WO2018174370A1 - 전극 조립체 및 그 제조방법 - Google Patents

전극 조립체 및 그 제조방법 Download PDF

Info

Publication number
WO2018174370A1
WO2018174370A1 PCT/KR2017/013624 KR2017013624W WO2018174370A1 WO 2018174370 A1 WO2018174370 A1 WO 2018174370A1 KR 2017013624 W KR2017013624 W KR 2017013624W WO 2018174370 A1 WO2018174370 A1 WO 2018174370A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
separator
active material
folding
Prior art date
Application number
PCT/KR2017/013624
Other languages
English (en)
French (fr)
Inventor
위윤봉
이현진
박신영
박동혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201790001076.3U priority Critical patent/CN209312928U/zh
Publication of WO2018174370A1 publication Critical patent/WO2018174370A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly and a method of manufacturing the same.
  • Secondary batteries unlike primary batteries, can be recharged and have been researched and developed in recent years due to the possibility of miniaturization and large capacity. As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing.
  • Secondary batteries are classified into coin-type batteries, cylindrical batteries, square batteries, and pouch-type batteries according to the shape of the battery case.
  • the electrode assembly mounted inside the battery case is a power generator capable of charging and discharging having a stacked structure of electrodes and separators.
  • the electrode assembly is a jelly-roll type wound by separating a separator between a sheet-shaped anode and a cathode coated with an active material, and a stack type in which a plurality of anodes and cathodes are sequentially stacked with a separator therebetween. , And stacked unit cells can be roughly classified into a stack / fold type wound with a long length of separation film.
  • a pouch-type battery having a structure in which a stack / foldable electrode assembly is incorporated into a pouch-type battery case of an aluminum laminate sheet has been of great interest for reasons of low manufacturing cost, small weight, and easy shape deformation. And its usage is gradually increasing.
  • One aspect of the present invention is to provide an electrode assembly capable of increasing the safety and energy density of a cell.
  • Another aspect of the present invention is to provide an electrode assembly and a method of manufacturing the same that can reduce or prevent the detachment and bending risk of the folding portion of the electrode.
  • the electrode assembly according to the embodiment of the present invention faces the first electrode with a boundary between the first electrode folded in a zigzag shape and the separator, and a plurality of second electrodes disposed between the folded first electrodes.
  • the first electrode may include an electrode current collector and an electrode active material coated on the electrode current collector, and the folding portion of the first electrode may include only the electrode current collector.
  • the safety and energy density of the battery can be increased.
  • the present invention by removing the electrode active material of the folding portion of the electrode, it is possible to reduce or prevent the detachment and bending risk of the folding portion of the electrode.
  • FIG. 1 is a cross-sectional view showing an electrode assembly according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an electrode assembly according to a second exemplary embodiment of the present invention.
  • FIG 3 is a cross-sectional view illustrating an electrode assembly according to a third exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an electrode assembly according to a first embodiment of the present invention.
  • the electrode assembly 100 may include a plurality of folded first electrodes 110 and a plurality of second electrodes 120 facing the first electrodes 110. And the electrode current collector 111 is provided in the folding portion F of the first electrode 110.
  • FIG. 1 an electrode assembly that is a first embodiment of the present invention will be described in detail.
  • the first electrode 110 may include an electrode current collector 111 and an electrode active material 112 coated on one or both surfaces of the electrode current collector 111.
  • the first electrode 110 is folded a plurality of times in a zigzag form. That is, the first electrode 110 may be formed in the form of a sheet and may be provided in a state of being regularly folded in a “Z” shape.
  • the electrode current collector 111 is provided in the folding portion F of the first electrode 110. That is, the electrode active material 112 positioned in the folding portion F of the first electrode 110 may be removed. Accordingly, the detachment and bending risk of the folding part F of the first electrode 110 may be reduced or prevented.
  • the first electrode 110 may be formed of a cathode.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material coated on the negative electrode current collector.
  • the negative electrode active material may be stacked on both sides of the negative electrode current collector. In this case, the negative electrode active material positioned in the folding portion F of the negative electrode may be removed so that only the negative electrode current collector may be positioned in the folding portion F of the negative electrode.
  • the negative electrode current collector may be made of, for example, a foil made of copper (Cu) or nickel (Ni).
  • the negative electrode active material may be made of, for example, a material including artificial graphite.
  • the negative electrode active material may be made of lithium metal, lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicon compound, tin compound, titanium compound, or an alloy thereof.
  • the second electrode 120 may face the first electrode 110 with the separation membranes 130 and 140 as a boundary and may be disposed between the first and second folded electrodes 110.
  • the second electrode 120 may include an electrode current collector 121 and an electrode active material 122 coated on one or both surfaces of the electrode current collector 121.
  • the second electrode 120 may be formed of an anode.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material coated on the positive electrode current collector.
  • the positive electrode may be, for example, a positive electrode active material laminated on both sides of the positive electrode current collector.
  • the positive electrode current collector may be made of, for example, a foil made of aluminum (Al).
  • the positive electrode active material may include, for example, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, or a compound and mixture containing one or more thereof.
  • the cathode active material may be made of Hi Ni-based cathode material as another example.
  • the Hi Ni-based cathode material may include any one or more of LiNiMnCoO-based, LiNiCoAl-based or LiMiMnCoAl-based.
  • the content of nickel (Ni) may be made of 0.5 mol ⁇ 0.95 mol.
  • the separators 130 and 140 may include a first separator 130 and a second separator 140, and may be stacked on both surfaces of the first electrode 110. That is, the first electrode 110 may be interposed between the first separator 130 and the second separator 140. In this case, the first separator 130 and the second separator 140 may be formed in a sheet form and folded together with the first electrode 110. Accordingly, when the first electrode 110 is folded, the separation membranes 130 and 140 may be positioned between the first electrode 110 and the second electrode 120. Therefore, the separators 130 and 140 may be made of an insulating material to insulate the first electrode 110 and the second electrode 120 from each other.
  • separators 130 and 140 may be formed of, for example, a polyolefin-based resin film such as polyethylene and polypropylene having microporosity.
  • first separator 130 and the second separator 140 may be, for example, bonded to both surfaces of the first electrode 110 through an adhesive or bonded by heat and pressure.
  • a region where the second electrode 120 is not attached may be folded. That is, the plurality of second electrodes 120 are stacked to face each other with a predetermined distance therebetween with the first electrode 110 and the separators 130 and 140 interposed therebetween, and when the first electrode 110 and the separators 130 and 140 are folded. Regions in which the second electrodes 120 are spaced apart from each other may be folded. Accordingly, the safety and energy density of the battery can be increased.
  • FIG. 2 is a cross-sectional view illustrating an electrode assembly according to a second exemplary embodiment of the present invention.
  • the electrode assembly 200 according to the second embodiment of the present invention has a first electrode 110 formed of an anode as compared to the electrode assembly 100 according to the first embodiment described above. There is a difference that the second electrode 120 is composed of a cathode.
  • the present embodiment briefly describes the contents overlapping with the first embodiment, and focuses on the differences.
  • the electrode assembly 200 includes a first electrode 110 that is folded a plurality of times and a plurality of second electrodes 120 that face the first electrode 110. Only the electrode current collector 121 is provided in the folding portion F of the 110.
  • the first electrode 110 may be formed of an anode
  • the second electrode 120 may be formed of a cathode
  • the positive electrode may include a positive electrode current collector and a positive electrode active material coated on the positive electrode current collector.
  • the positive electrode active material positioned in the folding portion F of the positive electrode is removed, so that the folding portion F of the positive electrode may be provided with only a positive electrode current collector.
  • FIG 3 is a cross-sectional view illustrating an electrode assembly according to a third exemplary embodiment of the present invention.
  • the electrode assembly 300 according to the third embodiment of the present invention is compared with the electrode assembly 100 according to the first embodiment and the electrode assembly 200 according to the second embodiment. There is a difference in that the electrode active materials 112 and 122 are applied to one surface of the electrode current collectors 111 and 121 in the first electrode 110 and the second electrode 120.
  • the present embodiment briefly describes the contents overlapping with the first and second embodiments, and focuses on the differences.
  • the electrode assembly 300 includes a first electrode 110 that is folded a plurality of times and a plurality of second electrodes 120 that face the first electrode 110. Only the electrode current collector 111 is provided in the folding portion F of 110.
  • the first electrode 110 may include an electrode current collector 111 and an electrode active material 112 coated on one surface of the electrode current collector 111. Can be.
  • the second electrode 120 may include an electrode current collector 121 and an electrode active material 122 coated on one surface of the electrode current collector 121.
  • FIG. 4 is a cross-sectional view schematically showing a method of manufacturing an electrode assembly according to an embodiment of the present invention.
  • a method of manufacturing an electrode assembly includes a removing step of removing an electrode active material 112 located at a folding portion of the first electrode 110 and a first electrode 110. And a stacking step of alternately stacking the separators 130 and 140 and the second electrode 120 and a folding step of folding the first electrode 110.
  • the removing may include a first electrode 110 positioned at a folding part of the first electrode 110 including the electrode current collector 111 and the electrode active material 112 applied to the electrode current collector 111. ) Electrode active material 112 is removed.
  • the removing step may remove the electrode active material 112 located in the folding portion (F) by irradiating the laser light (L) through the laser (Laser) to the folding portion (F) of the first electrode (110). .
  • the first electrode 110 and the separators 130 and 140 and the second electrode 120 which have been removed are alternately stacked.
  • a plurality of second electrodes 120 may be provided to alternately face the upper and lower surfaces of the first electrode 110 at positions corresponding to the positions of the electrode active materials 112 of the first electrode 110. have.
  • the separators 130 and 140 may include a first separator 130 and a second separator 140, and the first electrode 110 may be interposed between the first separator 130 and the second separator 140. Can be.
  • the first electrode 110 may be formed of a cathode
  • the second electrode 120 may be formed of an anode
  • the negative electrode may include a negative electrode current collector and a negative electrode active material coated on both surfaces of the negative electrode current collector.
  • the removing step may remove the negative electrode active material located in the folding portion (F) of the negative electrode.
  • the first electrode 110 may be formed of an anode
  • the second electrode 120 may be formed of a cathode
  • the positive electrode may include a positive electrode current collector and a positive electrode active material coated on one or both surfaces of the positive electrode current collector.
  • the removing step may remove the positive electrode active material located in the folding portion (F) of the positive electrode.
  • the first electrode 110 may include an electrode current collector 111 and an electrode active material 112 coated on one surface of the electrode current collector 111.
  • the electrode active material 112 positioned on one surface of the folding portion F of the electrode current collector 111 may be removed.
  • the folding step folds the first electrode 110 in a zigzag form.
  • the plurality of second electrodes 120 may be folded to face the first electrodes 110 at the boundaries of the separators 130 and 140 and disposed between the folded first electrodes 110.
  • the separators 130 and 140 may be folded between the first electrode 110 and the second electrode 120.

Abstract

본 발명은 전극 조립체 및 전극 조립체 제조방법에 관한 것으로, 본 발명에 따른 전극 조립체는 지그재그 형태로 복수회 폴딩된 제1 전극 및 분리막을 경계로 하여 상기 제1 전극과 대면되며, 폴딩된 상기 제1 전극 사이사이에 배치되는 복수개의 제2 전극을 포함하며, 상기 제1 전극은 전극 집전체 및 상기 전극 집전체에 도포된 전극 활물질을 포함하고, 상기 제1 전극의 폴딩 부분에는 상기 전극 집전체만 구비된다.

Description

전극 조립체 및 그 제조방법
관련출원과의 상호인용
본 출원은 2017년 03월 20일자 한국특허출원 제10-2017-0034690호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극 조립체 및 그 제조방법에 관한 것이다.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다.
이차 전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차 전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다.
전극 조립체는 활물질이 도포된 시트형의 양극과 음극 사이에 분리막을 개재(介在)하여 권취한 젤리 롤(Jelly-roll)형, 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형, 및 스택형의 단위 셀들을 긴 길이의 분리 필름으로 권취한 스택/폴딩형으로 대략 분류할 수 있다.
최근에는, 스택/폴딩형 전극조립체를 알루미늄 라미네이트 시트의 파우치(Pouch)형 전지 케이스(Case)에 내장한 구조의 파우치형 전지가, 낮은 제조비, 작은 중량, 용이한 형태 변형 등을 이유로, 많은 관심을 모으고 있고 또한 그것의 사용량이 점차적으로 증가하고 있다.
본 발명의 하나의 관점은 전지의 안전성과 에너지 밀도를 증가시킬 수 있는 전극 조립체를 제공하는 것이다.
본 발명의 다른 관점은 전극의 폴딩 부분의 탈리 및 벤딩(Bending) 리스크(Risk)를 감소 또는 방지할 수 있는 전극 조립체 및 그 제조방법을 제공하기 위한 것이다.
본 발명의 실시예에 따른 전극 조립체는, 지그재그 형태로 복수회 폴딩된 제1 전극 및 분리막을 경계로 하여 상기 제1 전극과 대면되며, 폴딩된 상기 제1 전극 사이사이에 배치되는 복수개의 제2 전극을 포함하며, 상기 제1 전극은 전극 집전체 및 상기 전극 집전체에 도포된 전극 활물질을 포함하고, 상기 제1 전극의 폴딩 부분에는 상기 전극 집전체만 구비될 수 있다.
본 발명에 따르면, 제1 전극 및 제2 전극을 포함하는 전극에서, 제2 전극이 부착되지 않는 영역이 폴딩 됨에 따라, 전지의 안전성과 에너지 밀도를 증가시킬 수 있다.
또한, 본 발명에 따르면, 전극의 폴딩 부분의 전극 활물질을 제거하여, 전극의 폴딩 부분의 탈리 및 벤딩 리스크(Bending Risk)를 감소 또는 방지할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 전극 조립체를 나타낸 단면도이다.
도 2는 본 발명의 제2 실시예에 따른 전극 조립체를 나타낸 단면도이다.
도 3은 본 발명의 제3 실시예에 따른 전극 조립체를 나타낸 단면도이다.
도 4는 본 발명의 실시예에 따른 전극 조립체의 제조방법을 개략적으로 나타낸 단면도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
도 1은 본 발명의 제1 실시예에 따른 전극 조립체를 나타낸 단면도이다.
도 1을 참고하면, 본 발명의 제1 실시예에 따른 전극 조립체(100)는 복수회 폴딩된 제1 전극(110) 및 제1 전극(110)과 대면되는 복수개의 제2 전극(120)을 포함하고, 제1 전극(110)의 폴딩 부분(F)에는 전극 집전체(111)만 구비된다.
이하에서, 도 1을 참조하여, 본 발명의 제1 실시예인 전극 조립체에 대해 보다 상세히 설명하기로 한다.
제1 전극(110)은 전극 집전체(111) 및 전극 집전체(111)의 일면 또는 양면에 도포된 전극 활물질(112)을 포함할 수 있다.
또한, 제1 전극(110)은 지그재그(Zigzag) 형태로 복수회 폴딩된다. 즉, 제1 전극(110)은 시트(Sheet) 형태로 형성되어 예를 들어 “Z”자 형태로 일정하게 접힌 상태로 구비될 수 있다.
특히, 제1 전극(110)의 폴딩 부분(F)에는 전극 집전체(111)만 구비된다. 즉, 제1 전극(110)의 폴딩 부분(F)에 위치된 전극 활물질(112)이 제거될 수 있다. 이에 따라, 제1 전극(110)의 폴딩 부분(F)의 탈리 및 벤딩 리스크(bending risk)를 감소 또는 방지할 수 있다.
아울러, 제1 전극(110)은 음극으로 이루어질 수 있다. 또한, 음극은 음극 집전체 및 음극 집전체에 도포된 음극 활물질을 포함할 수 있다. 여기서, 음극 집전체의 양면에 음극 활물질이 적층될 수 있다. 이때, 음극의 폴딩 부분(F)에 위치된 음극 활물질이 제거되어 음극의 폴딩 부분(F)에는 음극 집전체만 위치될 수 있다.
음극 집전체는 예를 들어 구리(Cu) 또는 니켈(Ni) 재질로 이루어진 포일(foil)로 이루어질 수 있다.
음극 활물질은 일례로 인조흑연을 포함하는 재질로 이루어질 수 있다.
또한, 음극 활물질은 다른 예로 리튬금속, 리튬합금, 카본, 석유코크, 활성화 카본, 그래파이트, 실리콘 화합물, 주석 화합물, 티타늄 화합물 또는 이들의 합금으로 이루어질 수 있다.
제2 전극(120)은 분리막(130,140)을 경계로 하여 제1 전극(110)과 대면되고, 복수개로 구비되어 폴딩된 제1 전극(110) 사이사이에 각각 배치될 수 있다.
또한, 제2 전극(120)은 전극 집전체(121) 및 전극 집전체(121)의 일면 또는 양면에 도포된 전극 활물질(122)을 포함할 수 있다.
아울러, 제2 전극(120)은 양극으로 이루어질 수 있다. 그리고, 양극은 양극 집전체 및 양극 집전체에 도포된 양극 활물질을 포함할 수 있다. 여기서, 양극은 예를 들어 양극 집전체의 양면에 양극 활물질이 적층될 수 있다.
양극 집전체는 예를 들어 알루미늄(Al) 재질의 포일(foil)로 이루어질 수 있다.
양극 활물질은 일례로 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬인산철, 또는 이들 중 1종 이상이 포함된 화합물 및 혼합물 등으로 이루어질 수 있다.
또한, 양극 활물질은 다른 예로 Hi Ni계 양극재로 이루어질 수 있다. 여기서, Hi Ni계 양극재는 LiNiMnCoO계, LiNiCoAl계 또는 LiMiMnCoAl계 중에서 어느 하나 이상을 포함하여 이루어질 수 있다. 이때, 니켈(Ni)의 함량은 0.5 mol ~ 0.95 mol 로 이루어질 수 있다.
분리막(130,140)은 제1 분리막(130) 및 제2 분리막(140)을 포함하고, 제1 전극(110)의 양면에 적층될 수 있다. 즉, 제1 분리막(130) 및 제2 분리막(140) 사이에 제1 전극(110)이 개재되도록 형성될 수 있다. 이때, 제1 분리막(130) 및 제2 분리막(140)은 시트 형태로 형성되어 제1 전극(110)과 함께 폴딩될 수 있다. 이에 따라, 제1 전극(110)을 폴딩 시 제1 전극(110) 및 제2 전극(120) 사이에 분리막(130,140)이 위치될 수 있다. 따라서, 분리막(130,140)이 절연 재질로 이루어져 제1 전극(110) 및 제2 전극(120) 사이를 절연할 수 있다.
또한, 분리막(130,140)은 예를 들어 미다공성을 가지는 폴리에칠렌, 폴리프로필렌 등 폴리올레핀계 수지막으로 형성될 수 있다.
아울러, 제1 분리막(130) 및 제2 분리막(140)은 예를 들어 제1 전극(110)의 양면에 각각 접착제를 통해 접착되거나 열과 압력에 의해 접합될 수 있다.
한편, 제1 전극(110) 및 분리막(130,140)을 폴딩 시 제2 전극(120)이 부착되지 않는 영역이 폴딩(Folding)될 수 있다. 즉, 복수개의 제2 전극(120)은 상호 일정간격 이격되어 제1 전극(110)과 분리막(130,140)을 사이에 두고 대면하도록 적층되고, 제1 전극(110) 및 분리막(130,140)을 폴딩 시 제2 전극(120)이 상호 이격된 영역이 폴딩될 수 있다. 이에 따라, 전지의 안전성과 에너지 밀도를 증가시킬 수 있다.
도 2는 본 발명의 제2 실시예에 따른 전극 조립체를 나타낸 단면도이다.
도 2를 참고하면, 본 발명의 제2 실시예에 따른 전극 조립체(200)는 전술한 제1 실시예에 따른 전극 조립체(100)와 비교할 때, 제1 전극(110)이 양극으로 이루어지고, 제2 전극(120)이 음극으로 이루어진 차이가 있다.
따라서, 본 실시예는 제1 실시예와 중복되는 내용은 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
본 발명의 제2 실시예에 따른 전극 조립체(200)는 복수회 폴딩된 제1 전극(110) 및 제1 전극(110)과 대면되는 복수개의 제2 전극(120)을 포함하고, 제1 전극(110)의 폴딩 부분(F)에는 전극 집전체(121)만 구비된다.
여기서, 본 발명의 제2 실시예에 따른 전극 조립체(200)는 제1 전극(110)이 양극으로 이루어지고, 제2 전극(120)이 음극으로 이루어질 수 있다. 이때, 양극은 양극 집전체 및 양극 집전체에 도포된 양극 활물질을 포함할 수 있다.
따라서, 양극의 폴딩 부분(F)에 위치된 양극 활물질이 제거되어 양극의 폴딩 부분(F)은 양극 집전체만 구비될 수 있다.
도 3은 본 발명의 제3 실시예에 따른 전극 조립체를 나타낸 단면도이다.
도 3을 참고하면, 본 발명의 제3 실시예에 따른 전극 조립체(300)는 전술한 제1 실시예에 따른 전극 조립체(100) 및 제2 실시예에 따른 전극 조립체(200)와 비교할 때, 제1 전극(110) 및 제2 전극(120)에서 전극 집전체(111,121)의 일면에 전극 활물질(112,122)이 도포된 차이가 있다.
따라서, 본 실시예는 제1 실시예 및 제2 실시예와 중복되는 내용은 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
본 발명의 제3 실시예에 따른 전극 조립체(300)는 복수회 폴딩된 제1 전극(110) 및 제1 전극(110)과 대면되는 복수개의 제2 전극(120)을 포함하고, 제1 전극(110)의 폴딩 부분(F)에는 전극 집전체(111)만 구비된다.
여기서, 본 발명의 제3 실시예에 따른 전극 조립체(200)에서 제1 전극(110)은 전극 집전체(111) 및 전극 집전체(111)의 일면에 도포된 전극 활물질(112)을 포함할 수 있다.
또한, 제2 전극(120)은 전극 집전체(121) 및 전극 집전체(121)의 일면에 도포된 전극 활물질(122)을 포함할 수 있다.
도 4는 본 발명의 실시예에 따른 전극 조립체의 제조방법을 개략적으로 나타낸 단면도이다.
도 4를 참고하면, 본 발명의 실시예에 따른 전극 조립체의 제조방법은, 제1 전극(110)의 폴딩 부위에 위치된 전극 활물질(112)을 제거하는 제거단계와, 제1 전극(110)과 분리막(130,140) 및 제2 전극(120)을 교대로 적층하는 적층단계 및 제1 전극(110)을 폴딩하는 폴딩단계를 포함한다.
이하에서는, 도 1 내지 도 4를 참조하여, 본 발명의 실시예에 의한 전극 조립체의 제조 방법에 대해 보다 상세히 설명하기로 한다.
도 4를 참고하면, 제거단계는 전극 집전체(111) 및 전극 집전체(111)에 도포된 전극 활물질(112)을 포함하는 제1 전극(110)에서 폴딩 부위에 위치된 제1 전극(110)의 전극 활물질(112)을 제거한다.
또한, 제거단계는 제1 전극(110)의 폴딩 부분(F)에 레이저(Laser)를 통해 레이저 광(L)을 조사하여 폴딩 부분(F)에 위치된 전극 활물질(112)을 제거할 수 있다.
적층단계는 제거단계를 거친 제1 전극(110)과, 분리막(130,140) 및 제2 전극(120)을 교대로 적층한다. 이때, 제2 전극(120)은 복수개로 구비되어 제1 전극(110)의 전극 활물질(112)이 있는 위치에 대응하는 위치에서 제1 전극(110)의 상면과 하면을 번갈아 대면되도록 적층될 수 있다.
여기서, 분리막(130,140)은 제1 분리막(130) 및 제2 분리막(140)을 포함하고, 제1 전극(110)이 제1 분리막(130) 및 제2 분리막(140) 사이에 개재되도록 적층할 수 있다.
한편, 도 1을 참고하면, 일례로 제1 전극(110)은 음극으로 이루어지고, 제2 전극(120)은 양극으로 이루어질 수 있다. 여기서, 음극은 음극 집전체 및 음극 집전체의 양면에 도포된 음극 활물질을 포함할 수 있다. 이때, 제거단계는 음극의 폴딩 부분(F)에 위치된 음극 활물질을 제거할 수 있다.
또한, 도 2를 참고하면, 다른 예로 제1 전극(110)은 양극으로 이루어지고, 제2 전극(120)은 음극으로 이루어질 수 있다. 여기서, 양극은 양극 집전체 및 양극 집전체의 일면 또는 양면에 도포된 양극 활물질을 포함할 수 있다. 이때, 제거단계는 양극의 폴딩 부분(F)에 위치된 양극 활물질을 제거할 수 있다.
아울러, 도 3을 참고하면, 또 다른 예로 제1 전극(110)은 전극 집전체(111) 및 전극 집전체(111)의 일면에 도포된 전극 활물질(112)을 포함할 수 있다. 이때, 제거단계는 전극 집전체(111)의 폴딩 부분(F)에서 일면에 위치된 전극 활물질(112)을 제거할 수 있다.
도 1 및 도 4를 참조하면, 폴딩단계는 제1 전극(110)을 지그재그 형태로 폴딩한다. 이때, 복수개의 제2 전극(120)이 분리막(130,140)을 경계로 제1 전극(110)과 대면되고, 폴딩된 제1 전극(110) 사이사이에 배치되도록 폴딩할 수 있다.
또한, 폴딩단계는 제1 전극(110) 및 제2 전극(120) 사이에 분리막(130,140)이 위치되도록 폴딩할 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 전극 조립체 및 그 제조방법은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (9)

  1. 지그재그 형태로 복수회 폴딩된 제1 전극; 및
    분리막을 경계로 하여 상기 제1 전극과 대면되며, 폴딩된 상기 제1 전극 사이사이에 배치되는 복수개의 제2 전극;을 포함하며,
    상기 제1 전극은 전극 집전체 및 상기 전극 집전체에 도포된 전극 활물질을 포함하고,
    상기 제1 전극의 폴딩 부분에는 상기 전극 집전체만 구비되는 전극 조립체.
  2. 청구항 1에 있어서,
    상기 제1 전극은 음극으로 이루어지고, 상기 제2 전극은 양극으로 이루어지며,
    상기 음극은 음극 집전체 및 상기 음극 집전체의 일면 또는 양면에 도포된 음극 활물질을 포함하되, 상기 음극의 폴딩 부분에는 상기 음극 집전체만 구비된 전극 조립체.
  3. 청구항 1에 있어서,
    상기 제1 전극 및 상기 제2 전극 사이에 상기 분리막이 위치되도록 적층된 전극 조립체.
  4. 청구항 1에 있어서,
    상기 분리막은 제1 분리막 및 제2 분리막을 포함하고,
    상기 제1 분리막 및 상기 제2 분리막 사이에 상기 제1 전극이 개재되어 형성된 전극 조립체.
  5. 전극 집전체 및 상기 전극 집전체에 도포된 전극 활물질을 포함하는 제1 전극에서 폴딩 부위에 위치된 상기 전극 활물질을 제거하는 제거단계;
    상기 제거단계를 거친 제1 전극과, 분리막 및 제2 전극을 교대로 적층하되, 상기 제2 전극은 복수개로 구비되어 상기 제1 전극의 전극 활물질이 있는 위치에 대응하는 위치에서 상기 제1 전극의 상면과 하면을 번갈아 대면되도록 적층되는 적층단계; 및
    상기 제1 전극을 지그재그로 폴딩하되, 복수개의 상기 제2 전극이 분리막을 경계로 상기 제1 전극과 대면되고 폴딩된 상기 제1 전극 사이사이에 배치되도록 폴딩하는 폴딩단계;를 포함하는 전극 조립체의 제조방법.
  6. 청구항 5에 있어서,
    상기 분리막은 제1 분리막 및 제2 분리막을 포함하고,
    상기 적층단계는 상기 제1 분리막 및 상기 제2 분리막 사이에 상기 제1 전극이 개재되도록 적층하는 전극 조립체의 제조방법.
  7. 청구항 5에 있어서,
    상기 제1 전극은 음극으로 이루어지고, 상기 제2 전극은 양극으로 이루어지며,
    상기 음극은 음극 집전체 및 상기 음극 집전체의 일면 또는 양면에 도포된 음극 활물질을 포함하고,
    상기 제거단계는 상기 음극의 폴딩 부분에 위치된 상기 음극 활물질을 제거하는 전극 조립체의 제조방법.
  8. 청구항 5에 있어서,
    상기 제거 단계는 상기 제1 전극의 폴딩 부분에 레이저 광을 조사하여 폴딩 부분에 위치된 상기 전극 활물질을 제거하는 전극 조립체의 제조방법.
  9. 청구항 5에 있어서,
    상기 폴딩단계는 상기 제1 전극 및 상기 제2 전극 사이에 상기 분리막이 위치되도록 폴딩하는 전극 조립체의 제조방법.
PCT/KR2017/013624 2017-03-20 2017-11-27 전극 조립체 및 그 제조방법 WO2018174370A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790001076.3U CN209312928U (zh) 2017-03-20 2017-11-27 电极组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170034690A KR102143558B1 (ko) 2017-03-20 2017-03-20 전극 조립체 및 그 제조방법
KR10-2017-0034690 2017-03-20

Publications (1)

Publication Number Publication Date
WO2018174370A1 true WO2018174370A1 (ko) 2018-09-27

Family

ID=63585562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013624 WO2018174370A1 (ko) 2017-03-20 2017-11-27 전극 조립체 및 그 제조방법

Country Status (3)

Country Link
KR (1) KR102143558B1 (ko)
CN (1) CN209312928U (ko)
WO (1) WO2018174370A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384851A1 (en) * 2020-03-04 2022-12-01 Lg Energy Solution, Ltd. Electrode Assembly and Method for Manufacturing the Same
EP3907807B1 (en) * 2019-12-04 2023-12-13 Contemporary Amperex Technology Co., Limited Electrode assembly and its forming method and manufacturing system, secondary battery, battery module and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405345B1 (ko) * 2019-02-22 2022-06-07 주식회사 엘지에너지솔루션 단위셀 및 그 제조방법
CN109962200A (zh) * 2019-02-28 2019-07-02 湖南立方新能源科技有限责任公司 一种锂金属二次电池
KR20210150162A (ko) 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 이차전지용 라미네이션장치 및 방법
CN213340434U (zh) * 2020-09-22 2021-06-01 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
KR20230023348A (ko) * 2021-08-10 2023-02-17 주식회사 엘지에너지솔루션 전극 조립체
KR102588085B1 (ko) * 2021-10-15 2023-10-12 주식회사 루트제이드 리튬이차전지용 전극조립체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019700A (ko) * 1999-08-30 2001-03-15 김순택 폴딩형 전극군 및 이를 이용한 이차전지
KR20110048132A (ko) * 2009-11-02 2011-05-11 삼성에스디아이 주식회사 이차전지용 전극조립체 및 그 전극조립체를 구비하는 이차전지
KR20130089373A (ko) * 2012-02-02 2013-08-12 주식회사 아모그린텍 전극 조립체, 그 제조방법 및 이를 이용한 이차 전지
KR20160048691A (ko) * 2014-10-24 2016-05-04 주식회사 엘지화학 배터리 용량 향상을 위한 전극 제조방법 및 이에 의하여 제조된 전극
KR20170000257A (ko) * 2015-06-23 2017-01-02 주식회사 엘지화학 이차전지용 전극조립체 및 그의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684283B1 (ko) 2014-07-18 2016-12-08 주식회사 엘지화학 젤리롤형 전극 조립체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019700A (ko) * 1999-08-30 2001-03-15 김순택 폴딩형 전극군 및 이를 이용한 이차전지
KR20110048132A (ko) * 2009-11-02 2011-05-11 삼성에스디아이 주식회사 이차전지용 전극조립체 및 그 전극조립체를 구비하는 이차전지
KR20130089373A (ko) * 2012-02-02 2013-08-12 주식회사 아모그린텍 전극 조립체, 그 제조방법 및 이를 이용한 이차 전지
KR20160048691A (ko) * 2014-10-24 2016-05-04 주식회사 엘지화학 배터리 용량 향상을 위한 전극 제조방법 및 이에 의하여 제조된 전극
KR20170000257A (ko) * 2015-06-23 2017-01-02 주식회사 엘지화학 이차전지용 전극조립체 및 그의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3907807B1 (en) * 2019-12-04 2023-12-13 Contemporary Amperex Technology Co., Limited Electrode assembly and its forming method and manufacturing system, secondary battery, battery module and device
US20220384851A1 (en) * 2020-03-04 2022-12-01 Lg Energy Solution, Ltd. Electrode Assembly and Method for Manufacturing the Same
US11870039B2 (en) * 2020-03-04 2024-01-09 Lg Energy Solution, Ltd. Electrode assembly and method for manufacturing the same

Also Published As

Publication number Publication date
KR20180106408A (ko) 2018-10-01
CN209312928U (zh) 2019-08-27
KR102143558B1 (ko) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2018174370A1 (ko) 전극 조립체 및 그 제조방법
WO2012086855A1 (ko) 다방향성 리드-탭 구조를 가진 리튬 이차전지
WO2019172524A1 (ko) 이차전지 제조 방법 및 이차전지용 파우치
WO2013069953A1 (ko) 신규한 구조의 전지셀
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2016064099A1 (ko) 파우치형 이차 전지 및 이의 제조방법
WO2014042424A1 (ko) 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2017061746A1 (ko) 전지 모듈
WO2014137120A1 (ko) 젤리롤 타입의 전극 조립체 제조방법 및 젤리롤 타입의 폴리머 이차전지 제조방법
WO2020256281A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2018066820A1 (ko) 전극 조립체 및 이의 제조 방법
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2018097606A1 (ko) 전극조립체 제조 장치 및 그 전극조립체 제조 장치에 의한 전극조립체 제조 방법
WO2016027991A1 (ko) 냉각 성능이 개선된 전지셀
WO2013151233A1 (ko) 배터리셀
WO2014104795A1 (ko) 두께 방향의 형상 자유도가 우수한 전극 조립체, 상기 전극 조립체를 포함하는 이차 전지, 전지팩 및 디바이스
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2018135764A1 (ko) 전극조립체의 외면에 대면하여 위치하는 전극리드를 포함하는 전지셀
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2015056973A1 (ko) 파우치형 이차전지 및 이를 포함하는 이차전지 모듈
WO2018212466A1 (ko) 전극 조립체 제조 장치 및 전극 조립체 제조방법
WO2018038409A1 (ko) 이차전지 및 이차전지의 전해액 보충 방법
WO2020171376A1 (ko) 단위셀 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902529

Country of ref document: EP

Kind code of ref document: A1