WO2014081242A1 - 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체 - Google Patents

전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체 Download PDF

Info

Publication number
WO2014081242A1
WO2014081242A1 PCT/KR2013/010687 KR2013010687W WO2014081242A1 WO 2014081242 A1 WO2014081242 A1 WO 2014081242A1 KR 2013010687 W KR2013010687 W KR 2013010687W WO 2014081242 A1 WO2014081242 A1 WO 2014081242A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
active material
manufacturing
electrode
separator
Prior art date
Application number
PCT/KR2013/010687
Other languages
English (en)
French (fr)
Inventor
도현경
정종모
윤유림
최영근
최주영
윤승재
채종현
김재경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014548709A priority Critical patent/JP6027136B2/ja
Priority to CN201380003724.5A priority patent/CN103959540B/zh
Priority to US14/256,449 priority patent/US9343779B2/en
Publication of WO2014081242A1 publication Critical patent/WO2014081242A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • a method of manufacturing an electrode assembly in which a cathode and an anode are formed by double-coating a current collector, and then bent in a zigzag shape on a vertical cross section and integrated in a state where a separator is interposed between the facing electrode pattern interfaces. And it provides an electrode assembly produced by the above method.
  • lithium secondary batteries having high energy density and high voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • Lithium secondary batteries are classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the composition of an electrode assembly having a positive electrode / separator / cathode structure and an electrolyte solution.
  • the lithium secondary battery is classified into a jelly-roll type (winding type) and a stack type (lamination type) according to the structure of the electrode assembly.
  • a jelly-roll type electrode assembly may be prepared by coating an electrode active material or the like on a metal foil used as a current collector, drying and pressing to prepare an electrode, cutting the electrode into a band having a desired width and length, and then separating a separator. Using a diaphragm, the cathode and the anode are diaphragm and spirally manufactured.
  • the jelly-roll type electrode assembly is suitable for cylindrical batteries, but when applied to a square or pouch type battery, it has disadvantages such as peeling problem of electrode active material and low space utilization.
  • the stacked electrode assembly has a structure in which a plurality of positive electrode and negative electrode units are sequentially stacked, and has an advantage of easily obtaining a rectangular shape, but shortcomings are caused by an electrode being pushed when the manufacturing process is complicated and an impact is applied. There is this.
  • an anode / separator having a predetermined size (a separator)
  • An electrode assembly has been developed that consists of a structure that is sequentially stacked to face each other.
  • the structure of the overlapping electrode assembly can be confirmed by a schematic diagram of the manufacturing process illustrated in FIGS. 1A and 1B.
  • the superposed electrode assembly 10 includes a process of cutting the positive electrode 1, the negative electrode 2, and the separator 5 to a predetermined size, and the cut positive electrode 1 and the negative electrode 2.
  • the process of connecting the electrode tabs 3 and 4 is not only a separate connection member is essential, but also performed by a difficult operation such as welding, thereby increasing the manufacturing cost and raising the probability of occurrence of battery failure.
  • Korean Patent Publication No. 10-0907623 discloses bending an electrode coated with an active material layer on one surface of a current collector in a zigzag shape in a vertical cross section, and fitting the electrodes so that the active material layers face each other with a separator interposed therebetween. Disclosed is a method of manufacturing an electrode assembly for a secondary battery.
  • the method has a fundamental limitation because it requires a process of preparing electrode units by coating a positive electrode and a negative electrode active material on each electrode current collector, and aligning separators therebetween, as in the conventional overlapping electrode assembly. .
  • Korean Patent Publication No. 10-0303119 discloses a method of manufacturing an electrode assembly by manufacturing an electrode sheet and a separator in a laminated structure of an anode / separator / cathode / separator, and then folding the electrode sheet and the separator in a zigzag form.
  • this method also forms each electrode on each electrode current collector and then forms them by bending the laminated structure of the electrode and the separator, the process of bending by their respective predetermined thickness is not easy, In addition, there is a problem in that the electrode active material layer on the current collector is detached in the process of applying a force such that the folding process is possible.
  • the electrode assembly manufactured by the conventional stack, stack & fold, or folding method has a large amount of current collectors for electrode manufacturing, or the entire structure is distorted during battery manufacturing or expansion. There is such a problem.
  • the positive electrode and the negative electrode are manufactured by dividing the positive electrode and the negative electrode into two step processes, respectively, even though the current collector materials for producing the positive electrode and the negative electrode are the same, the production cost and the production time increase.
  • a cathode and an anode are formed by coating both surfaces on one current collector, and then bent in a zigzag shape on a vertical cross section, and integrated with an electrode assembly having a separator interposed therebetween. It is an object to provide a manufacturing method.
  • an object of the present invention is to provide a secondary battery having the overlapping electrode assembly.
  • It provides a method for producing an electrode assembly comprising the step of cutting at least one bent non-coated portion of the active material is not applied.
  • the electrode assembly manufactured by the method of the present invention is preferably an overlapping electrode assembly.
  • the current collector is composed of a material capable of collecting electrons generated by the electrochemical reaction of the positive electrode and the negative electrode active material formed together integrally or supplying electrons required for the electrochemical reaction, specifically, aluminum foil or copper foil This is preferable.
  • the positive electrode active material is LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 , LiNiMnCoO 2 and LiNi 1-xyz Co x M1 y M2 z O 2
  • the negative electrode active material is natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Oxides of the metals (Me) (MeOx) Oxides of the metals (Me) (MeOx)
  • one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • the positive electrode active material and the negative electrode active material may be pattern-coated on both surfaces of one current collector, and at this time, a slit die method, a 3-roll reverse (comma roll) method, a shutter method, and the like may be used according to the shape of a coater head.
  • the method of the present invention may further include the step of repeatedly coating the positive electrode active material and the negative electrode active material, followed by drying and pressing.
  • the width of the anode pattern and the cathode pattern is the same.
  • the one or more non-coating parts, to which the active material is not coated are corner portions that are bent in a zigzag-shaped electrode, and may be arranged at predetermined intervals along the direction in which the bending is performed, and the electrodes may be spaced apart from each other by the distance between two adjacent folded portions.
  • the width of the assembly can be determined. Specifically, the width of the plain portion may be about 5% to 10% based on the total width of the electrode pattern to facilitate the subsequent bending and cutting process.
  • a marking may be formed on the portion to be folded to easily perform the bending process.
  • the marking may include a plurality of holes perforated at regular intervals along the portion to be folded.
  • the method of the present invention may form a portion in which the electrode active material is not applied to one side or both ends of the current collector to a predetermined size, and further attach an electrode lead for electrical connection.
  • the separator is a thin porous polymer thin film of an insulating material that can be applied to a lithium secondary battery, specifically ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and A porous substrate made of a polyolefin-based polymer selected from the group consisting of ethylene-methacrylate copolymers; A porous substrate made of a polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfite and polyethylene naphthalene; Or a porous substrate formed of a mixture of inorganic particles and a binder polymer, but is not limited thereto.
  • the method may further include folding and integrating the separator and the electrode while applying heat and pressure in a state where the separator is interposed between the anode pattern and the cathode pattern interface facing each other.
  • the step of cutting and removing one or more bent solid parts not coated with the active material is performed.
  • the cutting step may use a conventional metal cutting or punching method.
  • the present invention can provide a (overlapping) electrode assembly having a lamination structure in which one unit cell consisting of an anode pattern, a separator, a cathode pattern, and a separator is alternately stacked by the method of the present invention. .
  • the present invention may provide a secondary battery having the (overlapping) electrode assembly, wherein the secondary battery may be a lithium ion polymer battery.
  • the manufacturing process of the electrode assembly be simplified according to the method of the present invention, but also the amount of current collector and separator used in manufacturing the electrode assembly is reduced, thereby reducing the manufacturing cost and manufacturing time of the battery. Since it can do this, productivity improvement effect can be brought.
  • FIGS. 1A and 1B are schematic diagrams illustrating a structure of an overlapping electrode assembly according to the related art.
  • FIG 2 is a plan view (A) and a cross-sectional view (B) before the bending of the electrode assembly according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view after bending the electrode assembly according to an embodiment of the present invention.
  • FIG 4 is a cross-sectional view at the time of cutting (C) of the electrode assembly according to an embodiment of the present invention.
  • FIG. 2 is a plan view (A) and a cross-sectional view (B) before the bending step of the electrode assembly according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view after the bending step of the electrode assembly according to an embodiment of the present invention
  • 4 is a cross-sectional view at the cutting (C) step of the electrode assembly according to an embodiment of the present invention.
  • one positive electrode active material and one negative electrode active material are repeatedly coated on one current collector 100, and then dried and pressed to form one or more negative electrode patterns 110 and positive electrode patterns spaced at predetermined intervals. 120 and the uncoated portion 115 to which the electrode active material is not coated.
  • a marking 125 including a plurality of holes punched at regular intervals may be formed in the plain portion to facilitate a subsequent bending process.
  • Widths of the positive electrode pattern and the negative electrode pattern are the same, and the one or more non-coated portions 115 to which the active material is not coated may have an approximate width of the positive electrode or negative electrode pattern in order to facilitate a subsequent bending and cutting process. May be 5 to 10% wide.
  • one side or both ends of the current collector 100 may be formed to form a portion in which the active material is not coated to a predetermined size, and may further attach an electrode lead (not shown) for electrical connection.
  • the uncoated portion of the current collector 200 in which the cathode pattern 210 and the anode pattern 220 are not formed is bent 215 in a zigzag shape on a vertical cross section.
  • the sheet is folded while applying heat and pressure in a state where the separator 250 is interposed between the cathode pattern 210 and the anode pattern 220 facing each other by the bending process.
  • the separator is thermally fused and fixed to the interface of the cathode pattern 210 or the anode pattern 220 which faces each other.
  • the separator may be a thin porous thin film of an insulating material.
  • the heat and pressure process for fixing the separator is not particularly limited, and may be appropriately changed and applied depending on the type of the electrode and the separator.
  • the negative electrode pattern 210 and the positive electrode pattern 220 are repeatedly coated on both surfaces of the current collector 200, and a separator 250 is interposed between the current collector 200 and the interface facing each other.
  • a lamination structure is formed in which cells are alternately stacked.
  • the uncoated portion of the lamination structure that is, the bent portion 215 is cut (C) to form an overlapping electrode assembly in which a short circuit is prevented.
  • the cutting may be performed using a conventional metal cutting and punching method.
  • the secondary battery may be preferably a lithium ion polymer battery.
  • the components constituting the lithium ion polymer secondary battery and the manufacturing method are not particularly limited, and those known in the art may be applied.
  • the positive electrode active material and the negative electrode active material were pattern-coated on both sides of the copper foil having perforations formed at regular intervals, respectively, and then dried and pressed to form a positive electrode and an electrode integrally on one current collector.
  • the current collector in which the positive electrode and the negative electrode are integrally formed, is bent to have a zigzag shape in a vertical cross section according to the perforation site. It was then folded one on the interface between the cathode and anode that face by the bending through a cell separator and then to the guard TM.
  • the bent current collector was cut to prepare an overlapping electrode assembly, and then, the battery was manufactured by embedding it in a battery case and injecting an electrolyte solution.
  • LiCoO 2 95% by weight of LiCoO 2 , 2.5% by weight of Super-P (conductor) and 2.5% by weight of PVdF (binder) were added to NMP (N-methyl-2-pyrrolidone) as a cathode active material to prepare a cathode mixture slurry.
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode was prepared by coating, drying, and pressing one surface of the aluminum foil, respectively.
  • Celgard TM was used as a separator, and the positive electrode and the negative electrode were bent to have a zigzag shape in a vertical cross section, and the separator was bent in such a shape so as to face the active material layers of the positive electrode and the negative electrode.
  • the electrode assembly was prepared by fitting. After the electrode assembly was built in the battery case, an electrolyte was injected to manufacture a battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 하나의 집전체를 준비하는 단계; 상기 하나의 집전체에 양극 활물질과 음극 활물질을 각각 양면 반복 코팅하여 소정 간격으로 이격된 하나 이상의 음극 패턴 및 양극 패턴과, 상기 활물질이 도포되지 않은 무지부를 형성하는 단계; 상기 무지부를 수직 단면 상으로 지그재그형으로 절곡하는 단계; 상기 절곡하여 대면하는 양극 패턴 및 음극 패턴 계면에 세퍼레이터를 개재하고 폴딩하는 단계; 및 절곡된 무지부 영역을 절단하는 단계를 포함하는 전극조립체의 제조 방법과 이러한 방법에 의해 제조된 전극조립체 및 이를 구비한 이차전지를 제공한다.

Description

전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
본 발명은 음극 및 양극을 하나의 집전체에 양면 코팅하여 형성한 다음, 이를 수직 단면 상으로 지그재그형으로 절곡하고, 상기 대면하는 전극 패턴 계면에 세퍼레이터를 개재한 상태에서 일체화하는 전극조립체의 제조 방법과, 상기 방법에 의해 제조된 전극조립체를 제공한다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있다. 그 중에서도 높은 에너지 밀도와 고전압을 가지고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 양극/세퍼레이터/음극 구조의 전극조립체와 전해액의 구성에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되고 있다.
또한, 리튬 이차전지는 상기 전극조립체의 구조에 따라 크게 젤리-롤형(권취형)과 스택형(적층형)으로 구분된다. 예를 들면, 젤리-롤형 전극조립체는, 집전체로 사용되는 금속 호일에 전극 활물질 등을 코팅하고 건조 및 프레싱하여 전극을 제조하고, 상기 전극을 원하는 폭과 길이의 밴드 형태로 재단한 다음, 세퍼레이터를 사용하여 음극과 양극을 격막하고, 나선형으로 감아 제조된다. 하지만, 상기 젤리-롤형 전극조립체는 원통형 전지에는 적합하지만, 각형 또는 파우치형 전지에 적용하는 경우, 전극 활물질의 박리 문제, 낮은 공간 활용성 등의 단점을 가지고 있다. 상기 스택형 전극조립체는 복수의 양극 및 음극 단위체들을 순차적으로 적층한 구조로서, 각형의 형태를 얻기가 용이한 장점이 있지만, 제조과정이 번잡하고 충격이 가해졌을 때 전극이 밀려서 단락이 유발되는 단점이 있다.
이러한 문제점을 해결하기 위하여, 한국 특허공개 제2001-82058호, 한국 특허공개 제2001-82059호, 및 한국 특허공개 제2001-82060호 공보에 기재되어 있는 바와 같이, 소정 크기의 양극/세퍼레이터(분리막)/음극의 풀셀(full cell) 또는 양극(음극)/세퍼레이터/음극(양극)/세퍼레이터/양극(음극)의 바이셀(bicell)을 긴 길이의 연속적인 분리필름을 개재한 상태에서 양극과 음극이 대면하도록 순차적으로 적층한 구조로 이루어진 전극조립체가 개발되었다.
이러한 중첩식 전극조립체의 구조는 도 1a 및 도 1b에 도시된 제조 과정의 모식도에 의해 확인할 수 있다.
도 1a 및 도 1b를 참고하면, 중첩식 전극조립체(10)는, 양극(1)과 음극(2) 및 세퍼레이터(5)을 일정한 크기로 절단하는 공정, 절단된 양극(1)과 음극(2) 및 세퍼레이터(5)를 순차적으로 적층하여 바이셀(또는 풀셀)(6)을 제조하는 공정(도 1a 참조), 이렇게 제조된 바이셀(6)을 분리필름(7)을 사용하여 폴딩하는 공정(도 1b 참조), 및 양극(1) 및 음극(2)의 일측에서 돌출된 전극 탭들(3, 4)을 전기적으로 연결하는 공정 등 여러 과정을 거쳐 제조되기 때문에, 제조과정이 번잡하고, 공정수에 따른 제조비용과 제조시간이 증가되는 단점을 가지고 있다. 또한, 전극 탭들(3, 4)을 연결하는 공정은 별도의 연결부재가 필수적일 뿐만 아니라, 용접 등의 까다로운 작업으로 수행되므로, 제조비용의 증가는 물론 전지의 불량 발생 확률을 높이는 원인이 된다.
최근, 이러한 단점을 개선하기 위하여, 스택형 및 중첩식 적층 구조 대신 수직 단면상으로 지그재그형인 전극조립체를 제조하는 방법이 알려져 있다.
예를 들어, 한국 등록특허 10-0907623호 공보에는 집전체에 일면에 활물질층을 코팅한 전극을 수직 단면상으로 지그재그형으로 절곡하고, 세퍼레이터를 개재한 상태에서 활물질층이 서로 대면하도록 전극을 끼워 맞추는 이차전지용 전극조립체 제조 방법이 개시되어 있다.
하지만, 상기 방법은 종래 중첩식 전극조립체와 마찬가지로 각각의 전극 집전체 상에 양극 및 음극 활물질을 각각 코팅하여 전극 유닛들을 제조하고, 이들 사이에 세퍼레이터를 정렬시키는 공정 등이 필요하므로 근본적인 한계를 가지고 있다.
또한, 한국 등록특허 10-0303119호 공보에는 전극 시트와 세퍼레이터를 양극/세퍼레이터/음극/세퍼레이터의 적층 구조로 제조한 후 이를 지그재그형으로 접어 전극조립체를 제조하는 방법이 개시되어 있다.
하지만, 이 방법 또한, 각각의 전극 집전체 상에 각각의 전극을 형성한 다음, 이들을 전극과 세퍼레이터의 적층 구조물을 절곡하여 형성하기 때문에, 그들 각각의 소정 두께에 의해 절곡하는 과정이 용이하지 않고, 또한 이러한 접는 과정이 가능할 수 있도록 힘을 인가하는 과정에서 집전체 상의 전극 활물질층이 탈리되는 문제점을 가지고 있다.
이와 같이, 종래 스택(stack), 스택 앤 폴딩(stack & folding) 또는 폴딩 등의 방식으로 제조된 전극조립체는 대부분 전극 제조를 위한 집전체의 사용량이 많거나, 전지 제조 또는 팽창시 전체 구조가 뒤틀리는 등의 문제점이 있다. 특히, 양극 및 음극 제조용 집전체 재료가 동일함에도 양극 및 음극을 각각 2 단계 공정으로 나누어 제조하고 있으므로, 제조 비용 및 제조 시간의 증가를 가져온다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있음과 동시에, 제조 비용 및 제조 시간을 감축할 수 있는 새로운 전극조립체의 제조 기술에 대한 개발이 필요한 실정이다.
본 발명은 음극 및 양극을 하나의 집전체에 양면 코팅하여 형성한 다음, 이를 수직 단면 상으로 지그재그형으로 절곡하고, 상기 대면하는 전극 패턴 계면에 세퍼레이터를 개재한 상태에서 일체화한 중첩식 전극조립체의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 방법에 의해 제조된 중첩식 전극조립체를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 중첩식 전극조립체를 구비한 이차전지를 제공하는 것을 목적으로 한다.
본 발명에서는
하나의 집전체를 준비하는 단계;
상기 하나의 집전체에 양극 활물질과 음극 활물질을 각각 양면 반복 코팅하여 소정 간격으로 이격된 하나 이상의 음극 패턴 및 양극 패턴과, 활물질이 도포되지 않은 하나 이상의 무지부를 형성하는 단계;
상기 활물질이 도포되지 않은 하나 이상의 무지부를 수직 단면 상으로 지그재그형으로 절곡하는 단계;
상기 절곡하여 대면하는 양극 패턴 및 음극 패턴의 각각의 계면에 세퍼레이터를 개재하고 폴딩(folding)하는 단계;
상기 활물질이 도포되지 않은 하나 이상의 절곡된 무지부를 절단하는 단계를 포함하는 전극조립체의 제조 방법을 제공한다.
구체적으로, 본 발명의 방법에 의해 제조된 상기 전극조립체는 중첩식 전극조립체인 것이 바람직하다.
상기 집전체는 일체형으로 함께 형성된 양극 및 음극 활물질의 전기화학 반응에 의해 생성된 전자를 모으거나 전기화학 반응에 필요한 전자를 공급하는 역할을 할 수 있는 물질로 이루어져 있으며, 구체적으로 알루미늄 호일 또는 구리 호일이 바람직하다.
이때, 상기 양극 활물질로는 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z = 1이다) 로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 양극 활물질을 들 수 있다. 또한, 상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.
상기 양극 활물질 및 음극 활물질은 하나의 집전체 양면에 패턴 코팅될 수 있으며, 이때 코터 (coater) 헤드의 형태에 따라 슬릿 다이 방식, 3롤 리버스 (콤마 롤) 방식, 셔터 방식 등을 이용할 수 있다.
상기 본 발명의 방법은 양극 활물질 및 음극 활물질을 양면 반복 코팅한 다음, 건조 및 프레싱하는 단계를 더 포함할 수 있다.
상기 본 발명이 방법에 있어서, 상기 양극 패턴 및 음극 패턴의 너비는 동일하다.
또한, 활물질이 도포되지 않은 하나 이상의 무지부는 지그재그 형태의 전극에서 절곡되어 있는 모서리 부위로서, 절곡이 행해지는 방향을 따라 소정의 간격으로 배열될 수 있으며, 인접한 두 접힘 부위들의 상호간 이격 거리에 따라 전극조립체의 너비가 결정될 수 있다. 구체적으로, 상기 무지부의 너비는 후속 절곡 공정 및 절단 공정을 용이하게 수행하기 위하여 상기 전극 패턴의 전체 너비를 기준으로 약 5% 내지 10%일 수 있다.
또한, 상기 무지부에는 절곡 공정을 용이하게 수행하기 위하여 접힘 예정 부위에 마킹(marking)이 형성될 수 있다. 상기 마킹은 접힘 예정 부위를 따라 일정한 간격으로 천공된 복수의 구멍들을 포함할 수 있다.
또한, 상기 본 발명의 방법은 상기 집전체의 일측 또는 양측 단부에 소정의 크기로 전극 활물질이 도포되지 않은 부분을 형성하여, 전기적 연결을 위한 전극 리드 등을 추가로 부착할 수 있다.
상기 본 발명의 방법에 있어서, 상기 세퍼레이터는 리튬 이차전지에 적용할 수 있는 절연성 소재의 얇은 다공성 고분자 박막으로서, 구체적으로 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재; 또는 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재 등을 들 수 있으며, 이들로 한정되지는 않는다.
또한, 본 발명의 방법에서는 대면하는 양극 패턴 및 음극 패턴 계면에 상기 세퍼레이터를 개재한 상태에서, 열 및 압력을 가하면서 상기 세퍼레이터와 전극을 폴딩하여 일체화하는 단계를 더 포함할 수도 있다. 상기 단계에 의해, 양극 패턴/제1 세퍼레이터/음극 패턴/제2 세퍼레이터로 이루어진 단위 셀이 교호 적층되어 있는 라미네이션 구조가 형성될 수 있다.
또한, 상기 본 발명의 방법에서는, 상기 라미네이션 구조가 단락되는 것을 방지하지 위하여, 활물질이 도포되지 않은 하나 이상의 절곡된 무지부를 절단하여 제거하는 단계를 수행한다.
이때, 상기 절단 단계는 통상적인 금속 커팅 혹은 펀칭 방법을 이용할 수 있다.
또한, 본 발명에서는 전술한 본 발명의 방법에 의해, 양극 패턴, 세퍼레이터, 음극 패턴, 세퍼레이터로 이루어진 하나의 단위 셀이 교호 적층되어 있는 라미네이션 구조로 이루어져 있는 (중첩식) 전극조립체를 제공할 수 있다.
또한, 본 발명에서는 상기 (중첩식) 전극조립체를 구비한 이차전지를 제공할 수 있으며, 이때, 상기 이차전지는 리튬이온 폴리머 전지일 수 있다.
이상에서 설명한 바와 같이, 본 발명에 방법에 따라 전극조립체의 제조과정을 단순화시킬 수 있을 뿐만 아니라, 전극조립체 제조 시 사용되는 집전체 및 세퍼레이터의 사용량을 감소시켜, 전지의 제조비용 및 제조시간을 절감할 수 있으므로, 생산성 향상 효과를 가져올 수 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1a 및 도 1b는 종래기술에 따른 중첩식 전극조립체 구조를 도시한 모식도이다.
도 2는 본 발명의 일 실시예에 따른 전극조립체의 절곡 전의 평면도(A) 및 단면도(B)이다.
도 3은 본 발명의 일 실시예에 따른 전극조립체를 절곡한 후의 단면도이다.
도 4는 본 발명의 일 실시예에 따른 전극조립체의 절단(C)시의 단면도이다.
부호의 설명
100, 200: 집전체
110, 210: 음극 패턴
120, 220: 양극 패턴
115: 무지부 영역
125: 마킹 (천공)부
215: 절곡 부분
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도 2에는 본 발명의 일 실시예에 따른 전극조립체의 절곡 단계 전의 평면도(A) 및 단면도(B)가 도시되어 있고, 도 3에는 본 발명의 일 실시예에 따른 전극조립체의 절곡 단계 후의 단면도가 도시되어 있으며, 도 4는 본 발명의 일 실시예에 따른 전극조립체의 절단(C) 단계시 단면도가 도시되어 있다.
먼저, 도 2를 참조하면, 하나의 집전체(100)에 양극 활물질과 음극 활물질을 각각 양면 반복 코팅한 다음, 건조 및 프레싱하여, 소정 간격으로 이격된 하나 이상의 음극 패턴(110), 양극 패턴(120) 및 전극 활물질이 도포되지 않은 무지부(115)를 형성한다.
이때, 상기 무지부에는 후속 절곡 공정을 용이하게 수행하기 위하여, 일정한 간격으로 천공된 복수의 구멍들을 포함하는 마킹(125)이 형성될 수 있다.
상기 양극 패턴 및 음극 패턴의 너비는 동일하며, 상기 활물질이 도포되지 않은 하나 이상의 무지부(115)는 후속 절곡 공정 및 절단 공정을 용이하게 수행하기 위하여 상기 양극 또는 음극 패턴의 전체 너비를 기준으로 약 5 내지 10% 너비로 형성될 수 있다.
또한, 상기 집전체(100)의 일측 또는 양측 단부에는 소정의 크기로 활물질이 코팅되지 않은 부분을 형성하여, 전기적 연결을 위한 전극 리드(미도시) 등을 추가로 부착할 수 있다.
그 다음으로, 도 3을 참조하면, 음극 패턴(210) 및 양극 패턴(220)이 형성되지 않은 집전체(200)의 무지부를 수직 단면 상으로 지그재그 형태로 절곡(215)한다.
이어서, 상기 절곡 공정에 의해 대면하는 음극 패턴(210) 및 양극 패턴(220) 계면에 세퍼레이터(250)를 개재한 상태에서 열 및 압력을 가하면서 폴딩한다. 그 결과 대면하는 상기 음극 패턴(210) 또는 양극 패턴(220) 계면에 세퍼레이터가 열융착되어 고정된다.
이때, 상기 세퍼레이터는 절연성 소재의 얇은 다공성 박막일 수 있다.
또한, 상기 세퍼레이터를 고정시키기 위한, 열 및 압력 공정은 특별히 제한하지 않으며, 전극과 세퍼레이터의 종류에 따라 적절히 변경하며 적용할 수 있다.
상기 과정에 의해, 도 4에 도시한 바와 같이 집전체(200) 양면에 음극 패턴(210) 및 양극 패턴(220)이 반복 코팅되어 있고, 그 대면하는 계면에 세퍼레이터(250)가 개재되어 이루어진 단위 셀이 교호 적층되어 있는 라미네이션 구조가 형성된다.
이어서, 상기 라미네이션 구조의 무지부, 즉 절곡 부분(215)을 절단(C)하여, 단락이 방지된 중첩식 전극조립체를 형성한다.
이때, 상기 절단은 통상적인 금속 커팅 및 펀칭 방법을 이용하여 수행할 수 있다.
상기 본 발명의 방법에 의해 상기 중첩식 전극조립체를 구비한 이차전지를 제조할 수 있다.
본 발명에서 상기 이차전지는 바람직하게는 리튬이온 폴리머 전지일 수 있다.
한편, 상기 리튬이온 폴리머 이차전지를 구성하는 구성 요소 및 제조 방법은 특별히 제한하지 않으며, 당업계에 공지되어 있는 것을 적용할 수 있다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
실시예
[실시예 1]
양극 활물질로서 LiCoO2 95 중량%, Super-P(도전제) 2.5 중량% 및 PVdF(결합제) 2.5 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 혼합물 슬러리를 제조하고, 음극 활물질로서 인조흑연 95 중량%, Super-P(도전제) 2.5 중량% 및 PVdF(결합제) 2.5 중량%를 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다.
이어서, 일정 간격으로 천공이 형성되어 있는 구리 호일의 양면에 각각 상기 양극 활물질을 및 음극 활물질을 패턴 코팅한 다음, 건조, 및 압착하여 하나의 집전체에 양극 및 전극을 일체형으로 형성하였다.
상기 양극과 음극이 일체형으로 형성된 집전체를 천공 부위에 따라 수직 단면상 지그재그의 형태를 가지도록 절곡한다. 이어서, 상기 절곡에 의해 대면하는 음극과 양극의 계면에 세퍼레이터로 셀가드TM를 개재한 다음, 폴딩하였다.
그 다음으로, 상기 절곡된 집전체 부분을 절단하여 중첩식 전극조립체를 제조한 다음, 이를 전지케이스에 내장하고 전해액을 주입하여 전지를 제조하였다.
[비교예 1]
양극 활물질로서 LiCoO2 95 중량%, Super-P(도전제) 2.5 중량% 및 PVdF(결합제) 2.5 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 혼합물 슬러리를 제조하고, 알루미늄 호일의 일면에 각각 코팅, 건조, 및 압착하여 양극을 제조하였다.
음극 활물질로서 인조흑연 95 중량%, Super-P(도전제) 2.5 중량% 및 PVdF(결합제) 2.5 중량%를 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조한 후, 구리 호일의 일면에 코팅, 건조 및 압착하여 음극을 제조하였다.
세퍼레이터로 셀가드TM를 사용하였고, 상기 양극과 음극을 수직 단면상 지그재그의 형태를 가지도록 절곡한 후, 그와 같은 형태로 절곡된 상기 세퍼레이터를 사이에 두고, 상기 양극과 음극의 활물질층이 대면하도록 끼워 맞춰 전극조립체를 제조하였다. 상기 전극조립체를 전지케이스에 내장한 후 전해액을 주입하여 전지를 제조하였다.
상기 실시예 및 비교예에서 제조한 전지를 비교해 보면, 용량을 서로 유사한 반면, 본 발명의 전지의 경우 제조비용 및 제조시간을 절감할 수 있으므로, 생산성 향상 효과를 가져올 수 있다.

Claims (14)

  1. 하나의 집전체를 준비하는 단계;
    상기 하나의 집전체에 양극 활물질과 음극 활물질을 각각 양면 반복 코팅하여, 하나 이상의 음극 패턴 및 양극 패턴과, 상기 활물질이 도포되지 않은 하나 이상의 무지부를 형성하는 단계;
    상기 활물질이 도포되지 않은 하나 이상의 무지부를 수직 단면 상으로 지그재그형으로 절곡하는 단계;
    상기 절곡하여 대면하는 양극 패턴 및 음극 패턴의 각각의 계면에 세퍼레이터를 개재하고 폴딩(folding)하는 단계; 및
    절곡된 무지부를 절단하는 단계를 포함하는 것을 특징으로 하는 전극조립체의 제조 방법.
  2. 청구항 1에 있어서.
    상기 전극조립체는 중첩식 전극조립체인 것을 특징으로 하는 전극조립체의 제조 방법.
  3. 청구항 1에 있어서.
    상기 방법은 양극 활물질 및 음극 활물질을 집전체 양면에 코팅한 다음, 절곡하기 전, 건조 및 프레싱하는 단계를 더 포함하는 것을 특징으로 하는 전극조립체의 제조 방법.
  4. 청구항 1에 있어서.
    상기 양극 패턴 및 음극 패턴의 너비는 동일한 것을 특징으로 하는 전극조립체의 제조 방법.
  5. 청구항 1 또는 청구항 4에 있어서.
    상기 무지부의 너비는 전극 패턴의 전체 너비를 기준으로 5 내지 10%인 것을 특징으로 하는 전극조립체의 제조 방법.
  6. 청구항 1에 있어서.
    상기 무지부에는 절곡을 용이하게 하기 위한 마킹(marking)이 형성되어 있는 것을 특징으로 하는 전극조립체의 제조 방법.
  7. 청구항 1 또는 청구항 6에 있어서.
    상기 마킹은 접힘 예정 부위를 따라 일정한 간격으로 천공된 하나 이상의 구멍을 포함하는 것을 특징으로 하는 전극조립체의 제조 방법.
  8. 청구항 1에 있어서.
    상기 집전체의 일측 또는 양측 단부에는 전극 리드를 부착하기 위해 전극 활물질이 도포되지 않은 무지부를 추가로 포함하는 것을 특징으로 하는 전극조립체의 제조 방법.
  9. 청구항 1에 있어서.
    상기 세퍼레이터는 절연성 소재의 얇은 다공성 박막인 것을 특징으로 하는 전극조립체의 제조 방법.
  10. 청구항 1에 있어서.
    상기 폴딩 단계 후, 양극 패턴/세퍼레이터/음극 패턴/세퍼레이터로 이루어진 단위 셀이 교호 적층되어 있는 라미네이션 구조가 형성되는 것을 특징으로 하는 전극조립체의 제조 방법.
  11. 청구항 1에 있어서.
    상기 절단 단계는 커팅 또는 펀칭 방법으로 수행되는 것을 특징으로 하는 전극조립체의 제조 방법.
  12. 청구항 1의 방법에 의해 제조된 전극조립체.
  13. 청구항 12에 기재된 전극조립체를 포함하는 이차전지.
  14. 청구항 13에 있어서,
    상기 이차전지는 리튬이온 폴리머 이차전지인 것을 특징으로 하는 이차전지.
PCT/KR2013/010687 2012-11-23 2013-11-22 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체 WO2014081242A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014548709A JP6027136B2 (ja) 2012-11-23 2013-11-22 電極組立体の製造方法、及びこれを用いて製造された電極組立体
CN201380003724.5A CN103959540B (zh) 2012-11-23 2013-11-22 制备电极组件的方法和使用所述方法制备的电极组件
US14/256,449 US9343779B2 (en) 2012-11-23 2014-04-18 Method of preparing electrode assembly and electrode assembly prepared using the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120133738A KR101590217B1 (ko) 2012-11-23 2012-11-23 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
KR10-2012-0133738 2012-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/256,449 Continuation US9343779B2 (en) 2012-11-23 2014-04-18 Method of preparing electrode assembly and electrode assembly prepared using the method

Publications (1)

Publication Number Publication Date
WO2014081242A1 true WO2014081242A1 (ko) 2014-05-30

Family

ID=50776344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010687 WO2014081242A1 (ko) 2012-11-23 2013-11-22 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체

Country Status (5)

Country Link
US (1) US9343779B2 (ko)
JP (1) JP6027136B2 (ko)
KR (1) KR101590217B1 (ko)
CN (1) CN103959540B (ko)
WO (1) WO2014081242A1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177507B1 (ko) * 2015-06-19 2020-11-11 삼성에스디아이 주식회사 극판 권취 시스템
KR101865450B1 (ko) 2015-06-23 2018-07-13 주식회사 엘지화학 이차전지용 전극조립체 및 그의 제조방법
CN105609865B (zh) * 2016-02-29 2018-09-14 惠州金源精密自动化设备有限公司 一种极片贴胶机
CN106099038B (zh) * 2016-06-22 2019-06-25 湖北金泉新材料有限责任公司 一种电池极片
KR102162773B1 (ko) * 2016-10-07 2020-10-07 주식회사 엘지화학 프리-슬리팅 공정을 포함하는 이차전지용 전극의 제조 방법
DE102016219661A1 (de) * 2016-10-11 2018-04-12 Continental Automotive Gmbh Verfahren zum Herstellen einer galvanischen Lithium-Ionen-Zelle und galvanische Lithium-Ionen-Zelle
KR102044692B1 (ko) * 2016-11-24 2019-11-14 주식회사 엘지화학 전극 보호층을 포함하는 이차전지용 전극
US10665901B2 (en) * 2017-02-24 2020-05-26 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method with folded construction
JP7126155B2 (ja) * 2017-04-19 2022-08-26 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
JP2021039818A (ja) * 2017-10-11 2021-03-11 株式会社村田製作所 二次電池および二次電池の製造方法
JP2021036484A (ja) * 2017-10-11 2021-03-04 株式会社村田製作所 二次電池および二次電池の製造方法
KR102442165B1 (ko) * 2017-11-17 2022-09-07 주식회사 엘지에너지솔루션 스택-폴딩형 전극 조립체의 제조 방법 및 스택-폴딩형 전극 조립체
KR20190064977A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 전극 조립체 및 이를 포함하는 배터리
DE102018205952A1 (de) * 2018-04-19 2019-10-24 Volkswagen Aktiengesellschaft Zellwickel für eine Lithium-Ionen-Batteriezelle, Lithium-Ionen-Batteriezelle, Energiespeicher
KR102622322B1 (ko) * 2018-06-05 2024-01-09 삼성전자주식회사 배터리 및 이를 포함하는 전자 장치
KR101951783B1 (ko) * 2018-06-21 2019-02-25 김태완 분할된 분리막을 갖는 파우치형 2차전지용 셀 어셈블리 및 그 제조방법
KR102503269B1 (ko) 2018-09-05 2023-02-22 주식회사 엘지에너지솔루션 육각기둥 형상의 배터리 셀 및 그 제조방법, 그리고 이를 포함하는 배터리 모듈
US11322804B2 (en) 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods
US11431042B2 (en) * 2019-09-10 2022-08-30 Meta Platforms Technologies, Llc Battery pack architecture for parallel connection of cells
CN112310423B (zh) * 2019-12-04 2022-03-15 宁德时代新能源科技股份有限公司 叠片电芯生产系统以及叠片电芯成型方法
KR20210112193A (ko) * 2020-03-04 2021-09-14 주식회사 엘지에너지솔루션 전극 조립체 및 그의 제조 방법
KR20210129541A (ko) * 2020-04-20 2021-10-28 주식회사 엘지에너지솔루션 전극 조립체 및 이차 전지
EP4075561B1 (en) * 2020-12-18 2023-12-13 Contemporary Amperex Technology Co., Limited Electrode assembly and manufacturing method and manufacturing system therefor, battery cell, battery and electrical device
US20220302463A1 (en) 2021-03-18 2022-09-22 Prologium Technology Co., Ltd. Electrode assembly and its battery device thereof
EP4152434A1 (de) * 2021-09-17 2023-03-22 VARTA Microbattery GmbH Energiespeicherelement
WO2024072041A1 (ko) * 2022-09-27 2024-04-04 삼성전자 주식회사 배터리 및 배터리를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019700A (ko) * 1999-08-30 2001-03-15 김순택 폴딩형 전극군 및 이를 이용한 이차전지
US6679926B1 (en) * 1999-06-11 2004-01-20 Kao Corporation Lithium secondary cell and its producing method
KR20070110563A (ko) * 2006-05-15 2007-11-20 주식회사 엘지화학 신규한 적층 구조의 이차전지용 전극조립체
US20110039140A1 (en) * 2009-01-14 2011-02-17 Masaharu Miyahisa Positive electrode for nonaqueous battery, electrode group for nonaqueous battery and method for producing the same, and rectangular nonaqueous secondary battery and method for producing the same
KR20120022385A (ko) * 2010-09-02 2012-03-12 삼성에스디아이 주식회사 벤딩영역을 갖는 전극조립체 및 이를 포함하는 이차전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759291B2 (ja) 1996-08-28 2006-03-22 三菱自動車工業株式会社 ディーゼルエンジンの燃料噴射時期制御装置
KR100313119B1 (ko) 1999-01-26 2001-11-03 김순택 이차전지의 전극군
KR200182060Y1 (ko) 1999-12-09 2000-05-15 박광길 와이셔츠
KR200182059Y1 (ko) 1999-12-09 2000-05-15 노대구 발가락 속 양말
KR200182058Y1 (ko) 1999-12-09 2000-05-15 강윤모 음료수 용기의 밀봉용 마개
KR100309604B1 (ko) * 1999-12-20 2001-11-03 홍지준 리튬 2차 전지
KR100497147B1 (ko) 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
KR100515571B1 (ko) 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기 화학 셀
KR100515572B1 (ko) 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기화학 셀 및 그의 제조 방법
JP4300172B2 (ja) * 2004-09-24 2009-07-22 株式会社東芝 非水電解質二次電池
KR101050288B1 (ko) 2009-10-01 2011-07-19 삼성에스디아이 주식회사 전극 조립체 및 이를 갖는 이차 전지
JP2011081931A (ja) * 2009-10-05 2011-04-21 Hitachi Maxell Ltd リチウムイオン二次電池
WO2011126310A2 (ko) * 2010-04-06 2011-10-13 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR101292952B1 (ko) * 2011-03-16 2013-08-02 삼성에스디아이 주식회사 전극조립체 및 이를 이용한 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679926B1 (en) * 1999-06-11 2004-01-20 Kao Corporation Lithium secondary cell and its producing method
KR20010019700A (ko) * 1999-08-30 2001-03-15 김순택 폴딩형 전극군 및 이를 이용한 이차전지
KR20070110563A (ko) * 2006-05-15 2007-11-20 주식회사 엘지화학 신규한 적층 구조의 이차전지용 전극조립체
US20110039140A1 (en) * 2009-01-14 2011-02-17 Masaharu Miyahisa Positive electrode for nonaqueous battery, electrode group for nonaqueous battery and method for producing the same, and rectangular nonaqueous secondary battery and method for producing the same
KR20120022385A (ko) * 2010-09-02 2012-03-12 삼성에스디아이 주식회사 벤딩영역을 갖는 전극조립체 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
JP6027136B2 (ja) 2016-11-16
CN103959540B (zh) 2016-06-08
KR20140066474A (ko) 2014-06-02
US9343779B2 (en) 2016-05-17
US20140227583A1 (en) 2014-08-14
CN103959540A (zh) 2014-07-30
JP2015504591A (ja) 2015-02-12
KR101590217B1 (ko) 2016-01-29

Similar Documents

Publication Publication Date Title
WO2014081242A1 (ko) 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
JP6608862B2 (ja) ナノ多孔性セパレータ層を利用するリチウム電池
WO2014126427A1 (ko) 전극조립체 및 그의 제조방법
WO2011043587A2 (ko) 전지용 전극조립체 및 그 제조방법
WO2014142458A1 (ko) 양극 탭 상에 절연층을 포함하는 양극 및 이를 포함하는 이차 전지
WO2015065127A1 (ko) 스택-폴딩형 전극 조립체
WO2013176498A1 (ko) 전극조립체의 제조방법 및 이에 제조되는 전극조립체를 포함하는 전기화학소자
WO2014042424A1 (ko) 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
WO2014003488A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2014003485A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2021091057A1 (ko) 폴딩형 전극조립체 및 그 제조 방법
KR20150051046A (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2019045552A1 (ko) 플렉시블 전지의 제조방법 및 이로부터 제조된 플렉시블 전지
WO2021187726A1 (ko) 전극 조립체 및 그의 제조 방법
JP2004253353A (ja) 電気化学素子の製造方法
KR20100070008A (ko) 리튬 2차 전지의 전극조립체 및 그 제조방법
WO2018062851A1 (ko) 전극 및 이를 이용한 이차전지와 전극의 제조방법
KR20100069999A (ko) 리튬 2차 전지의 전극조립체 및 그 제조방법
KR20100070011A (ko) 리튬 2차 전지의 전극조립체 및 그 제조방법
WO2024085615A1 (ko) 전극 조립체의 제조 방법
JPH10162803A (ja) 非水系二次電池および電池システム
WO2017099406A1 (ko) 전극 조립체의 제조 방법 및 상기 제조 방법으로 제조된 전극 조립체가 적용된 전기 화학 소자
JP4249527B2 (ja) 電気化学素子の製造方法
WO2023224342A1 (ko) 전고체 전지 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014548709

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857332

Country of ref document: EP

Kind code of ref document: A1