WO2022239486A1 - 電池および電池の製造方法 - Google Patents

電池および電池の製造方法 Download PDF

Info

Publication number
WO2022239486A1
WO2022239486A1 PCT/JP2022/013181 JP2022013181W WO2022239486A1 WO 2022239486 A1 WO2022239486 A1 WO 2022239486A1 JP 2022013181 W JP2022013181 W JP 2022013181W WO 2022239486 A1 WO2022239486 A1 WO 2022239486A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
cutting
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2022/013181
Other languages
English (en)
French (fr)
Inventor
和義 本田
浩一 平野
覚 河瀬
一裕 森岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280033199.0A priority Critical patent/CN117397086A/zh
Priority to JP2023520880A priority patent/JPWO2022239486A1/ja
Publication of WO2022239486A1 publication Critical patent/WO2022239486A1/ja
Priority to US18/503,997 priority patent/US20240072376A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a battery and a method of manufacturing a battery.
  • the ends of battery cells or components of battery cells may be cut in order to determine the shape of the battery and remove unnecessary parts.
  • Patent Document 1 discloses that the temporarily cut surface of the current collector is subjected to insulation treatment.
  • Patent Document 2 discloses that an external electrode of a current collector is provided on the side surface of a unit laminate of a plurality of electrostrictive effect elements connected with an adhesive, and then interconnected.
  • batteries using solid electrolytes do not have a separator, so it is important to suppress the deterioration of reliability caused by cut surfaces.
  • the present disclosure provides a highly reliable battery and a method for manufacturing the battery.
  • a battery in one aspect of the present disclosure includes at least one battery cell, and the at least one battery cell includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. And, on the side surface of the at least one battery cell, when the side surface of the at least one battery cell is viewed in plan, a streak-shaped recess that is inclined with respect to the thickness direction of the at least one battery cell Alternatively, a convex portion is provided.
  • a method for manufacturing a battery includes manufacturing a battery including a battery cell having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the method includes a cutting step of cutting the battery cell with a cutting blade, and in the cutting step, while at least one of the battery cell and the cutting blade is slid in the length direction of the cutting blade, the cutting blade Cut down the battery cell with .
  • FIG. 1 is a schematic side view showing a schematic configuration of a battery according to Embodiment 1.
  • FIG. 2 is a schematic side view showing a schematic configuration of a battery in a comparative example.
  • 3A is a schematic front view showing an example of a cutting device used for cutting battery cells according to Embodiment 1.
  • FIG. 3B is a schematic side view showing an example of a cutting device used for cutting battery cells according to Embodiment 1.
  • FIG. 3C is a diagram for explaining an example of movement of the cutting device;
  • FIG. 4 is a diagram for explaining another example of movement of the cutting device.
  • 5 is a schematic side view showing a schematic configuration of a battery according to a modification of Embodiment 1.
  • FIG. 6 is a schematic side view showing a schematic configuration of a battery according to Embodiment 2.
  • FIG. 7 is a schematic side view showing a schematic configuration of another battery according to Embodiment 2.
  • FIG. 8 is a schematic side view showing a schematic configuration of still another battery according to Embodiment 2.
  • FIG. 6 is a schematic side view showing a schematic configuration of a battery according to Embodiment 2.
  • a cut surface formed by cutting the battery cell along the thickness direction of the battery cell is a side surface of the battery cell.
  • the cut surface will have a gap between the positive electrode current collector and the negative electrode collector.
  • a plurality of streak-like cut marks which are generally parallel to each other, are generated leading to the electrical body.
  • the present disclosure has been made based on such findings, and it is possible to reduce the edge surface discharge caused by streak-like recesses or protrusions such as streak-like cut marks provided on the side surface of the battery cell.
  • a battery and a method for manufacturing the battery that can improve the performance.
  • a battery in one aspect of the present disclosure includes at least one battery cell, and the at least one battery cell includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. And, on the side surface of the at least one battery cell, when the side surface of the at least one battery cell is viewed in plan, a streak-shaped recess that is inclined with respect to the thickness direction of the at least one battery cell Alternatively, a convex portion is provided.
  • the electric field tends to concentrate on the streaky recesses or protrusions provided on the side surface of the battery cell, and the streak-like recesses or protrusions tend to be the start and end of the edge surface discharge on the side surface.
  • the streaky recesses or protrusions are inclined with respect to the thickness direction of the battery cell.
  • the streaky recesses or protrusions between the layer and the positive electrode layer become longer.
  • the distance between the portion provided in the negative electrode layer and the portion provided in the positive electrode layer in the streak-like concave portion or convex portion where the electric field tends to concentrate is increased. Therefore, by suppressing the occurrence of edge surface discharge on the side surface of the battery cell, the occurrence of a short circuit due to dielectric breakdown can be suppressed, and a highly reliable battery can be realized.
  • the angle formed by the streak-like concave portion or convex portion and the thickness direction may be 18 degrees or more and 84 degrees or less.
  • the streak-like recesses or protrusions are more streak-like between the negative electrode layer and the positive electrode layer than when they are not inclined with respect to the thickness direction of the battery cell.
  • the recesses or protrusions of the shape are lengthened by 5% or more, and the reliability of the battery can be further improved.
  • the cutting necessary for cutting the battery cell The slide stroke of the cutting blade or the battery cell is 10 times or less of the minimum stroke of the blade. Therefore, the equipment for cutting battery cells can be made compact.
  • the angle formed by the streak-like concave portion or convex portion and the thickness direction may be 25 degrees or more and 78 degrees or less.
  • the streak-like recesses or protrusions are more streak-like between the negative electrode layer and the positive electrode layer than when they are not inclined with respect to the thickness direction of the battery cell.
  • the recesses or protrusions of the shape are lengthened by 10% or more, and the reliability of the battery can be further improved.
  • the cutting necessary for cutting the battery cell The slide stroke of the cutting blade or battery cell is five times or less the minimum stroke of the blade or battery cell. Therefore, the equipment for cutting battery cells can be made more compact.
  • the streak-shaped concave portion or convex portion may be curved.
  • the depth of the concave portion or the height of the convex portion in the streaky concave portion or convex portion may be 0.1 ⁇ m or more.
  • the streaky recesses or protrusions are larger than a predetermined size, even if the electric field is likely to concentrate on the streak-shaped recesses or protrusions, the streak-shaped recesses or protrusions will not interfere with the side surface of the battery cell. is inclined with respect to the thickness direction of the battery cell when viewed from above, the reliability of the battery can be improved.
  • the at least one battery cell may be a plurality of battery cells, and the plurality of battery cells may be stacked.
  • the reliability of the battery can be improved even in a stacked battery in which battery cells are stacked.
  • the streak-like concave portion or convex portion in each adjacent battery cell among the plurality of battery cells may be continuous.
  • Such streaky recesses or protrusions can be formed by collectively cutting a plurality of stacked battery cells, thereby simplifying the battery manufacturing process.
  • the streak-shaped concave portion or convex portion in each adjacent battery cell among the plurality of battery cells is inclined with respect to the thickness direction when the side surface of each adjacent battery cell is viewed in plan.
  • the direction may be opposite.
  • a method for manufacturing a battery includes manufacturing a battery including a battery cell having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the method includes a cutting step of cutting the battery cell with a cutting blade, and in the cutting step, while at least one of the battery cell and the cutting blade is slid in the length direction of the cutting blade, the cutting blade Cut down the battery cell with .
  • the cutting step at least one of the battery cell and the cutting blade slides in the length direction of the cutting blade, so that the trajectory of the cutting blade on the cutting surface is inclined from the thickness direction of the battery cell.
  • the cut marks are not visible in the thickness direction of the battery cell when the cut surface of the battery cell is viewed in plan. incline against Therefore, when the side surface of the battery cell is viewed in plan, the cut marks are longer between the negative electrode layer and the positive electrode layer than when they are not inclined with respect to the thickness direction of the battery cell.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • FIG. 1 is a schematic side view showing a schematic configuration of a battery 1000 according to Embodiment 1.
  • FIG. FIG. 1 is a plan view of a side surface connecting two main surfaces of a battery 1000.
  • FIG. FIG. 1 is also a plan view of a side surface of a battery cell 2000 provided in the battery 1000. As shown in FIG. Viewing the side surface in plan can also be said to be viewing the battery 1000 or the battery cell 2000 along the normal direction of the side surface of the battery 1000 or the battery cell 2000 .
  • the battery 1000 according to Embodiment 1 includes at least one battery cell 2000.
  • the battery cell 2000 has, for example, a rectangular parallelepiped shape, but may have another shape.
  • the battery 1000 may have a plurality of battery cells. A battery including a plurality of battery cells will be described later.
  • Battery cell 2000 includes negative electrode current collector 210 , negative electrode active material layer 110 , solid electrolyte layer 130 , positive electrode active material layer 120 , and positive electrode current collector 220 .
  • the negative electrode active material layer 110 is an example of a negative electrode layer
  • the positive electrode active material layer 120 is an example of a positive electrode layer.
  • Battery cell 2000 may include at least negative electrode active material layer 110 , solid electrolyte layer 130 , and positive electrode active material layer 120 .
  • battery cell 2000 may not include at least one of negative electrode current collector 210 and positive electrode current collector 220 .
  • the negative electrode active material layer 110 and the positive electrode active material layer 120 face each other with the solid electrolyte layer 130 interposed therebetween.
  • the negative electrode active material layer 110 is located between the negative electrode current collector 210 and the solid electrolyte layer 130 .
  • the cathode active material layer 120 is located between the cathode current collector 220 and the solid electrolyte layer 130 .
  • the negative electrode active material layer 110 is a layer containing a negative electrode material.
  • the negative electrode material used for the negative electrode active material layer 110 includes, for example, a negative electrode active material.
  • the negative electrode active material layer 110 is arranged to face the positive electrode active material layer 120 .
  • the negative electrode active material contained in the negative electrode active material layer 110 various materials capable of extracting and inserting ions such as lithium (Li) or magnesium (Mg) can be used.
  • a material for the negative electrode active material for example, a negative electrode active material such as graphite or metallic lithium can be used.
  • the negative electrode material used for the negative electrode active material layer 110 may further contain a solid electrolyte such as an inorganic solid electrolyte.
  • a solid electrolyte such as an inorganic solid electrolyte.
  • the inorganic solid electrolyte for example, a sulfide solid electrolyte or an oxide solid electrolyte can be used.
  • a sulfide solid electrolyte for example, a mixture of lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) can be used.
  • the negative electrode material used for the negative electrode active material layer 110 may further contain a conductive material such as acetylene black.
  • the negative electrode material used for the negative electrode active material layer 110 may further contain a binding binder such as polyvinylidene fluoride.
  • the negative electrode active material layer 110 can be produced by applying a paste-like paint in which the negative electrode material used for the negative electrode active material layer 110 is kneaded together with a solvent onto the surface of the negative electrode current collector 210 and drying. In order to increase the density of the negative electrode active material layer 110, the negative electrode plate including the negative electrode active material layer 110 and the negative electrode current collector 210 may be pressed after drying.
  • the thickness of the negative electrode active material layer 110 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the positive electrode active material layer 120 is a layer containing a positive electrode material.
  • the positive electrode material is the material that constitutes the counter electrode of the negative electrode material.
  • the positive electrode material used for the positive electrode active material layer 120 includes, for example, a positive electrode active material.
  • positive electrode active material contained in the positive electrode active material layer 120 various materials capable of withdrawing and inserting ions such as Li or Mg can be used.
  • positive electrode active materials include lithium cobaltate composite oxide (LCO), lithium nickelate composite oxide (LNO), lithium manganate composite oxide (LMO), lithium-manganese-nickel composite oxide (LMNO ), lithium-manganese-cobalt composite oxide (LMCO), lithium-nickel-cobalt composite oxide (LNCO), lithium-nickel-manganese-cobalt composite oxide (LNMCO).
  • the positive electrode material used for the positive electrode active material layer 120 may further contain a solid electrolyte such as an inorganic solid electrolyte.
  • a solid electrolyte such as an inorganic solid electrolyte.
  • the materials exemplified as the solid electrolyte contained in the negative electrode material can be used.
  • the surface of the positive electrode active material may be coated with a solid electrolyte.
  • the positive electrode material used for the positive electrode active material layer 120 may further contain a conductive material such as acetylene black.
  • the positive electrode material used for the positive electrode active material layer 120 may further contain, for example, a binding binder such as polyvinylidene fluoride.
  • the positive electrode active material layer 120 can be produced by applying a paste-like paint in which the positive electrode material used for the positive electrode active material layer 120 is kneaded together with a solvent onto the surface of the positive electrode current collector 220 and drying. In order to increase the density of the positive electrode active material layer 120, the positive electrode plate including the positive electrode active material layer 120 and the positive electrode current collector 220 may be pressed after drying.
  • the thickness of the positive electrode active material layer 120 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the solid electrolyte layer 130 is arranged between the negative electrode active material layer 110 and the positive electrode active material layer 120 . Solid electrolyte layer 130 is in contact with each of negative electrode active material layer 110 and positive electrode active material layer 120 .
  • Solid electrolyte layer 130 is a layer containing an electrolyte material. As the electrolyte material, generally known battery electrolytes can be used.
  • the thickness of solid electrolyte layer 130 may be 5 ⁇ m or more and 300 ⁇ m or less, or may be 5 ⁇ m or more and 100 ⁇ m or less.
  • the solid electrolyte layer 130 contains a solid electrolyte as an electrolyte material.
  • Battery 1000 may be, for example, an all solid state battery.
  • the materials exemplified as the solid electrolyte contained in the negative electrode material can be used.
  • the solid electrolyte layer 130 may contain a binding binder such as polyvinylidene fluoride.
  • the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 are maintained in the form of parallel plates. As a result, it is possible to suppress the occurrence of cracks or collapse due to bending. Note that the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 may be combined and smoothly curved.
  • the negative electrode current collector 210 and the positive electrode current collector 220 are members having electrical conductivity.
  • the negative electrode current collector 210 and the positive electrode current collector 220 may each be, for example, a conductive thin film.
  • Examples of materials that constitute the negative electrode current collector 210 and the positive electrode current collector 220 include metals such as stainless steel (SUS), aluminum (Al), copper (Cu), and nickel (Ni).
  • the negative electrode current collector 210 is arranged in contact with the negative electrode active material layer 110 .
  • the negative electrode current collector 210 for example, metal foil such as SUS foil, Cu foil, and Ni foil can be used.
  • the thickness of the negative electrode current collector 210 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, but is not limited thereto.
  • the negative electrode current collector 210 may include, for example, a current collector layer containing a conductive material in a portion in contact with the negative electrode active material layer 110 .
  • the positive electrode current collector 220 is arranged in contact with the positive electrode active material layer 120 .
  • the positive electrode current collector 220 for example, metal foil such as SUS foil, Al foil, Cu foil, and Ni foil can be used.
  • the thickness of the negative electrode current collector 210 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, but is not limited thereto.
  • the positive electrode current collector 220 may include, for example, a current collector layer that is a layer containing a conductive material in a portion in contact with the positive electrode active material layer 120 .
  • the negative electrode current collector 210, the negative electrode active material layer 110, the solid electrolyte layer 130, the positive electrode current collector 220, and the positive electrode active material layer 120 are collectively cut with a cutting blade. It is a cut surface formed by The side surface of the battery cell 2000 is formed, for example, by collectively cutting the battery cell 2000 so that a cut surface along the thickness direction of the battery cell 2000 is formed.
  • the negative electrode current collector 210, the negative electrode active material layer 110, the solid electrolyte layer 130, the positive electrode current collector 220, and the positive electrode active material layer 120 are exposed. It should be noted that not all the layers and current collectors forming the battery cell 2000 may be exposed on the side surface of the battery cell 2000 .
  • the side surface of the battery cell 2000 is provided with a streaky cut mark 800, which is an example of a streaky concave portion or convex portion.
  • the streaky cut marks 800 result from the batch cutting described above.
  • the streak-like cut mark 800 is a streak-like fine concave or convex on the side surface caused by cuttability, stress distribution, non-uniformity of micro collapse of the material of each layer, etc. when the cutting blade and the battery cell 2000 contact each other. is.
  • the streaky cut marks 800 are linear, for example.
  • the streaky cut marks 800 are provided, for example, on the side surfaces of the battery cell 2000 so as to connect the negative electrode active material layer 110 and the positive electrode active material layer 120 .
  • the linear cut marks 800 may be provided on the side surface of the battery cell 2000 so as to connect the negative electrode current collector 210 and the positive electrode current collector 220 .
  • the linear cut marks 800 provided on the side surface of the battery cell 2000 are inclined with respect to the thickness direction of the battery cell 2000 when the side surface is viewed from above, and the thickness direction of the battery cell 2000 and the linear cut mark are inclined. 800 has a significant non-zero angular difference ⁇ .
  • the thickness direction of the battery cell 2000 when the side surface of the battery cell 2000 is viewed in plan is the direction indicated by the arrow Z, in other words, the lateral direction of each layer when the side surface of the battery cell 2000 is viewed in plan.
  • the negative electrode active material layer 110, the solid electrolyte layer 130, and the positive electrode active material layer 120 are aligned when the side surface is viewed in plan. It is also the direction. Also, the angle difference ⁇ is the angle formed by the streak-like cut mark 800 and the thickness direction of the battery cell 2000 when the side surface of the battery cell 2000 is viewed in plan.
  • a plurality of linear cut marks 800 are provided on the side surface of the battery cell 2000, and the plurality of linear cut marks 800 are parallel to each other. That is, the distance between adjacent streak cut marks 800 is the same at any position. Further, in the plurality of streak-like cut marks 800, streak-like cut marks 800 that are concave portions and streak-like cut marks 800 that are convex portions may be mixed.
  • the streaky cut marks 800 indicate that the direction of relative movement of the cutting blade with respect to the battery cell 2000 is different from the thickness direction of the battery cell 2000. It is formed by cutting so as to be inclined at the
  • FIG. 2 is a schematic side view showing a schematic configuration of a battery 1000X in Comparative Example.
  • FIG. 2 is a plan view of the side surface of the battery 1000X.
  • the recesses or protrusions provided on the side surface tend to concentrate the electric field and tend to be the start and end of the edge surface discharge on the side surface.
  • the streaky cut marks 800X are not inclined with respect to the thickness direction of the battery cell 2000. Therefore, the negative electrode current collector 210 or the negative electrode active material layer 110 and the positive electrode current collector 220 or the positive electrode active material layer 120 at the shortest distance. Therefore, the edge surface discharge is likely to occur along the streak-like cut mark 800X.
  • the linear cut marks 800 are inclined with respect to the thickness direction of the battery cell 2000 when the side surface of the battery cell 2000 is viewed in plan. Therefore, compared with the linear cut marks 800X in the comparative example, the linear cut marks 800 between the negative electrode current collector 210 or the negative electrode active material layer 110 and the positive electrode current collector 220 or the positive electrode active material layer 120 are longer. That is, of the linear cut marks 800 on which an electric field is likely to concentrate, the portion provided on the negative electrode current collector 210 or the negative electrode active material layer 110 and the portion provided on the positive electrode current collector 220 or the positive electrode active material layer 120 distance becomes longer. Therefore, by suppressing the occurrence of edge surface discharge on the side surface of the battery cell 2000, the occurrence of a short circuit due to dielectric breakdown can be suppressed, and a highly reliable battery 1000 can be realized.
  • the angle difference ⁇ is, for example, 18 degrees or more and 84 degrees or less, and may be 25 degrees or more and 78 degrees or less.
  • the portion of the linear cut marks 800 provided on the negative electrode current collector 210 or the negative electrode active material layer 110 and the portion provided on the positive electrode current collector 220 or the positive electrode active material layer 120 are separated.
  • the distance to the cut portion is increased by 5% or more compared to when there is no angular difference ⁇ .
  • the risk of dielectric breakdown due to edge discharge along the side surface of the battery cell 2000 can be further reduced.
  • the angle difference ⁇ is 25 degrees or more
  • the portion of the linear cut marks 800 provided on the negative electrode current collector 210 or the negative electrode active material layer 110 and the positive electrode current collector 220 or the positive electrode active material layer 120 are separated. is increased by 10% or more compared to when there is no angular difference ⁇ . As a result, the risk of dielectric breakdown due to edge discharge along the side surface of the battery cell 2000 can be further reduced.
  • the cutting blade or the battery cell 2000 can be cut down while sliding in a direction perpendicular to the thickness direction of the battery cell 2000.
  • the slide stroke of the battery cell 2000 or the cutting blade is 10 times the minimum stroke of the cutting blade required to cut the battery cell 2000 (that is, the stroke in the cutting down direction). It is as follows. Therefore, the equipment for cutting the battery cells 2000 can be made compact. Further, when the angle difference ⁇ is 78 degrees or less, the slide stroke is five times or less the minimum stroke. Therefore, the equipment for cutting the battery cells 2000 can be made more compact.
  • the depth of the concave portion or the height of the convex portion in the streaky cut mark 800 is, for example, 0.1 ⁇ m or more. Even when the concentration of the electric field on the streak-like cut marks 800 is likely to occur, due to the effect that the streak-like cut marks 800 are inclined with respect to the thickness direction of the battery cell 2000 as in the present embodiment, the edge Surface discharge can be suppressed. In addition, from the viewpoint of suppressing edge surface discharge and suppressing damage originating from the streak cut marks 800, the depth of the recesses or the height of the protrusions in the streak cut marks 800 is, for example, 100 ⁇ m or less. , 10 ⁇ m or less.
  • the depth of the deepest recess or the height of the highest protrusion in the plurality of streak cut marks 800 is 0.1 ⁇ m or more and 100 ⁇ m or less, or It is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the manufacturing method of the battery 1000 includes, for example, a stacking process and a cutting process.
  • the battery cell 2000 including the negative electrode current collector 210, the negative electrode active material layer 110, the solid electrolyte layer 130, the positive electrode active material layer 120, and the positive electrode current collector 220 is formed.
  • the negative electrode current collector 210, the negative electrode active material layer 110, the solid electrolyte layer 130, the positive electrode active material layer 120, and the positive electrode current collector 220 are sequentially stacked in this order to form the battery cell 2000. .
  • a paste-like paint obtained by kneading the respective materials of the negative electrode active material layer 110, the positive electrode active material layer 120, and the solid electrolyte layer 130 together with a solvent is applied on the surface of the current collector or each layer and dried. It is formed by A negative electrode plate in which the negative electrode active material layer 110 and the solid electrolyte layer 130 are laminated in this order on the negative electrode current collector 210, and a positive electrode plate in which the positive electrode active material layer 120 and the solid electrolyte layer 130 are laminated on the positive electrode current collector 220. may be prepared, and the battery cell 2000 may be formed by joining the negative electrode plate and the positive electrode plate with the solid electrolyte layer 130 interposed therebetween.
  • each layer and bonding of the negative electrode plate and the positive electrode plate may be performed by pressing for densification and compression bonding.
  • the method for forming the battery cell 2000 is not limited to the above example, and can be formed by a known battery manufacturing method.
  • the battery cells 2000 formed in the stacking step are cut with a cutting blade.
  • the streak-like cut marks 800 described above are formed on the cut surface formed by cutting the battery cell 2000 with the cutting blade.
  • the streaky cut marks 800 are formed due to the cuttability when the cutting blade and the battery cell 2000 are brought into contact with each other, the stress distribution, non-uniformity of micro collapse of the material of each layer, and the like. In this way, the battery 1000 including the battery cell 2000 whose side surface is the cut surface on which the streaky cut marks 800 are formed is formed.
  • the battery cell 2000 having each layer laminated in advance may be obtained and used.
  • FIG. 3A is a schematic front view showing an example of a cutting device 600 used for cutting battery cells 2000.
  • FIG. 3B is a schematic side view showing an example of the cutting device 600 used for cutting the battery cell 2000.
  • FIG. 3C is a diagram for explaining an example of movement of the cutting device 600.
  • the cutting unit 601 is shown with a dot pattern, but this is for the sake of visibility, and the actual cutting unit 601 is shown with a dot pattern. It is not intended to be Also, in FIG. 3C, for ease of viewing, the illustration of the configuration of the cutting device 600 other than the movable upper blade 701 and the support unit 753 is omitted.
  • a method of forming streak-like cut marks 800 that are inclined with respect to the thickness direction of the battery cell 2000 for example, a method using a cutting device 600 schematically shown in FIGS. 3A and 3B can be used.
  • the cutting device 600 includes a cutting unit 601, a slide unit 602, and a support unit 753.
  • the cutting unit 601 is entirely placed on the slide unit 602 .
  • the cutting unit 601 is marked with dots in FIGS. 3A and 3B.
  • the cutting unit 601 has a cutting blade 700 and a cutting blade actuator 751 .
  • the cutting blade 700 is composed of a movable upper blade 701 and a fixed lower blade 702.
  • the lower end of the movable upper blade 701 is the blade edge of the movable upper blade 701
  • the upper end of the fixed lower blade 702 is the blade edge of the fixed lower blade 702 .
  • the movable upper blade 701 is connected to the lower end of the cutting blade actuator 751 and can be vertically moved by the cutting blade actuator 751 .
  • the end of the movable upper blade 701 opposite to the cutting edge is connected to a cutting blade actuator 751 .
  • the cutting blade actuator 751 is, for example, an air cylinder or an electric cylinder.
  • the fixed lower blade 702 is positioned below the movable upper blade 701 so that the object sandwiched between the movable upper blade 701 and the fixed lower blade 702 can be cut by the vertical movement of the movable upper blade 701 . It is arranged at a position where it does not come into contact with the movable upper blade 701 when the movable upper blade 701 moves up and down. As a result, the battery cell 2000 arranged between the movable upper blade 701 and the fixed lower blade 702 can be cut by being sandwiched between the blade edge of the movable upper blade 701 and the fixed lower blade 702 .
  • the lower end of the movable upper blade 701 is inclined with respect to the upper end of the fixed lower blade 702 .
  • the contact area between the battery cell 2000 and the cutting edge, which is the lower end of the movable upper blade 701 can be reduced, and the cutting resistance can be reduced.
  • the lower end of the movable upper blade 701 may be parallel to the upper end of the fixed lower blade 702 .
  • the lower end of the movable upper blade 701 may be curved.
  • the slide unit 602 has a slide actuator 752 .
  • the slide actuator 752 is an air cylinder, an electric slider, or the like.
  • the cutting unit 601 is mounted on the slide driving portion of the slide actuator 752 , and the cutting unit 601 is configured to be movable in the direction parallel to the length direction of the cutting blade 700 by the slide actuator 752 . That is, the slide drive portion of the slide actuator 752 drives in a direction parallel to the lengthwise direction of the cutting blade 700 .
  • the length direction of the cutting blade 700 is the direction in which the movable upper blade 701 and the fixed lower blade 702 extend. for example, orthogonal).
  • the length direction is the longitudinal direction of the movable upper blade 701.
  • the support unit 753 is, for example, a stand for supporting the battery cell 2000 arranged in front or behind the cutting unit 601 and slide unit 602 .
  • a battery cell 2000 to be cut is held on the upper surface of the support unit 753 .
  • the battery cell 2000 may be fixed and held on the support unit 753 by a jig or the like (not shown).
  • the battery cell 2000 is held such that the movable upper blade 701 is positioned above the main surface of the battery cell 2000 .
  • part of the battery cell 2000 is placed on the fixed lower blade 702 .
  • the height of the upper surface of the support unit 753 and the height of the upper end of the fixed lower blade 702 are the same. 2000 is retained.
  • the battery cell 2000 is held so that the main surface of the battery cell 2000 is horizontal. As a result, the battery cell 2000 is less likely to shift when the battery cell 2000 is cut, and cutting accuracy can be improved.
  • the support unit 753 is not connected to the slide actuator 752 and its position is fixed. Therefore, the battery cell 2000 held by the support unit 753 also does not move when the slide actuator 752 is driven.
  • the cutting blade actuator 751 and the slide actuator 752 cooperate with each other based on position sensor signals or drive pulse information, for example, and the cutting blade 700 slides in the length direction of the cutting blade 700.
  • the battery cell 2000 held by the support unit 753 is cut.
  • the support unit 753 may hold a plurality of stacked battery cells 2000, and the plurality of battery cells 2000 may be cut at once.
  • the movable upper blade 701 when cutting the battery cell 2000, the movable upper blade 701 is moved by the cutting blade actuator 751 in the direction indicated by the arrow M1.
  • the direction indicated by arrow M1 is parallel to the thickness direction of battery cell 2000, for example.
  • the entire cutting unit 601 including the movable upper blade 701 is moved by the slide actuator 752 in one of the directions indicated by the arrow M2.
  • the direction indicated by arrow M2 is the length direction of cutting blade 700 .
  • the battery cell 2000 is cut down by the movable upper blade 701 of the cutting blade 700 from above the main surface of the battery cell 2000 while sliding the cutting blade 700 in the length direction of the cutting blade 700 .
  • the direction of relative movement of the movable upper blade 701 of the cutting blade 700 with respect to the battery cell 2000 in the cutting step is a plane view of the cut surface formed when the battery cell 2000 is cut by the cutting blade 700. It is inclined with respect to the thickness direction of the battery cell 2000 in the case where As a result, streak-like cut marks 800 inclined with respect to the thickness direction of the battery cell 2000 can be formed on the formed cut surface.
  • Cutting down means cutting the battery cell 2000 by moving the cutting edge of the movable upper blade 701 toward the battery cell 2000 . Therefore, when cutting down, for example, the movable upper blade 701 moves vertically downward. Not exclusively.
  • the direction of relative movement of the movable upper blade 701 with respect to the battery cell 2000 is the combination of the direction indicated by the arrow M1 and the direction indicated by the arrow M2.
  • the movable upper blade 701 moves in the direction of arrow M1, and at the same time, the entire cutting unit 601 slides leftward in FIG. A slanted streak cut 800 is formed.
  • the streaky cut mark 800X shown in FIG. 2 is formed.
  • the entire cutting unit 601 slides from the side closer to the support unit 753 to the farther side of the lower end of the movable upper blade 701, that is, the arrow M2.
  • the stroke of the movable upper blade 701 can be reduced by sliding to the left in FIG. 3C among the directions indicated by .
  • the cutting unit 601 as a whole slides from the side farther from the support unit 753 of the lower end of the movable upper blade 701 to the opposite side, that is, slides rightward in FIG.
  • the load when cutting the battery cell 2000 by the movable upper blade 701 can be reduced.
  • the angle difference between the thickness direction of the battery cell 2000 and the linear cut mark 800 is changed by setting the cutting speed of the cutting blade actuator 751 and the setting of the sliding speed of the slide actuator 752.
  • the cutting speed is the speed at which the movable upper blade 701 cuts down the battery cell 2000
  • the slide speed is the speed at which the cutting blade 700 slides in the longitudinal direction of the cutting blade 700 .
  • the relationship between the cutting speed and the sliding speed can be changed. change. Further, the relationship between the cutting speed and the sliding speed may be changed by continuing to accelerate or decelerate the cutting speed or the sliding speed while the battery cell 2000 is being cut.
  • the cutting blade actuator 751 and the slide actuator 752 cooperate based on their mutual positional information to produce an angle difference between the streak-like cut mark 800 and the battery cell 2000 in the thickness direction.
  • One advantage is a reduction in disconnect load, which can improve the reliability of battery 1000 .
  • the battery cell 2000 is cut down by the movable upper blade 701 of the cutting blade 700 while sliding the cutting blade 700 in the length direction of the cutting blade 700 . Therefore, not only the battery cell 2000 is pushed through, but also the cutting edge of the movable upper blade 701 is slid to cut the battery cell 2000, so that the cutting resistance can be reduced. As a result, the stress applied to the battery cell 2000 during cutting is reduced, and the risk of damage such as microcracks occurring inside the battery cell 2000 near the cut surface due to the stress can be reduced, thereby improving the reliability of the battery 1000. can be done.
  • FIG. 4 is a diagram for explaining another example of the movement of the cutting device 600.
  • the cutting unit 601 is slid and the support unit 753 is fixed. is shown to slide. That is, the support unit 753 may be connected to the slide actuator 752 and driven by the slide actuator 752 .
  • the movable upper blade 701 is moved by the cutting blade actuator 751 in the direction indicated by the arrow M1.
  • the slide actuator 752 moves the support unit 753 in one of the directions indicated by the arrow M3.
  • the direction indicated by arrow M3 is the length direction of cutting blade 700 .
  • the battery cell 2000 held by the support unit 753 is slid in the length direction of the cutting blade 700 and the battery cell is cut by the movable upper blade 701 of the cutting blade 700 from above the main surface of the battery cell 2000 . Round down 2000.
  • streak-like cut marks 800 inclined with respect to the thickness direction of the battery cell 2000 can be formed on the formed cut surface.
  • the slide speed is the speed at which the battery cell 2000 is slid in the length direction of the cutting blade 700 .
  • the battery cell 2000 may be held so that the main surface of the battery cell 2000 is inclined with respect to the length direction of the cutting blade 700 .
  • the thickness direction of the battery cell 2000 is inclined with respect to the movement direction of the movable upper blade 701
  • the relative movement direction of the movable upper blade 701 of the cutting blade 700 with respect to the battery cell 2000 is the battery cell 2000.
  • the streaky cut mark 800 inclined with respect to the thickness direction of the battery cell 2000 can be formed. can be done.
  • FIG. 5 is a side view showing a schematic configuration of battery 1010 in a modification of Embodiment 1.
  • FIG. FIG. 5 is a plan view of the side surface of the battery 1010.
  • FIG. 5 is also a plan view of the side surface of the battery cell 2000 provided in the battery 1010. As shown in FIG.
  • the side surface of the battery cell 2000 is a cut surface by collective cutting, and the side surface of the battery cell 2000 is provided with a line-shaped cut mark 801, which is an example of a line-shaped concave portion or convex portion.
  • the linear cut marks 801 are curved.
  • the streaky cut mark 801 is curved as a whole, but may have a straight portion and a curved portion.
  • at least a part of streaky cut marks 801 is inclined with respect to the thickness direction of battery cell 2000 when the side surface of battery cell 2000 is viewed in plan.
  • streaky cut marks 801 are inclined with respect to the thickness direction of battery cell 2000 at all portions.
  • the streaky cut mark 801 is curved so that the lower side is convex, but it may be curved so that the upper side is convex. Further, the streaky cut mark 801 may have a portion that is curved so as to be convex on the lower side and a portion that is curved so that the upper side is convex.
  • the angle formed by the straight line connecting both ends of the streaky cut mark 801 and the thickness direction of the battery cell 2000 is, for example, 18 degrees or more and 84 degrees or less, and 25 degrees or more and 78 degrees. degree or less.
  • the separation between the negative electrode current collector 210 or the negative electrode active material layer 110 and the positive electrode current collector 220 or the positive electrode active material layer 120 is greater than in the case where the linear cut marks 801 are not curved.
  • the streak-like cut mark 801 in between becomes longer.
  • the streaky cut mark 801 is formed by, for example, changing the relationship between the cutting speed and the sliding speed during cutting of the battery cell 2000 in the speed setting of the cutting blade actuator 751 and the slide actuator 752 in the cutting process described above. formed by That is, the relative moving direction of the movable upper blade 701 of the cutting blade 700 with respect to the battery cell 2000 in the cutting process changes during the cutting of the battery cell 2000 .
  • Embodiment 2 Next, Embodiment 2 will be described. In the following description of the second embodiment, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • the battery in Embodiment 2 is a laminated battery in which a plurality of battery cells are laminated.
  • FIG. 6 is a schematic side view showing the schematic configuration of the battery 1100 according to Embodiment 2.
  • FIG. FIG. 6 is a plan view of the side surface of the battery 1100.
  • FIG. FIG. 6 is also a plan view of the side surfaces of the plurality of battery cells 2000, 2000a, 2000b, and 2000c provided in the battery 1100 on the same side.
  • battery 1100 in the second embodiment includes a plurality of battery cells 2000, 2000a, 2000b, and 2000c including battery cell 2000 provided in battery 1000 in the first embodiment.
  • a plurality of battery cells 2000, 2000a, 2000b, and 2000c are stacked.
  • the battery 1100 has a structure in which a plurality of battery cells 2000, 2000a, 2000b, and 2000c are electrically connected in parallel and stacked.
  • Battery 1100 is a parallel-stacked battery in which a plurality of battery cells 2000, 2000a, 2000b, and 2000c are integrated by adhesion, bonding, or the like. Specifically, adjacent battery cells in the plurality of battery cells 2000, 2000a, 2000b, and 2000c are stacked such that the stacking order of each layer is reversed.
  • the negative electrode current collectors 210 and the positive electrode current collectors 220 of the plurality of battery cells 2000, 2000a, 2000b, and 2000c are electrically connected to each other by leads or the like (not shown), whereby the plurality of battery cells 2000, 2000a, 2000b and 2000c are connected in parallel.
  • a lead or the like connecting the collectors to each other is connected to, for example, an extraction electrode.
  • Each of the plurality of battery cells 2000, 2000a, 2000b, and 2000c includes a negative electrode active material layer 110, a solid electrolyte layer 130, and a positive electrode active material layer 120, and further includes a negative electrode current collector 210 and a positive electrode current collector. At least one of the bodies 220 may be provided.
  • battery cell 2000 includes negative electrode current collector 210 , negative electrode active material layer 110 , solid electrolyte layer 130 , positive electrode active material layer 120 , and positive electrode current collector 220 .
  • Battery cell 2000 a and battery cell 2000 c each include negative electrode active material layer 110 , solid electrolyte layer 130 , positive electrode active material layer 120 , and positive electrode current collector 220 .
  • the battery cell 2000b also includes a negative electrode current collector 210, a negative electrode active material layer 110, a solid electrolyte layer 130, and a positive electrode active material layer 120.
  • the negative electrode current collector 210 or the positive electrode current collector 220 and the negative electrode active material layer 110 or the positive electrode active material layer 120 of the adjacent battery cell are in contact with each other. sharing a body.
  • the plurality of battery cells 2000, 2000a, 2000b, and 2000c do not share a current collector, and all battery cells include the negative electrode current collector 210, the negative electrode active material layer 110, the solid electrolyte layer 130, and the positive electrode active material.
  • a material layer 120 and a positive current collector 220 may be provided.
  • Electrodes can be taken out from the battery 1100, such as end face terminals, upper and lower end terminals, or current collecting tabs.
  • streaky concave portions or convex portions resulting from the above-described cutting process for cutting the plurality of battery cells 2000, 2000a, 2000b, and 2000c.
  • a streak cut mark 810 is provided.
  • the streaky cut marks 810 are inclined with respect to the thickness direction of the plurality of battery cells 2000, 2000a, 2000b, and 2000c.
  • Side surfaces of the plurality of battery cells 2000, 2000a, 2000b, and 2000c are cut surfaces formed by the cutting process described above.
  • the streaky cut marks 810 in adjacent battery cells are continuous and have a linear shape.
  • the linear cut marks 810 are provided over the side surfaces of adjacent battery cells among the plurality of battery cells 2000, 2000a, 2000b, and 2000c.
  • the streaky cut marks 810 may not extend to the edges of the battery 1100, and may be discontinued on the side surfaces of the plurality of battery cells 2000, 2000a, 2000b, and 2000c.
  • the streaky cut marks 810 are formed by collectively cutting the stacked battery cells 2000, 2000a, 2000b, and 2000c in a cutting process. Therefore, the manufacturing process of battery 1100 can be simplified.
  • FIG. 7 is a schematic side view showing a schematic configuration of another battery 1110 according to the second embodiment.
  • Battery 1110 includes a plurality of battery cells 2000 .
  • the battery 1110 has a structure in which a plurality of battery cells 2000 are electrically connected in series and stacked.
  • Battery 1110 is a serially stacked battery in which a plurality of battery cells 2000 are integrated by adhesion, bonding, or the like.
  • the plurality of battery cells 2000 are stacked such that the layers are stacked in the same order.
  • the plurality of battery cells 2000 are electrically connected in series.
  • extraction electrodes are connected to the negative electrode current collector 210 and the positive electrode current collector 220, which constitute the main surface of the battery 1110, respectively.
  • the side surfaces of the plurality of battery cells 2000 are viewed in plan, the side surfaces of the plurality of battery cells 2000 have stripes that are inclined with respect to the thickness direction of the plurality of battery cells 2000.
  • a cut mark 810 is provided.
  • FIG. 8 is a schematic side view showing a schematic configuration of still another battery 1120 according to the second embodiment.
  • the battery 1120 is a parallel-stacked battery in which a plurality of battery cells 2000, 2000a, 2000b, and 2000c are stacked.
  • Battery 1120 is provided with streak-like cut marks 820 a and streak-like cut marks 820 b instead of streak-like cut marks 810 in battery 1100 .
  • one of the adjacent battery cells has a streak-like cut mark 820a on the side surface
  • the other battery cell has a streak-like cut mark 820b on the side surface.
  • the linear cut marks 820a and the linear cut marks 820b are not continuous.
  • the streak cut marks 820a and the streak cut marks 820b are formed in the thickness direction of the plurality of battery cells 2000, 2000a, 2000b, and 2000c.
  • the direction of inclination is the opposite direction. For example, in the paper surface of FIG.
  • the linear cut marks 820a provided on the battery cell 2000b are slanted downward to the right, and the linear cut marks 820b provided on the battery cell 2000c are inclined in the opposite direction. slopes downward to the left.
  • the plurality of battery cells 2000, 2000a, 2000b, and 2000c are arranged such that the streak cut marks 820a and the streak cut marks 820b alternate on each side surface of the plurality of battery cells 2000, 2000a, 2000b, and 2000c. 2000a, 2000b and 2000c are laminated. That is, on the side surfaces of the plurality of battery cells 2000, 2000a, 2000b, and 2000c, the linear cut marks 820a and the linear cut marks 820b are zigzag. As a result, even when battery 1120 is subjected to an impact or the like, damage to battery 1120 originating from streak cut marks 820a and streak cut marks 820b is less likely to propagate, and the reliability of battery 1120 can be improved.
  • a plurality of battery cells 2000, 2000a, 2000b, and 2000c are individually and collectively cut to form cut surfaces.
  • a battery 1120 is formed by stacking a plurality of individually cut battery cells 2000, 2000a, 2000b, and 2000c. At this time, for example, the battery cell 2000 and the battery cell 2000b are cut so as to form a linear cut mark 820a, and the battery cell 2000a and the battery cell 2000c are cut so as to form a linear cut mark 820b. be.
  • a battery according to the present disclosure can be used as a battery for electronic equipment, electric appliance devices, electric vehicles, and the like.
  • negative electrode active material layer 120 positive electrode active material layer 130 solid electrolyte layer 210 negative electrode current collector 220 positive electrode current collector 600 cutting device 601 cutting unit 602 slide unit 700 cutting blade 701 movable upper blade 702 fixed lower blade 751 cutting blade actuator 752 slide Actuator 753 Support unit 800, 801, 810, 820a, 820b Streak cut 1000, 1010, 1100, 1110, 1120 Battery 2000, 2000a, 2000b, 2000c Battery cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

電池(1000)は、電池セル(2000)を備える。電池セル(2000)は、正極活物質層(120)と、負極活物質層(110)と、正極活物質層(120)と負極活物質層(110)との間に配置される固体電解質層(130)と、を有する。電池セル(2000)の側面には、電池セル(2000)の側面を平面視した場合に、電池セル(2000)の厚み方向に対して傾斜した筋状切断痕(800)が設けられている。

Description

電池および電池の製造方法
 本開示は、電池および電池の製造方法に関する。
 電池の製造において、電池の形状の決定および不要部の除去等のために電池セルまたは電池セルの構成要素の端部を切断する場合がある。
 特許文献1には、集電体の仮切断面に絶縁処理を施すことが開示されている。
 特許文献2には、接着剤接続された複数の電歪効果素子の単位積層体側面に集電体の外部電極を設けた後に相互接続することが開示されている。
特開2008-53103号公報 特開平4-167579号公報
 従来技術においては、固体電解質を用いた電池の更なる短絡抑制、および、品質安定等の信頼性の向上が望まれる。
 固体電解質を用いた電池は、液系電池と異なり、セパレーターがないため、切断面に起因する信頼性の低下を抑制することが重要となる。
 そこで、本開示は、高い信頼性を有する電池および電池の製造方法を提供する。
 本開示の一様態における電池は、少なくとも1つの電池セルを備え、前記少なくとも1つの電池セルは、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、を有し、前記少なくとも1つの電池セルの側面には、前記少なくとも1つの電池セルの側面を平面視した場合に、前記少なくとも1つの電池セルの厚み方向に対して傾斜した筋状の凹部または凸部が設けられている。
 また、本開示の一様態における電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、を有する電池セルを備える電池の製造方法であって、前記電池セルを切断刃により切断する切断工程を含み、前記切断工程において、前記電池セルおよび前記切断刃の少なくとも一方を前記切断刃の長さ方向にスライドさせながら、前記切断刃で前記電池セルを切り下ろす。
 本開示によれば、高い信頼性を有する電池および電池の製造方法を提供できる。
図1は、実施の形態1における電池の概略構成を示す側面模式図である。 図2は、比較例における電池の概略構成を示す側面模式図である。 図3Aは、実施の形態1における電池セルの切断に用いる切断装置の一例を示す正面模式図である。 図3Bは、実施の形態1における電池セルの切断に用いる切断装置の一例を示す側面模式図である。 図3Cは、切断装置の動きの例を説明するための図である。 図4は、切断装置の動きの別の例を説明するための図である。 図5は、実施の形態1の変形例における電池の概略構成を示す側面模式図である。 図6は、実施の形態2における電池の概略構成を示す側面模式図である。 図7は、実施の形態2における別の電池の概略構成を示す側面模式図である。 図8は、実施の形態2におけるさらに別の電池の概略構成を示す側面模式図である。
 (本開示の一態様を得るに至った知見)
 上述のように、電池の製造において、電池の形状の決定および不要部の除去等のために電池セルの端部を切断する場合がある。電池セルの厚み方向に沿って電池セルを切断して形成される切断面は、電池セルの側面になる。この際、例えば、正極集電体と負極集電体との間に正極活物質層、固体電解質層および負極活物質層を有する電池セルを一括切断すると、切断面に正極集電体から負極集電体に至る、概ね互いに平行な複数の筋状切断痕が発生する。
 固体電解質を含む電池において正負極が短絡する原因の代表的なもののひとつに、電池セルの側面に沿った縁面放電による絶縁破壊が挙げられる。一括切断によって発生する筋状切断痕は、側面に設けられた凹部または凸部であるため、筋状切断痕には、電界が集中しやすい。このように電界が集中する場所は、特に縁面放電の始終端になりやすい。そのため、筋状切断痕のうち、正極集電体または正極活物質層に設けられた部分と、負極集電体または負極活物質層に設けられた部分とが、縁面放電の始終端になり、当該筋状切断痕に沿って縁面放電が発生しやすい。よって、正極集電体または正極活物質層と負極集電体または負極活物質層との間における筋状切断痕の長さが短いほど、縁面放電のリスクが増大する。
 本開示は、このような知見に基づいてなされたものであり、電池セルの側面に設けられた筋状切断痕等の筋状の凹部または凸部に起因する縁面放電を抑制することで信頼性を高めることができる電池および電池の製造方法を提供する。
 (本開示の概要)
 本開示の一態様の概要は以下の通りである。
 本開示の一様態における電池は、少なくとも1つの電池セルを備え、前記少なくとも1つの電池セルは、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、を有し、前記少なくとも1つの電池セルの側面には、前記少なくとも1つの電池セルの側面を平面視した場合に、前記少なくとも1つの電池セルの厚み方向に対して傾斜した筋状の凹部または凸部が設けられている。
 上述のように、電池セルの側面に設けられた筋状の凹部または凸部には電界が集中しやすく、筋状の凹部または凸部は、側面における縁面放電の始終端になりやすい。本態様においては、筋状の凹部または凸部が、電池セルの側面を平面視した場合に、電池セルの厚み方向に対して傾斜していることで、傾斜していない場合と比べて、負極層と正極層との間における筋状の凹部または凸部が長くなる。つまり、電界が集中しやすい筋状の凹部または凸部のうちの、負極層に設けられた部分と正極層に設けられた部分との距離が長くなる。よって、電池セルの側面における縁面放電の発生を抑制することで絶縁破壊による短絡の発生を抑制し、信頼性の高い電池を実現できる。
 また、例えば、前記少なくとも1つの電池セルの側面を平面視した場合に、前記筋状の凹部または凸部と前記厚み方向とがなす角度は、18度以上84度以下であってもよい。
 これにより、筋状の凹部または凸部が、電池セルの側面を平面視した場合に、電池セルの厚み方向に対して傾斜していない場合と比べて、負極層と正極層との間における筋状の凹部または凸部が5%以上長くなり、電池の信頼性をより向上できる。また、例えば、電池セルの厚み方向に対して垂直な方向に切断刃または電池セルをスライドさせながら切り下ろすことで筋状の凹部または凸部が形成される場合、電池セルの切断に必要な切断刃の最低ストロークに対して、切断刃または電池セルのスライドストロークが10倍以下となる。そのため、電池セルの切断設備をコンパクトにすることができる。
 また、例えば、前記少なくとも1つの電池セルの側面を平面視した場合に、前記筋状の凹部または凸部と前記厚み方向とがなす角度は、25度以上78度以下であってもよい。
 これにより、筋状の凹部または凸部が、電池セルの側面を平面視した場合に、電池セルの厚み方向に対して傾斜していない場合と比べて、負極層と正極層との間における筋状の凹部または凸部が10%以上長くなり、電池の信頼性をより一層向上できる。また、例えば、電池セルの厚み方向に対して垂直な方向に切断刃または電池セルをスライドさせながら切り下ろすことで筋状の凹部または凸部が形成される場合、電池セルの切断に必要な切断刃または電池セルの最低ストロークに対して、切断刃または電池セルのスライドストロークが5倍以下となる。そのため、電池セルの切断設備を一層コンパクトにすることができる。
 また、例えば、前記少なくとも1つの電池セルの側面を平面視した場合に、前記筋状の凹部または凸部は、湾曲していてもよい。
 これにより、負極層と正極層との間における筋状の凹部または凸部をより長くでき、電池の信頼性をより向上できる。
 また、例えば、前記筋状の凹部または凸部における凹部の深さまたは凸部の高さは、0.1μm以上であってもよい。
 このような、筋状の凹部または凸部が所定以上の大きさであるため、筋状の凹部または凸部に電界が集中しやすい場合でも、筋状の凹部または凸部が、電池セルの側面を平面視した場合に、電池セルの厚み方向に対して傾斜していることで、電池の信頼性を向上できる。
 また、例えば、前記少なくとも1つの電池セルは、複数の電池セルであり、前記複数の電池セルは積層されていてもよい。
 これにより、電池セルが積層された積層電池においても、電池の信頼性を向上できる。
 また、例えば、前記複数の電池セルのうち隣接する電池セルそれぞれにおける前記筋状の凹部または凸部は連続していてもよい。
 このような前記筋状の凹部または凸部は、複数の電池セルが積層された状態で一括切断することで形成できるため、電池の製造プロセスを簡素化できる。
 また、例えば、前記複数の電池セルのうち隣接する電池セルそれぞれにおける前記筋状の凹部または凸部は、前記隣接する電池セルそれぞれの側面を平面視した場合に、前記厚み方向に対して傾斜する向きが逆方向であってもよい。
 これにより、電池に衝撃等が加わった場合でも、筋状の凹部または凸部を起点とする電池の破損が伝搬しにくく、電池の信頼性を向上できる。
 また、本開示の一様態における電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、を有する電池セルを備える電池の製造方法であって、前記電池セルを切断刃により切断する切断工程を含み、前記切断工程において、前記電池セルおよび前記切断刃の少なくとも一方を前記切断刃の長さ方向にスライドさせながら、前記切断刃で前記電池セルを切り下ろす。
 このように、切断工程において、電池セルまたは切断刃の少なくとも一方が切断刃の長さ方向にスライドすることにより、切断面における切断刃の軌跡が電池セルの厚み方向から傾斜する。その結果、切断刃による筋状の凹部または凸部の切断痕が切断面に形成される場合であっても、切断痕が、電池セルの切断面を平面視した場合に、電池セルの厚み方向に対して傾斜する。そのため、切断痕が、電池セルの側面を平面視した場合に、電池セルの厚み方向に対して傾斜していない場合と比べて、負極層と正極層との間における切断痕が長くなる。よって、電池セルの切断面における縁面放電の発生を抑制することで絶縁破壊による短絡の発生を抑制し、信頼性の高い電池を製造できる。さらに、電池セルを切断刃で押し切るだけでなく、切断刃の刃先を滑らせて電池セルを切断するので切断抵抗を小さくすることができる。これにより、切断時に電池セルに加わる応力が小さくなるので、応力により切断面付近で電池セルの内部に微小クラックなどの破損が生じるリスクを軽減できるため、信頼性の高い電池を製造できる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 なお、以下で説明される実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、工程、工程の順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 (実施の形態1)
 [構成]
 まず、実施の形態1における電池の構成について説明する。図1は、実施の形態1における電池1000の概略構成を示す側面模式図である。図1は、電池1000の2つの主面を繋ぐ側面を平面視した場合の図である。また、図1は、電池1000に備えられる電池セル2000の側面を平面視した場合の図でもある。側面を平面視するとは、電池1000または電池セル2000を、電池1000または電池セル2000の側面の法線方向に沿って見るとも言える。
 図1に示されるように、実施の形態1における電池1000は、少なくとも1つの電池セル2000を備える。電池セル2000は、例えば、直方体状であるが、他の形状であってもよい。電池1000において、電池セル2000の数は1つであるが、電池1000は、複数の電池セルを備えていてもよい。複数の電池セルを備える電池については後述する。電池セル2000は、負極集電体210と、負極活物質層110と、固体電解質層130と、正極活物質層120と、正極集電体220と、を備える。本開示において、負極活物質層110は、負極層の一例であり、正極活物質層120は、正極層の一例である。
 負極集電体210と、負極活物質層110と、固体電解質層130と、正極活物質層120と、正極集電体220とはこの順で積層されている。なお、電池セル2000は、少なくとも負極活物質層110と、固体電解質層130と、正極活物質層120と、を備えていればよい。例えば、電池セル2000は、負極集電体210および正極集電体220のうち少なくとも一方を備えていなくてもよい。
 負極活物質層110と正極活物質層120は、固体電解質層130を介して対向している。負極活物質層110は、負極集電体210と固体電解質層130との間に位置する。正極活物質層120は、正極集電体220と固体電解質層130との間に位置する。
 負極活物質層110は、負極材料を含む層である。負極活物質層110に用いられる負極材料は、例えば、負極活物質を含む。負極活物質層110は、正極活物質層120に対向して配置されている。
 負極活物質層110に含有される負極活物質としては、リチウム(Li)またはマグネシウム(Mg)などのイオンを離脱および挿入することができる各種材料が用いられうる。負極活物質の材料としては、例えば、グラファイト、金属リチウムなどの負極活物質が用いられうる。
 また、負極活物質層110に用いられる負極材料には、例えば、無機系固体電解質などの固体電解質がさらに含まれていてもよい。無機系固体電解質としては、例えば、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質としては、例えば、硫化リチウム(LiS)および五硫化二リン(P)の混合物が用いられうる。また、負極活物質層110に用いられる負極材料には、例えば、アセチレンブラックなどの導電材がさらに含まれていてもよい。また、負極活物質層110に用いられる負極材料には、例えばポリフッ化ビニリデンなどの結着用バインダーなどがさらに含まれていてもよい。
 負極活物質層110に用いられる負極材料を溶媒と共に練り込んだペースト状の塗料を、負極集電体210の面上に塗工乾燥することにより、負極活物質層110が作製されうる。負極活物質層110の密度を高めるために、乾燥後に、負極活物質層110および負極集電体210を含む負極板をプレスしておいてもよい。負極活物質層110の厚みは、例えば、5μm以上300μm以下であるが、これに限らない。
 正極活物質層120は、正極材料を含む層である。正極材料は、負極材料の対極を構成する材料である。正極活物質層120に用いられる正極材料は、例えば、正極活物質を含む。
 正極活物質層120に含有される正極活物質としては、LiまたはMgなどのイオンを離脱および挿入することができる各種材料が用いられうる。正極活物質の材料としては、例えば、コバルト酸リチウム複合酸化物(LCO)、ニッケル酸リチウム複合酸化物(LNO)、マンガン酸リチウム複合酸化物(LMO)、リチウム‐マンガン‐ニッケル複合酸化物(LMNO)、リチウム‐マンガン‐コバルト複合酸化物(LMCO)、リチウム‐ニッケル‐コバルト複合酸化物(LNCO)、リチウム‐ニッケル‐マンガン‐コバルト複合酸化物(LNMCO)などの正極活物質が用いられうる。
 また、正極活物質層120に用いられる正極材料には、例えば、無機系固体電解質などの固体電解質がさらに含まれていてもよい。固体電解質としては、上述の負極材料に含まれる固体電解質として例示した材料が用いられうる。また、正極活物質の表面は、固体電解質でコートされていてもよい。また、正極活物質層120に用いられる正極材料には、例えば、アセチレンブラックなどの導電材がさらに含まれていてもよい。また、正極活物質層120に用いられる正極材料には、例えば、ポリフッ化ビニリデンなどの結着用バインダーなどがさらに含まれていてもよい。
 正極活物質層120に用いられる正極材料を溶媒と共に練り込んだペースト状の塗料を、正極集電体220の面上に塗工乾燥することにより、正極活物質層120が作製されうる。正極活物質層120の密度を高めるために、乾燥後に、正極活物質層120および正極集電体220を含む正極板をプレスしておいてもよい。正極活物質層120の厚みは、例えば、5μm以上300μm以下であるが、これに限らない。
 固体電解質層130は、負極活物質層110と正極活物質層120との間に配置される。固体電解質層130は、負極活物質層110と正極活物質層120との各々に接する。固体電解質層130は、電解質材料を含む層である。電解質材料としては、一般に公知の電池用の電解質が用いられうる。固体電解質層130の厚みは、5μm以上300μm以下であってもよく、または、5μm以上100μm以下であってもよい。
 固体電解質層130は、電解質材料として固体電解質を含む。電池1000は、例えば、全固体電池であってもよい。
 固体電解質としては、上述の負極材料に含まれる固体電解質として例示した材料が用いられうる。なお、固体電解質層130は、電解質材料に加えて、例えばポリフッ化ビニリデンなどの結着用バインダーなどを含有してもよい。
 電池セル2000では、負極活物質層110、正極活物質層120および固体電解質層130は平行平板状に維持されている。これにより、湾曲による割れまたは崩落の発生を抑制することができる。なお、負極活物質層110、正極活物質層120および固体電解質層130を合わせて滑らかに湾曲させてもよい。
 負極集電体210と正極集電体220とはそれぞれ、導電性を有する部材である。負極集電体210と正極集電体220とはそれぞれ、例えば、導電性を有する薄膜であってもよい。負極集電体210と正極集電体220とを構成する材料としては、例えば、ステンレス(SUS)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)などの金属が用いられうる。
 負極集電体210は、負極活物質層110に接して配置される。負極集電体210としては、例えば、SUS箔、Cu箔、Ni箔などの金属箔が用いられうる。負極集電体210の厚みは、例えば、5μm以上100μm以下であるが、これに限らない。なお、負極集電体210は、負極活物質層110に接する部分に、例えば、導電性材料を含む層である集電体層を備えてもよい。
 正極集電体220は、正極活物質層120に接して配置される。正極集電体220としては、例えば、SUS箔、Al箔、Cu箔、Ni箔などの金属箔が用いられうる。負極集電体210の厚みは、例えば、5μm以上100μm以下であるが、これに限らない。なお、正極集電体220は、正極活物質層120に接する部分に、例えば、導電性材料を含む層である集電体層を備えてもよい。
 電池セル2000の側面は、例えば、負極集電体210と、負極活物質層110と、固体電解質層130と、正極集電体220と、正極活物質層120とを切断刃で一括切断することで形成される切断面である。電池セル2000の側面は、例えば、電池セル2000の厚み方向に沿った切断面が形成されるように電池セル2000が一括切断されることで形成される。電池セル2000の側面では、例えば、負極集電体210と、負極活物質層110と、固体電解質層130と、正極集電体220と、正極活物質層120とが露出している。なお、電池セル2000の側面では、電池セル2000を構成する全ての層および集電体が露出していなくてもよい。
 電池セル2000の側面には、筋状の凹部または凸部の一例である筋状切断痕800が設けられている。筋状切断痕800は、上述した一括切断に起因する。筋状切断痕800は、切断刃と電池セル2000とが接触した際の切断性、応力分布、各層の材料の微小崩落の不均一性などによって発生する、側面における筋状の微小な凹または凸である。筋状切断痕800は、例えば直線状である。筋状切断痕800は、例えば、電池セル2000の側面において、負極活物質層110と正極活物質層120とを繋ぐように設けられている。筋状切断痕800は、電池セル2000の側面において、負極集電体210と正極集電体220とを繋ぐように設けられていてもよい。電池セル2000の側面に設けられた筋状切断痕800は、当該側面を平面視した場合に、電池セル2000の厚み方向に対して傾斜しており、電池セル2000の厚み方向と筋状切断痕800とが0ではない有意な角度差θを有している。電池セル2000の側面を平面視した場合の電池セル2000の厚み方向は、矢印Zで示される方向であり、言い換えると、電池セル2000の側面を平面視した場合の各層の短手方向である。また、電池セル2000の側面を平面視した場合の電池セル2000の厚み方向は、当該側面を平面視した場合に、負極活物質層110と固体電解質層130と正極活物質層120とが並んでいる方向でもある。また、角度差θは、電池セル2000の側面を平面視した場合に、筋状切断痕800と電池セル2000の厚み方向とがなす角度である。
 電池セル2000の側面には、複数の筋状切断痕800が設けられており、複数の筋状切断痕800は互いに平行である。つまり、隣接する筋状切断痕800の間の距離は、どの位置でも同じである。また、複数の筋状切断痕800には、凹部である筋状切断痕800と凸部である筋状切断痕800とが混在していてもよい。
 詳細は後述するが、筋状切断痕800は、電池セル2000を切断刃により切断する場合に、電池セル2000を基準とした切断刃の相対的な移動方向が、電池セル2000の厚み方向に対して傾斜するように切断することで形成される。
 ここで、比較例における電池1000Xを参照しながら、電池1000の効果について説明する。図2は、比較例における電池1000Xの概略構成を示す側面模式図である。図2は、電池1000Xの側面を平面視した場合の図である。
 図2に示されるように、電池1000Xが備える電池セル2000の側面には、電池セル2000の側面を平面視した場合に、電池セル2000の厚み方向に対して傾斜していない筋状切断痕800Xが設けられている。
 上述のように、側面に設けられた凹部または凸部は、電界が集中しやすく、側面における縁面放電の始終端となりやすい。筋状切断痕800Xは、電池セル2000の側面を平面視した場合に、電池セル2000の厚み方向に対して傾斜していないため、負極集電体210または負極活物質層110と正極集電体220または正極活物質層120との間を最短距離で繋ぐように設けられている。そのため、筋状切断痕800Xに沿った縁面放電が発生しやすい。
 一方、図1に示される本実施の形態における電池1000では、筋状切断痕800は、電池セル2000の側面を平面視した場合に、電池セル2000の厚み方向に対して傾斜している。そのため、比較例における筋状切断痕800Xに比べて、負極集電体210または負極活物質層110と正極集電体220または正極活物質層120との間における筋状切断痕800が長くなる。つまり、電界が集中しやすい筋状切断痕800のうちの、負極集電体210または負極活物質層110に設けられた部分と正極集電体220または正極活物質層120に設けられた部分との距離が長くなる。よって、電池セル2000の側面における縁面放電の発生を抑制することで絶縁破壊による短絡の発生を抑制し、信頼性の高い電池1000を実現できる。
 角度差θは、例えば、18度以上84度以下であり、25度以上78度以下であってもよい。
 角度差θが18度以上であることで、筋状切断痕800のうちの負極集電体210または負極活物質層110に設けられた部分と正極集電体220または正極活物質層120に設けられた部分との距離が、角度差θが無い場合と比べて、5%以上増加する。その結果、電池セル2000の側面に沿った縁面放電による絶縁破壊のリスクをより軽減できる。また、角度差θが25度以上であることで、筋状切断痕800のうちの負極集電体210または負極活物質層110に設けられた部分と正極集電体220または正極活物質層120に設けられた部分との距離が、角度差θが無い場合と比べて、10%以上増加する。その結果、電池セル2000の側面に沿った縁面放電による絶縁破壊のリスクをより一層軽減できる。
 また、角度差θが84度以下であることで、例えば、後述する製造方法のように、電池セル2000の厚み方向に対して垂直な方向に切断刃または電池セル2000をスライドさせながら切り下ろすことで筋状切断痕800が形成される場合、電池セル2000の切断に必要な切断刃の最低ストローク(つまり、切り下ろす方向のストローク)に対して、電池セル2000または切断刃のスライドストロークが10倍以下となる。そのため、電池セル2000の切断設備をコンパクトにすることができる。また、角度差θが78度以下であることで、上記最低ストロークに対して、上記スライドストロークが5倍以下となる。そのため、電池セル2000の切断設備を一層コンパクトにすることができる。
 筋状切断痕800における凹部の深さまたは凸部の高さは、例えば、0.1μm以上である。このような、筋状切断痕800への電界の集中が生じやすい場合でも、本実施の形態のように筋状切断痕800が電池セル2000の厚み方向に対して傾斜している効果により、縁面放電を抑制できる。また、縁面放電を抑制、および、筋状切断痕800を起点とした破損を抑制する観点から、筋状切断痕800における凹部の深さまたは凸部の高さは、例えば、100μm以下であり、10μm以下であってもよい。なお、筋状切断痕800が複数設けられている場合、例えば、複数の筋状切断痕800における最も深い凹部の深さまたは最も高い凸部の高さが、0.1μm以上100μm以下、または、0.1μm以上10μm以下である。
 [製造方法]
 次に、電池1000の製造方法について説明する。
 電池1000の製造方法は、例えば、積層工程と、切断工程と、を含む。
 積層工程では、例えば、負極集電体210と、負極活物質層110と、固体電解質層130と、正極活物質層120と、正極集電体220と、を備える電池セル2000を形成する。積層工程では、例えば、負極集電体210、負極活物質層110、固体電解質層130、正極活物質層120および正極集電体220をこの順で順次積層することで、電池セル2000を形成する。電池セル2000は、例えば、負極活物質層110、正極活物質層120および固体電解質層130それぞれの材料を溶媒と共に練り込んだペースト状の塗料を、集電体または各層の面上に塗工乾燥することにより、形成される。また、負極集電体210上に負極活物質層110および固体電解質層130をこの順で積層した負極板と正極集電体220上に正極活物質層120および固体電解質層130を積層した正極板とを準備し、負極板と正極板とを固体電解質層130を介して接合することで電池セル2000を形成してもよい。積層工程において、各層の形成および負極板と正極板との接合では、高密度化および圧縮接合のためにプレスが行われてもよい。なお、電池セル2000を形成する方法は、上述の例に限らず、公知の電池の製造方法により形成されうる。
 次に、切断工程では、積層工程で形成した電池セル2000を切断刃により切断する。この際、電池セル2000が切断刃によって切断されることで形成される切断面には、上述の筋状切断痕800が形成される。筋状切断痕800は、切断刃と電池セル2000とが接触した際の切断性、応力分布、各層の材料の微小崩落の不均一性などに起因して形成される。このようにして、筋状切断痕800が形成された切断面が側面となる電池セル2000を備える電池1000が形成される。
 なお、切断工程では、積層工程で形成した電池セル2000を準備する代わりに、あらかじめ各層が積層された電池セル2000を入手することで、電池セル2000を準備して用いてもよい。
 ここで、電池セル2000の側面を平面視した場合に、電池セル2000の厚み方向に対して傾斜している筋状切断痕800を形成する方法について説明する。図3Aは、電池セル2000の切断に用いる切断装置600の一例を示す正面模式図である。図3Bは、電池セル2000の切断に用いる切断装置600の一例を示す側面模式図である。図3Cは、切断装置600の動きの例を説明するための図である。なお、図3Aおよび図3Bにおいて、切断ユニット601にはドットの模様を付しているが、見やすさのために付しているものであり、実際の切断ユニット601にドットの模様が付されていることを意図したものではない。また、図3Cでは、見やすさのため、切断装置600のうちの可動上刃701および支持ユニット753以外の構成については、図示を省略している。
 電池セル2000の厚み方向に対して傾斜している筋状切断痕800を形成する方法として、例えば、図3Aおよび図3Bに模式的に示される切断装置600を用いる方法が挙げられる。
 切断装置600は、切断ユニット601と、スライドユニット602と、支持ユニット753と、を備える。
 切断ユニット601は、全体がスライドユニット602の上に載置されている。切断ユニット601には、図3Aおよび図3Bにおいてドットの模様が付されている。切断ユニット601は、切断刃700と、切断刃アクチュエーター751とを有する。
 切断刃700は、可動上刃701と固定下刃702とから構成されている。可動上刃701における下端が、可動上刃701の刃先であり、固定下刃702における上端が固定下刃702の刃先である。可動上刃701は、切断刃アクチュエーター751の下端に接続され、切断刃アクチュエーター751によって上下動が可能である。具体的には、可動上刃701の刃先とは反対側の端部が、切断刃アクチュエーター751に接続されている。切断刃アクチュエーター751は、例えば、エアシリンダーまたは電動シリンダーなどである。
 固定下刃702は、可動上刃701の上下動によって、可動上刃701と固定下刃702とに挟まれた被切断物を切断できるように、可動上刃701の下方、かつ、可動上刃701の上下動で可動上刃701と接触しない位置に配置されている。これにより、可動上刃701と固定下刃702との間に配置した電池セル2000を、可動上刃701の刃先と固定下刃702の刃先とで挟み込むことで切断できる。
 可動上刃701の下端は、固定下刃702の上端に対して傾斜している。これにより、電池セル2000と可動上刃701の下端である刃先とが接触する際の接触面積を減らすことができ、切断抵抗を減らすことができる。なお、可動上刃701の下端は、固定下刃702の上端に平行であってもよい。また、可動上刃701の下端は湾曲していてもよい。
 スライドユニット602は、スライドアクチュエーター752を有する。スライドアクチュエーター752は、エアシリンダーまたは電動スライダーなどである。スライドアクチュエーター752のスライド駆動部分には、切断ユニット601が載置され、切断ユニット601は、スライドアクチュエーター752によって切断刃700の長さ方向と平行な方向に移動が可能なように構成されている。つまり、スライドアクチュエーター752のスライド駆動部分は、切断刃700の長さ方向と平行な方向に駆動する。切断刃700の長さ方向は、可動上刃701および固定下刃702が延びる方向であり、例えば、可動上刃701の厚み方向と直交し、かつ、可動上刃701の上下動方向と交差(例えば直交)する方向である。また、図示されるような、可動上刃701が可動上刃701の短手方向の端部に刃先が配置される長尺の板状である場合、長さ方向は可動上刃701の長手方向である。
 支持ユニット753は、例えば、切断ユニット601およびスライドユニット602の前方または後方に配置される電池セル2000支持用の台である。支持ユニット753の上面に、切断される電池セル2000が保持される。電池セル2000は、図示されていない治具等によって、支持ユニット753に固定されて保持されてもよい。電池セル2000の主面の上方に可動上刃701が位置するように、電池セル2000は保持される。また、電池セル2000の一部は、固定下刃702に載置される。支持ユニット753の上面の高さと、固定下刃702の上端部の高さとは同じであり、可動上刃701の上下動の方向と、電池セル2000の厚み方向とが平行になるように電池セル2000は保持される。例えば、電池セル2000は、電池セル2000の主面が水平方向になるように保持される。これにより、電池セル2000の切断時に電池セル2000がずれにくくなり、切断の精度を高めることができる。
 支持ユニット753は、スライドアクチュエーター752に接続されておらず、位置が固定されている。そのため、支持ユニット753に保持されている電池セル2000もスライドアクチュエーター752の駆動によっては移動しない。
 切断刃アクチュエーター751とスライドアクチュエーター752とは、例えば、互いの位置情報を位置センサー信号または駆動パルス情報を基に連携しており、切断刃700は、切断刃700の長さ方向にスライドしながら、支持ユニット753に保持された電池セル2000を切断する。なお、支持ユニット753に、積層された複数の電池セル2000を保持させて、複数の電池セル2000を一度に切断してもよい。
 具体的には、図3Cに示されるように、電池セル2000を切断する場合、可動上刃701は、切断刃アクチュエーター751によって矢印M1で示される方向に移動する。矢印M1で示される方向は、例えば、電池セル2000の厚み方向と平行である。また、それと同時に、可動上刃701を含む切断ユニット601全体が、スライドアクチュエーター752によって、矢印M2で示される方向のいずれかの方向に移動する。矢印M2で示される方向は、切断刃700の長さ方向である。これにより、切断工程において、切断刃700を切断刃700の長さ方向にスライドさせながら、電池セル2000の主面の上方から切断刃700の可動上刃701によって電池セル2000を切り下ろす。この際、切断工程における電池セル2000を基準とした切断刃700の可動上刃701の相対的な移動方向は、電池セル2000が切断刃700によって切断された場合に形成される切断面を平面視した場合の電池セル2000の厚み方向に対して傾斜している。その結果、形成される切断面に、電池セル2000の厚み方向に対して傾斜している筋状切断痕800を形成することができる。なお、切り下ろすとは、可動上刃701の刃先が電池セル2000に向かって移動することで電池セル2000を切断することを意味する。そのため、切り下す場合に、例えば、可動上刃701は、鉛直下方に向かって移動するが、可動上刃701と電池セル2000との相対的な位置関係によっては、鉛直下方に向かって移動するとは限らない。
 電池セル2000を基準とした可動上刃701の相対的な移動方向は、矢印M1で示される方向と矢印M2で示される方向のうちのいずれかの方向とが合成された方向である。例えば、可動上刃701が、矢印M1の方向に移動すると同時に、切断ユニット601全体が、矢印M2で示される方向のうちの図3Cにおける左方向にスライドすることで、図1に示される方向に傾斜した筋状切断痕800が形成される。また、切断ユニット601全体がスライドせず、可動上刃701が矢印M1の方向に移動することだけで電池セル2000を切断する場合、図2に示される筋状切断痕800Xが形成される。
 図3Cに示されるように可動上刃701の下端が傾斜している場合、切断ユニット601全体が、可動上刃701の下端のうち支持ユニット753に近い側から遠い側へスライド、つまり、矢印M2で示される方向のうちの図3Cにおける左方向にスライドすることで、可動上刃701のストロークを減らすことができる。また、切断ユニット601全体が、可動上刃701の下端のうち支持ユニット753に遠い側から違い側へスライド、つまり、矢印M2で示される方向のうちの図3Cにおける右方向にスライドすることで、可動上刃701による電池セル2000の切断時の負荷を減らすことができる。
 また、電池セル2000を切断する際に、切断刃アクチュエーター751の切断速度の設定とスライドアクチュエーター752のスライド速度の設定とにより、電池セル2000の厚み方向と筋状切断痕800との角度差を変えることができる。切断速度は、可動上刃701で電池セル2000を切り下ろす速度であり、スライド速度は、切断刃700を切断刃700の長さ方向にスライドさせる速度である。また、切断刃アクチュエーター751およびスライドアクチュエーター752の速度設定において、電池セル2000の切断中に、切断速度とスライド速度との関係を変化させることで筋状切断痕800を湾曲形状にすることも可能である。例えば、電池セル2000の切断の開始時に切断速度またはスライド速度を加速する、または、電池セル2000の切断の終了前に切断速度またはスライド速度を減速することで、切断速度とスライド速度との関係を変化させる。また、電池セル2000の切断中、切断速度またはスライド速度を、加速させ続ける、または、減速させ続けることで、切断速度とスライド速度との関係を変化させてもよい。
 また、切断刃アクチュエーター751とスライドアクチュエーター752とが互いの位置情報を基に連携して、筋状切断痕800と電池セル2000の厚み方向とに角度差を生じさせる方法で製造することによるもう一つの利点として切断負荷の低減が挙げられ、それにより電池1000の信頼性を向上することができる。
 具体的には、切断工程において、切断刃700を切断刃700の長さ方向にスライドさせながら、切断刃700の可動上刃701によって電池セル2000を切り下ろす。したがって、電池セル2000を押し切るだけでなく、可動上刃701の刃先を滑らせて電池セル2000を切断するので切断抵抗を小さくすることができる。これにより、切断時に電池セル2000に加わる応力が小さくなるので、応力により切断面付近で電池セル2000の内部に微小クラックなどの破損が生じるリスクを軽減できるため、電池1000の信頼性を向上することができる。
 なお、上記の電池セル2000の切断方法では、切断刃700を切断刃700の長さ方向にスライドさせたが、これに限らない。切断工程において、電池セル2000を切断刃700の長さ方向にスライドさせながら、切断刃700の可動上刃701によって電池セル2000を切り下ろしてもよい。図4は、切断装置600の動きの別の例を説明するための図である。図3Aおよび図3Bに示される切断装置600では、切断ユニット601がスライドし、支持ユニット753が固定されていたが、図4には、切断装置600において、切断ユニット601が固定され、支持ユニット753がスライドする場合が示されている。つまり、支持ユニット753がスライドアクチュエーター752に接続されて、スライドアクチュエーター752によって駆動されてもよい。
 図4に示されるように、電池セル2000を切断する場合、可動上刃701は、切断刃アクチュエーター751によって矢印M1で示される方向に移動する。また、それと同時に、支持ユニット753が、スライドアクチュエーター752によって、矢印M3で示される方向のいずれかの方向に移動する。矢印M3で示される方向は、切断刃700の長さ方向である。これにより、切断工程において、支持ユニット753に保持された電池セル2000を切断刃700の長さ方向にスライドさせながら、電池セル2000の主面の上方から切断刃700の可動上刃701によって電池セル2000を切り下ろす。その結果、形成される切断面に、電池セル2000の厚み方向に対して傾斜している筋状切断痕800を形成することができる。例えば、可動上刃701が、矢印M1の方向に移動すると同時に、支持ユニット753に保持された電池セル2000が、矢印M3で示される方向のうちの図4における右方向にスライドすることで、図1に示される方向に傾斜した筋状切断痕800が形成される。このような方法においても、電池セル2000を切断する際の切断抵抗を小さくすることができる。また、この場合、スライド速度は、電池セル2000を切断刃700の長さ方向にスライドさせる速度である。
 また、切断工程において、切断刃700の長さ方向に対して、電池セル2000の主面が傾斜するように、電池セル2000が保持されていてもよい。この場合、可動上刃701の移動方向に対して電池セル2000の厚み方向が傾斜するため、電池セル2000を基準とした切断刃700の可動上刃701の相対的な移動方向は、電池セル2000が切断刃によって切断された場合に形成される切断面を平面視した場合の電池セル2000の厚み方向に対して傾斜する。よって、スライドアクチュエーター752を用いることなく、切断刃700の可動上刃701によって電池セル2000を切り下ろすだけで、電池セル2000の厚み方向に対して傾斜している筋状切断痕800を形成することができる。
 [変形例]
 次に、実施の形態1の変形例について説明する。以下の変形例の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図5は、実施の形態1の変形例における電池1010の概略構成を示す側面図である。図5は、電池1010の側面を平面視した場合の図である。また、図5は、電池1010に備えられる電池セル2000の側面を平面視した場合の図でもある。
 図5に示されるように、実施の形態1の変形例における電池1010は、実施の形態1における電池1000と比較して、電池セル2000の側面に、筋状切断痕800の代わりに筋状切断痕801が設けられている点で相違する。
 電池1010においても電池セル2000の側面は一括切断による切断面であり、電池セル2000の側面には、筋状の凹部または凸部の一例である筋状切断痕801が設けられている。電池セル2000の側面を平面視した場合に、筋状切断痕801は、湾曲している。図5に示される例では、筋状切断痕801は、全体が湾曲しているが、直線状の部分と湾曲している部分とを有していてもよい。また、筋状切断痕801は、少なくとも一部が、電池セル2000の側面を平面視した場合に、電池セル2000の厚み方向に対して傾斜している。図5に示される例では、筋状切断痕801は、全ての部分で電池セル2000の厚み方向に対して傾斜している。
 図5に示される例では、筋状切断痕801は、下側が凸になるように湾曲しているが、上側が凸になるように湾曲していてもよい。また、筋状切断痕801は、下側が凸になるように湾曲している部分と上側が凸になるように湾曲している部分とを有していてもよい。
 電池セル2000の側面を平面視した場合に、筋状切断痕801の両端を結ぶ直線と電池セル2000の厚み方向とがなす角度は、例えば、18度以上84度以下であり、25度以上78度以下であってもよい。
 電池1010では、筋状切断痕801が湾曲しているため、湾曲していない場合と比べて、負極集電体210または負極活物質層110と正極集電体220または正極活物質層120との間における筋状切断痕801が長くなる。つまり、電界が集中しやすい、筋状切断痕801のうちの負極集電体210または負極活物質層110に設けられた部分と正極集電体220または正極活物質層120に設けられた部分との距離が長くなる。よって、電池セル2000の側面における縁面放電の発生を抑制することで短絡の発生を抑制し、より信頼性の高い電池1010を実現できる。
 筋状切断痕801は、例えば、上記で説明した切断工程において、切断刃アクチュエーター751およびスライドアクチュエーター752の速度設定において、電池セル2000の切断途中で、切断速度とスライド速度との関係を変化させることで形成される。つまり、切断工程における電池セル2000を基準とした切断刃700の可動上刃701の相対的な移動方向が、電池セル2000の切断中に変化する。
 (実施の形態2)
 次に、実施の形態2について説明する。以下の実施の形態2の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。実施の形態2における電池は、複数の電池セルが積層された積層電池である。
 図6は、実施の形態2における電池1100の概略構成を示す側面模式図である。図6は、電池1100の側面を平面視した場合の図である。また、図6は、電池1100に備えられる複数の電池セル2000、2000a、2000b、2000cの同じ側の側面を平面視した場合の図でもある。
 図6に示されるように実施の形態2における電池1100は、実施の形態1における電池1000に備えられる電池セル2000を含む複数の電池セル2000、2000a、2000b、2000cを備える。複数の電池セル2000、2000a、2000b、2000cは、積層されている。
 電池1100では、複数の電池セル2000、2000a、2000b、2000cが電気的に並列接続されて積層されている構造を有する。電池1100は、複数の電池セル2000、2000a、2000b、2000cが接着または接合などによって一体化された並列積層電池である。具体的には、複数の電池セル2000、2000a、2000b、2000cにおける隣接する電池セルは、各層の積層順が逆転するように積層されている。複数の電池セル2000、2000a、2000b、2000cにおける負極集電体210同士および正極集電体220同士が、図示が省略されたリード等によって電気的に接続されることで、複数の電池セル2000、2000a、2000b、2000cは、並列接続される。集電体同士を接続したリード等は、例えば、取り出し電極に接続される。
 複数の電池セル2000、2000a、2000b、2000cはそれぞれ、負極活物質層110と、固体電解質層130と、正極活物質層120と、を備えており、さらに、負極集電体210および正極集電体220のうち少なくとも一方を備えていてもよい。具体的には、電池セル2000は、負極集電体210と、負極活物質層110と、固体電解質層130と、正極活物質層120と、正極集電体220と、を備える。また、電池セル2000aおよび電池セル2000cはそれぞれ、負極活物質層110と、固体電解質層130と、正極活物質層120と、正極集電体220と、を備える。また、電池セル2000bは、負極集電体210と、負極活物質層110と、固体電解質層130と、正極活物質層120と、を備える。電池セル2000a、電池セル2000bおよび電池セル2000cはそれぞれ、隣接する電池セルの負極集電体210または正極集電体220と負極活物質層110または正極活物質層120とが接しており、集電体を共有している。なお、複数の電池セル2000、2000a、2000b、2000cは、集電体を共有せず、全ての電池セルが負極集電体210と、負極活物質層110と、固体電解質層130と、正極活物質層120と、正極集電体220と、を備えていてもよい。
 電池1100からの電極取出しは、端面端子、上下端端子または集電タブなど、様々な方式を用いることができる。
 電池1100における複数の電池セル2000、2000a、2000b、2000cそれぞれの側面には、複数の電池セル2000、2000a、2000b、2000cを切断する上述の切断工程に起因する筋状の凹部または凸部である筋状切断痕810が設けられている。筋状切断痕810は、複数の電池セル2000、2000a、2000b、2000cの側面を平面視した場合に、複数の電池セル2000、2000a、2000b、2000cの厚み方向に対して傾斜している。複数の電池セル2000、2000a、2000b、2000cそれぞれの側面は、上述の切断工程によって形成された切断面である。複数の電池セル2000、2000a、2000b、2000cのうち、隣接する電池セルにおける筋状切断痕810は、連続しており、1本の線状である。筋状切断痕810は複数の電池セル2000、2000a、2000b、2000cのうち、隣接する電池セルのそれぞれの側面に渡って設けられている。図6に示される例では、複数の電池セル2000、2000a、2000b、2000cすべての側面に渡って連続する筋状切断痕810も存在する。筋状切断痕810は、電池1100の縁部まで延びていなくてもよく、複数の電池セル2000、2000a、2000b、2000cの側面上の途中で途切れていてもよい。
 筋状切断痕810は、複数の電池セル2000、2000a、2000b、2000cが積層された状態で、切断工程によって一括切断されることで形成される。よって、電池1100の製造プロセスを簡素化できる。
 また、電池1100のような積層電池は、並列積層電池に限らず、直列積層電池であってもよい。図7は、実施の形態2における別の電池1110の概略構成を示す側面模式図である。電池1110は、複数の電池セル2000を備える。電池1110では、複数の電池セル2000が電気的に直列接続されて、積層されている構造を有する。電池1110は、複数の電池セル2000が接着または接合などによって一体化された直列積層電池である。具体的には、複数の電池セル2000は、それぞれ、各層の積層順が同じになるように積層されている。これにより、複数の電池セル2000が電気的に直列接続される。例えば、電池1110の主面を構成する負極集電体210および正極集電体220には、それぞれ、取り出し電極が接続される。
 電池1110においても、電池1100と同様に、複数の電池セル2000それぞれの側面には、複数の電池セル2000の側面を平面視した場合に、複数の電池セル2000の厚み方向に対して傾斜した筋状切断痕810が設けられている。
 また、積層電池に設けられる筋状切断痕は、隣接する電池セルにおいて連続していなくてもよい。複数の電池セルのうちの1つまたはいくつかの電池セルが一括切断されることによって形成された筋状切断痕が設けられてもよい。図8は、実施の形態2におけるさらに別の電池1120の概略構成を示す側面模式図である。電池1120は、電池1100と同様に複数の電池セル2000、2000a、2000b、2000cが積層された並列積層電池である。電池1120には、電池1100における筋状切断痕810の代わりに、筋状切断痕820aおよび筋状切断痕820bが設けられている。
 複数の電池セル2000、2000a、2000b、2000cのうち、隣接する電池セルの一方の電池セルの側面には筋状切断痕820aが設けられ、他方の電池セルの側面には筋状切断痕820bが設けられている。筋状切断痕820aと筋状切断痕820bとは連続していない。筋状切断痕820aと筋状切断痕820bとは、複数の電池セル2000、2000a、2000b、2000cの側面を平面視した場合に、複数の電池セル2000、2000a、2000b、2000cの厚み方向に対して傾斜する向きが逆方向である。例えば、図8の紙面において、電池セル2000bに設けられた筋状切断痕820aは、右下がりに傾斜しており、電池セル2000cに設けられた筋状切断痕820bは、右下がりとは逆方向の左下がりに傾斜している。このように、電池1120では、複数の電池セル2000、2000a、2000b、2000cのそれぞれの側面において、筋状切断痕820aと筋状切断痕820bとが交互になるように、複数の電池セル2000、2000a、2000b、2000cが積層されている。つまり、複数の電池セル2000、2000a、2000b、2000cの側面において、筋状切断痕820aと筋状切断痕820bとはジグザグ状である。これにより、電池1120に衝撃等が加わった場合でも、筋状切断痕820aおよび筋状切断痕820bを起点とする電池1120の破損が伝搬しにくく、電池1120の信頼性を向上できる。
 電池1120では、切断工程において、複数の電池セル2000、2000a、2000b、2000cを個別に一括切断することで切断面が形成される。個別に一括切断された複数の電池セル2000、2000a、2000b、2000cを積層することで電池1120が形成される。この際、例えば、電池セル2000よび電池セル2000bは、筋状切断痕820aが形成されるように切断され、電池セル2000aおよび電池セル2000cは、筋状切断痕820bが形成されるように切断される。
 (他の実施の形態)
 以上、本開示に係る電池について、実施の形態および変形例に基づいて説明したが、本開示は、これらの実施の形態および変形例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態および変形例に施したものや、実施の形態および変形例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 また、上記の実施の形態および変形例は、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る電池は、電子機器、電気器具装置、電気車両などの電池として、利用されうる。
  110 負極活物質層
  120 正極活物質層
  130 固体電解質層
  210 負極集電体
  220 正極集電体
  600 切断装置
  601 切断ユニット
  602 スライドユニット
  700 切断刃
  701 可動上刃
  702 固定下刃
  751 切断刃アクチュエーター
  752 スライドアクチュエーター
  753 支持ユニット
  800、801、810、820a、820b 筋状切断痕
  1000、1010、1100、1110、1120 電池
  2000、2000a、2000b、2000c 電池セル

Claims (9)

  1.  少なくとも1つの電池セルを備え、
     前記少なくとも1つの電池セルは、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、を有し、
     前記少なくとも1つの電池セルの側面には、前記少なくとも1つの電池セルの側面を平面視した場合に、前記少なくとも1つの電池セルの厚み方向に対して傾斜した筋状の凹部または凸部が設けられている、
     電池。
  2.  前記少なくとも1つの電池セルの側面を平面視した場合に、前記筋状の凹部または凸部と前記厚み方向とがなす角度は、18度以上84度以下である、
     請求項1に記載の電池。
  3.  前記少なくとも1つの電池セルの側面を平面視した場合に、前記筋状の凹部または凸部と前記厚み方向とがなす角度は、25度以上78度以下である、
     請求項1に記載の電池。
  4.  前記少なくとも1つの電池セルの側面を平面視した場合に、前記筋状の凹部または凸部は、湾曲している、
     請求項1から3のいずれか一項に記載の電池。
  5.  前記筋状における凹部の深さまたは凸部の高さは、0.1μm以上である、
     請求項1から4のいずれか一項に記載の電池。
  6.  前記少なくとも1つの電池セルは、複数の電池セルであり、
     前記複数の電池セルは積層されている、
     請求項1から5のいずれか一項に記載の電池。
  7.  前記複数の電池セルのうち隣接する電池セルそれぞれにおける前記筋状の凹部または凸部は連続している、
     請求項6に記載の電池。
  8.  前記複数の電池セルのうち隣接する電池セルそれぞれにおける前記筋状の凹部または凸部は、前記隣接する電池セルそれぞれの側面を平面視した場合に、前記厚み方向に対して傾斜する向きが逆方向である、
     請求項6に記載の電池。
  9.  正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、を有する電池セルを備える電池の製造方法であって、
     前記電池セルを切断刃により切断する切断工程を含み、
     前記切断工程において、前記電池セルおよび前記切断刃の少なくとも一方を前記切断刃の長さ方向にスライドさせながら、前記切断刃で前記電池セルを切り下ろす、
     電池の製造方法。
PCT/JP2022/013181 2021-05-13 2022-03-22 電池および電池の製造方法 WO2022239486A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280033199.0A CN117397086A (zh) 2021-05-13 2022-03-22 电池及电池的制造方法
JP2023520880A JPWO2022239486A1 (ja) 2021-05-13 2022-03-22
US18/503,997 US20240072376A1 (en) 2021-05-13 2023-11-07 Battery and method for manufacturing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-081927 2021-05-13
JP2021081927 2021-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/503,997 Continuation US20240072376A1 (en) 2021-05-13 2023-11-07 Battery and method for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2022239486A1 true WO2022239486A1 (ja) 2022-11-17

Family

ID=84028151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013181 WO2022239486A1 (ja) 2021-05-13 2022-03-22 電池および電池の製造方法

Country Status (4)

Country Link
US (1) US20240072376A1 (ja)
JP (1) JPWO2022239486A1 (ja)
CN (1) CN117397086A (ja)
WO (1) WO2022239486A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188099A (ja) * 1998-12-22 2000-07-04 Mitsubishi Chemicals Corp 薄膜型電池の製造方法
WO2019131503A1 (ja) * 2017-12-28 2019-07-04 日立造船株式会社 全固体電池、その製造方法および加工装置
JP2019139921A (ja) * 2018-02-08 2019-08-22 株式会社Soken 全固体電池の製造方法
WO2019221010A1 (ja) * 2018-05-14 2019-11-21 日立化成株式会社 二次電池用電池部材の製造方法、及び、二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188099A (ja) * 1998-12-22 2000-07-04 Mitsubishi Chemicals Corp 薄膜型電池の製造方法
WO2019131503A1 (ja) * 2017-12-28 2019-07-04 日立造船株式会社 全固体電池、その製造方法および加工装置
JP2019139921A (ja) * 2018-02-08 2019-08-22 株式会社Soken 全固体電池の製造方法
WO2019221010A1 (ja) * 2018-05-14 2019-11-21 日立化成株式会社 二次電池用電池部材の製造方法、及び、二次電池

Also Published As

Publication number Publication date
JPWO2022239486A1 (ja) 2022-11-17
US20240072376A1 (en) 2024-02-29
CN117397086A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
KR101405012B1 (ko) 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스
KR102544158B1 (ko) 전고체 전지, 그 제조방법 및 가공장치
CN108963320A (zh) 电池
US10714789B2 (en) All-solid state battery
JP2015069775A (ja) 全固体電池およびその製造方法
JP7468720B2 (ja) 全固体電池及びその製造方法
JP4899723B2 (ja) 積層型電池の製造方法及び製造装置
JP2014127260A (ja) 固体電解質電池の製造方法
WO2022239486A1 (ja) 電池および電池の製造方法
US20210384549A1 (en) All-solid-state battery
WO2023053638A1 (ja) 電池および電池の製造方法
CN114830372A (zh) 电池
WO2022239526A1 (ja) 電池および電池の製造方法
JP2019102196A (ja) 電池の製造方法
CN113016096B (zh) 固体电池
JP7172778B2 (ja) 積層型全固体電池の製造方法
JP7205724B2 (ja) 電極積層体の製造方法
JP2017216205A (ja) 電気化学セル
WO2023053639A1 (ja) 電池および電池の製造方法
WO2023058295A1 (ja) 電池および電池の製造方法
WO2023145223A1 (ja) 電池および電池の製造方法
EP4362159A1 (en) Method for manufacturing battery
WO2022239525A1 (ja) 電池
WO2023053636A1 (ja) 電池および電池の製造方法
CN216054795U (zh) 负极、电极组件、电池单元、电池组及包括其的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520880

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280033199.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807191

Country of ref document: EP

Kind code of ref document: A1