WO2019117234A1 - 球状銀粉 - Google Patents

球状銀粉 Download PDF

Info

Publication number
WO2019117234A1
WO2019117234A1 PCT/JP2018/045808 JP2018045808W WO2019117234A1 WO 2019117234 A1 WO2019117234 A1 WO 2019117234A1 JP 2018045808 W JP2018045808 W JP 2018045808W WO 2019117234 A1 WO2019117234 A1 WO 2019117234A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver powder
spherical silver
cross
spherical
particles
Prior art date
Application number
PCT/JP2018/045808
Other languages
English (en)
French (fr)
Inventor
将也 大迫
太郎 中野谷
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018232153A external-priority patent/JP6900357B2/ja
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201880078537.6A priority Critical patent/CN111432959B/zh
Priority to EP18888350.8A priority patent/EP3702064B1/en
Priority to US16/772,822 priority patent/US11376659B2/en
Priority to SG11202004797QA priority patent/SG11202004797QA/en
Priority to KR1020207019859A priority patent/KR102451522B1/ko
Publication of WO2019117234A1 publication Critical patent/WO2019117234A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Definitions

  • the present invention relates to spherical silver powder, and more particularly to spherical silver powder suitable for use in conductive paste for forming electrodes, circuits and the like of electronic parts such as solar cell and touch panel substrates.
  • the silver powder for conductive paste used in such a method corresponds to the densification and fine line formation of conductor patterns due to the miniaturization of electronic parts, and increases the light collection area of the solar cell to generate power generation efficiency. It is required that the particle size is appropriately small and the particle size is uniform so as to correspond to the finer line of the finger electrode in order to improve.
  • silver powder suitable for use in a conductive paste that can form a conductive pattern, an electrode, etc. that efficiently flows electricity even if the conductive pattern and the cross-sectional area of the electrode decrease due to the fine line is desired. There is.
  • an aqueous solution containing silver ions as a method of producing spherical silver powder having a particle diameter similar to that of spherical silver powder produced by a conventional wet reduction method and calcinable at a lower temperature
  • a reducing agent-containing solution containing an aldehyde as a reducing agent is mixed with the reaction system while generating cavitation, thereby reducing and precipitating silver particles, thereby forming spherical particles having a (substantially spherical) void closed inside the particles.
  • a method for producing silver powder has been proposed (see, for example, Patent Document 2).
  • JP-A-8-176620 (Paragraph No. 0008-0013) JP, 2015-232180, A (paragraph number 0008)
  • the silver powder manufactured by the method of patent document 2 can fully sinter silver particle.
  • the miniaturization of electronic components has further progressed, and the densification and fine line formation of conductor patterns have further progressed.
  • the fine line of the finger electrode is also in progress.
  • BSF Back-Surface-Field
  • the present inventors formed voids inside spherical silver particles, filled the silver powder in a resin, and then polished and exposed the surface of the resin.
  • the major axis is 100 to 1000 nm, which is the length of the long side of the rectangle that minimizes the area of the rectangle circumscribing the cross section of the void, and 10 nm for the minor side, which is the length of the short side of the rectangular
  • the spherical silver powder according to the present invention is a spherical silver powder composed of spherical silver particles and having voids inside the particles, and the cross section of the silver particles exposed by polishing the surface of the resin after the silver powder is buried in the resin.
  • the major axis is 100 to 1000 nm, which is the length of the long side of the rectangle that minimizes the area of the rectangle circumscribed to the outline of the cross section of the void
  • the minor axis is 10 nm or more, which is the length of the short side of the rectangular
  • the ratio of the major axis to the minor axis is 5 or more.
  • the proportion of the cross-sectional area of the air gap to the cross-sectional area of the silver powder is 10% or less
  • an average particle size D 50 by laser diffraction method of the spherical silver powder is 0.5 to 4. It is preferably 0 ⁇ m.
  • the BET specific surface area of the spherical silver powder is preferably 0.1 to 1.5 m 2 / g, and the specific surface area diameter D BET is preferably 0.1 to 3 ⁇ m.
  • the average primary particle diameter D SEM of the spherical silver powder is preferably 0.3 to 3 ⁇ m, and the ratio (D SEM / D BET ) of the average primary diameter D SEM to the specific surface area diameter D BET is 1.0 to 2. It is preferably 0. Further, it is preferable that the temperature at which the shrinkage rate of the spherical silver powder reaches 10% when heating the spherical silver powder is 360 ° C. or less. In addition, it is preferable that the void of the spherical silver powder is a closed void that does not communicate with the outside.
  • the spherical silver powder preferably contains an organic substance having an amino group and a carboxyl group in the structure and a cyclic structure, and the molecular weight of the organic substance is preferably 100 or more.
  • “Shrinkage percentage of spherical silver powder when spherical silver powder is heated” refers to a substantially cylindrical pellet (5 mm in diameter) prepared by adding a load of 50 kgf to spherical silver powder for 1 minute from normal temperature Shrinkage rate of pellet when heated to 900 ° C at a heating rate of 10 ° C / min (proportion of reduction of pellet length to difference between pellet length at normal temperature and pellet length most contracted) Say).
  • spherical silver powder that can be fired at lower temperatures can be provided.
  • FIG. 2 is a field emission scanning electron microscope (FE-SEM) photograph of a cross section of the spherical silver powder obtained in Example 1.
  • FIG. 10 is a view showing an FE-SEM photograph of a cross section of spherical silver powder obtained in Example 2.
  • FIG. 10 is a view showing an FE-SEM photograph of a cross section of spherical silver powder obtained in Example 3.
  • FIG. 10 is a view showing an FE-SEM photograph of a cross section of spherical silver powder obtained in Example 4.
  • FIG. 16 is a view showing an FE-SEM photograph of a cross section of spherical silver powder obtained in Example 5.
  • FIG. 10 is a view showing an FE-SEM photograph of a cross section of spherical silver powder obtained in Example 2.
  • FIG. 16 is a view showing an FE-SEM photograph of a cross section of spherical silver powder obtained in Example 6. It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained in Example 7.
  • FIG. It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained in Example 8.
  • FIG. It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained by the comparative example 1.
  • FIG. It is a figure which shows the FE-SEM photograph of the cross section of the spherical silver powder obtained by the comparative example 2.
  • the embodiment of the spherical silver powder according to the present invention is a spherical silver powder composed of spherical silver particles and having voids inside the particles, and the silver powder is embedded in the resin and then the surface of the resin is polished and exposed.
  • 100 nm to 1000 nm (preferably 100 to 700 nm, more preferably 100 to 500 nm), which is the length of the long side of a rectangle that minimizes the area of the rectangle circumscribing the outline of the cross section of the air gap in the image of the cross section of
  • the short diameter which is the length of the short side of the rectangle is 10 nm or more (preferably 10 to 100 nm), and the ratio of the long diameter to the short diameter (long diameter / short diameter (aspect ratio)) is 5 or more (preferably 10 or more) It is.
  • the void of the spherical silver powder is preferably a void extending near the center of the spherical silver powder, and is preferably a closed void which does not communicate with the outside.
  • the ratio of the cross section of the void to the cross section of the silver powder is preferably 0.05 to 10%, more preferably 0.05 to 5%, and most preferably 0.1 to It is 3% or less.
  • the shape of the particles of silver powder and the presence of voids inside the particles polish the surface of the resin while the silver powder is embedded in the resin to expose the cross section of the particles of silver powder, and the cross section is observed with an electron microscope (preferably Can be confirmed by observing at 10,000 to 40,000 times.
  • the cross section of the spherical silver powder particles differs in the size of the cross section depending on whether it is the cross section of the central portion of the spherical silver powder particles or the cross section near the end.
  • the particles of 30 spherical silver powder are selected in order from the particles with the large cross section, and the cross sections of these 30 spherical silver powder particles Voids (having a major diameter of 100 to 1000 nm, a minor diameter of 10 nm or more and a major diameter to minor diameter ratio of 5 or more) are observed in the cross section of at least one spherical silver powder particle of Then, the spherical silver powder is spherical silver powder having at least one void (in the above shape) inside the particle.
  • the cross section of the spherical silver powder is exposed by polishing the surface of the resin with a cross section polisher, and the cross section of the spherical silver powder is observed
  • Samples prepared and observed with an electron microscope (preferably at a magnification of 4 to 80,000) the images obtained are analyzed by image analysis software, and the voids in the cross section of each particle of spherical silver powder are Size (long diameter and short diameter), ratio of cross sectional area of void to cross sectional area of spherical silver powder particle (If there is a plurality of voids in the cross section of spherical silver powder particle, cross section of void relative to cross sectional area of spherical silver powder particle The ratio of the sum of the above and the diameter of the circle circumscribed to the outline of the cross section of the spherical silver powder particle is determined, the average value of each is calculated
  • the average particle diameter D 50 of the spherical silver powder by laser diffraction method is preferably 0.5 to 4 ⁇ m, 1 And more preferably 1 to 3.5 ⁇ m.
  • the average particle diameter D 50 by laser diffraction method is too large, it becomes difficult to describe fine wiring when it is used in conductive paste and used for describing wiring etc.
  • it is too small it is in conductive paste. It becomes difficult to increase the silver concentration, and wiring may be broken.
  • the spherical silver powder has a narrow peak width, less variation in particle size, and uniform particle sizes.
  • the BET specific surface area of the spherical silver powder is preferably 0.1 to 1.5 m 2 / g, and more preferably 0.2 to 1 m 2 / g.
  • the BET specific surface area is smaller than 0.1 m 2 / g, the particles of spherical silver powder become large, and such large spherical silver powder is difficult to describe fine wiring when it is used for conductive paste and the like for describing wiring etc.
  • it if it is larger than 1.5 m 2 / g, the viscosity of the conductive paste becomes too high, so the conductive paste needs to be diluted and used, and the silver concentration of the conductive paste becomes low. Etc. may break.
  • the ratio (D SEM / D BET ) of the average primary particle diameter D SEM to the specific surface area diameter D BET of the spherical silver powder is preferably 1.0 to 2.0. The closer this ratio is to 1, the more spherical silver powder is obtained.
  • the temperature at which the shrinkage of the spherical silver powder reaches 10% when the spherical silver powder is heated is preferably 360 ° C. or less, and more preferably 335 ° C. or less.
  • the spherical silver powder preferably contains an organic substance having an amino group and a carboxyl group in the structure, preferably the organic substance has a cyclic structure, and the molecular weight of the organic substance is preferably 100 or more, and tyrosine, More preferably, it is an aromatic amino acid having a molecular weight of 100 or more, such as tryptophan, phenylalanine, anthranilic acid and the like.
  • the organic substance is preferably contained in a spherical silver powder in an amount of 0.001 to 2% by mass, and the content can be analyzed using a liquid chromatograph mass spectrometer.
  • Such spherical silver powder is obtained by adding an organic substance having an amino group and a carboxyl group in the structure and having a cyclic structure and having a molecular weight of 100 or more to an aqueous reaction system containing silver ions, and then mixing a reducing agent, It can be produced by reducing and precipitating silver particles.
  • An aqueous solution or slurry containing silver nitrate, a silver complex or a silver intermediate can be used as an aqueous reaction system containing silver ions.
  • An aqueous solution containing a silver complex can be produced by adding aqueous ammonia or an ammonium salt to an aqueous silver nitrate solution or a silver oxide suspension.
  • a silver ammine complex aqueous solution obtained by adding ammonia water to a silver nitrate aqueous solution. Since the coordination number of ammonia in the silver ammine complex is 2, 2 moles or more of ammonia is added per 1 mole of silver.
  • the amount of ammonia added is preferably 8 moles or less of ammonia per mole of silver.
  • adjustment is performed such as increasing the amount of addition of the reducing agent, it is possible to obtain spherical silver powder having an appropriate particle diameter even if the amount of addition of ammonia exceeds 8 moles.
  • the aqueous reaction system containing silver ions is preferably alkaline, and is preferably adjusted to be alkaline by adding an alkali such as sodium hydroxide as a pH adjuster.
  • organic substance having an amino group and a carboxyl group in the structure and having a cyclic structure and having a molecular weight of 100 or more it is preferable to use an aromatic amino acid having a molecular weight of 100 or more such as tyrosine, tryptophan, phenylalanine, anthranilic acid.
  • organic substances can be present as ions in the reaction liquid, and due to the presence of the ions of the aromatic amino acids, the particles of spherical silver powder have a major diameter of 100 to 1000 nm and a minor diameter of 10 nm or more.
  • a void having a ratio of the major axis to the minor axis (major axis / minor axis) of 5 or more can be formed.
  • the addition amount of the organic substance is preferably 0.05 to 6% by mass, more preferably 0.1 to 5% by mass, and most preferably 0.2 to 4% by mass with respect to silver. preferable.
  • a reducing agent consisting of carbon, oxygen and hydrogen
  • a reducing agent consisting of carbon, oxygen and hydrogen
  • ascorbic acid hydrogen peroxide water
  • formic acid tartaric acid, tartaric acid, hydroquinone, pyrogallol
  • glucose gallic acid, formalin and the like
  • formalin a reducing agent
  • spherical silver powder of the above-mentioned particle size can be obtained.
  • the addition amount of the reducing agent is preferably at least 1 equivalent to silver in order to increase the yield of silver, and when using a reducing agent having a weak reducing power, at least 2 equivalents to silver, For example, 10 to 20 equivalents may be used.
  • the method of adding the reducing agent in order to prevent aggregation of the spherical silver powder, it is preferable to add at a rate of 1 equivalent / minute or more.
  • the addition of the reducing agent in a short time causes the reductive deposition of silver particles to occur at once, the reduction reaction is completed in a short time, and agglomeration of generated nuclei is less likely to occur. It is thought that the dispersibility improves. Therefore, the shorter the addition time of the reducing agent, the better, and in the reduction, it is preferable to stir the reaction solution so that the reaction is completed in a shorter time.
  • the temperature at the reduction reaction is preferably 5 to 80 ° C., and more preferably 5 to 40 ° C.
  • voids having a major diameter of 100 to 1000 nm, a minor diameter of 10 nm or more and a major diameter ratio to minor diameter (major diameter / minor diameter) of 5 or more
  • a surface treatment agent may be added to cause the surface treatment agent to adhere to the surface of the silver particles.
  • the drying temperature is preferably 100 ° C. or less in order to prevent sintering of the spherical silver powders at the time of drying.
  • the obtained spherical silver powder may be subjected to dry crushing treatment or classification treatment.
  • the spherical silver powder is introduced into a device capable of mechanically fluidizing the particles, and the particles of the spherical silver powder are caused to mechanically collide with each other, whereby the irregularities and corners of the particle surface of the spherical silver powder are produced.
  • a surface smoothing process may be performed to smooth out the uneven portion.
  • classification processing may be performed after crushing or smoothing processing.
  • the drying, grinding and classification may be carried out using an integrated device which can carry out drying, grinding and classification.
  • Example 1 A silver ammine complex solution was obtained by adding 155 g of an aqueous ammonia solution having a concentration of 28 mass% to 3500 g of a 0.12 mol / L silver nitrate aqueous solution as silver ions. To this silver ammine complex solution, 5.5 g of a 20% by mass aqueous solution of sodium hydroxide was added to adjust the pH. After adding 4.2 g of an aqueous solution containing 10% by mass of L-tryptophan with a molecular weight of 204 to this pH-adjusted silver ammine complex solution, 23% by mass of formalin as a reducing agent is maintained while maintaining the temperature at 20 ° C.
  • An aqueous solution of 380 g was added and stirred sufficiently to obtain a slurry containing silver particles.
  • an aqueous solution containing 15% by mass of stearic acid as a surface treatment agent was added, sufficiently stirred, and then aged. The matured slurry was filtered, washed with water, dried and then crushed to obtain silver powder.
  • the surface of the resin is polished by a cross section polisher (IB-09010 CP manufactured by Nippon Denshi Co., Ltd.) to expose the cross section of the silver powder particles, and the cross section of the silver powder A sample for observation was prepared. This sample was observed at a magnification of 10,000 with a field emission scanning electron microscope (FE-SEM) (JSM-6700F manufactured by JEOL Ltd.) to obtain an image of a cross section of 50 or more particles of silver powder. From this image, it was confirmed that the shape of the silver powder is spherical, and that a void is present in the cross section of 10 particles in 30 particles having a large cross section.
  • FE-SEM field emission scanning electron microscope
  • the diameter of a circle circumscribing the contour of each cross section of the spherical silver powder particles in this image is determined, and the average value thereof is calculated, and the average value of the diameters of the circles circumscribing the contour of the cross section of the spherical silver powder particles (average The primary particle diameter) D SEM was determined to be 1.0 ⁇ m.
  • the electron micrograph image observed by 80,000 times is shown in FIG.
  • the obtained image is analyzed by image analysis software (Mac-View, manufactured by Mountech Co., Ltd.), and the size of the void in the cross section of the spherical silver powder particle, the cross section of the void relative to the cross sectional area of the spherical silver powder particle
  • image analysis software Mac-View, manufactured by Mountech Co., Ltd.
  • the ratio of the total of the cross-sectional area of the void to the cross-sectional area of the spherical silver powder particle when there are a plurality of voids in the cross-section of the spherical silver powder particle was determined.
  • the area of the cross section of the air gap and the major axis (the area of the rectangle (or square) circumscribed to the outline of the air gap cross section is minimized.
  • the length of the long side of the rectangle and the short diameter (length of the short side of the rectangle) can be calculated.
  • three voids were confirmed in the cross section of the spherical silver powder particles in the image, and the major axis, minor axis, and ratio of major axis to minor axis (aspect ratio) of each cavity were 437 nm and 34.2 nm, respectively.
  • grains of spherical silver powder was 1.28%, 0.36%, 0.36%, respectively, and was 2.00% in total.
  • the BET specific surface area of the obtained spherical silver powder was measured using a BET specific surface area measuring device (Macsorb HM-model 1210 manufactured by Mountech Co., Ltd.) in a measuring instrument at 60 ° C. for 10 minutes for Ne-N 2 mixed gas. After degassing by flowing (30% nitrogen), the BET specific surface area was 0.70 m 2 / g as measured by the BET 1-point method.
  • a BET specific surface area measuring device Macsorb HM-model 1210 manufactured by Mountech Co., Ltd.
  • the D BET was 0.8 ⁇ m, and the D SEM / D BET was 1.3.
  • the particle size distribution of the obtained spherical silver powder is measured by a laser diffraction particle size distribution apparatus (Microtrack particle size distribution measuring apparatus MT-3300EXII manufactured by Microtrack Bell Inc.), and the 50% cumulative particle size (D 50) When it asked for), it was 1.7 micrometers.
  • thermomechanical analysis (TMA) apparatus manufactured by Rigaku Corporation Set in TMA 8311
  • TMA thermomechanical analysis
  • shrink the pellet the pellet length a at normal temperature and the pellet length b at the most shrinkage
  • the sintering start temperature of this spherical silver powder was 305.degree.
  • nitric acid aqueous solution in which nitric acid (for precision analysis (60-61%) manufactured by Kanto Chemical Co., Ltd.) and pure water are mixed at a volume ratio of 1: 1 is added to 1.0 g of the obtained spherical silver powder and ultrasonicated. The solution was completely dissolved, and the resulting solution was diluted 10,000-fold with ultrapure water to obtain a liquid chromatograph mass spectrometer (LC / MC) (Agilent Technology Co., Ltd.
  • LC / MC liquid chromatograph mass spectrometer
  • Example 2 A silver ammine complex solution was obtained by adding 155 g of an aqueous ammonia solution having a concentration of 28 mass% to 3500 g of a 0.12 mol / L silver nitrate aqueous solution as silver ions. To this silver ammine complex solution, 5.5 g of a 20% by mass aqueous solution of sodium hydroxide was added to adjust the pH. After adding 14 g of an aqueous solution containing 2.4% by mass of L-phenylalanine having a molecular weight of 165 to this pH-adjusted silver ammine complex solution, 23% by mass of formalin as a reducing agent is maintained while maintaining the temperature at 20 ° C.
  • An aqueous solution of 380 g was added and stirred sufficiently to obtain a slurry containing silver particles.
  • an aqueous solution containing 15% by mass of stearic acid as a surface treatment agent was added, sufficiently stirred, and then aged. The matured slurry was filtered, washed with water, dried and then crushed to obtain silver powder.
  • the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder The diameter D SEM was determined.
  • one void is confirmed in the cross section of the spherical silver powder particles in the image, and the major axis and minor axis of the void and the aspect ratio (major axis / minor axis) are 416 nm, 32.6 nm, and 12.75, respectively.
  • the ratio of the cross-sectional area of the voids to the cross-sectional area of the spherical silver powder particles was 0.33%, and the average primary particle diameter D SEM of the spherical silver powder was 1.4 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.72 m 2 / g
  • the specific surface area diameter D BET was 0.8 ⁇ m
  • D SEM / D BET was 1.8
  • the 50% cumulative particle size (D 50 ) was 1.4 ⁇ m.
  • Example 3 To 3200 g of a 0.12 mol / L silver nitrate aqueous solution as silver ions, 155 g of a 28 mass% aqueous ammonia solution was added to obtain a silver ammine complex solution. To this silver ammine complex solution, 5.5 g of a 20% by mass aqueous solution of sodium hydroxide was added to adjust the pH. After adding 300 g of an aqueous solution containing 0.12% by mass of tyrosine having a molecular weight of 181.19 to this pH-adjusted silver ammine complex solution, the temperature is maintained at 20 ° C. and stirring is carried out at a circumferential velocity of 100 m / s of a stirring blade.
  • the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder The diameter D SEM was determined.
  • one void is confirmed in the cross section of the spherical silver powder particles in the image, and the major axis and minor axis of the void and the aspect ratio (major axis / minor axis) are 952 nm, 80.7 nm, and 11.80, respectively.
  • the ratio of the cross-sectional area of the voids to the cross-sectional area of the spherical silver powder particles was 2.53%, and the average primary particle diameter D SEM of the spherical silver powder was 1.2 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.60 m 2 / g
  • the specific surface area diameter D BET was 1.0 ⁇ m
  • D SEM / D BET was 1.3
  • the 50% cumulative particle diameter (D 50 ) was 1.7 ⁇ m.
  • the sintering start temperature of the obtained spherical silver powder was determined in the same manner as in Example 1 to be 311 ° C.
  • Example 4 To 3300 g of a 0.13 mol / L silver nitrate aqueous solution as silver ions, 162 g of a 28 mass% aqueous ammonia solution was added to obtain a silver ammine complex solution. To this silver ammine complex solution was added 5.86 g of a 20% by mass aqueous sodium hydroxide solution to adjust the pH. To this pH-adjusted silver ammine complex solution is added 6.5 g of an aqueous solution containing 7% by mass of L-tryptophan in which 6.09 g of a 2.0% by mass aqueous solution of sodium hydroxide is dissolved. Then, while maintaining the temperature at 28 ° C.
  • the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder The diameter D SEM was determined.
  • four voids were confirmed in the cross section of the spherical silver powder particles in the image, and 751 nm, 126 nm, 5.94 and 270 nm, 37.7 nm, 7.15, 271 nm, 26.4 nm, 10.28, respectively. , 133 nm, 21.2 nm, 6.29.
  • the ratio of the cross-sectional area of the void to the cross-sectional area of the spherical silver powder particles is 1.83%, 0.48%, 0.40%, 0.15% (total 2.86%), respectively.
  • the average primary particle size D SEM of silver powder was 1.49 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.62 m 2 / g
  • the specific surface area diameter D BET was 0.9 ⁇ m
  • D SEM / D BET was 1.6
  • the 50% cumulative particle size (D 50 ) was 1.9 ⁇ m.
  • the sintering start temperature of the obtained spherical silver powder was determined in the same manner as in Example 1 to be 333 ° C.
  • Example 5 To 3300 g of a 0.13 mol / L silver nitrate aqueous solution as silver ions, 162 g of a 28 mass% aqueous ammonia solution was added to obtain a silver ammine complex solution. To this silver ammine complex solution was added 6.79 g of a 20 mass% aqueous solution of sodium hydroxide to adjust the pH. To this pH-adjusted silver ammine complex solution is added 2.2 g of an aqueous solution containing 7% by mass of L-tryptophan in which 2.03 g of a 2.0% by mass aqueous solution of sodium hydroxide is dissolved. Then, while maintaining the temperature at 28 ° C.
  • the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder was determined.
  • two voids are confirmed in the cross section of the spherical silver powder particles in the image, and the major and minor axes and aspect ratio (major / minor) of each void are 188 nm, 36.2 nm, and 5.18, respectively. , 277 nm, 34.9 nm, 7.93.
  • the ratio of the cross-sectional area of the void to the cross-sectional area of the spherical silver powder particles is 0.31% and 0.39% (total 0.70%), respectively, and the average primary particle diameter D SEM of the spherical silver powder is 1 It was .45 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.58 m 2 / g
  • the specific surface area diameter D BET was 1.0 ⁇ m
  • D SEM / D BET was 1.5
  • the 50% cumulative particle diameter (D 50 ) was 1.7 ⁇ m.
  • Example 6 To 3300 g of a 0.12 mol / L silver nitrate aqueous solution as silver ions, 172 g of a 28 mass% aqueous ammonia solution was added to obtain a silver ammine complex solution. The pH was adjusted by adding 5.3 g of a 20% by mass aqueous solution of sodium hydroxide to the silver ammine complex solution.
  • the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder was determined.
  • four voids are observed in the cross section of the spherical silver powder particles in the image, and the major and minor axes and aspect ratio (major / minor) of each void are 1111 nm, 104 nm, 10.69, and 250 nm, respectively.
  • the ratio of the cross-sectional area of the void to the cross-sectional area of the spherical silver powder particles is 2.11%, 0.24%, 0.07%, 0.16% (2.58% in total), respectively.
  • the average primary particle size D SEM of silver powder was 1.64 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.51 m 2 / g
  • the specific surface area diameter D BET was 1.1 ⁇ m
  • D SEM / D BET was 1.5
  • the cumulative 50% particle diameter (D 50 ) was 2.4 ⁇ m.
  • Example 7 To 3300 g of a 0.12 mol / L silver nitrate aqueous solution as silver ions, 150 g of a 28 mass% aqueous ammonia solution was added to obtain a silver ammine complex solution. The pH was adjusted by adding 6.2 g of a 20 mass% aqueous solution of sodium hydroxide to the silver ammine complex solution.
  • the shape of the silver powder is spherical, and among the 30 particles with a large cross section It was confirmed that a void exists in the cross section of nine particles of.
  • An electron micrograph of the particles of the spherical silver powder in which the voids were observed at 40,000 times is shown in FIG. With respect to the obtained image, the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder The diameter D SEM was determined.
  • the major axis and minor axis of the void and the aspect ratio (major axis / minor axis) are 571 nm, 39.4 nm, and 14.51, respectively.
  • the ratio of the cross-sectional area of the void to the cross-sectional area of the particles of spherical silver powder was 2.05%, and the average primary particle diameter D SEM of the spherical silver powder was 1.05 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 1.05 m 2 / g
  • the specific surface area diameter D BET was 0.5 ⁇ m
  • D SEM / D BET was 1.9
  • the 50% cumulative particle diameter (D 50 ) was 1.3 ⁇ m.
  • Example 8 To 3200 g of a 0.12 mol / L silver nitrate aqueous solution as silver ions, 155 g of a 28 mass% aqueous ammonia solution was added to obtain a silver ammine complex solution. To this silver ammine complex solution, 5.1 g of a 20% by mass aqueous solution of sodium hydroxide was added to adjust the pH. To this pH-adjusted silver ammine complex solution is added 6 g of an aqueous solution containing 4.65% by mass of anthranilic acid in which 5.75 g of anthranilic acid having a molecular weight of 137.14 is dissolved in a 1.5% by mass aqueous solution of sodium hydroxide.
  • the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the average primary particle of the spherical silver powder was determined.
  • one void is confirmed in the cross section of the spherical silver powder particles in the image, and the major axis and minor axis of the void and the aspect ratio (major axis / minor axis) are 903 nm, 86.9 nm, 10.39, respectively.
  • the ratio of the cross-sectional area of the void to the cross-sectional area of the particles of spherical silver powder was 1.23%, and the average primary particle diameter D SEM of the spherical silver powder was 1.40 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.72 m 2 / g
  • the specific surface area diameter D BET was 0.8 ⁇ m
  • D SEM / D BET was 1.8
  • the 50% cumulative particle size (D 50 ) was 1.7 ⁇ m.
  • the spherical silver powder obtained was analyzed by a liquid chromatograph mass spectrometer according to the same method as in Example 1. As a result, 0.097 mass% of anthranilic acid (nitrated with nitric acid) was detected from the spherical silver powder. It was done.
  • Comparative Example 1 A 1 L beaker prepared by separating 753 g of silver nitrate aqueous solution containing 8.63 g of silver is placed in an ultrasonic cleaning machine (US Cleaner USD-4 R manufactured by As One Corporation, output 160 W) containing water at a water temperature of 35 ° C., oscillation frequency 40 kHz At the same time, ultrasonic irradiation was started and stirring was started.
  • an ultrasonic cleaning machine US Cleaner USD-4 R manufactured by As One Corporation, output 160 W
  • the slurry containing silver particles is filtered and washed with water, and the cake obtained is dried in a vacuum dryer at 75 ° C. for 10 hours, and the dried silver powder is subjected to 30 seconds in a coffee mill. It was crushed to obtain silver powder.
  • the shape of the silver powder is spherical, and the major axis is 100 to 1000 nm, the minor axis Is not less than 10 nm and the ratio of the major axis to the minor axis (major axis / minor axis) is 5 or more.
  • An electron micrograph of the particles of the spherical silver powder in which the spherical voids were observed at 40,000 times is shown in FIG. Further, with respect to the obtained image, the average primary particle diameter D SEM of the spherical silver powder was determined in the same manner as in Example 1 to be 1.6 ⁇ m.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.35 m 2 / g
  • the specific surface area diameter D BET was 1.6 ⁇ m
  • D SEM / D BET was 1.0
  • the 50% cumulative particle diameter (D 50 ) was 3.0 ⁇ m.
  • the sintering start temperature was calculated
  • Comparative Example 2 A 1 L beaker prepared by separating 28.6 g of an aqueous silver nitrate solution containing 8.63 g of silver was placed in an ultrasonic cleaner (US Cleaner USD-4R manufactured by As One Corporation, output 160 W) containing water at a water temperature of 35 ° C. The ultrasonic irradiation was started at a frequency of 40 kHz and the stirring was started.
  • an ultrasonic cleaner US Cleaner USD-4R manufactured by As One Corporation, output 160 W
  • the slurry containing silver particles is filtered and washed with water, and the cake obtained is dried in a vacuum dryer at 75 ° C. for 10 hours, and the dried silver powder is subjected to 30 seconds in a coffee mill. It was crushed to obtain silver powder.
  • the BET specific surface area is measured by the same method as in Example 1, and the specific surface area diameter D BET is determined, and the 50% cumulative particle diameter (D 50 ) is determined.
  • the surface area was 0.16 m 2 / g
  • the specific surface area diameter D BET was 3.6 ⁇ m
  • D SEM / D BET was 0.8
  • the 50% cumulative particle diameter (D 50 ) was 2.8 ⁇ m.
  • the sintering start temperature was calculated
  • the major axis is 100 to 1000 nm
  • the minor axis is 10 nm or more
  • the ratio of the major axis to the minor axis is 5
  • spherical silver powder having voids can significantly lower the sintering start temperature.
  • the sintering start temperature can be significantly reduced even if the ratio of the cross-sectional area of the void to the cross-sectional area of the spherical silver powder particles is as small as 1% or less. .
  • the spherical silver powder of the examples can significantly reduce the sintering start temperature.
  • the void of the void extends in the cross section of the spherical silver powder particles.
  • the spherical silver powder according to the present invention can be used for producing a conductive paste as spherical silver powder which can be fired at a lower temperature, and the conductive paste containing the spherical silver powder is printed on a substrate by screen printing or the like.
  • the conductive paste containing the spherical silver powder is printed on a substrate by screen printing or the like.
  • electrodes and circuits of electronic parts such as solar cells, chip parts and touch panels, they can be used as electromagnetic shielding materials.

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

より低い温度で焼成可能な球状銀粉を提供する。この球状の銀粒子からなる球状銀粉は、粒子内部に空隙を有し、この銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙の断面の輪郭に外接する長方形の面積が最小になる長方形の長辺の長さである長径が100~1000nmであり、その長方形の短辺の長さである短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上である。

Description

球状銀粉
 本発明は、球状銀粉に関し、特に、太陽電池やタッチパネルの基板などの電子部品の電極や回路などを形成する導電性ペーストに使用するのに適した球状銀粉に関する。
 従来、電子部品の電極や回路などを形成する方法として、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することによって製造される焼成型の導電性ペーストを基板上に所定のパターンに形成した後、500℃以上の温度で加熱することによって、有機成分を除去し、銀粒子同士を焼結させて導電膜を形成する方法が広く用いられている。
 このような方法に使用される導電性ペースト用の銀粉は、電子部品の小型化による導体パターンの高密度化やファインライン化に対応したり、太陽電池の集光面積を増大して発電効率を向上させるためにフィンガー電極のファインライン化に対応するように、粒径が適度に小さく、粒度が揃っていることが要求されている。また、ファインライン化により導電パターンや電極の断面積が減少しても、電気を効率よく流す導電パターンや電極などを形成することができる導電性ペーストに使用するのに適した銀粉が望まれている。
 このような導電性ペースト用の銀粉を製造する方法として、銀イオンを含有する水性反応系に還元剤を加えることによって球状銀粉を還元析出させる湿式還元法が知られている(例えば、特許文献1参照)。
 しかし、従来の湿式還元法により製造した球状銀粉を焼成型の導電性ペーストに使用した場合に、600℃程度の温度で加熱しても、銀粒子同士を十分に焼結させることができず、良好な導電膜を形成することができない場合があった。
 このような問題を解決するため、従来の湿式還元法により製造した球状銀粉と同程度の粒径を有し且つより低い温度で焼成可能な球状銀粉を製造する方法として、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、還元剤としてアルデヒドを含有する還元剤含有溶液を混合して、銀粒子を還元析出させることにより、粒子内部に閉鎖された(略球状の)空隙を有する球状銀粉を製造する方法が提案されている(例えば、特許文献2参照)。
特開平8-176620号公報(段落番号0008-0013) 特開2015-232180号公報(段落番号0008)
 特許文献2の方法により製造された銀粉は、600℃程度の温度で加熱しても、銀粒子同士を十分に焼結させることができる。
 近年、電子部品の小型化がさらに進んでおり、導体パターンの高密度化やファインライン化がさらに進んでいる。また、太陽電池の集光面積を増大して発電効率を向上させるために、フィンガー電極のファインライン化も進んでいる。
 また、結晶シリコン系太陽電池では、生成された電子が裏面電極まで拡散すると効率が低下するため、裏面障壁(Back-Surface-Field(BSF))を設けて電子が裏面電極に入らないようにしたBSF型の太陽電池が使用されているが、近年、太陽電池セルの裏面のシリコンとアルミニウム電極界面で起こる再結合によるエネルギー損失を(SiN、SiO、Alなどからなる)パッシベーション膜により低減してさらに効率を向上させる、裏面パッシベーション(Passivated Emitter and Rear Cell(PERC))型太陽電池が注目されている。このようなPERC型太陽電池の作製において、銀粉を焼成型の導電性ペーストに使用して電極を形成する際に、銀粉の焼成温度が高過ぎると、パッシベーション膜がダメージを受け易くなる。
 そのため、特許文献2の方法により製造される銀粉よりも低い温度で加熱しても、銀粒子同士を十分に焼結させることができる銀粉が望まれている。
 したがって、本発明は、このような従来の問題点に鑑み、より低い温度で焼成可能な球状銀粉を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究した結果、球状の銀粒子の内部に空隙を形成し、この銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙の断面の輪郭に外接する長方形の面積が最小になる長方形の長辺の長さである長径を100~1000nm、その長方形の短辺の長さである短径を10nm以上にし且つ短径に対する長径の比(長径/短径)を5以上にすることにより、より低い温度で焼成可能な球状銀粉を提供することができることを見出し、本発明を完成するに至った。
 すなわち、本発明による球状銀粉は、球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙の断面の輪郭に外接する長方形の面積が最小になる長方形の長辺の長さである長径が100~1000nm、その長方形の短辺の長さである短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上であることを特徴とする。
 この球状銀粉において、銀粉の断面において、銀粉の断面積に対する空隙の断面積の割合が10%以下であるのが好ましく、球状銀粉のレーザー回折法による平均粒径D50が0.5~4.0μmであるのが好ましい。また、球状銀粉のBET比表面積が0.1~1.5m/gであるのが好ましく、比表面積径DBETが0.1~3μmであるのが好ましい。また、球状銀粉の平均一次粒子径DSEMが0.3~3μmであるのが好ましく、比表面積径DBETに対する平均一次径DSEMの比(DSEM/DBET)が1.0~2.0であるのが好ましい。また、球状銀粉を加熱したときに球状銀粉の収縮率が10%に達する温度が360℃以下であるのが好ましい。また、球状銀粉の空隙が、外部に連通しない閉鎖された空隙であるのが好ましい。また、球状銀粉が、構造中にアミノ基とカルボキシル基を有し且つ環状構造を有する有機物を含有するのが好ましく、この有機物の分子量が100以上であるの好ましい。
 なお、本明細書中において、「球状銀粉を加熱したときの球状銀粉の収縮率」とは、球状銀粉に荷重50kgfを1分間加えて作製した(直径5mmの)略円柱形のペレットを常温から昇温速度10℃/分で900℃まで昇温したときのペレットの収縮率(常温のときのペレットの長さと最も収縮したときのペレットの長さとの差に対するペレットの長さの減少量の割合)をいう。
 本発明によれば、より低い温度で焼成可能な球状銀粉を提供することができる。
実施例1で得られた球状銀粉の断面の電界放出形走査電子顕微鏡(FE-SEM)写真を示す図である。 実施例2で得られた球状銀粉の断面のFE-SEM写真を示す図である。 実施例3で得られた球状銀粉の断面のFE-SEM写真を示す図である。 実施例4で得られた球状銀粉の断面のFE-SEM写真を示す図である。 実施例5で得られた球状銀粉の断面のFE-SEM写真を示す図である。 実施例6で得られた球状銀粉の断面のFE-SEM写真を示す図である。 実施例7で得られた球状銀粉の断面のFE-SEM写真を示す図である。 実施例8で得られた球状銀粉の断面のFE-SEM写真を示す図である。 比較例1で得られた球状銀粉の断面のFE-SEM写真を示す図である。 比較例2で得られた球状銀粉の断面のFE-SEM写真を示す図である。
 本発明による球状銀粉の実施の形態は、球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙の断面の輪郭に外接する長方形の面積が最小になる長方形の長辺の長さである長径が100~1000nm(好ましくは100~700nm、さらに好ましくは100~500nm)、その長方形の短辺の長さである短径が10nm以上(好ましくは10~100nm)であり且つ短径に対する長径の比(長径/短径(アスペクト比))が5以上(好ましくは10以上)である。
 この球状銀粉の空隙は、球状銀粉の中心付近で延びる空隙であるのが好ましく、外部に連通しない閉鎖された空隙であるのが好ましい。また、銀粉の断面において、銀粉の断面積に対する空隙の断面積の割合が、好ましくは0.05~10%であり、さらに好ましくは0.05~5%であり、最も好ましくは0.1~3%以下である。
 このような銀粉の粒子の形状や粒子の内部の空隙の存在は、銀粉を樹脂に埋めた状態で樹脂の表面を研磨して銀粉の粒子の断面を露出させ、その断面を電子顕微鏡により(好ましくは1万倍~4万倍で)観察することによって確認することができる。この球状銀粉の粒子の断面は、球状銀粉の粒子の中央部の断面であるか、端部付近の断面であるかによって断面の大きさが異なる。この断面が露出した球状銀粉の粒子として観察された50個の球状銀粉の粒子のうち、断面の大きな粒子から順に30個の球状銀粉の粒子を選び、これらの30個の球状銀粉の粒子の断面の少なくとも1個の球状銀粉の粒子の断面に(長径が100~1000nm、短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上の形状の)空隙が観察されれば、その球状銀粉は粒子内部に少なくとも一つの(上記の形状の)空隙を有する球状銀粉であるとする。
 球状銀粉の断面の観察では、具体的には、球状銀粉を樹脂に埋めた後、クロスセクションポリッシャーで樹脂の表面を研磨することにより球状銀粉の粒子の断面を露出させて、球状銀粉の断面観察用サンプルを作製し、このサンプルを電子顕微鏡により(好ましくは4~8万倍で)観察して得られた画像について、画像解析ソフトにより解析して、球状銀粉の各々の粒子の断面における空隙の大きさ(長径および短径)、球状銀粉の粒子の断面積に対する空隙の断面積の割合(球状銀粉の粒子の断面に複数の空隙がある場合は球状銀粉の粒子の断面積に対する空隙の断面積の合計の割合)、球状銀粉の粒子の断面の輪郭に外接する円の直径を求めて、それぞれの平均値を算出し、これらの平均値をそれぞれ球状銀粉の空隙の長径および短径、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMとする。この球状銀粉の平均一次粒子径DSEMは、0.3~3μmであるのが好ましく、0.5~2μmであるのがさらに好ましい。
 球状銀粉のレーザー回折法による平均粒径D50(レーザー回折式粒度分布測定装置による体積基準の粒子径分布における累積50%粒子径D50)は、0.5~4μmであるのが好ましく、1.1~3.5μmであるのがさらに好ましい。レーザー回折法による平均粒径D50が大き過ぎると、導電性ペーストに使用して配線などの描写に使用した場合に、微細配線を描写し難くなり、一方、小さ過ぎると、導電性ペースト中の銀濃度を高くし難くなり、配線などが断線する場合がある。なお、球状銀粉の体積基準の粒子径分布において、ピークの幅が狭く、粒度のばらつきが少なく、粒径が揃った球状銀粉であるのが好ましい。
 球状銀粉のBET比表面積は、0.1~1.5m/gであるのが好ましく、0.2~1m/gであるのがさらに好ましい。BET比表面積が0.1m/gより小さいと、球状銀粉の粒子が大きくなり、そのような大きい球状銀粉を導電性ペーストに使用して配線などの描写に使用すると、微細配線を描写し難くなり、一方、1.5m/gより大きいと、導電性ペーストの粘度が高くなり過ぎるために導電性ペーストを希釈して使用する必要があり、導電性ペーストの銀濃度が低くなって、配線などが断線する場合がある。
 球状銀粉の粒子形状を真球としてBET比表面積から算出した粒子径(球状銀粉の比表面積径)DBET(=6/(銀の密度×BET比表面積))は、0.1~3μmであるのが好ましく、0.5~1.5μmであるのがさらに好ましい。
 球状銀粉の比表面積径DBETに対する平均一次粒子径DSEMの比(DSEM/DBET)は、1.0~2.0であるのが好ましい。この比が1に近いほど、より球形に近い形状の銀粉になる。
 また、球状銀粉を加熱したときに球状銀粉の収縮率が10%に達する温度が360℃以下であるのが好ましく、335℃以下であるのがさらに好ましい。
 また、球状銀粉が、構造中にアミノ基とカルボキシル基を有する有機物を含有するのが好ましく、この有機物が環状構造を有するのが好ましく、この有機物の分子量が100以上であるのが好ましく、チロシン、トリプトファン、フェニルアラニン、アントラニル酸などの分子量が100以上の芳香族アミノ酸であるのがさらに好ましい。また、この有機物は、球状銀粉中に0.001~2質量%含まれるのが好ましく、この含有量は、液体クロマトグラフ質量分析計を使用して分析することができる。
 このような球状銀粉は、銀イオンを含有する水性反応系に、構造中にアミノ基とカルボキシル基を有し且つ環状構造を有する分子量100以上の有機物を添加した後、還元剤を混合して、銀粒子を還元析出させることによって製造することができる。
 銀イオンを含有する水性反応系として、硝酸銀、銀錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。銀錯体を含有する水溶液は、硝酸銀水溶液または酸化銀懸濁液にアンモニア水またはアンモニウム塩を添加することにより生成することができる。これらの中で、銀粉が適当な粒径と球状の形状を有するようにするためには、硝酸銀水溶液にアンモニア水を添加して得られる銀アンミン錯体水溶液を使用するのが好ましい。銀アンミン錯体中におけるアンモニアの配位数は2であるため、銀1モル当たりアンモニア2モル以上を添加する。また、アンモニアの添加量が多過ぎると錯体が安定化し過ぎて還元が進み難くなるので、アンモニアの添加量は銀1モル当たりアンモニア8モル以下であるのが好ましい。なお、還元剤の添加量を多くするなどの調整を行えば、アンモニアの添加量が8モルを超えても適当な粒径の球状銀粉を得ることは可能である。なお、銀イオンを含有する水性反応系は、アルカリ性であるのが好ましく、pH調整剤として水酸化ナトリウムなどのアルカリを添加してアルカリ性に調整するのが好ましい。
 構造中にアミノ基とカルボキシル基を有し且つ環状構造を有する分子量100以上の有機物として、チロシン、トリプトファン、フェニルアラニン、アントラニル酸などの分子量100以上の芳香族アミノ酸を使用するのが好ましい。芳香族アミノ酸は、反応液中で有機物がイオンとして存在することができ、この芳香族アミノ酸のイオンの存在によって、球状銀粉の粒子の内部に(長径が100~1000nm、短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上の形状の)空隙を形成することができると考えられる。また、有機物の分子量が100未満では、銀イオンを含有する水性反応系に還元剤を添加して銀粒子を還元析出させる際に、銀粒子の内部に(上記の形状の)空隙を形成し難くなる。この有機物の添加量は、銀に対して0.05~6質量%であるのが好ましく、0.1~5質量%であるのがさらに好ましく、0.2~4質量%であるのが最も好ましい。なお、この有機物として複数種類の有機物を添加してもよい。
 還元剤としては、炭素と酸素と水素からなる還元剤を使用することができ、例えば、アスコルビン酸、過酸化水素水、ギ酸、酒石酸、ヒドロキノン、ピロガロール、ぶどう糖、没食子酸、ホルマリンなどの1種以上を使用することができ、ホルマリンを使用するのが好ましい。このような還元剤を使用することにより、上述したような粒径の球状銀粉を得ることができる。還元剤の添加量は、銀の収率を高めるために、銀に対して1当量以上であるのが好ましく、還元力が弱い還元剤を使用する場合には、銀に対して2当量以上、例えば、10~20当量でもよい。
 還元剤の添加方法については、球状銀粉の凝集を防ぐために、1当量/分以上の速さで添加するのが好ましい。この理由は明確ではないが、還元剤を短時間で投入することで、銀粒子の還元析出が一挙に生じて、短時間で還元反応が終了し、発生した核同士の凝集が生じ難いため、分散性が向上すると考えられる。したがって、還元剤の添加時間が短いほど好ましく、また、還元の際には、より短時間で反応が終了するように反応液を攪拌するのが好ましい。また、還元反応時の温度は、5~80℃であるのが好ましく、5~40℃であるのがさらに好ましい。反応温度を低くすることによって、球状銀粉の粒子の内部に(長径が100~1000nm、短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上の形状の)空隙を生じさせ易くなる。また、球状銀粉の内部に(上記の形状の)空隙を生じさせるために、還元剤の添加前または添加中に撹拌するのが好ましい。また、還元剤により銀粒子を還元析出させた後、表面処理剤を添加して、銀粒子の表面に表面処理剤を付着させてもよい。
 銀粒子を還元析出させることによって得られた銀含有スラリーを固液分離し、得られた固形物を純水で洗浄して、固形物中の不純物を除去するのが好ましい。この洗浄の終点は、洗浄後の水の電気伝導度により判断することができる。
 この洗浄後に得られた塊状のケーキは、多くの水分を含有しているため、真空乾燥機などの乾燥機によって、乾燥した球状銀粉を得るのが好ましい。この乾燥の温度は、乾燥の時点で球状銀粉同士が焼結するのを防止するために、100℃以下であるのが好ましい。
 また、得られた球状銀粉に乾式解砕処理や分級処理を施してもよい。この解砕の代わりに、粒子を機械的に流動化させることができる装置に球状銀粉を投入して、球状銀粉の粒子同士を機械的に衝突させることによって、球状銀粉の粒子表面の凹凸や角ばった部分を滑らかにする表面平滑化処理を行ってもよい。また、解砕や平滑化処理の後に分級処理を行ってもよい。なお、乾燥、粉砕および分級を行うことができる一体型の装置を用いて乾燥、粉砕および分級を行ってもよい。
 以下、本発明による球状銀粉の実施例について詳細に説明する。
[実施例1]
 銀イオンとして0.12モル/Lの硝酸銀水溶液3500gに、濃度28質量%のアンモニア水溶液155gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.5gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量204のL-トリプトファン10質量%を含む水溶液4.2gを加えた後、温度を20℃に維持して攪拌しながら、還元剤として23質量%のホルマリン水溶液380gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15質量%のステアリン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉を樹脂に埋めた後、クロスセクションポリッシャー(日本電子株式会社製のIB-09010CP)により樹脂の表面を研磨して銀粉の粒子の断面を露出させて、銀粉の断面観察用サンプルを作製した。このサンプルを電界放出型走査電子顕微鏡(FE-SEM)(日本電子株式会社製のJSM-6700F)により1万倍で観察して、銀粉の50個以上の粒子の断面の画像を得た。この画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の10個の粒子の断面に空隙が存在することが確認された。この画像中の球状銀粉の粒子のそれぞれの断面の輪郭に外接する円の直径を求め、その平均値を算出して、球状銀粉の粒子の断面の輪郭に外接する円の直径の平均値(平均一次粒子径)DSEMを求めたところ、1.0μmであった。なお、この空隙が認められた球状銀粉の粒子について8万倍で観察した電子顕微鏡写真を図1に示す。
 また、得られた画像について、画像解析ソフト(株式会社マウンテック製のMac-View)により解析して、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合(球状銀粉の粒子の断面に複数の空隙がある場合は球状銀粉の粒子の断面積に対する空隙の断面積の合計の割合)を求めた。なお、使用した画像解析ソフトでは、断面の画像における空隙の輪郭をタッチペンでなぞれば、その空隙の断面積と長径(空隙の断面の輪郭に外接する長方形(または正方形)の面積が最小となる長方形の長辺の長さ)および短径(その長方形の短辺の長さ)を算出することができるようになっている。その結果、画像中の球状銀粉の粒子の断面に3つの空隙が確認され、それぞれの空隙の長径と、短径と、短径に対する長径の比(アスペクト比)は、それぞれ437nmと34.2nmと12.80、160nmと26.6nmと6.02、218nmと24.6nmと8.84であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合はそれぞれ1.28%、0.36%、0.36%であり、合計で2.00%であった。
 また、得られた球状銀粉のBET比表面積を、BET比表面積測定装置(株式会社マウンテック製のMacsorb HM-model 1210)を使用して、測定器内に60℃で10分間Ne-N混合ガス(窒素30%)を流して脱気した後、BET1点法により測定したところ、BET比表面積は0.70m/gであった。また、球状銀粉の粒子形状を真球としてBET比表面積から算出した粒子径(比表面積径)DBETを、DBET=6/(銀の密度×BET比表面積)から算出したところ、比表面積径DBETは0.8μmであり、DSEM/DBETは1.3であった。
 また、得られた球状銀粉の粒度分布を、レーザー回折式粒度分布装置(マイクロトラック・ベル株式会社製のマイクロトラック粒度分布測定装置MT-3300EXII)により測定して、累積50%粒子径(D50)を求めたところ、1.7μmであった。
 また、得られた球状銀粉にペレット成形機により荷重50kgfを1分間加えて(直径5mmの)略円柱形のペレットを作製し、このペレットを熱機械的分析(TMA)装置(株式会社リガク製のTMA8311)にセットし、常温から昇温速度10℃/分で900℃まで昇温し、ペレットの収縮率(常温のときのペレットの長さaと最も収縮したときのペレットの長さbとの差(a-b)に対するペレットの長さの減少量cの割合)(=c×100/(a-b))を測定し、収縮率が10%に達した温度を焼結開始温度とすると、この球状銀粉の焼結開始温度は305℃であった。
 また、得られた球状銀粉1.0gに硝酸(関東化学株式会社製の精密分析用(60~61%))と純水を体積比1:1で混合した硝酸水溶液10mLを加えて超音波により全溶解し、得られた溶液を超純水で1万倍に希釈して、液体クロマトグラフ質量分析計(LC/MC)(アジレント・テクノロジー株式会社製のAgilent6470トリプル四重極LC/MS(検出下限0.1ppm))により分析したところ、球状銀粉から、0.12質量%の(硝酸によりニトロ化された)トリプトファンが検出された。
[実施例2]
 銀イオンとして0.12モル/Lの硝酸銀水溶液3500gに、濃度28質量%のアンモニア水溶液155gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.5gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量165のL-フェニルアラニンを2.4質量%含む水溶液14gを加えた後、温度を20℃に維持して攪拌しながら、還元剤として23質量%のホルマリン水溶液380gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15質量%のステアリン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の2個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図2に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に1つの空隙が確認され、その空隙の長径と短径とアスペクト比(長径/短径)は、それぞれ416nm、32.6nm、12.75であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は0.33%であり、球状銀粉の平均一次粒子径DSEMは1.4μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.72m/g、比表面積径DBETは0.8μm、DSEM/DBETは1.8であり、累積50%粒子径(D50)は1.4μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、306℃であった。
 また、得られた球状銀粉について、実施例1と同様の方法により、液体クロマトグラフ質量分析計で分析したところ、球状銀粉から0.23質量%のフェニルアラニンが検出された。
[実施例3]
 銀イオンとして0.12モル/Lの硝酸銀水溶液3200gに、濃度28質量%のアンモニア水溶液155gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.5gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量181.19のチロシンを0.12質量%含む水溶液300gを加えた後、温度を20℃に維持して、攪拌羽根の周速100m/sで攪拌しながら、還元剤として23質量%のホルマリン水溶液380gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15質量%のステアリン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の15個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図3に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に1つの空隙が確認され、その空隙の長径と短径とアスペクト比(長径/短径)は、それぞれ952nm、80.7nm、11.80であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は2.53%であり、球状銀粉の平均一次粒子径DSEMは1.2μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.60m/g、比表面積径DBETは1.0μm、DSEM/DBETは1.3であり、累積50%粒子径(D50)は1.7μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、311℃であった。
 また、得られた球状銀粉について、実施例1と同様の方法により、液体クロマトグラフ質量分析計で分析したところ、球状銀粉から0.0012質量%の(硝酸によりニトロ化された)チロシンが検出された。
[実施例4]
 銀イオンとして0.13モル/Lの硝酸銀水溶液3300gに、濃度28質量%のアンモニア水溶液162gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.86gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量204のL-トリプトファンを濃度2.0質量%の水酸化ナトリウム水溶液6.09gに溶解した7質量%のL-トリプトファン含む水溶液6.5gを加えた後、温度を28℃に維持して、攪拌羽根の周速100m/sで攪拌しながら、還元剤として25質量%のホルマリン水溶液375gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15質量%のステアリン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の21個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図4に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に4つの空隙が確認され、それぞれ751nm、126nm、5.94と、270nm、37.7nm、7.15と、271nm、26.4nm、10.28と、133nm、21.2nm、6.29であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は、それぞれ1.83%、0.48%、0.40%、0.15%(合計で2.86%)であり、球状銀粉の平均一次粒子径DSEMは1.49μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.62m/g、比表面積径DBETは0.9μm、DSEM/DBETは1.6であり、累積50%粒子径(D50)は1.9μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、333℃であった。
[実施例5]
 銀イオンとして0.13モル/Lの硝酸銀水溶液3300gに、濃度28質量%のアンモニア水溶液162gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液6.79gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量204のL-トリプトファンを濃度2.0質量%の水酸化ナトリウム水溶液2.03gに溶解した7質量%のL-トリプトファン含む水溶液2.2gを加えた後、温度を28℃に維持して、攪拌羽根の周速100m/sで攪拌しながら、還元剤として25質量%のホルマリン水溶液375gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15質量%のステアリン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の7個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図5に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に2つの空隙が確認され、それぞれの空隙の長径と短径とアスペクト比(長径/短径)は、それぞれ188nm、36.2nm、5.18と、277nm、34.9nm、7.93であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は、それぞれ0.31%、0.39%(合計で0.70%)であり、球状銀粉の平均一次粒子径DSEMは1.45μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.58m/g、比表面積径DBETは1.0μm、DSEM/DBETは1.5であり、累積50%粒子径(D50)は1.7μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、331℃であった。
[実施例6]
 銀イオンとして0.12モル/Lの硝酸銀水溶液3300gに、濃度28質量%のアンモニア水溶液172gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.3gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量204のL-トリプトファンを濃度2.0質量%の水酸化ナトリウム水溶液5.56gに溶解した7質量%のL-トリプトファン含む水溶液5.98gを加えた後、温度を40℃に維持して、攪拌羽根の周速100m/sで攪拌しながら、還元剤として21質量%のホルマリン水溶液433gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として13質量%のオレイン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の11個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図6に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に4つの空隙が確認され、それぞれの空隙の長径と短径とアスペクト比(長径/短径)は、それぞれ1111nm、104nm、10.69と、250nm、36.7nm、6.82と、139nm、26.1nm、5.31と、234nm、32.6nm、7.16であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は、それぞれ2.11%、0.24%、0.07%、0.16%(合計で2.58%)であり、球状銀粉の平均一次粒子径DSEMは1.64μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.51m/g、比表面積径DBETは1.1μm、DSEM/DBETは1.5であり、累積50%粒子径(D50)は2.4μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、354℃であった。
[実施例7]
 銀イオンとして0.12モル/Lの硝酸銀水溶液3300gに、濃度28質量%のアンモニア水溶液150gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液6.2gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量204のL-トリプトファンを濃度2.0質量%の水酸化ナトリウム水溶液5.56gに溶解した7質量%のL-トリプトファン含む水溶液5.98gを加えた後、温度を20℃に維持して、攪拌羽根の周速100m/sで攪拌しながら、還元剤として21質量%のホルマリン水溶液433gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として2質量%のベンゾトリアゾールを含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の9個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図7に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に1つの空隙が確認され、その空隙の長径と短径とアスペクト比(長径/短径)は、それぞれ571nm、39.4nm、14.51であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は2.05%であり、球状銀粉の平均一次粒子径DSEMは1.05μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は1.05m/g、比表面積径DBETは0.5μm、DSEM/DBETは1.9であり、累積50%粒子径(D50)は1.3μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、346℃であった。
[実施例8]
 銀イオンとして0.12モル/Lの硝酸銀水溶液3200gに、濃度28質量%のアンモニア水溶液155gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.1gを加えてpHを調整した。このpH調整した銀アンミン錯体溶液に、分子量137.14のアントラニル酸を濃度1.5質量%の水酸化ナトリウム水溶液5.755gに溶解した4.65質量%のアントラニル酸含む水溶液6gを加えた後、温度を20℃に維持して、攪拌羽根の周速100m/sで攪拌しながら、還元剤として23質量%のホルマリン水溶液380gを加えて、さらに十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15質量%のステアリン酸を含む水溶液を添加し、十分に撹拌した後、熟成させた。この熟成させたスラリーをろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、断面が大きい30個の粒子中の3個の粒子の断面に空隙が存在することが確認された。この空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図8に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の平均一次粒子径DSEMを求めた。その結果、画像中の球状銀粉の粒子の断面に1つの空隙が確認され、その空隙の長径と短径とアスペクト比(長径/短径)は、それぞれ903nm、86.9nm、10.39であった。また、球状銀粉の粒子の断面積に対する空隙の断面積の割合は1.23%であり、球状銀粉の平均一次粒子径DSEMは1.40μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.72m/g、比表面積径DBETは0.8μm、DSEM/DBETは1.8であり、累積50%粒子径(D50)は1.7μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、312℃であった。
 また、得られた球状銀粉について、実施例1と同様の方法により、液体クロマトグラフ質量分析計で分析したところ、球状銀粉から0.097質量%の(硝酸によりニトロ化された)アントラニル酸が検出された。
[比較例1]
 銀8.63gを含む硝酸銀水溶液753gを分取した1Lビーカーを、水温35℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD-4R、出力160W)に入れ、発振周波数40kHzで超音波照射を開始するとともに攪拌を開始した。
 次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水29.1g(銀に対して3.0当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から30秒後に、20質量%の水酸化ナトリウム水溶液0.48gを添加し、アンモニア水の添加から20分後に、ホルマリンを純水で希釈した27.4質量%のホルムアルデヒド溶液48.7g(銀に対して11.1当量相当)を添加し、その30秒後に、1.2質量%のステアリン酸エタノール溶液0.86gを添加して、銀粒子を含むスラリーを得た。
 次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であり、長径が100~1000nm、短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上の形状の空隙ではなく球状の空隙が存在することが確認された。この球状の空隙が認められた球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図9に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の平均一次粒子径DSEMを求めたところ、1.6μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.35m/g、比表面積径DBETは1.6μm、DSEM/DBETは1.0であり、累積50%粒子径(D50)は3.0μmであった。また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、410℃であった。
[比較例2]
 銀8.63gを含む硝酸銀水溶液28.6gを分取した1Lビーカーを、水温35℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD-4R、出力160W)に入れ、発振周波数40kHzで超音波照射を開始するとともに攪拌を開始した。
 次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水52.7g(銀に対して5.0当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から5分後に、0.40質量%のポリエチレンイミン(分子量10,000)水溶液2.2gを添加し、アンモニア水の添加から20分後に、6.2質量%の含水ヒドラジン水溶液19.4g(銀に対して1.2当量相当)を添加し、その30秒後に、1.3質量%ステアリン酸溶液0.77gを添加して、銀粒子を含むスラリーを得た。なお、本比較例では、ヒドラジンの使用により小さくなる粒径を調整するためにポリエチレンイミンを添加した。
 次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して銀粉を得た。
 このようにして得られた銀粉について、実施例1と同様の方法により、1万倍で観察した銀粉の粒子の断面の画像から、銀粉の形状は球状であることが確認され、空隙が存在することは確認されなかった。この球状銀粉の粒子について2万倍で観察した電子顕微鏡写真を図10に示す。また、得られた画像について、実施例1と同様の方法により、球状銀粉の平均一次粒子径DSEMを求めたところ、2.7μmであった。
 また、得られた球状銀粉について、実施例1と同様の方法により、BET比表面積を測定し、比表面積径DBETを求めるとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.16m/g、比表面積径DBETは3.6μm、DSEM/DBETは0.8であり、累積50%粒子径(D50)は2.8μmであった。また、得られた球状銀粉について、実施例1と同様の方法により、焼結開始温度を求めたところ、430℃であった。
 これらの実施例および比較例で得られた球状銀粉の特性を表1~表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの実施例および比較例から、実施例の球状銀粉のように、粒子内部に(長径が100~1000nm、短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上の形状の)空隙を有する球状銀粉は、焼結開始温度を大幅に低下させることができることがわかる。また、実施例2や実施例5のように、球状銀粉の粒子の断面積に対する空隙の断面積の割合が1%以下と少なくても、焼結開始温度を大幅に低下させることができることがわかる。
 これらの実施例および比較例から、実施例の球状銀粉は、焼結開始温度を大幅に低下させることができることがわかる。なお、比較例1の球状銀粉のように略球状の空隙ではなく、実施例1~3の球状銀粉のように、球状銀粉の粒子の断面に細長く延びる(外部に連通しない閉鎖された)空隙が球状銀粉の粒子の内部に存在すると、球状銀粉を加熱する際に、空隙内の残留成分が膨張したときの膨張力が空隙内に不均一に加えられることにより、球状銀粉の粒子が変形し易くなるため、球状銀粉の焼結開始温度を大幅に低下させることができると考えられる。
 本発明による球状銀粉は、より低い温度で焼成可能な球状銀粉として、導電性ペーストの作製に利用することができ、この球状銀粉を含む導電性ペーストをスクリーン印刷などにより基板上に印刷して、太陽電池、チップ部品、タッチパネルなどの電子部品の電極や回路の他、電磁波シールド材などに使用することができる。

Claims (11)

  1. 球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙の断面の輪郭に外接する長方形の面積が最小になる長方形の長辺の長さである長径が100~1000nm、その長方形の短辺の長さである短径が10nm以上であり且つ短径に対する長径の比(長径/短径)が5以上であることを特徴とする、球状銀粉。
  2. 前記銀粉の断面において、前記銀粉の断面積に対する前記空隙の断面積の割合が10%以下であることを特徴とする、請求項1に記載の球状銀粉。
  3. 前記球状銀粉のレーザー回折法による平均粒径D50が0.5~4.0μmであることを特徴とする、請求項1に記載の球状銀粉。
  4. 前記球状銀粉のBET比表面積が0.1~1.5m/gであることを特徴とする、請求項1に記載の球状銀粉。
  5. 前記球状銀粉の比表面積径DBETが0.1~3μmであることを特徴とする、請求項1に記載の球状銀粉。
  6. 前記球状銀粉の平均一次粒子径DSEMが0.3~3μmであることを特徴とする、請求項1に記載の球状銀粉。
  7. 前記球状銀粉の比表面積径DBETに対する前記平均一次径DSEMの比(DSEM/DBET)が1.0~2.0であることを特徴とする、請求項1に記載の球状銀粉。
  8. 前記球状銀粉を加熱したときに前記球状銀粉の収縮率が10%に達する温度が360℃以下であることを特徴とする、請求項1に記載の球状銀粉。
  9. 前記空隙が、外部に連通しない閉鎖された空隙であることを特徴とする、請求項1に記載の球状銀粉。
  10. 前記球状銀粉が、構造中にアミノ基とカルボキシル基を有し且つ環状構造を有する有機物を含有することを特徴とする、請求項1に記載の球状銀粉。
  11. 前記有機物の分子量が100以上であることを特徴とする、請求項10に記載の球状銀粉。
PCT/JP2018/045808 2017-12-15 2018-12-13 球状銀粉 WO2019117234A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880078537.6A CN111432959B (zh) 2017-12-15 2018-12-13 球状银粉
EP18888350.8A EP3702064B1 (en) 2017-12-15 2018-12-13 Spherical silver powder
US16/772,822 US11376659B2 (en) 2017-12-15 2018-12-13 Spherical silver powder
SG11202004797QA SG11202004797QA (en) 2017-12-15 2018-12-13 Spherical silver powder
KR1020207019859A KR102451522B1 (ko) 2017-12-15 2018-12-13 구상 은 분말

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017240187 2017-12-15
JP2017-240187 2017-12-15
JP2018232153A JP6900357B2 (ja) 2017-12-15 2018-12-12 球状銀粉
JP2018-232153 2018-12-12

Publications (1)

Publication Number Publication Date
WO2019117234A1 true WO2019117234A1 (ja) 2019-06-20

Family

ID=66820400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045808 WO2019117234A1 (ja) 2017-12-15 2018-12-13 球状銀粉

Country Status (1)

Country Link
WO (1) WO2019117234A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056050A (ja) * 2018-09-28 2020-04-09 Dowaエレクトロニクス株式会社 銀粉およびその製造方法ならびに導電性ペースト
US20220288680A1 (en) * 2019-08-26 2022-09-15 Kyocera Corporation Method for producing silver particles, thermosetting resin compositions, semiconductor device, and electrical and/or electronic components
WO2023210663A1 (ja) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト
WO2023210662A1 (ja) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176620A (ja) 1994-12-27 1996-07-09 Dowa Mining Co Ltd 銀粉の製造法
JPH08311659A (ja) * 1995-05-11 1996-11-26 Nec Corp マイクロボール材を用いた金属成形方法と金属被覆方法
JP2015232180A (ja) 2012-02-13 2015-12-24 Dowaエレクトロニクス株式会社 球状銀粉およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176620A (ja) 1994-12-27 1996-07-09 Dowa Mining Co Ltd 銀粉の製造法
JPH08311659A (ja) * 1995-05-11 1996-11-26 Nec Corp マイクロボール材を用いた金属成形方法と金属被覆方法
JP2015232180A (ja) 2012-02-13 2015-12-24 Dowaエレクトロニクス株式会社 球状銀粉およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702064A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056050A (ja) * 2018-09-28 2020-04-09 Dowaエレクトロニクス株式会社 銀粉およびその製造方法ならびに導電性ペースト
US20220288680A1 (en) * 2019-08-26 2022-09-15 Kyocera Corporation Method for producing silver particles, thermosetting resin compositions, semiconductor device, and electrical and/or electronic components
WO2023210663A1 (ja) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト
WO2023210662A1 (ja) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト

Similar Documents

Publication Publication Date Title
WO2019117234A1 (ja) 球状銀粉
JP6900357B2 (ja) 球状銀粉
CN113677458B (zh) 混合银粉和包含其的导电糊
KR100480873B1 (ko) 니켈 분말 및 도전 페이스트
KR100480866B1 (ko) 니켈 분말, 그 제조 방법 및 도전 페이스트
JP6857166B2 (ja) 球状銀粉およびその製造方法
JP2011052300A (ja) フレーク状銀粉及びその製造方法、並びに導電性ペースト
JP7093812B2 (ja) 銀粉およびその製造方法
JP2011208278A (ja) フレーク状銀粉及びその製造方法
JP6807302B2 (ja) 球状銀粉
JP2017101268A (ja) 球状銀粉およびその製造方法、ならびに導電性ペースト
CN110449572A (zh) 电子浆料用功能性银粉的制备方法
JP2020050947A (ja) 易解砕性銅粉及びその製造方法
CN112974827A (zh) 一种高振实密度、表面褶皱的球形银粉的制备方法
JP3280372B2 (ja) ニッケル粉及び導電ペースト
JP2004323884A (ja) 超微粒子のニッケル粉末及びその製造方法
JP2020050888A (ja) 易解砕性銅粉及びその製造方法
JP4549034B2 (ja) ニッケル粉の製造方法及び積層セラミックコンデンサの製造方法
WO2022202575A1 (ja) 銀粉及びその製造方法
WO2020262115A1 (ja) 銀粉およびその製造方法
WO2019117235A1 (ja) 球状銀粉およびその製造方法
TW202417376A (zh) 金屬碳化物之製造方法、金屬碳化物粉末和金屬碳化物中間體分散液
TW202319147A (zh) 銀粉及銀粉的製造方法
RU2491670C2 (ru) Порошок для токопроводящих паст, способ получения и оптимизации его параметров
JP2011058055A (ja) 銀粒子の清浄化方法及び該方法により清浄化された銀粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018888350

Country of ref document: EP

Effective date: 20200526

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019859

Country of ref document: KR

Kind code of ref document: A