WO2019102764A1 - リチウムイオン電池廃材の処理方法 - Google Patents

リチウムイオン電池廃材の処理方法 Download PDF

Info

Publication number
WO2019102764A1
WO2019102764A1 PCT/JP2018/039198 JP2018039198W WO2019102764A1 WO 2019102764 A1 WO2019102764 A1 WO 2019102764A1 JP 2018039198 W JP2018039198 W JP 2018039198W WO 2019102764 A1 WO2019102764 A1 WO 2019102764A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
copper
converter
battery waste
Prior art date
Application number
PCT/JP2018/039198
Other languages
English (en)
French (fr)
Inventor
賢二 竹田
浅野 聡
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US16/647,932 priority Critical patent/US20200263276A1/en
Priority to EP18881892.6A priority patent/EP3715485B1/en
Priority to KR1020207008410A priority patent/KR102470940B1/ko
Priority to CA3075424A priority patent/CA3075424C/en
Priority to CN201880036920.5A priority patent/CN110719963B/zh
Publication of WO2019102764A1 publication Critical patent/WO2019102764A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/004Dry processes separating two or more metals by melting out (liquation), i.e. heating above the temperature of the lower melting metal component(s); by fractional crystallisation (controlled freezing)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0032Bath smelting or converting in shaft furnaces, e.g. blast furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0056Scrap treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for treating lithium ion battery waste material, and relates to a treatment method for recovering valuable metals such as copper and nickel from lithium ion battery waste material.
  • Lithium ion batteries are lighter in weight, larger in battery capacity, and larger in repetition capacity than conventional nickel hydrogen batteries, lead storage batteries, etc. In such lithium ion batteries, after reaching the life or after being used a certain number of times, those which have deteriorated due to a decrease in charge capacity or those which have been damaged are discarded. In addition, defective products generated in the manufacturing process of lithium ion batteries are also disposed of.
  • lithium ion battery waste material The used lithium ion battery, the defective battery of the battery generated in the manufacturing process of the lithium ion battery, etc. are generally referred to as "lithium ion battery waste material".
  • Lithium ion batteries generally use an oxide such as nickel, cobalt, manganese, or iron as the positive electrode, aluminum as the current collector of the positive electrode, a carbon material as the negative electrode, and copper as the current collector of the negative electrode.
  • the amount of each metal used is less in terms of the overall weight of the battery than nickel-metal hydride batteries and lead-acid batteries, and it takes a lot of time and money to recover all of them, which is economically disadvantageous.
  • lithium ion batteries have a relatively small amount ratio of valuable metals such as nickel and copper as compared to nickel hydrogen batteries and lead storage batteries, so recycling of these valuable metals is inferior in profitability.
  • the method of disposal by landfill etc. without being recycled is the mainstream.
  • an electrolytic solution using fluorine or phosphorus such as lithium fluoride phosphate may be used, and a fluorine resin may be used as a separator for the positive electrode and the negative electrode.
  • Fluorine is used as an element.
  • Such fluorine and phosphorus tend to be a hindrance in recovering metals such as nickel and copper, and in particular, when metals are recycled by wet processing, they remain as impurities and reduce the value of recovered metals. There is.
  • Patent Documents 1 to 4 after the lithium ion battery waste material is roasted, it is finely crushed using a crusher (mill), and it is separated into individual materials by a sieve or a vibrating device, and valuable metals are obtained from each of them.
  • a method for recovering require a crusher to break up finely, a sieve to separate them, a magnetic separator and other separation devices, and it takes time and effort for investment and operation to introduce them, electric power, consumables, and various items. It takes time and money, such as maintenance, and the burden is not small.
  • Patent Document 5 lithium ion battery waste material is put into a copper smelting furnace (self-burning furnace) and subjected to a melting process (smelting process) to recover the metal, and the contained electrolyte is used as a fuel Methods are disclosed. According to such a method, it is considered that investment in various devices, labor and the like can be suppressed.
  • the electrolyte of the lithium ion battery contains a compound of phosphorus or fluorine. Therefore, if lithium ion battery waste material is put into the case of copper smelting furnace and treated, phosphorus contained in the lithium ion battery waste material will be melted and distributed to slag, but it will Since it is easy to adhere, it is difficult to completely remove the adhered component, and a great deal of cost and labor are required to ensure the quality of valuable metals such as nickel.
  • the fluorine contained in lithium ion battery waste material is volatilized by melting treatment and becomes exhaust gas, but the gas is accumulated in the copper case with heavy specific gravity and the volume is increased, and then it is suddenly raised and removed In the smelting furnace, splash (scattering) occurs and valuable metal adheres to the furnace wall, or valuable metal is taken in smoke ash, Metal recovery losses may occur.
  • the fluorine that is vaporized and contained in the exhaust gas is transferred to the inside of the smelting furnace or to the exhaust gas treatment process to promote the corrosion of the facility, and it is also released to the atmosphere and waste water. There is concern about the impact on
  • the processing method which recovers valuable nickel and copper by putting a lithium ion battery waste material into a copper smelting process is effective from the viewpoint of time, cost, etc., it is possible to recover valuable metals by melting process. Losses may occur, and components such as phosphorus and fluorine contained in the battery may affect the recovery of valuable metals.
  • Patent No. 5657730 gazette Patent No. 3079285 gazette Patent No. 3450684 gazette Patent No. 3079287 International Publication No. 2015/096945
  • the present invention has been proposed in view of such circumstances, and when recovering valuable metals such as nickel and copper from lithium ion battery waste materials using treatment in a copper smelting process, recovery loss of valuable metals It aims at providing a method that can be processed more efficiently and stably while reducing.
  • the inventor of the present invention throws lithium ion battery waste material, which is a raw material, into a converter in a copper smelting process and burns it using residual heat remaining inside the converter, and then converts the material.
  • the inventors have found that the above-mentioned problems can be solved by charging the furnace with the copper mat obtained from an autogenous furnace in the copper smelting process and performing the smelting process, and the present invention has been completed.
  • a first invention according to the present invention is a method for treating lithium ion battery waste material using a converter in a copper smelting process, wherein a converter is equipped with a copper mat obtained from an automatic furnace in the copper smelting process.
  • a converter Prior to the treatment to obtain crude copper by introducing oxygen and injecting oxygen, lithium ion battery waste material is charged into a ladle used for charging a copper mat into the converter or the converter, and the converter or the ladle is It is a processing method of lithium ion battery waste material which burns the lithium ion battery waste material by residual heat inside.
  • the amount of the lithium ion battery waste material charged into the converter or the ladle is the amount of fluorine contained in the lithium ion battery waste material. It is a processing method of a lithium ion battery waste material adjusted so that it may become quantity equivalent to 10 ppm or more and less than 35 ppm to a quantity of copper supplied to the converter in the copper smelting process.
  • the lithium ion battery waste material is discharged, and then the electrolyte solution contained in the lithium ion battery waste material after discharge is removed, and then the lithium is removed.
  • a method of treating lithium ion battery waste material comprising charging ion battery waste material to the converter or the ladle for burning.
  • the present invention is a method of treating lithium ion battery waste material, which is a treatment method for recovering valuable metals from lithium ion battery waste material.
  • lithium ion battery waste material is a generic term for scraps such as waste materials generated in the manufacturing process of used lithium ion batteries and lithium ion batteries.
  • the treatment method according to the present invention is a treatment method for recovering valuable metals such as nickel and copper from the lithium ion battery waste material.
  • the method for treating lithium ion battery waste material according to the present invention is a treatment method using a converter in a copper smelting process, and charging a copper mat obtained from an automatic furnace in the copper smelting process into the converter.
  • a ladle ladle
  • the present invention is characterized in that lithium ion battery waste material is burned by residual heat inside the battery.
  • the method for treating lithium ion battery waste material according to the present invention utilizes a converter or a ladle used in a copper smelting process, and is obtained from the usual treatment in the converter, ie, from a self-burning furnace in a copper smelting process.
  • the lithium ion battery waste material is put into the converter or ladle, and the combustion processing is performed by the internal residual heat. I want to do it.
  • the converter and the ladle are in an empty state containing no copper mat or the like, and the residual heat causes the process to be performed in a so-called open state.
  • a copper mat is inserted into the converter and the melting process is performed.
  • the lithium-ion battery waste material is not introduced into the smelting furnace (here, converter) housing, but the converter before melting processing And it is put into the ladle and it is made to burn by the residual heat of the inside.
  • the organic matter contained in the lithium ion battery waste material is almost completely removed by the combustion in the converter or the ladle, so the carbon constituting the organic matter is taken into the casing and valuable It can prevent that it becomes an oxide in the form which rolled in metal.
  • the amount is adjusted.
  • the amount of fluorine contained in the lithium ion battery is equivalent to 10 ppm or more and less than 35 ppm with respect to the amount of copper supplied to the furnace in the copper smelting process. It is preferable to adjust the input amount.
  • the lithium ion battery waste material is charged into the converter or ladle and combustion treatment is performed with residual heat, whereby the fluorine contained in the lithium ion battery waste material is vaporized.
  • the amount of lithium ion battery waste material is charged based on the amount of the fluorine.
  • the exhaust gas facility is an important facility for converting the sulfur contained in the raw material into sulfuric acid, but the equipment from fluorine which volatilized and contained in the exhaust gas It is important to reduce the impact on the environment as much as possible.
  • the amount of fluorine contained by adjusting the amount of lithium ion battery waste material input, that is, the amount of combustion processing of lithium ion battery waste material in the converter or ladle, corrosion of equipment due to fluorine It can be effectively prevented.
  • environmental impacts can be reduced.
  • the lithium ion battery waste material to be treated is discharged, and then the electrolytic solution contained in the lithium ion battery waste material after discharge is removed.
  • the lithium ion battery waste material was discharged, and the thing from which the electrolyte solution was removed after that are also called "lithium ion battery waste material.”
  • Lithium ion batteries mainly contain phosphorus as a component of the electrolyte solution.
  • phosphorus is easily mixed as an impurity of the valuable metals.
  • phosphorus is mixed in the recovery of valuable metals by discharging the lithium ion battery waste material and then removing the electrolytic solution contained in the lithium ion battery waste material after the discharge before performing the combustion process described later. Can reduce the possibility of
  • the treatment of the discharge can be performed, for example, by immersing the lithium ion battery waste material in the aqueous solution using a discharge liquid such as an aqueous solution of sodium sulfate or an aqueous solution of sodium chloride.
  • a discharge liquid such as an aqueous solution of sodium sulfate or an aqueous solution of sodium chloride.
  • the removal process of the electrolytic solution which is the organic substance contained in the lithium ion battery waste material after the discharge is not particularly limited, but for example, holes or partials in advance in the case (case) made of plastic of lithium ion battery waste material etc. It can carry out by the process which withdraw
  • the copper smelting process converter before being introduced into the copper smelting process converter, it may be introduced into a small furnace provided separately, where the electrolytic solution may be subjected to a pretreatment (pre-combustion process) such as thermal decomposition.
  • a pretreatment pre-combustion process
  • the treatment in the converter can be performed more stably, which is preferable.
  • a removal process of electrolyte solution it can also be performed by the process which wash
  • the lithium ion battery waste contains, for example, an organic solvent such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate or the like, or an electrolyte such as lithium hexafluorophosphate (LiPF6).
  • an organic solvent such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate or the like
  • an electrolyte such as lithium hexafluorophosphate (LiPF6).
  • lithium ion battery waste material is treated using a converter in a copper smelting process, but the usual treatment in the converter, that is, mounting a copper mat obtained from an automatic furnace in a copper smelting process Prior to carrying out the treatment to obtain crude copper by blowing in oxygen, lithium ion battery waste material is added to the converter before charging the copper mat or to the ladle used for charging the copper mat to the converter. throw into.
  • the charged lithium ion battery waste material is burned using the residual heat existing inside thereof.
  • the converter and the ladle are in an empty state not containing a copper mat or the like, and the residual heat remaining in the inside thereof performs the burning treatment in a so-called dry state.
  • the converter and ladle in the copper smelting process carry considerable high temperature heat (for example, high temperature heat of about 500 ° C. to 1100 ° C.) even if empty condition is maintained by repeated operation.
  • the heat remaining inside such an empty converter or ladle is called “remaining heat", and the remaining heat is used to burn the lithium ion battery waste material.
  • the copper mat is not inserted into the converter, and naturally, the melting process is not performed to the copper mat, which is the processing in a normal converter, Under no circumstances.
  • the converter in the copper smelting process is a smelting furnace that concentrates copper from the copper mat recovered from the self-burning furnace to refine crude copper.
  • the recovered copper mat is charged, and oxygen is blown into the copper mat to oxidize FeS in the copper mat to form converter slag, and copper sulfide in the copper mat is used. Settle and separate.
  • crude copper is generated.
  • the temperature exceeds 1086 ° C, which is the melting point of copper, in order to accept the copper mat melted copper, and the heat of oxidation is also generated during the melting reaction in the usual converter and the higher temperature It is in the state of The same is true for the ladle. Furthermore, if it is cooled to about room temperature when the converter or ladle is empty, heat shock will damage the constituent materials such as bricks, so it has a temperature of at least 500 ° C or more at the time of reaction and is empty It is common to keep the temperature at the same level or higher.
  • ladle that is used when inserting a copper mat into the converter, and receives the copper mat discharged from the self-burning furnace, hangs it with a crane, transports it to the converter, and inclines it by tilting. Is a facility to charge copper mats.
  • This ladle is also referred to as a "ladle”.
  • the self-burning furnace (sometimes referred to as "self-smelting furnace") in the copper smelting process is a smelting furnace that melts smelting raw materials such as sulfide concentrate and concentrates copper contained in the raw materials. It is.
  • a smelting raw material such as sulfide concentrate is blown into the reaction tower from the concentrate burner together with the preheated reaction gas, and is melted by reacting with the high temperature reaction gas.
  • the copper mat mainly composed of copper sulfide and the slag mainly composed of 2FeO ⁇ SiO 2 are separated due to the difference in specific gravity.
  • the usual treatment in the converter that is, the treatment to obtain crude copper by charging the copper mat obtained from the autothermal furnace in the copper smelting process and blowing in oxygen
  • the lithium ion battery waste material is charged into a converter before charging the copper mat or a ladle used for charging the copper mat into the converter.
  • the converter and the ladle contain residual heat inside, the lithium ion battery waste material put into the converter and the ladle is burned by the residual heat.
  • combustion occurs at a high temperature of about 500 ° C. to 1100 ° C., so organic substances contained in the lithium ion battery are easily volatilized and removed, and the copper converter is inserted into the converter thereafter.
  • the melting process it is possible to prevent carbon constituting the organic matter from becoming an oxide while involving valuable metals.
  • lithium ion battery waste material by subjecting lithium ion battery waste material to combustion treatment, adhesion of phosphorus contained in lithium ion battery waste material to valuable metals such as copper and nickel can be suppressed, and the quality of valuable metal such as nickel can be reduced. It can also be enhanced.
  • fluorine contained in lithium ion battery waste material is also volatilized by combustion and becomes exhaust gas, it is prevented that fluorine is brought in in the melting process after the copper mat is inserted into the converter thereafter, and the copper foil is eliminated. It is possible to prevent bumping and the like from occurring in the body.
  • the input amount of lithium ion battery waste material to a converter or a ladle is not particularly limited, it is preferable to adjust based on the amount of fluorine contained in the lithium ion battery waste material.
  • the lithium ion battery waste material is such that the amount of fluorine contained in the lithium ion battery waste material corresponds to 10 ppm or more and less than 35 ppm with respect to the amount of copper supplied to the converter in the copper smelting process. It is preferable to adjust the input amount of Moreover, it is more preferable to adjust the input amount so that it may become the quantity of 20 to 30 ppm with respect to the quantity of copper supplied to the converter in a copper smelting process.
  • the amount of copper supplied to the converter in the copper smelting process is not the amount of copper contained in the lithium ion battery waste material to be treated, but the raw material to be treated in the usual converter in the copper smelting process ( Copper amount in copper mat).
  • the lithium ion battery waste contains fluorine, and when it is charged into a converter or a ladle and subjected to a combustion treatment, the fluorine is volatilized to be an exhaust gas. At this time, if the treatment is carried out with the expected input amount, the fluorine concentration in the exhaust gas may be too high, which may affect the exhaust gas system of the converter such as corrosion.
  • the amount of lithium ion battery waste material charged into the converter or ladle to the above-mentioned range, the influence on the exhaust gas system can be prevented, and the influence on the copper smelting process is also stable and stable. Enable various processing operations.
  • the amount of lithium ion battery waste material is increased and the amount of fluorine contained in the lithium ion battery waste material is 35 ppm or more relative to the amount of copper supplied to the converter in the copper smelting process,
  • the concentration of fluorine in the exhaust gas system of the smelting furnace increases due to volatilization and becoming exhaust gas due to combustion treatment in the furnace or the ladle, which may affect the exhaust gas system.
  • environmental emission standards may be exceeded, and as a result of the need to adjust input amounts, efficient operation may not be possible.
  • the amount of lithium ion battery waste material is reduced and the amount of fluorine contained in the lithium ion battery waste material is less than 10 ppm with respect to the amount of copper supplied to the converter in the copper smelting process.
  • the amount of lithium ion battery waste materials that can be treated is reduced, productivity may be reduced, and practical operation may not be possible.
  • a copper mat is inserted into the converter and a melting treatment (smelting treatment) is performed to generate crude copper in a normal copper smelting process.
  • the copper mat is mainly composed of copper sulfides generated and recovered in the autogenous furnace in the copper smelting process, and becomes a raw material for forming rough copper in the converter.
  • the combustion treatment using residual heat is performed in the converter or the ladle.
  • the copper mat is inserted into the converter after the combustion process and the melting process is performed.
  • the combustion treatment is performed in a ladle, the lithium ion battery waste material after the combustion treatment is charged into the converter, and a copper mat is inserted to perform melting treatment.
  • the melting process in the converter may be performed in the same manner as the normal converter in the copper smelting process. Specifically, after the raw material (copper mat) is charged into the converter, oxygen is blown in. While being oxidized, it produces crude copper.
  • the melting treatment including lithium ion battery waste material is performed in the converter in the copper smelting process, but prior to the melting treatment, the lithium ion battery waste material is placed in the converter or Since the combustion process using the residual heat is performed in the ladle, the lithium ion battery waste material from which the organic matter and the like are removed is treated in the melting process. From this, it can prevent that carbon which comprises organic substance transfers to converter slag in the form which included valuable metal, and can suppress the recovery loss of valuable metal.
  • Valuable metals to be recovered such as copper and nickel, contained in lithium ion battery waste materials will be included in the crude copper obtained by the melting process in the converter in the copper smelting process, but the obtained crude copper Can be separated and recovered as high purity copper or nickel metal by purifying the same by a known method such as electrolytic smelting. Alternatively, it can be effectively recovered in the form of a copper or nickel sulfate or the like by purification treatment.
  • Example 1 A used waste product of a commercially available lithium ion battery was discharged and detoxified using a known method, then a hole was made in the battery case, and the electrolytic solution was removed therefrom. In addition, it was used as the raw material without separating the battery case and the like.
  • the lithium ion battery waste material (raw material) which was detoxified and the electrolytic solution was removed was charged into a converter in the copper smelting process and subjected to a combustion treatment.
  • the converter is in a state prior to the usual treatment in the copper smelting process, that is, the treatment of charging the copper mat and blowing in oxygen to produce crude copper, and the copper mat is charged. No, it's empty.
  • the converter is in a hot state due to repeated operations of the copper smelting process. Therefore, the charged lithium ion battery waste material was burned by the residual heat.
  • the amount of lithium ion battery waste material input to the converter is such that the amount of fluorine contained in the lithium ion battery waste material corresponds to 30 ppm with respect to the amount of copper supplied to the converter in the copper smelting process. It was thrown in as it became.
  • the converter was charged with a copper mat, and the usual treatment (melting treatment) in the converter in the copper smelting process was carried out to produce crude copper.
  • the crude copper produced and recovered from the converter was cast as it is on a purified anode.
  • the cast purified anode is charged into an electrolytic cell filled with an electrolytic solution of a sulfuric acid acidic solution (liquid temperature: 60 ° C.) having a composition of 45 g / L of copper concentration and 190 g / L of free sulfuric acid concentration.
  • a stainless steel cathode plate was inserted face to face, and copper was electrodeposited and collected on the cathode by passing a current of 300 A / m 2 between the anode and the cathode.
  • nickel is crystallized by crystallizing with nickel sulfate crystals, and is further dissolved and purified by means such as solvent extraction to obtain highly pure nickel sulfate.
  • Comparative Example 1 In Comparative Example 1, as in Example 1, after lithium ion battery waste material (raw material) was charged into a converter and subjected to a combustion treatment, a copper mat was inserted into the converter to carry out ordinary processing in a copper smelting process. Melting process was performed. At this time, the amount of lithium ion battery waste material input to the converter corresponds to 50 ppm of the amount of fluorine contained in the raw material of the lithium ion battery with respect to the amount of copper supplied to the converter in the copper smelting process. Make it into the amount and put it in. The rest of the process was performed in the same manner as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

銅製錬プロセスにおける処理を利用してリチウムイオン電池廃材からニッケルや銅等の有価金属を回収するに際し、有価金属の回収ロスを低減させながら、より効率的にかつ安定的に処理することのできる方法を提供する。 本発明に係るリチウムイオン電池廃材の処理方法は、銅製錬プロセスにおける転炉を用いたリチウムイオン電池廃材の処理方法であって、銅製錬プロセスにおける自熔炉から得られた銅マットを転炉に装入して酸素を吹き込むことで粗銅を得る処理に先立ち、転炉又は転炉に銅マットを装入するのに用いる取鍋にリチウムイオン電池廃材を投入し、その転炉又は取鍋の内部の余熱によりリチウムイオン電池廃材を燃焼させる。

Description

リチウムイオン電池廃材の処理方法
 本発明は、リチウムイオン電池廃材の処理方法に関するものであり、リチウムイオン電池廃材から銅やニッケル等の有価金属を回収する処理方法に関するものである。
 リチウムイオン電池は、従来のニッケル水素電池や鉛蓄電池等と比較して軽量で電池容量も大きく、繰り返し能力も大きいため、近年活用範囲が広がっており、数多く使用されている。このようなリチウムイオン電池では、寿命に達した後や、一定回数使われた後に充電容量が低下する等して劣化したもの、破損したりしたものは、廃棄処分されている。また、リチウムイオン電池の製造過程において発生した不良品も廃棄処分されている。
 なお、使用済みのリチウムイオン電池や、リチウムイオン電池の製造過程において発生した電池の不良品等について、総じて「リチウムイオン電池廃材」ともいう。
 リチウムイオン電池は、一般的に、正極としてニッケル、コバルト、マンガン、鉄等の酸化物が、正極の集電材としてアルミニウムが、また負極として炭素材が、負極の集電材として銅が用いられている。しかしながら、それぞれのメタルの使用量は、電池全体の重量から言えば、ニッケル水素電池や鉛蓄電池に比べると少なく、全てを回収しようとしても多大な時間とコストを要し、経済的に不利であった。
 また、リチウムイオン電池は、ニッケル水素電池や鉛蓄電池等と比較して、ニッケルや銅等の有価金属の物量比率が相対的に少ないため、それら有価金属をリサイクルしても採算性が劣り、従ってリサイクルされることなく埋め立て等により処分する方法が主流となっている。
 また、リチウムイオン電池においては、フッ化リン酸リチウム等、フッ素やリンを用いた電解液が使用されることがあり、また、正極と負極のセパレーターとしてフッ素樹脂が使用されていることもあり、元素としてフッ素が用いられている。このようなフッ素やリンは、ニッケルや銅等のメタルを回収する上で支障となりやすく、特に、湿式処理でメタルをリサイクルする際には不純物として残存し、回収メタルの価値を下げてしまうといった問題がある。
 ここで、特許文献1~4では、リチウムイオン電池廃材を焙焼した後、破砕機(ミル)を用いて細かく破砕し、それを篩や振動装置によって個別の素材に分離してそれぞれから有価金属を回収する方法が提案されている。しかしながら、これらの方法では、細かく破砕するための破砕機や分別するための篩、磁選機やその他の分離装置が必要となり、導入するための投資や運用するための手間や電力、消耗品、各種メンテナンス等の手間と費用が必要となり、負担は少なくなかった。
 一方で、特許文献5には、リチウムイオン電池廃材を銅製錬炉(自熔炉)に投入して熔融処理(熔錬処理)を施してメタルを回収するとともに、含有される電解液を燃料として利用する方法が開示されている。このような方法によれば、各種の装置への投資や手間等を抑えることができると考えられる。
 しかしながら、特許文献5に記載の技術のように、銅製錬炉の熔体内にリチウムイオン電池廃材を投入して熔融処理を行うと、その熔体中において、リチウムイオン電池廃材に含まれる有機物、具体的には有機物を構成する炭素が有価金属を巻き込んだ形態で酸化物となり、銅の熔体中に溶解することが阻害されてスラグとして排出されるようになるため、結果として有価金属の回収ロスとなる。
 また、リチウムイオン電池の電解液は、上述したようにリンやフッ素の化合物が含まれている。そのため、リチウムイオン電池廃材を銅製錬炉の熔体中に投入して処理すると、そのリチウムイオン電池廃材に含まれているリンは熔解してスラグに分配されるようになるが、ニッケルやコバルトに付着しやすいため、付着分を完全に除去するのは困難であり、ニッケル等の有価金属の品質を確保するために多大なコストや労力が必要となる。
 また、リチウムイオン電池廃材に含まれるフッ素に関しては、熔融処理により揮発して排ガスとなるが、そのガスが比重の重い銅熔体の中で蓄積して体積が増し、やがて急に上昇して抜けようとする突沸の原因となり危険性が高まってしまう上に、製錬炉の中でスプラッシュ(飛散)が生じて炉壁に有価金属が付着し、あるいは煙灰中に有価金属が取り込まれて、有価金属の回収ロスが生じる可能性がある。さらに、気化して排ガスに含まれるようになったフッ素は、製錬炉の内部あるいは排ガス処理工程に移送されて設備の腐食を促進する原因にもなり、また、大気や排水への放出を通じて環境への影響が懸念される。
 このように、銅製錬プロセスにリチウムイオン電池廃材を投入することによって有価物であるニッケルや銅を回収する処理方法は、手間や費用等の観点から有効ではあるものの、熔融処理により有価金属の回収ロスが生じることがあり、また、電池に含まれるリンやフッ素等の成分が有価金属の回収に影響を及ぼすことがある。
特許第5657730号公報 特許第3079285号公報 特許第3450684号公報 特許第3079287号公報 国際公開第2015/096945号公報
 本発明は、このような実情に鑑みて提案されたものであり、銅製錬プロセスにおける処理を利用してリチウムイオン電池廃材からニッケルや銅等の有価金属を回収するに際し、有価金属の回収ロスを低減させながら、より効率的にかつ安定的に処理することのできる方法を提供することを目的とする。
 本発明者は、鋭意検討を重ねた結果、原料であるリチウムイオン電池廃材を、銅製錬プロセスにおける転炉に投入してその転炉の内部に残る余熱を利用して燃焼し、その後、その転炉に銅製錬プロセスにおける自熔炉から得られた銅マットを装入して熔錬処理を行うようにすることで、上述した課題を解決できることを見出し、本発明を完成させた。
 (1)本発明の第1の発明は、銅製錬プロセスにおける転炉を用いたリチウムイオン電池廃材の処理方法であって、前記銅製錬プロセスにおける自熔炉から得られた銅マットを転炉に装入して酸素を吹き込むことで粗銅を得る処理に先立ち、前記転炉又は転炉に銅マットを装入するのに用いる取鍋にリチウムイオン電池廃材を投入し、該転炉又は該取鍋の内部の余熱により該リチウムイオン電池廃材を燃焼させる、リチウムイオン電池廃材の処理方法である。
 (2)本発明の第2の発明は、第1の発明において、前記転炉又は前記取鍋への前記リチウムイオン電池廃材の投入量を、該リチウムイオン電池廃材に含まれるフッ素の物量が、前記銅製錬プロセスにおける該転炉に供給される銅の物量に対して10ppm以上35ppm未満に相当する量となるように調整する、リチウムイオン電池廃材の処理方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記リチウムイオン電池廃材を放電し、次いで放電後のリチウムイオン電池廃材に含まれる電解液を除去した後、該リチウムイオン電池廃材を前記転炉又は前記取鍋に投入して燃焼させる、リチウムイオン電池廃材の処理方法。
 本発明によれば、リチウムイオン電池廃材から有価金属を回収する処理において、有価金属の回収ロスを低減させながらより効率的にかつ安定的に処理することができる。
 以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 本発明は、リチウムイオン電池廃材の処理方法であって、リチウムイオン電池廃材からの有価金属を回収するための処理方法である。ここで、「リチウムイオン電池廃材」とは、使用済みのリチウムイオン電池やリチウムイオン電池の製造過程にて発生した廃材等のスクラップについての総称である。本発明に係る処理方法においては、そのリチウムイオン電池廃材から、ニッケルや銅等の有価金属を回収する処理方法である。
 具体的に、本発明に係るリチウムイオン電池廃材の処理方法は、銅製錬プロセスにおける転炉を用いた処理方法であって、銅製錬プロセスにおける自熔炉から得られた銅マットを転炉に装入して酸素を吹き込むことで粗銅を得る処理に先立ち、その転炉又は転炉に銅マットを装入するのに用いる取鍋(レードル)にリチウムイオン電池廃材を投入し、その転炉又は取鍋の内部の余熱によってリチウムイオン電池廃材を燃焼させることを特徴としている。
 このように、本発明に係るリチウムイオン電池廃材の処理方法は、銅製錬プロセスにおいて用いる転炉又は取鍋を利用し、その転炉での通常の処理、すなわち、銅製錬プロセスにおける自熔炉から得られた銅マットを転炉に装入して酸素を吹き込むことで粗銅を得る処理を実行するに先立ち、その転炉又は取鍋にリチウムイオン電池廃材を投入して、内部の余熱により燃焼処理を行うようにしている。この燃焼処理においては、転炉や取鍋には銅マット等が含まれていない空の状態であり、その余熱によって、いわゆる空焚きの状態で処理が行われる。なお、燃焼処理の後、転炉に銅マットを装入して熔融処理を行う。
 つまり、銅製錬プロセスにおける製錬炉を使用する処理であっても、リチウムイオン電池廃材を製錬炉(ここでは、転炉)の熔体中に投入するのではなく、熔融処理前の転炉や取鍋に投入してその内部の余熱により燃焼するようにしている。このような方法によれば、転炉や取鍋内での燃焼により、リチウムイオン電池廃材に含まれる有機物がほぼ完全に除去されるため、有機物を構成する炭素が熔体中に取り込まれて有価金属を巻き込んだ形態で酸化物となることを防ぐことができる。また、熔体中において気化したガスによる突沸やスプラッシュの発生を抑制することができる。これにより、有価金属の回収ロスを有効に防ぐことができる。
 また好ましくは、リチウムイオン電池廃材を転炉又は取鍋に投入するに際して、その投入量を調整する。具体的には、そのリチウムイオン電池に含まれるフッ素の物量が、銅製錬プロセスにおける炉に供給される銅の物量に対して10ppm以上35ppm未満に相当する量となるように、リチウムイオン電池廃材の投入量を調整することが好ましい。
 上述のように、転炉での通常の処理に先立ち、その転炉又は取鍋にリチウムイオン電池廃材を投入して余熱により燃焼処理を施すことで、リチウムイオン電池廃材に含まれるフッ素が気化して排ガスとなるため、その後の転炉の熔体中における突沸やスプラッシュ等の発生を有効に抑制することができるが、さらに好ましくは、そのフッ素の物量に基づいてリチウムイオン電池廃材の投入量を調整することによって、発生する排ガス中のフッ素濃度も制御することができる。
 特に、転炉を備える銅製錬所においては、排ガス設備は原料中に含まれる硫黄分を硫酸に転換するための重要な設備になるが、揮発して排ガスに含まれるようになったフッ素による設備への影響は極力低減させることが重要となる。この点、含有するフッ素の物量に基づいて、リチウムイオン電池廃材の投入量、言い換えるとリチウムイオン電池廃材の転炉又は取鍋内での燃焼処理量を調整することによって、フッ素による設備の腐食を効果的に防ぐことができる。また、環境面での影響も低減することができる。
 以下、より具体的に、本発明に係るリチウムイオン電池廃材の処理方法について順に説明する。
  (放電、電解液除去の処理)
 本発明に係る処理方法においては、好ましくは先ず、処理対象であるリチウムイオン電池廃材を放電し、次いで放電後のリチウムイオン電池廃材に含まれる電解液を除去する。なお、リチウムイオン電池廃材が放電されたもの、またその後に電解液が除去されたものも、「リチウムイオン電池廃材」と称する。
 リチウムイオン電池には、主にその電解液の成分としてリンが含まれている。リチウムイオン電池廃材からニッケルや銅等の有価金属を回収するに際して、リンはそれら有価金属の不純物として混入しやすい。この点、後述する燃焼処理を行う前に、リチウムイオン電池廃材を放電し、次いで放電後のリチウムイオン電池廃材に含まれる電解液を除去するようにすることで、有価金属の回収においてリンが混入する可能性を低減できる。
 放電の処理は、例えば、硫酸ナトリウム水溶液や塩化ナトリウム水溶液等の放電液を用い、リチウムイオン電池廃材をその水溶液中に浸漬させることによって行うことができる。このような放電処理により、リチウムイオン電池廃材に含まれる電解質や電解液の成分が水溶液中に溶出され、無害化される。
 また、放電後のリチウムイオン電池廃材に含まれる有機物である電解液の除去処理は、特に限定されないが、例えば、リチウムイオン電池廃材のプラスチック等で形成された筺体(ケース)に予め穴や部分的な解砕を加えることによって電解液を抜き出す処理により行うことができる。このような処理によって容易に電解液を除去できるため、破砕や解砕等を行った筺体と電池本体とを完全に分離する必要がなく、処理コストを半分程度以下に低減することができる。また、このような簡易な処理によっても、後述するように、転炉や取鍋内の高温下で燃焼処理を行うようにしているため、その熱で熱分解さらには燃焼されて有機物等を十分に除去することができる。また、銅製錬プロセスの転炉に投入する前に、別途設けた小型の炉に投入して、そこで電解液を熱分解する等の予備処理(予備燃焼処理)を行うようにしてもよく、これにより転炉での処理を一層安定して行うことができ好ましい。
 なお、電解液の除去処理としては、リチウムイオン電池廃材を水やアルコール等の洗浄液により洗浄する処理により行うこともできる。リチウムイオン電池廃材には、例えば、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート等の有機溶剤や、ヘキサフルオロリン酸リチウム(LiPF6)のような電解質が含まれているため、これらをアルコール等により洗浄除去することで、リンやフッ素等の不純物として混入をより効率的に防ぐことができる。
  (転炉又は取鍋への投入及び燃焼処理)
 本発明に係る処理方法では、リチウムイオン電池廃材を、銅製錬プロセスにおける転炉を用いて処理するが、転炉での通常の処理、すなわち銅製錬プロセスにおける自熔炉から得られた銅マットを装入して酸素を吹き込むことで粗銅を得る処理を実行するに先立ち、銅マット装入前の転炉、又は、転炉に銅マットを装入するのに用いる取鍋に、リチウムイオン電池廃材を投入する。
 そして、リチウムイオン電池廃材を投入した転炉や取鍋内において、その内部に存在する余熱を利用して、投入したリチウムイオン電池廃材を燃焼させる。このとき、転炉や取鍋は、銅マット等が含まれていない空の状態であり、その内部に残る余熱によって、いわゆる空焚きの状態で燃焼処理が行われる。銅製錬プロセスにおける転炉や取鍋は、繰り返しの操業により空の状態が持続してもかなりの高温の熱(例えば500℃~1100℃程度の高温の熱)を帯びている。このような空の状態にある転炉や取鍋の内部に残る熱を「余熱」といい、その余熱によりリチウムイオン電池廃材に対する燃焼処理を行う。
 このとき、上述のように、転炉に対して銅マットが装入されておらず、当然に、通常の転炉での処理である、その銅マットに対するよう熔融処理は行われておらず、熔体が存在しない状況下である。
 ここで、銅製錬プロセスにおける転炉は、自熔炉から回収した銅マットから銅を濃縮して粗銅を精製する製錬炉である。この転炉では、回収した銅マットが装入され、その銅マットに対して酸素が吹き込まれることにより銅マット中のFeSが酸化処理され転炉スラグを生成させるともに、銅マット中の硫化銅が沈降分離する。また、その硫化銅に対して酸化処理が施されることにより、粗銅が生成する。
 銅製錬プロセスにおける転炉では、銅が熔解した銅マットを受け入れるため、銅の融点である1086℃を超える温度となっており、通常の転炉での熔融反応中では酸化熱も生じてより高温の状態となっている。このことは、取鍋においても同様である。さらに、転炉や取鍋が空の状態のときに室温程度まで冷やすと、熱ショックにより煉瓦等の構成材料が損傷してしまうため、反応時には少なくとも500℃以上の温度を有し、空の状態であっても同等以上の温度に保温することが一般的である。
 なお、その転炉に銅マットを装入する際に使用するのが取鍋であり、自熔炉から排出された銅マットを受け入れ、クレーンで吊って転炉まで運搬し、傾けることによって転炉内に銅マットを装入する設備である。この取鍋は、「レードル」とも称される。
 また、銅製錬プロセスにおける自熔炉(なお、「自溶炉」と表記されることもある)は、硫化精鉱等の製錬原料を熔解してその原料に含まれる銅を濃縮する製錬炉である。この自熔炉では、硫化精鉱等の製錬原料が、予熱された反応用気体と共に精鉱バーナーから反応塔内に吹き込まれ、高温の反応用気体と反応することによって熔融する。このような反応により、銅の硫化物を主成分とする銅マットと、2FeO・SiOを主成分とするスラグとが、比重差により分離される。
 上述のように、本発明に係る処理方法では、転炉での通常の処理、すなわち銅製錬プロセスにおける自熔炉から得られた銅マットを装入して酸素を吹き込むことで粗銅を得る処理を実行するに先立ち、銅マット装入前の転炉、又は、転炉に銅マットを装入するのに用いる取鍋に、リチウムイオン電池廃材を投入する。そして、転炉や取鍋には、その内部に余熱が含まれているため、その転炉や取鍋に投入したリチウムイオン電池廃材を、その余熱により燃焼させる。
 このような処理では、例えば500℃~1100℃程度の高温下での燃焼が生じるため、リチウムイオン電池に含まれる有機物等は容易に揮発して除去され、その後の転炉に銅マットを装入したうえでの熔融処理において、有機物を構成する炭素が有価金属を巻き込みながら酸化物となることを防ぐことができる。
 また、リチウムイオン電池廃材に対して燃焼処理を施すことで、銅やニッケル等の有価金属へのリチウムイオン電池廃材に含まれるリンの付着を抑制することができ、ニッケル等の有価金属の品質を高めることもできる。また、リチウムイオン電池廃材に含まれるフッ素に関しても、燃焼により揮発して排ガスとなるため、その後の転炉に銅マットを装入したうえでの熔融処理においてフッ素が持ち込まれることを防ぎ、銅熔体中にて突沸等が生じることを防ぐことができる。
 転炉又は取鍋へのリチウムイオン電池廃材の投入量は、特に限定されないが、リチウムイオン電池廃材に含まれるフッ素の物量に基づいて調整することが好ましい。具体的には、リチウムイオン電池廃材に含まれるフッ素の物量が、銅製錬プロセスにおける転炉に供給される銅の物量に対して10ppm以上35ppm未満に相当する量となるように、リチウムイオン電池廃材の投入量を調整することが好ましい。また、銅製錬プロセスにおける転炉に供給される銅の物量に対して20ppm以上30ppm以下の量となるように、その投入量を調整することがより好ましい。
 「銅製錬プロセスにおける転炉に供給される銅の物量」とは、処理対象のリチウムイオン電池廃材に含まれる銅量ではなく、銅製錬プロセスにおける通常の転炉での処理に供される原料(銅マット)中の銅量をいう。
 上述したように、リチウムイオン電池廃材にはフッ素が含まれており、転炉又は取鍋に投入して燃焼処理を施すと、そのフッ素は揮発して排ガスとなる。このとき、成り行きの投入量にて処理した場合には、排ガス中のフッ素濃度が高くなりすぎることがあり、転炉の排ガス系統に対して腐食等の影響を及ぼす可能性がある。この点、転炉又は取鍋へのリチウムイオン電池廃材の投入量を上述した範囲に調整することによって、排ガス系統への影響を防止することができ、銅製錬プロセスへの影響も無くして安定的な処理操業を可能にする。
 リチウムイオン電池廃材の投入量を増やして、そのリチウムイオン電池廃材に含まれるフッ素の物量が、銅製錬プロセスにおける転炉に供給される銅の物量に対して35ppm以上となるように投入すると、転炉や取鍋内での燃焼処理により揮発して排ガスとなったフッ素の、製錬炉の排ガス系統での濃度が高まり、その排ガス系統に対する影響が生じる可能性がある。また、環境への排出基準を超える可能性があり、投入量の調整が必要となる結果、効率的な操業を行うことができない可能性がある。
 一方で、リチウムイオン電池廃材の投入量を減らし、そのリチウムイオン電池廃材に含まれるフッ素の物量が、銅製錬プロセスにおける転炉に供給される銅の物量に対して10ppm未満となるような条件では、銅を製錬する本来の転炉としては影響がないものの、処理できるリチウムイオン電池廃材の量が減少して生産性が低下し、実用的な操業ができない可能性がある。
  (銅製錬プロセスにおける転炉内での熔融処理)
 次に、本発明に係る処理方法では、転炉内に銅マットを装入し、通常の銅製錬プロセスにおける粗銅を生成する熔融処理(熔錬処理)を行う。ここで、銅マットは、銅製錬プロセスにおける自熔炉にて生成し回収した銅の硫化物を主成分とするものであり、転炉での粗銅生成の原料となる。
 本発明に係る処理方法では、上述のように、転炉での通常の処理に先立ち、転炉又は取鍋内で余熱を利用した燃焼処理を行っている。例えば転炉にて燃焼処理を行った場合には、燃焼処理後の転炉内に銅マットを装入して熔融処理を行う。また、取鍋にて燃焼処理を行った場合には、燃焼処理後のリチウムイオン電池廃材を転炉に投入するとともに、銅マットを装入して熔融処理を行う。
 転炉での熔融処理は、銅製錬プロセスにおける通常の転炉における処理と同様にして行えばよく、具体的には、転炉内に原料(銅マット)を装入させたのち、酸素を吹き込みながら酸化することで粗銅を生成させる。
 このような転炉での熔融処理により、リチウムイオン電池廃材に含まれる銅やニッケル等の回収対象となる有価金属は、転炉から生成する粗銅に含まれるようになり、その後の銅精製処理により有効に回収することができる。
 ここで、本発明に係る処理方法では、銅製錬プロセスにおける転炉内においてリチウムイオン電池廃材を含めた熔融処理を行っているが、その熔融処理に先立って、リチウムイオン電池廃材を転炉内又は取鍋内にて余熱を利用した燃焼処理を行っているため、熔融処理においては有機物等が除去された状態のリチウムイオン電池廃材が処理されることとなる。このことから、有機物を構成する炭素が有価金属を巻き込んだ形態で転炉スラグに移行することを防ぐことができ、有価金属の回収ロスを抑制することができる。
 また、熔融処理に先立つ燃焼処理により種々のガスが発生し大気圧下で排出されるため、そのガスによって熔融処理時に突沸やスプラッシュ等が発生することを防ぐことができる。これにより、安全性を高めた銅製錬処理を実行できるとともに、有価金属の回収ロスをより効果的に抑制することができる。
 なお、リチウムイオン電池廃材に含まれていた銅やニッケル等の回収対象となる有価金属は、銅製錬プロセスにおける転炉での熔融処理により得られる粗銅に含まれるようになるが、得られた粗銅を公知の電解製錬等の方法により精製処理することで、高純度な銅やニッケルメタルとして分離回収することができる。あるいは、精製処理により、銅やニッケルの硫酸塩等の形態として有効に回収することもできる。
 さて、リチウムイオン電池廃材には、上述した銅やニッケル以外にも、例えばコバルトやアルミニウム、鉄等も含まれているが、これらを分離回収するためには、エネルギーや薬剤等に多大なコストを要する。したがって、銅製錬プロセスにおける転炉を利用した処理により回収しやすい銅やニッケルに対象を絞って回収することで、コストを低く抑えて効率的に有価金属を回収することが可能となる。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1]
 市販のリチウムイオン電池の使用済みとなった廃品を、公知の方法を用いて放電して無害化処理した後、電池ケースに穴をあけ、そこから電解液を除去した。なお、電池ケース等の分離を行わないまま原料とした。
 次に、無害化し、電解液を除去したリチウムイオン電池廃材(原料)を、銅製錬プロセスにおける転炉に投入して燃焼処理を行った。ここで、転炉は、銅製錬プロセスにおける通常の処理、すなわち銅マットを装入して酸素を吹き込んで粗銅を生成する処理を行う前の状態のものであり、銅マットが装入されておらず、空の状態のものである。この転炉は、銅製錬プロセスの繰り返しの操業により熱を帯びた状態となっている。したがって、その余熱により、投入したリチウムイオン電池廃材を燃焼させた。
 また、転炉へのリチウムイオン電池廃材の投入量を、そのリチウムイオン電池廃材に含まれるフッ素の物量が、銅製錬プロセスにおける転炉に供給される銅の物量に対して30ppmに相当する量となるようにして、投入した。
 燃焼処理後、その転炉に銅マットを装入し、銅製錬プロセスにおける転炉での通常の処理(熔融処理)を実行し、粗銅を生成させた。
 このような一連の処理において、その転炉の排ガス系統でのトラブルは全く発生しなかった。このことは、リチウムイオン電池廃材を転炉に投入するに際して、フッ素の物量に基づくその投入量を調整したことによると考えられる。
 続いて、転炉から生成し回収した粗銅を、そのまま精製アノードに鋳造した。そして、鋳造した精製アノードを、銅濃度が45g/L、遊離硫酸濃度が190g/Lの組成で硫酸酸性溶液(液温:60℃)の電解液を満たした電解槽に装入してアノードとし、対面にステンレスのカソード板を装入し、アノード・カソード間に電流密度が300A/mとなる電流を通電することによって、カソード上に銅を電析させ回収した。
 また、銅を回収した後の電解液を濃縮し、ニッケルを硫酸ニッケルの結晶で晶析させて回収し、更にこれを溶解し、溶媒抽出等の手段で精製して高純度な硫酸ニッケルを得た。
 [比較例1]
 比較例1では、実施例1と同様に、リチウムイオン電池廃材(原料)を転炉に投入して燃焼処理を行ったのち、その転炉に銅マットを装入して銅製錬プロセスにおける通常の熔融処理を行った。このとき、転炉へのリチウムイオン電池廃材の投入量を、そのリチウムイオン電池の原料に含まれるフッ素の物量が、銅製錬プロセスにおける転炉に供給される銅の物量に対して50ppmに相当する量となるようにして、投入した。なお、それ以外は、実施例1と同様にして処理した。
 転炉での熔融処理により粗銅を得た後、回収した銅及びニッケルには影響はなかったものの、転炉の排ガス系統においてフッ素濃度が上昇し、排出できる許容基準を超えたため、転炉へのリチウムイオン電池廃材の投入量を抑制する必要が生じた。このように、処理量や操業安定等の面で操業効率が低下した。

Claims (3)

  1.  銅製錬プロセスにおける転炉を用いたリチウムイオン電池廃材の処理方法であって、
     前記銅製錬プロセスにおける自熔炉から得られた銅マットを転炉に装入して酸素を吹き込むことで粗銅を得る処理に先立ち、
     前記転炉又は転炉に銅マットを装入するのに用いる取鍋にリチウムイオン電池廃材を投入し、該転炉又は該取鍋の内部の余熱により該リチウムイオン電池廃材を燃焼させる
     リチウムイオン電池廃材の処理方法。
  2.  前記転炉又は前記取鍋への前記リチウムイオン電池廃材の投入量を、該リチウムイオン電池廃材に含まれるフッ素の物量が、前記銅製錬プロセスにおける該転炉に供給される銅の物量に対して10ppm以上35ppm未満に相当する量となるように調整する
     請求項1に記載のリチウムイオン電池廃材の処理方法。
  3.  前記リチウムイオン電池廃材を放電し、次いで放電後のリチウムイオン電池廃材に含まれる電解液を除去した後、該リチウムイオン電池廃材を前記転炉又は前記取鍋に投入して燃焼させる
     請求項1又は2に記載のリチウムイオン電池廃材の処理方法。
PCT/JP2018/039198 2017-11-22 2018-10-22 リチウムイオン電池廃材の処理方法 WO2019102764A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/647,932 US20200263276A1 (en) 2017-11-22 2018-10-22 Method for treating lithium ion battery waste
EP18881892.6A EP3715485B1 (en) 2017-11-22 2018-10-22 Method for treating lithium ion battery waste
KR1020207008410A KR102470940B1 (ko) 2017-11-22 2018-10-22 리튬 이온 전지 폐재의 처리 방법
CA3075424A CA3075424C (en) 2017-11-22 2018-10-22 Method for treating lithium ion battery waste
CN201880036920.5A CN110719963B (zh) 2017-11-22 2018-10-22 锂离子电池废料的处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-224558 2017-11-22
JP2017224558A JP6589966B2 (ja) 2017-11-22 2017-11-22 リチウムイオン電池廃材の処理方法

Publications (1)

Publication Number Publication Date
WO2019102764A1 true WO2019102764A1 (ja) 2019-05-31

Family

ID=66631522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039198 WO2019102764A1 (ja) 2017-11-22 2018-10-22 リチウムイオン電池廃材の処理方法

Country Status (7)

Country Link
US (1) US20200263276A1 (ja)
EP (1) EP3715485B1 (ja)
JP (1) JP6589966B2 (ja)
KR (1) KR102470940B1 (ja)
CN (1) CN110719963B (ja)
CA (1) CA3075424C (ja)
WO (1) WO2019102764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134180A4 (en) * 2020-04-07 2024-04-17 Sumitomo Metal Mining Co., Ltd. PROCESS FOR RECOVERING VALUABLE METAL

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798080B2 (ja) 2017-11-24 2020-12-09 住友金属鉱山株式会社 廃リチウムイオン電池の処理方法
JP7352499B2 (ja) * 2020-03-11 2023-09-28 太平洋セメント株式会社 廃リチウムイオン電池の処理装置及び処理方法
CN112820970B (zh) * 2020-12-30 2023-04-14 中科南京绿色制造产业创新研究院 一种废锂电池电解液无害化的处理方法
JP7195509B2 (ja) 2021-03-11 2022-12-26 三菱マテリアル株式会社 使用済みlibから有価金属を回収する方法
JP2023007900A (ja) * 2021-07-02 2023-01-19 株式会社神戸製鋼所 有価物質の回収方法
CN114250369A (zh) * 2021-12-31 2022-03-29 湘潭大学 一种废铅蓄电池与废锂离子电池协同回收的工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330855A (ja) * 1997-06-02 1998-12-15 Nisso Kinzoku Kagaku Kk リチウムイオン二次電池からの有価物の回収方法
JP3079285B2 (ja) 1996-09-02 2000-08-21 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JP3079287B2 (ja) 1997-12-25 2000-08-21 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JP3450684B2 (ja) 1997-12-25 2003-09-29 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JP2013506048A (ja) * 2009-09-25 2013-02-21 ユミコア リチウムイオンバッテリーに含まれる金属を資源化する方法
JP5657730B2 (ja) 2013-03-29 2015-01-21 Jx日鉱日石金属株式会社 リチウムイオン電池からの有価物の回収方法
WO2015096945A1 (en) 2013-12-23 2015-07-02 Umicore Process for recycling li-ion batteries

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163204A (ja) * 1985-01-11 1986-07-23 Nippon Steel Corp 転炉吹錬法
SE8500959L (sv) * 1985-02-27 1986-08-28 Boliden Ab Forfarande for upparbetning av verdemetallinnehallande avfallsprodukter
JPH108156A (ja) * 1996-06-18 1998-01-13 Nikko Kinzoku Kk 銅製錬用自溶炉、製銅装置及び廃熱回収方法
JP5664043B2 (ja) * 2010-09-09 2015-02-04 住友金属鉱山株式会社 廃リチウムイオン電池電解液の再利用方法
JP5360135B2 (ja) * 2011-06-03 2013-12-04 住友金属鉱山株式会社 有価金属回収方法
CN103515668A (zh) * 2013-10-25 2014-01-15 常州大学 一种用于废旧锂电池中金属回收的成套装置
CN103526035B (zh) * 2013-10-31 2015-08-05 长沙矿冶研究院有限责任公司 从废旧锂离子电池和/或其材料中回收有价金属的方法
CN105349787B (zh) * 2015-11-20 2018-03-09 长沙矿冶研究院有限责任公司 电子废料中有价金属的回收处理方法
JP6897466B2 (ja) * 2017-09-29 2021-06-30 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079285B2 (ja) 1996-09-02 2000-08-21 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JPH10330855A (ja) * 1997-06-02 1998-12-15 Nisso Kinzoku Kagaku Kk リチウムイオン二次電池からの有価物の回収方法
JP3079287B2 (ja) 1997-12-25 2000-08-21 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JP3450684B2 (ja) 1997-12-25 2003-09-29 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
JP2013506048A (ja) * 2009-09-25 2013-02-21 ユミコア リチウムイオンバッテリーに含まれる金属を資源化する方法
JP5657730B2 (ja) 2013-03-29 2015-01-21 Jx日鉱日石金属株式会社 リチウムイオン電池からの有価物の回収方法
WO2015096945A1 (en) 2013-12-23 2015-07-02 Umicore Process for recycling li-ion batteries
JP2017509786A (ja) * 2013-12-23 2017-04-06 ユミコア リチウムイオン電池のリサイクルプロセス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134180A4 (en) * 2020-04-07 2024-04-17 Sumitomo Metal Mining Co., Ltd. PROCESS FOR RECOVERING VALUABLE METAL

Also Published As

Publication number Publication date
EP3715485B1 (en) 2023-09-06
JP6589966B2 (ja) 2019-10-16
CN110719963B (zh) 2021-10-15
CA3075424C (en) 2022-09-20
US20200263276A1 (en) 2020-08-20
EP3715485A1 (en) 2020-09-30
EP3715485A4 (en) 2021-08-25
CA3075424A1 (en) 2019-05-31
KR20200044878A (ko) 2020-04-29
CN110719963A (zh) 2020-01-21
KR102470940B1 (ko) 2022-11-25
JP2019094536A (ja) 2019-06-20

Similar Documents

Publication Publication Date Title
KR102470940B1 (ko) 리튬 이온 전지 폐재의 처리 방법
Yu et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review
TWI520410B (zh) 自鋰離子電池回收再用(valorization)金屬的方法
KR101501864B1 (ko) 유가 금속 회수 방법
US20210384562A1 (en) Process for physically separating and recovering various components from spent lithium ion batteries
JP5664043B2 (ja) 廃リチウムイオン電池電解液の再利用方法
JP7322687B2 (ja) 廃電池からの有価金属回収方法
JPWO2007088617A1 (ja) リチウム二次電池から有価物質を回収するための回収方法及び回収装置
KR20220078690A (ko) 전지 폐기물의 열처리 방법, 및 리튬 회수 방법
CN108172923B (zh) 废旧锂离子电池的处理系统
KR20070046990A (ko) 폐리튬이온전지의 유가금속 회수방법
CN114151802A (zh) 一种废旧锂电池全组分回收再利用的方法
JP7271833B2 (ja) リチウムの回収方法
KR20220139978A (ko) 유가 금속을 회수하는 방법
JP7109702B1 (ja) 電池廃棄物の処理方法
JP7447643B2 (ja) 有価金属回収方法
WO2024116736A1 (ja) 有価金属の製造方法
KR102603428B1 (ko) 폐 리튬배터리의 고순도 전해액 및 리튬 회수 방법
JP7389354B2 (ja) 有価金属回収方法
JP7416153B1 (ja) 有価金属の回収方法
WO2024048248A1 (ja) 有価金属の回収方法
US20240318281A1 (en) Production method for valuable metals
KR20240026491A (ko) 습식 제련 처리 방법을 통한 배터리 물질 재활용 공정
KR20240004893A (ko) 유가 금속의 제조 방법
JP2021120475A (ja) 廃電池からの有価金属回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3075424

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20207008410

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881892

Country of ref document: EP

Effective date: 20200622