WO2014042424A1 - 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택 - Google Patents

2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택 Download PDF

Info

Publication number
WO2014042424A1
WO2014042424A1 PCT/KR2013/008211 KR2013008211W WO2014042424A1 WO 2014042424 A1 WO2014042424 A1 WO 2014042424A1 KR 2013008211 W KR2013008211 W KR 2013008211W WO 2014042424 A1 WO2014042424 A1 WO 2014042424A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
separator
cell stack
electrode
stacked
Prior art date
Application number
PCT/KR2013/008211
Other languages
English (en)
French (fr)
Inventor
박희찬
김상범
이승노
김칠중
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2014042424A1 publication Critical patent/WO2014042424A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1808Handling of layers or the laminate characterised by the laying up of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for stacking a cell inside a secondary battery and a cell stack manufactured by using the same.
  • a separator formed in a zigzag folded form and a first electrode plate and a second electrode plate are alternately inserted into a portion in which the separator is folded.
  • the present invention relates to a secondary battery internal cell stack method for manufacturing a cell stack having a stacked structure, and a cell stack manufactured using the same.
  • Secondary batteries include nickel-cadmium batteries, nickel-metal hydride batteries, nickel-hydrogen batteries, lithium secondary batteries, and the like.
  • Such a method of manufacturing a secondary cell inner cell stack is largely divided into two ways.
  • a method of arranging a negative electrode plate and a positive electrode plate on a separator and rolling them into a jelly-roll form is often used.
  • a lot of methods are used for stacking a cathode plate, a cathode plate, and a separator in an appropriate order.
  • Z-folding also called Z-folding, zigzag folding or accordion folding
  • the negative electrode plate and the positive electrode plate are alternately stacked to be stacked.
  • a secondary cell internal cell stack having a Z-folding stacked form has been disclosed in various prior arts, such as US Patent Publication No. 2005-0048361 (published on March 3, 2005, titled: Stacked type lithium ion secondary batteries). have.
  • the negative electrode plate and the positive electrode plate are stacked on separate tables spaced from side to side, and the separator feeder and the Z-folding lamination method move together by a predetermined distance from side to side, and the membrane is folded in a zigzag form. Repeat the following process.
  • the Z-folding lamination method 10 ′ on the left side adsorbs the negative electrode plate 1, and then moves to the right to move the Z-folding lamination method on the left side (10).
  • the Z-folding lamination method 10' on the left side is arranged by placing the negative electrode plate 1 on the separator 3.
  • the Z-folding lamination method 10 'on the right side adsorbs the positive electrode plate 2.
  • the right Z-folding lamination method 10' is disposed by placing the positive electrode plate 2 on the separator 3. .
  • the Z-folding lamination method 10 'on the left side adsorbs the negative electrode plate 1, and as the process is repeated, the separator 3 is folded in a zigzag form, and between the above The negative electrode plate 1 and the positive electrode plate 2 are stacked in an alternately inserted form.
  • the present invention has been made to solve the above problems, the object of the present invention is to save the time taken to complete the cell stack to improve the productivity, the alignment state of the positive and negative electrode plate laminated can be kept constant A secondary battery internal cell stack method and a cell stack manufactured using the same are provided.
  • a separator comprising: a separator supplying step of continuously supplying a separator; A first lamination step of laminating the first electrode plate on one side of the separator and laminating the second electrode plate on the other side of the separator; A first rotating step of rotating the electrode stacks stacked in the order of the first electrode plate, the separator, and the second electrode plate by 180 degrees about a rotation axis perpendicular to the direction in which the separator is supplied; A second stack in which the first electrode plate is stacked on one side and the second electrode plate is stacked on the other side in a state in which the separator is stacked on one side and the other side of the electrode laminate by being rotated 180 degrees in a predetermined direction. step; And a second rotating step of rotating the
  • the separator may be unrolled flat as long as the length of the separator required for manufacturing the cell stack.
  • the first electrode plate and the second electrode plate may be stacked at an intermediate point in the longitudinal direction of the separator unwound in the separator supplying step.
  • the secondary battery inner cell stack method is the first stacking step, the first rotation step, the second stacking step and the second rotation step is sequentially repeated to be stacked in accordance with a predetermined number of electrodes It may include an iterative lamination step.
  • the secondary battery inner cell stack method includes a membrane finishing step of each end of the separator is wrapped at least one or more sides of the stacked electrode laminated body at least once and then finished on both sides. Can be.
  • the first electrode plate and the second electrode plate according to an embodiment of the present invention is a mono-cell (mono-cell) formed by cutting the negative electrode plate or the positive electrode plate to a predetermined size
  • the first electrode plate is any one of the negative electrode plate and the positive electrode plate
  • the second electrode plate may be another one having a polarity opposite to that of the first electrode plate.
  • the first electrode plate is a bi-cell (bi-cell) of the positive electrode plate / separator / negative electrode plate / separator / positive electrode plate structure
  • the second electrode plate is a negative electrode plate / separator / positive electrode plate / separator It may be a bi-cell of the negative electrode plate structure.
  • the cell stack according to the embodiment of the present invention may be the negative electrode plate on the uppermost layer and the lowest layer forming the outer surface.
  • the separator according to the embodiment of the present invention so that the first electrode tab connected to the first electrode plate and the second electrode tab connected to the second electrode plate are disposed on opposite sides of the separator. It may be disposed on both sides in a direction perpendicular to the supply direction.
  • the cell stack according to the embodiment of the present invention is supplied with the separator so that the first electrode tab connected to the first electrode plate and the second electrode tab connected to the second electrode plate are disposed on the same side. It may be disposed on one side or the other side in the direction perpendicular to the direction.
  • the cell stack according to the embodiment of the present invention is manufactured using the secondary cell internal cell stack stacking method of the present invention.
  • the secondary cell internal cell stack stacking method and the cell stack manufactured by using the same according to an embodiment of the present invention can dramatically shorten the production time, thereby maximizing productivity and greatly reducing the production cost to maximize the commercialization. There is an advantage that it can.
  • the secondary cell inner cell stack stacking method according to an embodiment of the present invention and the cell stack manufactured using the same by applying a constant tensile force to the separator in the process of laminating the cells by the winding method,
  • the alignment can be maintained constant, thereby improving the performance and safety of the secondary battery of the secondary battery.
  • the secondary cell inner cell stack stacking method and a cell stack manufactured using the same according to an embodiment of the present invention may be stacked on both sides of the separator, the first electrode plate and the second electrode plate of the bi-cell type, respectively, stacking It is possible to reduce the number of times, which can greatly improve the production speed.
  • FIG. 1 is a cross-sectional view sequentially showing a secondary battery inner cell stack method according to an embodiment of the present invention.
  • FIGS. 2 and 3 are perspective views showing a secondary battery inner cell stack method according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a secondary battery inner cell stack method according to another embodiment of the present invention.
  • FIG. 5 is a perspective view showing a cell stack manufactured by the method of FIG.
  • FIG. 6 is a perspective view showing another cell stack manufactured by the method of FIG.
  • FIG. 1 is a cross-sectional view sequentially showing a secondary battery internal cell stack method according to an embodiment of the present invention
  • Figures 2 and 3 is a perspective view showing a secondary battery internal cell stack method according to an embodiment of the present invention.
  • 4 is a cross-sectional view illustrating a secondary battery internal cell stack method according to another embodiment of the present invention
  • FIG. 5 is a perspective view illustrating a cell stack manufactured by the method of FIG. 1
  • FIG. 6 is a method of FIG. 1. Is a perspective view showing another cell stack manufactured.
  • the first electrode plate 200 and the second electrode plate 300 are formed in a portion in which the separator 100 and the separator 100 are folded in a zigzag form. It is for manufacturing a cell stack 1 having an alternately inserted and stacked structure.
  • the secondary cell internal cell stacking method according to the embodiment of the present invention is largely divided into a membrane supply step 510, a first stacking step 520, a first rotating step 530, a second stacking step 540, and a second stacking step.
  • Rotation step 550 is included.
  • the separator supply step 510 is a step in which the separator 100 is continuously supplied. At this time, the separator 100 is supplied with a reel-type separator 100 unwinded at a constant speed, and in the longitudinal direction of the separator 100. Therefore, it is preferable to have a constant stress in a flattened state by applying a tensile force of a constant force on both sides.
  • one electrode plate is stacked on one side of the separator 100, and the second electrode plate 300 is stacked on the other side of the separator 100. It is a step.
  • the first electrode plate 200, the separator 100, and the second electrode plate 300 may be laminated with each other by heat and pressure using a configuration such as a pressing roll.
  • the first electrode plate 200 and the second electrode plate 300 in the first rotation step 530 and the second rotation step 550 which will be described later. Does not escape, making it easier to align.
  • the first electrode plate and the first electrode plate and the first electrode plate are formed at an intermediate point in the longitudinal direction of the separator in a state in which the separator is unwound evenly by the length of the separator required for cell stack manufacture. It is preferable that two electrode plates are laminated.
  • the center lines of the first electrode plate and the second electrode plate stacked in the first stacking step 520 and the center line in the longitudinal direction of the separator are stacked to match.
  • the electrode laminate stacked in the order of the first electrode plate 200, the separator 100, and the second electrode plate 300 is the separator 100.
  • This step is perpendicular to the supply direction, and is rotated 180 degrees in a predetermined direction about a rotation axis located in the center of the electrode laminate.
  • the electrode stacked body stacked in the order of the first electrode plate 200, the separator 100, and the second electrode plate 300 from the left side is rotated 180 degrees in the clockwise direction, and the separator ( 100) -second electrode plate 300-separator 100-first electrode plate 200-separator 100 in this order.
  • the second stacking step 540 is rotated by 180 degrees in a predetermined direction so that the separator 100 is stacked on one side and the other side of the electrode stacked body, and on one side.
  • the first electrode plate 200 is stacked, and the second electrode plate 300 is stacked on the other side.
  • the method of stacking the secondary battery inner cell stack 1 is one side of the separator 100 in the stacking process.
  • the first electrode plate 200 is supplied to the second electrode plate, and the second electrode plate 300 is supplied to the other side thereof.
  • the secondary battery inner cell stack method according to the embodiment of the present invention may have a structure in which the first electrode plate 200 and the second electrode plate 300 having different polarities are alternately stacked.
  • the electrode stacked body stacked in the second laminating step 540 is rotated 180 degrees in a direction opposite to that rotated in the first rotating step 530. It is a step.
  • the first electrode plate 200, the separator 100, the second electrode plate 300, the separator 100, the first electrode plate 200, and the separator 100 are formed from the left side.
  • the electrode stack stacked in the order of the second electrode plate 300 is rotated 180 degrees counterclockwise, so that the separator 100, the second electrode plate 300, the separator 100, and the first electrode plate 200 are rotated from the left side.
  • the separator 100, the second electrode plate 300, the separator 100, the first electrode plate 200, and the separator 100 are stacked in this order.
  • the secondary cell internal cell stack method is the process described above, that is, the first stacking step 520, the first rotating step 530, the second stacking step 540, the second rotation Step 550 may include a repeating step 560 to be sequentially and repeatedly stacked to match a predetermined number of electrodes.
  • the secondary battery inner cell stack method can manufacture the cell stack 1 for the secondary battery of the required capacity through a winding method.
  • the secondary cell inner cell stack method according to an embodiment of the present invention at both ends of the separator 100 is wrapped at least one or more sides of the stacked electrode laminate at least once and then on each side It may include a membrane finishing step 570 to be finished.
  • both ends of the separator 100 wrap the side of the stacked electrode laminate once and finish at the opposite side
  • the region to be finished may be at the side.
  • the side of the electrode laminate may be wrapped two or more times and then finished.
  • the end of the separation membrane 100 can be finished by attaching an adhesive means such as a thermal fusion or adhesive tape, the method of finishing the separation membrane 100 can be variously changed in addition to the above-described embodiment. Do.
  • the first electrode plate 200 and the second electrode plate 300 is a mono-cell formed by the negative plate 410 or the positive electrode plate 420 is cut to a certain size
  • the first electrode plate 200 may be any one of the negative electrode plate 410 and the positive electrode plate 420
  • the second electrode plate 300 may be another one having a polarity opposite to that of the first electrode plate 200.
  • the stacked cell stack 1 has a form in which the first electrode plate 200 and the second electrode plate 300 are alternately stacked with respect to the separator 100. Will have
  • the cell stack 1 manufactured through the method illustrated in FIG. 1 may flexibly adjust the number of times of stacking according to the required number of electrodes.
  • the first electrode plate 200 includes a positive electrode plate 420, a separator 100, and a negative electrode plate ( 410, a bi-cell having a structure of a separator 100, and a cathode plate 420
  • the second electrode plate 300 is a cathode plate 410, a separator 100, an anode plate 420, and a separator 100. It may also be a bi-cell having a structure of the negative electrode plate 410.
  • the stacked cell stack 1 includes a bipolar first electrode plate 200 and a negative electrode plate 410 stacked on the outermost side of the separator 100 in a form in which the positive electrode plate 420 is stacked on the outermost side.
  • the second electrode plate 300 which is a bicell of the formed shape, is alternately stacked.
  • the cell stack 1 manufactured by the method illustrated in FIG. 4 may be significantly reduced in number of stacks to fill a predetermined number of electrodes than the method illustrated in FIG. 1, thereby greatly improving the production speed.
  • the negative electrode plate 410 is positioned on the uppermost layer and the lowermost layer forming the outer surface of the cell stack 1.
  • the negative electrode occupies as much area as possible, and when used in a lithium secondary battery, lithium metal or the like during charge and discharge This is to suppress the phenomenon of dendrite in the cathode as much as possible.
  • the cell stack 1 manufactured by using the secondary cell internal cell stack method may include a first stacked on both sides of the separator 100 from the first stacking step 520.
  • the electrode plate 200 and the second electrode plate 300 are stacked while the first electrode tab 210 and the second electrode tab 310 are connected, and the first electrode connected to the first electrode plate 200.
  • the tab 210 and the second electrode tab 310 connected to the second electrode plate 300 may be disposed on the same side.
  • the first electrode plate 200 and the second electrode plate 300 may be simultaneously disposed on one side or the other side in a direction perpendicular to the supply direction of the separator 100.
  • the cell stack 1 manufactured by using the secondary battery internal cell stack method according to the embodiment of the present invention may have a separation membrane 100 from the first stacking step 520.
  • the first electrode plate 200 and the second electrode plate 300 stacked on both sides are stacked in a state in which the first electrode tab 210 and the second electrode tab 310 are connected to each other.
  • the first electrode tab 210 connected to the second electrode tab 210 and the second electrode tab 310 connected to the second electrode plate 300 may be disposed at opposite sides.
  • the cell stack 1 may be disposed on both side surfaces of the first electrode plate 200 and the second electrode plate 300 in a direction perpendicular to the supply direction of the separator 100.
  • the method for stacking the secondary battery inner cell stack 1 and the cell stack 1 manufactured by using the same significantly shorten the production time, thereby maximizing productivity and greatly increasing the production cost.
  • the method of stacking the secondary cell internal cell stack 1 and the cell stack 1 manufactured by using the same according to an embodiment of the present invention are applied with a constant tensile force to the separator 100 in the process of stacking cells by winding.
  • the alignment state of the positive electrode plate 420 and the negative electrode plate 410 to be stacked may be maintained constantly, thereby improving the performance and safety of the secondary battery of the secondary battery.
  • the method of stacking the secondary cell internal cell stack 1 and the cell stack 1 manufactured by using the same may be bi-cell type first electrode plates 200 on both sides of the separator 100.
  • the second electrode plate 300 can be interposed, so that the number of stacking times can be reduced, thereby greatly improving the production speed.

Abstract

본 발명은 지그재그로 접힌 형태로 형성된 분리막 및 상기 분리막이 접혀진 부분에 제1전극판 및 제2전극판이 교번 삽입되어 적층된 구조의 셀 스택을 제조하기 위한 2차 전지 내부 셀 스택 방법에 있어서, 분리막의 연속적으로 공급되는 분리막 공급단계; 상기 분리막의 일측면에 상기 제1전극판이 적층되고, 상기 분리막의 타측면에 상기 제2전극판이 적층되는 제1적층단계; 상기 제1전극판, 분리막, 제2전극판 순으로 적층된 전극적층체가 상기 분리막이 공급되는 방향과 수직인 회전축을 중심으로 일정 방향으로 180도 회전되는 제1회전단계; 일측 방향으로 180도 회전되어 상기 전극적층체의 일측면과 타측면에 분리막이 다시 적층된 상태에서, 일측면에 상기 제1전극판이 적층되고, 타측면에 상기 제2전극판이 적층되는 제2적층단계; 및 상기 제2적층 단계에서 적층된 전극적층체가 상기 제1회전단계에서 회전되는 방향과 반대되는 방향으로 180도 회전되는 제2회전단계; 를 포함한다.

Description

2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
본 발명은 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택에 관한 것으로서, 더욱 상세하게 지그재그로 접힌 형태로 형성된 분리막 및 상기 분리막이 접혀진 부분에 제1전극판 및 제2전극판이 교번 삽입되어 적층되는 구조의 셀 스택을 제조하기 위한 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택에 관한 것이다.
1차 전지와는 달리 충전 및 방전이 가능한 2차 전지는 디지털 카메라, 셀룰러 폰, 노트북 컴퓨터, 하이브리드 자동차 등 첨단 분야의 개발로 활발한 연구가 진행 중이다. 2차 전지로는 니켈-카드뮴 전지, 니켈-메탈 하이드라이드 전지, 니켈-수소 전지, 리튬 2차 전지 등이 있다.
이와 같은 2차 전지 내부 셀 스택을 제작하는 방식은 크게 두 가지로 나뉜다. 소형 2차 전지의 경우 음극판 및 양극판을 분리막 상에 배치하고 이를 말아서(winding) 젤리-롤(jelly-roll) 형태로 제작하는 방식이 많이 사용되며, 보다 많은 전기 용량을 가지는 중대형 2차 전지의 경우에는 음극판, 양극판 및 분리막을 적절한 순서로 적층하여(stacking) 제작하는 방식이 많이 사용된다.
적층식으로 2차 전지 내부 셀 스택을 제작하는 방식은 여러 가지가 있는데, 그 중 Z-폴딩(Z-folding, zigzag folding 또는 accordion folding이라고도 함) 방식에서는 분리막이 지그재그로 접힌 형태를 이루며 그 사이에 음극판 및 양극판이 교번되어 삽입된 형태로 적층되도록 한다.
이와 같은 Z-폴딩 적층 형태로 이루어지는 2차 전지 내부 셀 스택은 미국공개특허 제2005-0048361(공개일2005.03.03, 명칭 : Stacked type lithium ion secondary batteries)호와 같이 이미 여러 선행기술들에 개시되어 있다.
Z-폴딩 적층 형태를 실제로 구현하기 위한 방법에서는 좌우로 이격된 개별 테이블에 음극판및 양극판을 각각 쌓아 두고, 분리막 공급기 및 Z-폴딩 적층 방법이 좌우로 소정 거리만큼 함께 이동하면서 분리막을 지그재그 형태로 접되 다음과 같은 과정을 반복한다.
먼저 (도 3을 기준으로) 전체 장치가 좌측으로 이동했을 때 좌측의 Z-폴딩 적층 방법(10')가 음극판(1)을 흡착하여 두었다가, 우측으로 이동하여 좌측의 Z-폴딩 적층 방법(10')가 중심에 왔을 때 좌측의 Z-폴딩 적층 방법(10')는 상기 분리막(3) 상에 상기 음극판(1)을 놓아 배치한다.
이와 동시에 우측의 Z-폴딩 적층 방법(10')는 양극판(2)을 흡착한다. 이후 다시 좌측으로 이동하여 우측의 Z-폴딩 적층 방법(10')가 중심에 왔을 때 우측의 Z-폴딩 적층 방법(10')는 상기 분리막(3) 상에 상기 양극판(2)을 놓아 배치한다.
물론 이와 동시에 좌측의 Z-폴딩 적층 방법(10')가 음극판(1)을 흡착하여 두게 되며, 이러한 과정이 반복됨에 따라 상기 분리막(3)은 지그재그로 접힌 형태를 이루며, 또한 그 사이사이에 상기 음극판(1) 및 상기 양극판(2)들이 교번 삽입된 형태로 적층되게 된다.
그런데, 이와 같은 종래의 방식은 정렬 상태와 관련해서는 적절히 우수한 결과를 얻을 수 있으나, 단일의 양극판 및 음극판이 한 층씩 적층이 이루어지기 때문에 하나의 셀 스택을 완성하는데 걸리는 시간이 매우 길어지고, 이에 따라 생산성이 현저히 저하되는 문제점이 있다. 따라서 적층되는 양극판과 음극판의 우수한 정렬 상태는 물론이고, 생산 속도를 증가시켜 생산성이 우수한 셀 스택 기술의 개발이 요구된다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 셀 스택을 완성하는데 걸리는 시간을 절약하여 생산성을 향상시키고, 적층되는 양극판과 음극판의 정렬 상태가 일정하게 유지될 수 있도록 하는 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택을 제공하는 것이다.
본 발명의 실시예에 따른 지그재그로 접힌 형태로 형성된 분리막 및 상기 분리막이 접혀진 부분에 제1전극판 및 제2전극판이 교번 삽입되어 적층된 구조의 셀 스택을 제조하기 위한 2차 전지 내부 셀 스택 방법에 있어서, 분리막의 연속적으로 공급되는 분리막 공급 단계; 상기 분리막의 일측면에 상기 제1전극판이 적층되고, 상기 분리막의 타측면에 상기 제2전극판이 적층되는 제1적층단계; 상기 제1전극판, 분리막, 제2전극판 순으로 적층된 전극적층체가 상기 분리막이 공급되는 방향과 수직인 회전축을 중심으로 일정 방향으로 180도 회전되는 제1회전단계; 일정 방향으로 180도 회전되어 상기 전극적층체의 일측면과 타측면에 분리막이 다시 적층된 상태에서, 일측면에 상기 제1전극판이 적층되고, 타측면에 상기 제2전극판이 적층되는 제2적층단계; 및 상기 제2적층 단계에서 적층된 전극적층체가 상기 제1회전단계에서의 회전방향과 반대 방향으로 180도 회전되는 제2회전단계; 를 포함한다.
또한, 본 발명의 실시예에 따른 상기 분리막 공급단계는 상기 셀스택 제조에 필요한 분리막의 길이만큼 상기 분리막이 편평하게 권출될 수 있다.
또한, 본 발명의 실시예에 따른 상기 제1적층단계는 상기 분리막 공급단계에서 권출된 분리막의 길이방향으로 중간지점에 상기 제1전극판 및 제2전극판이 적층될 수 있다.
또한, 본 발명의 실시예에 따른 상기 2차 전지 내부 셀 스택 방법은 상기 제1적층단계, 제1회전단계, 제2적층단계 및 제2회전단계가 순차적으로 반복 진행되어 정해진 전극수에 맞게 적층되는 반복적층단계를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 상기 2차 전지 내부 셀 스택 방법은 상기 분리막의 양끝단이 적층 완료된 전극적층체 측면을 적어도 한 번 이상 감싼 다음 양측면에서 각각 마감처리되는 분리막 마감처리단계를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 상기 제1전극판 및 제2전극판은 음극판 또는 양극판이 일정 크기로 컷팅되어 형성된 모노 셀(mono-cell)이되, 상기 제1전극판이 음극판 및 양극판 중 어느 하나이며, 상기 제2전극판이 상기 제1전극판과 반대되는 극성인 다른 하나일 수 있다.
또한, 본 발명의 실시예에 따른 상기 셀 스택은 상기 제1전극판이 양극판/분리막/음극판/분리막/양극판 구조의 바이 셀(bi-cell)이고, 상기 제2전극판이 음극판/분리막/양극판/분리막/음극판 구조의 바이 셀(bi-cell)일 수 있다.
또한, 본 발명의 실시예에 따른 상기 셀 스택은 외면을 형성하는 최상층 및 최하층에 음극판이 위치할 수 있다.
또한, 본 발명의 실시예에 따른 상기 셀 스택은 상기 제1전극판에 연결되는 제1전극탭과, 상기 제2전극판에 연결되는 제2전극탭이 서로 반대되는 측면에 배치되도록, 상기 분리막이 공급되는 방향과 수직인 방향으로 양측면에 각각 배치될 수 있다.
또한, 본 발명의 실시예에 따른 상기 셀 스택은 상기 제1전극판에 연결되는 제1전극탭과, 상기 제2전극판에 연결되는 제2전극탭이 동일한 측면에 배치되도록, 상기 분리막이 공급되는 방향과 수직인 방향으로 일측 또는 타측면에 배치될 수 있다.
또한, 본 발명의 실시예에 따른 셀 스택은 본 발명의 2차 전지 내부 셀 스택 적층 방법을 이용하여 제조된다.
본 발명의 실시예에 따른 2차 전지 내부 셀 스택 적층 방법 및 이를 이용하여 제조되는 셀 스택은 분리막의 일측면과 타측면에 각각 제1전극판 및 제2전극판을 적층시킨 상태에서 시계방향으로 180도 회전시킨 다음, 다시 제1전극판 및 제2전극판을 적층시켜 반시계방향으로 180도 회전하는 와인딩 방식으로 셀을 적층시킴으로써, 셀 스택을 완성하는데 걸리는 시간을 절약하여 생산성을 향상시킬 수 있다는 장점이 있다.
다시 말해, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 적층 방법 및 이를 이용하여 제조되는 셀 스택은 생산시간을 획기적으로 단축함으로써, 생산성을 극대화하고, 생산비용을 크게 저감시켜 상품성을 최대화할 수 있다는 장점이 있다.
또한, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 적층 방법 및 이를 이용하여 제조되는 셀 스택은 와인딩 방식으로 셀을 적층시키는 과정에서 분리막에 일정한 인장력이 가해짐으로써, 적층되는 양극판과 음극판의 정렬 상태가 일정하게 유지될 수 있으며, 이를 통해 이차전지의 이차전지의 성능 및 안전성을 향상시킬 수 있다는 장점이 있다.
아울러, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 적층 방법 및 이를 이용하여 제조되는 셀 스택은 분리막의 양측면에 각각 바이 셀 형태의 제1전극판 및 제2전극판이 개재될 수 있어, 스태킹 횟수를 줄이는 것이 가능해져 생산속도를 크게 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법을 순차적으로 도시한 단면도.
도 2 및 도 3은 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법을 도시한 사시도.
도 4는 본 발명의 또 다른 실시예에 따른 2차 전지 내부 셀 스택 방법을 도시한 단면도.
도 5는 도 1의 방법으로 제조된 셀 스택을 나타낸 사시도.
도 6은 도 1의 방법으로 제조된 또 다른 셀 스택을 나타낸 사시도.
이하, 상술한 바와 같은 특징을 가지는 본 발명에 따른 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택을 첨부된 도면을 참조로 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법을 순차적으로 도시한 단면도이며, 도 2 및 도 3은 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법을 도시한 사시도이고, 도 4는 본 발명의 또 다른 실시예에 따른 2차 전지 내부 셀 스택 방법을 도시한 단면도이며, 도 5는 도 1의 방법으로 제조된 셀 스택을 나타낸 사시도이고, 도 6은 도 1의 방법으로 제조된 또 다른 셀 스택을 나타낸 사시도이다.
본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 지그재그로 접힌 형태로 형성된 분리막(100) 및 분리막(100)이 접혀진 부분에 제1전극판(200) 및 제2전극판(300)이 교번 삽입되어 적층된 구조의 셀 스택(1)을 제조하기 위한 것이다.
본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 크게, 분리막 공급단계(510), 제1적층단계(520), 제1회전단계(530), 제2적층단계(540) 및 제2회전단계(550)를 포함한다.
분리막 공급단계(510)는 분리막(100)이 연속적으로 공급되는 단계로, 이 때, 분리막(100)은 릴 타입의 분리막(100)이 일정 속도로 권출되며 공급되며, 분리막(100)의 길이방향으로 양측에서 일정한 힘의 인장력이 가해져 편평하게 펴진 상태에서 일정한 응력을 갖도록 하는 것이 바람직하다.
도 1(b)에 도시된 바와 같이, 제1적층단계(520)는 분리막(100)의 일측면에 1전극판이 적층되고, 분리막(100)의 타측면에 제2전극판(300)이 적층되는 단계이다.
이 때, 제1전극판(200), 분리막(100), 제2전극판(300)은 압착롤과 같은 구성을 이용하여 열과 압력으로 서로 라미네이션 될 수 있다.
이를 통해, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 후술되는 제1회전단계(530) 및 제2회전단계(550)에서 제1전극판(200) 및 제2전극판(300)이 이탈되지 않아 정렬이 용이하도록 할 수 있다.
특히, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 상기 셀스택 제조에 필요한 분리막의 길이만큼 분리막이 편평하게 권출된 상태에서, 분리막의 길이방향으로 중간지점에 제1전극판 및 제2전극판이 적층되는 것이 바람직하다.
즉, 제1적층단계(520)에서 적층되는 제1전극판 및 제2전극판의 중심선과, 분리막의 길이방향으로의 중심선이 일치되도록 적층된다.
도 1(c)에 도시된 바와 같이, 제1회전단계(530)는 제1전극판(200), 분리막(100), 제2전극판(300) 순으로 적층된 전극적층체가 분리막(100)이 공급되는 방향과 수직이며, 전극적층체의 중심에 위치한 회전축을 중심으로 일정 방향으로 180도 회전되는 단계이다.
일 예로, 도 1(c)에서는 좌측으로부터 제1전극판(200)-분리막(100)-제2전극판(300) 순으로 적층된 전극적층체가 시계방향으로 180도 회전되어, 좌측으로부터 분리막(100)-제2전극판(300)-분리막(100)-제1전극판(200)-분리막(100) 순으로 적층된다.
도 1(d)에 도시된 바와 같이, 제2적층단계(540)는 일정 방향으로 180도 회전되어 전극적층체의 일측면과 타측면에 분리막(100)이 다시 적층된 상태에서, 일측면에 제1전극판(200)이 적층되고, 타측면에 제2전극판(300)이 적층된다.
제1적층단계(520) 및 제2적층단계(540)에서 알 수 있듯이, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택(1) 적층 방법은 적층 과정에 있어서, 분리막(100)의 일측에는 제1전극판(200)이 공급되고, 타측에는 제2전극판(300)이 공급된다.
이에 따라, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 서로 다른 극성의 제1전극판(200) 및 제2전극판(300)이 교번되어 적층된 구조를 가질 수 있다.
도 1(e)에 도시된 바와 같이, 제2회전단계(550)는 제2적층단계(540)에서 적층된 전극적층체가 제1회전단계(530)에서 회전된 방향과 반대방향으로 180도 회전되는 단계이다.
일 예로, 도 1(e)에서는 좌측으로부터 제1전극판(200)-분리막(100)-제2전극판(300)-분리막(100)-제1전극판(200)-분리막(100)-제2전극판(300) 순으로 적층된 전극적층체가 반시계 방향으로 180도 회전되어, 좌측으로부터 분리막(100)-제2전극판(300)-분리막(100)-제1전극판(200)-분리막(100)-제2전극판(300)-분리막(100)-제1전극판(200)-분리막(100) 순으로 적층된다.
본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 상술한 바와 같은 과정, 즉, 제1적층단계(520), 제1회전단계(530), 제2적층단계(540), 제2회전단계(550)가 순차적으로 반복 진행되어 정해진 전극수에 맞게 적층되는 반복적층단계(560)를 포함할 수 있다.
이에 따라, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 필요한 용량의 이차전지를 위한 셀 스택(1)을 와인딩 방법을 통해 제조할 수 있다.
도 1(g)에 도시된 바와 같이, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법은 분리막(100)의 양끝단이 적층 완료된 전극적층체 측면을 적어도 한 번 이상 감싼 다음 양측면에서 각각 마감처리되는 분리막 마감처리단계(570)를 포함할 수 있다.
도 1(g)에 도시된 실시예에서는 분리막(100)의 양끝단이 적층 완료된 전극적층체의 측면을 한번 감싼 다음 반대측면에서 마감처리되는 실시예가 도시되어 있으나, 마감처리되는 영역은 측면이 될 수도 있으며, 전극적층체의 측면을 두번 이상 감싼 다음 마감처리될 수도 있다.
이 때, 분리막(100)의 단부는 열융착 도는 접착테이프와 같은 접착수단을 붙여서 마무리 할 수 있으며, 분리막(100)이 마감되는 방법은 상술한 바와 같은 실시예 외에도, 얼마든지 다양하게 변경 실시 가능하다.
한편, 도 1 내지 3에 도시된 바와 같이, 제1전극판(200) 및 제2전극판(300)은 음극판(410) 또는 양극판(420)이 일정 크기로 컷팅되어 형성된 모노 셀(mono-cell)이되, 제1전극판(200)이 음극판(410) 및 양극판(420) 중 어느 하나이며, 제2전극판(300)이 제1전극판(200)과 반대되는 극성인 다른 하나일 수 있다.
이 경우, 도 1(g)에 도시된 것처럼, 적층 완료된 셀 스택(1)은 분리막(100)을 중심으로 제1전극판(200) 및 제2전극판(300)이 교번되어 적층되는 형태를 갖게 된다.
이에 따라, 도 1에 도시된 방법을 통해 제조된 셀 스택(1)은 필요한 전극수에 맞추어 적층되는 횟수를 유동적으로 조절할 수 있다.
또 다른 실시예로, 도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법에서는 상기 제1전극판(200)이 양극판(420)-분리막(100)-음극판(410)-분리막(100)-양극판(420) 구조의 바이 셀(bi-cell)이고, 상기 제2전극판(300)이 음극판(410)-분리막(100)-양극판(420)-분리막(100)-음극판(410) 구조의 바이 셀(bi-cell)일 수도 있다.
이 경우, 적층 완료된 셀 스택(1)은 분리막(100)을 중심으로 양극판(420)이 최외측면에 적층된 형태의 바이 셀인 제1전극판(200)과, 음극판(410)이 최외측면에 적층된 형태의 바이 셀인 제2전극판(300)이 교번되어 적층되는 형태를 갖게 된다.
이에 따라, 도 4에 도시된 방법을 통해 제조된 셀 스택(1)은 정해진 전극 수를 채우기 위해 적층되는 횟수가 도 1에 도시된 방법보다 현저하게 줄어들어 생산속도가 크게 향상될 수 있다.
한편, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법에서는 셀 스택(1)의 외면을 형성하는 최상층 및 최하층에 음극판(410)이 위치되도록 하는 것이 바람직하다.
이는 셀 스택(1)이 양극판(420)과 음극판(410)의 대면 구조로 적층되었을 때, 가능하면 음극이 많은 면적을 차지하도록 구성함으로써, 리튬 이차전지에 사용되는 경우, 충방전시 리튬 금속 등이 음극에서 수지상 성장(dendrite)하는 현상을 최대한 억제하기 위함이다.
도 5에 도시된 바와 같이, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법이용하여 제조되는 셀 스택(1)은 제1적층단계(520)에서부터 분리막(100) 양측면에 적층되는 제1전극판(200) 및 제2전극판(300)이 제1전극탭(210) 및 제2전극탭(310)이 연결된 상태로 적층되되, 상기 제1전극판(200)에 연결되는 제1전극탭(210)과, 상기 제2전극판(300)에 연결되는 제2전극탭(310)이 동일한 측면에 배치되도록 할 수 있다.
다시 말해, 셀 스택(1)은 제1전극판(200) 및 제2전극판(300)이 분리막(100) 공급 방향과 수직인 방향으로 일측 또는 타측면에 한꺼번에 배치될 수 있다.
또 다른 실시예로, 도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택 방법을 이용하여 제조되는 셀 스택(1)은 제1적층단계(520)에서부터 분리막(100) 양측면에 적층되는 제1전극판(200) 및 제2전극판(300)이 제1전극탭(210) 및 제2전극탭(310)이 연결된 상태로 적층되되, 상기 제1전극판(200)에 연결되는 제1전극탭(210)과, 상기 제2전극판(300)에 연결되는 제2전극탭(310)이 서로 반대되는 측면에 배치되도록 할 수 있다.
다시 말해, 셀 스택(1)은 제1전극판(200) 및 제2전극판(300)이 분리막(100) 공급 방향과 수직인 방향으로 양측면에 각각 배치될 수 있다.
이에 따라, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택(1) 적층 방법 및 이를 이용하여 제조되는 셀 스택(1)은 생산시간을 획기적으로 단축함으로써, 생산성을 극대화하고, 생산비용을 크게 저감시켜 상품성을 최대화할 수 있다는 장점이 있다.
또한, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택(1) 적층 방법 및 이를 이용하여 제조되는 셀 스택(1)은 와인딩 방식으로 셀을 적층시키는 과정에서 분리막(100)에 일정한 인장력이 가해짐으로써, 적층되는 양극판(420)과 음극판(410)의 정렬 상태가 일정하게 유지될 수 있으며, 이를 통해 이차전지의 이차전지의 성능 및 안전성을 향상시킬 수 있다는 장점이 있다.
아울러, 본 발명의 실시예에 따른 2차 전지 내부 셀 스택(1) 적층 방법 및 이를 이용하여 제조되는 셀 스택(1)은 분리막(100)의 양측면에 각각 바이 셀 형태의 제1전극판(200) 및 제2전극판(300)이 개재될 수 있어, 스태킹 횟수를 줄이는 것이 가능해져 생산속도를 크게 향상시킬 수 있다.
본 발명은 상기한 실시 예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.

Claims (11)

  1. 지그재그로 접힌 형태로 형성된 분리막 및 상기 분리막이 접혀진 부분에 제1전극판 및 제2전극판이 교번 삽입되어 적층된 구조의 셀 스택을 제조하기 위한 2차 전지 내부 셀 스택 방법에 있어서,
    분리막이 연속적으로 공급되는 분리막 공급단계;
    상기 분리막의 일측면에 상기 제1전극판이 적층되고, 상기 분리막의 타측면에 상기 제2전극판이 적층되는 제1적층단계;
    상기 제1전극판, 분리막, 제2전극판 순으로 적층된 전극적층체가 상기 분리막이 공급되는 방향과 수직인 회전축을 중심으로 일정 방향으로 180도 회전되는 제1회전단계;
    일정 방향으로 180도 회전되어 상기 전극적층체의 일측면과 타측면에 분리막이 다시 적층된 상태에서, 일측면에 상기 제1전극판이 적층되고, 타측면에 상기 제2전극판이 적층되는 제2적층단계; 및
    상기 제2적층단계에서 적층된 전극적층체가 상기 제1회전단계에서의 회전방향과 반대방향으로 180도 회전되는 제2회전단계; 를 포함하는 2차 전지 내부 셀 스택 방법.
  2. 제 1항에 있어서,
    상기 분리막 공급단계는
    상기 셀스택 제조에 필요한 분리막의 길이만큼 상기 분리막이 편평하게 권출되는 것을 특징으로 하는 2차 전지 내부 셀 스택 방법.
  3. 제 2항에 있어서,
    상기 제1적층단계는
    상기 분리막 공급단계에서 권출된 분리막의 길이방향으로 중간지점에 상기 제1전극판 및 제2전극판이 적층되는 것을 특징으로 하는 2차 전지 내부 셀 스택 방법.
  4. 제 3항에 있어서,
    상기 2차 전지 내부 셀 스택 방법은
    상기 제1적층단계, 제1회전단계, 제2적층단계 및 제2회전단계가 순차적으로 반복 진행되어 정해진 전극수에 맞게 적층되는 반복적층단계를 포함하는 2차 전지 내부 셀 스택 방법.
  5. 제 4항에 있어서,
    상기 2차 전지 내부 셀 스택 방법은
    상기 분리막의 양끝단이 적층 완료된 전극적층체 측면을 적어도 한 번 이상 감싼 다음 양측면에서 각각 마감처리되는 분리막 마감처리단계를 포함하는 2차 전지 내부 셀 스택 방법.
  6. 제 1항에 있어서,
    상기 제1전극판 및 제2전극판은
    음극판 또는 양극판이 일정 크기로 컷팅되어 형성된 모노 셀(mono-cell)이되,
    상기 제1전극판이 음극판 및 양극판 중 어느 하나이며,
    상기 제2전극판이 상기 제1전극판과 반대되는 극성인 다른 하나인 2차 전지 내부 셀 스택 방법.
  7. 제 1항에 있어서,
    상기 셀 스택은
    상기 제1전극판이 양극판/분리막/음극판/분리막/양극판 구조의 바이 셀(bi-cell)이고,
    상기 제2전극판이 음극판/분리막/양극판/분리막/음극판 구조의 바이 셀(bi-cell)인 2차 전지 내부 셀 스택 방법.
  8. 제 1항에 있어서,
    상기 셀 스택은
    외면을 형성하는 최상층 및 최하층에 음극판이 위치하는 2차 전지 내부 셀 스택 방법.
  9. 제 8항에 있어서,
    상기 셀 스택은
    상기 제1전극판에 연결되는 제1전극탭과, 상기 제2전극판에 연결되는 제2전극탭이 서로 반대되는 측면에 배치되도록,
    상기 분리막이 공급되는 방향과 수직인 방향으로 양측면에 각각 배치되는 2차 전지 내부 셀 스택 방법.
  10. 제 8항에 있어서,
    상기 셀 스택은
    상기 제1전극판에 연결되는 제1전극탭과, 상기 제2전극판에 연결되는 제2전극탭이 동일한 측면에 배치되도록,
    상기 분리막이 공급되는 방향과 수직인 방향으로 일측 또는 타측면에 배치되는 2차 전지 내부 셀 스택 방법.
  11. 제 1항 내지 10항 중 어느 한 항에 의한 2차 전지 내부 셀 스택 적층 방법을 이용하여 제조되는 셀 스택.
PCT/KR2013/008211 2012-09-14 2013-09-11 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택 WO2014042424A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120102149A KR101553542B1 (ko) 2012-09-14 2012-09-14 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
KR10-2012-0102149 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042424A1 true WO2014042424A1 (ko) 2014-03-20

Family

ID=50278458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008211 WO2014042424A1 (ko) 2012-09-14 2013-09-11 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택

Country Status (2)

Country Link
KR (1) KR101553542B1 (ko)
WO (1) WO2014042424A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489942A (zh) * 2014-10-07 2016-04-13 株式会社Lg化学 双向卷绕的电极组件及包括该电极组件的锂二次电池
CN108028416A (zh) * 2016-07-08 2018-05-11 株式会社Lg化学 电极组件以及用于制造电极组件的方法
CN111435754A (zh) * 2019-01-14 2020-07-21 Sk新技术株式会社 用于二次电池的堆叠式果冻卷,包含其的电池单元,包含其的电池组及其制造方法
CN111699585A (zh) * 2018-08-13 2020-09-22 株式会社Lg化学 堆叠-折叠型电极组件和包括该堆叠-折叠型电极组件的锂金属电池
EP3712997A4 (en) * 2018-11-19 2021-01-20 Lg Chem, Ltd. ELECTRODES KIT
EP4089773A1 (en) * 2021-05-14 2022-11-16 CALB Co., Ltd. Battery manufacturing method, battery, battery module and battery pack
EP4089774A1 (en) * 2021-05-14 2022-11-16 CALB Co., Ltd. Battery manufacturing method and battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614248B2 (en) 2014-08-13 2017-04-04 Lg Chem, Ltd. Stack-folding type electrode assembly and method of manufacturing the same
KR101791674B1 (ko) * 2014-10-31 2017-10-30 주식회사 엘지화학 바이셀과 풀셀을 포함하는 전극조립체 및 이를 포함하는 이차전지
US9882185B2 (en) * 2015-10-22 2018-01-30 Lg Chem, Ltd. Battery cell assembly
KR102162723B1 (ko) * 2016-12-14 2020-10-07 주식회사 엘지화학 절곡된 한 개의 분리막으로 이루어진 단위셀을 포함하고 있는 전극조립체
CN208028181U (zh) * 2018-02-05 2018-10-30 比亚迪股份有限公司 电池芯、电池、电池模组、车辆和电子设备
KR102049468B1 (ko) * 2019-05-10 2019-11-27 주식회사 이노메트리 현수식 스택 베이스 어셈블리를 구비한 각형 이차전지의 셀 스택 제조 장치
KR20210061112A (ko) * 2019-11-19 2021-05-27 주식회사 엘지화학 전극조립체 제조장치 및 방법
KR20210137784A (ko) * 2020-05-11 2021-11-18 주식회사 엘지에너지솔루션 이차전지 및 이차전지의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019652A1 (en) * 2003-07-21 2005-01-27 Fauteux Denis G. Electrode assembly and method of manufacturing same
KR100473401B1 (ko) * 2002-11-26 2005-03-10 새한에너테크 주식회사 리튬 고분자 이차 전지 제조 방법
KR20100118173A (ko) * 2009-04-28 2010-11-05 에스케이에너지 주식회사 2차 전지 내부 셀 스택 적층 장치 및 방법
KR20100137290A (ko) * 2009-06-22 2010-12-30 에너원코리아 주식회사 와인딩 방식의 전극적층체 제조방법 및 그에 의한 리튬이온 이차전지용 전극적층체
KR101103499B1 (ko) * 2009-10-07 2012-01-06 에스케이이노베이션 주식회사 전지용 전극조립체 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473401B1 (ko) * 2002-11-26 2005-03-10 새한에너테크 주식회사 리튬 고분자 이차 전지 제조 방법
US20050019652A1 (en) * 2003-07-21 2005-01-27 Fauteux Denis G. Electrode assembly and method of manufacturing same
KR20100118173A (ko) * 2009-04-28 2010-11-05 에스케이에너지 주식회사 2차 전지 내부 셀 스택 적층 장치 및 방법
KR20100137290A (ko) * 2009-06-22 2010-12-30 에너원코리아 주식회사 와인딩 방식의 전극적층체 제조방법 및 그에 의한 리튬이온 이차전지용 전극적층체
KR101103499B1 (ko) * 2009-10-07 2012-01-06 에스케이이노베이션 주식회사 전지용 전극조립체 및 그 제조방법

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489942B (zh) * 2014-10-07 2018-01-16 株式会社Lg化学 双向卷绕的电极组件及包括该电极组件的锂二次电池
US10411304B2 (en) 2014-10-07 2019-09-10 Lg Chem, Ltd. Electrode assembly wound in both directions and lithium secondary battery including the same
CN105489942A (zh) * 2014-10-07 2016-04-13 株式会社Lg化学 双向卷绕的电极组件及包括该电极组件的锂二次电池
CN108028416A (zh) * 2016-07-08 2018-05-11 株式会社Lg化学 电极组件以及用于制造电极组件的方法
EP3336951A4 (en) * 2016-07-08 2019-03-20 LG Chem, Ltd. ELECTRODE ASSEMBLY AND METHOD OF MANUFACTURING
CN108028416B (zh) * 2016-07-08 2020-10-13 株式会社Lg化学 电极组件以及用于制造电极组件的方法
US11171354B2 (en) 2016-07-08 2021-11-09 Lg Chem, Ltd. Electrode assembly and method for manufacturing the same
CN111699585B (zh) * 2018-08-13 2023-08-22 株式会社Lg新能源 堆叠-折叠型电极组件和包括该堆叠-折叠型电极组件的锂金属电池
US11942603B2 (en) 2018-08-13 2024-03-26 Lg Energy Solution, Ltd. Stack-folding type electrode assembly and lithium metal battery including the same
CN111699585A (zh) * 2018-08-13 2020-09-22 株式会社Lg化学 堆叠-折叠型电极组件和包括该堆叠-折叠型电极组件的锂金属电池
EP3745521A4 (en) * 2018-08-13 2021-05-05 Lg Chem, Ltd. FOLD-STACK ELECTRODE AND LITHIUM-METAL BATTERY KIT INCLUDING
EP3712997A4 (en) * 2018-11-19 2021-01-20 Lg Chem, Ltd. ELECTRODES KIT
US11450879B2 (en) 2018-11-19 2022-09-20 Lg Energy Solution, Ltd. Electrode assembly
CN111435754B (zh) * 2019-01-14 2024-02-20 Sk新能源株式会社 用于二次电池的堆叠式果冻卷,包含其的电池单元,包含其的电池组及其制造方法
CN111435754A (zh) * 2019-01-14 2020-07-21 Sk新技术株式会社 用于二次电池的堆叠式果冻卷,包含其的电池单元,包含其的电池组及其制造方法
EP4089773A1 (en) * 2021-05-14 2022-11-16 CALB Co., Ltd. Battery manufacturing method, battery, battery module and battery pack
EP4089774A1 (en) * 2021-05-14 2022-11-16 CALB Co., Ltd. Battery manufacturing method and battery

Also Published As

Publication number Publication date
KR20140035646A (ko) 2014-03-24
KR101553542B1 (ko) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2014042424A1 (ko) 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
WO2011043587A2 (ko) 전지용 전극조립체 및 그 제조방법
WO2014081242A1 (ko) 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
WO2012086855A1 (ko) 다방향성 리드-탭 구조를 가진 리튬 이차전지
WO2018097606A1 (ko) 전극조립체 제조 장치 및 그 전극조립체 제조 장치에 의한 전극조립체 제조 방법
WO2012128440A1 (ko) 전극조립체 및 이의 제조방법
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2011122868A2 (ko) 신규한 구조의 전극조립체 및 그것의 제조방법
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
US9614248B2 (en) Stack-folding type electrode assembly and method of manufacturing the same
WO2018174370A1 (ko) 전극 조립체 및 그 제조방법
WO2014003488A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2014104795A1 (ko) 두께 방향의 형상 자유도가 우수한 전극 조립체, 상기 전극 조립체를 포함하는 이차 전지, 전지팩 및 디바이스
WO2014003485A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2018008926A1 (ko) 전극 및 그 전극의 제조방법 및 그 전극의 제조를 위한 롤러
WO2020256281A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2016089144A2 (ko) 이차 전지용 전극 조립체 제조 방법
WO2019132137A1 (ko) 이차전지의 제조시스템 및 제조방법
WO2013137575A1 (ko) 신규한 구조의 전극조립체 및 이를 포함하는 전지셀
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2021091057A1 (ko) 폴딩형 전극조립체 및 그 제조 방법
KR101291063B1 (ko) 2차 전지 내부 셀 스택 적층 장치 및 방법
WO2016204467A1 (ko) 리튬이온 이차전지
WO2016068544A1 (ko) 바이셀과 풀셀을 포함하는 전극조립체 및 이를 포함하는 이차전지
WO2020171376A1 (ko) 단위셀 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836820

Country of ref document: EP

Kind code of ref document: A1