WO2019124485A1 - 溶融めっき鋼線およびその製造方法 - Google Patents

溶融めっき鋼線およびその製造方法 Download PDF

Info

Publication number
WO2019124485A1
WO2019124485A1 PCT/JP2018/046961 JP2018046961W WO2019124485A1 WO 2019124485 A1 WO2019124485 A1 WO 2019124485A1 JP 2018046961 W JP2018046961 W JP 2018046961W WO 2019124485 A1 WO2019124485 A1 WO 2019124485A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel wire
plating layer
hot
plated
Prior art date
Application number
PCT/JP2018/046961
Other languages
English (en)
French (fr)
Inventor
児玉 順一
宜孝 西川
公二郎 調
真二 住谷
雅紀 山本
Original Assignee
日本製鉄株式会社
ジェイ‐ワイテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, ジェイ‐ワイテックス株式会社 filed Critical 日本製鉄株式会社
Priority to JP2019560553A priority Critical patent/JP6880238B2/ja
Priority to CN201880081937.2A priority patent/CN111566252B/zh
Priority to KR1020207019423A priority patent/KR102385640B1/ko
Publication of WO2019124485A1 publication Critical patent/WO2019124485A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes

Definitions

  • the present invention relates to a hot-dip galvanized steel wire and a method of manufacturing the same.
  • Priority is claimed on Japanese Patent Application No. 2017-243434, filed Dec. 20, 2017, the content of which is incorporated herein by reference.
  • the hot-dip galvanized steel wire produced by using a hot-rolled wire as a raw material descaling the steel wire after hot rolling and further coating treatment is then reduced in diameter by plastic working with a die or a roll, and a plating pretreatment step After activation treatment of the surface by pickling, flux treatment, etc., it is immersed in a bath of molten metal to form a metal film on the surface of the steel wire, and is manufactured.
  • the purpose of the hot-dip plating is mainly to improve the corrosion resistance, and here, a molten metal film such as zinc and a zinc-aluminum (Al) alloy is formed to suppress corrosion of iron by a sacrificial anticorrosive action of zinc.
  • the thicker the coating the better the corrosion resistance.
  • corrosion resistance is improved by alloying with Al and other components.
  • plating components containing a small amount of Mg together with Zn and Al provide high corrosion resistance.
  • a plating component containing a slight amount of Mg there is a problem that the processability is deteriorated due to the formation of a hard intermetallic compound consisting of Zn and Mg.
  • the hot-dip galvanized steel wire is required to have not only corrosion resistance but also workability such that plating peeling or cracking does not occur during post-processing.
  • Patent Document 1 proposes plating that improves workability by thinning an alloy layer containing Fe at a ground iron interface.
  • Patent Document 2 proposes a plated structure which disperses an intermetallic compound of MgZn 2 to improve the corrosion resistance.
  • Patent documents 3 and 4 propose plated wires which limit the ⁇ phase to 20% or less and improve the workability and corrosion resistance.
  • the present invention has been made in view of the above circumstances, and there is no cracking or peeling of the plating layer when performing winding processing or wire drawing processing, and the corrosion resistance is higher than that of Zn plated steel wire or Zn-Al hot-dip galvanized steel wire It is an object of the present invention to provide a hot-dip galvanized steel wire from which the
  • a hot-dip galvanized steel wire according to an aspect of the present invention includes a plated steel wire and a plated layer disposed on the surface of the plated steel wire, and the component of the plated layer is mass%, Mg: 0.10% to 1.00%, Al: 5.0% to 15.0%, Si: 0% to 2.0%, Fe: 0% to 1.0%, Sb: 0% to 1.0%, Pb: 0% to 1.0%, Sn: 0% to 1.0%, Ca: 0% to 1.0%, Co: 0% to 1.0 % Or less, Mo: 0% to 1.0%, Mn: 0% to 1.0%, P: 0% to 1.0%, B: 0% to 1.0%, Bi: 0 % To 1.0% or less, Cr: 0% to 1.0%, REM: 0% to 1.0%, Ni: 0% to 1.0%, Ti: 0% to 1.0% Below, Zr: 0 More than 1.0% and Sr: 0% or more and 1.0% or less, the balance is made
  • the component of the plating layer may contain, by mass%, Si: 0.01% or more and 2.0% or less.
  • the component of the plating layer is, by mass%, Fe: 0.01% or more and 1.0% or less, Sb: 0.01 % Or more and 1.0% or less, Pb: 0.01% or more and 1.0% or less, Sn: 0.01% or more and 1.0% or less, Ca: 0.01% or more and 1.0% or less, Co: 0 .01% to 1.0%, Mo: 0.01% to 1.0%, Mn: 0.01% to 1.0%, P: 0.01% to 1.0%, B 0.01% to 1.0%, Bi: 0.01% to 1.0%, Cr: 0.01% to 1.0%, and REM: 0.01% to 1.0% You may contain 1 type, or 2 or more types selected from the group which consists of the following.
  • the component of the plating layer is, by mass%, Ni: 0.01% or more and 1.0% or less, One or two selected from the group consisting of Ti: 0.01% or more and 1.0% or less, Zr: 0.01% or more and 1.0% or less, and Sr: 0.01% or more and 1.0% or less You may contain the above.
  • a method of producing a hot-dip galvanized steel wire according to another aspect of the present invention is a method of producing the hot-dip galvanized steel wire according to any one of (1) to (4) above, And a step of immersing the steel wire in a bath of molten metal, a step of pulling up the plated steel wire from the bath, and a step of cooling the plated steel wire thereafter, in the cooling, the plated steel After the surface temperature of the plating layer formed on the surface of the wire falls below the solidification completion temperature, the injection of the refrigerant to the steel wire to be plated is started, and in the cooling, the plating layer of the steel wire to be plated After the surface temperature falls below 280 ° C., the injection of the refrigerant to the plated steel wire is ended, and in the cooling, the average cooling rate of the surface of the plated layer of the plated steel wire is the injection of the refrigerant Surface temperature of the plating layer at the start of In a temperature range of up to 80 ° C., and
  • the hot-dip galvanized steel wire of the present invention does not cause cracking or peeling in the plating layer even if it is subjected to winding processing or wire drawing processing after the plating film treatment, high corrosion resistance is obtained, and strength and ductility are not deteriorated. It is a hot-dip galvanized steel wire excellent in workability and corrosion resistance applicable to products, and its industrial contribution is extremely remarkable.
  • the inventors of the present invention are hot-dip plating components consisting of, in mass%, Mg: 0.10 to 1.00%, Al: 5.0 to 15.0%, the balance being Zn and impurities.
  • the effects of the structure of the plating layer on the workability and corrosion resistance were examined intensively.
  • the present inventors have found that cracking of the plating layer is strongly affected by a phase containing 90% or more of Zn, and cracking of the plating layer can be reduced by appropriately controlling the crystal size of this phase.
  • the present inventors also discovered that the strength reduction and ductility fall of a hot-dipped steel wire can also be suppressed by suppressing the crack of a plating layer.
  • the present plating component contains Mg, and thus it has high corrosion resistance as compared to a hot-dip galvanized steel wire made of Zn—Al or Zn, and completed the present invention.
  • the formation of the FeAl intermetallic compound at the interface between the base iron and the plating is suppressed by the hot-dip plating component optionally containing Si in addition to Zn, Al and Mg, and the processability is further improved. It was found.
  • a phase having a high Al concentration is formed as primary crystals at the beginning of solidification, and then Zn is formed.
  • a phase containing 90% or more (hereinafter referred to as a Zn phase) and an MgZn phase are formed.
  • the hard MgZn phase is distributed and precipitated at the grain boundaries of the Zn phase and the Al primary.
  • the corrosion resistance of the hot-dip galvanized steel wire is improved by the MgZn phase maintaining the sacrificial anticorrosion effect of the Zn phase and forming a stable protective film. Therefore, the fine and uniform distribution of the MgZn phase is effective in improving the corrosion resistance of the hot-dip galvanized steel wire.
  • the presence of the Zn phase and the distribution of the crystal grain diameter are appropriate in order to suppress cracking and peeling of the plating layer during processing and ensure processability and corrosion resistance. Control is important. In order to properly control the grain size of the plating layer, it is important to control the cooling start temperature and the cooling rate.
  • the hot-dip galvanized steel wire which concerns on this embodiment has a to-be-plated steel wire and the predetermined
  • the component of the steel wire to be plated is not particularly limited, and may be a component of JIS G 3505: 2017 mild steel wire, JIS G 3506: 2017 hard steel wire, and JIS G 3502: 2013 piano wire, for example.
  • the hot-dip galvanized steel wire according to the present embodiment is obtained, for example, by using a hot-rolled material having such components as a raw material and subjecting the material to cold working as appropriate, followed by forming a hot-dip plating layer on the surface thereof. It is a plated steel wire.
  • composition of Plating Layer Hereinafter, the unit “%” in the composition of the plating layer is “mass%”.
  • Mg 0.10% or more and 1.00% or less Mg stabilizes the corrosion product and has an action of suppressing the progress of corrosion.
  • 0.10% or more of Mg is required as a plating component.
  • the plating component contains Mg at 1.00% or more, a large amount of hard ZnMg intermetallic compound is generated, the plating layer becomes hard, and cracking easily occurs in the processing step of the hot-dip galvanized steel wire, locally In some cases, plating peeling may occur and the processability may be reduced. Therefore, it is preferable to set less than 1.00% as the upper limit of the amount of Mg in the plating component.
  • the amount of Mg in the plating component may be 0.30% or more, 0.40% or more, 0.50% or more, 0.60% or more, 0.70% or more, or 0.80% or more.
  • the amount of Mg in the plating component may be 0.80% or less, 0.70% or less, 0.60% or less, 0.50% or less, 0.40% or less, or 0.30% or less.
  • Al 5.0% or more and 15.0% or less Al also has an effect of stabilizing a corrosion product as Mg. If the amount of Al in the plating component is less than 5.0%, the effect is reduced, and it is difficult to obtain the corrosion resistance improvement effect. On the other hand, when the amount of Al in the plating component exceeds 15.0%, the effect is saturated, and the melting point of the plating bath becomes high, and the oxidation of the surface tends to proceed. Therefore, it is preferable to make Al content in a plating component into 15.0% or less.
  • the amount of Al in the plating component is 7.0% or more, 7.5% or more, 8.0% or more, 9.0% or more, 10.0% or more, 11.0% or more, or 12.0% or more It may be In addition, the amount of Al in the plating component is 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, 7.5% or less, or 7.0% or less It may be
  • Si 0% or more and 2.0% or less Si may not be contained in the plating layer, so the lower limit value of the Si content in the plating component is 0%.
  • Si contained in the plating layer generates Mg 2 Si in the plating layer, and is an element effective for improving the corrosion resistance.
  • Si has the effect of suppressing the reaction between Fe and Al at the interface of the base iron, suppressing the formation of intermetallic compounds mainly composed of Fe and Al, and enhancing the processability of the plated steel wire.
  • the Si content in the plating component is set to 2.0% or less.
  • the content of Si in the plating component is preferably 0.01% or more, 0.05% or more, or 0.10% or more. Further, the content of Si in the plating component may be 1.00% or less, 0.90% or less, or 0.85% or less.
  • Fe 0% to 1.0%
  • Sb 0% to 1.0%
  • Pb 0% to 1.0%
  • Ca 0% to 1.0%
  • Co 0% to 1 .0% or less
  • P 0% or more and 1.0% or less
  • B 0% or more and 1.0% or less
  • Bi 0% or more and 1.0% or less
  • REM 0% or more and 1.0% or less
  • the Fe, Sb, Pb, Ca, Co, P, B, Bi, and REM may not be contained in the plating layer, and the content of these elements in the plating component is not limited. Lower limit value is 0%. On the other hand, when one or more of these elements are contained in the plating layer, the corrosion resistance of the plating layer is further improved.
  • the upper limit of the content in the case of including these arbitrary elements was determined as described above. In order to reliably obtain the above effects, it is desirable that the content of each element be 0.01% or more.
  • the lower limit value of these contents in the plating component is 0%.
  • the content of each element is preferably 0.01% or more.
  • Mo 0% or more, 1.0% or less Mo may not be contained in the plating layer, so the lower limit of the Mo content in the plating component is 0%.
  • Mo when Mo is contained in the plating layer, improvement in corrosion resistance of the plating layer and improvement in wear resistance of the plating layer can be expected. However, if it exceeds 1.0%, the plated layer may become hard and the processability may decrease, so the upper limit was set to 1.0%.
  • the Mo content is preferably 0.01% or more.
  • the lower limit value of the content of these elements in the plating component is 0%.
  • the upper limit of the content in the case of containing these arbitrary elements was set to 1.0% or less.
  • the content of each element is preferably 0.01% or more.
  • the remainder of the components of the plating layer In the components of the plating layer containing Zn and impurities, Mg and Al, and optional elements Si, Fe, Sb, Pb, Sn, Ca, Co, Mo, Mn, P, B, Except for Bi, Cr, REM, Ni, Ti, Zr, and Sr, the remainder is Zn and containing impurities.
  • Impurities are components that are mixed in due to various factors of the molten metal raw material or the manufacturing process when industrially producing the plating layer, and within a range that does not adversely affect the hot-dip galvanized steel wire according to the present embodiment. Means something that is acceptable.
  • the components of the plating layer can be identified by the following means.
  • the C cross section (cross section perpendicular to the longitudinal direction of the plated steel wire) of the plated steel wire is polished, and the area of the plated layer portion on this polished surface is quantitatively analyzed by EPMA (Electron Probe Micro Analyzer).
  • EPMA Electro Probe Micro Analyzer
  • the plating layer portion not including the alloy layer is analyzed.
  • An average value of values obtained by performing this measurement at three places is regarded as a component of the plated layer of the plated steel wire.
  • phase (Zn phase) containing 90% or more of Zn in mass% Mg Plating containing 0.1% or more and less than 1.0% and Al: 5.0% or more and 15.0% or less
  • a phase mainly composed of Zn (Zn phase) and ZnMg And a eutectic structure (ZnMg phase) is formed.
  • the Zn phase at this time has a Zn concentration of at least 90%. Since the Zn phase is a soft phase, the plating layer becomes hard and the workability of the hot-dip galvanized steel wire decreases when the proportion thereof is less than 25% in area ratio to the entire structure of the plating layer. On the other hand, when the proportion of the Zn phase exceeds 70% in the area ratio to the entire structure of the plating layer, the Zn phase becomes excessive, the corrosion resistance becomes the same as Zn plating, and the corrosion resistance improvement effect can not be obtained. Therefore, the abundance ratio of the Zn phase is 25 to 70% in area ratio to the entire structure of the plating layer. More preferably, the area ratio of Zn phase is 30% or more, 35% or more, or 40% or more. More preferably, the area ratio of Zn phase is 80% or less, 70% or less, 60% or less, or 50%.
  • the crystal grain size of the Zn phase which is a phase containing 90% or more of Zn in mass%, varies depending on the cooling rate of the plating layer at the production stage of the hot-dip galvanized steel wire and is distributed in a certain range have.
  • the Zn phase has a fine grain size
  • the cooling rate is slow
  • the Zn phase has a coarse grain size.
  • the occurrence and progress of cracking when strain acts on the plated layer largely differ depending on the form and particle size of the Zn phase.
  • the grain size of the Zn phase is large, cracks propagate in the grains of the Zn phase, and large open cracks are generated on the surface of the plating layer.
  • the Zn phase is fine, cracks may occur along the grain boundaries of the Zn phase, and the cracks may not penetrate the plating layer, and may remain as fine cracks.
  • the cracks in the case of a finer Zn phase structure, although cracks develop in the grain boundaries, the cracks apparently progress substantially linearly, and the cracks progress to the ground iron (plated steel wire), and corrosion resistance is It can lead to a reduction and a decrease in ductility.
  • the crystal grain size of the Zn phase in order to suppress the occurrence of cracks, it is necessary to properly control the crystal grain size of the Zn phase, and the minimum grain size is 2 ⁇ m and the maximum grain size is 5 ⁇ m. That is, in the hot-dip galvanized steel wire according to the present embodiment, it is necessary to increase as much as possible the amount of Zn phase having a circle-converted crystal grain diameter of 2 to 5 ⁇ m.
  • the Zn phase having a grain size of 2 to 5 ⁇ m is preferably 20 area% or more of all Zn phases. It is preferable that the area ratio of the Zn phase having a grain diameter of 2 to 5 ⁇ m, which is converted to a circle, accounts for all the Zn phases be as large as possible, and the upper limit thereof is 100%.
  • the area ratio of the Zn phase having a particle diameter of 2 to 5 ⁇ m in terms of a circle, which accounts for all the Zn phase may be defined as 30% or more, 40% or more, or 45% or more.
  • the area ratio of the Zn phase having a particle diameter of 2 to 5 ⁇ m in terms of a circle, which accounts for all the Zn phase may be defined as 95% or less, 90% or less, or 80% or less.
  • the lower limit of the crystal grain size of the Zn phase is more preferably 2.5 ⁇ m.
  • the more preferable upper limit of the particle size which suppresses the crack growth of Zn phase is 4.5 micrometers. It is more preferable to set the abundance ratio of the Zn phase having a grain size of 2.5 to 4.5 ⁇ m in terms of a circle when converted to a circle to 30 to 100% after satisfying the above requirements.
  • the plating layer structure is quantified according to the following procedure. First, the C cross section of the plating layer (the cross section perpendicular to the longitudinal direction of the hot-dip galvanized steel wire) is observed by a reflection electron image of a scanning electron microscope (SEM: Scanning Electron Microscope) to identify the plating layer region. As described later, in the hot-dip galvanized steel wire according to the present embodiment, an alloy layer, a base plating layer, and the like may be provided between the base iron and the plating layer, but in quantifying the plating layer structure, The alloy layer and the base plating layer are excluded from analysis.
  • SEM Scanning Electron Microscope
  • the distribution of the components of the plating layer is analyzed by energy dispersive X-ray spectrometry (EDS) (so-called surface analysis).
  • EDS energy dispersive X-ray spectrometry
  • the phase specified by this and having a Zn concentration of 90% is judged as the Zn phase.
  • the abundance ratio of the Zn phase in the cross section to be measured is determined.
  • the coating weight is not necessarily limited is not the sole, for example from 50 g / m 2 approximately thin plating to 300 g / m 2 or more thick plating, broad numerical range depending on the application Can be selected.
  • the coating weight is not necessarily limited is not the sole, for example from 50 g / m 2 approximately thin plating to 300 g / m 2 or more thick plating, broad numerical range depending on the application Can be selected.
  • the thickness of the plating layer of the hot-dip galvanized steel wire according to the present embodiment is not particularly limited.
  • the thickness of the plating layer may be in the range of 7 to 55 ⁇ m.
  • the thickness of the plating layer is SEM observation of the plating layer in the C cross section, and the thickness of the plating layer portion including the alloy layer is measured at eight circumferential points including the maximum plating thickness and the minimum plating thickness, It can be determined as the average of eight points.
  • a method of manufacturing the hot-dip galvanized steel wire according to the present embodiment will be described.
  • the method for producing the plated steel wire is not particularly limited.
  • FIG. 1 An example of the manufacturing process of a hot-dipped steel wire is shown in FIG. After the scale (iron oxide) generated on the surface of the hot rolled wire is pickled or mechanically removed, and further coated on the surface of the hot rolled wire, the hot rolled wire is subjected to cold drawing such as wire drawing with dies or rolls.
  • a wire to-be-plated steel wire 1 is obtained by adjusting to the target wire diameter by in-process. After heat-treating this to-be-plated steel wire 1 arbitrarily, degreasing, pickling, and primary plating by electric Zn plating or hot dip galvanization are performed by the plating pretreatment device 2.
  • the first plated steel wire 1 is dipped in a bath in which the plated metal of the component of the plated layer in the production of the hot-dip galvanized steel wire according to the present embodiment is melted, and the molten metal is plated on the surface of the steel wire 1 Form a coating of 3.
  • the molten metal is cooled and solidified to form a plating layer.
  • the primary plating and the hot-dip plating may be carried out by continuously passing the plated steel wire 1 and immersing.
  • the structure of the plating layer is controlled by controlling the conditions of forced cooling performed by the secondary cooling device 5 after the plated steel wire 1 is pulled up from the molten metal bath and allowed to cool by the primary cooling device 4 It will be possible.
  • the cooling start temperature and the average cooling rate in the secondary cooling device 5 are important for controlling the structure of the plating layer.
  • the cooling start temperature in the secondary cooling device 5 refers to the surface temperature of the plated steel wire 1 when the secondary cooling device 5 starts the injection of the refrigerant to the plated steel wire 1.
  • the refrigerant is, for example, water, gas, and mist, but is not limited thereto.
  • the free cooling is the cooling before the forcible cooling of the plating layer in the secondary cooling device 5, and the temperature difference between the plated steel wire 1 and the ambient temperature of the primary cooling device 4 without spraying the refrigerant It refers to cooling the plated steel wire 1 using it.
  • the average cooling rate in this cooling is the surface temperature (molten metal temperature) of the plated steel wire 1 when the plated steel wire 1 is pulled up from the bath of molten metal and the plated steel wire 1 in the secondary cooling device 5.
  • the difference between the surface temperature of the steel wire 1 to be plated and the surface temperature of the steel wire 1 before starting the injection of the refrigerant is from pulling up the steel wire 1 to be plated from the molten metal bath to the injection of the refrigerant to the steel wire 1 Divided by the time of In the case of free cooling, it is preferable to perform cooling at a cooling rate with an average cooling rate of less than 50 ° C./s.
  • the forced cooling initiation temperature is important.
  • the solidification completion temperature is a temperature at which all the plating layers become solid phase. When the temperature of the plating layer is between the solidification start temperature and the solidification completion temperature, the plating layer is in a solid-liquid mixed state.
  • the lower limit value of the forced cooling start temperature is the temperature at which the liquid phase disappears in the equilibrium state, and the value of the equilibrium state determined from the component of the molten metal by Thermo-Calc of the integrated thermodynamic calculation software. It is. It is preferable that the completion
  • the average cooling rate in forced cooling is 50 ° C./s to 150 ° C./s in the temperature range from the surface temperature of the plating layer at the start of the injection of the refrigerant to 280 ° C. Control. More preferably, the temperature is 70 ° C./s to 130 ° C./s.
  • the average cooling rate is the difference between the above-described cooling start temperature and 280 ° C., the time from the start of the refrigerant injection to the surface temperature of the plating layer reaching 280 ° C. It is the divided value.
  • the average cooling rate is the difference between the cooling start temperature and the surface temperature of the plating layer at the end of the refrigerant injection from the start of the refrigerant injection It is regarded as the value divided by the time until
  • the average cooling rate in forced cooling can be adjusted by the cooling method, and in the water cooling method, it can be controlled by adjusting the amount of cooling water, the cooling time, and the like.
  • the method of using two nozzles of a fluid, an air-water, a water film, or the like as the cooling nozzle or injecting a specific gas may control the average cooling rate in forced cooling in some cases.
  • the forced cooling method is not limited to the above method, and any cooling method is applicable.
  • characteristics such as the steel component and strength of the plated steel wire to be plated are not particularly limited.
  • a steel containing C: 0.01 to 1.2%, Si: 0.01 to 1.5%, Mn: 0.01 to 2.0%, the balance containing iron and impurities, the above-described alloying elements In addition to the above, a steel material containing 0.5% or less of Cr, a steel material containing Ti, B, Al, Cu, Mo, Sn, etc. in addition to the above-mentioned alloy elements, etc., according to this embodiment. Can be plated steel wire.
  • the surface of the steel wire to be plated may be subjected to galvanization, galvanization, and galvanizing (for example, Al, Zn alloy to which Mg is added, etc.). That is, the hot-dip galvanized steel wire according to the present embodiment may further have the above-described base plated layer between the plated layer having the components described above and the steel wire to be plated.
  • an alloy layer containing Fe-Al-Zn-Mg as a main component having a thickness of 1 ⁇ m or more may be formed at the interface between the ground iron which is a steel wire to be plated and the plating layer.
  • the wire diameter of the hot-dip galvanized steel wire is also not particularly limited, and can be, for example, 2.0 mm to 5.0 mm.
  • the components of the steel material of the hot-rolled wire rod having a wire diameter of 5.5 mm are shown in Table 1. Dry drawing was performed on the hot-rolled wire rod. The hot-rolled wire rod was previously subjected to pickling to remove the scale and then subjected to a zinc phosphate coating treatment. Then, using a dry lubricant mainly composed of calcium stearate, the hot-rolled wire was drawn to a wire diameter of 2.51 mm under the condition of 1 pass reduction of area of 16 to 24%.
  • base plating (primary plating) was applied to the steel wire to be plated, and then hot-dip plating was performed.
  • Primary plating was either electroplating or hot-dip galvanizing.
  • the manufacturing method in the case of using primary plating as electroplating was as follows. After degreasing the above-mentioned wire drawing material with an alkaline solution and removing the wire drawing lubricant, steel materials A and B are not heat-treated, but steel material C is heat-treated and pickled, electric Zn of 1 to 2 ⁇ m thickness is electroplated Plating was performed, followed by immersion in a molten metal containing Zn, Al, Mg, and optionally, optional additional elements, and pulled vertically from the bath to produce a hot-dip galvanized steel wire.
  • the types of bath components and base plating are shown in Table 2-1.
  • a thick alloy layer containing Fe—Al—Zn (Mg) is not formed at the interface between the base iron and the plating layer.
  • the balance of the bath components described in Table 2-1 is Zn and impurities.
  • a so-called pure Zn plating bath was used.
  • the wire drawing material When primary plating is hot-dip galvanizing, the wire drawing material is degreased with an alkaline solution, and after removing the wire drawing lubricant, the steel materials A and B are not heat treated, but the steel material C is heat treated and pickled After that, it is dipped in a bath in which Zn is melted, a hot-dip galvanized layer is formed on the surface, and then temporarily wound or dipped continuously in a molten metal containing Zn, Al, Mg and, if necessary, optional elements.
  • the plating wire was manufactured by pulling vertically from the bath.
  • the hot-dip galvanized wire manufactured by this process has an alloy layer mainly composed of Fe-Al-Zn-Mg with a thickness of 1 ⁇ m or more formed at the interface between the base iron and the plating layer. If the primary plating is electroplating, no alloy layer is formed at the hot-dip interface with the ground iron, and if the primary plating is hot-dip galvanizing, an alloy layer is formed at the hot-iron and hot-dip interface Become.
  • the cooling start temperature after pulling up from the bath, and the cooling rate, hot-dip galvanized steel wires having different compositions and structures of the plated layer were manufactured.
  • the plating adhesion amount was adjusted to 300 to 350 g / m 2 .
  • the forced cooling by spraying the refrigerant was performed to 280 ° C. or less.
  • the cooling start temperature which is the coolant spraying temperature, and the average cooling rate from the cooling start to 280 ° C. are shown in Table 2-2.
  • the solidification completion temperature calculated from the chemical composition of the molten metal by Thermo-Calc, an integrated thermodynamic calculation software, is also shown in Table 2-2.
  • the winding processability evaluation of the hot-dipped steel wire was carried out by the following method.
  • the hot-dip galvanized steel wire was wound six times around the outer circumference of the steel wire having an outer diameter four times the diameter of the hot-dip galvanized steel wire, and the appearance of cracking of the hot-dip galvanized steel wire was investigated by appearance and cross-sectional observation. When no crack was observed on the surface of the plated layer and the cross section of the plated layer, the winding workability of the hot-dip galvanized steel wire was judged to be extremely good (VERY GOOD), and it was described as "VG" in the table.
  • VERY GOOD extremely good
  • the corrosion resistance of the hot-dip galvanized steel wire was evaluated by the following method.
  • the salt spray test described in JIS Z 2371: 2015 “salt water spray test method” was performed on the non-strand-processed hot-dip galvanized steel wire.
  • the corrosion loss of the hot-dip galvanized steel wire was evaluated by corrosion loss of the hot-dip galvanized steel wire after salt spray of 1000 hours.
  • An index was determined by setting the corrosion loss of a normal Zn plated steel wire (Zn plated steel wire of Comparative Example 27) to 100, and when the corrosion loss was 25% or less of Zn plating, it was judged that the corrosion resistance was extremely good.
  • the corrosion loss was 25 to 40% of Zn plating, it was judged that the corrosion resistance was good.
  • the corrosion loss was over 40% of Zn plating the effect of improving the corrosion resistance was small, and it was judged that the corrosion resistance was poor.
  • a pure Zn plated steel wire, a Zn-5% Al plated steel wire, and a Zn-10% Al plated steel wire were similarly manufactured and the characteristics were evaluated.
  • the drawability evaluation of the hot-dip galvanized steel wire was carried out by the following method.
  • a plated steel wire which was melt-plated on a plated steel wire drawn to 2.51 mm was drawn using a die in a range of 15 to 20% of a surface reduction ratio per pass.
  • Grasp the hot-dip galvanized steel wire after drawing with a distance between chucks specifically, the distance between chucks with a length 100 times the wire diameter of the wire drawing material
  • the test was done.
  • the wire drawing strain ⁇ was determined from the limit of the wire diameter at which longitudinal cracking (delamination) occurs in the torsion test.
  • is a value obtained by the following equation.
  • Table 2-3 shows the results of evaluation of the characteristics of the hot-dip galvanized steel wire of the invention example and the comparative example.
  • Tables 2-1 to 2-3 values outside the scope of the invention and values below the above acceptance criteria are underlined.
  • the abundance ratio of Zn phase and the ratio of Zn phase with a circle equivalent diameter of 2 to 5 ⁇ m in all Zn phases in the inventive examples and comparative examples were determined according to the following procedure. First, the C cross section of the plating layer (the cross section perpendicular to the longitudinal direction of the hot-dip galvanized steel wire) was observed with a scanning electron microscope (SEM), and the components of the solidified structure were analyzed with an energy dispersive X-ray spectrometer (EDS) .
  • SEM scanning electron microscope
  • the phase specified by this and having a Zn concentration of 90% was judged as the Zn phase.
  • the abundance ratio of Zn phase was calculated
  • the above section is analyzed by electron backscatter diffraction (EBSD), the large angle grain boundary of which crystal orientation angle difference is 15 degrees or more is regarded as a grain boundary, and the analysis result is analyzed by EBSD analysis software.
  • the particle size distribution of the crystal grain which comprises a plating layer was calculated
  • the distribution of the grain size was determined only in the region where the Zn concentration is 90% or more by combining with the analysis data of EDS.
  • the area ratio of Zn phase with 2 to 5 ⁇ m of crystal grain size is integrated, and the ratio of Zn phase with 2 to 5 ⁇ m of crystal grain size to the area of all Zn phases is calculated. I asked for.
  • the hot-dip galvanized steel wire of the present invention was compared with No. 1 of the comparison material.
  • the same steel components are compared, and in all cases, 80% or more of the Zn plating wire as a standard and good wire drawability can be secured.
  • the corrosion resistance was determined by comparing the No. No. 27, 28 and 29 pure Zn-plated materials, no. No. 30 Zn-10% Al plating and no.
  • Favorable results were obtained in the inventive example as compared to Zn-5% Al of 31. No. of the present invention.
  • the samples Nos. 7, 12, and 13 had corrosion resistances of 37, 35, and 32 because the amount of Mg was small, and they were corrosion resistance judged to be good.
  • No. 1 of the plated steel wire of the present invention is a level judged to be good although the wire drawability is slightly lowered due to the high Mg content.
  • Nos. 16, 19 to 26 contain an optional additional element other than Si, and the plated layer becomes hard because the plated layer becomes hard.
  • the wire drawability is lower than that of the pure Zn plating of No. 27, but this level is also judged to be good.
  • the drawability of the other plated steel wire of the present invention is equal to or higher than that of a pure Zn-plated steel wire.
  • No. of the comparative example. 27 is pure Zn plating using a steel material A.
  • No. 28 is pure Zn plating using a steel material B.
  • No. 29 is pure Zn plating using a steel material C.
  • plating was soft, and although both formability and drawability were good, white rust was generated early in the corrosion resistance test, and the corrosion rate was relatively fast.
  • the corrosion resistance standard was described as "100" to be used as a reference of comparison. It was used as the standard of wire drawability for each steel material.
  • No. No. 30 is Zn-10% Al plating (not including Mg), which is better in corrosion resistance than Zn plating, but is an example inferior in corrosion resistance to the present invention.
  • 31 is also a Zn-5% Al plating (not containing Mg).
  • the amount of Al is less than 30, and no. This is an example in which the corrosion resistance is inferior to 30.
  • No. No. 32 is an example where Mg is below the lower limit of the present invention and corrosion resistance is inferior.
  • No. The sample No. 33 has many Mg and is good in corrosion resistance, but is an example in which the winding workability and the wire drawing processability are inferior because the MgZn intermetallic compound is formed and the plating layer becomes hard.
  • No. 34 is an example in which the amount of Al is below the lower limit of the present invention and corrosion resistance is poor, and since rapid cooling is performed from a temperature higher than the solidification completion temperature, cracking occurs in the plating layer and winding processability and wire drawing processability decrease.
  • No. No. 35 is an example in which the amount of Al is large, the amount of Zn phase is small, the plated layer becomes hard, and the winding workability and the wire drawing workability decrease.
  • No. No. 36 has a plating component within the scope of the present invention, but the cooling rate under production conditions is slow at 12 ° C./s, so the Zn phase becomes coarse and large, the corrosion resistance decreases, and a crack occurs in the winding test. is there.
  • No. 37 is obtained by quenching before falling below the solidification completion temperature. Here, there were few suitable crystal grains of Zn phase and many fine grains. Therefore, no. No. 37 is an example in which although the winding processability is a pass level, the corrosion resistance and the wire drawing processability are lowered. No.
  • the forced cooling start temperature is less than 280 ° C., that is, the forced cooling is started after cooling and solidification of the plated layer to a low temperature, so the structure of the plated layer becomes coarse and winding workability and wire drawing workability decrease.
  • No. 41 is an example in which the average cooling rate at forced cooling is as slow as 40 ° C./s, the structure of the plating layer is coarsened, and the winding processability and the wire drawing processability are reduced.
  • No. 42 is an example in which the average cooling rate at forced cooling is as fast as 180 ° C./s, cracks occur in the plating layer, and winding processability and wire drawing processability decrease.
  • the hot-dip galvanized steel wire of the present invention is excellent in the processability and corrosion resistance of the plating layer and can be applied to various applications, so the industrial applicability is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本発明の一態様に係る溶融めっき鋼線は、被めっき鋼線と、前記被めっき鋼線の表面に配されためっき層とを備え、前記めっき層の成分が所定範囲内であり、前記めっき層の組織は、質量%でZnを90%以上含むZn相を面積率で25~70%有し、前記Zn相に占める、円換算した結晶粒径が2~5μmの粒径を有するZn相の面積率が20~100%である。

Description

溶融めっき鋼線およびその製造方法
 本発明は、溶融めっき鋼線およびその製造方法に関するものである。
 本願は、2017年12月20日に、日本に出願された特願2017-243434号に基づき優先権を主張し、その内容をここに援用する。
 熱間圧延線材を素材として製造される溶融めっき鋼線は、熱間圧延後の鋼線材をデスケーリングし、更に被膜処理した後、ダイスやロールによる塑性加工により縮径されて、めっき前処理工程で酸洗やフラックス処理等による表面の活性処理後、溶融金属の浴に浸せきし、鋼線表面に金属の被膜を生成し、製造される。
 溶融めっきの目的は主に耐食性の改善であり、ここでは亜鉛、及び亜鉛-アルミニウム(Al)合金等の溶融金属被膜を形成し、亜鉛の犠牲防食作用により鉄の腐食を抑制する。この被膜が厚いほど、耐食性は改善される。また、Alやその他成分との合金化により、耐食性は改善される。特にZn、Alとともに微量のMgを含むめっき成分は、高い耐食性が得られる。しかし微量のMgを含むめっき成分では、ZnとMgとからなる硬質の金属間化合物の生成により、加工性が悪化する問題がある。即ち、めっきの後工程で各種加工が行われて製品となるまでの間に、めっき層に割れが発生したり、めっき層の剥離が発生したりする問題がある。このため溶融めっき鋼線には、耐食性とともに、後加工時にめっき剥離や割れが発生しない加工性が要求される。
 また、めっき層に割れが発生すると、めっき鋼線の強度低下や延性の低下が起きる場合がある。製品の特性を確保するためにも、加工時にめっき層に割れが発生しない優れた加工性が、めっき鋼線には求められている。
 そこで、従来から、加工性と耐食性を確保するためのMgおよびZn、Alを含む溶融めっきについて、種々提案されている。
 たとえば、特許文献1には、地鉄界面のFeを含む合金層を薄くすることで加工性を改善するめっきが提案されている。特許文献2には、MgZnの金属間化合物を分散させ、耐食性を改善するめっき組織が提案されている。特許文献3、4には、β相を20%以下に限定し、加工性と耐食性を改善するめっき線が提案されている。
 しかし、これらのめっき線であっても、めっき後に伸線加工を行う場合、めっき層における微細な亀裂の発生や、めっき層の局部的な剥離を完全になくすことは困難であり、めっき層に発生した亀裂を起点とした破壊によって強度と延性が低下することがあった。
日本国特開2003-155549号公報 日本国特開2002-47548号公報 日本国特開2002-30404号公報 日本国特開2002-30405号公報
 本発明は、上記事情に鑑みてなされたもので、巻き付け加工や伸線加工を行った時に、めっき層の割れや剥離がなく、Znめっき鋼線又はZn-Al溶融めっき鋼線に比べ高い耐食性が得られる溶融めっき鋼線、及びその製造方法を提供することを課題とする。
 本発明の要旨は以下のとおりである。
(1)本発明の一態様に係る溶融めっき鋼線は、被めっき鋼線と、前記被めっき鋼線の表面に配されためっき層とを備え、前記めっき層の成分が、質量%で、Mg:0.10%以上1.00%未満、Al:5.0%以上15.0%以下、Si:0%以上2.0%以下、Fe:0%以上1.0%以下、Sb:0%以上1.0%以下、Pb:0%以上1.0%以下、Sn:0%以上1.0%以下、Ca:0%以上1.0%以下、Co:0%以上1.0%以下、Mo:0%以上1.0%以下、Mn:0%以上1.0%以下、P:0%以上1.0%以下、B:0%以上1.0%以下、Bi:0%以上1.0%以下、Cr:0%以上1.0%以下、REM:0%以上1.0%以下、Ni:0%以上1.0%以下、Ti:0%以上1.0%以下、Zr:0%以上1.0%以下、及びSr:0%以上1.0%以下を含有し、残部がZnおよび不純物からなり、前記めっき層の組織は、質量%でZnを90%以上含むZn相を面積率で25~70%有し、前記Zn相に占める、円換算した結晶粒径が2~5μmの粒径を有する前記Zn相の面積率が20~100%である。
(2)上記(1)に記載の溶融めっき鋼線では、前記めっき層の前記成分が、質量%で、Si:0.01%以上2.0%以下を含有してもよい。
(3)上記(1)または(2)に記載の溶融めっき鋼線では、前記めっき層の前記成分が、質量%で、Fe:0.01%以上1.0%以下、Sb:0.01%以上1.0%以下、Pb:0.01%以上1.0%以下、Sn:0.01%以上1.0%以下、Ca:0.01%以上1.0%以下、Co:0.01%以上1.0%以下、Mo:0.01%以上1.0%以下、Mn:0.01%以上1.0%以下、P:0.01%以上1.0%以下、B:0.01%以上1.0%以下、Bi:0.01%以上1.0%以下、Cr:0.01%以上1.0%以下、及びREM:0.01%以上1.0%以下からなる群から選ばれる1種または2種以上を含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載の溶融めっき鋼線では、前記めっき層の前記成分が、質量%で、Ni:0.01%以上1.0%以下、Ti:0.01%以上1.0%以下、Zr:0.01%以上1.0%以下、及びSr:0.01%以上1.0%以下からなる群から選ばれる1種または2種以上を含有してもよい。
(5)本発明の別の態様に係る溶融めっき鋼線の製造方法は、上記(1)~(4)のいずれか一項に記載の溶融めっき鋼線を製造する方法であって、被めっき鋼線を溶融金属の浴に浸せきする工程と、前記被めっき鋼線を前記浴から引き上げる工程と、その後、前記被めっき鋼線を冷却する工程と、を備え、前記冷却において、前記被めっき鋼線の表面に形成されるめっき層の表面温度が、凝固完了温度を下回った後で、前記被めっき鋼線への冷媒の噴射を開始し、前記冷却において、前記被めっき鋼線のめっき層の表面温度が280℃を下回ってから、前記被めっき鋼線への前記冷媒の噴射を終了し、前記冷却において、前記被めっき鋼線の前記めっき層の表面の平均冷却速度を、前記冷媒の噴射の開始の際の前記めっき層の表面温度から280℃までの温度域において、50~150℃/sとする。
 本発明の溶融めっき鋼線はめっき被膜処理後に巻き付け加工や伸線加工を行ってもめっき層に割れや剥離が発生せず、高い耐食性が得られ、強度や延性が低下しないため、各種溶融めっき製品に適用が可能な加工性と耐食性に優れた溶融めっき鋼線であり、産業上の貢献が極めて顕著である。
本発明の実施形態に係る溶融めっき鋼線の製造工程図である。
 本発明者は、上記課題を解決するために、質量%で、Mg:0.10~1.00%、Al:5.0~15.0%、残りがZnおよび不純物からなる溶融めっき成分において、めっき層の組織が加工性及び耐食性に及ぼす影響について鋭意検討した。本発明者らはその結果、めっき層の割れが、Znを90%以上含む相の影響を強く受け、この相の結晶サイズを適正に制御することでめっき層の割れが低減できることを知見した。
 また、本発明者らは、めっき層の割れを抑制することにより、溶融めっき鋼線の強度低下や延性低下も抑制できることも見出した。
 さらに本発明者らは、本めっき成分はMgを含有するためにZn-Al、あるいはZnからなる溶融めっき鋼線に比べ高い耐食性が得られることを見出し、本発明を完成した。
 更に、溶融めっき成分がZn、Al、及びMgの他に任意にSiを含むことで、地鉄とめっきとの界面でのFeAl金属間化合物の生成が抑制され、さらに加工性が改善することが見出された。その他、任意に、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、REM、Ni、Ti、Zr、及びSrからなる群から選択される元素を単独で、あるいは複合的に溶融めっき成分に含有させることで、更に溶融めっき鋼線の加工性と耐食性が改善されることが見いだされた。
 本実施形態に係る溶融めっき鋼線の、Mgを0.10~1.00%未満含むめっき層の凝固組織では、凝固開始はじめにおいてAl濃度が高い相が初晶として生成し、その後にZnを90%以上含む相(以下Zn相と記す)とMgZn相が生成する。
 このとき、硬質なMgZn相はZn相とAl初晶との粒界に分布して析出する。このMgZn相がZn相の犠牲防食作用を維持し、安定な保護被膜を形成することで、溶融めっき鋼線の耐食性が改善される。このためMgZn相が微細かつ均一に分布することが、溶融めっき鋼線の耐食性の改善には有効である。
 また、めっき層の割れの挙動を調査するために、めっき鋼線を線径の4倍の径で曲げ加工して歪みを導入した際の亀裂の発生状況を詳細に観察した。その結果、亀裂は主に表層からZn相の結晶粒界を進展するものの、Zn相が粗大な場合は、この亀裂がZn相の粒内を突っ切って進展することがあることが明らかになった。また、Zn相の結晶粒が小さい場合は、Zn相の結晶粒界を亀裂が進展した場合であっても見かけ上、直線的に亀裂が生成し、被めっき鋼線の表面まで達することが明らかになった。この場合、ノッチ効果により破断強度の低下、及び延性の低下が発生するおそれがある。また、めっき層に発生した亀裂が地鉄界面で連結した場合は、めっき層の剥離に至る場合もある。
 本実施形態に係る溶融めっき鋼線においては、加工時にめっき層の割れや剥離を抑制し、加工性と耐食性とを確保するためには、Zn相の存在と、その結晶粒径の分布を適正に制御することとが重要である。めっき層の結晶粒径を適正に制御するためには、冷却開始温度、及び冷却速度を制御することが重要である。
 以下、本発明の実施形態について説明する。
 被めっき鋼線
 本実施形態に係る溶融めっき鋼線は、被めっき鋼線と、その表面に配された所定のめっき層とを有している。被めっき鋼線の成分は特に限定されず、例えば、JIS G 3505:2017の軟鋼線材、JIS G 3506:2017の硬鋼線材、及びJIS G 3502:2013のピアノ線材の成分としてもよい。本実施形態に係る溶融めっき鋼線は、例えばこのような成分を有する熱間圧延材を素材として、これに適宜冷間加工を施した後にその表面に溶融めっき層を形成することにより得られる溶融めっき鋼線である。
 めっき層の成分
 以下、めっき層の成分における単位「%」は「質量%」である。
 Mg:0.10%以上1.00%未満
 Mgは腐食生成物を安定化させ、腐食の進行を抑制させる作用がある。この腐食抑制作用を得るためには、めっき成分としてMgが0.10%以上は必要である。一方、めっき成分が1.00%以上のMgを含むと、硬質なZnMg金属間化合物が多く生成し、めっき層が硬くなり、溶融めっき鋼線の加工工程で割れが発生しやすく、局部的にはめっき剥離が発生することがあり加工性が低下することがある。そのため、1.00%未満をめっき成分におけるMg量の上限とするのが好ましい。なお、めっき成分におけるMg量は0.30%以上、0.40%以上、0.50%以上、0.60%以上、0.70%以上、又は0.80%以上としてもよい。また、めっき成分におけるMg量は0.80%以下、0.70%以下、0.60%以下、0.50%以下、0.40%以下、又は0.30%以下としてもよい。
 Al:5.0%以上15.0%以下
 Alも、Mgと同様に腐食生成物を安定化させる効果がある。めっき成分におけるAl量が5.0%未満では、その効果が小さくなり、耐食性改善効果が得にくくなる。一方、めっき成分におけるAl量が15.0%を超える場合、効果が飽和するとともに、めっき浴の融点が高くなり表面の酸化が進行しやすくなる。そのために、めっき成分におけるAl量を15.0%以下とするのが好ましい。なお、めっき成分におけるAl量は7.0%以上、7.5%以上、8.0%以上、9.0%以上、10.0%以上、11.0%以上、又は12.0%以上としてもよい。また、めっき成分におけるAl量は12.0%以下、11.0%以下、10.0%以下、9.0%以下、8.0%以下、7.5%以下、又は7.0%以下としてもよい。
 Si:0%以上2.0%以下
 Siはめっき層に含まれなくても良いので、めっき成分におけるSi含有量の下限値は0%である。一方、めっき層に含まれるSiは、めっき層中にMgSiを生成し、耐食性の改善に有効な元素である。さらにSiは、地鉄界面でのFeとAlとの反応を抑制し、主にFe及びAlからなる金属間化合物の生成を抑制し、めっき鋼線の加工性を高める効果を有する。しかしながら、めっき成分におけるSi量が2.0%を超える場合、その効果は飽和し、コスト的に不利となる。したがって、めっき成分におけるSi含有量を2.0%以下と定めた。上記効果を確実に得るためには、めっき成分におけるSiの含有量を0.01%以上、0.05%以上、又は0.10%以上とすることが好ましい。また、めっき成分におけるSiの含有量を1.00%以下、0.90%以下、又は0.85%以下としてもよい。
 Fe:0%以上1.0%以下、Sb:0%以上1.0%以下、Pb:0%以上1.0%以下、Ca:0%以上1.0%以下、Co:0%以上1.0%以下、P:0%以上1.0%以下、B:0%以上1.0%以下、Bi:0%以上1.0%以下、及びREM:0%以上1.0%以下からなる群から選ばれる1種または2種以上
 めっき層に、Fe、Sb、Pb、Ca、Co、P、B、Bi、及びREMは含有させなくても良いので、めっき成分におけるこれら元素の含有量の下限値は0%である。一方、これら元素の一種以上がめっき層に含まれる場合、さらにめっき層の耐食性が改善される。しかしながら、それぞれ1.0%を超えるこれら元素をめっき層に含有させても、その効果は飽和し、さらに加工性が低下するためコスト的に不利となる。したがって、これら任意元素を含有させる場合の含有量の上限をそれぞれ上述の通り定めた。上記効果を確実に得るためには、各元素の含有量をそれぞれ0.01%以上とすることが望ましい。
 Sr:0%以上1.0%以下、Cr:0%以上1.0%以下、Mn:0%以上1.0%以下、及びSn:0%以上1.0%以下からなる群から選ばれる1種または2種以上
 めっき層にSr、Cr、Mn、Snは含有させなくても良いので、めっき成分におけるこれらの含有量の下限値は0%である。一方、これら元素の1種以上がめっき層に含まれる場合、めっき層の耐食性改善、及びめっき層の加工性の改善が期待できる。しかしながら、1.0%を超えるとこれら成分の偏析が大きくなり、加工時に割れを発生し易くなることがあるので、上限を1.0%と定めた。上記効果を確実に得るためには、各元素の含有量をそれぞれ0.01%以上とすることが好ましい。
 Mo:0%以上、1.0%以下
 めっき層にMoは含有させなくても良いのでめっき成分におけるMo含有量の下限値は0%である。一方、Moがめっき層に含まれる場合、めっき層の耐食性改善、及びめっき層の耐摩耗性の改善が期待できる。しかしながら、1.0%を超えるとめっき層が硬くなり、加工性が低下することがあるので、上限を1.0%と定めた。上記効果を確実に得るためには、Mo含有量は0.01%以上とするのが好ましい。
 Ni:0%以上1.0%以下、Ti:0%以上1.0%以下、Zr:0%以上1.0%以下、Sr:0%以上1.0%以下からなる群から選ばれる1種または2種以上
 めっき層に、Ni、Ti、Zr、及びSrは含有させなくても良いので、めっき成分におけるこれら元素の含有量の下限値は0%である。一方、これら元素がめっき層に含有される場合、これら元素はいずれもAlとの金属間化合物を晶出させ、溶融めっき鋼線の表面平滑性を向上させる効果を有する。しかしながら、これら元素を1.0%を超えてめっき層に含有させると、反対にめっき表面が粗くなり、外観不良が発生する。したがって、これら任意元素を含有させる場合の含有量の上限をそれぞれ1.0%以下と定めた。上記効果を確実に得るためには、各元素の含有量をそれぞれ0.01%以上とすることが好ましい。
 めっき層の成分の残部:Znおよび不純物を含む
 めっき層の成分において、Mg、及びAl、並びに任意元素であるSi、Fe、Sb、Pb、Sn、Ca、Co、Mo、Mn、P、B、Bi、Cr、REM、Ni、Ti、Zr、及びSr以外は、Zn及び不純物を含む残部である。不純物とは、めっき層を工業的に製造する際に、溶融金属原材料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る溶融めっき鋼線に悪影響を与えない範囲で許容されるものを意味する。
 めっき層の成分は、以下の手段によって特定することができる。めっき鋼線のC断面(めっき鋼線の長手方向に直角な断面)を研磨し、この研磨面におけるめっき層部分の領域をEPMA(電子線マイクロアナライザ:Electron Probe Micro Analyzer)で定量分析する。地鉄界面に合金層が生成している場合は、定量分析では、合金層を含まないめっき層部分を分析対象とする。この測定を3カ所で実施して得られた値の平均値を、めっき鋼線のめっき層の成分とみなす。
 めっき層の組織
 質量%でZnを90%以上含む相(Zn相)の存在比率
 Mg:0.1%以上1.0%未満、及びAl:5.0%以上15.0%以下を含むめっき層の組織では、まず凝固開始の初期にAlを含む初晶が生成し、めっき層の温度低下にともないめっき層の凝固が進展し、そしてZnを主体とする相(Zn相)と、ZnMgからなる共晶組織(ZnMg相)とが生成する。
 この時のZn相は、少なくともZn濃度が90%以上である。Zn相は軟質な相であるので、その存在比率がめっき層の組織全体に対する面積率で25%未満となると、めっき層が硬くなり、溶融めっき鋼線の加工性が低下する。一方、Zn相の存在比率がめっき層の組織全体に対する面積率で70%を超えると、Zn相が過剰となり、Znめっきと同等の耐食性となり、耐食性改善効果が得られない。そのため、Zn相の存在比率は、めっき層の組織全体に対する面積率で25~70%である。より好ましくは、Zn相の面積率は30%以上、35%以上、又は40%以上である。より好ましくは、Zn相の面積率は80%以下、70%以下、60%以下、又は50%である。
 所定粒径のZn相の存在比率
 質量%でZnを90%以上含む相であるZn相の結晶粒径は、溶融めっき鋼線の製造段階におけるめっき層の冷却速度により変化し、ある範囲で分布を持つ。冷却速度が速い場合は、Zn相は微細な結晶粒径を有するものとなり、冷却速度が遅い場合は、Zn相は粗大な結晶粒径を有するものとなる。
 溶融めっき鋼線に歪みが導入されるような加工を行うと、めっき層に亀裂が発生する場合がある。めっき層に発生した亀裂は、めっき層と地鉄(被めっき鋼線)との界面(地鉄界面)に到達すると、地鉄内に進展し、ノッチ効果により鋼材の強度低下、及び延性低下等を引き起こすことがある。また、地鉄界面まで亀裂が進展し、連結すると、局部的にめっき層の剥離が発生することがある。この場合、めっき層の剥離部では地鉄が露出するので、耐食性の低下が生じる。このため、めっき層には、歪みが導入されるような加工が行われても亀裂の発生やめっき剥離が発生しないことが要求される。
 めっき層に歪みが作用した時の亀裂の発生、進展状況は、Zn相の形態及び粒径により大きく異なる。Zn相の粒径が大きい場合は、Zn相の粒内を亀裂が進展し、めっき層の表面に大きく開口した割れが発生する。一方、Zn相が細粒な場合は、Zn相の結晶粒界に沿って亀裂が発生し、めっき層を亀裂が貫通せず、微細な亀裂に留まることがある。しかし、さらに微細なZn相組織の場合には、粒界を亀裂が進展するものの、見かけ上はほぼ直線的に亀裂が進展し、割れが地鉄(被めっき鋼線)まで進展し、耐食性の低下及び延性の低下を招くことがある。このため、亀裂の発生を抑制するためには、適正にZn相の結晶粒径を制御することが必要であり、その最小粒径は2μmで、最大粒径は5μmである。即ち、円換算した結晶粒径が2~5μmの粒径を有するZn相の量を、可能な限り高めることが、本実施形態に係る溶融めっき鋼線では必要とされる。
 ただし、Zn相の結晶粒は、必ずしも全てが2~5μmの結晶粒径である必要は無い。亀裂の進展を抑制し、且つ耐食性を確保するためには、結晶粒径が2~5μmであるZn相が、全Zn相のうち20面積%以上であることが好ましい。全てのZn相に占める、円換算した結晶粒径が2~5μmの粒径を有するZn相の面積率は多い方が好ましく、その上限は100%である。全てのZn相に占める、円換算した結晶粒径が2~5μmの粒径を有するZn相の面積率を30%以上、40%以上、又は45%以上と規定してもよい。全てのZn相に占める、円換算した結晶粒径が2~5μmの粒径を有するZn相の面積率を95%以下、90%以下、又は80%以下と規定してもよい。
 なお、微細組織の場合は、亀裂が微細になるために延性低下を抑制出来る場合があるものの、腐食環境では局部電池のセルが多く形成されるとともに、反応界面が増加し、めっき層の腐食が進行しやすくなる。そのため、より好ましいZn相の結晶粒径の下限は2.5μmである。更に、Zn相の亀裂進展を抑制する粒径のより好ましい上限は4.5μmである。上述の要件を満たした上で、円換算した結晶粒径が2.5~4.5μmの粒径を有するZn相の存在比率を30~100%とすることが一層好ましい。
 めっき層組織の定量化は、以下の手順で行う。まず、めっき層のC断面(溶融めっき鋼線の長手方向に垂直な断面)を走査型電子顕微鏡(SEM:Scanning Electron Microscope)の反射電子像で観察し、めっき層領域を特定する。後述するように、本実施形態に係る溶融めっき鋼線は、地鉄とめっき層との間に合金層及び下地めっき層等が設けられていてもよいが、めっき層組織の定量化にあたっては、これら合金層及び下地めっき層等は分析対象外とする。反射電子像であれば、地鉄、合金層、並びにめっき層及び下地めっき層等のその他の層を容易に区別することができる。次に、エネルギー分散型X線分光器(EDS:Energy dispersive X-ray spectrometry)で、めっき層の成分の分布を分析する(いわゆる面分析)。これにより特定された、Zn濃度が90%である相をZn相と判断する。そして、めっき層の断面中で確認される全てのZn相の面積を、めっき層の断面の面積で除することによって、測定対象となった断面におけるZn相の存在比率を求める。この手順を3断面で繰り返し、これにより得られた3断面でのZn相の存在比率の平均値を、溶融めっき鋼線におけるZn相の面積率とする。
 また、電子線後方散乱回折法(EBSD:Electron BackScatter Diffraction)により上記断面を分析し、結晶方位の角度差が15度以上の大角粒界を結晶粒界とみなして、EBSD解析ソフトで分析結果を解析することで、めっき層を構成する結晶粒の粒径分布を求めることができる。EBSDによるZn相の結晶粒径を求めるときにEDSの分析データと複合化することで、Zn濃度が90%以上の領域についてのみ、結晶粒径の分布を求めることができる。結晶粒径が2~5μmのZn相の面積率を積算し、全Zn相の面積に対する結晶粒径が2~5μmのZn相の比率を算出することにより、分析対象となった断面における適正粒径のZn相の存在比率を求めることができる。この手順を3断面で繰り返し、これにより得られた3断面での適正粒径のZn相の存在比率の平均値を、溶融めっき鋼線における適正粒径のZn相の存在比率とする。
 本実施形態に係る溶融めっき鋼線においては、めっき付着量は必ずしも制限はされず、例えば50g/m程度の薄めっきから300g/m以上の厚めっきまで、適用用途に応じて幅広い数値範囲を選択することができる。めっき層の成分と組織とを上述の通り適正化することで、めっき付着量に関わらず、溶融めっき鋼線の加工性と耐食性とが確保可能となる。
 めっき付着量の測定は、JIS G 3548:2011「亜鉛めっき鋼線」に準じて実施する。具体的な手順は以下の通りである。ヘキサメチレンテトラミン3.5gを、質量分率35%の塩酸500mlに溶かし、その溶液を1Lに希釈した溶液に、長さ300mm~600mmに切断した溶融めっき鋼線を、気泡の発生がなくなるまで浸せきする。浸せき前の溶融めっき鋼線の重量(即ち、試験片のめっき皮膜を除去する前の質量)W(g)、及びめっき層溶解後の鋼線の重量(即ち、試験片のめっき皮膜を除去した後の質量)W(g)、及びめっき層溶解後の鋼線の線径d(mm)を測定する。これらの数値を以下の計算式に代入することで、めっき付着量A(g/m)を求めることができる。
 A=((W-W)/W)×d×1960
 同様に、本実施形態に係る溶融めっき鋼線のめっき層の厚さも特に限定されない。例えば、めっき層の厚さを7~55μmの範囲内としてもよい。めっき層の厚さは、C断面で、めっき層をSEM観察し、最大めっき厚さ、最小めっき厚さを含む、円周8点で、合金層を含むめっき層部の厚さを測定し、8点の平均値として求めることができる。
 製造方法
 次に、本実施形態に係る溶融めっき鋼線を製造する方法について説明する。本実施形態に係る溶融めっき鋼線の製造方法は、被めっき鋼線を溶融金属の浴に浸漬する工程と、被めっき鋼線を浴から引き上げる工程と、その後、被めっき鋼線を冷却する工程とを備える。被めっき鋼線の製造方法は特に限定されない。
 溶融めっき鋼線の製造工程の一例を図1に示す。熱間圧延線材の表面に生成したスケール(酸化鉄)を酸洗又はメカニカルに除去し、更に熱間圧延線材の表面に被膜処理した後、熱間圧延線材をダイスやロールによる伸線等の冷間加工で目標の線径に調整することにより、素線(被めっき鋼線1)を得る。この被めっき鋼線1に、任意に熱処理した後、めっき前処理装置2で脱脂、酸洗、及び電気Znめっき又は溶融亜鉛めっきによる1次めっきを行う。次いで、本実施形態に係る溶融めっき鋼線の製造のめっき層の成分のめっき金属が溶融した浴に1次めっきされた被めっき鋼線1を浸せきし、被めっき鋼線1の表面に溶融金属3の被膜を形成する。被めっき鋼線1を浴の外に引き出した後に、溶融金属を冷却凝固させ、めっき層を形成する。
 1次めっき及び溶融めっきは、被めっき鋼線1を連続して通材、浸せきすることにより実施しても良い。一方、1次めっき後の被めっき鋼線1を一旦巻き取った後に、再度本実施形態に係る製造方法におけるめっき浴に被めっき鋼線1を浸せきさせても良い。
 めっき層の組織の制御は、被めっき鋼線1が溶融金属の浴から引き上げられて、1次冷却装置4で放冷された後に、2次冷却装置5で行われる強制冷却の条件を制御することで可能となる。具体的には、2次冷却装置5における冷却開始温度及び平均冷却速度が、めっき層の組織制御のために重要となる。ここで、2次冷却装置5における冷却開始温度とは、2次冷却装置5において被めっき鋼線1に冷媒の噴射を開始した際の、被めっき鋼線1の表面温度をいう。冷媒は例えば水、ガス、及びミスト等であるが、これに限定されない。
 なお放冷とは、2次冷却装置5におけるめっき層の強制冷却を実施する前の冷却であり、冷媒を吹き付けることなく被めっき鋼線1と1次冷却装置4の雰囲気温度との温度差を利用して被めっき鋼線1を冷却することをいう。この放冷における平均冷却速度は、被めっき鋼線1を溶融金属の浴から引き上げた際の被めっき鋼線1の表面温度(溶融金属温度)と、2次冷却装置5において被めっき鋼線1に冷媒の噴射を開始するまでの被めっき鋼線1の表面温度との差を、被めっき鋼線1を溶融金属の浴から引き上げてから被めっき鋼線1への冷媒の噴射を開始するまでの時間で割った値である。放冷においては、平均冷却速度が50℃/s未満の冷却速度での冷却が実施されることが好ましい。
 強制冷却開始温度
 めっき層の組織を制御するためには、強制冷却開始温度が重要である。凝固完了温度とは、めっき層が全て固相となる温度である。めっき層の温度が凝固開始温度と凝固完了温度との間にあるとき、めっき層は固液混合状態となっている。
 めっき層の凝固完了温度より高い温度から被めっき鋼線1を強制冷却する場合は、冷媒の噴射により、めっき層の未凝固層が乱れ、めっき層の表面性状を悪化させる。そのため、めっき層の表面温度が凝固完了温度より低く、液相が存在しない温度になった以降に強制冷却を開始することが好ましい。
 一方、低温までめっき層の温度が低下した後に強制冷却を開始しても、めっき層の凝固がゆっくり進行してしまい、組織を制御することは出来ない。そのため、強制冷却開始温度の下限値は、300℃とすることが好ましい。ここで、上述のめっき層の凝固完了温度とは平衡状態で液相が無くなる温度のことであり、溶融金属の成分から、統合型熱力学計算ソフトウェアのThermo-Calcで、求めた平衡状態の値である。強制冷却の終了温度は、ZnとAlの共析変態温度の280℃以下であることが好ましい。280℃以下ではZn相の結晶粒径はほとんど変化しないためである。
 強制冷却速度
 本実施形態に係る溶融めっき鋼線のめっき層の組織を好ましく制御するためには、十分に早い強制冷却速度でめっき層を冷却することが必要である。めっき層の平均冷却速度が50℃/s未満では組織微細化効果が小さく、めっき層の組織が成長して、粗大化し、好ましいZn相粒径分布が得られなくなる。一方、150℃/sを超える平均冷却速度で強制冷却しても、組織の制御性が飽和するとともに、めっき層に凝固割れが発生し、加工性が低下する。そのため、本実施形態に係る製造方法では、強制冷却における平均冷却速度を、冷媒の噴射の開始の際のめっき層の表面温度から280℃までの温度域において50℃/秒~150℃/秒に制御する。より好ましくは70℃/秒~130℃/秒である。なお、2次冷却装置5における強制冷却において、平均冷却速度とは、上述の冷却開始温度と280℃との差を、冷媒噴射の開始からめっき層の表面温度が280℃になるまでの時間で割った値である。冷媒噴射が、めっき層の表面温度が280℃になる前に終了した場合、平均冷却速度は、冷却開始温度と冷媒噴射終了時のめっき層の表面温度との差を、冷媒噴射の開始から終了までの時間で割った値とみなされる。
 強制冷却における平均冷却速度は冷却方法により調整することができ、水冷による方法では冷却水量、冷却時間等を調整することで制御可能である。また、冷却ノズルを2流体、気水、水膜等のノズルを用いる方法や特定のガスを噴射することでも強制冷却における平均冷却速度を制御できる場合がある。ただし、本実施形態に係る製造方法において、強制冷却方法は前記方法に制限されず、いずれの冷却法も適用可能である。
 以上説明したように、溶融めっき鋼線のめっき層の成分及び組織を、上述した本実施形態のめっき層の成分、組織へと制御することで、各種加工を行った場合でもめっき層の亀裂発生や剥離が発生せず、Znめっき又はZn-Alめっきに比べ良好な耐食性を有し、強度及び延性の低下もない、加工性及び耐食性が良好な溶融めっき鋼線を得ることができる。
 また、めっきされる被めっき鋼線の鋼成分、強度等の特性は特に制限されない。例えば、C:0.01~1.2%、Si:0.01~1.5%、Mn:0.01~2.0%を含み、残部が鉄及び不純物を含む鋼材、上述の合金元素に加えてさらにCrを0.5%以下含む鋼材、上述の合金元素に加えてさらにTi、B、Al、Cu、Mo、及びSn等を含む鋼材などを、本実施形態に係る溶融めっき鋼線の被めっき鋼線とすることができる。また、被めっき鋼線は、表面に電気Znめっき、溶融亜鉛めっき、および溶融亜鉛合金めっき(例えば、Al、Mgが添加されたZn合金など)が施されていても良い。即ち、本実施形態に係る溶融めっき鋼線は、上述の成分を有するめっき層と被めっき鋼線との間に、上述した下地めっき層をさらに有していてもよい。また、被めっき鋼線である地鉄とめっき層との界面に1μm以上の厚さのFe-Al-Zn-Mgを主成分とする合金層が形成されていてもよい。めっき層と被めっき鋼線との間に、下地めっき層及び合金層などが形成されている場合、めっき層の化学成分及び組織の特定にあたっては、上述のように、測定領域がめっき層以外の領域を含まないようにしなければならない。溶融めっき鋼線の線径も特に限定されず、例えば2.0mm~5.0mmとすることができる。
 以下、本発明の実施例について説明する。なお、本発明は、必ずしも本実施例に記載の方法に限定されるものではない。
 線径が5.5mmの熱間圧延線材の鋼材の成分(記載の成分の残部はFeおよび不純物である)を表1に示す。この熱間圧延線材に乾式伸線を実施した。熱間圧延線材には、前もって酸洗でスケールを除去した後、リン酸亜鉛被膜処理を行った。そして、ステアリン酸カルシウムを主体とした乾式潤滑剤を用いて、1パス減面率が16~24%の条件で、線径が2.51mmとなるまで熱間圧延線材を伸線加工した。
Figure JPOXMLDOC01-appb-T000001
 次に、被めっき鋼線に下地めっき(1次めっき)を施してから、溶融めっきを施した。1次めっきは、電気めっき又は溶融亜鉛めっきのいずれかとした。
 1次めっきを電気めっきとする場合の製造方法は以下の通りとした。上述の伸線材をアルカリ溶液で脱脂し、伸線潤滑剤を除去後、鋼材A、Bは熱処理せずに、鋼材Cは熱処理を実施し、酸洗した後、厚さ1~2μmの電気Znめっきを行い、引き続きZn、Al、Mg、および必要に応じて任意添加元素を含む溶融金属に浸せきし、浴から垂直に引き上げて、溶融めっき鋼線を製造した。浴成分及び下地めっきの種類を表2-1に示す。このプロセスで製造した溶融めっき鋼線は、地鉄とめっき層との界面にFe-Al-Zn(Mg)を含む厚い合金層は形成されないものである。なお、表2-1に記載の浴成分の残部はZn及び不純物である。比較例27~29の製造では、いわゆる純Znめっき浴を用いた。
 1次めっきを溶融亜鉛めっきとする場合は、伸線材をアルカリ液で脱脂し、伸線潤滑剤を除去後、鋼材A、Bは熱処理せずに、鋼材Cは熱処理を実施し、酸洗した後、Znが溶融した浴に浸せきし、表面に溶融亜鉛めっき層を形成した後一旦巻取り、もしくは連続して、Zn、Al、Mgおよび必要に応じて任意添加元素を含む溶融金属に浸せきし、浴から垂直に引き上げてめっき線を製造した。このプロセスで製造した溶融めっき線は、地鉄とめっき層界面に1μm以上の厚さのFe-Al-Zn-Mgを主成分とする合金層が形成されたものである。1次めっきが電気めっきの場合は、地鉄と溶融めっき界面に合金層は形成されず、1次めっきが溶融亜鉛めっきの場合は、地鉄と溶融めっき界面に合金層が形成されたものとなる。
 このときの溶融金属のAl、Mg濃度、浴から引き上げた後の冷却開始温度、及び冷却速度を変えて、めっき層の成分及び組織が異なる溶融めっき鋼線を製造した。めっき付着量は300~350g/mに調整した。なお、全ての発明例及び比較例において、冷媒の吹き付けによる強制冷却は280℃以下まで実施した。冷媒吹き付け温度である冷却開始温度、及び冷却開始から280℃までの平均冷却速度を、表2-2に示す。また、統合型熱力学計算ソフトウェアのThermo-Calcによって、溶融金属の化学成分から算出される凝固完了温度も、表2-2にあわせて示す。
 溶融めっき鋼線の巻き付け加工性評価は以下の方法で実施した。溶融めっき鋼線の直径の4倍の外径を有する鋼線の外周に、溶融めっき鋼線を6回巻き付け、外観および断面観察によって、巻き付けた溶融めっき鋼線の亀裂発生状況を調査した。めっき層の表面およびめっき層の断面に亀裂が確認されない場合は、溶融めっき鋼線の巻き付け加工性を極めて良好(VERY GOOD)と判断し、表に「VG」と記載した。めっき層の表面に割れはないものの、断面観察で割れが観察され、これがめっき層内で止まり地鉄界面まで進展しない場合は、巻き付け加工性を良好(GOOD)と判断し、表に「G」と記載した。めっき層の表面から地鉄界面まで亀裂が進展した場合は、巻き付け加工性を不良(BAD)と判断し、表に「B」と記載した。
 溶融めっき鋼線の耐食性評価は以下の方法で実施した。撚り線加工していない溶融めっき鋼線に、JIS Z 2371:2015「塩水噴霧試験方法」に記載の塩水噴霧試験を実施した。1000時間の塩水噴霧後の溶融めっき鋼線の腐食減量で、溶融めっき鋼線の耐食性を評価した。通常のZnめっき鋼線(比較例27のZnめっき鋼線)の腐食減量を100とした指数を求め、腐食減量がZnめっきの25%以下の場合は、耐食性が極めて良好と判断した。また、腐食減量がZnめっきの25~40%の場合は、耐食性が良好と判断した。腐食減量がZnめっきの40%超の場合は、耐食性改善効果が小さく、耐食性が不良と判断した。
 比較材として、純Znめっき鋼線、Zn-5%Alめっき鋼線、Zn-10%Alめっき鋼線も同様に製造して特性を評価した。
 溶融めっき鋼線の伸線加工性評価は、以下の方法で実施した。2.51mmに伸線した被めっき鋼線に溶融めっきしためっき鋼線を、ダイスを用いて1パス減面率15~20%の範囲で伸線した。伸線後の各伸線径毎に異なるチャック間距離(具体的には、伸線材の線径の100倍の長さのチャック間距離)で、伸線後の溶融めっき鋼線を掴んで捻り試験を行った。ねじり試験において縦割れ(デラミネーション)が発生する限界の線径から伸線加工歪みεを求めた。ここで、εとは以下の式によって得られる値である。
 ε=2×ln(d0/d)
 d0:めっき鋼線径
 d:伸線後の線径
 表1の鋼材成分で、純Znめっき材の限界伸線加工歪み(ε)を100として、同じ鋼材成分の各種めっき鋼線の限界伸線加工歪みを指数化して伸線加工性指数として評価した。伸線加工性指数が100以上の場合は、伸線加工性が極めて良好と判断して表に「VG」と記載した。伸線加工性指数が80~100未満の場合は、伸線加工性が良好と判断して、表に「G」と記載した。伸線加工性指数が80未満の場合は、伸線加工性が不良であると判断して、表に「B」と記載した。
 表2-3に本発明例と比較例の溶融めっき鋼線の特性評価結果を示す。表2-1~表2-3において、発明範囲外の値、及び上記合否基準に満たない値には下線を付した。なお、本発明例及び比較例におけるZn相の存在比率、及び円相当径が2~5μmのZn相が全Zn相に占める比率は、以下の手順で求めた。まず、めっき層のC断面(溶融めっき鋼線の長手方向に垂直な断面)を走査型電子顕微鏡(SEM)で観察し、エネルギー分散型X線分光器(EDS)で凝固組織の成分を分析した。これにより特定された、Zn濃度が90%である相をZn相と判断した。そして、全断面中におけるZn相の面積比率によって、Zn相の存在比率を求めた。また、電子線後方散乱回折法(EBSD:Electron BackScatter Diffraction)により上記断面を分析し、結晶方位の角度差が15度以上の大角粒界を結晶粒界とみなして、EBSD解析ソフトで分析結果を解析することで、めっき層を構成する結晶粒の粒径分布を求めた。EBSDによるZn相の結晶粒径を求めるときにEDSの分析データと複合化することで、Zn濃度が90%以上の領域についてのみ、結晶粒径の分布を求めた。結晶粒径が2~5μmのZn相の面積率を積算し、全Zn相の面積に対する結晶粒径が2~5μmのZn相の比率を算出することにより、適正粒径のZn相の存在比率を求めた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明のNo.1、6~8、12~14、16、18、19、23、26の溶融めっき鋼線は巻き付け試験で割れは発生せず極めて良好な巻き付け加工性であった。No.2~5、9~11、15、17、20~22、24、25はめっき層内に微細な割れが確認されたものの、めっき層を貫通した割れや、表面に開口した割れはなく、巻き付け加工性は良好と判断された。
 地鉄とめっき層界面にFe、Zn、Al合金層が生成した場合は、曲げ加工で合金層に優先して割れが発生する傾向が見られる場合はあるが、本発明の組織ではめっき層全体に亀裂が貫通せず、外観上割れは認められなかった。
 伸線加工性に関しては、界面の合金層の影響は見られず、本発明の溶融めっき鋼線は比較材のNo.27、28、29の純Znめっきと同じ鋼材成分で比較し、いずれも基準としたZnめっき線の80%以上と良好な伸線加工性が確保できている。
 さらに、耐食性は、比較材のNo.27、28、29の純Znめっき材、No.30のZn-10%AlめっきおよびNo.31のZn-5%Alと比べて、本発明例では良好な結果が得られた。本発明のNo.7、12、13は、Mg量が少ないため耐食性指数が37、35、32であり、良好と判断される耐食性であった。
 本発明のめっき鋼線のNo.6はMg量が高めのため、伸線加工性は若干低くなっているが、良好と判断されるレベルである。また、鋼材Aで製造したNo.16,19~26はSi以外の任意添加元素を含み、めっき層が硬くなるためにNo.27の純Znめっきに比べ伸線加工性が低くなっているが、やはり良好と判断されるレベルである。その他の本発明のめっき鋼線の伸線加工性は、純Znめっき鋼線と同等以上の伸線加工性である。
 比較例のNo.27は、鋼材Aを用いた純Znめっきである。No.28は鋼材Bを用いた純Znめっきである。No.29は鋼材Cを用いた純Znめっきである。これらの比較例は評価の基準としたもので、めっきが軟らかく、加工性および伸線加工性とも良好であるが、耐食性試験では早期に白錆が発生し、腐食速度も比較的速かった。耐食性基準は、比較の基準として用いるために「100」と記載した。それぞれの鋼材毎に、伸線加工性の基準とした。
 No.30はZn-10%Alめっき(Mgを含まない)であり、Znめっきよりは耐食性は良好であるが、本願発明より耐食性が劣る例である。
 No.31もZn-5%Alめっき(Mgを含まない)であり、No.30よりAl量が少なく、No.30より耐食性が劣る例である。
 No.32はMgが本発明の下限以下で、耐食性が劣る例である。
 No.33はMgが多く、耐食性は良好だが、MgZn金属間化合物が生成し、めっき層が硬くなったため、巻き付け加工性と伸線加工性とが劣った例である。
 No.34はAl量が本発明の下限以下で、耐食性が劣り、凝固完了温度より高い温度から急冷したためにめっき層に割れが発生し、巻き付け加工性、伸線加工性とも低下した例である。
 No.35はAl量が多く、Zn相が少なくなり、めっき層が硬くなり、巻き付け加工性と伸線加工性が低下した例である。
 No.36は、めっき成分は本発明範囲内にあるが、製造条件の冷却速度が12℃/sと遅いため、Zn相が粗大かつ多くなり、耐食性が低下し、巻き付け試験で割れが発生した例である。
 No.37は凝固完了温度を下回る前に急冷することにより得られたものである。ここでは、Zn相の適正結晶粒が少なく、微細粒が多くなった。そのため、No.37は巻き付け加工性は合格レベルであるが、耐食性と伸線加工性とが低下した例である。
 No.38は、45℃/sの平均速度で徐冷したことにより得られたものである。ここでは、Zn相の適正粒径の結晶が少なく、粗大粒が多かった。そのため、No.38は、耐食性は合格レベルであるが巻き付け加工性と伸線加工性が低下した例である。
 No.39はまだめっきの凝固が完了していない状態(半溶融状態)で強制冷却を開始したため、微細な凝固組織となり、耐食性が低下するとともに表面性状が悪化し、巻き付け加工性と伸線加工性が低下した例である。
 No.40は強制冷却開始温度が280℃未満であり、即ちめっき層が低温まで放冷凝固後に強制冷却を開始したため、めっき層組織が粗大化し、巻き付け加工性及び伸線加工性が低下した例である。
 No.41は強制冷却時の平均冷却速度が40℃/sと遅く、めっき層の組織が粗大化し、巻き付け加工性と伸線加工性が低下した例である。
 No.42は強制冷却時の平均冷却速度が180℃/sと速く、めっき層に割れが発生し、巻き付け加工性及び伸線加工性が低下した例である。
 本発明の溶融めっき鋼線はめっき層の加工性と耐食性が良好であり、各種用途への適用が可能となるため、産業上の利用可能性が極めて高い。
1 被めっき鋼線
2 前処理装置(脱脂、酸洗、電気Znめっき)
3 溶融金属
4 1次冷却装置
5 2次冷却装置
6 溶融めっき鋼線

Claims (5)

  1.  被めっき鋼線と、前記被めっき鋼線の表面に配されためっき層とを備える溶融めっき鋼線であって、
     前記めっき層の成分が、質量%で、
     Mg:0.10%以上1.00%未満、
     Al:5.0%以上15.0%以下、
     Si:0%以上2.0%以下
     Fe:0%以上1.0%以下、
     Sb:0%以上1.0%以下、
     Pb:0%以上1.0%以下、
     Sn:0%以上1.0%以下、
     Ca:0%以上1.0%以下、
     Co:0%以上1.0%以下、
     Mo:0%以上1.0%以下、
     Mn:0%以上1.0%以下、
     P:0%以上1.0%以下、
     B:0%以上1.0%以下、
     Bi:0%以上1.0%以下、
     Cr:0%以上1.0%以下、
     REM:0%以上1.0%以下、
     Ni:0%以上1.0%以下、
     Ti:0%以上1.0%以下、
     Zr:0%以上1.0%以下、及び
     Sr:0%以上1.0%以下を含有し、
     残部がZnおよび不純物からなり、
     前記めっき層の組織は、質量%でZnを90%以上含むZn相を面積率で25~70%有し、
     前記Zn相に占める、円換算した結晶粒径が2~5μmの粒径を有する前記Zn相の面積率が20~100%であることを特徴とする溶融めっき鋼線。
  2.  前記めっき層の前記成分が、質量%で、
     Si:0.01%以上2.0%以下
    を含有することを特徴とする請求項1に記載の溶融めっき鋼線。
  3.  前記めっき層の前記成分が、質量%で、
     Fe:0.01%以上1.0%以下、
     Sb:0.01%以上1.0%以下、
     Pb:0.01%以上1.0%以下、
     Sn:0.01%以上1.0%以下、
     Ca:0.01%以上1.0%以下、
     Co:0.01%以上1.0%以下、
     Mo:0.01%以上1.0%以下、
     Mn:0.01%以上1.0%以下、
     P:0.01%以上1.0%以下、
     B:0.01%以上1.0%以下、
     Bi:0.01%以上1.0%以下、
     Cr:0.01%以上1.0%以下、及び
     REM:0.01%以上1.0%以下からなる群から選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の溶融めっき鋼線。
  4.  前記めっき層の前記成分が、質量%で、
     Ni:0.01%以上1.0%以下、
     Ti:0.01%以上1.0%以下、
     Zr:0.01%以上1.0%以下、及び
     Sr:0.01%以上1.0%以下からなる群から選ばれる1種または2種以上を含有することを特徴とする請求項1~3のいずれか一項に記載の溶融めっき鋼線。
  5.  請求項1~4のいずれか一項に記載の溶融めっき鋼線を製造する方法であって、
     被めっき鋼線を溶融金属の浴に浸せきする工程と、
     前記被めっき鋼線を前記浴から引き上げる工程と、
     その後、前記被めっき鋼線を冷却する工程と、を備え、
     前記冷却において、前記被めっき鋼線の表面に形成されるめっき層の表面温度が、凝固完了温度を下回った後に、前記被めっき鋼線への冷媒の噴射を開始し、
     前記冷却において、前記被めっき鋼線のめっき層の表面温度が280℃を下回ってから、前記被めっき鋼線への前記冷媒の噴射を終了し、
     前記冷却において、前記被めっき鋼線の前記めっき層の表面の平均冷却速度を、前記冷媒の噴射の開始の際の前記めっき層の表面温度から280℃までの温度域において、50~150℃/sとする
    ことを特徴とする溶融めっき鋼線の製造方法。
PCT/JP2018/046961 2017-12-20 2018-12-20 溶融めっき鋼線およびその製造方法 WO2019124485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019560553A JP6880238B2 (ja) 2017-12-20 2018-12-20 溶融めっき鋼線およびその製造方法
CN201880081937.2A CN111566252B (zh) 2017-12-20 2018-12-20 熔融镀敷钢丝和其制造方法
KR1020207019423A KR102385640B1 (ko) 2017-12-20 2018-12-20 용융 도금 강선 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-243434 2017-12-20
JP2017243434 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019124485A1 true WO2019124485A1 (ja) 2019-06-27

Family

ID=66993548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046961 WO2019124485A1 (ja) 2017-12-20 2018-12-20 溶融めっき鋼線およびその製造方法

Country Status (4)

Country Link
JP (1) JP6880238B2 (ja)
KR (1) KR102385640B1 (ja)
CN (1) CN111566252B (ja)
WO (1) WO2019124485A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191027A1 (ja) * 2022-03-31 2023-10-05 日本製鉄株式会社 めっき鋼線
JP7406100B2 (ja) 2020-04-21 2023-12-27 日本製鉄株式会社 めっき線及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192211A (ja) * 1998-12-24 2000-07-11 Nippon Mining & Metals Co Ltd 溶融亜鉛めっき方法および亜鉛めっき材料
JP2002309360A (ja) * 2001-04-16 2002-10-23 Nichia Steel Works Ltd 溶融亜鉛合金めっき線、その製造方法及びその製造装置
JP2003293109A (ja) * 2002-04-05 2003-10-15 Sakuratech Co Ltd 高耐食性溶融メッキ鋼線およびその製造方法
JP2003328101A (ja) * 2002-05-16 2003-11-19 Nippon Steel Corp 溶融めっき鋼線およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265926A (ja) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd 耐食性および表面外観の良好な溶融Zn−Al−Mgめっき鋼帯の製造法
JP3854468B2 (ja) 2000-03-31 2006-12-06 新日本製鐵株式会社 高耐食性を有し加工性に優れためっき鋼材およびその製造方法
JP3857882B2 (ja) 2000-03-31 2006-12-13 新日本製鐵株式会社 高耐食性を有し加工性に優れためっき鋼材およびその製造方法
JP3769198B2 (ja) 2000-02-29 2006-04-19 新日本製鐵株式会社 高耐食性めっき鋼材およびその製造方法
JP3580261B2 (ja) * 2001-03-23 2004-10-20 住友金属工業株式会社 溶融Zn−Al−Mgめっき鋼板およびその製造方法
JP3769222B2 (ja) 2001-11-19 2006-04-19 新日本製鐵株式会社 高耐食性を有し加工性に優れた亜鉛合金めっき鋼材とその製造方法
NZ539228A (en) * 2002-10-28 2006-09-29 Nippon Steel Corp High corrosion-resistant hot dip coated steel product excellent in surface smoothness and formability, and method for producing hot dip coated steel product
JP4528149B2 (ja) * 2004-04-09 2010-08-18 新日本製鐵株式会社 加工部耐食性に優れる溶融めっき鋼材と塗装鋼板
EP2447389A4 (en) * 2009-06-25 2016-08-17 Nippon Steel & Sumitomo Metal Corp HIGH-STRENGTH ZN-AL PLATED STEEL WIRE FOR BRIDGES WITH EXCELLENT CORROSION RESISTANCE AND TEMPERATURE PROPERTIES, AND METHOD OF MANUFACTURING THEREOF
JP4782247B2 (ja) * 2009-06-29 2011-09-28 新日本製鐵株式会社 Zn−Alめっき鉄線及びその製造方法
JP2011157579A (ja) * 2010-01-29 2011-08-18 Nisshin Steel Co Ltd 粗面化溶融Zn−Al−Mg合金めっき鋼板およびその製造方法、ならびに溶融Zn−Al−Mg合金めっき鋼板と熱可塑性樹脂成形体とが接合された複合体およびその製造方法
JP5808609B2 (ja) * 2010-09-15 2015-11-10 日新製鋼株式会社 黒色めっき鋼板
PL2812457T3 (pl) * 2012-02-06 2021-11-29 Nv Bekaert Sa Sposób wytwarzania niemagnetycznego drutu ze stali nierdzewnej i drutu do opancerzania do kabli elektroenergetycznych
KR101439694B1 (ko) * 2012-12-26 2014-09-12 주식회사 포스코 Zn-Mg 합금도금강판 및 그의 제조방법
MY182932A (en) * 2014-03-28 2021-02-05 Nippon Steel Corp Plated steel sheet with quasicrystal
KR101647229B1 (ko) * 2014-12-24 2016-08-10 주식회사 포스코 내식성이 우수한 용융아연합금 도금강선 및 그 제조방법
TWI568884B (zh) * 2015-04-08 2017-02-01 新日鐵住金股份有限公司 Zn-Al-Mg系鍍敷鋼板及Zn-Al-Mg系鍍敷鋼板之製造方法
JP6528627B2 (ja) * 2015-09-29 2019-06-12 日本製鉄株式会社 めっき鋼材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192211A (ja) * 1998-12-24 2000-07-11 Nippon Mining & Metals Co Ltd 溶融亜鉛めっき方法および亜鉛めっき材料
JP2002309360A (ja) * 2001-04-16 2002-10-23 Nichia Steel Works Ltd 溶融亜鉛合金めっき線、その製造方法及びその製造装置
JP2003293109A (ja) * 2002-04-05 2003-10-15 Sakuratech Co Ltd 高耐食性溶融メッキ鋼線およびその製造方法
JP2003328101A (ja) * 2002-05-16 2003-11-19 Nippon Steel Corp 溶融めっき鋼線およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406100B2 (ja) 2020-04-21 2023-12-27 日本製鉄株式会社 めっき線及びその製造方法
WO2023191027A1 (ja) * 2022-03-31 2023-10-05 日本製鉄株式会社 めっき鋼線

Also Published As

Publication number Publication date
CN111566252A (zh) 2020-08-21
CN111566252B (zh) 2022-06-07
KR102385640B1 (ko) 2022-04-12
JP6880238B2 (ja) 2021-06-02
JPWO2019124485A1 (ja) 2021-03-18
KR20200095537A (ko) 2020-08-10

Similar Documents

Publication Publication Date Title
JP4782246B2 (ja) 耐食性と疲労特性に優れた橋梁用高強度Zn−Alめっき鋼線及びその製造方法
KR101636443B1 (ko) 용융 Al-Zn계 도금 강판 및 그의 제조 방법
JP5068688B2 (ja) 穴広げ性に優れた熱延鋼板
WO2016072479A1 (ja) 溶融亜鉛めっき鋼板
TWI511875B (zh) Molten galvanized steel sheet
WO2016072477A1 (ja) 溶融亜鉛めっき鋼板
CN117026132A (zh) 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法
WO2014119268A1 (ja) 溶融Al-Zn系めっき鋼板とその製造方法
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
JP5672178B2 (ja) 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板
JP2020509205A (ja) 耐食性及び加工性に優れた溶融アルミニウム系めっき鋼材及びその製造方法
JP5392116B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
KR20140128414A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
TWI521092B (zh) 熔融Al-Zn系鍍覆鋼板及其製造方法
WO2019124485A1 (ja) 溶融めっき鋼線およびその製造方法
JP5578116B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
WO2011001640A1 (ja) Zn-Alめっき鉄線及びその製造方法
CN113677820B (zh) 镀层钢材
JP2016153539A (ja) 溶融Al−Zn系めっき鋼板とその製造方法
JP7406100B2 (ja) めっき線及びその製造方法
JPH10140316A (ja) 加工性に優れた溶融亜鉛めっき鋼板の製造方法
JP7137731B1 (ja) 溶融Al-Zn系めっき鋼板及びその製造方法
JP7235165B2 (ja) Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法、および合金化溶融亜鉛めっき鋼板の製造方法
JP2020059888A (ja) 溶融めっき線およびその製造方法
JP6242576B6 (ja) 溶融Al−Zn系めっき鋼板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019423

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18892407

Country of ref document: EP

Kind code of ref document: A1