WO2022172612A1 - 電池、電池システムおよび電池の製造方法 - Google Patents

電池、電池システムおよび電池の製造方法 Download PDF

Info

Publication number
WO2022172612A1
WO2022172612A1 PCT/JP2021/047657 JP2021047657W WO2022172612A1 WO 2022172612 A1 WO2022172612 A1 WO 2022172612A1 JP 2021047657 W JP2021047657 W JP 2021047657W WO 2022172612 A1 WO2022172612 A1 WO 2022172612A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
solid electrolyte
active material
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2021/047657
Other languages
English (en)
French (fr)
Inventor
和義 本田
英一 古賀
浩一 平野
覚 河瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180092705.9A priority Critical patent/CN116830343A/zh
Priority to JP2022581226A priority patent/JPWO2022172612A1/ja
Priority to EP21925855.5A priority patent/EP4293741A1/en
Publication of WO2022172612A1 publication Critical patent/WO2022172612A1/ja
Priority to US18/357,849 priority patent/US20240021880A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a battery, a battery system, and a method of manufacturing a battery.
  • Patent Document 1 a step of preparing a bipolar electrode, a step of preparing an electrolyte, and a step of laminating the bipolar electrode and an electrolyte layer or a precursor thereof to obtain a laminate including a single cell layer, and forming a sealing portion on the outer periphery of the cell layer.
  • the electrolyte contains a solvent or a dehydrating agent with a boiling point lower than that of water, and includes a step of reducing the pressure of the electrolyte to a pressure of less than 20 Torr before or simultaneously with the step of forming the seal portion.
  • Patent Document 2 discloses a lithium ion battery in which the solid electrolyte layer has an average porosity of 9% or less.
  • Patent Document 3 discloses reducing the pressure in order to fill the voids in the negative electrode and the microporous separator with a lithium ion conductive polymer solid electrolyte.
  • batteries containing solid electrolytes are also required to have high battery characteristics such as high capacity and excellent charge-discharge cycle characteristics.
  • inorganic solid electrolytes have excellent ionic conductivity, high-capacity batteries containing solid electrolytes can be realized.
  • inorganic solid electrolytes are generally less flexible than, for example, polymer solid electrolytes. Therefore, in order to develop the characteristics of batteries using inorganic solid electrolytes, it is necessary to increase the ionic conductivity of the active material layer, the solid electrolyte layer, and the interface between the active material layer and the solid electrolyte layer, and maintain this even after repeated charging and discharging. In order to do this, it is important to apply an external restraining force from the direction normal to the main surface of the battery.
  • the present disclosure provides a battery or the like that achieves both high battery characteristics and high reliability.
  • a battery in one aspect of the present disclosure includes a positive electrode layer containing a positive electrode active material and a first inorganic solid electrolyte, a negative electrode layer containing a negative electrode active material and a second inorganic solid electrolyte, and the positive electrode layer and the negative electrode layer.
  • a solid electrolyte layer positioned therebetween and containing a third inorganic solid electrolyte, wherein a plurality of voids are present inside the power generating element, and the internal pressure of the plurality of voids is less than 1 atm.
  • a battery system includes a container having an internal space serving as a reduced-pressure environment, and the battery arranged in the internal space.
  • a method for manufacturing a battery in one aspect of the present disclosure includes a positive electrode layer containing a positive electrode active material and a first inorganic solid electrolyte, a negative electrode layer containing a negative electrode active material and a second inorganic solid electrolyte, and the positive electrode layer. a solid electrolyte layer positioned between the negative electrode layer and containing a third inorganic solid electrolyte, wherein at least one of the positive electrode layer, the negative electrode layer and the solid electrolyte layer including a compression step in which the body to be compressed is pressed in a reduced pressure atmosphere.
  • a method for manufacturing a battery is a method for manufacturing a battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer, A compression step is included in which a body to be compressed in which the positive electrode layer and the negative electrode layer are laminated so as to face each other with the solid electrolyte layer interposed therebetween is pressed in a reduced pressure atmosphere.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery according to Comparative Example 1.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery according to Comparative Example 2.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a battery according to Comparative Example 3.
  • FIG. FIG. 5 is a diagram for explaining damage that occurs in a battery according to Comparative Example 3.
  • FIG. 6A is a cross-sectional view showing a schematic configuration of a laminate formed by the method for manufacturing a battery according to Embodiment 1.
  • FIG. 6B is a cross-sectional view showing a schematic configuration of another laminate formed by the battery manufacturing method according to Embodiment 1.
  • FIG. 7A is a cross-sectional view showing a schematic configuration of still another laminate formed by the battery manufacturing method according to Embodiment 1.
  • FIG. 7B is a cross-sectional view showing a schematic configuration of still another laminate formed by the battery manufacturing method according to Embodiment 1.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of still another laminate formed by the battery manufacturing method according to the first embodiment.
  • FIG. 9 is a schematic diagram for explaining a first example of a method of pressing a body to be compressed in a first compression step according to Embodiment 1.
  • FIG. 9 is a schematic diagram for explaining a first example of a method of pressing a body to be compressed in a first compression step according to Embodiment 1.
  • FIG. 9 is a schematic diagram for explaining a first example of a method of pressing a body to be compressed in a first compression
  • FIG. 10A and 10B are schematic diagrams for explaining a first example of a method of pressing the body to be compressed in the second compression step according to Embodiment 1.
  • FIG. 11A and 11B are schematic diagrams for explaining a second example of the method of pressing the body to be compressed in the first compression step according to Embodiment 1.
  • FIG. 12A and 12B are schematic diagrams for explaining a second example of the method of pressing the body to be compressed in the second compression step according to Embodiment 1.
  • FIG. 13A and 13B are schematic diagrams for explaining a third example of the method of pressing the body to be compressed in the first compression step according to Embodiment 1.
  • FIG. 14A and 14B are schematic diagrams for explaining a third example of a method of pressing the body to be compressed in the second compression step according to Embodiment 1.
  • FIG. 15A and 15B are schematic diagrams for explaining a fourth example of the method of pressing the body to be compressed in the first compression step according to Embodiment 1.
  • FIG. 16A and 16B are schematic diagrams for explaining a fourth example of the method of pressing the body to be compressed in the second compression step according to Embodiment 1.
  • FIG. FIG. 17 is a schematic diagram showing a schematic configuration of a battery system according to Embodiment 2.
  • FIG. FIG. 18 is a schematic diagram showing a schematic configuration of another battery system according to Embodiment 2.
  • a battery in one aspect of the present disclosure includes a positive electrode layer containing a positive electrode active material and a first inorganic solid electrolyte, a negative electrode layer containing a negative electrode active material and a second inorganic solid electrolyte, and the positive electrode layer and the negative electrode layer.
  • a solid electrolyte layer positioned therebetween and containing a third inorganic solid electrolyte, wherein a plurality of voids are present inside the power generating element, and the internal pressure of the plurality of voids is less than 1 atm.
  • the battery in this embodiment can achieve both high battery characteristics and high reliability.
  • the internal pressure of the voids acts in the direction of releasing the contact between the positive electrode active material, the negative electrode active material, or the inorganic solid electrolyte adjacent to the multiple voids, and the voids expand.
  • the ionic conductivity and electronic conductivity inside the power generation element decrease.
  • the expansion and contraction of the active material layer due to the insertion and desorption of ions during charge and discharge triggers the expansion of positive pressure voids and damages the power generation element.
  • the plurality of negative pressure voids not only prevent deterioration of the battery due to damage to the power generation element, but also attract the materials around the plurality of voids to each other, making the battery stronger than when there are no voids. be able to.
  • the inorganic solid electrolyte is used as the material of the battery, the flexibility of the battery is small, and the force that attracts the material around the plurality of voids is transmitted without being dissipated.
  • an external restraining force is applied to the power generation element without providing a restraint or the like, and the ion and electron conductivity of the power generation element can be improved without lowering the battery capacity. Therefore, the battery in this aspect can achieve both high battery characteristics and high reliability.
  • the plurality of voids may be located along grain boundaries of at least one of the first inorganic solid electrolyte, the second inorganic solid electrolyte, and the third inorganic solid electrolyte.
  • At least one of the plurality of voids may exist inside at least one of the positive electrode layer and the negative electrode layer.
  • At least one of the plurality of voids may be located on the surface of at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer.
  • the internal pressure of the plurality of voids may be 0.1 atm or less.
  • the average maximum width of each of the plurality of voids may be 10 ⁇ m or less.
  • the density of at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer may be 90% or more of the theoretical density of the material.
  • the battery characteristics of the battery can be improved.
  • a battery system includes a container having an internal space serving as a reduced-pressure environment, and the battery arranged in the internal space.
  • the battery system includes the above-described battery, even if the internal space of the container becomes a decompressed environment, it is difficult for the plurality of voids to expand, and damage to the power generation element can be suppressed.
  • the pressure of the reduced-pressure environment may be 0.95 atm or less.
  • the internal pressure of the plurality of voids may be equal to or lower than the pressure of the reduced-pressure environment.
  • the plurality of gaps can exert a force that attracts the material of the power generation element inward.
  • a method for manufacturing a battery in one aspect of the present disclosure includes a positive electrode layer containing a positive electrode active material and a first inorganic solid electrolyte, a negative electrode layer containing a negative electrode active material and a second inorganic solid electrolyte, and the positive electrode layer. a solid electrolyte layer positioned between the negative electrode layer and containing a third inorganic solid electrolyte, wherein at least one of the positive electrode layer, the negative electrode layer and the solid electrolyte layer is pressed in a reduced pressure atmosphere.
  • the body to be compressed can be compressed and densified by pressing, and the internal pressure of the isolated voids formed inside the body to be compressed due to the pressing can be reduced to a negative pressure of less than 1 atm.
  • Some of the voids inside the object to be compressed before pressing are connected to the atmosphere outside the object to be compressed by fine conducting paths. Due to the progress of densification due to compression of the body to be compressed, most of the conduction paths are blocked and the residual gas in the voids loses its outlet. After that, the internal pressure of the voids increases as the density increases.
  • the atmosphere outside the body to be compressed is normal pressure
  • a large number of high-pressure voids exceeding 1 atm are formed inside the body to be compressed at the completion of the compression process, and these voids may cause damage to the body to be compressed during charging and discharging. It can serve as a starting point and disrupt ionic and electronic conduction pathways.
  • the atmosphere outside the object to be compressed is a reduced pressure atmosphere, the gas in the voids of the object to be compressed before pressing can be exhausted through the conductive path.
  • the increase in internal pressure of the voids due to the progress of densification should be reduced. can be done.
  • the internal pressure of the gap remaining at the completion of the compression process can be kept at a negative pressure or a relatively small positive pressure. It is possible to reduce the progression of deterioration of the battery.
  • a method for manufacturing a battery is a method for manufacturing a battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer, A body to be compressed in which the positive electrode layer and the negative electrode layer are laminated so as to face each other with the solid electrolyte layer interposed therebetween is pressed in a reduced pressure atmosphere.
  • the layers of the body to be compressed can be compression-bonded by pressing, and the internal pressure of the gap formed at the interface between the layers of the body to be compressed can be reduced to a negative pressure of 1 atm or less.
  • Gaps due to the surface roughness of each layer are present at the boundaries between the layers of the body to be compressed at the start of the compression process. These voids are connected to the atmosphere outside the body to be compressed by fine conducting paths. As the compression bonding progresses, most of the conducting paths are blocked and the residual gas in the void loses its outlet. After that, the internal pressure of the gap increases as the compression welding progresses.
  • the atmosphere outside the body to be compressed is normal pressure
  • a large number of high-pressure voids are formed along the interfaces of the layers of the body to be compressed at the completion of the compression process, and these voids are likely to damage the body to be compressed during charging and discharging. Starting point, the conductive path between layers of the compressible body can be destroyed.
  • the atmosphere outside the body to be compressed is a reduced pressure atmosphere
  • the gas in the voids at the boundaries between the layers of the body to be compressed before compression bonding is discharged through the conduction path. can be exhausted.
  • the internal pressure of the gap remaining at the completion of the compression process can be kept at a negative pressure or a relatively small positive pressure. It is possible to reduce the progression of deterioration of the battery.
  • the pressure of the reduced-pressure atmosphere may be 0.1 atm or less.
  • the pressure of the press may be 10 MPa or more.
  • the body to be compressed is placed in an airtight container, the interior of the airtight container is set to the reduced-pressure atmosphere, and then the body to be compressed is pressed from outside the airtight container.
  • the airtight container includes a deformable portion made of an elastic material that is deformed by the press, and the deformation of the deformable portion by the press applies the pressure of the press from the outside of the airtight container to the body to be compressed.
  • the object to be compressed can be pressed from the outside of the airtight container, so there is no need to install the pressing device itself in a reduced pressure atmosphere, and the pressing device can be made smaller.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • planar view means the case when viewed from the normal direction of the main surface of the power generation element.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 according to Embodiment 1.
  • the battery 1000 according to Embodiment 1 includes a negative electrode current collector 210, a positive electrode current collector 220, and a power generating element 100.
  • Battery 1000 is, for example, an all-solid battery.
  • the power generation element 100 is positioned between the negative electrode current collector 210 and the positive electrode current collector 220 .
  • the power generation element 100 includes a positive electrode active material layer 120 containing a positive electrode active material and a first inorganic solid electrolyte, a negative electrode active material layer 110 containing a negative electrode active material and a second inorganic solid electrolyte, a positive electrode active material layer 120 and a negative electrode. and a solid electrolyte layer 130 located between the active material layer 110 and containing a third inorganic solid electrolyte.
  • the negative electrode active material layer 110 and the positive electrode current collector 220 face each other with the solid electrolyte layer 130 interposed therebetween.
  • the positive electrode active material layer 120 is an example of a positive electrode layer
  • the negative electrode active material layer 110 is an example of a negative electrode layer.
  • the first inorganic solid electrolyte, the second inorganic solid electrolyte, and the third inorganic solid electrolyte may be collectively referred to simply as "inorganic solid electrolyte.”
  • the first inorganic solid electrolyte, the second inorganic solid electrolyte, and the third inorganic solid electrolyte are, for example, the same material, but may be different materials.
  • the negative electrode current collector 210 and the positive electrode current collector 220 may be collectively referred to simply as “current collectors”, and the negative electrode active material layer 110 and the positive electrode active material layer 120 are collectively referred to. Therefore, it may simply be referred to as an “active material layer”.
  • a plurality of gaps 250 exist inside the power generation element 100 . Details of the plurality of voids 250 will be described later.
  • the negative electrode active material layer 110 contains a negative electrode active material as an electrode material.
  • a negative electrode active material such as graphite or metallic lithium can be used.
  • Various materials capable of extracting and inserting ions such as lithium (Li) or magnesium (Mg) may be used as materials of the negative electrode active material.
  • the negative electrode active material is, for example, a particulate material.
  • the negative electrode active material layer 110 further includes, for example, an inorganic solid electrolyte.
  • an inorganic solid electrolyte for example, a sulfide solid electrolyte or an oxide solid electrolyte can be used.
  • a sulfide solid electrolyte for example, a mixture of lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) can be used.
  • An inorganic solid electrolyte is, for example, a particulate material. At least one of a conductive material such as acetylene black and a binding binder such as polyvinylidene fluoride may be further used as the material contained in the negative electrode active material layer 110 .
  • the negative electrode active material layer 110 can be produced by applying a paste-like paint in which the material contained in the negative electrode active material layer 110 is kneaded together with a solvent onto the surface of the negative electrode current collector 210 and drying it.
  • the thickness of the negative electrode active material layer 110 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the positive electrode active material layer 120 contains a positive electrode active material as an electrode material.
  • the positive electrode active material is a material that constitutes the counter electrode of the negative electrode active material.
  • Examples of the positive electrode active material contained in the positive electrode active material layer 120 include lithium cobaltate composite oxide (LCO), lithium nickelate composite oxide (LNO), lithium manganate composite oxide (LMO), and lithium-manganese.
  • - positive electrode active materials such as nickel composite oxide (LMNO), lithium-manganese-cobalt composite oxide (LMCO), lithium-nickel-cobalt composite oxide (LNCO), lithium-nickel-manganese-cobalt composite oxide (LNMCO) substances can be used.
  • Various materials capable of withdrawing and inserting ions such as Li or Mg can be used as the material of the positive electrode active material.
  • the positive electrode active material is, for example, a particulate material.
  • the positive electrode active material layer 120 further includes, for example, an inorganic solid electrolyte.
  • an inorganic solid electrolyte the materials exemplified as the inorganic solid electrolyte used for the negative electrode active material can be used.
  • the surface of the positive electrode active material may be coated with a solid electrolyte.
  • At least one of a conductive material such as acetylene black and a binding binder such as polyvinylidene fluoride may be further used as the material contained in the positive electrode active material layer 120 .
  • the positive electrode active material layer 120 can be produced by applying a paste-like paint in which the material contained in the positive electrode active material layer 120 is kneaded together with a solvent onto the surface of the positive electrode current collector 220 and drying it.
  • the thickness of the positive electrode active material layer 120 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the solid electrolyte layer 130 is arranged between the negative electrode active material layer 110 and the positive electrode active material layer 120 . Solid electrolyte layer 130 is in contact with each of negative electrode active material layer 110 and positive electrode active material layer 120 .
  • the size and shape in plan view of solid electrolyte layer 130 may be the same as the size and shape in plan view of anode active material layer 110 and cathode active material layer 120 , respectively. That is, the side surface of solid electrolyte layer 130 may be flush with the side surface of negative electrode active material layer 110 and the side surface of positive electrode active material layer 120 .
  • the solid electrolyte layer 130 is a layer containing an electrolyte material.
  • the electrolyte material generally known battery electrolytes can be used.
  • the thickness of solid electrolyte layer 130 may be 5 ⁇ m or more and 300 ⁇ m or less, or may be 5 ⁇ m or more and 100 ⁇ m or less.
  • the solid electrolyte layer 130 is one layer in the example shown in FIG. 1, the power generation element 100 may have a structure in which a plurality of solid electrolyte layers 130 are laminated.
  • the solid electrolyte layer 130 contains an inorganic solid electrolyte as an electrolyte material.
  • the inorganic solid electrolyte the materials exemplified as the inorganic solid electrolyte used for the negative electrode active material can be used.
  • Solid electrolyte layer 130 may contain a binding binder such as polyvinylidene fluoride in addition to the electrolyte material.
  • the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 are maintained in the form of parallel plates. As a result, it is possible to suppress the occurrence of cracks or collapse due to bending. Note that the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 may be combined and smoothly curved.
  • the negative electrode current collector 210 and the positive electrode current collector 220 are arranged facing the power generation element 100 so as to sandwich the power generation element 100 therebetween. In plan view, the outer peripheries of the negative electrode current collector 210, the positive electrode current collector 220, and the power generation element 100 are, for example, the same.
  • Each of the negative electrode current collector 210 and the positive electrode current collector 220 is a member having conductivity.
  • the negative electrode current collector 210 and the positive electrode current collector 220 may each be, for example, a conductive thin film. Examples of materials that constitute the negative electrode current collector 210 and the positive electrode current collector 220 include metals such as stainless steel (SUS), aluminum (Al), copper (Cu), and nickel (Ni).
  • the negative electrode current collector 210 is arranged on the negative electrode active material layer 110 side of the power generation element 100 .
  • the negative electrode current collector 210 is arranged, for example, in contact with the negative electrode active material layer 110 .
  • metal foil such as SUS foil, Al foil, Cu foil, and Ni foil can be used.
  • the thickness of the negative electrode current collector 210 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, but is not limited thereto.
  • the negative electrode current collector 210 may include, for example, a current collector layer containing a conductive material in a portion in contact with the negative electrode active material layer 110 .
  • the positive electrode current collector 220 is arranged on the positive electrode active material layer 120 side of the power generating element 100 .
  • the positive electrode current collector 220 is arranged, for example, in contact with the positive electrode active material layer 120 .
  • the positive electrode current collector 220 for example, metal foil such as SUS foil, Al foil, Cu foil, and Ni foil can be used.
  • the thickness of the positive electrode current collector 220 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, but is not limited thereto.
  • the positive electrode current collector 220 may include, for example, a current collector layer that is a layer containing a conductive material in a portion in contact with the positive electrode active material layer 120 .
  • At least one of the negative electrode active material layer 110, the solid electrolyte layer 130, and the positive electrode active material layer 120 is formed, for example, through a first compression step in which pressing is performed under a reduced pressure atmosphere in order to increase the density of each layer. be.
  • a first compression step in which pressing is performed under a reduced pressure atmosphere in order to increase the density of each layer. be.
  • all of negative electrode active material layer 110, solid electrolyte layer 130, and positive electrode active material layer 120 are formed through a first compression step.
  • "pressing" means applying mechanical stress to a body to be compressed.
  • the power generating element 100 is formed, for example, through a second compression step in which pressing is performed under a reduced pressure atmosphere in order to compress and join the layers of the power generating element 100 .
  • a second compression step in which pressing is performed under a reduced pressure atmosphere in order to compress and join the layers of the power generating element 100 .
  • a plurality of voids 250 exist inside the power generation element 100.
  • the plurality of voids 250 are not connected to the outside of the power generation element 100 and exist as isolated voids inside the power generation element 100 .
  • the plurality of voids 250 are independent air bubbles (hollow portions) located inside the power generation element 100 .
  • the plurality of voids 250 are voids formed by, for example, gaps between material particles such as an inorganic solid electrolyte contained in each layer of the power generating element 100, and closed conduction paths to the outside by the first compression step. 250 included. Therefore, unlike an electrolyte such as a gel, grain boundaries are formed in the inorganic solid electrolyte, and the plurality of voids 250 include voids 250 located along the grain boundaries of the inorganic solid electrolyte included in each layer. .
  • the plurality of voids 250 include voids 250 positioned inside at least one of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 . In the example shown in FIG. 1 , the plurality of voids 250 includes voids 250 positioned inside any of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 .
  • the plurality of gaps 250 include, for example, gaps 250 formed by blocking conductive paths to the outside in the gaps between layers of the power generation element 100 in the second compression step. Therefore, the plurality of voids 250 includes voids 250 located on the surface of at least one of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 . That is, the plurality of voids 250 include voids 250 formed in contact with the surface of at least one of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 . In the example shown in FIG. 1 , the plurality of voids 250 includes voids 250 located on the surfaces of any of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 .
  • At least one of all the multiple voids 250 is located inside at least one of the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130, and at least the other voids 250 One is located on the surface of at least one of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 .
  • gaps 250 located inside at least one of negative electrode active material layer 110, positive electrode active material layer 120, and solid electrolyte layer 130, and among negative electrode active material layer 110, positive electrode active material layer 120, and solid electrolyte layer 130, Both or either one of the voids 250 located on at least one surface of may be present.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 1001X according to Comparative Example 1.
  • the power generating element 100 of the battery 1001X has a plurality of gaps 251 and conductive paths 251a connecting the plurality of gaps 251 and the outside of the battery 1001X.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 1002X according to Comparative Example 2.
  • the power generating element 100 of the battery 1002X has a plurality of voids 252 and conductive paths 252a connecting the plurality of voids 252 .
  • Some of the plurality of gaps 252 are in communication with the outside of the battery 1002X via conduction paths 252a, but some of the plurality of gaps 252 are electrically connected to the gaps 252.
  • the path 252a is not connected to the outside of the battery 1002x and is an isolated gap 252.
  • FIG. The inside of the void 252 communicating with the outside of the battery 1002X has the same pressure as the outside. becomes higher pressure than the outside due to the decrease in Since the battery 1002X was not formed through a process of pressing with a sufficient pressure, the densification and the increase in the contact area between particles were insufficient, and the resistance was high and the capacity was low.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a battery 1003X according to Comparative Example 3. As shown in FIG. As schematically shown in FIG. 4, the power generating element 100 of the battery 1003X has a plurality of isolated voids 253 that do not communicate with the outside of the battery 1003X.
  • the plurality of voids 253 are compressed even after being isolated from the outside of the battery 1003X by the process of pressing, and the volume of the plurality of voids 253 is reduced, resulting in a higher pressure than the outside. Therefore, many high pressure sources are scattered inside the power generating element 100 .
  • FIG. 5 is a diagram for explaining damage that occurs in the battery 1003X. As schematically shown in FIG.
  • a plurality of high-pressure voids 253 spread inside the positive electrode active material layer 120 , the negative electrode active material layer 110 and the solid electrolyte layer 130 and between the layers of the power generation element 100 .
  • voids 254 promoting microfractures typified by intergranular delamination and delamination.
  • deterioration of the battery characteristics of the battery 1003X occurs. Therefore, it is difficult to maintain the battery characteristics over a long period of time only by performing a step of pressing at high pressure to form a battery, and the reliability of the battery 1003X is low.
  • the plurality of gaps 250 have a negative pressure lower than the atmospheric pressure in order to suppress deterioration of battery characteristics caused by the plurality of gaps 250 existing inside the power generating element 100. That is, the internal pressure of the plurality of voids 250 is less than 1 atm.
  • the compression force in the first compression step and the second compression step is released, the volume of the active material changes, the usage environment of the battery 1000 changes,
  • the negative pressure inside the plurality of voids acts in the direction of suppressing intergranular delamination and delamination, so deterioration of battery characteristics of battery 1000 can be suppressed.
  • the existence of the plurality of negative pressure voids 250 in the negative electrode active material layer 110 and the positive electrode active material layer 120 can suppress damage to the power generating element 100 due to volume change of the active material during charging and discharging.
  • the existence of the plurality of voids 250 having a negative pressure inside the layers of the power generation element 100 is not only when the internal pressure of the plurality of voids 250 is higher than the atmospheric pressure, but also when compared to the case where the plurality of voids 250 is absent. Since it becomes a force that attracts the material, deterioration of the battery characteristics of the battery 1000 can be suppressed.
  • the presence of a plurality of voids 250 with negative pressure inside serves as a force that attracts the material of each layer of the power generation element 100, so the grain boundary of the material of each layer and the resistance between each layer can be reduced, and the battery characteristics are improved. do.
  • an external restraining force is applied to the power generating element 100 even without a restraint or the like, and a decrease in battery capacity per unit volume or weight due to the provision of a restraint or the like can be avoided.
  • a plurality of voids 250 exist inside at least one of the positive electrode active material layer 120 and the negative electrode active material layer 110 . As a result, damage to the power generation element 100 due to volume change of the active material during charging and discharging can be suppressed. In addition, the plurality of voids 250 can attract the material of the surrounding active material layer to lower the resistance in the active material layer.
  • the internal pressure of the plurality of gaps 250 may be 0.8 atm or less, 0.5 atm or less, or 0.1 atm or less. Also, the internal pressure of the plurality of gaps 250 is, for example, greater than 0 atm. In this specification, the pressure such as the internal pressure of the plurality of gaps 250 is the pressure at room temperature. Normal temperature is, for example, 23°C. Further, in this specification, numerical values of pressure such as the internal pressure of the plurality of gaps 250 are numerical values in absolute pressure.
  • Such a plurality of voids 250 having an internal pressure of less than 1 atm are formed, for example, in the first compression step and/or the second compression step in which pressing is performed in a reduced pressure atmosphere.
  • the density of at least one of the positive electrode active material layer 120, the negative electrode active material layer 110 and the solid electrolyte layer 130 formed through the first compression step and/or the second compression step (specifically, the weight is the apparent volume) apparent density) is, for example, 90% or more of the theoretical density of the material, and may be 95% or more. Thereby, the battery characteristics of the battery 1000 can be improved.
  • the densities of all of the positive electrode active material layer 120, the negative electrode active material layer 110 and the solid electrolyte layer 130 may be 90% or more of the material theoretical density of each layer.
  • the average maximum width of each of the plurality of voids 250 is, for example, 10 ⁇ m or less, and may be 1 ⁇ m or less.
  • the maximum width of each of the plurality of voids 250 is measured from the plurality of voids 250 observed by observing the cross section of the battery 1000 with an electron microscope or the like, for example.
  • the battery 1000 can achieve both high battery characteristics and high reliability.
  • the method for manufacturing battery 1000 includes, for example, a first compression step and a second compression step.
  • the body to be compressed including at least one of the positive electrode active material layer 120, the negative electrode active material layer 110 and the solid electrolyte layer 130 is pressed in a reduced pressure atmosphere of less than 1 atm.
  • a reduced pressure atmosphere of less than 1 atm.
  • the inside of the object to be compressed before pressing is connected to the atmosphere outside the object to be compressed through a fine conducting path, such as the void 251 connected to the conducting path 251a shown in FIG. voids exist.
  • voids are due to interstices between material particles of the body to be compressed.
  • the internal pressure of the voids increases with the progress of densification by compression. For example, if the volume of the gap becomes less than half after the conduction path is closed, the internal pressure of the gap becomes 2 atm or more.
  • the atmosphere outside the body to be compressed is normal pressure
  • a large number of high-pressure voids are formed inside the body to be compressed when the compression process is completed, and these become starting points for damage to the body to be compressed during charging and discharging. Conduction pathways for ions and electrons can be disrupted.
  • the atmosphere outside the object to be compressed is a reduced pressure atmosphere
  • the gas in the voids of the object to be compressed before being pressed can be exhausted through the conducting path. Therefore, even after most of the conductive paths are closed as the compression of the body to be compressed progresses and the space is cut off from the atmosphere outside the body to be compressed, the increase in the internal pressure of the cavity due to the progress of compression can be reduced.
  • the internal pressure of the plurality of voids 250 remaining at the completion of the first compression step can be reduced to a negative pressure of less than 1 atm.
  • the object to be compressed in which the positive electrode active material layer 120 and the negative electrode active material layer 110 are laminated so as to face each other with the solid electrolyte layer 130 interposed therebetween is pressed in a reduced pressure atmosphere of less than 1 atm.
  • the positive electrode active material layer 120 and the negative electrode active material layer 110 can be compression-bonded with the solid electrolyte layer 130 interposed therebetween.
  • the boundaries between the layers of the body to be compressed before pressing are, for example, gaps 251 connected to the conduction paths 251a shown in FIG. There are gaps connected by These voids are due to the surface roughness of each layer of the body to be compressed. As the compression bonding progresses, most of the conducting paths are blocked and the residual gas in the void loses its outlet. After that, the internal pressure of the gap increases as the compression welding progresses. Therefore, for example, if the atmosphere outside the body to be compressed is normal pressure, a large number of high-pressure voids are formed along the interfaces of the layers of the body to be compressed at the completion of the compression process, and these voids are likely to damage the body to be compressed during charging and discharging.
  • the conductive path between layers of the compressible body can be destroyed.
  • the atmosphere outside the body to be compressed is a reduced pressure atmosphere
  • the gas in the gaps at the boundaries of the layers of the body to be compressed before compression bonding is exhausted through the conduction path. be able to. Therefore, even after most of the conducting paths are blocked by the progress of compression joining of the bodies to be compressed and the gaps are cut off from the atmosphere outside the bodies to be compressed, it is possible to reduce the increase in the internal pressure of the gaps accompanying the progress of the compression joining. Thereby, the internal pressure of the plurality of gaps 250 remaining at the completion of the compression process can be reduced to a negative pressure.
  • the method for manufacturing the battery 1000 may include only one of the first compression step and the second compression step.
  • the battery 1000 may be manufactured by a manufacturing method including steps other than the first compression step and the second compression step.
  • a laminated body is formed as an object to be compressed in the first compression step and the second compression step.
  • 6A, 6B, 7A, 7B, and 8 are cross-sectional views showing a schematic configuration of a laminate formed by the manufacturing method of battery 1000.
  • FIG. 6A, 6B, 7A, 7B, and 8 omit the illustration of voids present in each layer.
  • the laminate 310, the laminate 320, the laminate 330, the laminate 340, and the laminate 350 shown in FIGS. one is formed.
  • a laminate 310 shown in FIG. 6A is formed, for example, by laminating the negative electrode active material layer 110 on the negative electrode current collector 210 .
  • a laminate 320 shown in FIG. 6B is formed, for example, by laminating the cathode active material layer 120 on the cathode current collector 220 .
  • a laminate 330 shown in FIG. 7A is formed, for example, by further laminating a solid electrolyte layer 130 on the negative electrode active material layer 110 of the laminate 310 shown in FIG. 6A.
  • a laminate 340 shown in FIG. 7B is formed, for example, by further laminating a solid electrolyte layer 130 on the positive electrode active material layer 120 of the laminate 320 shown in FIG. 6B. As shown in FIG.
  • laminate 350 is formed by stacking negative electrode active material layer 110, solid electrolyte layer 130, positive electrode active material layer 120 and positive electrode current collector 220 on negative electrode current collector 210 in this order. formed by
  • the lamination structure and formation method of a laminated body are not restricted to the above-mentioned example.
  • the layered body may have a layered structure in which at least one of the positive electrode current collector 220 and the negative electrode current collector 210 is removed from the layered body 350 .
  • Each of the above-mentioned laminates is formed by applying a paste-like paint obtained by kneading the respective materials of the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 together with a solvent onto the surface of the current collector or each layer. It is formed by drying.
  • the first compression step for example, at least one of the laminate 310 and laminate 320 shown in FIGS. 6A and 6B is pressed in a reduced pressure atmosphere.
  • a reduced pressure atmosphere As a result, it is possible to increase the density of the materials constituting the positive electrode active material layer 120 and the negative electrode active material layer 110 and increase the contact area between particles, so that the resistance of ions and electrons in each layer can be reduced.
  • the surfaces of the positive electrode active material layer 120 and the negative electrode active material layer 110 can be made smooth, the solid electrolyte layer 130 having a thin and uniform thickness can be formed on the positive electrode active material layer 120 and the negative electrode active material layer 110. is possible, and the risk of short circuits can be reduced.
  • a plurality of voids 250 are formed inside the negative electrode active material layer 110 . Also, by using the laminated body 320 as a body to be compressed, a plurality of voids 250 are formed inside the positive electrode active material layer 120 .
  • the first compression step for example, at least one of the laminate 330 and laminate 340 shown in FIGS. 7A and 7B is pressed in a reduced-pressure atmosphere as an object to be compressed.
  • the density of the materials constituting the positive electrode active material layer 120, the negative electrode active material layer 110, and the solid electrolyte layer 130 is increased, and the contact area between particles is increased. can be made smaller.
  • the adhesion between the positive electrode active material layer 120 or the negative electrode active material layer 110 and the solid electrolyte layer 130 can be enhanced.
  • the laminate 330 as a body to be compressed, a plurality of voids 250 are formed inside each of the negative electrode active material layer 110 and the solid electrolyte layer 130 .
  • the laminate 340 as a body to be compressed, a plurality of voids 250 are formed inside each of the positive electrode active material layer 120 and the solid electrolyte layer 130 .
  • the laminated body 350 shown in FIG. 8 is pressed in a reduced pressure atmosphere as an object to be compressed.
  • the density of the materials constituting the positive electrode active material layer 120, the negative electrode active material layer 110, and the solid electrolyte layer 130 is increased, and the contact area between particles is increased. can be made smaller.
  • the positive electrode active material layer 120 and the negative electrode active material layer 110 can be firmly adhered to each other with the solid electrolyte layer 130 interposed therebetween.
  • a plurality of voids 250 are formed inside each of the negative electrode active material layer 110 , the positive electrode active material layer 120 and the solid electrolyte layer 130 .
  • the laminated body 350 has a configuration in which the positive electrode active material layer 120 and the negative electrode active material layer 110 are laminated so as to face each other with the solid electrolyte layer 130 interposed therebetween, the laminated body 350 can be pressed as a body to be compressed. , the first compression step and the second compression step are performed simultaneously.
  • pressing is performed in a reduced pressure atmosphere, so that the internal pressure of the plurality of voids 250 formed inside the power generation element 100 due to the first compression step is reduced to less than 1 atm.
  • the laminate shown in FIGS. Pressing of the object to be compressed in which the 310 and the laminate 340 are laminated is performed in a reduced pressure atmosphere.
  • laminates 310 and 340 are laminated such that negative electrode active material layer 110 of laminate 310 and solid electrolyte layer 130 of laminate 340 face each other.
  • the negative electrode active material layer 110 of the laminate 310 and the solid electrolyte layer 130 of the laminate 340 are compression-bonded, and the adhesion between the negative electrode active material layer 110 and the solid electrolyte layer 130 can be enhanced.
  • a plurality of voids 250 are formed along the interface between the negative electrode active material layer 110 and the solid electrolyte layer 130 that are compression-bonded.
  • the laminate shown in FIGS. Pressing of the body to be compressed in which the 320 and the laminate 330 are laminated is performed in a reduced pressure atmosphere.
  • laminates 320 and 330 are laminated such that cathode active material layer 120 of laminate 320 and solid electrolyte layer 130 of laminate 330 face each other.
  • the positive electrode active material layer 120 of the laminate 320 and the solid electrolyte layer 130 of the laminate 330 are compression-bonded, and the adhesion between the positive electrode active material layer 120 and the solid electrolyte layer 130 can be enhanced.
  • a plurality of voids 250 are formed along the interface between the positive electrode active material layer 120 and the solid electrolyte layer 130 that are compression-bonded.
  • the laminate shown in FIGS. The object to be compressed in which the 330 and the laminate 340 are laminated is pressed in a reduced pressure atmosphere.
  • laminate 330 and laminate 340 are laminated such that solid electrolyte layer 130 of laminate 330 and solid electrolyte layer 130 of laminate 340 face each other.
  • the solid electrolyte layer 130 of the laminate 330 and the solid electrolyte layer 130 of the laminate 340 are compression-bonded, and the adhesion between the solid electrolyte layers 130 can be enhanced.
  • This also forms a plurality of voids 250 along the interface of the two solid electrolyte layers 130 to be compression-bonded.
  • pressing is performed in a reduced pressure atmosphere, so that the internal pressure of the plurality of voids 250 formed on the surface of each layer of the power generation element 100 due to the second compression step is reduced to It can be less than 1 atm.
  • the laminate used in the second compression step is, for example, the laminate that has undergone the first compression step.
  • the battery 1000 is formed through the first compression step and the second compression step.
  • the laminate used in the second compression step may be a laminate that has not undergone the first compression step.
  • the battery 1000 with low resistance and high capacity can be obtained.
  • a plurality of voids 250 having an internal pressure of less than 1 atm are formed, the reliability of the battery 1000 is also improved.
  • the pressing pressure in the first compression step and the second compression step (that is, the stress during compression) is, for example, 10 MPa or more.
  • the battery characteristics of the battery 1000 can be further improved.
  • the conduction path connecting the gap and the outside of the body to be compressed is blocked, and the internal pressure of the formed gap increases.
  • the internal pressure of the plurality of gaps 250 can be reduced by performing pressing in a reduced pressure atmosphere, although it tends to be especially high.
  • the pressure of the press in the second compression process is higher than the pressure of the press in the first compression process.
  • the pressure of the reduced pressure atmosphere may be 0.5 atm or less, or may be 0.1 atm or less.
  • the internal pressure of the plurality of voids 250 formed can be further reduced.
  • the pressure of the decompressed atmosphere is, for example, greater than 0 atm.
  • a reduced-pressure atmosphere is constructed in a space surrounded by a container or the like, and an object to be compressed is pressed in the constructed reduced-pressure atmosphere.
  • FIG. 9 is a schematic diagram for explaining a first example of a method of pressing the body to be compressed in the first compression step.
  • FIG. 10 is a schematic diagram for explaining a first example of a method of pressing the body to be compressed in the second compression step.
  • a first compression step and a second compression step are performed using a plate press apparatus 800 installed in an internal space 905 of a vacuum chamber 900 connected to a vacuum pump 910. can be done.
  • the vacuum chamber 900 is provided with, for example, a door or the like (not shown) for taking in and out the object to be compressed.
  • the object to be compressed is placed between the upper and lower press plates of the flat plate press device 800 .
  • the gas in the internal space 905 is exhausted by the vacuum pump 910 to bring the internal space 905 into a reduced-pressure atmosphere (for example, a vacuum atmosphere).
  • a reduced-pressure atmosphere for example, a vacuum atmosphere
  • the object to be compressed is pressed using the flat plate press device 800 .
  • the direction of pressure application in pressing by the flat plate press device 800 is the direction of the white arrow shown in FIGS.
  • the direction of pressure application in pressing by the flat plate press apparatus 800 is the normal direction of the main surface of the current collector and each layer of the laminate, that is, the current collector and each layer of the laminate are laminated side by side. direction.
  • the direction of pressure application in the press is the same in other press methods.
  • FIG. 11 is a schematic diagram for explaining a second example of the method of pressing the body to be compressed in the first compression step.
  • FIG. 12 is a schematic diagram for explaining a second example of the method of pressing the body to be compressed in the second compression step.
  • an object to be compressed is placed in an internal space 925 of an airtight container 920 connected to a vacuum pump 910, and the airtight container 920 is compressed.
  • the object to be compressed is pressed by using a flat press device 800 from the outside of the.
  • first compression step and the second compression step first, an object to be compressed is arranged in the internal space 925 of the airtight container 920 .
  • the gas in the internal space 925 is exhausted by the vacuum pump 910 to make the internal space 925 into a reduced pressure atmosphere.
  • the object to be compressed is pressed from the outside of the airtight container 920 using the flat plate pressing device 800 .
  • the airtight container 920 includes, for example, a deforming portion 921, a pressing portion 922, and a housing portion 923.
  • the airtight container 920 forms an internal space 925 in which portions other than the connecting portion 911 with the vacuum pump 910 are sealed by the deformation portion 921 , the pressing portion 922 and the accommodating portion 923 .
  • the deformable portion 921 is positioned between the pressing portion 922 and the accommodating portion 923 .
  • the deformation portion 921 is separable from at least one of the press portion 922 and the accommodation portion 923 .
  • the deformable portion 921 is, for example, a frame-like shape in plan view, and is a seal member that seals between the press portion 922 and the housing portion 923 . Thereby, the pressure-reduced state of the airtight container 920 is maintained.
  • the material of the deformable portion 921 is, for example, a material that is softer than the material of each layer of the power generating element 100 and is deformed by pressing with the flat plate pressing device 800 .
  • the deformation portion 921 is made of an elastic material such as a rubber material that is deformed by pressing of the flat plate press device 800 . Note that the material of the deformable portion 921 may not have elasticity, and may be a material that undergoes plastic deformation.
  • the press part 922 is a plate-like member that constitutes the upper lid part of the airtight container 920 .
  • a part of the pressing portion 922 for example, a lower surface 922a of a projection provided on the pressing portion 922, is designed to contact the object to be compressed so that the object to be compressed can be pressed.
  • a protrusion is provided in the center in a plan view, and the end portions where no protrusion is provided are in contact with the deformation portion 921 .
  • the accommodation portion 923 is a box-shaped member with an open top, and accommodates an object to be compressed on the box-shaped bottom surface 923a of the accommodation portion 923 .
  • a portion of the housing portion 923 is connected to a vacuum pump 910 via a connecting portion 911 such as a pipe or tube.
  • the upper end of the side wall portion of the accommodation portion 923 is connected to the end portion of the accommodation portion 923 via the deformation portion 921 .
  • a pressing force is applied to the pressing portion 922 from the upper pressing plate of the flat plate pressing device 800 , and a pressing force is applied to the accommodating portion 923 from the lower pressing plate of the flat plate pressing device 800 .
  • a pressing force is directly applied to the pressing portion 922 and the housing portion 923 by, for example, the flat plate pressing device 800 .
  • the object to be compressed is arranged, for example, so as to be sandwiched between the box-shaped bottom surface 923 a of the housing portion 923 and the lower surface 922 a of the convex portion of the pressing portion 922 .
  • Each of the press portion 922 and the housing portion 923 is made of a rigid material harder than the material of each layer of the power generation element 100 .
  • the object to be compressed can be stably pressed while maintaining the container shape of the airtight container 920 as a whole and the decompressed state of the internal space 925.
  • FIG. The same material as that of the deformation portion 921 may be used for the press portion 922 and the accommodation portion 923 .
  • the deformation portion 921 is deformed so as to contract in the pressing direction by the pressing of the flat plate pressing device 800, and the force of the flat plate pressing device 800 is transmitted to the object to be compressed through the pressing portion 922 and the housing portion 923. , pressing of the body to be compressed takes place.
  • the deformed portion 921 returns to its original shape when released from the press of the flat plate pressing device 800, for example, the airtight container 920 can be used again by replacing the object to be compressed.
  • FIG. 13 is a schematic diagram for explaining a third example of the method of pressing the body to be compressed in the first compression step.
  • FIG. 14 is a schematic diagram for explaining a third example of the method of pressing the body to be compressed in the second compression step.
  • a roll press device 850 is installed in an internal space 905 of a vacuum chamber 900 connected to a vacuum pump 910, and an unwinding roll is arranged to sandwich the roll press device 850.
  • 860 and take-up roll 870 can be used to perform the first compression step and the second compression step.
  • Roll press device 850 , unwind roll 860 and take-up roll 870 are all installed in interior space 905 of vacuum chamber 900 .
  • each layer of the power generating element 100 is formed by a roll press device 850 while conveying the compressed body 400 from the unwinding roll 860 to the winding roll 870 along the conveying roller 880. Do a continuous press.
  • the body to be compressed 400 has, for example, the same laminate structure as the laminate described as the laminate used in the first compression step.
  • the roll press device 850 while conveying the compressed bodies 410 and 420 from the two unwinding rolls 860 along the conveying rollers 880, the roll press device 850 The positive electrode active material layer 120 and the negative electrode active material layer 110 are compression-bonded so as to face each other with the solid electrolyte layer 130 interposed therebetween.
  • bodies 410 and 420 to be compressed are transported using winding roll 870, and battery assembly 500 after the start of compression bonding can be transported and collected by a transporting/cutting device (not shown).
  • the body to be compressed 410 and the body to be compressed 420 have, for example, the same layered structure as the layered body described as the layered body used in the second compression step described above.
  • FIG. 15 is a schematic diagram for explaining a fourth example of the method of pressing the body to be compressed in the first compression step.
  • FIG. 16 is a schematic diagram for explaining a fourth example of the method of pressing the body to be compressed in the second compression step.
  • a roll press device 850 is installed in an internal space 935 of a vacuum chamber 930 connected to a vacuum pump 910, and a roll press device 850 is sandwiched outside the vacuum chamber 930. With the unwind roll 860 and take-up roll 870 arranged, the first compression step and the second compression step can be performed.
  • the vacuum chamber 930 is provided with seal rollers 890 for maintaining the airtightness of the vacuum chamber 930 at locations where the compressed body 400 or the compressed bodies 410 and 420 enter and exit.
  • seal rollers 890 for maintaining the airtightness of the vacuum chamber 930 at locations where the compressed body 400 or the compressed bodies 410 and 420 enter and exit.
  • the method of performing the first compression step and the second compression step in a reduced pressure atmosphere is not limited to these examples.
  • pressing may be performed while heating in order to efficiently proceed with densification and compression bonding.
  • the internal space 905, the internal space 925, or the internal space 935 is made into a reduced-pressure atmosphere, the internal space 905, the internal space 925, or the internal space 935 is filled with argon or nitrogen. You may substitute by inert gas, such as.
  • the single-cell battery 1000 having one power generation element 100 was described.
  • the structure and manufacturing method of the battery 1000 according to the present embodiment are also effective for the laminated battery having the same structure.
  • Embodiment 2 describes a battery system using the battery according to Embodiment 1.
  • FIG. The battery 1000 according to Embodiment 1 described above has a plurality of negative pressure voids 250 inside the power generation element 100, and therefore has excellent environmental resistance, and provides various advantages in actual operation.
  • FIG. 17 is a schematic diagram showing a schematic configuration of a battery system 3000 according to Embodiment 2.
  • battery system 3000 includes battery 2000 and container 600 .
  • the battery 2000 is, for example, a laminated battery that has a plurality of batteries 1000 according to Embodiment 1 and has a laminated structure in which the plurality of batteries 1000 are laminated. Note that FIG. 17 omits the description of the structure in which the batteries 1000 are stacked, and shows the battery 2000 as one rectangle. Since the battery 2000 is a laminated battery, high voltage or high capacity can be achieved. Battery 2000 is placed in interior space 605 of container 600 . The battery included in battery system 3000 may be battery 1000, which is a single cell battery.
  • the container 600 is a closed container for housing the battery 2000 .
  • Container 600 has an interior space 605 that provides a reduced pressure environment.
  • a reduced-pressure environment is an environment in which the pressure of the environment in which the battery 2000 is placed is 1 atm or less. That is, the pressure in internal space 605 is less than 1 atm.
  • the internal space 605 may be a reduced pressure environment by housing the battery 2000 in the container 600 under a reduced pressure environment.
  • the internal space 605 may become a reduced-pressure environment by means of a ventilation door or vent that connects to the outside.
  • the container 600 is, for example, a battery case for protecting the power generation element 100 and the like, but it is not limited to a battery-dedicated container such as a battery case, and may be an airplane, a spacecraft, a vacuum chamber, or the like. Container 600 may be flown by, for example, a flight device (not shown).
  • FIG. 18 is a schematic diagram showing a schematic configuration of another battery system 3100 according to the second embodiment.
  • battery system 3100 includes battery 2000 and container 610 .
  • the container 610 has an internal space 615 that serves as a reduced pressure environment. Further, the container 610 is provided with a hole 612 that connects the internal space 615 and the outside of the container 610 .
  • the container 610 is, for example, placed in a reduced pressure environment or moved so that the inner space 615 becomes a reduced pressure environment due to the holes 612 .
  • the container 610 is, for example, a battery case for protecting the power generation element 100 and the like, which is mounted on a moving object moving in a high-altitude environment or outer space, such as an airplane or spacecraft.
  • the container 610 is not limited to a battery-dedicated container such as a battery case, but may be a device housing of a device used in a high-altitude environment or outer space, or a device housing installed in an airplane or spacecraft. There may be.
  • the battery 2000 is placed in a reduced pressure environment, and the battery 2000 is charged or discharged.
  • the pressure of the reduced pressure environment may be 0.95 atm or less, or may be 0.8 atm or less. Also, the pressure of the reduced pressure environment is greater than 0 atm, for example.
  • the outside of the container 610 is generally in a reduced-pressure environment, and the battery system 3100 may be placed in an environment of 0.95 atm or less, or even 0.8 atm or less, for example. . Even in such a reduced-pressure environment, since the battery 2000 has a plurality of negative-pressure voids 250 , damage to the power generation element 100 caused by the plurality of voids 250 can be suppressed.
  • the internal pressure of the plurality of voids 250 in the battery 2000 is, for example, equal to or lower than the pressure in the reduced-pressure environment.
  • the battery system according to the present embodiment includes the battery 1000 according to Embodiment 1, high reliability of the battery can be ensured even in a battery system in which the battery is placed in a reduced pressure environment.
  • the plurality of voids 250 existed inside each of the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130, but the present invention is not limited to this.
  • a plurality of voids 250 may exist inside at least one of negative electrode active material layer 110 , positive electrode active material layer 120 and solid electrolyte layer 130 .
  • the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 each contain an inorganic solid electrolyte, but the present invention is not limited to this.
  • Each of the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 may contain a solid electrolyte other than an inorganic solid electrolyte in addition to the inorganic solid electrolyte or instead of the inorganic solid electrolyte. good.
  • a battery or the like according to the present disclosure can be used as a battery or the like for electronic equipment, electric appliances, electric vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

電池(1000)は、正極活物質および第1無機系固体電解質を含む正極活物質層(120)と、負極活物質および第2無機系固体電解質を含む負極活物質層(110)と、正極活物質層(120)と負極活物質層(110)との間に位置し、第3無機系固体電解質を含む固体電解質層(130)と、を有する発電要素(100)を備える。発電要素(100)の内部に複数の空隙(250)が存在し、複数の空隙(250)の内圧は1atm未満である。

Description

電池、電池システムおよび電池の製造方法
 本開示は、電池、電池システムおよび電池の製造方法に関する。
 特許文献1には、双極型電極を準備する工程と、電解質を準備する工程と、双極型電極と電解質層またはその前駆体とを積層して、単電池層を含む積層体を得る工程と、単電池層の外周部にシール部を形成する工程とを含む双極型二次電池の製造方法が開示されている。特許文献1の製造方法は、電解質が水より低沸点の溶媒または脱水剤を含み、シール部を形成する工程の前または当該工程と同時に、電解質を20Torr未満の圧力で減圧処理する工程を含んでいる。
 特許文献2には、固体電解質層の平均気孔率が9%以下であるリチウムイオン電池が開示されている。
 特許文献3には、負極中の空隙および微多孔性セパレータ中の空隙をリチウムイオン伝導性高分子固体電解質で充填するために減圧することが開示されている。
特開2010-113939号公報 国際公開第2018/123479号 特開2018-198131号公報
 従来技術においては、電池特性および信頼性の更なる向上が望まれる。
 また、固体電解質を含む電池においても高容量の発現および優れた充放電サイクル特性等の高電池特性が求められる。
 例えば、無機系固体電解質は優れたイオン伝導性を有するので、固体電解質を含む高容量の電池を実現することができる。しかしながら、無機系固体電解質は、例えばポリマー固体電解質と比べて一般に柔軟性に乏しい。そのため、無機系固体電解質を用いた電池の特性発現には、活物質層、固体電解質層および活物質層と固体電解質層との界面におけるイオンの伝導性を高め、繰り返し充放電においてもこれを維持するために電池主面の法線方向から外部拘束力を加えることが重要である。
 一方、外部拘束力を加えるための拘束具等の仕組みを適用することは、電池の体積あたり容量密度および重量当たり容量密度を得るためには不都合であり、繰り返し充放電による容量低下を抑制することは電池の長期信頼性を確保するための重要な課題である。
 そこで、本開示は、高電池特性と高信頼性とを両立する電池等を提供する。
 本開示の一様態における電池は、正極活物質および第1無機系固体電解質を含む正極層と、負極活物質および第2無機系固体電解質を含む負極層と、前記正極層と前記負極層との間に位置し、第3無機系固体電解質を含む固体電解質層と、を有する発電要素を備え、前記発電要素の内部に複数の空隙が存在し、前記複数の空隙の内圧は1atm未満である。
 また、本開示の一様態における電池システムは、減圧環境となる内部空間を有する容器と、前記内部空間に配置される上記電池と、を備える。
 また、本開示の一様態における電池の製造方法は、正極活物質および第1無機系固体電解質を含む正極層と、負極活物質および第2無機系固体電解質を含む負極層と、前記正極層と前記負極層との間に位置し、第3無機系固体電解質を含む固体電解質層とを備える電池の製造方法であって、前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つを含む被圧縮体のプレスを減圧雰囲気で行う圧縮工程を含む。
 また、本開示の一様態における電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層とを備える電池の製造方法であって、前記固体電解質層を介して対向するように前記正極層と前記負極層とを積層した被圧縮体のプレスを減圧雰囲気で行う圧縮工程を含む。
 本開示によれば、電池等の高電池特性と高信頼性とを両立することができる。
図1は、実施の形態1に係る電池の概略構成を示す断面図である。 図2は、比較例1に係る電池の概略構成を示す断面図である。 図3は、比較例2に係る電池の概略構成を示す断面図である。 図4は、比較例3に係る電池の概略構成を示す断面図である。 図5は、比較例3に係る電池に生じる破損を説明するための図である。 図6Aは、実施の形態1に係る電池の製造方法で形成される積層体の概略構成を示す断面図である。 図6Bは、実施の形態1に係る電池の製造方法で形成される別の積層体の概略構成を示す断面図である。 図7Aは、実施の形態1に係る電池の製造方法で形成されるさらに別の積層体の概略構成を示す断面図である。 図7Bは、実施の形態1に係る電池の製造方法で形成されるさらに別の積層体の概略構成を示す断面図である。 図8は、実施の形態1に係る電池の製造方法で形成されるさらに別の積層体の概略構成を示す断面図である。 図9は、実施の形態1に係る第1の圧縮工程における被圧縮体のプレス方法の第1例を説明するための模式図である。 図10は、実施の形態1に係る第2の圧縮工程における被圧縮体のプレス方法の第1例を説明するための模式図である。 図11は、実施の形態1に係る第1の圧縮工程における被圧縮体のプレス方法の第2例を説明するための模式図である。 図12は、実施の形態1に係る第2の圧縮工程における被圧縮体のプレス方法の第2例を説明するための模式図である。 図13は、実施の形態1に係る第1の圧縮工程における被圧縮体のプレス方法の第3例を説明するための模式図である。 図14は、実施の形態1に係る第2の圧縮工程における被圧縮体のプレス方法の第3例を説明するための模式図である。 図15は、実施の形態1に係る第1の圧縮工程における被圧縮体のプレス方法の第4例を説明するための模式図である。 図16は、実施の形態1に係る第2の圧縮工程における被圧縮体のプレス方法の第4例を説明するための模式図である。 図17は、実施の形態2に係る電池システムの概略構成を示す模式図である。 図18は、実施の形態2に係る別の電池システムの概略構成を示す模式図である。
 (本開示の概要)
 本開示の一様態における電池は、正極活物質および第1無機系固体電解質を含む正極層と、負極活物質および第2無機系固体電解質を含む負極層と、前記正極層と前記負極層との間に位置し、第3無機系固体電解質を含む固体電解質層と、を有する発電要素を備え、前記発電要素の内部に複数の空隙が存在し、前記複数の空隙の内圧は1atm未満である。
 これによって、本態様における電池は、高電池特性と高信頼性とを両立することができる。空隙が外部環境よりも高い内圧であると、複数の空隙に隣接する正極活物質、負極活物質または無機系固体電解質間の接触を解除する方向の力が空隙の内圧によって働き、空隙が拡大して発電要素の内部のイオン伝導性および電子伝導性が低下する。例えば、充放電時のイオンの挿入脱離による活物質層の膨張収縮がきっかけとなり、正圧の空隙の拡大が進行し、発電要素を破損する。無機系固体電解質を含む電池の場合、特にイオン伝導性に関しては電解液に満たされている液系電池と異なり、空隙の拡大による発電要素の破損が顕著なイオン伝導性の低下を引き起こしやすい。本態様に係る電池では、空隙が1atm未満の負圧であるため、空隙の拡大を抑制できる。
 また、負圧の複数の空隙は、発電要素の破損による電池の劣化進行の起点にならないだけでなく、複数の空隙の周りの材料を互いに引き寄せて、空隙のない場合よりも強固な電池とすることができる。本態様では電池の材料として無機系固体電解質を用いているので電池の柔軟性が小さく、複数の空隙の周りの材料を引き寄せる力が散逸されることなく伝わる。これにより、拘束具等を備えなくても発電要素に外部拘束力が加えられることになり、電池容量を下げることなく発電要素のイオンおよび電子の伝導性を向上できる。よって、本態様における電池は、高電池特性と高信頼性とを両立することができる。
 また、例えば、前記複数の空隙は、前記第1無機系固体電解質、前記第2無機系固体電解質および前記第3無機系固体電解質のうちの少なくとも1つの粒界に沿って位置してもよい。
 これによって、無機系固体電解質の粒界の安定性を向上できる。
 また、例えば、前記複数の空隙のうちの少なくとも1つは、前記正極層および前記負極層のうちの少なくとも1つの内部に存在してもよい。
 これによって、充放電での活物質の体積変化に起因する発電要素の破損を抑制できる。
 また、例えば、前記複数の空隙のうちの少なくとも1つは、前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つの表面に位置してもよい。
 これによって、複数の空隙に起因する発電要素の各層の界面での剥離を抑制できる。
 また、例えば、前記複数の空隙の内圧は、0.1atm以下であってもよい。
 これによって、複数の空隙に起因する発電要素の破損をさらに抑制できる。
 また、例えば、前記複数の空隙のそれぞれの最大幅の平均は、10μm以下であってもよい。
 これによって、複数の空隙が発電要素におけるイオンまたは電子の伝導の阻害する影響を抑制できる。
 また、例えば、前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つにおける密度は、材料理論密度の90%以上であってもよい。
 これによって、電池の電池特性を向上できる。
 また、本開示の一様態における電池システムは、減圧環境となる内部空間を有する容器と、前記内部空間に配置される上記電池と、を備える。
 これによって、電池システムが上記電池を備えるため、容器の内部空間が減圧環境となっても、複数の空隙が拡大しにくく、発電要素の破損を抑制できる。
 また、例えば、前記減圧環境の圧力は、0.95atm以下であってもよい。
 これによって、0.95atm以下の減圧環境に電池が配置されても、複数の空隙が拡大しにくく、発電要素の破損を抑制できる。
 また、例えば、前記複数の空隙の内圧は、前記減圧環境の圧力以下であってもよい。
 これによって、複数の空隙を起点にした発電要素の破損の抑制できる。また、複数の空隙によって発電要素の材料を内側に引き付ける力を作用させることができる。
 また、本開示の一様態における電池の製造方法は、正極活物質および第1無機系固体電解質を含む正極層と、負極活物質および第2無機系固体電解質を含む負極層と、前記正極層と前記負極層との間に位置し、第3無機系固体電解質を含む固体電解質層とを備える電池の製造方法であって、前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つを含む被圧縮体のプレスを減圧雰囲気で行う。
 これによって、プレスによって被圧縮体を圧縮して高密度化できると共に、プレスに起因して被圧縮体の内部に形成される孤立した空隙の内圧を1atm未満の負圧にすることができる。プレス前の被圧縮体内部の空隙の一部は被圧縮体外の雰囲気と微細な導通パスでつながっている。被圧縮体の圧縮による高密度化の進行により、導通パスの大半が塞がり、空隙内の残留気体は出口を失う。以降は高密度化の進行に伴い、空隙の内圧が上昇する。したがって、例えば、被圧縮体外の雰囲気が常圧であると、圧縮工程の完了時には被圧縮体内部に1atmを超える高圧の空隙が多数形成され、これらが充放電時等に被圧縮体の破損の起点となり、イオンおよび電子の伝導経路が破壊されうる。これに対して、本態様における電池の製造方法では、被圧縮体外の雰囲気を減圧雰囲気としているので、プレス前の被圧縮体の空隙の気体を、導通パスを介して排気することができる。したがって、被圧縮体の圧縮による高密度化の進行により導通パスの大半が塞がり、空隙が被圧縮体外の雰囲気と遮断された後も、高密度化の進行に伴う空隙の内圧上昇を小さくすることができる。これにより、圧縮工程の完了時に残存する空隙の内圧を負圧もしくは比較的小さな正圧に留めることができるので、空隙に起因する被圧縮体の破損による伝導経路の破壊を抑えて、製造される電池の劣化進行を低減できる。
 また、本開示の一様態における電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層とを備える電池の製造方法であって、前記固体電解質層を介して対向するように前記正極層と前記負極層とを積層した被圧縮体のプレスを減圧雰囲気で行う。
 これによって、プレスによって被圧縮体の各層を圧縮接合できると共に、被圧縮体の各層間の界面に形成される空隙の内圧を1atm以下の負圧にすることができる。圧縮工程開始時の被圧縮体の各層間の境界には、各層の表面粗さに起因する空隙が存在する。これらの空隙は、被圧縮体外の雰囲気と微細な導通パスでつながっている。圧縮接合の進行により導通パスの大半が塞がり、空隙内の残留気体は出口を失う。以降は圧縮接合の進行に伴い、空隙の内圧が上昇する。したがって、例えば、被圧縮体外の雰囲気が常圧であると、圧縮工程の完了時には被圧縮体の各層の界面に沿って高圧の空隙が多数形成され、これらが充放電時に被圧縮体の破損の起点となり、被圧縮体の各層間の伝導経路が破壊されうる。これに対して、本態様に係る電池の製造方法では、被圧縮体の外部の雰囲気を減圧雰囲気としているので、圧縮接合前の被圧縮体の各層の境界における空隙の気体を、導通パスを介して排気することができる。したがって、被圧縮体の圧縮接合の進行により導通パスの大半が塞がり、空隙が被圧縮体外の雰囲気と遮断された後も、圧縮接合の進行に伴う空隙の内圧上昇を小さくすることができる。これにより、圧縮工程の完了時に残存する空隙の内圧を負圧もしくは比較的小さな正圧に留めることができるので、空隙に起因する被圧縮体の破損による伝導経路の破壊を抑えて、製造される電池の劣化進行を低減できる。
 また、例えば、前記減圧雰囲気の圧力は、0.1atm以下であってもよい。
 これによって、圧縮工程によって形成される空隙の内圧をより低くすることができる。
 また、例えば、前記プレスの圧力は、10MPa以上であってもよい。
 これによって、製造される電池の電池特性をさらに高めることができる。
 また、例えば、前記圧縮工程では、気密容器内に前記被圧縮体を配置し、前記気密容器内を前記減圧雰囲気にした後、前記気密容器の外部から前記被圧縮体の前記プレスを行い、前記気密容器は、前記プレスにより変形する弾性材料によって構成される変形部を備え、前記プレスによって前記変形部が変形することにより、前記気密容器の外部からの前記プレスの圧力が前記被圧縮体に印加されてもよい。
 これによって、気密容器の外部から被圧縮体をプレスできるため、プレスのための装置自体を減圧雰囲気に設置する必要がなく、プレスのための装置を小型化できる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 なお、以下で説明される実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、工程、工程の順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書において「平面視」とは、発電要素の主面の法線方向から見た場合を意味する。
 (実施の形態1)
 [構成]
 まず、本実施の形態に係る電池の構成について説明する。
 図1は、実施の形態1に係る電池1000の概略構成を示す断面図である。
 図1に示されるように、実施の形態1に係る電池1000は、負極集電体210と、正極集電体220と、発電要素100と、を備える。電池1000は、例えば、全固体電池である。
 発電要素100は、負極集電体210と正極集電体220との間に位置する。発電要素100は、正極活物質および第1無機系固体電解質を含む正極活物質層120と、負極活物質および第2無機系固体電解質を含む負極活物質層110と、正極活物質層120と負極活物質層110との間に位置し、第3無機系固体電解質を含む固体電解質層130と、を有する。負極活物質層110と正極集電体220とは、固体電解質層130を介して対向している。正極活物質層120は正極層の一例であり、負極活物質層110は負極層の一例である。また、本明細書では、第1無機系固体電解質と第2無機系固体電解質と第3無機系固体電解質とを総称して、単に「無機系固体電解質」と称する場合がある。第1無機系固体電解質と第2無機系固体電解質と第3無機系固体電解質とは、例えば、同じ材料であるが、異なる材料であってもよい。
 また、本明細書では、負極集電体210と正極集電体220とを総称して、単に「集電体」と称する場合があり、負極活物質層110と正極活物質層120とを総称して、単に「活物質層」と称する場合がある。
 発電要素100の内部には複数の空隙250が存在している。複数の空隙250の詳細については後述する。
 負極活物質層110は、電極材料として負極活物質を含む。負極活物質層110に含有される負極活物質としては、例えば、グラファイト、金属リチウムなどの負極活物質が用いられうる。負極活物質の材料としては、リチウム(Li)またはマグネシウム(Mg)などのイオンを離脱および挿入することができる各種材料が用いられうる。負極活物質は、例えば、粒子状の材料である。
 また、負極活物質層110は、例えば、無機系固体電解質をさらに含む。無機系固体電解質としては、例えば、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質としては、例えば、硫化リチウム(LiS)および五硫化二リン(P)の混合物が用いられうる。無機系固体電解質は、例えば、粒子状の材料である。また、負極活物質層110の含有材料としては、例えばアセチレンブラックなどの導電材、および、例えばポリフッ化ビニリデンなどの結着用バインダーのうちの少なくとも一方がさらに用いられてもよい。
 負極活物質層110の含有材料を溶媒と共に練り込んだペースト状の塗料を、負極集電体210の面上に塗工乾燥することにより、負極活物質層110が作製されうる。負極活物質層110の厚みは、例えば、5μm以上300μm以下であるが、これに限らない。
 正極活物質層120は、電極材料として正極活物質を含む。正極活物質は、負極活物質の対極を構成する材料である。正極活物質層120に含有される正極活物質としては、例えば、コバルト酸リチウム複合酸化物(LCO)、ニッケル酸リチウム複合酸化物(LNO)、マンガン酸リチウム複合酸化物(LMO)、リチウム‐マンガン‐ニッケル複合酸化物(LMNO)、リチウム‐マンガン‐コバルト複合酸化物(LMCO)、リチウム‐ニッケル‐コバルト複合酸化物(LNCO)、リチウム‐ニッケル‐マンガン‐コバルト複合酸化物(LNMCO)などの正極活物質が用いられうる。正極活物質の材料としては、LiまたはMgなどのイオンを離脱および挿入することができる各種材料が用いられうる。正極活物質は、例えば、粒子状の材料である。
 また、正極活物質層120は、例えば、無機系固体電解質をさらに含む。無機系固体電解質としては、上述の負極活物質に用いられる無機系固体電解質として例示した材料が用いられうる。また、正極活物質の表面は、固体電解質でコートされていてもよい。また、正極活物質層120の含有材料としては、例えばアセチレンブラックなどの導電材、および、例えばポリフッ化ビニリデンなどの結着用バインダーのうちの少なくとも一方がさらに用いられてもよい。
 正極活物質層120の含有材料を溶媒と共に練り込んだペースト状の塗料を、正極集電体220の面上に塗工乾燥することにより、正極活物質層120が作製されうる。正極活物質層120の厚みは、例えば、5μm以上300μm以下であるが、これに限らない。
 固体電解質層130は、負極活物質層110と正極活物質層120との間に配置される。固体電解質層130は、負極活物質層110および正極活物質層120の各々に接する。固体電解質層130の大きさおよび平面視形状はそれぞれ、負極活物質層110および正極活物質層120のそれぞれの大きさおよび平面視形状と、同じであってもよい。すなわち、固体電解質層130の側面は、負極活物質層110の側面および正極活物質層120の側面のそれぞれと面一であってもよい。
 固体電解質層130は、電解質材料を含む層である。電解質材料としては、一般に公知の電池用の電解質が用いられうる。固体電解質層130の厚みは、5μm以上300μm以下であってもよく、または、5μm以上100μm以下であってもよい。なお、図1で示される例では、固体電解質層130は、1層であるが、発電要素100は、複数の固体電解質層130が積層された構造を有していてもよい。
 固体電解質層130は、電解質材料として無機系固体電解質を含む。無機系固体電解質としては、上述の負極活物質に用いられる無機系固体電解質として例示した材料が用いられうる。固体電解質層130は、電解質材料に加えて、例えばポリフッ化ビニリデンなどの結着用バインダーなどを含有してもよい。
 電池1000では、負極活物質層110、正極活物質層120および固体電解質層130は平行平板状に維持されている。これにより、湾曲による割れまたは崩落の発生を抑制することができる。なお、負極活物質層110、正極活物質層120および固体電解質層130を合わせて滑らかに湾曲させてもよい。
 負極集電体210と正極集電体220とは、発電要素100を挟むように、それぞれ発電要素100に対向して配置されている。平面視において、負極集電体210、正極集電体220および発電要素100の外周は、例えば、一致している。負極集電体210と正極集電体220とはそれぞれ、導電性を有する部材である。負極集電体210と正極集電体220とはそれぞれ、例えば、導電性を有する薄膜であってもよい。負極集電体210と正極集電体220とを構成する材料としては、例えば、ステンレス(SUS)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)などの金属が用いられうる。
 負極集電体210は、発電要素100の負極活物質層110側に配置されている。負極集電体210は、例えば、負極活物質層110に接して配置される。負極集電体210としては、例えば、SUS箔、Al箔、Cu箔、Ni箔などの金属箔が用いられうる。負極集電体210の厚みは、例えば、5μm以上100μm以下であるが、これに限らない。なお、負極集電体210は、負極活物質層110に接する部分に、例えば、導電性材料を含む層である集電体層を備えてもよい。
 正極集電体220は、発電要素100の正極活物質層120側に配置されている。正極集電体220は、例えば、正極活物質層120に接して配置される。正極集電体220としては、例えば、SUS箔、Al箔、Cu箔、Ni箔などの金属箔が用いられうる。正極集電体220の厚みは、例えば、5μm以上100μm以下であるが、これに限らない。なお、正極集電体220は、正極活物質層120に接する部分に、例えば、導電性材料を含む層である集電体層を備えてもよい。
 負極活物質層110、固体電解質層130および正極活物質層120のうちの少なくとも1つは、例えば、各層の高密度化のために減圧雰囲気下でプレスを行う第1の圧縮工程を経て形成される。これにより、発電要素100の各層の内部でのイオン伝導性および電子伝導性を確保でき、電池特性を向上させることができる。本実施の形態では、例えば、負極活物質層110、固体電解質層130および正極活物質層120のいずれも第1の圧縮工程を経て形成される。なお、本明細書において、「プレス」とは、被圧縮体に機械的な応力を印加することである。
 また、発電要素100は、例えば、発電要素100の各層を圧縮接合するために減圧雰囲気下でプレスを行う第2の圧縮工程を経て形成される。これにより、発電要素100の各層の界面でのイオン伝導性および電子伝導性を確保でき、電池特性を向上させることができる。
 第1の圧縮工程および第2の圧縮工程の詳細については後述する。
 電池1000において、発電要素100の内部には複数の空隙250が存在する。複数の空隙250は、発電要素100の外部とは繋がっておらず、発電要素100の内部で孤立した空隙として存在している。つまり、複数の空隙250は、発電要素100の内部に位置する独立した気泡(中空部)である。
 複数の空隙250は、例えば、発電要素100の各層に含まれる無機系固体電解質等の材料粒子間の隙間が、第1の圧縮工程によって外部との導通パスが塞がれることによって形成される空隙250を含む。そのため、ゲル等の電解質とは異なり、無機系固体電解質には粒界が形成され、複数の空隙250は、各層に含まれる無機系固体電解質の粒界に沿って位置している空隙250を含む。また、複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの内部に位置する空隙250を含む。図1に示される例では、複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130のいずれの層の内部にも位置する空隙250を含んでいる。
 また、複数の空隙250は、例えば、発電要素100の各層の間の空隙が、第2の圧縮工程によって外部との導通パスが塞がれることによって形成される空隙250を含む。そのため、複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの表面に位置する空隙250を含む。つまり、複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの表面に接するように形成される空隙250を含む。図1に示される例では、複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130のいずれの層の表面にも位置する空隙250を含んでいる。
 図1に示される例では、全ての複数の空隙250のうち、少なくとも1つが負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの内部に位置し、他の少なくとも1つが負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの表面に位置する。なお、負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの内部に位置する空隙250と、負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの表面に位置する空隙250とは、どちらも存在していてもよく、いずれか一方が存在していてもよい。
 ここで、比較例に係る電池について説明する。
 まず、第1の圧縮工程および第2の圧縮工程のようなプレスを行う工程を経ずに形成した電池1001Xについて説明する。図2は、比較例1に係る電池1001Xの概略構成を示す断面図である。図2に模式的に示されるように、電池1001Xの発電要素100には、複数の空隙251と、複数の空隙251と電池1001Xの外部とを繋ぐ導通パス251aとが存在する。複数の空隙251は、導通パス251aにより電池1001Xの外部と連通している。そのため、複数の空隙251の内圧は外部と等圧、つまり、大気圧=1atmである。電池1001Xは、プレスを行う工程を経て形成されていないので、高密度化および粒子間の接触面積増加がされておらず高抵抗であり、且つ、低容量である。
 次に、低い圧力でのプレスを行う工程を経て形成した電池1002Xについて説明する。電池1002Xは、例えば、1MPa以下の低い圧力での発電要素100の各層のプレスを行う工程を経て形成される。図3は、比較例2に係る電池1002Xの概略構成を示す断面図である。図3に模式的に示されるように、電池1002Xの発電要素100には、複数の空隙252と、複数の空隙252と繋がる導通パス252aとが存在する。複数の空隙252のうちの一部の空隙252は、導通パス252aにより電池1002Xの外部まで連通しているが、複数の空隙252のうちの他の一部の空隙252は、空隙252と繋がる導通パス252aが電池1002xの外部に繋がっておらず、孤立した空隙252になっている。電池1002Xの外部と連通した空隙252の内部は外部と等圧であるが、孤立した空隙252は、プレスを行う工程により、電池1002Xの外部から孤立した後も圧縮され、複数の空隙252の体積が減ることで外部より高圧となる。電池1002Xは、十分な圧力でプレスを行う工程を経て形成されていないので、高密度化および粒子間の接触面積増加が不十分であり、高抵抗であり、且つ、低容量である。
 次に、電池1002Xよりも高い圧力でのプレスを行う工程を経て形成した電池1003Xについて説明する。電池1003Xは、例えば、10MPa以上の高い圧力での発電要素100の各層のプレスを行う工程を経て形成される。図4は、比較例3に係る電池1003Xの概略構成を示す断面図である。図4に模式的に示されるように、電池1003Xの発電要素100には、電池1003Xの外部と連通していない孤立した複数の空隙253が存在する。複数の空隙253は、プレスを行う工程により、電池1003Xの外部から孤立した後も圧縮され、複数の空隙253の体積が減ることで外部より高圧となる。そのため、発電要素100の内部に多数の高圧源が散在することになる。
 電池1003Xは、高い圧力でプレスを行う工程を経て形成されているため、高密度化および粒子間の接触面積増加が実現されており、電池1003Xの製造後の初期には低抵抗であり、且つ、高容量である。しかしながら、このようにして形成された電池1003Xは、プレスを行う工程における圧縮力からの解放時だけでなく、充放電、即ちイオンの挿入脱離による活物質の体積変化、電池1003Xが使用される環境の温度変化および圧力の変化、ならびに、電池1003Xに印加される外力などによって発電要素100の内部応力が変化すると、複数の空隙253を起点にした発電要素100の破損が生じる。図5は、電池1003Xに生じる破損を説明するための図である。図5に模式的に示されるように、正極活物質層120、負極活物質層110および固体電解質層130の内部、ならびに、発電要素100の各層の層間で高圧の複数の空隙253が広がって複数の空隙254になり、粒界剥離および層間剥離に代表される微小な破損が促進される。その結果、電池1003Xの電池特性の劣化が生じる。そのため、高い圧力でのプレスを行う工程を行って電池を形成するだけでは、長期的に電池特性を維持することが難しく、電池1003Xでは信頼性が低い。
 これに対して電池1000では、発電要素100の内部に存在する複数の空隙250に起因した電池特性の劣化を抑制するために、複数の空隙250は大気圧よりも低い負圧である。つまり、複数の空隙250の内圧は1atm未満である。このような内圧が1atm未満の複数の空隙250が存在することで、第1の圧縮工程および第2の圧縮工程における圧縮力からの解放、活物質の体積変化、電池1000の使用環境の変化、ならびに、電池1000への外力の印加などに際して、複数の空隙の内部の負圧が、粒界剥離および層間剥離を抑制する方向に作用するので電池1000の電池特性の劣化を抑制できる。特に、負圧の複数の空隙250が負極活物質層110および正極活物質層120に存在することで、充放電での活物質の体積変化に起因する発電要素100の破損を抑制できる。
 また、内部が負圧の複数の空隙250の存在は、複数の空隙250の内圧が大気圧よりも高い場合だけでなく、複数の空隙250が無い場合に比べても、発電要素100の各層の材料を引き付ける力になるため、電池1000の電池特性の劣化を抑制できる。また、内部が負圧の複数の空隙250の存在は、発電要素100の各層の材料を引き付ける力になるため、各層の材料の粒界および各層の間での抵抗を低減でき、電池特性が向上する。また、拘束具等を備えなくても発電要素100に外部拘束力が加えられることになり、拘束具等を備えることによる単位体積当たりおよび単位重量当たりの電池容量の低下も避けられる。
 複数の空隙250は、正極活物質層120および負極活物質層110のうち少なくとも1つの内部に存在する。これにより、充放電での活物質の体積変化に起因する発電要素100の破損を抑制できる。また、複数の空隙250が周りの活物質層の材料を引き寄せて活物質層内の抵抗を下げることができる。
 電池1000の信頼性を高める観点から、複数の空隙250の内圧は、0.8atm以下であってもよく、0.5atm以下であってもよく、0.1atm以下であってもよい。また、複数の空隙250の内圧は、例えば、0atmよりも大きい。なお、本明細書において、複数の空隙250の内圧等の圧力は、常温での圧力である。常温は、例えば、23℃である。また、本明細書において、複数の空隙250の内圧等の圧力の数値は、絶対圧における数値である。
 このような内圧が1atm未満の複数の空隙250は、例えば、減圧雰囲気でプレスを行う第1の圧縮工程および/または第2の圧縮工程において形成される。第1の圧縮工程および/または第2の圧縮工程を経て形成された正極活物質層120、負極活物質層110および固体電解質層130の少なくとも1つの密度(具体的には、重量を見かけ体積で除した見かけ密度)は、例えば、材料理論密度の90%以上であり、95%以上であってもよい。これにより、電池1000の電池特性を向上できる。正極活物質層120、負極活物質層110および固体電解質層130のすべての密度は、それぞれの層の材料理論密度の90%以上であってもよい。
 複数の空隙250のそれぞれの最大幅の平均は、例えば、10μm以下であり、1μm以下であってもよい。これにより、複数の空隙250が発電要素100におけるイオンまたは電子の伝導の阻害する影響を抑制できる。複数の空隙250のそれぞれの最大幅は、例えば、電子顕微鏡等で電池1000の断面を観察することで観察される複数の空隙250から計測される。
 以上のように電池1000は、高電池特性と高信頼性とを両立することができる。
 [製造方法]
 次に、本実施の形態に係る電池1000の製造方法について説明する。電池1000の製造方法は、例えば、第1の圧縮工程と第2の圧縮工程とを含む。
 第1の圧縮工程では、正極活物質層120、負極活物質層110および固体電解質層130のうちの少なくとも1つを含む被圧縮体のプレスを1atm未満の減圧雰囲気で行う。これにより、正極活物質層120、負極活物質層110および固体電解質層130のうちの少なくとも1つを高密度化できる。プレスを減圧雰囲気で行うとは、空間の気体が排気される等によって1atm未満の減圧状態になった空間でプレスを行うことである。
 また、第1の圧縮工程におけるプレス前の被圧縮体の内部には、例えば、図2で示される導通パス251aに繋がった空隙251のように、被圧縮体外の雰囲気と微細な導通パスでつながった空隙が存在している。これらの空隙は、被圧縮体の材料粒子間の隙間に起因する。被圧縮体の圧縮の進行により、導通パスの大半が塞がり、空隙内の残留気体は出口を失う。以降は圧縮による高密度化の進行に伴い、空隙の内圧が上昇する。例えば、導通パスが塞がってから空隙の体積が半分以下になると、空隙の内圧は2atm以上になる。したがって、例えば、被圧縮体外の雰囲気が常圧であると、圧縮工程の完了時には被圧縮体内部に高圧の空隙が多数形成され、これらが充放電時等に被圧縮体の破損の起点となり、イオンおよび電子の伝導経路が破壊されうる。これに対して、第1の圧縮工程では、被圧縮体外の雰囲気を減圧雰囲気としているので、プレス前の被圧縮体の空隙の気体を、導通パスを介して排気することができる。したがって、被圧縮体の圧縮の進行により導通パスの大半が塞がり、空隙が被圧縮体外の雰囲気と遮断された後も、圧縮の進行に伴う空隙の内圧上昇を小さくすることができる。これにより、例えば、第1の圧縮工程の完了時に残存する複数の空隙250の内圧を1atm未満の負圧にすることができる。
 第2の圧縮工程では、固体電解質層130を介して対向するように正極活物質層120と負極活物質層110とを積層した被圧縮体のプレスを1atm未満の減圧雰囲気で行う。これにより、固体電解質層130を介して正極活物質層120と負極活物質層110とを圧縮接合できる。
 また、第2の圧縮工程におけるプレス前の被圧縮体の各層の境界には、例えば、図2で示される導通パス251aに繋がった空隙251のように、被圧縮体外の雰囲気と微細な導通パスでつながった空隙が存在している。これらの空隙は、被圧縮体の各層の表面粗さに起因する。圧縮接合の進行により導通パスの大半が塞がり、空隙内の残留気体は出口を失う。以降は圧縮接合の進行に伴い、空隙の内圧が上昇する。したがって、例えば、被圧縮体外の雰囲気が常圧であると、圧縮工程の完了時には被圧縮体の各層の界面に沿って高圧の空隙が多数形成され、これらが充放電時に被圧縮体の破損の起点となり、被圧縮体の各層間の伝導経路が破壊されうる。これに対して、第2の圧縮工程では、被圧縮体の外部の雰囲気を減圧雰囲気としているので、圧縮接合前の被圧縮体の各層の境界における空隙の気体を、導通パスを介して排気することができる。したがって、被圧縮体の圧縮接合の進行により導通パスの大半が塞がり、空隙が被圧縮体外の雰囲気と遮断された後も、圧縮接合の進行に伴う空隙の内圧上昇を小さくすることができる。これにより、圧縮工程の完了時に残存する複数の空隙250の内圧を負圧にすることができる。
 なお、電池1000の製造方法は、第1の圧縮工程および第2の圧縮工程のうち、一方のみを含んでいてもよい。また、電池1000は、第1の圧縮工程および第2の圧縮工程以外の工程を含む製造方法で製造されてもよい。
 電池1000の製造方法では、例えば、第1の圧縮工程および第2の圧縮工程でプレスが行われる被圧縮体として積層体を形成する。図6A、図6B、図7A、図7Bおよび図8は、電池1000の製造方法で形成される積層体の概略構成を示す断面図である。なお、図6A、図6B、図7A、図7Bおよび図8は、各層に存在する空隙の図示を省略している。
 電池1000の製造方法では、例えば、図6A、図6B、図7A、図7Bおよび図8に示される積層体310、積層体320、積層体330、積層体340および積層体350のうちの少なくとも一つが形成される。
 図6Aに示される積層体310は、例えば、負極集電体210の上に負極活物質層110を積層することで形成される。図6Bに示される積層体320は、例えば、正極集電体220の上に正極活物質層120を積層することで形成される。図7Aに示される積層体330は、例えば、図6Aで示される積層体310の負極活物質層110の上にさらに固体電解質層130を積層することで形成される。図7Bに示される積層体340は、例えば、図6Bで示される積層体320の正極活物質層120の上にさらに固体電解質層130を積層することで形成される。図8に示されるように、積層体350は、負極集電体210上に、負極活物質層110、固体電解質層130、正極活物質層120および正極集電体220をこの順で積層することで形成される。なお、積層体の積層構成および形成方法は、上述の例に限らない。例えば、積層体は、積層体350から正極集電体220および負極集電体210の少なくとも一方を除いた積層構成を有していてもよい。
 上記各積層体は、例えば、負極活物質層110、正極活物質層120および固体電解質層130それぞれの材料を溶媒と共に練り込んだペースト状の塗料を、集電体または各層の面上に塗工し、乾燥することにより、形成される。
 第1の圧縮工程では、例えば、図6Aおよび図6Bに示される積層体310および積層体320の少なくとも一方を被圧縮体として、減圧雰囲気でプレスを行う。これによって、正極活物質層120および負極活物質層110を構成する材料の高密度化および粒子間の接触面積増加が実現されるため、各層内でのイオンおよび電子の抵抗を小さくすることができる。また、正極活物質層120および負極活物質層110の表面を平滑にすることができるため、正極活物質層120および負極活物質層110の上に膜厚が薄く均一な固体電解質層130の形成が可能となり、短絡リスクを低減することができる。また、積層体310を被圧縮体とすることで、負極活物質層110の内部に複数の空隙250が形成される。また、積層体320を被圧縮体とすることで、正極活物質層120の内部に複数の空隙250が形成される。
 また、第1の圧縮工程では、例えば、図7Aおよび図7Bに示される積層体330および積層体340の少なくとも一方を被圧縮体として、減圧雰囲気でプレスを行う。これによって、正極活物質層120、負極活物質層110および固体電解質層130を構成する材料の高密度化および粒子間の接触面積増加が実現されるため、各層内でのイオンおよび電子の抵抗を小さくすることができる。また、正極活物質層120または負極活物質層110と、固体電解質層130との密着性を高めることができる。また、積層体330を被圧縮体とすることで、負極活物質層110および固体電解質層130それぞれの内部に複数の空隙250が形成される。また、積層体340を被圧縮体とすることで、正極活物質層120および固体電解質層130のそれぞれの内部に複数の空隙250が形成される。
 また、第1の圧縮工程では、例えば、図8に示される積層体350を被圧縮体として、減圧雰囲気でプレスを行う。これによって、正極活物質層120、負極活物質層110および固体電解質層130を構成する材料の高密度化および粒子間の接触面積増加が実現されるため、各層内でのイオンおよび電子の抵抗を小さくすることができる。また、正極活物質層120と負極活物質層110とを、固体電解質層130を介して強固に密着することができる。また、積層体350を被圧縮体とすることで、負極活物質層110、正極活物質層120および固体電解質層130それぞれの内部に複数の空隙250が形成される。また、積層体350は、固体電解質層130を介して対向するように正極活物質層120と負極活物質層110とを積層した構成を有するため、積層体350を被圧縮体としてプレスを行うことで、第1の圧縮工程と第2の圧縮工程とが同時に行われる。
 また、上記のように第1の圧縮工程において、減圧雰囲気でプレスが行われることにより、第1の圧縮工程に起因して発電要素100の内部に形成される複数の空隙250の内圧を1atm未満にすることができる。
 また、第2の圧縮工程では、例えば、固体電解質層130を介して正極活物質層120と負極活物質層110とが対向して積層されるように、図6Aおよび図7Bに示される積層体310と積層体340とを積層した被圧縮体のプレスを減圧雰囲気で行う。具体的には積層体310の負極活物質層110と積層体340の固体電解質層130とが対面するように積層体310と積層体340とを積層する。これによって、積層体310の負極活物質層110と積層体340の固体電解質層130とが圧縮接合され、負極活物質層110と固体電解質層130との密着性を高めることができる。また、これによって、圧縮接合される負極活物質層110と固体電解質層130との界面に沿って複数の空隙250が形成される。
 また、第2の圧縮工程では、例えば、固体電解質層130を介して正極活物質層120と負極活物質層110とが対向して積層されるように、図6Bおよび図7Aに示される積層体320と積層体330とを積層した被圧縮体のプレスを減圧雰囲気で行う。具体的には積層体320の正極活物質層120と積層体330の固体電解質層130とが対面するように積層体320と積層体330とを積層する。これによって、積層体320の正極活物質層120と積層体330の固体電解質層130とが圧縮接合され、正極活物質層120と固体電解質層130との密着性を高めることができる。また、これによって、圧縮接合される正極活物質層120と固体電解質層130との界面に沿って複数の空隙250が形成される。
 また、第2の圧縮工程では、例えば、固体電解質層130を介して正極活物質層120と負極活物質層110とが対向して積層されるように、図7Aおよび図7Bに示される積層体330と積層体340とを積層した被圧縮体のプレスを減圧雰囲気で行う。具体的には積層体330の固体電解質層130と積層体340の固体電解質層130とが対面するように積層体330と積層体340とを積層する。これによって、積層体330の固体電解質層130と積層体340の固体電解質層130とが圧縮接合され、固体電解質層130同士の密着性を高めることができる。また、これによって、圧縮接合される2つの固体電解質層130の界面に沿って複数の空隙250が形成される。
 上述のように、第2の圧縮工程において、減圧雰囲気でプレスが行われることにより、第2の圧縮工程に起因して発電要素100の各層の表面に形成される複数の空隙250の内圧を、1atm未満にすることができる。
 なお、第2の圧縮工程で用いられる積層体は、例えば、第1の圧縮工程を経た積層体である。このようにして、第1の圧縮工程および第2の圧縮工程を経ることで、電池1000が形成される。なお、第2の圧縮工程で用いられる積層体は、第1の圧縮工程を経ていない積層体であってもよい。第1の圧縮工程を経ていない積層体を第2の圧縮工程で用いる場合、第1の圧縮工程と第2の圧縮工程とが同時に行われる。
 以上のように、第1の圧縮工程および第2の圧縮工程の上記様々な効果により、低抵抗であり、かつ、高容量である電池1000を得ることができる。また、内圧が1atm未満の複数の空隙250が形成されるため、電池1000の信頼性も向上する。
 無機系固体電解質を用いた電池1000においては、内部に多数の固い粒子同士の粒界が存在するため、第1の圧縮工程および第2の圧縮工程でのプレスの圧力(つまり圧縮時の応力)は、例えば、10MPa以上である。これにより、電池1000の電池特性をさらに高めることができる。また、10MPa以上の高い圧力でプレスが行われる場合、常圧雰囲気下でプレスを行う方法では、空隙と被圧縮体の外部とをつなぐ導通パスが塞がれて、形成される空隙の内圧が特に高くなりやすいが、減圧雰囲気下でプレスが行われることにより、複数の空隙250の内圧を低くすることができる。
 また、第1の圧縮工程を経た積層体を第2の圧縮工程で用いる場合、例えば、第2の圧縮工程におけるプレスの圧力は、第1の圧縮工程におけるプレスの圧力よりも高い。これにより、第2の圧縮工程の効果をさらに高めることができる。
 また、第1の圧縮工程および第2の圧縮工程において、減圧雰囲気の圧力は、0.5atm以下であってもよく、0.1atm以下であってもよい。これにより、形成される複数の空隙250の内圧をさらに低くすることができる。また、減圧雰囲気の圧力は、例えば、0atmより大きい。
 このように、無機系固体電解質を用いた電池1000を形成するための第1の圧縮工程および/または第2の圧縮工程におけるプレスの進行に伴って、正極活物質層120、負極活物質層110および固体電解質層130の密度が向上する。
 次に、第1の圧縮工程および第2の圧縮工程における被圧縮体のプレス方法について説明する。第1の圧縮工程および第2の圧縮工程においては、容器等に囲まれた空間に減圧雰囲気を構築し、構築された減圧雰囲気で被圧縮体をプレスする。
 まず、被圧縮体のプレス方法の第1例を説明する。図9は、第1の圧縮工程における被圧縮体のプレス方法の第1例を説明するための模式図である。図10は、第2の圧縮工程における被圧縮体のプレス方法の第1例を説明するための模式図である。図9および図10に示されるように、真空ポンプ910に接続された真空槽900の内部空間905に設置された平板プレス装置800を用いて第1の圧縮工程および第2の圧縮工程を行うことができる。真空槽900には、例えば、被圧縮体を出し入れするための扉等(図示省略)が設けられている。具体的には、第1の圧縮工程および第2の圧縮工程では、まず、平板プレス装置800の上下のプレス板の間に被圧縮体を配置する。次に、真空ポンプ910によって内部空間905の気体を排気することにより、内部空間905を減圧雰囲気(例えば、真空雰囲気)にする。内部空間905を減圧雰囲気にした後、平板プレス装置800を用いて被圧縮体のプレスを行う。平板プレス装置800によるプレスでの圧力印加の方向は、図9および図10に示される白抜きの矢印の方向である。具体的には、平板プレス装置800によるプレスでの圧力印加の方向は、積層体の集電体および各層の主面法線方向、つまり、積層体の集電体および各層が並んで積層されている方向である。プレスでの圧力印加の方向は他のプレス方法でも同様である。
 次に、被圧縮体のプレス方法の第2例を説明する。図11は、第1の圧縮工程における被圧縮体のプレス方法の第2例を説明するための模式図である。図12は、第2の圧縮工程における被圧縮体のプレス方法の第2例を説明するための模式図である。図11および図12に示されるように、第1の圧縮工程および第2の圧縮工程では、真空ポンプ910に接続された気密容器920の内部空間925に被圧縮体を配置して、気密容器920の外部から平板プレス装置800を用いて被圧縮体のプレスを行う。具体的には、第1の圧縮工程および第2の圧縮工程では、まず、気密容器920の内部空間925に被圧縮体を配置する。次に、真空ポンプ910によって内部空間925の気体を排気することにより、内部空間925を減圧雰囲気にする。内部空間925を減圧雰囲気にした後、平板プレス装置800を用いて気密容器920の外部から被圧縮体のプレスを行う。
 気密容器920は、例えば、変形部921とプレス部922と収容部923とを備える。気密容器920は、変形部921とプレス部922と収容部923とにより、真空ポンプ910との接続部911以外の箇所が密閉された内部空間925を形成する。
 変形部921は、プレス部922と収容部923との間に位置する。変形部921は、プレス部922および収容部923の少なくとも一方と分離可能である。変形部921は、例えば、平面視形状が枠状であり、プレス部922と収容部923との間をシールするシール部材である。これにより、気密容器920減圧状態が維持される。変形部921の材料は、例えば、発電要素100の各層の材料よりも柔らかく、平板プレス装置800のプレスにより変形する材料である。平板プレス装置800のプレスによって変形部921が変形することにより、気密容器920の外部からのプレスの圧力が被圧縮体に印加される。変形部921は、平板プレス装置800のプレスにより変形するゴム材料などの弾性材料によって構成される。なお、変形部921の材料は、弾性を有していなくてもよく、塑性変形する材料であってもよい。
 プレス部922は、気密容器920の上蓋部を構成する板状の部材である。被圧縮体のプレスを行えるように、プレス部922の一部、例えばプレス部922に設けられた凸部の下面922aが被圧縮体に接するように設計されている。また、プレス部922では、平面視において、中央に凸部が設けられ、凸部が設けられていない端部は変形部921に接する。
 収容部923は、上部が開口した箱形状の部材であり、収容部923の箱形状の底面923a上に被圧縮体を収容する。収容部923の一部が、配管またはチューブ等の接続部911を介して真空ポンプ910と接続されている。また、収容部923の側壁部の上端は、変形部921を介して、収容部923の端部に接続されている。
 プレス部922には平板プレス装置800の上側のプレス板からプレスの力が印加され、収容部923には平板プレス装置800の下側のプレス板からプレスの力が印加される。プレス部922および収容部923には、例えば、平板プレス装置800によるプレスの力が直接印加される。被圧縮体は、例えば、収容部923の箱形状の底面923aとプレス部922の凸部の下面922aとに挟まれるように配置される。プレス部922および収容部923はそれぞれ、発電要素100の各層の材料よりも硬い剛体材料によって構成されている。これにより、平板プレス装置800によるプレスの際に、気密容器920全体としての容器形状および内部空間925の減圧状態を保持しながら、被圧縮体のプレスを安定的に行うことができる。なお、プレス部922および収容部923には、変形部921と同じ材料が用いられてもよい。
 このような構成により、平板プレス装置800のプレスによって変形部921がプレスの方向に縮むように変形し、プレス部922と収容部923とを介して、平板プレス装置800の力が被圧縮体に伝わり、被圧縮体のプレスが行われる。また、変形部921は、例えば、平板プレス装置800のプレスから解放されることで、元の形状に戻るため、被圧縮体を入れ替えることで気密容器920は再び使用される。
 このように、気密容器920の外側からプレスを行うことで、減圧雰囲気を構築するための設備を小型化することができる。
 次に、被圧縮体のプレス方法の第3例を説明する。図13は、第1の圧縮工程における被圧縮体のプレス方法の第3例を説明するための模式図である。図14は、第2の圧縮工程における被圧縮体のプレス方法の第3例を説明するための模式図である。図13および図14に示されるように、真空ポンプ910に接続された真空槽900の内部空間905に設置された、ロールプレス装置850と、ロールプレス装置850を挟むように配置された巻出しロール860および巻取りロール870とを用いて、第1の圧縮工程および第2の圧縮工程を行うことができる。ロールプレス装置850、巻出しロール860および巻取りロール870は、すべて、真空槽900の内部空間905に設置される。
 図13に示されるように、第1の圧縮工程では、巻出しロール860から巻取りロール870まで搬送ローラー880に沿って被圧縮体400を搬送しながらロールプレス装置850によって発電要素100の各層の連続的なプレスを行う。被圧縮体400は、例えば、上述の第1の圧縮工程で用いられる積層体として説明した積層体と同様の積層構成を有する。
 また、図14に示されるように、第2の圧縮工程では、2つの巻出しロール860から搬送ローラー880に沿って被圧縮体410および被圧縮体420を搬送しながら、ロールプレス装置850によって、固体電解質層130を介して対向するように正極活物質層120と負極活物質層110とを圧縮接合する。圧縮接合開始までは、巻取りロール870を用いて被圧縮体410および被圧縮体420を搬送し、圧縮接合開始後の電池構成体500は、図示しない搬送切断装置によって搬送回収することができる。被圧縮体410および被圧縮体420は、例えば、上述の第2の圧縮工程で用いられる積層体として説明した積層体と同様の積層構成を有する。
 次に、被圧縮体のプレス方法の第4例を説明する。図15は、第1の圧縮工程における被圧縮体のプレス方法の第4例を説明するための模式図である。図16は、第2の圧縮工程における被圧縮体のプレス方法の第4例を説明するための模式図である。図15および図16に示されるように、真空ポンプ910に接続された真空槽930の内部空間935に設置された、ロールプレス装置850と、ロールプレス装置850を挟むように真空槽930の外側に配置された巻出しロール860および巻取りロール870とを用いて、第1の圧縮工程および第2の圧縮工程を行うことができる。また、真空槽930には、被圧縮体400、または、被圧縮体410および被圧縮体420が出入りする箇所に、真空槽930の気密性を保持するためのシールローラー890が設けられている。これにより、減圧雰囲気を構築するための設備を小型化することができる。第4例における被圧縮体400、または、被圧縮体410および被圧縮体420の搬送およびプレスについては、第3例と同様である。
 なお、減圧雰囲気で第1の圧縮工程および第2の圧縮工程を行う方法はこれらの例に限定されない。例えば、第1の圧縮工程および第2の圧縮工程において、高密度化および圧縮接合を効率的に進めるために、加温しながらプレスしてもよい。また、第1の圧縮工程および第2の圧縮工程において、内部空間905、内部空間925または内部空間935を減圧雰囲気にする前に、内部空間905、内部空間925または内部空間935を、アルゴンまたは窒素等の不活性ガスで置換してもよい。
 また、上述の説明では、発電要素100が一つである単一セルの電池1000について説明をしたが、複数の発電要素100を、集電体を介して直列構造または並列構造に積層した構成を有する積層電池においても、本実施の形態に係る電池1000の構成および製造方法は有効である。
 (実施の形態2)
 次に、実施の形態2について説明する。実施の形態2では、実施の形態1に係る電池を用いた電池システムについて説明する。上述の実施の形態1に係る電池1000では、発電要素100の内部に負圧の複数の空隙250が存在するため耐環境性にも優れており、実運用上での様々な利点を供する。
 図17は、実施の形態2に係る電池システム3000の概略構成を示す模式図である。図17に示されるように、電池システム3000は、電池2000と、容器600とを備える。
 電池2000は、例えば、実施の形態1に係る電池1000を複数有し、複数の電池1000が積層された積層構造を有する積層電池である。なお、図17においては、電池1000が積層された構造の記載は省略され、1つの矩形として電池2000が示されている。電池2000が積層電池であることで、高電圧または高容量を実現できる。電池2000は、容器600の内部空間605に配置される。電池システム3000が備える電池は単一セルの電池である電池1000であってもよい。
 容器600は、電池2000を収容するための密閉容器である。容器600は、減圧環境となる内部空間605を有する。減圧環境は、電池2000が置かれる環境の圧力が1atm以下である環境である。つまり、内部空間605の圧力は1atm未満である。容器600は、例えば、減圧環境下で電池2000を容器600に収容することで内部空間605が減圧環境となっていてもよく、図示はされていない、真空ポンプ、または、減圧環境の容器600の外部とつなぐ通気扉もしくは通気口等によって、内部空間605が減圧環境となってもよい。容器600は、例えば、発電要素100等を保護するための電池ケースであるが、電池ケースのような電池専用の容器に限らず、飛行機、宇宙航空機または真空槽等であってもよい。容器600は、例えば、図示されていない飛行装置等により飛行してもよい。
 また、図18は、実施の形態2に係る別の電池システム3100の概略構成を示す模式図である。図18に示されるように、電池システム3100は、電池2000と、容器610とを備える。
 容器610は、減圧環境となる内部空間615を有する。また、容器610には、内部空間615と容器610の外部とを繋ぐ孔612が設けられている。容器610は、例えば、減圧環境に配置される、または、移動することで、孔612によって内部空間615が減圧環境となる。容器610は、例えば、飛行機または宇宙航空機等の高高度環境または宇宙空間に移動する移動体に搭載される、発電要素100等を保護するための電池ケースである。容器610は、電池ケースのような電池専用の容器に限らず、高高度環境もしくは宇宙空間で使用される機器の装置の筐体、または、飛行機もしくは宇宙航空機に設置される装置の筐体等であってもよい。
 このように、電池システム3000および電池システム3100では、例えば、電池2000を減圧環境に配置し、電池2000の充電または放電を行う。
 本実施の形態において、減圧環境の圧力は、0.95atm以下であってもよく、0.8atm以下であってもよい。また、減圧環境の圧力は、例えば、0atmより大きい。例えば、高高度で飛行条件下では容器610の外部は減圧環境であることが一般的であり、例えば、0.95atm以下、さらには0.8atm以下の環境に電池システム3100が置かれる場合がある。このような、減圧環境下であっても、電池2000は、負圧の複数の空隙250を有するため、複数の空隙250を起点にした発電要素100の破損の抑制を抑制できる。
 また、電池2000における複数の空隙250の内圧は、例えば、減圧環境の圧力以下である。これにより、複数の空隙250を起点にした発電要素100の破損の抑制、および、複数の空隙250によって発電要素100の各層を内側に引き付ける力を作用させることができる。
 このように本実施の形態に係る電池システムは、実施の形態1に係る電池1000を含むため、電池が減圧環境に置かれる電池システムであっても、電池の高信頼性を確保できる。
 (その他の実施の形態)
 以上、本開示に係る電池および電池システムについて、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 例えば、上記実施の形態では、複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130それぞれの内部に存在したが、これに限らない。複数の空隙250は、負極活物質層110、正極活物質層120および固体電解質層130のうちの少なくとも1つの内部に存在していればよい。
 また、例えば、上記実施の形態では、負極活物質層110、正極活物質層120および固体電解質層130はそれぞれ、無機系固体電解質を含んだが、これに限らない。負極活物質層110、正極活物質層120および固体電解質層130はそれぞれ、無機系固体電解質に加えて、または、無機系固体電解質の代わりに、無機系固体電解質以外の固体電解質を含んでいてもよい。
 また、上記の実施の形態は、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る電池等は、電子機器、電気器具装置および電気車両などの電池等として、利用可能である。
  100 発電要素
  110 負極活物質層
  120 正極活物質層
  130 固体電解質層
  210 負極集電体
  220 正極集電体
  250 空隙
  310、320、330、340、350 積層体
  400、410、420 被圧縮体
  600、610 容器
  605、615、905、925、935 内部空間
  612 孔
  800 平板プレス装置
  850 ロールプレス装置
  860 巻出しロール
  870 巻取りロール
  880 搬送ローラー
  890 シールローラー
  900、930 真空槽
  910 真空ポンプ
  911 接続部
  920 気密容器
  921 変形部
  922 プレス部
  922a 下面
  923 収容部
  923a 底面
  1000、2000 電池
  3000、3100 電池システム

Claims (15)

  1.  正極活物質および第1無機系固体電解質を含む正極層と、
     負極活物質および第2無機系固体電解質を含む負極層と、
     前記正極層と前記負極層との間に位置し、第3無機系固体電解質を含む固体電解質層と、
     を有する発電要素を備え、
     前記発電要素の内部に複数の空隙が存在し、
     前記複数の空隙の内圧は1atm未満である、
     電池。
  2.  前記複数の空隙は、前記第1無機系固体電解質、前記第2無機系固体電解質および前記第3無機系固体電解質のうちの少なくとも1つの粒界に沿って位置する、
     請求項1に記載の電池。
  3.  前記複数の空隙のうちの少なくとも1つは、前記正極層および前記負極層のうちの少なくとも1つの内部に存在する、
     請求項1または2に記載の電池。
  4.  前記複数の空隙のうちの少なくとも1つは、前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つの表面に位置する、
     請求項1から3のいずれか一項に記載の電池。
  5.  前記複数の空隙の内圧は、0.1atm以下である、
     請求項1から4のいずれか一項に記載の電池。
  6.  前記複数の空隙のそれぞれの最大幅の平均は、10μm以下である、
     請求項1から5のいずれか一項に記載の電池。
  7.  前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つにおける密度は、材料理論密度の90%以上である、
     請求項1から6のいずれか一項に記載の電池。
  8.  減圧環境となる内部空間を有する容器と、
     前記内部空間に配置される、請求項1から7のいずれか一項に記載の電池と、
     を備える、
     電池システム。
  9.  前記減圧環境の圧力は、0.95atm以下である、
     請求項8に記載の電池システム。
  10.  前記複数の空隙の内圧は、前記減圧環境の圧力以下である、
     請求項8または9に記載の電池システム。
  11.  正極活物質および第1無機系固体電解質を含む正極層と、負極活物質および第2無機系固体電解質を含む負極層と、前記正極層と前記負極層との間に位置し、第3無機系固体電解質を含む固体電解質層とを備える電池の製造方法であって、
     前記正極層、前記負極層および前記固体電解質層のうちの少なくとも1つを含む被圧縮体のプレスを減圧雰囲気で行う圧縮工程を含む、
     電池の製造方法。
  12.  正極層と、負極層と、前記正極層と前記負極層との間に位置する固体電解質層とを備える電池の製造方法であって、
     前記固体電解質層を介して対向するように前記正極層と前記負極層とを積層した被圧縮体のプレスを減圧雰囲気で行う圧縮工程を含む、
     電池の製造方法。
  13.  前記減圧雰囲気の圧力は、0.1atm以下である、
     請求項11または12に記載の電池の製造方法。
  14.  前記プレスの圧力は、10MPa以上である、
     請求項11から13のいずれか一項に記載の電池の製造方法。
  15.  前記圧縮工程では、気密容器内に前記被圧縮体を配置し、前記気密容器内を前記減圧雰囲気にした後、前記気密容器の外部から前記被圧縮体の前記プレスを行い、
     前記気密容器は、前記プレスにより変形する変形部を備え、
     前記プレスによって前記変形部が変形することにより、前記気密容器の外部からの前記プレスの圧力が前記被圧縮体に印加される、
     請求項11から14のいずれか一項に記載の電池の製造方法。
PCT/JP2021/047657 2021-02-12 2021-12-22 電池、電池システムおよび電池の製造方法 WO2022172612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180092705.9A CN116830343A (zh) 2021-02-12 2021-12-22 电池、电池系统以及电池的制造方法
JP2022581226A JPWO2022172612A1 (ja) 2021-02-12 2021-12-22
EP21925855.5A EP4293741A1 (en) 2021-02-12 2021-12-22 Battery, battery system, and battery manufacturing method
US18/357,849 US20240021880A1 (en) 2021-02-12 2023-07-24 Battery, battery system and battery manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-020849 2021-02-12
JP2021020849 2021-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/357,849 Continuation US20240021880A1 (en) 2021-02-12 2023-07-24 Battery, battery system and battery manufacturing method

Publications (1)

Publication Number Publication Date
WO2022172612A1 true WO2022172612A1 (ja) 2022-08-18

Family

ID=82838647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047657 WO2022172612A1 (ja) 2021-02-12 2021-12-22 電池、電池システムおよび電池の製造方法

Country Status (5)

Country Link
US (1) US20240021880A1 (ja)
EP (1) EP4293741A1 (ja)
JP (1) JPWO2022172612A1 (ja)
CN (1) CN116830343A (ja)
WO (1) WO2022172612A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243735A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd 固体電解質およびその成形方法、並びにリチウムイオン二次電池及びその製造方法
JP2010113939A (ja) 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
JP2012069305A (ja) * 2010-09-22 2012-04-05 Hitachi Zosen Corp 全固体二次電池の製造方法
JP2017117696A (ja) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 全固体電池の製造方法
WO2018123479A1 (ja) 2016-12-27 2018-07-05 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP2018198131A (ja) 2017-05-23 2018-12-13 本田技研工業株式会社 リチウムイオン二次電池
JP2019033043A (ja) * 2017-08-09 2019-02-28 三菱重工業株式会社 全固体電池モジュール
JP2019036422A (ja) * 2017-08-10 2019-03-07 日立造船株式会社 全固体電池
JP2019096412A (ja) * 2017-11-20 2019-06-20 大日本印刷株式会社 組電池及びその外装容器
WO2019131503A1 (ja) * 2017-12-28 2019-07-04 日立造船株式会社 全固体電池、その製造方法および加工装置
JP2020533773A (ja) * 2018-04-09 2020-11-19 エルジー・ケム・リミテッド パックハウジングを含むバッテリーパック

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243735A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd 固体電解質およびその成形方法、並びにリチウムイオン二次電池及びその製造方法
JP2010113939A (ja) 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
JP2012069305A (ja) * 2010-09-22 2012-04-05 Hitachi Zosen Corp 全固体二次電池の製造方法
JP2017117696A (ja) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 全固体電池の製造方法
WO2018123479A1 (ja) 2016-12-27 2018-07-05 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP2018198131A (ja) 2017-05-23 2018-12-13 本田技研工業株式会社 リチウムイオン二次電池
JP2019033043A (ja) * 2017-08-09 2019-02-28 三菱重工業株式会社 全固体電池モジュール
JP2019036422A (ja) * 2017-08-10 2019-03-07 日立造船株式会社 全固体電池
JP2019096412A (ja) * 2017-11-20 2019-06-20 大日本印刷株式会社 組電池及びその外装容器
WO2019131503A1 (ja) * 2017-12-28 2019-07-04 日立造船株式会社 全固体電池、その製造方法および加工装置
JP2020533773A (ja) * 2018-04-09 2020-11-19 エルジー・ケム・リミテッド パックハウジングを含むバッテリーパック

Also Published As

Publication number Publication date
US20240021880A1 (en) 2024-01-18
JPWO2022172612A1 (ja) 2022-08-18
EP4293741A1 (en) 2023-12-20
CN116830343A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
US11942654B2 (en) Dual electrolyte electrochemical cells, systems, and methods of manufacturing the same
US9099694B2 (en) Method of manufacturing electrode body
CN108780854B (zh) 带有折叠密封部分的阶梯式电化学电池
CN108390066B (zh) 全固体电池
US9853274B2 (en) Solid battery
EP3654438B1 (en) Coin-shaped battery and method for producing same
US20130344357A1 (en) Solid battery and method for manufacturing solid battery
CN107305960B (zh) 电池、电池制造方法和电池制造装置
CN111816909B (zh) 固体电解质片材、全固态电池、隔板及锂离子电池
JP2013008550A (ja) 二次電池およびその製造方法
KR20130126365A (ko) 리튬 이차전지의 제조방법
JP2010097891A (ja) 積層型リチウムイオン二次電池
JP7209660B2 (ja) 電池の製造方法および電池
US6371997B1 (en) Method for manufacturing lithium polymer secondary battery and lithium polymer secondary battery made by the method
KR101684365B1 (ko) 수직 적층 구조의 전지셀
WO2022172612A1 (ja) 電池、電池システムおよび電池の製造方法
CN115411450A (zh) 电池组用间隔件以及具备该电池组用间隔件的电池组
JP2018088379A (ja) バイポーラ電極及びその製造方法並びに蓄電装置
US10693175B2 (en) Bipolar electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery
WO2022172613A1 (ja) 電池、電池システムおよび電池の製造方法
WO2018147019A1 (ja) ニッケル水素電池
CA3103488A1 (en) Bipolar lead acid battery cells with increased energy density
KR20200037601A (ko) 배터리 전극조립체 제작 방법 및 장치
JP2013062174A (ja) 全固体電池
CN117577960B (zh) 电极组件、电池和用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092705.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021925855

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021925855

Country of ref document: EP

Effective date: 20230912