、平面視における積層する位置がずれても、固体電解質層30によって、電極活物質層12と対極活物質層22との接触による短絡の発生が抑制される。
 本実施の形態における積層極板は、積層極板41、41a及び41bのいずれの構造であってもよく、絶縁層13が積層された集電体11上に、発電要素部40が積層された構造であれば、積層極板41、41a及び41b以外の構造であってもよい。
 発電要素部40を構成する電極活物質層12、固体電解質層30及び対極活物質層22は、それぞれ、例えば、湿式コーティング法を用いて順に形成される。湿式コーティング法を用いることにより、容易に発電要素部40を集電体11に積層することができる。湿式コーティング法としては、ダイコート法、ドクターブレード法、ロールコーター法、スクリーン印刷法又はインクジェット法等のコーティング方法が用いられるが、これらの方法に限定されるものではない。
 湿式コーティング法を用いる場合、電極活物質層12、固体電解質層30及び対極活物質層22のそれぞれを形成する材料(上述の正極活物質層、固体電解質層30及び負極活物質層それぞれの材料)と溶媒とを適宜混合してスラリーを得る塗料化工程を行う。
 塗料化工程に用いられる溶媒には、公知の全固体電池(たとえば、リチウムイオン全固体電池)を作製する際に用いられる公知の溶媒が用いられうる。
 塗料化工程で得られた各層のスラリーを、絶縁層13が形成された集電体11に、電極活物質層12、固体電解質層30及び対極活物質層22の順番で積層塗工を実施する。この際、先に積層塗工されている層の積層塗工が終わってから、次の層が積層塗工されてもよく、先に積層塗工されている層の積層塗工途中に、次の層の積層塗工が開始されてもよい。つまり、ステップS13、S14及びS15は、同時並行で行われる場合があってもよい。各層のスラリーを順次塗工し、全ての層の塗工後に、例えば、溶媒及びバインダー材料を除去する熱処理、及び、各層の材料の充填を促進する高圧プレス処理を実施する。なお、各層の塗工ごとに熱処理及び高圧プレス処理を実施してもよい。つまり、ステップS13、S14及びS15それぞれの間にも、ステップS16が行われてもよい。熱処理及び高圧プレス処理は、電極活物質層12、固体電解質層30及び対極活物質層22の塗工積層において、1層の塗工積層ごとに実施されてもよく、いずれか2層の塗工積層後と1層の塗工積層後とに分けて実施されてもよく、3層すべての塗工積層後に一括で実施されてもよい。また、高圧プレス処理には、例えば、ロールプレス又は平板プレス等が用いられる。なお、熱処理及び高圧プレス処理は、少なくとも一方が行われなくてもよい。
 このように積層塗工法を行うことで、集電体11、絶縁層13、電極活物質層12、固体電解質層30及び対極活物質層22の各層の界面の接合性の向上及び界面抵抗の低減ができる。また、電極活物質層12、固体電解質層30及び対極活物質層22に用いられる粉体材料における接合性の向上及び粒界抵抗の低減ができる。すなわち、発電要素部40の各層の間及び各層内部の粉体材料の間において、良好な界面が形成される。
 なお、絶縁層積層工程(a)と発電要素積層工程(b)とは、ロールtoロール方式などの1連の連続プロセスで行われてもよい。
 (3)切断工程(c)及び集電体積層工程(d)
 次に、切断工程(c)及び集電体積層工程(d)について説明する。図8は、本実施の形態に係る電池の製造方法における切断工程(c)を説明するための図である。切断工程(c)では、発電要素積層工程(b)において発電要素部40が積層された集電体11、つまり、積層極板41、41a又は41bを一括で、絶縁層13を分割する位置で、積層方向に切断する(図5のステップS17)。図8に示されるように、積層極板41を、例えば、絶縁層13が配置されている破線C1、C2、C3及びC4の位置で、刃又はレーザ光等によって切断する。破線C1、C2、C3及びC4の位置においては、集電体11、絶縁層13、電極活物質層12、固体電解質層30及び対極活物質層22がこの順で積層されており、これらを一括で切断する。これにより、発電要素部40の各層を切断後の形状で積層する必要がないため、容易に電池50を製造できる。例えば、絶縁層13が、平面視で、図6A、図6B及び図6Cに示されるような長尺部分を有する格子状又はストライプ状に積層されている場合には、発電要素部40が積層された集電体11を一括で、絶縁層13の格子又はストライプの長尺方向に沿って切断する。これにより、製造される電池50の切断面側の端部全域に絶縁層13が位置する電池50が得られる。
 次に、集電体積層工程(d)では、切断工程(c)において切断された後の積層極板41における発電要素部40の集電体11側とは反対側の面(発電要素部40の積層方向に垂直な面のうち集電体11が積層されていない面)に、追加集電体として集電体21を積層する(図5のステップS18)。追加集電体は、第2集電体の一例である。具体的には、切断された積層極板41の露出している対極活物質層22の上面に、プレス処理等によって集電体21を接合する。プレス処理は、例えば、ステップS16における高圧プレス処理よりも低い圧力で行われる。これにより、図2及び図3で示される電池50が得られる。
 なお、切断工程(c)と集電体積層工程(d)とは、順序が入れ替わってもよい。つまり、切断工程(c)において切断される前の積層極板41における発電要素部40の集電体11側とは反対側の面に、集電体21を積層してから、集電体21が積層された積層極板41を、絶縁層13を分割する位置で、積層方向に切断してもよい。また、集電体積層工程(d)では、追加集電体として、集電体21の代わりに導電性を有する基板又は筐体が、発電要素部40の集電体11側とは反対側の面に積層されてもよい。
 このように、電池50の製造方法は、集電体11、絶縁層13、電極活物質層12、固体電解質層30及び対極活物質層22が積層された位置を切断する切断工程(c)を含む。これにより、積層方向と垂直な方向における端部において、集電体11、絶縁層13、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21それぞれの側面が露出する。なお、切断した後、露出した側面を保護するために、側面を被覆する封止部材などを配置してもよい。すなわち、封止部材などの他の部材で側面を被覆する場合には、全ての層の側面が露出しない場合もある。
 このように、集電体11、絶縁層13、電極活物質層12、固体電解質層30及び対極活物質層22が積層された位置を切断する切断工程(c)を含むことにより、集電体11、絶縁層13、電極活物質層12、固体電解質層30、対極活物質層22及び集電体21それぞれの、積層方向と垂直な方向の端部が露出する。
 (4)効果等
 以上のように、本実施の形態に係る電池50の製造方法は、絶縁層積層工程(a)と、発電要素積層工程(b)と、切断工程(c)と、集電体積層工程(d)とを含む。絶縁層積層工程(a)では、集電体11の少なくとも一方の面の一部に絶縁層13を積層する。発電要素積層工程(b)では、電極活物質層12、固体電解質層30及び対極活物質層22がこの順で積層された発電要素部40と、絶縁層13が形成された集電体11とを、電極活物質層12が絶縁層13を被覆するように積層する。切断工程(c)では、発電要素部40が積層された集電体11を、絶縁層13を分割する位置で、積層方向に切断する。集電体積層工程(d)では、切断工程(c)において切断される前又は後の発電要素部40の集電体11側とは反対側の面に集電体21を積層する。
 これにより、発電要素部40が積層された集電体11が、絶縁層13を分割する位置で、積層方向に一括で切断される。そのため、発電要素部40の各層を切断後の形状で積層する必要がないため、容易に電池50を製造できる。
 また、発電要素部40が積層された集電体11が、絶縁層13を分割する位置で積層方向に切断されるため、平面視で集電体11の端部に絶縁層13が積層された電池が製造される。さらに、集電体11に積層された絶縁層13を被覆するように電極活物質層12が積層されているため、製造される電池50の集電体11の端部では、集電体11、絶縁層13及び電極活物質層12がこの順で積層される。そのため、剥離が生じやすい集電体11の端部において、集電体11が剥離しても、絶縁層13が露出するため、電極活物質層12の露出が抑制される。その結果、電極活物質層12と他の部材との接触に起因した破損又は短絡等が生じにくくなる。よって、信頼性の高い電池を製造できる。
 また、切断位置を調整するだけで、絶縁層13の寸法を決定できる。そのため、絶縁層13が存在することで、電極活物質層12と集電体11との電子の授受が抑制され、電極活物質層12が電極として機能しにくい領域が形成されるものの、絶縁層13の寸法を調整することで当該領域を最小限に抑制できる。よって、体積エネルギー密度の高い電池50を容易に製造できる。
 また、電極活物質層12が正極活物質層であり、対極活物質層22が負極活物質層である場合、絶縁層13が集電体11の端部に積層されていることにより、正極活物質層(電極活物質層12)の端部に集電体11からの電子が到達しないため、端部における正極活物質層の電極としての機能が抑制される。つまり、平面視での正極活物質層の実質的な面積が削減される。また、発電要素部40を積層方向に切断しているため、正極活物質層と負極活物質層(対極活物質層22)とは、平面視で同じ形状及び位置であり、面積も同じである。そのため、正極活物質層は、負極活物質層に比べて実質的な面積(電極として機能する面積)が狭くなり、且つ、平面視で負極活物質層の内側に位置する。その結果、上述のように負極活物質層に金属が析出することが抑制される。よって、製造される電池50の信頼性がより向上する。
 また、積層方向に切断されることで、発電要素部40が積層された集電体11(例えば、積層極板41、41a又は41b)が一括で切断され、集電体11の端部に絶縁層が積層された電池が得られる。そのため、面積差をつけた形状の正極活物質層及び負極活物質層を単電池ごとに個別に積層する必要がないため、容易、且つ、生産効率良く電池50を製造できる。
 絶縁層13が無い場合には、発電要素部40が積層された集電体11を一括で切断したとしても、集電体11の端部にも電極活物質層12が積層されるため、集電体11の端部が剥離した際に、電極活物質層12の露出が抑制できない上に、電極活物質層12と対極活物質層22との実質的な面積の差がない電池が製造される。そのため、電池を容易に製造できたとしても、電池の信頼性が低下するため、製造方法として採用しにくい。一方、本実施の形態に係る製造方法においては、上述のように、絶縁層13を分割する位置で、発電要素部40が積層された集電体11を一括で切断する。そのため、発電要素部40が積層された集電体11を一括で切断することで、容易に電池を製造できることに加え、電極活物質層12の露出の抑制、電極活物質層12の電極として機能する面積の削減、及び、絶縁層13の面積の調整が可能である。このように、絶縁層13を集電体11に積層する集電体積層工程(d)と、発電要素部40が積層された集電体11を、絶縁層13を分割する位置で切断する切断工程(c)とを組み合わせることで、信頼性の高い電池でありながら、体積エネルギー密度の高い電池を容易に製造できる。
 (5)その他の製造方法
 本実施の形態に係る電池の製造方法は、上述の例に限定されず、例えば、以下に示す製造方法であってもよい。
 まず、図2及び図3に示される形状の、集電体11を準備する。そして、塗布プロセス等を用いて、図2及び図3に示される形状で、集電体11上に絶縁層13を積層する。絶縁層13が積層された集電体11上の全面に、電極活物質層12及び固体電解質層30の各層をこの順で積層塗工により積層し、電極板を得る。
 次に、図2及び図3に示される形状の、集電体21を準備する。そして、集電体21上の全面に、対極活物質層22及び固体電解質層30の各層をこの順で積層塗工により積層し、対極板を得る。
 次に、得られた電極板と対極板とを、それぞれの固体電解質層30が接するように積層する。積層された積層体を、平板プレスを用いて積層方向の両側からプレスすることにより、電池50が得られる。
 また、電池50は、集電体とは別の基体上に絶縁層13及び発電要素部40を積層することで積層体を形成し、必要に応じて、絶縁層13を分割する位置で積層体を積層方向に切断した後、得られた積層体を集電体11及び集電体21で挟むことで形成されてもよい。
 [変形例1]
 以下では、実施の形態1の変形例1について説明する。なお、以下の実施の形態1の変形例1の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図9は、本変形例に係る電池の例を示す概略断面図である。図9に示されるように、電池51は、実施の形態1の電池50と比較して、電池51の側面が積層方向に対して傾斜している点で相違する。
 電池51は、電極層10aと、電極層10aに対向して配置されている対極層20aと、電極層10aと対極層20aとの間に位置する固体電解質層30aとを備える。
 電極層10aは、集電体11aと、集電体11aと固体電解質層30aとの間に位置する電極活物質層12aと、電極層10aの端部において、集電体11aと電極活物質層12aとの間に位置する絶縁層13aとを有する。対極層20aは、集電体21aと、集電体21aと固体電解質層30aとの間に位置する対極活物質層22aとを有する。
 電池51の積層方向に垂直な面である2つの主面を繋ぐ側面51sは、積層方向に対して、平面視における対極層20aの面積が電極層10aの面積よりも大きくなる方向に傾斜している。言い換えると、側面51sは、積層方向に対して、電池51を積層方向に切断した場合の断面において対極層20aの幅が電極層10aの幅よりも大きくなる方向に傾斜している。つまり、電池51において、対極活物質層22aの電極活物質層12a側の主面22sの面積が、電極活物質層12aの対極活物質層22a側の主面12sの面積よりも大きい。また、積層方向から見た場合に、主面12sは、主面22sの内側に位置する。電池50aにおいて、例えば、電極活物質層12aを備える電極層10aは、正極活物質層を備える正極層であり、対極活物質層22aを備える対極層20aは、負極活物質層を備える負極層である。この場合、平面視における負極活物質層の面積が正極活物質層の面積よりも大きくなるため、電池50aにおいて、金属の析出が抑制される。
 また、側面51sにおいて、積層方向に対して固体電解質層30の側面も傾斜するため、固体電解質層30の露出している面が大きくなり、側面51sにおける電極活物質層12aと対極活物質層22aとの距離が長くなり。そのため、電極活物質層12aと対極活物質層22aとが接触しにくくなり、短絡が抑制される。
 また、電池51の側面51sは、図示されていない側面51sも含め全ての側面51sが、積層方向に傾斜しており、主面22sの面積が主面12sの面積よりも大きい。なお、電池51の側面51sは、全ての側面51sが積層方向に対して傾斜していなくてもよく、少なくとも1つの側面51sが積層方向に対して傾斜していればよい。
 図10は、本変形例の係る電池の別の例を示す概略断面図である。図10に示されるように、電池52は、電極層10bと、対極層20bと、固体電解質層30bとを備える。電極層10bは、集電体11bと、電極活物質層12bと、絶縁層13bとを有する。対極層20bは、集電体21bと、対極活物質層22bとを有する。電池52において、1つの側面52sが、積層方向に対して、平面視における対極層20bの面積が電極層10bの面積よりも大きくなる方向に傾斜している。
 電池51及び52は、例えば、実施の形態1に係る電池50を積層方向と傾斜する方向に切断することで製造される。また、電池51及び52は、電池50の製造方法における切断工程(c)において、積層方向と傾斜する方向に切断することで製造されてもよい。つまり、側面51s及び52sは切断面であってもよい。切断面の形状は、電池51の場合には台形であり、電池52の場合には矩形である。
 図11は、本変形例に係る電池の製造方法における切断工程(c)を説明するための図である。図11に示されるように、電池51及び52は、上述の切断工程(c)において、積層方向から角度θ傾斜した方向に切断されることで製造される。角度θは、形成されている絶縁層の幅及び目的とする電池特性等から決定すればよい。角度θは、例えば、45度よりも小さい。角度θは、30度以下であってもよい。また、角度θがゼロ度の場合には、電池50が製造される。例えば、電池の厚みを0.1mm、電池の側面からの絶縁層の幅を0.1mmとした場合、切断面の角度が45度より大きいと、絶縁層が切断により取り除かれるため、絶縁層の効果が得られない。
 (実施の形態2)
 次に、実施の形態2に係る電池について説明する。実施の形態2に係る電池は、単電池が積層された積層型の電池である。なお、以下の説明において、上述の実施の形態1との相違点を中心に説明し、共通点の説明を適宜、省略又は簡略化する。
 [構成]
 まず、実施の形態2に係る電池の構成について図面を参照しながら説明する。図12は、本実施の形態に係る電池の例を示す概略断面図である。図12に示されるように、電池100は、実施の形態1に係る電池50における集電体21を有さない構造の単電池が積層された構造を有する。
 電池100は、複数の電池50aと集電体21とを備える。電池50aは、電池50における対極層20の集電体21を有さない対極層23を備える構造である。つまり、電池50aは、電極層10と、電極層10に対向して配置されており、対極活物質層22で構成される対極層23と、電極層10と対極層23との間に位置する固体電解質層30とを備える。
 電池100では、複数の電池50aは、隣り合う電池50aのうちの、一方の集電体11と他方の対極活物質層22とが対面するように積層されている。これにより、集電体11の機能が隣り合う電池50aで共有される構造となる。また、集電体21は、最も上に積層されている電池50aの対極活物質層22上に積層されている。これにより、電池100は、直列積層型の電池となる。これにより、実施の形態1に係る電池50と同様の効果を発現する、直列積層型の高電圧の電池100を実現できる。
 図12に示される例では、積層される電池50aの数は、5つであるが、2つ以上4つ以下であってもよく、6つ以上であってもよい。最も上に積層されている単電池である電池50bは、電池50aと集電体21とで構成され、実施の形態1に係る電池50と同じ積層構成及び形状である。
 電池100の側面は、例えば、切断面である。また、電池100の側面は、平坦な平面である。言い換えると、複数の電池50a及び集電体21の側面は、面一である。電池100の側面において、各層が露出していてもよく、封止部材等が設けられていてもよい。図13は、本実施の形態に係る電池の別の例を示す概略断面図である。図13に示されるように、電池100aは、電池100の側面が封止部材60で覆われている構造を有する。つまり、電池100aを構成する各層の側面は、封止部材60で被覆されている。これにより、電池100aでは、各層の側面が露出することがなくなるため電池100aの強度が増加し、電池100aの信頼性が向上する。
 電池100aの封止部材60は、例えば、電池100の側面が上方向に向くように電池100を置き、上方からディスペンサ等によって封止部材を側面に塗布することで形成される。封止部材60の材料としては、公知の電池(例えばリチウムイオン全固体電池)用の封止部材の材料が用いられうる。
 [製造方法]
 次に、本実施の形態に係る電池の製造方法について説明する。なお、以下で説明する電池100の製造方法は一例であり、電池100の製造方法は、以下の例に限らない。
 電池100の製造方法は、電池50の製造方法と同様に、絶縁層積層工程(a)と、発電要素積層工程(b)と、切断工程(c)と、集電体積層工程(d)とを含む。以下、各工程について、詳細に説明する。
 (1)絶縁層積層工程(a)
 まず、絶縁層積層工程(a)について説明する。図14は、本実施の形態に係る電池の製造方法を説明するためのフローチャートである。
 絶縁層積層工程(a)では、まず、集電体11を複数準備する(図14のステップS21)。そして、準備した複数の集電体11それぞれの一方の面にのみ絶縁層13を積層する(図14のステップS22)。ステップS21及びS22においては、上述のステップS11及びS12と同様の方法が用いられうる。これにより、例えば、図6A、図6B及び図6Cに示されるような、絶縁層13が積層された集電体11が複数得られる。
 (2)発電要素積層工程(b)
 次に、発電要素積層工程(b)について説明する。本実施の形態に係る製造方法においては、発電要素積層工程(b)は、第1積層体形成工程(ba)と、第1積層体積層工程(bb)とを含む。第1積層体形成工程(ba)では、電極活物質層12が絶縁層13を被覆するように、絶縁層13が積層された複数の集電体11それぞれに発電要素部40を積層した複数の積層極板(例えば、図7A、図7B及び図7Cに示される積層極板41、41a又は41b)を形成する。積層極板41、41a及び41bは、第1積層体の一例である。具体的には、絶縁層13が積層された複数の集電体11上のそれぞれに、電極活物質層12、固体電解質層30及び対極活物質層22の各層をこの順で積層する(図14のステップS23、S24及びS25)。さらに、必要に応じて、ステップS23、S24及びS25で積層された電極活物質層12、固体電解質層30及び対極活物質層22それぞれに高圧プレス処理を行う(図14のステップS26)。また、必要に応じて、ステップS23、S24及びS25で積層された電極活物質層12、固体電解質層30及び対極活物質層22それぞれに熱処理を行う。ステップS23、S24、S25及びS26においては、上述のステップS13、S14、S15及びS16と同様の方法が用いられうる。
 次に、第1積層体積層工程(bb)では、平面視で、第1積層体形成工程(ba)で形成された複数の積層極板それぞれの絶縁層13の位置が重なるように、複数の積層極板を積層する(図14のステップS27)。これにより、複数の積層極板が積層された多層極板が形成される。図15は、本実施の形態に係る多層極板の例を示す概略断面図である。図15には、積層極板41が積層された多層極板45が示されている。図15に示されるように、第1積層体積層工程(bb)では、隣り合う積層極板41のうち一方の対極活物質層22が、他方の集電体11と対面するように、複数の積層極板41を積層する。例えば、積層された複数の積層極板41の積層方向両側からプレスするプレス処理を行うことにより、複数の積層極板41同士を接合し、多層極板45を形成する。多層極板45では、隣り合う積層極板41のうち、上側の積層極板41の集電体11と、下側の積層極板41の対極活物質層22とが接している。
 積層極板41を形成する際に、電極活物質層12、固体電解質層30及び対極活物質層22が高圧プレス処理されている場合には、多層極板45を形成する際には、プレス処理では、高圧のプレスは必要とされない。例えば、ステップS27において、積層極板41同士を接合させるためのプレス処理の圧力は、ステップS26における高圧プレス処理の圧力よりも低い。これにより、第1積層体形成工程(ba)において形成された界面を破壊することなく多層極板45を形成することができる。
 (3)切断工程(c)及び集電体積層工程(d)
 次に、切断工程(c)及び集電体積層工程(d)について説明する。切断工程(c)では、多層極板45、つまり、発電要素積層工程(b)において発電要素部40が積層された集電体11を一括で、絶縁層13を分割する位置で、積層方向に切断する(図14のステップS28)。図15に示されるように、例えば、絶縁層13が配置されている破線C5、C6、C7及びC8の位置で、刃又はレーザ光等によって多層極板45を切断する。破線C5、C6、C7及びC8の位置においては、複数の積層極板41が積層されており、これらを一括で切断する。このように、複数の積層極板41を一括で切断することにより、切断後の形状の単電池を製造してから積層する必要がないため、発電要素積層工程(b)において発電要素部40を積層する回数が大幅に削減される。よって、効率的に積層型の電池を製造することができる。
 次に、集電体積層工程(d)では、切断工程(c)で切断された後の多層極板45における発電要素部40の集電体11とは反対側の面に、追加集電体として集電体21を積層する(図14のステップS29)。具体的には、切断された多層極板45において、複数の積層極板41のうち、発電要素部40の集電体11とは反対側の面に他の積層極板41が積層されていない積層極板41における発電要素部40の集電体11とは反対側の面に、プレス処理等によって集電体21を接合する。図15に示される例では、最も上に積層されている積層極板41における上面の露出した対極活物質層22上に、集電体21を接合する。これにより、図12で示される電池100が得られる。
 なお、切断工程(c)と集電体積層工程(d)とは、順序が入れ替わってもよい。つまり、切断工程(c)において切断される前の多層極板45における発電要素部40の集電体11とは反対側の面に、集電体21を積層してから、集電体21が積層された多層極板45を、絶縁層13を分割する位置で、積層方向に切断してもよい。
 このように、本実施の形態に係る電池の製造方法を用いることにより、直接積層型の高電圧の電池100を製造できる。
 [変形例1]
 以下では、実施の形態2の変形例1について説明する。なお、以下の実施の形態2の変形例1の説明において、実施の形態1及び実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 本変形例の係る電池の製造方法について説明する。本変形例に係る電池の製造方法は、実施の形態2に係る電池の製造方法と比較して、積層極板41の代わりに、集電体11の絶縁層13が積層されていない面に発電要素部40が積層された積層極板42を形成する点で相違する。
 本変形例に係る電池の製造方法において、絶縁層積層工程(a)は、実施の形態2に係る絶縁層積層工程(a)(図14のステップS21及びS22)と同じである。
 本変形例における発電要素積層工程(b)は、第2積層体形成工程(bc)と、第2積層体積層工程(bd)とを含む。図16は、本変形例に係る積層極板の例を示す概略断面図である。図16に示されるように、第2積層体形成工程(bc)では、対極活物質層22と、集電体11の絶縁層13が積層されていない面とが対面するように、絶縁層13が積層された複数の集電体11それぞれに発電要素部40を積層した複数の積層極板42を形成する。積層極板42は、第2積層体の一例である。具体的には、集電体11の絶縁層13が積層されていない面に、対極活物質層22、固体電解質層30及び電極活物質層12の各層をこの順で積層することで、積層極板42を形成する。対極活物質層22、固体電解質層30及び電極活物質層12の積層では、上述のステップS15、S14及びS13と同様の方法が用いられうる。さらに、必要に応じて、積層された対極活物質層22、固体電解質層30及び電極活物質層12それぞれに高圧プレス処理が行われる。高圧プレス処理は、上述のステップS16と同様の方法が用いられうる。また、必要に応じて積層された対極活物質層22、固体電解質層30及び電極活物質層12それぞれに熱処理が行われる。
 次に、第2積層体積層工程(bd)では、平面視で、第2積層体形成工程(bc)で形成された複数の積層極板42それぞれの絶縁層13の位置が重なるように、複数の積層極板42を積層する。図17は、本変形例に係る多層極板の例を示す概略断面図である。図17に示されるように、第2積層体積層工程(bd)では、隣り合う積層極板42のうち一方の電極活物質層12が、他方の絶縁層13を被覆するように、複数の積層極板42を積層する。例えば、積層された複数の積層極板42の積層方向両側からプレス処理することにより、複数の積層極板42同士を接合し、多層極板46を形成する。多層極板46では、隣り合う積層極板42のうち、上側の積層極板42の集電体11及び絶縁層13と、下側の積層極板42の電極活物質層12とが接している。これにより、多層極板46では、隣り合う積層極板42のうち、下側の積層極板42の電極活物質層12が、上側の積層極板42の絶縁層13を被覆する被覆構造が形成される。
 次に、集電体積層工程(d)及び切断工程(c)を行う。図18は、本変形例に係る電池の製造方法における集電体積層工程(d)及び切断工程(c)を説明するための図である。図18に示されるように、多層極板46に、追加集電体として絶縁層13が積層された集電体11aを積層する。絶縁層13が積層された集電体11aは、例えば、絶縁層積層工程(a)において形成された、絶縁層13が積層された集電体11と同じ形状及び材料である。図18に示されるように、多層極板46の電極活物質層12が集電体11aに積層された絶縁層13を被覆するように、多層極板46と絶縁層13が積層された集電体11aとを積層する。また、平面視で、複数の積層極板42それぞれの絶縁層13と集電体11aに積層された絶縁層13との位置が重なるように、多層極板46と絶縁層13が積層された集電体11aとを積層する。具体的には、多層極板46において、複数の積層極板42のうち、発電要素部40の集電体11とは反対側の面に他の積層極板42が積層されていない積層極板42における発電要素部40の集電体11とは反対側の面に、プレス処理等によって絶縁層13が積層された集電体11aを接合する。
 次に、切断工程(c)では、発電要素積層工程(b)において、多層極板46、つまり、発電要素部40が積層された集電体11を一括で、絶縁層13を分割する位置で、積層方向に切断する。具体的には、図18に示されるように、例えば、絶縁層13が配置されている破線C9、C10、C11及びC12の位置で、集電体11aが積層された多層極板46を刃又はレーザ光等によって切断する。破線C9、C10、C11及びC12の位置においては、複数の積層極板42が積層されており、これらを一括で切断する。このようにして、単電池が複数積層した積層型の電池101が得られる。電池101は、電池100と同様に直列積層型の電池である。電池101では、積層方向の最も上又は下に位置する集電体11に積層された絶縁層13が露出している。
 なお、切断工程(c)と集電体積層工程(d)とは、順序が入れ替わってもよい。
 このように、本変形例に係る電池の製造方法を用いることにより、直接積層型の高電圧の電池101を製造できる。
 [変形例2]
 以下では、実施の形態2の変形例2について説明する。なお、以下の実施の形態2の変形例2の説明において、実施の形態1及び実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 本変形例に係る電池の製造方法について説明する。本変形例に係る電池の製造方法は、実施の形態2に係る電池の製造方法と比較して、両面に絶縁層13が積層された集電体11の両面に発電要素部40を積層する点で相違する。
 まず、絶縁層積層工程(a)において、集電体11の両面に絶縁層13を積層する。両面に積層される絶縁層13のそれぞれの位置は、平面視で同じである。集電体11に絶縁層13を積層する方法は、上述のステップS11及びS12と同様の方法が用いられうる。例えば、図6A、図6B又は6Cに示される絶縁層13が積層された集電体11の、絶縁層13が積層されていない面にも、絶縁層13が積層される。
 次に、発電要素積層工程(b)を行う。図19は、本変形例に係る絶縁層を有する積層極板の例を示す概略断面図である。図20は、本変形例に係る絶縁層を有さない積層極板の例を示す概略断面図である。図21は、本変形例に係る多層極板の例を示す概略断面図である。本変形例に係る発電要素積層工程(b)においては、例えば、図19に示される絶縁層13を有する積層極板43aと図20に示される絶縁層13を有さない積層極板43bとを形成する。両面に絶縁層13が積層された集電体11の一方の面に、電極活物質層12、固体電解質層30及び対極活物質層22をこの順で積層塗工することにより、積層極板43aを形成する。つまり、発電要素部40の電極活物質層12が絶縁層13を被覆するように、絶縁層13が両面に積層された集電体11の一方の面に発電要素部40を積層する。積層極板43aでは、電極活物質層12が絶縁層13を被覆する被覆構造が形成されている。
 また、例えば、集電体11と平面視形状が同じである集電体25を準備し、集電体25の一方の面に、対極活物質層22、固体電解質層30及び電極活物質層12をこの順で積層塗工することにより、積層極板43bを形成する。つまり、発電要素部40の対極活物質層22が集電体25と対面するように、発電要素部40を集電体25の一方の面に積層する。集電体25は、第3集電体の一例である。
 積層極板43a及び積層極板43bの発電要素部40の積層においては、上述のステップS13、S14及びS15と同様の方法が用いられうる。さらに、必要に応じて、積層された電極活物質層12、固体電解質層30及び対極活物質層22それぞれに高圧プレス処理を行う。また、必要に応じて、積層された電極活物質層12、固体電解質層30及び対極活物質層22それぞれに熱処理を行う。
 次に、図21に示されるように、積層極板43bの電極活物質層12が、積層極板43aの絶縁層13を被覆するように、積層極板43aと積層極板43bとを交互に積層することで、多層極板47を形成する。多層極板47の形成においては、平面視で、複数の積層極板43aそれぞれの絶縁層13の位置が重なるように、積層極板43aと積層極板43bとを交互に積層する。積層された積層極板43aと積層極板43bとを、積層方向の両側からプレス処理を行うことによって、積層極板43aと積層極板43bとが接合され、多層極板47が形成される。
 図22は、本変形例に係る積層極板の別の例を示す概略断面図である。例えば、積層極板43aと積層極板43bとを形成する代わりに、図22に示される積層極板43cを形成してもよい。まず、両面に絶縁層13が積層された集電体11の両面それぞれに、電極活物質層12が絶縁層13を被覆するように、電極活物質層12、固体電解質層30及び対極活物質層22をこの順で積層塗工し、集電体11の両面に発電要素部40が積層された積層体を形成する。電極活物質層12、固体電解質層30及び対極活物質層22の積層において、集電体11の一方の面ごとに各層を順次積層塗工してもよく、集電体11の両面に同時に同じ層を積層塗工してもよい。そして、集電体25に、得られた積層体を積層することで、積層極板43cが形成される。なお、積層極板43cは、1つの積層極板43aと積層極板43bとが積層された構造であり、1つの積層極板43aと積層極板43bとを積層することで形成されてもよい。次いで、積層極板43cを複数積層することで、多層極板47を形成する。
 多層極板47は、絶縁層13が積層された集電体11と、2つの発電要素部40と、集電体25とを積層している構造を有する。また、多層極板47は、電極活物質層12が集電体11の両面に積層された絶縁層13を被覆するように2つの発電要素部40で集電体11を挟み、且つ、絶縁層13が積層された集電体11と集電体25とで、2つの発電要素部40のうちの一方を挟むように積層している構造を有する。詳細は後述するが、最上部に位置する2つの発電要素部40のうち他方の、集電体11とは反対側に、集電体21が積層される。
 なお、本変形例において、多層極板47において、交互に積層される積層極板43aと積層極板43bとは、3組であるが、1組以上2組以下であってもよく、4組以上であってもよい。多層極板47が1組の積層極板43aと積層極板43bとで構成される場合には、多層極板47は、積層極板43cと同じ構成となる。
 次に、切断工程(c)を行う。切断工程(c)では、多層極板47、つまり、発電要素積層工程(b)において集電体25と2つの発電要素部40とが積層された集電体11を一括で、絶縁層13を分割する位置で、積層方向に切断する。図21に示されるように、例えば、絶縁層13が配置されている破線C13、C14、C15及びC16の位置で、多層極板47を刃又はレーザ光等によって切断する。破線C13、C14、C15及びC16の位置においては、複数の積層極板43a及び複数の積層極板43bが積層されており、これらを一括で切断する。
 次に、集電体積層工程(d)を行う。集電体積層工程(d)では、切断工程(c)で切断された後の多層極板47における発電要素部40の集電体11が積層されていない面に、追加集電体として集電体21を積層する。具体的には、切断された多層極板47において、複数の積層極板43aのうち、発電要素部40の集電体11とは反対側の面に積層極板43bが積層されていない積層極板43aにおける発電要素部40の集電体11とは反対側の面に、プレス処理等によって集電体21を接合する。図23は、本変形例に係る電池の例を示す概略断面図である。このような集電体積層工程(d)を経て、図23で示される電池102が得られる。
 なお、切断工程(c)と集電体積層工程(d)とは、順序が入れ替わってもよい。
 図23に示されるように、電池102は、複数の電池50cと集電体21とを備える。電池50cは、集電体25と、集電体25の上方に位置し、対向して配置される2つの対極活物質層22と、2つの対極活物質層22の間に位置し、対向して配置される2つの固体電解質層30と、2つの固体電解質層30の間に位置し、対向して配置される2つの電極活物質層12と、2つの電極活物質層12の間に位置する集電体11と、集電体11と2つの電極活物質層12とのそれぞれの間に位置し、且つ、平面視での集電体11の端部に積層された絶縁層13とを備える。
 電池102では、複数の電池50cは、隣り合う電池50cのうちの、一方の集電体25と他方の対極活物質層22とが対面するように積層されている。これにより、集電体25の機能が隣り合う電池50cで共有される構造となる。また、集電体21は、最も上に積層されている電池50cの対極活物質層22上に積層されている。電池102は、集電体11の両面に電極活物質層12が積層され、集電体25の両面に対極活物質層22が積層される構造を有する。これにより、電池102は、並列積層型の電池となる。電流を取り出すために、集電体21と集電体25とがリード等によって電気的に接続され、集電体11同士がリード等によって電気的に接続されることで、並列積層電池として機能する。図23に示される例では、積層される電池50cの数は、3つであるが、1つ以上2つ以下であってもよく、4つ以上であってもよい。
 電池50cにおいて、上側に位置する集電体21、対極活物質層22、固体電解質層30、電極活物質層12、絶縁層13及び集電体11とで構成される部分は、実施の形態1に係る電池50と同じ積層構成及び形状である。
 電池102の側面は、上述の製造方法によって形成された切断面である。また、複数の電池50b及び集電体21の側面は面一である。つまり、電池102の側面には、平坦な1つの平面が形成されている。電池102の側面において、各層が露出していてもよく、封止部材等が設けられていてもよい。図24は、本変形例に係る電池の別の例を示す概略断面図である。図24に示されるように、電池102aは、電池102の側面が封止部材60a及び60bで被覆されている構造を有する。封止部材60aが被覆する電池102の側面と封止部材60bが被覆する電池102の側面は、対向して配置されている側面である。電池102の側面を被覆している。また、電池102aにおいては、電池102aの側面の全面が封止部材60a又は60bで覆われていない。例えば、上述のように電気を取り出すためのリードを接続するために、封止部材60aは、集電体25が露出している部分を被覆しておらず、封止部材60bは、集電体11が露出している部分を被覆していない。
 このように、本変形例に係る電池の製造方法を用いることにより、実施の形態1に係る電池50と同様の効果を発現する、並列積層型の高容量の電池102を製造できる。
 (実施の形態3)
 以下では、実施の形態3について説明する。なお、以下の実施の形態3の説明において、実施の形態1及び実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 図25は、本実施の形態に係る電池の概略構成を示す断面図である。図25に示されるように、電池104は、実施の形態1の電池50を複数備え、複数の電池50が積層された構造を有する。複数の電池50は、積層方向に隣り合う電池50の一方の電極層10と他方の対極層20とが対面するように積層されている。つまり、電池104は、直列積層型の電池である。これにより、実施の形態1に係る電池50を用いて、高電圧の電池104を実現できる。
 電池104の側面は、平坦な平面であり、言い換えると、複数の電池50それぞれの側面は面一である。なお、複数の電池50は、リード等を接続するために、積層方向と垂直な方向にずれて積層されていてもよい。
 電池104は、例えば、積層方向に隣り合う電池50の一方の電極層10と他方の対極層20とが対面するように、複数の電池50を積層することで製造される。また、切断される前の積層極板41(図7A参照)において、発電要素部40の集電体11とは反対側に、集電体21を積層し、集電体21が積層された積層極板41を複数積層してから、絶縁層13を分割する位置で、積層方向に切断することで電池104が製造されてもよい。
 なお、電池50が積層される場合に、2つの集電体11及び21が隣り合う構造となっているが、隣り合う集電体11及び21のうち、一方が無い電池であってもよい。
 また、図26は、本変形例に係る電池の別の例の概略構成を示す断面図である。図26に示されるように、電池105は、実施の形態1の変形例1に係る電池51を複数備え、複数の電池51が積層された構造を有する。複数の電池51は、積層方向に隣り合う電池51の一方の電極層10aと他方の対極層20aとが対面するように積層されている。つまり、電池105は、直列積層型の電池である。これにより、実施の形態1の変形例1に係る電池51を用いて、高電圧の電池105を実現できる。
 電池104及び電池105は、直列積層型の電池であるが、隣り合う単電池の電極層同士又は対極層同士が対面するように積層された構造を有する並列積層型の電池であってもよい。並列積層型の電池においては、高容量の電池を実現できる。
 このように単電池である電池50又は電池51を積層することで、電池50又は電池51と同様の効果を発現できる、高容量又は高電圧の電池を実現できる。
 (他の実施の形態)
 以上、本開示に係る電池及びその製造方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 上記実施の形態では、電池は、集電体、絶縁層、電極活物質層、固体電解質層及び対極活物質層で構成されていたが、これに限らない。例えば、電池特性が許容される範囲で、電気抵抗の低減及び接合強度の向上等のための接合層等が電池の各層の間に設けられていてもよい。
 また、上記実施の形態では、電池は、電極層の端部において、集電体と電極活物質層との間に位置する絶縁層を備えたが、さらに、対極層の端部において、集電体と対極活物質層との間に位置する第2の絶縁層を備えてもよい。この場合、平面視における、電極活物質層の外周からの第2の絶縁層の長さが、電極活物質層の外周からの絶縁層の長さよりも短くてもよい。これにより、対極活物質層側の集電体の端部が剥離した場合であっても、対極活物質層の露出が抑制されるとともに、平面視で第2の絶縁層の方が絶縁層よりも狭くなるため、電極活物質層の面積が対極活物質層の面積よりも実質的に小さくなる効果も得られる。
 また、上記実施の形態では、絶縁層は、平面視において、電極層の外周部に位置し、枠状であったが、これに限らない。例えば、電池において、電極層の外周部のうち、絶縁層が設けられていない領域が存在してもよい。
 また、例えば、上記実施の形態において、電池を筐体又は基板等で囲み、筐体又は基板の一部が集電体として機能する場合には、電池の対極活物質層側の集電体が備えられていなくてもよい。言い換えると、対極層は、対極活物質層から構成されていてもよい。
 また、上記実施の形態において、集電体、電極活物質層、固体電解質層及び対極活物質層が平面視で同じ形状及び位置であったが、これに限らない。集電体、電極活物質層、固体電解質層及び対極活物質層の少なくとも1つが、平面視で異なる形状又は位置であってもよい。例えば、集電体は、平面視で電極活物質層の端部から突出する、リード等と接続されるための端子部を有していてもよい。言い換えると、集電体は、平面視で電極活物質層の外側に配置される領域を有していてもよい。
 また、上記実施の形態では、発電要素積層工程(b)において、発電要素部は、電極活物質層、固体電解質層及び対極活物質層が、集電体に順次積層されることによって形成されていたが、これに限らない。例えば、発電要素積層工程(b)において、電極活物質層、固体電解質層及び対極活物質層を、シート状の基体上に順次積層することによって発電要素部を形成し、形成された発電要素部を基体から取り外して集電体に積層してもよい。
 また、上記の実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る電池は、例えば、各種の電子機器又は自動車などに用いられる全固体電池などの二次電池として利用されうる。
10、10a、10b 電極層
11、11a、11b、21、21a、21b、25 集電体
12、12a、12b 電極活物質層
12s、22s 主面
13、13a、13b 絶縁層
20、20a、20b、23 対極層
22、22a、22b 対極活物質層
30、30a、30b 固体電解質層
40 発電要素部
41、41a、41b、42、43a、43b、43c 積層極板
45、46、47 多層極板
50、50a、50b、50c、51、52、100、100a、101、102、102a、104、105 電池
51s、52s 側面
60、60a、60b 封止部材

Claims (10)

  1.  少なくとも1つの第1集電体の少なくとも一方の面の一部に絶縁層を積層する絶縁層積層工程(a)と、
     電極活物質層、固体電解質層及び対極活物質層がこの順で積層された少なくとも1つの発電要素部と、前記絶縁層が形成された前記少なくとも1つの第1集電体とを、前記電極活物質層が前記絶縁層を被覆するように積層する発電要素積層工程(b)と、
     前記少なくとも1つの発電要素部が積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層を分割する位置で、積層方向に切断する切断工程(c)と、
     前記切断工程(c)において切断される前又は後の前記少なくとも1つの発電要素部の前記少なくとも1つの第1集電体側とは反対側に第2集電体を積層する集電体積層工程(d)と、
    を含む、
     電池の製造方法。
  2.  前記電極活物質層は、正極活物質層であり、
     前記対極活物質層は、負極活物質層である、
     請求項1に記載の電池の製造方法。
  3.  前記少なくとも1つの第1集電体は複数の第1集電体を含み、
     前記絶縁層積層工程(a)において、前記複数の第1集電体それぞれの一方の面にのみ前記絶縁層を積層し、
     前記発電要素積層工程(b)は、
     前記電極活物質層が前記絶縁層を被覆するように、前記絶縁層が積層された前記複数の第1集電体それぞれに前記少なくとも1つの発電要素部を積層した複数の第1積層体を形成する第1積層体形成工程(ba)と、
     平面視で前記複数の第1積層体それぞれの前記絶縁層の位置が重なるように、前記複数の第1積層体を積層する第1積層体積層工程(bb)と、を含み、
     前記第1積層体積層工程(bb)では、前記複数の第1積層体に含まれ、かつ互いに隣接する2つの第1積層体のうちの一方の前記対極活物質層が、他方の前記第1集電体と対面するように、前記複数の第1積層体を積層し、
     前記切断工程(c)において、積層された前記複数の第1積層体を一括で、前記絶縁層を分割する位置で、積層方向に切断する、
     請求項1又は2に記載の電池の製造方法。
  4.  前記少なくとも1つの第1集電体は複数の第1集電体を含み、
     前記絶縁層積層工程(a)において、前記複数の第1集電体それぞれの一方の面にのみ前記絶縁層を積層し、
     前記発電要素積層工程(b)は、
     前記対極活物質層と、前記第1集電体の前記絶縁層が積層されていない面とが対面するように、前記絶縁層が形成された前記複数の第1集電体それぞれに前記少なくとも1つの発電要素部を積層した複数の第2積層体を形成する第2積層体形成工程(bc)と、
     平面視で前記複数の第2積層体それぞれの前記絶縁層の位置が重なるように、複数の前記第2積層体を積層する第2積層体積層工程(bd)と、を含み、
     前記第2積層体積層工程(bd)では、前記複数の第2積層体に含まれ、かつ互いに隣接する2つの第2積層体のうちの一方の前記電極活物質層が、他方の前記絶縁層を被覆するように、前記複数の第2積層体を積層し、
     前記切断工程(c)において、積層された複数の前記第2積層体を一括で、前記絶縁層を分割する位置で、積層方向に切断する、
     請求項1又は2に記載の電池の製造方法。
  5.  前記少なくとも1つの発電要素部は、2つの発電要素部を含み、
     前記絶縁層積層工程(a)において、前記少なくとも1つの第1集電体の両面に前記絶縁層を積層し、
     前記発電要素積層工程(b)において、
     前記絶縁層が積層された前記少なくとも1つの第1集電体と、前記2つの発電要素部と、第3集電体とを、前記電極活物質層が前記少なくとも1つの第1集電体の両面に積層された前記絶縁層を被覆するように前記2つの発電要素部で前記少なくとも1つの第1集電体を挟み、且つ、前記絶縁層が積層された前記少なくとも1つの第1集電体と前記第3集電体とで前記2つの発電要素部のうちの一方を挟むように積層し、
     前記切断工程(c)において、前記第3集電体と前記2つの発電要素部とが積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層を分割する位置で、積層方向に切断し、
     前記集電体積層工程(d)において、前記2つの発電要素部のうちの他方の、前記第1集電体とは反対側に前記第2集電体を積層する、
     請求項1又は2に記載の電池の製造方法。
  6.  前記発電要素積層工程(b)において、前記少なくとも1つの発電要素部は、前記電極活物質層、前記固体電解質層及び前記対極活物質層が、前記少なくとも1つの第1集電体に順次積層されることによって形成される、
     請求項1から5のいずれか一項に記載の電池の製造方法。
  7.  前記絶縁層積層工程(a)において、
     平面視で格子状又はストライプ状に、前記少なくとも1つの第1集電体の少なくとも一方の面に前記絶縁層を積層し、
     前記切断工程(c)において、前記少なくとも1つの発電要素部が積層された前記少なくとも1つの第1集電体を一括で、前記絶縁層に沿って切断する、
     請求項1から6のいずれか一項に記載の電池の製造方法。
  8.  前記絶縁層は、樹脂を含む、
     請求項1から7のいずれか一項に記載の電池の製造方法。
  9.  前記絶縁層は、金属酸化物を含む、
     請求項1から8のいずれか一項に記載の電池の製造方法。
  10.  前記発電要素積層工程(b)において、
     湿式コーティング法を用いて前記少なくとも1つの発電要素部が積層される、
     請求項1から9のいずれか一項に記載の電池の製造方法。
PCT/JP2020/016400 2019-12-27 2020-04-14 電池の製造方法 WO2021131095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021566783A JPWO2021131095A1 (ja) 2019-12-27 2020-04-14
CN202080072578.1A CN114600269A (zh) 2019-12-27 2020-04-14 电池的制造方法
EP20906641.4A EP4084121A1 (en) 2019-12-27 2020-04-14 Method for manufacturing battery
US17/835,979 US20220302490A1 (en) 2019-12-27 2022-06-09 Method for manufacturing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-238652 2019-12-27
JP2019238652 2019-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/835,979 Continuation US20220302490A1 (en) 2019-12-27 2022-06-09 Method for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2021131095A1 true WO2021131095A1 (ja) 2021-07-01

Family

ID=76572979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016400 WO2021131095A1 (ja) 2019-12-27 2020-04-14 電池の製造方法

Country Status (5)

Country Link
US (1) US20220302490A1 (ja)
EP (1) EP4084121A1 (ja)
JP (1) JPWO2021131095A1 (ja)
CN (1) CN114600269A (ja)
WO (1) WO2021131095A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053103A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 積層型電池の製造方法及び製造装置
JP2012038433A (ja) * 2010-08-03 2012-02-23 Geomatec Co Ltd 薄膜固体二次電池及び薄膜固体二次電池の製造方法
JP2012089388A (ja) 2010-10-21 2012-05-10 Hitachi Zosen Corp 全固体電池の製造方法
WO2012164642A1 (ja) 2011-05-27 2012-12-06 トヨタ自動車株式会社 バイポーラ全固体電池
JP2016207286A (ja) 2015-04-15 2016-12-08 日産自動車株式会社 電極および電池
JP2017168429A (ja) * 2016-03-11 2017-09-21 日立金属株式会社 バイポーラ積層型全固体リチウム二次電池およびその製造方法
WO2019103008A1 (ja) * 2017-11-21 2019-05-31 トヨタ自動車株式会社 全固体電池用電極体とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053103A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 積層型電池の製造方法及び製造装置
JP2012038433A (ja) * 2010-08-03 2012-02-23 Geomatec Co Ltd 薄膜固体二次電池及び薄膜固体二次電池の製造方法
JP2012089388A (ja) 2010-10-21 2012-05-10 Hitachi Zosen Corp 全固体電池の製造方法
WO2012164642A1 (ja) 2011-05-27 2012-12-06 トヨタ自動車株式会社 バイポーラ全固体電池
JP2016207286A (ja) 2015-04-15 2016-12-08 日産自動車株式会社 電極および電池
JP2017168429A (ja) * 2016-03-11 2017-09-21 日立金属株式会社 バイポーラ積層型全固体リチウム二次電池およびその製造方法
WO2019103008A1 (ja) * 2017-11-21 2019-05-31 トヨタ自動車株式会社 全固体電池用電極体とその製造方法

Also Published As

Publication number Publication date
CN114600269A (zh) 2022-06-07
JPWO2021131095A1 (ja) 2021-07-01
US20220302490A1 (en) 2022-09-22
EP4084121A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
CN108963320A (zh) 电池
WO2022172619A1 (ja) 電池および電池の製造方法
US20220302462A1 (en) Battery
US20210391599A1 (en) Laminated battery
CN112424975A (zh) 固体电池用正极、固体电池用正极的制造方法、及固体电池
JP2022124376A (ja) 電池および電池の製造方法
WO2021009959A1 (ja) 電池
WO2021210446A1 (ja) 電池
WO2021149382A1 (ja) 電池
JP7378097B2 (ja) 積層電池
US20230024599A1 (en) Battery
WO2020022111A1 (ja) 固体電池用正極、固体電池用正極の製造方法、および固体電池
WO2021131095A1 (ja) 電池の製造方法
WO2022145120A1 (ja) 電池、積層電池及びその製造方法
WO2022259664A1 (ja) 電池および電池の製造方法
CN116636030A (zh) 电池、层叠电池及其制造方法
WO2022270142A1 (ja) 電池
WO2022270141A1 (ja) 電池及び電池の製造方法
US20240021959A1 (en) Battery and method for manufacturing battery
WO2022270042A1 (ja) 電池の製造方法
WO2023058295A1 (ja) 電池および電池の製造方法
WO2023145223A1 (ja) 電池および電池の製造方法
WO2024062778A1 (ja) 電池およびその製造方法
WO2023053640A1 (ja) 電池および電池の製造方法
US20240154262A1 (en) Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020906641

Country of ref document: EP

Effective date: 20220727