WO2019082868A1 - 基板処理装置、支持ピン - Google Patents

基板処理装置、支持ピン

Info

Publication number
WO2019082868A1
WO2019082868A1 PCT/JP2018/039265 JP2018039265W WO2019082868A1 WO 2019082868 A1 WO2019082868 A1 WO 2019082868A1 JP 2018039265 W JP2018039265 W JP 2018039265W WO 2019082868 A1 WO2019082868 A1 WO 2019082868A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support
mask
glass substrate
processing apparatus
Prior art date
Application number
PCT/JP2018/039265
Other languages
English (en)
French (fr)
Inventor
雄亮 佐藤
豪 清水
吉田 大介
明 湯山
高橋 誠
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020197018007A priority Critical patent/KR102243370B1/ko
Priority to JP2019516025A priority patent/JP6799147B2/ja
Priority to CN201880005312.8A priority patent/CN110100043B/zh
Publication of WO2019082868A1 publication Critical patent/WO2019082868A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a substrate processing apparatus and a support pin, and in particular, is suitably used for processing a substrate such as deposition, sputtering, CVD, etc., and heat treatment which treats a substrate to be treated in a vertical (standing) position.
  • a substrate such as deposition, sputtering, CVD, etc.
  • heat treatment which treats a substrate to be treated in a vertical (standing) position.
  • sputtering and vapor deposition are used as means for forming various thin films.
  • a cathode for sputtering is provided in a chamber.
  • the mask and the object (substrate) are disposed to face the target attached to the cathode with a predetermined gap in the chamber under reduced pressure. .
  • Patent Document 1 there is known a technology having an alignment mechanism for pressing a standing mask against a substrate. Further, as described in Patent Document 2, there has been known a technique in which a substrate is held by a magnet with respect to a mask and a film is formed in a state where the mask is aligned with the substrate and the positional relationship is maintained.
  • the substrate or the mask may cause deformation such as waving. Due to this, there is a problem that a part where the mask and the substrate are not in close contact with each other is generated between the mask and the substrate to cause a defect in film formation.
  • a defect such as a crack or a chip may occur in the substrate. The technique described in Patent Document 1 can not solve this problem.
  • the present invention has been made in view of the above circumstances, and aims to achieve the following objects. 1. To improve the adhesion between the mask and the substrate during processing of the substrate. 2. Prevent the occurrence of cracking and chipping of the substrate. 3. To reduce the adverse effect of processing on a substrate due to a magnetic field. 4. To reduce the adverse effect on the processing of the substrate due to the deformation of the substrate or the mask.
  • a substrate processing apparatus is an apparatus for processing a substrate, including a processing chamber for processing the surface of the substrate in the chamber, and a substrate adjacent to the processing chamber and moving the substrate.
  • a back back chamber for supporting the substrate, a mask disposed at a boundary position between the processing chamber and the back back chamber, and the substrate so as to bring the substrate into close contact with the mask when processing the substrate;
  • a support mechanism configured to support the mask so as to be pressable, and adjustably set a pressing force acting on the back surface of the substrate following deformation of the substrate and the mask.
  • the support mechanism has a support pin, the support pin extends in a direction perpendicular to the surface of the mask, and the support mechanism The support may have a tip that abuts the back surface of the substrate, adjust the pressing force acting on the back surface of the substrate, and be axially extendable and retractable.
  • the support pin has a support shaft having a tip that contacts the back surface of the substrate when the support pin presses the back surface of the substrate; And a shaft support portion which supports the support shaft as extendable and retractable in the axial direction of the support pin, and the support pin is extended and retracted by the extension and retraction of the support shaft.
  • the pressing force acting on the back surface of the substrate may be adjustable.
  • the support pins may be provided at a plurality of positions on the support mechanism so as to face the back surface of the substrate.
  • the support pin has a support shaft having a tip that contacts the back surface of the substrate when the support pin presses the back surface of the substrate, The tip of the support shaft may be formed spherically.
  • the support mechanism can extend and retract in the same direction as the axial direction following the extension and retraction of the support pin, and the clamp And a clamp supported by a support and supporting an edge of the substrate.
  • the clamp support portion has an elastic member having flexibility capable of extending and retracting in the axial direction following the extension and retraction of the support pin. You may In the substrate processing apparatus according to the first aspect of the present invention, the clamps may be provided at a plurality of places in the peripheral portion of the substrate. In the substrate processing apparatus according to the first aspect of the present invention, the deposition processing may be performed in the processing chamber. In the substrate processing apparatus according to the first aspect of the present invention, sputtering may be performed in the processing chamber.
  • a support pin according to a second aspect of the present invention is a support pin used in the substrate processing apparatus according to the first aspect described above, wherein the substrate processing apparatus extends in a direction orthogonal to the surface of the mask.
  • a shaft support which has a support shaft having a tip that is attached and abuts against the back surface of the substrate when supporting the substrate, and a flexible elastic member, and supports the support shaft as axially extensible and retractable And the pressing force acting on the back surface of the substrate can be adjusted by extension and retraction of the support shaft.
  • a substrate processing apparatus is an apparatus for processing a substrate, including a processing chamber for processing the surface of the substrate in the chamber, and a substrate adjacent to the processing chamber and moving the substrate.
  • a back back chamber for supporting the substrate, a mask disposed at a boundary position between the processing chamber and the back back chamber, and the substrate so as to bring the substrate into close contact with the mask when processing the substrate;
  • a support mechanism configured to support the mask so as to be pressable, and adjustably set a pressing force acting on the back surface of the substrate following deformation of the substrate and the mask.
  • the substrate and the mask are sufficiently in close contact with the mask and the substrate which are conventionally deformed when the surface of the substrate and the surface of the mask are in close contact with each other. It can be in the state.
  • the region where the substrate and the mask are not in contact with each other is not generated, it is possible to obtain the adhesion necessary for processing such as film formation on the substrate.
  • cracking or chipping of the substrate that occurs when the mask is pressed against the substrate can be prevented. This makes it possible to improve the processing characteristics in the processing of the substrate such as film formation.
  • the supporting mechanism may adjust the pressing force acting on the back surface of the substrate at each position on the surface of the substrate following the deformation generated on the substrate when supporting the substrate.
  • the support mechanism can adjust the pressing force acting on the back surface of the substrate at each of a plurality of positions on the surface of the substrate, following the movement of the supported substrate.
  • the support mechanism has a support pin, the support pin extends in a direction orthogonal to the surface of the mask, and the support mechanism supports the substrate. It has a tip that abuts against the back surface of the substrate, and is capable of adjusting the pressing force acting on the back surface of the substrate, and is axially extensible and retractable.
  • the substrate is pressed against the mask by the support pins, and the substrate is brought into close contact with the mask by the support pins.
  • the support pins are adjusted so that the pressing force with which the support pins press the substrate does not exceed a certain level. Therefore, the stress on the substrate can be suppressed to prevent the occurrence of cracking or chipping in the substrate. This makes it possible to improve the processing characteristics in the processing of the substrate such as film formation.
  • the support pin has flexibility with a support shaft having a tip that contacts the back surface of the substrate when the support pin presses the back surface of the substrate. And a shaft support portion which supports the support shaft as extendable and retractable in the axial direction of the support pin, and the support pin is extended and retracted by the extension and retraction of the support shaft, The pressing force acting on the back surface of the substrate can be adjusted.
  • the tip of the support shaft in the axial direction of the support pin when the support shaft is extended and retracted by the elastic deformation of the elastic member.
  • the support pins are provided at a plurality of locations on the support mechanism so as to face the back surface of the substrate. Even if it is, it becomes possible to bring the entire surface of the substrate into close contact with the mask suitably.
  • the tip of the support shaft is formed in a spherical shape, whereby the tip of the support shaft formed in a spherical shape contacts the substrate at a point. Therefore, it is not necessary to apply excessive pressure to the substrate. At the same time, the support shaft presses the substrate against the mask with an appropriate pressure. In addition, even when deformation such as waving occurs in the substrate, the substrate can be pressed against the mask.
  • the support mechanism is capable of extending and retracting in the same direction as the axial direction following the extension and retraction of the support pin; And a clamp supported by a clamp support and supporting an edge of the substrate.
  • the clamp can support the edge of the substrate while the clamp is in contact with the edge of the substrate. Further, in order to cause the clamp to follow the support pin, the mask may be provided with an axial movement distance restricting portion which restricts the movement distance in the axial direction of the clamp.
  • the clamp support portion is an elastic member having flexibility capable of extending and retracting in the axial direction following extension and retraction of the support pin. Have. This makes it possible to realize the structure necessary for the clamp to operate following the control of the pressing force at the support pin with a simple structure.
  • the clamps are provided at a plurality of locations in the peripheral portion of the substrate, whereby cracking or chipping occurs in the substrate when processing the substrate. Prevents the substrate from being damaged.
  • the substrate can be processed with the substrate aligned with the mask. Furthermore, it becomes possible to perform processing on the substrate while supporting the substrate in a vertical position (standing position).
  • the deposition processing is performed in the processing chamber, whereby when forming a film on the substrate by deposition, a crack or a chip is generated in the substrate to be processed. To prevent it from being damaged. At the same time, the substrate can be brought into close contact with the mask to prevent the deterioration of film formation characteristics.
  • the sputtering processing is performed in the processing chamber, thereby reducing the deterioration of the film forming property due to the influence of the magnet on the sputtered particles.
  • the substrate to be processed is prevented from being broken due to cracking or chipping.
  • the substrate can be brought into close contact with the mask to prevent the deterioration of film formation characteristics.
  • a support pin according to a second aspect of the present invention is a support pin used in the substrate processing apparatus according to the first aspect described above, wherein the substrate processing apparatus extends in a direction orthogonal to the surface of the mask.
  • a shaft support which has a support shaft having a tip that is attached and abuts against the back surface of the substrate when supporting the substrate, and a flexible elastic member, and supports the support shaft as axially extensible and retractable And the pressing force acting on the back surface of the substrate can be adjusted by extension and retraction of the support shaft.
  • the region where the substrate and the mask are not in contact with each other is not generated. Adhesiveness required when processing a substrate such as film formation can be obtained. At the same time, cracking or chipping of the substrate that occurs when the mask is pressed against the substrate can be prevented. Further, the arrangement of the support pins can be changed to correspond to the characteristics such as the size, the material, and the thickness of the substrate to be processed. Furthermore, it becomes possible to adjust the arrangement, the number, and the like of the support pins according to the degree of deformation occurring in the mask. Alternatively, it is possible to adjust the arrangement, the number, and the like of the support pins according to the required degree of adhesion between the substrate and the mask.
  • the portion where the support pin abuts on the substrate can be formed of resin.
  • the tip portion of the support shaft can be made of resin.
  • processing for the substrate in the substrate processing apparatus according to the first aspect of the present invention it is possible to adopt vertical processing in which the substrate is processed in a standing state in which the substrate surface is substantially vertical.
  • the substrate can be processed by horizontal processing in which the substrate surface is substantially horizontal.
  • the mask can be positioned above the substrate. Alternatively, the mask can be located below the substrate.
  • the effect of being able to improve the adhesion between the mask and the substrate can be obtained while the processing on the substrate is being performed.
  • the effect of being able to prevent the occurrence of cracking and chipping of the substrate can be obtained.
  • the effect that the influence of the magnetic field on the processing on the substrate can be reduced can be obtained.
  • FIG. 1 is a schematic plan view showing a substrate processing apparatus according to a first embodiment of the present invention. It is a perspective view which shows a part of film-forming chamber in the substrate processing apparatus which concerns on 1st Embodiment of this invention. It is a side view which shows the holding
  • FIG. 1 is a schematic plan view showing a substrate processing apparatus in the present embodiment, and in FIG. 1, reference numeral 1 is a substrate processing apparatus.
  • the substrate processing apparatus 1 is, for example, a vacuum for the substrate 11 made of glass or resin, such as when forming a TFT (Thin Film Transistor) on a substrate made of glass or the like in a liquid crystal display manufacturing process. It is an interback type sputtering apparatus that performs heat treatment, film formation processing, etching processing, and the like in an environment, and a deposition apparatus used for manufacturing an organic EL. In the present embodiment, the case of performing a sputtering process will be described.
  • the substrate processing apparatus (sputtering apparatus) 1 includes, for example, a load / unload chamber 2 (chamber) for carrying in / out a substantially rectangular glass substrate (substrate) 11 and a glass substrate 11.
  • a sputtering down system or a sputtering up system can also be adopted.
  • the substrate processing apparatus 1 is provided with a film forming chamber 4A and a load / unload chamber 2A.
  • the plurality of chambers 2, 2A, 4 and 4A are formed so as to surround the periphery of the transfer chamber 3, and such chambers 2, 2A, 4 and 4A are, for example, two loads formed adjacent to each other. It will be configured as an unloading chamber (chamber) and a plurality of processing chambers (chambers).
  • one load / unload chamber 2 functions as a load chamber for loading the glass substrate 11 from the outside toward the substrate processing apparatus (sputtering apparatus) 1.
  • the other load / unload chamber 2A functions as an unload chamber for unloading the glass substrate 11 from the substrate processing apparatus 1 to the outside.
  • different film forming processes may be performed in the film forming chamber 4 and the film forming chamber 4A.
  • a dividing valve may be formed between the film forming chamber (chamber) 4A and the transfer chamber 3.
  • a positioning member is disposed in the load / unload chamber 2.
  • the glass substrate 11 carried from the outside into the load / unload chamber 2 is placed on the positioning member.
  • the positioning member sets the position of the glass substrate 11 to enable alignment of the glass substrate 11.
  • the load / unload chamber 2 is provided with a roughing exhaust unit such as a rotary pump for roughly evacuating the inside of the load / unload chamber 2.
  • a transfer device (transfer robot) 3a is disposed inside the transfer chamber 3, as shown in FIG. 1, a transfer device (transfer robot) 3a is disposed.
  • the transfer device 3a includes a rotation shaft, a robot arm attached to the rotation shaft, a robot hand formed at one end of the robot arm, and a vertical movement device.
  • the robot arm is composed of first and second active arms which can be bent relative to each other, and first and second driven arms.
  • the transfer device 3a can move the glass substrate 11, which is a transferred object, between the chambers 2, 2A, 3, 4, 4A.
  • FIG. 2 is a perspective view showing a part of the film forming chamber in the present embodiment.
  • a backing plate (cathode electrode) 6 for holding the erected target 7 and a backing plate 6 are provided as means for supplying a film forming material.
  • the backing plate 6 is provided upright at a position farthest from the transfer port 4 a located between the transfer chamber 3 and the film forming chamber 4.
  • the target 7 is fixed to the backing plate 6 on the front side facing substantially parallel to the glass substrate 11 when processing the substrate.
  • the backing plate (cathode electrode) 6 is an electrode for applying a sputtering voltage of a negative potential to the target 7.
  • the backing plate 6 is connected to a power supply that applies a sputtering voltage of negative potential.
  • a magnetron magnetic circuit for forming a predetermined magnetic field on the target 7 is disposed on the back side of the cathode electrode 6.
  • the magnetron magnetic circuit is mounted on the oscillating mechanism.
  • the oscillating mechanism has a drive for oscillating the magnetron magnetic circuit.
  • the drive device of the swing mechanism is configured to swing the magnetron magnetic circuit.
  • the internal space of the film forming chamber 4 is a front space (processing chamber) 4 m which is on the surface side of the glass substrate 11 during film formation and a back space (back chamber) which is on the back side of the glass substrate 11. And 4n.
  • a backing plate (cathode electrode) 6 to which the target 7 is fixed is disposed.
  • a film forming port 4b opening toward the front side space 4m is provided in the back side space 4n of the film forming chamber 4, as shown in FIGS. 1 and 2, a film forming port 4b opening toward the front side space 4m is provided.
  • the mask 20 is disposed at the boundary between the front space (processing chamber) 4m and the back space (back chamber) 4n. The position of the mask 20 can be aligned in the pre-deposition process by the mask alignment unit (not shown).
  • the mask 20 has a substantially rectangular mask frame 20a and a plurality of ribs 20b stretched in the vertical and horizontal directions on the mask frame 20a.
  • the plurality of ribs 20b define the inner region of the mask frame 20a.
  • the mask frame 20 a is formed of a rigid metal such as SUS.
  • the rib 20 b is formed of a metal foil which is an invar or the like.
  • the rib 20b is fixed to the mask frame 20a in a state where both ends of the rib 20b are pulled by the mask frame 20a.
  • a region surrounded by a plurality of ribs 20b stretched in the vertical and horizontal directions is a film formation region.
  • a support mechanism (substrate support device) 10 is provided inside the back side space 4n.
  • the supporting mechanism 10 can hold (support) the glass substrate 11 so as to face the target 7 during film formation, carry in the glass substrate 11 from the outside, and carry out the glass substrate 11 to the outside. It is.
  • FIG. 3 is a side view showing the holding portion in the support mechanism according to the present embodiment.
  • the support mechanism 10 is located below the back side space 4n, as shown to FIG. 2, FIG.
  • the support mechanism 10 includes a rotating shaft 12 and a holding unit (platen) 13.
  • the rotating shaft 12 is substantially parallel to at least one of the transfer port 4 a and the film forming port 4 b and extends in a horizontal state.
  • the holder 13 is attached to the rotating shaft 12 and supports the back surface of the glass substrate 11.
  • a rotational drive unit 12 ⁇ / b> A is connected to the rotational shaft 12.
  • the rotation drive unit 12A allows the rotation shaft 12 to be rotatable about an axis.
  • the rotating shaft 12 passes through the side wall forming the back side space 4n.
  • the rotation drive unit 12A is disposed outside the film forming chamber (chamber).
  • a substantially rectangular flat holding portion 13 is attached to the rotation shaft 12 via the attachment member 12 a.
  • the holding portion 13 is attached to the rotation shaft 12 at a position where the plane of the holding portion 13 and the axis of the rotation shaft 12 do not coincide with each other.
  • the holding unit 13 can move the glass substrate 11 held by the holding unit 13 in accordance with the rotation around the axis of the rotation shaft 12.
  • the holding unit 13 can be rotated by the rotation of the rotation drive unit 12 ⁇ / b> A around the axis of the rotation shaft 12.
  • the holding portion 13 can be rotated between a horizontal mounting position which is positioned substantially in the horizontal direction above the rotary shaft 12 and a vertical processing position which is raised to the substantially vertical position.
  • the conveyance port 4a is positioned as an extension of the surface of the holding portion 13. In this state, the glass substrate 11 horizontally transported from the transport chamber 3 can be placed on the support mechanism 10.
  • the glass substrate 11 when the holding portion 13 is in the vertical processing position, the glass substrate 11 can be supported from the back surface of the glass substrate 11 on the front surface side of the holding portion 13 as shown in FIG.
  • the surface side of the holding portion 13 has a contour larger than that of the glass substrate 11.
  • the surface side of the holding unit 13 is positioned so as to substantially close the film formation port 4 b.
  • the surface 11T (see FIG. 5) of the glass substrate 11 supported by the holder 13 faces the cathode electrode 6, and film formation becomes possible on the surface 11T of the glass substrate 11.
  • FIG. 4 is a front view showing the holding portion in the support mechanism according to the present embodiment.
  • the holding portion 13 is provided with a plurality of support pins 30 that abut on the back surface 11B (see FIG. 5) of the glass substrate 11 when the holding portion 13 is disposed at the vertical processing position. ing.
  • the support pin 30 can be pressed so as to bring the glass substrate 11 into close contact with the mask 20 when the holding portion 13 is disposed at the vertical processing position.
  • the plurality of support pins 30 are dispersed at a plurality of locations on the surface of the holding portion 13 so as to face the back surface 11B of the glass substrate 11.
  • FIG. 5 is an axial sectional view showing the support pin according to the present embodiment.
  • the support pin 30 is attached to the holding portion 13 so as to extend in a direction orthogonal to the surface (front surface 11T, back surface 11B) of the glass substrate 11 supported in the holding portion 13.
  • the support pin 30 includes a support shaft 31 and a shaft support cylinder 33.
  • the support shaft 31 has a tip that abuts on the back surface 11B of the glass substrate 11 at a position where the glass substrate 11 is processed when the holding portion 13 is disposed at the vertical processing position while supporting the glass substrate 11.
  • the shaft support cylinder 33 has a flexible elastic member 32 and supports the support shaft 31 as axially extensible and retractable. Since the support shaft 31 is extendable and retractable, the pressing force of the support pin 30 acting on the back surface 11B of the glass substrate 11 is adjustable.
  • the support pin 30 constitutes a support mechanism 10.
  • the support shaft 31 is provided with an abutting portion 34 that abuts on the glass substrate 11.
  • the tip of the contact portion 34 is formed in a spherical shape.
  • the support shaft 31 is supported inside the cylindrical shaft support cylinder 33.
  • the support shaft 31 can slide in the axial direction of the support pin 30 inside the cylindrical shaft support cylinder 33.
  • the shaft support cylinder 33 is fixed to the platen 13 by the fixing portion 35 and a nut 36 screwed to the fixing portion 35.
  • the fixing portion 35 is provided on the proximal end side (the side opposite to the contact portion 34) of the support shaft 31 and is located outside the support shaft 31.
  • the nut 36 can adjust the axial position of the support shaft 31 of the fixing portion 35 and the shaft support cylinder 33 by rotating with respect to the fixing portion 35. By rotating the nut 36 with respect to the fixing portion 35, the fixing position of the shaft support cylinder 33 in the axial direction with respect to the platen 13 can be adjusted.
  • a nut 37 is provided at the base end position of the shaft support cylinder 33, and the base end of the support shaft 31 is screwed.
  • the nut 37 can be adjusted with respect to the shaft support cylinder 33 to adjust the axial setting position of the shaft support cylinder 33 and the support shaft 31.
  • By adjusting the setting position by the nut 37 it is possible to adjust the magnitude of the biasing force generated by the elastic member 32. That is, by rotating the nut 37, it is possible to adjust the magnitude of the pressing force acting on the glass substrate 11 from the contact portion 34.
  • the inner diameter of the shaft support cylinder 33 is set in multiple stages so that the inner diameter at a position close to the tip end side of the support shaft 31 is large and the inner diameter at a position close to the base end side of the support shaft 31 is small.
  • a bush 33 a is provided circumferentially at a position close to the tip end side inside the shaft support cylinder 33.
  • a bush 33 b is circumferentially provided at a position near the base end side inside the shaft support cylinder 33 at a position separated from the bush 33 a by a predetermined distance.
  • the support shaft 31 is axially slidable with respect to the shaft support cylinder 33 by the bushings 33a and 33b. At the same time, the gap between the support shaft 31 and the shaft support cylinder 33 is sealed by the bushings 33a and 33b.
  • a step 31 b is formed on the support shaft 31 in the radial direction of the support shaft 31.
  • the diameter of the support shaft 31 is larger at a position closer to the tip end side of the support shaft 31 than the step 31 b, and the diameter of the support shaft 31 is smaller at a position closer to the base end of the support shaft 31 than the step 31 b.
  • a bush 33a is disposed between the support shaft 31 and the shaft support cylinder 33 at a position closer to the tip end side of the support shaft 31 than the step 31b.
  • a bush 33 b is disposed between the support shaft 31 and the shaft support cylinder 33 at a position closer to the base end side of the support shaft 31 than the step 31 b.
  • An elastic member 32 is accommodated between the bush 33 b located on the proximal end side of the shaft support cylinder 33 and the step 31 b of the support shaft 31 inside the shaft support cylinder 33.
  • the elastic member 32 is elastically deformable in the axial direction of the support shaft 31.
  • the elastic member 32 As a material of the elastic member 32, a spring, an elastically deformable resin, silicone rubber, or the like is selected.
  • the elastic member 32 is provided around the support shaft 31.
  • the elastic member 32 is located between the bush 33b and the step 31b of the support shaft 31, and when the elastic member 32 is pressed by the bush 33b and the step 31b, the elastic member 32 is urged along the axial direction. (Repulsive force, restoring force) is generated.
  • the contact portion 34 located at the tip of the support shaft 31 presses the glass substrate 11 with a predetermined pressure or more, the support shaft 31 can be moved by a predetermined distance toward the base end side, The biasing force of the elastic member 32 is adjusted.
  • the tip end side of the contact portion 34 is formed in a spherical shape.
  • the contact portion 34 is substantially point contactable with the back surface 11B of the glass substrate 11. Furthermore, the contact portion 34 has heat resistance and vacuum resistance with respect to processing such as sputtering (processing on a substrate).
  • the contact portion 34 is formed of a resin having a strength capable of supporting the glass substrate 11.
  • the contact portion 34 is formed of, for example, a polyimide resin such as VESPEL (manufactured by DuPont, registered trademark).
  • the elastic member 32, the shaft support cylinder 33, the bushings 33a and 33b, the fixing portion 35, the nut 36, and the nut 37 constitute a shaft support portion.
  • a plurality of clamps 40 are provided in the holding portion 13.
  • the clamp 40 contacts the end face of the peripheral edge of the glass substrate 11 to support the glass substrate 11 when the holding unit 13 is disposed at the vertical processing position.
  • the clamps 40 are disposed at a plurality of positions on the periphery of the glass substrate 11.
  • the clamp 40 constitutes a support mechanism 10.
  • FIG. 6 is a cross-sectional view showing a clamp mechanism according to the present embodiment
  • FIG. 7 is a view showing a holding operation of the clamp mechanism according to the present embodiment.
  • the clamp mechanism includes a clamp 40, a support 41, an elastic member 42, and a support base 43.
  • a plurality of clamps 40 (clamping mechanisms) are provided at positions outside the periphery of the holding portion 13.
  • Each of the plurality of clamps 40 is shaken between an outer position outside the center of the holding portion 13 and a support position inside the center of the holding portion 13 by a clamp drive moving device (not shown). It is made movable.
  • the upper surface (tip) of the clamp 40 is a contact portion 40 d.
  • the contact portion 40 d is a contact surface 44 that contacts the end face of the peripheral edge of the glass substrate 11 when the glass substrate 11 is placed on the support pin 30, and the center side on the surface of the holding portion 13 than the contact surface 44.
  • a protruding portion 40a that protrudes to the When the glass substrate 11 is placed on the support pins 30, the contact surface 44 contacts the end surface of the peripheral edge of the glass substrate 11 to align the glass substrate 11.
  • the convex portion 40 a prevents the surface 11 T of the glass substrate 11 from being separated from the holding portion 13 when the abutting surface 44 abuts on the end surface of the peripheral edge of the glass substrate 11.
  • the contact portion 40d corresponds to the recess 20d provided on the back surface 20B of the mask frame 20a. In other words, when viewed from the vertical direction of the glass substrate 11, the position of the contact portion 40d and the position of the recess 20d overlap. In such a clamp mechanism, when the mask frame 20a moves so that the mask frame 20a (the mask 20) approaches the clamp 40 along the axial direction of the support shaft 31, the contact portion 40d abuts on the recess 20d. It has become. The movement of the mask 20 will be described later.
  • the contact surface 44 is provided at a position corresponding to the tip of the support shaft 31 in the axial direction of the support shaft 31.
  • the convex portion 40 a is provided closer to the contact portion 34 located on the tip end side in the axial direction of the support shaft 31 than the contact surface 44.
  • the contact surface 44 in contact with the glass substrate 11 is made of a material equivalent to the contact portion 34 of the support pin 30, for example, a resin or the like.
  • the clamp 40 has a position control hole 43 a that opens below the clamp 40.
  • the support portion 41 is disposed inside the position restricting hole 43a.
  • the support 41 is disposed inside the position restricting hole 43a, and a cross-sectional structure in which the support 41 and the support base 43 are separated is shown in FIG. In the area not shown, the support 41 is connected to the support base 43.
  • An elastic member 42 is provided at a position adjacent to the support portion 41.
  • the support portion 41 protrudes from the support base 43 toward the clamp 40 in the axial direction of the support shaft 31 and is inserted into a position restricting hole 43 a provided in the clamp 40.
  • the support portion 41 can enter the position restricting hole 43a and retract from the position restricting hole 43a along the direction in which the position restricting hole 43a extends.
  • the movement of the clamp 40 is restricted such that the movement direction of the clamp 40 is the same as the axial direction of the support shaft 31 by the support portion 41 moving along the position restriction hole 43 a.
  • the base end side (the opposite side to the contact portion 40 d) of the support base 43 is swingably attached to the holding portion 13 by a swing shaft (not shown). Since the support base 43 is swingable, the clamp 40 can swing between the outer position and the support position with respect to the holding portion 13. The swinging of the clamp 40 is performed when the glass substrate 11 is placed on the holding unit 13 or when the glass substrate 11 is unloaded from the holding unit 13.
  • the elastic member 42 is disposed between the clamp 40 and the support base 43.
  • the elastic member 42 generates a biasing force (repulsive force, restoring force) for pressing the contact portion 40 d toward the mask 20. Since the movement of the clamp 40 is restricted by the support part 41 inserted into the position restriction hole 43 a, the elastic member 42 presses the contact part 40 d toward the mask 20 along the axial direction of the support shaft 31. Do.
  • the clamp 40 can be moved by a predetermined distance toward the base end of the support base 43 when the contact portion 40 d located at the tip of the clamp 40 is pressed with a predetermined pressure or more.
  • the biasing force (repulsive force, restoring force) of the member 42 is adjusted.
  • the support portion 41, the elastic member 42, the support base 43, the position restricting hole 43a, the swinging shaft (not shown) and the like constitute a clamp support portion.
  • the clamp 40 is configured such that the extension operation (extension operation and retraction operation) of the clamp 40 and the extension operation of the support shaft 31 are synchronized. That is, along the axial direction of the support shaft 31, the clamp 40 and the support shaft 31 synchronously move closer to the mask frame 20a or move away from the mask frame 20a.
  • the contact portion 40d located at the tip of the clamp 40 contacts the recess 20d of the back surface 20B of the mask frame 20a so that the contact portion 34 located at the tip of the support shaft 31 adheres to the mask 20
  • the clamps 40 are set to move in the same direction by the same amount as the axial movement distance of the support shaft 31. That is, the depth of the recess 20d formed on the back surface 20B of the mask frame 20a in the axial direction of the support shaft 31 is set so that the extension operation (extension operation and retraction operation) of the clamp 40 and the support shaft 31 is synchronized. Be done.
  • the recess 20 d of the mask frame 20 a and the contact portion 40 d constitute an axial movement distance restricting portion for causing the clamp 40 to follow the support pin 30.
  • the magnitude of the biasing force of the elastic member 42 to the clamp 40 and the magnitude of the biasing force of the elastic member 32 to the support shaft 31 are configured to be different from each other.
  • the biasing force of the elastic member 42 is set to be larger than the biasing force of the elastic member 32. This is because the weight supported by the support pin 30 and the weight supported by the clamp 40 are different. That is, the support pins 30 contact the surface of the glass substrate 11 in a state in which elastic force is applied in the direction orthogonal to the surface of the glass substrate 11, and support the weight of the glass substrate 11.
  • the clamp 40 in contact with the end face of the glass substrate 11 in a state in which elastic force is applied in a direction parallel to the surface of the glass substrate 11 in the standing position (standing state). It is to support weight.
  • a lift pin 50 and a lift pin moving device (not shown) for moving the lift pin 50 up and down are disposed.
  • the lift pin 50 is provided on the holding portion 13.
  • the lift pins 50 are held at the horizontal mounting position. It projects upward from the portion 13 and supports the glass substrate 11 located above the holding portion 13.
  • the lift pin moving device is a drive device such as a drive motor disposed outside the film forming chambers 4 and 4A.
  • the lift pin moving device has a configuration in which the lift pin 50 is extended or retracted by the drive device.
  • the lift pin 50 can be driven by the drive device while maintaining the seal of the chamber 4. With this configuration, when the glass substrate 11 is carried in or out of the film forming chambers 4 and 4A, the glass substrate 11 can be freely transferred between the holding unit 13 and the robot hand of the transfer device 3a.
  • a plurality of lift pins 50 are disposed at substantially equal intervals in the plane of the holding portion 13.
  • the support pins 30 are disposed in the plane of the holding portion 13 so as to be located between the lift pins 50.
  • the extension and retraction direction of the lift pin 50 and the axial direction of the support pin 30 are substantially parallel.
  • the substrate processing apparatus 1 a method of forming a film on the glass substrate 11 held by the support mechanism 10 will be described.
  • the process for the substrate in the film forming chamber 4 will be described.
  • the structure for bringing the glass substrate 11 into close contact with the mask is the same in the film forming chambers 4 and 4A, and thus the description of the film forming chamber 4A is omitted.
  • the glass substrate 11 is carried into the substrate processing apparatus 1 from the outside.
  • the carried-in glass substrate 11 is first placed on the positioning member inside the load / unload chamber 2. Thereby, the glass substrate 11 is aligned on the positioning member at a predetermined position.
  • the glass substrate 11 placed on the positioning member of the load / unload chamber 2 is supported by the robot hand of the transfer device 3a.
  • the glass substrate 11 is taken out of the load / unload chamber 2 by the transfer device 3a.
  • the glass substrate 11 is transferred by the transfer device 3 a to the film forming chamber 4 via the transfer chamber 3.
  • FIGS. 8 to 12 are schematic side views showing steps performed in the film forming chamber 4 in the present embodiment.
  • the configuration described in the above-described embodiment may be omitted in FIGS. 8 to 12.
  • the transfer port 4a of the film forming chamber 4 is opened.
  • the rotation shaft 12 is rotated by the rotation drive unit 12 ⁇ / b> A.
  • the holding part 13 is made into a horizontal mounting position.
  • a lift pin moving device brings the lift pin 50 into a preparation position in which it protrudes from the surface of the holding portion 13.
  • the clamp 40 is disposed at the outer position, and is retracted from the upper position of the holding portion 13.
  • the glass substrate 11 that has reached the film forming chamber 4 is placed on the holding unit 13 of the support mechanism 10 by the transfer device 3 a.
  • the transfer device 3 a supports the glass substrate 11 in substantially parallel with the holding unit 13. In this state, the transfer device 3a is parallel to the surface of the holding portion 13 until the glass substrate 11 reaches the upper position of the many lift pins 50 protruding from the holding portion 13 as shown by the arrow A in FIG. The glass substrate 11 is inserted toward the inside of the film forming chamber 4 from the side in the direction.
  • the robot hand of the transfer device 3a approaches the holding unit 13.
  • the glass substrate 11 is aligned at a predetermined position in the plane of the holding portion 13, and the glass substrate 11 is placed on the lift pins 50 of the holding portion 13.
  • the arm of the transfer robot 3a retracts from the film forming chamber 4 to the transfer chamber 3 and the transfer port 4a of the film forming chamber 4 is closed.
  • the lift pins 50 are lowered by the lift pin moving device provided in the support mechanism 10, and the lift pins 50 are stored under the holding portion 13. It is placed on the holding unit 13.
  • the contact portion 34 located at the tip of the support pin 30 contacts the back surface 11 B of the glass substrate 11 to support the glass substrate 11.
  • the clamp 40 (clamping mechanism) is moved closer to the holding portion 13 by a clamp drive movement device (not shown) as shown by arrow D in FIG.
  • a clamp drive movement device (not shown) as shown by arrow D in FIG.
  • the clamp 40 aligns the glass substrate 11 so as to be disposed at the film formation processing position.
  • the clamp 40 locks the periphery of the glass substrate 11.
  • the glass substrate 11 is held by the support mechanism 10.
  • the weight of the glass substrate 11 is supported by the support pins 30 provided in the holding portion 13.
  • the weight of the glass substrate 11 can be supported by a substrate guide or the like.
  • the rotation shaft 12 is rotated by the rotation drive unit 12A.
  • the holding portion 13 attached via the attachment member 12 a pivots around the axis of the rotation shaft 12.
  • the holding unit 13 stands up to reach the vertical processing position.
  • the glass substrate 11 is maintained in the state of being held by the support pins 30 and the clamps 40.
  • the film formation port 4 b is substantially closed by the glass substrate 11 and the holding unit 13.
  • the glass substrate 11 approaches the mask 20 as shown in FIG.
  • a mask alignment unit (not shown). Specifically, the in-plane position of the mask 20 and the glass substrate 11 is detected by an imaging device (not shown). Based on the detection result, the mask alignment unit drives the mask 20 to align the contours of the mask 20 and the glass substrate 11.
  • FIG. 13 is a schematic cross-sectional view showing the operation of the support pin and the clamp mechanism in the present embodiment
  • FIG. 14 is a schematic cross-sectional view showing the operation of the support pin and the clamp mechanism in the present embodiment.
  • the contact portion 40d of the clamp 40 intrudes into the inside of the recess 20d provided on the back surface 20B of the mask frame 20a, and the recess 20d and the contact portion 40d approach each other. Further, the clamp 40 intrudes into the recess 20d. And the contact part 40d located in the front-end
  • the mask 20 is adhered to the glass substrate 11.
  • the mask 20 is driven such that the mask 20 and the glass substrate 11 become closer to each other in the direction perpendicular to the surface of the mask 20.
  • the holding unit 13 at the vertical processing position is not driven.
  • the glass substrate 11 in contact with the mask 20 is pressed by the mask 20.
  • the support pin 30 and the clamp 40 are pressed via the glass substrate 11.
  • the movement of the mask 20 causes the glass substrate 11 to press the contact portion 34 of the support pin 30 in contact with the back surface 11B of the glass substrate 11.
  • the support shaft 31 moves in the axial direction with respect to the shaft support cylinder 33.
  • the elastic member 32 of the support pin 30 is compressed and deformed.
  • the elastic deformation of the elastic member 32 causes the support shaft 31 to be pressed against the shaft support cylinder 33 by the elastic force of the elastic member 32. Therefore, a pressing force acts on the glass substrate 11 from the contact portion 34.
  • an elastic value pressing force
  • the contact portion 40d located at the tip of the clamp 40 is the mask frame 20a. It abuts on a recess 20d provided on the back surface 20B of the Thereby, the elastic member 42 of the clamp 40 is compressed. As the elastic member 42 is compressed and deformed, the clamp 40 is pressed against the support base 43 by the elastic force of the elastic member 42, and the support portion 41 moves along the position restricting hole 43a. As a result, the clamp 40 moves in the axial direction of the support shaft 31 by the same degree as the movement distance of the support shaft 31 in the axial direction.
  • the holding unit 13 when the holding unit 13 is disposed at the vertical processing position, the glass substrate 11 and the mask 20 are in close contact with each other. At the same time, the glass substrate 11 is exposed from the opening formed by the mask frame 20a. The glass substrate 11 is disposed at a position facing the cathode electrode 6.
  • the glass substrate 11 held by the support mechanism 10 is in close contact with the mask 20.
  • the glass substrate 11 is held with the surface 11T of the glass substrate 11 and the surface of the cathode electrode 6 substantially parallel. In this state, a film forming process is performed in the film forming chamber 4 to form a film on the surface 11T of the glass substrate 11.
  • the sputtering gas and the reaction gas are supplied from the gas introduction unit to the film forming chamber 4.
  • a sputtering voltage is applied to the backing plate (cathode electrode) 6 from an external power supply.
  • a predetermined magnetic field is formed on the target 7 by a magnetron magnetic circuit.
  • the mask 20 is moved by the mask alignment unit (not shown) so as to be separated in the direction perpendicular to the surface of the mask 20. Thereby, as shown in FIG. 6, the mask 20 is separated from the glass substrate 11.
  • the rotation shaft 12 is rotated by the rotation drive unit 12A.
  • the holding portion 13 rotates in the opposite direction to the arrow C in FIG. 12 around the axis of the rotation shaft 12.
  • the holding unit 13 is disposed at the horizontal mounting position.
  • the clamp 40 is swung in the direction opposite to the arrow D in FIG. 7 to release the clamp 40 and to separate the contact surface 44 from the edge of the peripheral edge of the glass substrate 11. Thereby, the locking of the glass substrate 11 by the clamp 40 is released.
  • the lift pin moving device lifts the lift pin 50, and the lift pin 50 protrudes from the surface of the holding portion 13.
  • the glass substrate 11 is supported by the lifted lift pins 50, and in this state, the glass substrate 11 is taken out of the holding portion 13 in the direction opposite to the arrow A in FIG.
  • the glass substrate 11 is unloaded from the load / unload chamber 2 to the outside of the substrate processing apparatus 1 through the transfer chamber 3. Note that other processes can be performed in other chambers.
  • the plurality of support pins 30 provided in the surface of the holding unit 13 press the glass substrate 11 and the mask 20. At this time, it is possible to maintain a state in which the pressing force between the glass substrate 11 and the mask 20 does not exceed a predetermined magnitude.
  • the film formation process can be performed in a state where the glass substrate 11 and the mask 20 are in close contact with each other. Thereby, even when deformation such as waving occurs in the mask 20 or the glass substrate 11, the glass substrate 11 can follow the deformation of the mask 20. Therefore, the glass substrate 11 and the mask 20 can be brought into close contact with each other. Therefore, in the mask 20, the film formation region for the glass substrate 11 can be set accurately. At the same time, it becomes possible to prevent the deterioration of film formation characteristics such as film thickness uniformity.
  • the position of the clamp 40 is adjustable in synchronization with the extension (retraction and retraction) of the support pin 30.
  • the deformation of the glass substrate 11 is absorbed by the support pins 30.
  • an unnecessary load is not applied to the glass substrate 11, and the glass substrate 11 is not deformed unnecessarily. This makes it possible to extremely reduce the occurrence of cracks and chips in the glass substrate 11.
  • a plurality of support pins 30 are disposed in the plane of the glass substrate 11. Therefore, the glass substrate 11 is pressed at multiple points by the plurality of support pins 30. Thereby, the size of the pressing force with which the support pin 30 presses the glass substrate 11 for each pressing position corresponding to the position where each support pin 30 is arranged, that is, the pressing position in the surface of the glass substrate 11. Can be made different. Thus, at each of the plurality of pressing positions, the support pins 30 can apply the necessary pressing force to the glass substrate 11 following the deformation of the glass substrate 11 or the mask 20.
  • the film formation process is performed on the glass substrate 11 in a state where the glass substrate 11 and the mask 20 are in close contact with each other without using a magnet.
  • the film formation process is performed on the glass substrate 11 in a state where the glass substrate 11 and the mask 20 are in close contact with each other without using a magnet.
  • the arrangement of the support pins 30 in the plane of the holding portion 13 needs to have no influence on the arrangement of the lift pins 50 for stably supporting the glass substrate 11, but at substantially equal intervals, Multiple support pins 30 can be arranged.
  • FIG. 15 is a schematic front view showing a film forming chamber constituting the substrate processing apparatus according to the second embodiment of the present invention.
  • the present embodiment differs from the above-described first embodiment in terms of the positions of the mask and the glass substrate when processing the substrate.
  • symbol is attached
  • the glass substrate 11 is held by the holding unit 13 in a horizontal type, that is, in a state where the surface to be treated is close to the horizontal plane.
  • a support mechanism 10 for holding the glass substrate 11 substantially parallel to the horizontal plane during film formation is provided in the film formation chamber 4.
  • the support mechanism (substrate support device) 10 may include a heater for heating the glass substrate 11.
  • a backing plate (cathode electrode) 6 is provided at an upper position facing the heater.
  • a power supply 6A for applying a sputtering voltage of negative potential to the backing plate 6 and a gas are introduced into the film deposition chamber 4 as means for supplying a film deposition material to the film deposition chamber 4.
  • a gas inlet 4s is provided.
  • the film forming chamber 4 is provided with a high vacuum exhaust unit 4 t such as a turbo molecular pump for drawing a high vacuum inside the film forming chamber 4.
  • a target is fixed to the backing plate 6 on the lower surface side facing the glass substrate 11 substantially in parallel.
  • the holding unit 13 supports the glass substrate 11 from the back surface side of the surface to be processed during the film formation process of the glass substrate 11.
  • the holding portion 13 is in a flat plate shape slightly larger than the outline shape of the glass substrate 11.
  • a heater (not shown) is disposed at a position on the inside of the surface of the holding portion 13. The heater can heat the glass substrate 11 supported by the holding unit 13 from the back surface side of the glass substrate 11.
  • a plurality of support pins 30 are provided at the inner position in the plane of the holding portion 13.
  • the support pins 30 can extend and retract in the vertical direction with respect to the glass substrate 11. In each of the plurality of support pins 30, the contact portion 34 protrudes upward.
  • the support pins 30 are erected in the plane of the holding portion 13 so as to reduce the influence on the heating of the glass substrate 11 by the heater.
  • a plurality of clamps 40 may be provided at positions outside the periphery of the holding portion 13.
  • the holding unit corresponding to the holding unit 13 has rigidity, and has a configuration in which position adjustment can not be performed individually at a position in a horizontal plane.
  • the conventional holding portion when the conventional holding portion is in contact with the back surface of the glass substrate 11, when the mask 20 is pressed against the glass substrate 11 and brought into close contact after alignment, the glass substrate 11 is pressed more than necessary. Pressure is applied.
  • the vicinity of the center of the glass substrate 11 hangs down. In order to bring the glass substrate 11 in this state into close contact with the mask 20, a larger pressing force is required in the conventional holder. Therefore, there is a high possibility that the glass substrate 11 is broken or chipped.
  • each of the plurality of support pins 30 is disposed at the pressing position in the plane of the glass substrate 11, which is a plurality of positions in the horizontal plane of the holding portion 13.
  • the contact portions 34 located at the tip of each of the support pins 30 can be individually extended and retracted in the vertical direction.
  • the support pins 30 extend and retract in response to the deformation of the mask 20 or the glass substrate 11 at each of the plurality of positions in the horizontal plane. Therefore, it is possible to support the glass substrate 11 in close contact with the mask 20 in accordance with the deformed shape of the mask 20.
  • the substrate processing apparatus according to the embodiment of the present invention is a sputtering apparatus
  • the above-described substrate processing apparatus may be an apparatus for performing a vapor deposition process. Even in this case, the mask and the glass substrate can be adhered to each other without exerting an excessive pressing force.
  • the support pins 30 are disposed between the plurality of lift pins 50 that are equally spaced in the plane of the holding portion 13. That is, in the plane of the holding portion 13, the support pins 30 are arranged at equal intervals.
  • the distance at which the support pins 30 are arranged at the peripheral portion of the glass substrate 11 can be smaller than that at the central portion of the glass substrate 11. That is, the plurality of support pins 30 can be arranged such that the density of the support pins 30 is higher at the peripheral portion of the glass substrate 11 than at the central portion of the glass substrate 11.
  • the number of support pins 30 can be increased in the peripheral portion of the glass substrate 11 as compared to the central portion of the glass substrate 11.
  • a large number of support pins 30 can be arranged at a small distance in the central portion of the glass substrate 11. That is, the density of the support pins 30 can be increased at the central portion of the glass substrate 11 compared to the peripheral portion of the glass substrate 11.
  • the number of support pins 30 can be increased in the central portion of the glass substrate 11 as compared to the peripheral portion of the glass substrate 11.
  • the support pins 30 may be equally disposed in the plane of the holding portion 13 to make the distance between the support pins 30 constant.
  • the present invention is not limited to this.
  • the pressing direction of the support pin 30 can be inclined outward from the center in the plane of the glass substrate 11.
  • the normal direction to the surface of the mask 20 in the contacting portion of the contact portion 34 and the direction in which the support pin 30 presses the glass substrate 11 corresponding to the shape of the mask 20 It is also possible to arrange in parallel.
  • the mask 20 is brought close to the holding portion 13 to bring the glass substrate 11 and the mask 20 into close contact, but if the glass substrate 11 and the mask 20 are relatively brought close to each other.
  • the holding unit 13 may be operated to cause the glass substrate 11 and the mask 20 to be in close contact with each other.
  • FIG. 4 specifications of the support mechanism 10 are shown.
  • Glass substrate 11 dimensions 2500 mm ⁇ 2200 mm Dimension by which the support shaft 31 is extended and retracted by the elastic member 32 in the support pin 30;
  • the occurrence of cracking or chipping of the glass substrate can be prevented, and adhesion between the mask and the substrate can be improved.
  • Substrate processing apparatus sputtering apparatus, film forming apparatus 2 ... Load and unload chamber (chamber) 3 ... Transfer chamber (chamber) 3a ... Transfer device (transfer robot) 4 ... Deposition chamber (chamber) 4a: Transfer port 4b: Film formation port 4m: Front space (processing chamber) 4n ... back side space (back room) 6 ... backing plate (cathode electrode) 7 ... target 10 ...
  • support mechanism (substrate holding device) 11: Glass substrate (substrate) 12: Rotating shaft 12a: Mounting member 13: Holding portion (platen) 12A: rotation drive unit 20: mask 20a: mask frame 20b: rib 30: support pin 31: support shaft 31b: step 32: elastic member (shaft support portion) 33 ... Shaft support cylinder (shaft support) 33a, 33b ... bush (shaft support) 34: Abutment portion 35: Fixing portion (shaft support portion) 36 ... Nut (shaft support) 37 ... Nut (shaft support) 40 ... clamp (clamp mechanism) 40a ... convex part 40d ... contact part 44 ... contact surface 41 ... support part (clamp mechanism) 42 ... Elastic member (clamping mechanism) 43 ... Support base (clamp mechanism) 43a ... position regulation hole 50 ... lift pin

Abstract

本発明の基板処理装置は、基板を処理する装置であって、チャンバ内にて前記基板の表面を処理する処理室と、前記処理室に隣接し、前記基板を移動するとともに、前記基板を支持する後背室と、前記処理室と前記後背室との境界位置に配置されたマスクと、基板を処理する時に、前記基板と前記マスクとを密着させるように、前記基板を前記マスクに向けて押圧可能に支持し、前記基板と前記マスクとの変形に追従して前記基板の裏面に作用する押圧力を調整可能に設定する支持機構と、を有する。

Description

基板処理装置、支持ピン
 本発明は、基板処理装置、支持ピンに関し、特に、縦型(立位)で被処理基板を処理する、蒸着、スパッタリング、CVDなどの成膜処理、加熱処理等の基板に対する処理に用いられる好適な技術に関する。
 本願は、2017年10月24日に日本に出願された特願2017-205427号に基づき優先権を主張し、その内容をここに援用する。
 半導体デバイス分野、フラットパネルディスプレイ(FPD)分野において、各種の薄膜を形成する手段として、スパッタリングや蒸着が用いられている。
 一般的なスパッタリング装置では、チャンバ内にスパッタリング用のカソードが設けられている。スパッタリング装置で成膜を行う際には、減圧したチャンバ内において、カソードに取り付けられたターゲットに対して、所定の間隔を空けて、対向するようにマスクと被処理体(基板)が配置される。
 また、蒸着装置で成膜を行う際においても、蒸着源に対して、マスクと被処理体(基板)とを配置する。
 このような装置の例として、特許文献1に記載されるように、立位のマスクを基板に押しつけるアライメント機構を有する技術が知られている。また、特許文献2に記載されるように、マスクに対して基板をマグネットによって保持するとともに、マスクを基板にアライメントして位置関係を維持した状態で成膜する技術が知られていた。
日本国特開2010-165571号公報 日本国特開平10-317139号公報
 しかし、FPDなど、特に大面積の基板に製膜する場合、基板やマスクが波打つなどの変形を生じることがある。これが原因で、マスクと基板とが密着していない部分がマスクと基板との間に発生し、成膜に不具合が生じるという問題があった。
 しかも、このような問題を解決するために基板にマスクを強く押しつけて上記変形を解消しようとした場合、基板に割れや欠けが発生するといった不具合が起こる可能性がある。特許文献1に記載の技術ではこの問題を解決できていな。
 また、特許文献2に記載されるように、マグネットによりマスクと基板とを保持した場合、成膜粒子が磁場の影響を受けてしまう。磁場は、特にスパッタ粒子に対して顕著に影響を与える。これにより、マグネットを用いてマスクと基板とを保持した場合には、磁場が成膜状態に影響を及ぼす可能性があるという問題があった。
 しかも、基板の面が略鉛直方向に平行となるように基板を立てた状態で成膜を行う場合、すなわち、基板が立位(縦型)にある状態で成膜を行う縦型成膜の場合、基板の面が水平に維持された状態で成膜を行う場合(水平成膜)に比べて、基板とマスクとの密着性がさらに悪化する可能性があるという問題がある。
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
1.基板の処理中において、マスクと基板との密着性向上を図ること。
2.基板の割れや欠けの発生を防止すること。
3.磁場に起因して、基板に対する処理に悪影響が及ぶことを低減すること。
4.基板又はマスクの変形に起因して、基板に対する処理に悪影響が及ぶことを低減すること。
 本発明の第1態様に係る基板処理装置は、基板を処理する装置であって、チャンバ内にて前記基板の表面を処理する処理室と、前記処理室に隣接し、前記基板を移動するとともに、前記基板を支持する後背室と、前記処理室と前記後背室との境界位置に配置されたマスクと、基板を処理する時に、前記基板と前記マスクとを密着させるように、前記基板を前記マスクに向けて押圧可能に支持し、前記基板と前記マスクとの変形に追従して前記基板の裏面に作用する押圧力を調整可能に設定する支持機構と、を有する。
 本発明の第1態様に係る基板処理装置においては、前記支持機構は、支持ピンを有し、前記支持ピンは、前記マスクの面に直交する方向に延在し、前記支持機構が前記基板を支持する時に前記基板の前記裏面に当接する先端を有し、前記基板の前記裏面に作用する前記押圧力を調整可能とし、軸方向に伸長可能及び退避可能に配置されてもよい。
 本発明の第1態様に係る基板処理装置においては、前記支持ピンは、前記支持ピンが前記基板の前記裏面を押圧する時に前記基板の前記裏面に当接する先端を有する支持シャフトと、可撓性を有する弾性部材を有し、前記支持ピンの前記軸方向において前記支持シャフトを伸長可能及び退避可能として支持するシャフト支持部と、を有し、前記支持シャフトの伸長及び退避により、前記支持ピンは、前記基板の前記裏面に作用する前記押圧力を調整可能であってもよい。
 本発明の第1態様に係る基板処理装置においては、前記支持ピンが、前記基板の前記裏面に対向するように前記支持機構に複数箇所に設けられてもよい。
 本発明の第1態様に係る基板処理装置においては、前記支持ピンは、前記支持ピンが前記基板の前記裏面を押圧する時に前記基板の前記裏面に当接する先端を有する支持シャフトを有し、前記支持シャフトの先端が、球面状に形成されてもよい。
 本発明の第1態様に係る基板処理装置においては、前記支持機構は、前記支持ピンの伸長及び退避に追従して前記軸方向と同方向に伸長可能及び退避可能なクランプ支持部と、前記クランプ支持部によって支持されて、前記基板の縁部を支持するクランプと、を有してもよい。
 本発明の第1態様に係る基板処理装置においては、前記クランプ支持部は、前記支持ピンの伸長及び退避に追従して前記軸方向に伸長可能及び退避可能な可撓性を有する弾性部材を有してもよい。
 本発明の第1態様に係る基板処理装置においては、前記クランプが、前記基板の周縁部において複数箇所に設けられてもよい。
 本発明の第1態様に係る基板処理装置においては、前記処理室において蒸着処理が行われてもよい。
 本発明の第1態様に係る基板処理装置においては、前記処理室においてスパッタリング処理が行われてもよい。
 本発明の第2態様に係る支持ピンは、上述した第1態様に係る基板処理装置に用いられる支持ピンであって、前記マスクの面に直交する方向に延在するように前記基板処理装置に取り付けられ、基板を支持する時に前記基板の裏面に当接する先端を有する支持シャフトと、可撓性を有する弾性部材を有し、前記支持シャフトを軸方向に伸長可能及び退避可能として支持するシャフト支持部と、を有し、前記支持シャフトの伸長及び退避により、前記基板の前記裏面に作用する前記押圧力を調整可能である。
 本発明の第1態様に係る基板処理装置は、基板を処理する装置であって、チャンバ内にて前記基板の表面を処理する処理室と、前記処理室に隣接し、前記基板を移動するとともに、前記基板を支持する後背室と、前記処理室と前記後背室との境界位置に配置されたマスクと、基板を処理する時に、前記基板と前記マスクとを密着させるように、前記基板を前記マスクに向けて押圧可能に支持し、前記基板と前記マスクとの変形に追従して前記基板の裏面に作用する押圧力を調整可能に設定する支持機構と、を有する。基板の表面とマスクの面とを密着させて支持した場合には、マスク及び基板の少なくとも一方において、実質的に波打ち等の変形が発生してしまう。従来、このような問題を解消することができなかった。これに対して、上述した基板処理装置によれば、従来では基板の表面とマスクの面との密着支持の際に変形しやすいマスクや基板に対しても、基板とマスクとが充分に密着した状態にすることができる。また、基板とマスクとが当接していない領域を発生させることがなく、成膜等の基板に対する処理に必要な密着性を得ることができる。同時に、マスクを基板に押しつけた場合に発生する基板の割れや欠けなどを防止することができる。これにより、成膜等の基板に対する処理における処理特性を向上することが可能となる。
 なお、前記支持機構は、前記基板を支持した際に基板に発生する変形に追従して、前記基板の面上の各位置において前記基板の前記裏面に作用する押圧力を調整可能に設定することができる。前記支持機構は、前記基板を支持した際に、支持される基板の移動に追従して、前記基板の面における複数の位置の各々において基板の裏面に作用する押圧力を調整可能に設定することができる。
 本発明の第1態様に係る基板処理装置において、前記支持機構は、支持ピンを有し、前記支持ピンは、前記マスクの面に直交する方向に延在し、前記支持機構が前記基板を支持する時に前記基板の前記裏面に当接する先端を有し、前記基板の前記裏面に作用する前記押圧力を調整可能とし、軸方向に伸長可能及び退避可能に配置されている。これにより、支持ピンによって基板をマスクに向けて押圧し、支持ピンによって基板をマスクに沿わせて密着させる。また、支持ピンは、支持ピンが基板を押圧する押圧力が一定以上にならないように調節する。したがって、基板に対する応力を抑えて、基板において割れや欠けなどが発生することを防止することができる。これにより、成膜等の基板に対する処理における処理特性を向上することが可能となる。
 本発明の第1態様に係る基板処理装置において、前記支持ピンは、前記支持ピンが前記基板の前記裏面を押圧する時に前記基板の前記裏面に当接する先端を有する支持シャフトと、可撓性を有する弾性部材を有し、前記支持ピンの前記軸方向において前記支持シャフトを伸長可能及び退避可能として支持するシャフト支持部と、を有し、前記支持シャフトの伸長及び退避により、前記支持ピンは、前記基板の前記裏面に作用する前記押圧力を調整可能である。これにより、支持ピンを基板に当接させて、この支持ピンによって基板を押圧した際に、弾性部材の弾性変形によって、支持シャフトが伸長及び退避した際における支持ピンの軸方向における支持シャフトの先端の位置を調節することが可能となる。これにより、支持ピンが基板を押圧する押圧力が一定以上にならないように調整することが可能となる。同時に、支持ピンが基板を押圧する押圧力が所定の押圧力となるように維持するように調整することが可能となる。
 また、本発明の第1態様に係る基板処理装置において、前記支持ピンが、前記基板の裏面に対向するように支持機構に複数箇所に設けられていることにより、どのような大きさの基板であっても、基板の全面がマスクと好適に密着した状態とすることが可能となる。
 また、本発明の第1態様に係る基板処理装置において、前記支持シャフトの先端が球面状に形成されていることにより、球面状に形成された支持シャフトの先端が基板に点で接触する。したがって、基板に必要以上の押圧力をかけることなくい。同時に、支持シャフトは、基板をマスクに対して適正な範囲となる押圧力で押圧する。また、波打ちなどの変形が基板に生じている場合であっても、基板をマスクに対して押圧することが可能となる。
 また、本発明の第1態様に係る基板処理装置において、前記支持機構は、前記支持ピンの伸長及び退避に追従して前記軸方向と同方向に伸長可能及び退避可能なクランプ支持部と、前記クランプ支持部によって支持されて、前記基板の縁部を支持するクランプと、を有している。これにより、支持ピンが基板をマスクに対して押圧することで基板をマスクに沿わせた際に、クランプに当接した基板の縁部(端部)に不必要な力が加わらない。したがって、基板に割れや欠けなどが発生して、基板が破損してしまうことを防止する。同時に、波打ちなどの変形が生じている基板であっても、支持ピンによって基板をマスクに対して押圧することで、変形の生じた基板とマスクとを密着させることが可能となる。
 なお、クランプが基板の端部に接触した状態として、クランプが前記基板の縁部を支持することができる。
 また、クランプを支持ピンに追従させるために、マスクに、クランプの軸方向における移動距離を規制する軸方向移動距離規制部を設けることもできる。
 また、本発明の第1態様に係る基板処理装置において、前記クランプ支持部は、前記支持ピンの伸長及び退避に追従して前記軸方向に伸長可能及び退避可能な可撓性を有する弾性部材を有する。これにより、支持ピンにおける押圧力の制御に対してクランプが追従して動作するために必要な構造を、簡単な構造で実現することが可能となる。
 また、本発明の第1態様に係る基板処理装置において、前記クランプが、前記基板の周縁部において複数箇所に設けられていることにより、基板を処理する時に、基板に割れや欠けなどが発生して基板が破損してしまうことを防止する。同時に、基板をマスクに対してアライメントした状態で、基板に対する処理を行うことが可能となる。さらに、縦型(立位)にて基板を支持した状態で基板に対する処理を行うことが可能となる。
 また、本発明の第1態様に係る基板処理装置において、前記処理室において蒸着処理が行われることにより、蒸着によって基板に成膜する時に、処理される基板に割れや欠けなどが発生して基板が破損してしまうことを防止する。同時に、マスクに基板を密着させて、成膜特性の悪化が生じることを防止できる。
 また、本発明の第1態様に係る基板処理装置において、前記処理室においてスパッタリング処理が行われることにより、マグネットによるスパッタ粒子への影響により成膜特性が悪化することを低減する。同時に、処理される基板に割れや欠けなどが発生して基板が破損してしまうことを防止する。また、マスクに基板を密着させて、成膜特性の悪化が生じることを防止できる。
 本発明の第2態様に係る支持ピンは、上述した第1態様に係る基板処理装置に用いられる支持ピンであって、前記マスクの面に直交する方向に延在するように前記基板処理装置に取り付けられ、基板を支持する時に前記基板の裏面に当接する先端を有する支持シャフトと、可撓性を有する弾性部材を有し、前記支持シャフトを軸方向に伸長可能及び退避可能として支持するシャフト支持部と、を有し、前記支持シャフトの伸長及び退避により、前記基板の前記裏面に作用する前記押圧力を調整可能である。これにより、処理される基板の表面とマスクの面とを密着させるために好適な場所に支持ピンを設けることが可能となる。必要な既存の基板処理装置にこの支持ピンを設けることが可能となる。さらに、基板とマスクとが当接していない領域を発生させることがない。成膜等の基板に対する処理を行う際に必要な密着性を得ることができる。同時に、マスクを基板に押しつけた場合に発生する基板の割れや欠けなどを防止することができる。また、処理対象となる基板の大きさ、材質、厚さなどの特性に対応するように支持ピンの配置を変更可能とすることができる。さらに、マスクにおいて発生する変形の程度によって、支持ピンの配置や個数などを調節することが可能となる。あるいは、基板とマスクとの必要な密着度合いによって、支持ピンの配置や個数などを調節することが可能となる。
 本発明の第2態様に係る支持ピンにおいて、支持ピンが基板に当接する部分を樹脂で形成することができる。具体的には、支持シャフトの先端部分が、樹脂からなることができる。また、本発明の第1態様に係る基板処理装置における基板に対する処理としては、基板面が略鉛直方向となる立位状態で基板に処理を行う縦型処理を採用することが可能であり、また、基板面が略水平となる水平型(横型)処理によって基板に対する処理を行うことができる。なお、水平型処理の場合には、マスクが基板の上側に位置することが可能である。または、マスクが基板の下側に位置することが可能である。
 本発明の態様によれば、基板に対する処理を行っている間で、マスクと基板との密着性を向上することができるという効果が得られる。また、基板の割れや欠けの発生を防止することが可能であるという効果が得られる。さらに、基板に対する処理に対して磁場が及ぼす影響を低減することができるという効果が得られる。また、基板又はマスクの変形によって基板に対する処理への悪影響を低減することができるという効果が得られる。
本発明の第1実施形態に係る基板処理装置を示す模式平面図である。 本発明の第1実施形態に係る基板処理装置における成膜室の一部を示す斜視図である。 本発明の第1実施形態に係る基板処理装置における支持機構の保持部を示す側面図である。 本発明の第1実施形態に係る基板処理装置における支持機構の保持部を示す正面図である。 本発明の第1実施形態に係る基板処理装置における支持ピンを示す軸方向断面図である。 本発明の第1実施形態に係る基板処理装置におけるクランプ機構を示す断面図である。 本発明の第1実施形態に係る基板処理装置におけるクランプ機構の保持動作を示す断面図である。 本発明の第1実施形態に係る基板処理装置における成膜室で行われる工程を示す模式側面図である。 本発明の第1実施形態に係る基板処理装置における成膜室で行われる工程を示す模式側面図である。 本発明の第1実施形態に係る基板処理装置における成膜室で行われる工程を示す模式側面図である。 本発明の第1実施形態に係る基板処理装置における成膜室で行われる工程を示す模式側面図である。 本発明の第1実施形態に係る基板処理装置における成膜室で行われる工程を示す模式側面図である。 本発明の第1実施形態に係る基板処理装置における支持ピンおよびクランプ機構の動作を示す模式断面図である。 本発明の第1実施形態に係る基板処理装置における支持ピンおよびクランプ機構の動作を示す模式断面図である。 本発明の第2実施形態に係る基板処理装置における成膜室の一部を示す模式正面図である。
 以下、本発明の第1実施形態に係る基板処理装置を、図面に基づいて説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 図1は、本実施形態における基板処理装置を示す模式平面図であり、図1において、符号1は、基板処理装置である。
 本実施形態に係る基板処理装置1は、例えば、液晶ディスプレイの製造工程においてガラス等からなる基板上にTFT(Thin Film Transistor)を形成する場合など、ガラスや樹脂からなる基板11に対して、真空環境下で加熱処理、成膜処理、エッチング処理等を行うインターバック式のスパッタリング装置や有機ELの製造に用いる蒸着装置とされる。
 本実施形態においては、スパッタ処理を行う場合について説明する。
 基板処理装置(スパッタリング装置)1は、図1に示すように、略矩形のガラス基板(基板)11を搬入/搬出するロード・アンロード室2(チャンバ)と、ガラス基板11上に、例えば、ZnO系やIn系の透明導電膜などの被膜をスパッタ法により形成する耐圧の成膜室(チャンバ)4と、成膜室4とロード・アンロード室2との間に設けられた搬送室3と、を備えている。本実施形態に係る基板処理装置1においては、図1において、サイドスパッタ式が採用されているが、スパッタダウン式、あるいは、スパッタアップ式を採用することもできる。
 基板処理装置1には、成膜室4Aとロード・アンロード室2Aとが設けられている。これら複数のチャンバ2,2A,4,4Aが搬送室3の周囲を取り囲むように形成されており、こうしたチャンバ2,2A,4,4Aは、例えば、互いに隣接して形成された2つのロード・アンロード室(チャンバ)と、複数の処理室(チャンバ)として構成されることになる。例えば、一方のロード・アンロード室2は、外部から基板処理装置(スパッタリング装置)1に向けてガラス基板11を搬入するロード室として機能する。他方のロード・アンロード室2Aは、基板処理装置1から外部にガラス基板11を搬出するアンロード室として機能する。また、成膜室4と成膜室4Aとにおいて異なる成膜工程が行われる構成であってもよい。
 ロード・アンロード室(チャンバ)2と搬送室3との間、ロード・アンロード室(チャンバ)2Aと搬送室3との間、成膜室(チャンバ)4と搬送室3との間、及び成膜室(チャンバ)4Aと搬送室3との間には、仕切りバルブが形成されていればよい。
 ロード・アンロード室2には、位置決め部材が配置されている。位置決め部材には、ロード・アンロード室2に外部から搬入されたガラス基板11が載置される。位置決め部材は、ガラス基板11の位置を設定して、ガラス基板11のアライメントを可能としている。
 ロード・アンロード室2には、ロード・アンロード室2の内部を粗真空引きするロータリーポンプ等の粗引き排気部が設けられる。
 搬送室3の内部には、図1に示すように、搬送装置(搬送ロボット)3aが配置されている。
 搬送装置3aは、回転軸と、この回転軸に取り付けられたロボットアームと、ロボットアームの一端に形成されたロボットハンドと、上下動装置とを有している。ロボットアームは、互いに屈曲可能な第一、第二の能動アームと、第一、第二の従動アームとから構成されている。搬送装置3aは、被搬送物であるガラス基板11を、チャンバ2,2A,3,4,4A間で移動させることができる。
 図2は、本実施形態における成膜室の一部を示す斜視図である。
 成膜室4の内部には、図1,図2に示すように、成膜材料を供給する手段として、立設されたターゲット7を保持するバッキングプレート(カソード電極)6と、バッキングプレート6に負電位のスパッタ電圧を印加する電源と、成膜室4の内部にガスを導入するガス導入部と、成膜室4の内部を高真空引きするターボ分子ポンプ等の高真空排気部と、が設けられている。成膜室4の内部において、バッキングプレート6は、搬送室3と成膜室4との間に位置する搬送口4aから最遠となる位置に立設される。
 バッキングプレート6には、基板を処理する時にガラス基板11と略平行に対面する前面側にターゲット7が固定される。バッキングプレート(カソード電極)6は、ターゲット7に対して負電位のスパッタリング電圧を印加するための電極である。バッキングプレート6は、負電位のスパッタリング電圧を印加する電源に接続されている。
 カソード電極6の裏側には、ターゲット7上に所定の磁場を形成するためのマグネトロン磁気回路が設置されている。マグネトロン磁気回路は、揺動機構に装着されている。揺動機構は、マグネトロン磁気回路揺動用の駆動装置を有する。揺動機構の駆動装置は、マグネトロン磁気回路を揺動可能に構成されている。
 成膜室4の内部空間は、図1に示すように、成膜時にガラス基板11の表面側となる前側空間(処理室)4mと、ガラス基板11の裏面側となる裏側空間(後背室)4nとを有する。成膜室4の前側空間4mには、ターゲット7が固定されたバッキングプレート(カソード電極)6が配置される。
 成膜室4の裏側空間4nには、図1,図2に示すように、前側空間4mに向かって開口する成膜口4bが設けられている。成膜口4bにおいては、前側空間(処理室)4mと裏側空間(後背室)4nとの境界位置にマスク20が配置されている。
 図示しないマスクアライメント部によって、成膜前工程において、マスク20の位置をアライメントすることが可能である。
 マスク20は、図2に示すように、略矩形のマスクフレーム20aと、マスクフレーム20aに縦横に張られた複数のリブ20bと、を有する。複数のリブ20bは、マスクフレーム20aの内側領域を区画する。
 マスクフレーム20aは、剛性を有するSUS等の金属で形成されている。リブ20bは、インバー等とされる金属箔で形成されている。マスクフレーム20aによってリブ20bの両端が引張された状態で、マスクフレーム20aにリブ20bが固定されている。マスクフレーム20aの内側においては、縦横に張られた複数のリブ20bによって囲まれた領域が、成膜領域とされている。
 裏側空間4nの内部には、図1,図2に示すように、支持機構(基板支持装置)10が設けられている。支持機構10は、成膜中にターゲット7と対向するようにガラス基板11を保持(支持)し、ガラス基板11を外部からの搬入し、および、ガラス基板11を外部への搬出することが可能である。
 図3は、本実施形態に係る支持機構における保持部を示す側面図である。
 支持機構10は、図2,図3に示すように、裏側空間4nの下側に位置する。支持機構10は、回転軸12と、保持部(プラテン)13と、を備える。回転軸12は、搬送口4aおよび成膜口4bのうち少なくとも一方と略並行であり、水平状態に延在する。保持部13は、回転軸12に取り付けられ、ガラス基板11の裏面を支持する。
 回転軸12には、図2に示すように、回転駆動部12Aが接続されている。回転駆動部12Aは、回転軸12を軸線周りに回転可能とする。回転軸12は、裏側空間4nを形成する側壁を貫通している。回転駆動部12Aは、成膜室(チャンバ)の外側に配置されている。
 回転軸12には、取り付け部材12aを介して、略矩形平板状の保持部13が取り付けられる。保持部13は、保持部13の平面と回転軸12の軸線とが一致しない位置にて、回転軸12に取り付けられている。保持部13は、回転軸12の軸線周りの回動に追従して、保持部13によって保持されたガラス基板11を移動可能とされている。
 保持部13は、図2に示すように、回転駆動部12Aによって回転軸12の軸線周りの回動により、回転動作が可能である。保持部13は、回転軸12よりも上側において略水平方向位置とされた水平載置位置と、略鉛直方向位置に立ち上げた鉛直処理位置、との間で回転動作が可能とされる。
 支持機構10において、保持部13が水平載置位置にある場合、保持部13の表面の延長には、搬送口4aが位置する。この状態においては、搬送室3から水平搬送されたガラス基板11が支持機構10上に載置可能となる。
 一方、支持機構10において、保持部13が鉛直処理位置にある場合、保持部13の表面側において、図2に示すように、ガラス基板11の裏面から、ガラス基板11を支持可能である。保持部13の表面側は、ガラス基板11よりも大きい輪郭を有する。保持部13が鉛直処理位置にある場合、保持部13の表面側は、ほぼ成膜口4bを塞ぐように位置する。この状態で、保持部13によって支持されたガラス基板11の表面11T(図5参照)がカソード電極6と対向し、ガラス基板11の表面11Tに対して成膜が可能となる。
 図4は、本実施形態に係る支持機構における保持部を示す正面図である。
 保持部13には、図3,図4に示すように、保持部13が鉛直処理位置に配置された際にガラス基板11の裏面11B(図5参照)に当接する支持ピン30が複数設けられている。
 支持ピン30は、保持部13が鉛直処理位置に配置された際に、ガラス基板11をマスク20に密着させるように押圧可能である。
 複数の支持ピン30は、ガラス基板11の裏面11Bに対向するように保持部13の面上において複数個所に分散して配置されている。
 図5は、本実施形態に係る支持ピンを示す軸方向断面図である。
 支持ピン30は、保持部13において支持されるガラス基板11の面(表面11T、裏面11B)に直交する方向に延在するように、保持部13に取り付けられている。
 図5に示すように、支持ピン30は、支持シャフト31と、シャフト支持筒33とを備える。
 支持シャフト31は、保持部13がガラス基板11を支持しつつ鉛直処理位置に配置された際に、ガラス基板11が処理される位置において、ガラス基板11の裏面11Bに当接する先端を有する。シャフト支持筒33は、可撓性を有する弾性部材32を有し、支持シャフト31を軸方向に伸長可能及び退避可能として支持する。支持シャフト31が伸長可能及び退避可能であることによって、支持ピン30は、ガラス基板11の裏面11Bに作用する押圧力が調整可能とされている。支持ピン30は、支持機構10を構成している。
 支持シャフト31には、図5に示すように、ガラス基板11に当接する当接部34が設けられている。当接部34の先端は、球面状に形成されている。支持シャフト31は、筒状のシャフト支持筒33の内部に支持されている。支持シャフト31は、筒状のシャフト支持筒33の内部において、支持ピン30の軸方向に摺動可能である。
 シャフト支持筒33は、固定部35と、固定部35に螺合されたナット36とによってプラテン13に固定されている。固定部35は、支持シャフト31の基端側(当接部34とは反対側)に設けられ、支持シャフト31の外側に位置する。ナット36は、固定部35に対して回転することで、固定部35とシャフト支持筒33との支持シャフト31における軸方向の位置を調整可能である。ナット36を固定部35に対して回転させることで、プラテン13に対する、シャフト支持筒33の軸方向における固定位置を調節可能である。
 シャフト支持筒33の基端位置には、ナット37が設けられて、支持シャフト31の基端を螺合している。ナット37は、シャフト支持筒33に対して回転させることで、シャフト支持筒33と支持シャフト31との軸方向のセッティング位置を調整可能である。ナット37によるセッティング位置の調整を行うことにより、弾性部材32が発生させる付勢力の大きさを調整することが可能となる。つまり、ナット37を回転させることで、当接部34からガラス基板11へ作用する押圧力の大きさを調整することが可能となる。
 シャフト支持筒33の内径に関しては、支持シャフト31の先端側に近い位置における内径が大きく、支持シャフト31の基端側に近い位置における内径が小さくなるように、内径が多段状に設定されている。シャフト支持筒33の内部における先端側に近い位置には、ブシュ33aが周設されている。シャフト支持筒33の内部における基端側に近い位置には、ブシュ33aから所定距離だけ離間した位置に、ブシュ33bが周設されている。ブシュ33a,33bによって、支持シャフト31がシャフト支持筒33に対して軸方向に摺動可能となっている。同時に、ブシュ33a,33bによって支持シャフト31とシャフト支持筒33との間の隙間が密閉されている。
 支持シャフト31には、支持シャフト31の径方向において段差31bが形成されている。段差31bよりも支持シャフト31の先端側に近い位置では、支持シャフト31の径が大きく、段差31bよりも支持シャフト31の基端側に近い位置では、支持シャフト31の径が小さい。段差31bよりも支持シャフト31の先端側に近い位置において、支持シャフト31とシャフト支持筒33との間にブシュ33aが配置されている。段差31bよりも支持シャフト31の基端側に近い位置において、支持シャフト31とシャフト支持筒33との間にブシュ33bが配置されている。
 シャフト支持筒33の内部において、シャフト支持筒33の基端側に位置するブシュ33bと、支持シャフト31の段差31bとの間には、弾性部材32が収納されている。弾性部材32は、支持シャフト31の軸方向に弾性変形可能である。
 弾性部材32の材料としては、バネ、弾性変形可能な樹脂、シリコンゴムなどが選択される。弾性部材32は、支持シャフト31の周囲に設けられている。弾性部材32は、ブシュ33bと支持シャフト31の段差31bとの間に位置しており、ブシュ33bと段差31bとによって弾性部材32が押圧されると、弾性部材32は軸方向に沿って付勢力(反発力、復元力)を発生する。支持シャフト31の先端に位置する当接部34がガラス基板11を規定された以上の押圧力で押圧した場合に、支持シャフト31が基端側に向けて所定距離だけ移動可能となるように、弾性部材32の付勢力が調整されている。
 当接部34の先端側は、球面状に形成されている。当接部34は、ガラス基板11の裏面11Bに対して、ほぼ点接触可能とされている。さらに、当接部34は、スパッタリング等の処理(基板に対する処理)に対して耐熱性および耐真空性を有する。当接部34は、ガラス基板11を支持可能な強度を有する樹脂で形成されている。当接部34は、例えば、べスペル(デュポン社製、登録商標)等のポリイミド樹脂で形成されている。
 弾性部材32、シャフト支持筒33、ブシュ33a,33b、固定部35、ナット36、ナット37は、シャフト支持部を構成している。
 保持部13には、図3,図4に示すように、クランプ40が複数設けられている。クランプ40は、保持部13が鉛直処理位置に配置された際に、ガラス基板11の周縁の端面に当接してガラス基板11を支持する。保持部13において、クランプ40は、ガラス基板11の周縁における複数の位置に配置されている。クランプ40は、支持機構10を構成している。
 図6は、本実施形態に係るクランプ機構を示す断面図であり、図7は、本実施形態に係るクランプ機構の保持動作を示す図である。
 図6,図7に示すように、クランプ機構は、クランプ40、支持部41、弾性部材42、及び支持基部43を有する。クランプ40(クランプ機構)は、図4に示すように、保持部13の周縁の外側となる位置に複数設けられている。
 複数のクランプ40の各々は、図示しないクランプ駆動移動装置により、保持部13の中心に対して外側となる外側位置と、保持部13の中心に対して内側となる支持位置との間で、揺動可能とされている。
 クランプ40の上面(先端)は、当接部40dである。当接部40dは、支持ピン30にガラス基板11を載置した際にガラス基板11の周縁の端面に当接する当接面44と、当接面44よりも保持部13の面上における中心側に突出する凸部40aとを有する。当接面44は、支持ピン30にガラス基板11を載置した際に、ガラス基板11の周縁の端面に当接することで、ガラス基板11のアライメントを行う。凸部40aは、当接面44がガラス基板11の周縁の端面に当接した際に、ガラス基板11の表面11Tが保持部13から離間することを防止する。
 当接部40dは、マスクフレーム20aの裏面20Bに設けられた凹部20dに対応している。換言すると、ガラス基板11の鉛直方向から見て、当接部40dの位置と凹部20dの位置とは重なっている。このようなクランプ機構においては、支持シャフト31の軸方向に沿って、クランプ40にマスクフレーム20a(マスク20)が近づくようにマスクフレーム20aが移動すると、当接部40dが凹部20dに当接するようになっている。マスク20の移動については後述する。
 当接面44は、支持シャフト31の軸方向において、支持シャフト31の先端に対応する位置に設けられている。凸部40aは、当接面44よりも支持シャフト31の軸方向における先端側に位置する当接部34の近くに設けられる。
 クランプ40を構成する材料に関し、少なくともガラス基板11に当接する当接面44は、支持ピン30の当接部34と同等の材質、例えば、樹脂などで構成されている。
 クランプ40は、クランプ40の下方に開口する位置規制穴43aを有する。位置規制穴43aの内部には、支持部41が配置されている。図6に示す例では、位置規制穴43aの内部に支持部41が配置されており、かつ、支持部41と支持基部43とが離間している断面構造が示されているが、図6に示されていない領域において、支持部41は、支持基部43に接続されている。支持部41に隣接する位置には、弾性部材42が設けられている。
 支持部41は、支持シャフト31の軸方向において、支持基部43からクランプ40に向けて突出し、クランプ40に設けられた位置規制穴43aに挿入されている。支持部41は、位置規制穴43aが延在する方向に沿って、位置規制穴43aに進入し、かつ、位置規制穴43aから後退することが可能である。支持部41が位置規制穴43aに沿って移動することで、クランプ40の移動方向が、支持シャフト31の軸方向と同じ方向となるように、クランプ40の移動が規制されている。
 支持基部43の基端側(当接部40dとは反対側)は、図示しない揺動軸によって揺動可能に保持部13に取り付けられている。支持基部43が揺動可能であるため、保持部13に対して、クランプ40が外側位置と支持位置との間で揺動可能となる。なお、クランプ40の揺動は、保持部13にガラス基板11を載置する時、或いは、保持部13からガラス基板11を搬出する時に行われる。
 弾性部材42は、クランプ40と支持基部43との間に配置されている。弾性部材42は、当接部40dをマスク20に向けて押圧する付勢力(反発力、復元力)を発生させる。位置規制穴43aに挿入されている支持部41によってクランプ40の移動が規制されているため、弾性部材42は、支持シャフト31の軸方向に沿って、当接部40dをマスク20に向けて押圧する。クランプ40の先端に位置する当接部40dが規定された以上の押圧力で押圧された場合に、クランプ40が支持基部43の基端側に向けて所定距離だけ移動可能となるように、弾性部材42の付勢力(反発力、復元力)が調整されている。
 支持部41、弾性部材42、支持基部43、位置規制穴43a、図示しない揺動軸などは、クランプ支持部を構成している。
 クランプ40の伸退動作(伸長動作及び退避動作)と支持シャフト31の伸退動作とが同期するように、クランプ40は構成されている。すなわち、支持シャフト31の軸方向に沿って、クランプ40及び支持シャフト31は、同期的に、マスクフレーム20aに近づくように移動したり、マスクフレーム20aから離間するように移動したりする。
 具体的には、クランプ40の先端に位置する当接部40dは、マスクフレーム20aの裏面20Bの凹部20dに当接することによって支持シャフト31の先端に位置する当接部34がマスク20に密着したガラス基板11に押圧された際に、この支持シャフト31の軸方向移動距離と同程度だけクランプ40が同方向に移動するように設定されている。つまり、支持シャフト31の軸方向におけるマスクフレーム20aの裏面20Bに形成された凹部20dの深さは、クランプ40と支持シャフト31との伸退動作(伸長動作及び退避動作)が同期するように設定される。
 また、マスクフレーム20aの凹部20dと当接部40dとは、クランプ40を支持ピン30に追従させるための軸方向移動距離規制部を構成している。
 また、弾性部材42によるクランプ40への付勢力の大きさと、弾性部材32による支持シャフト31への付勢力の大きさとは、互いに異なるように構成されている。具体的には、弾性部材42の付勢力が、弾性部材32の付勢力よりも大きくなるように設定されている。これは、支持ピン30によって支持される重量とクランプ40によって支持される重量とが異なるためである。つまり、支持ピン30は、ガラス基板11の面と直交する方向に弾性力を付与した状態で、ガラス基板11の表面に接触して、ガラス基板11の重量を支持する。これに対し、クランプ40は、立位状態(起立状態)とされたガラス基板11の面と平行な方向に弾性力を付与した状態で、ガラス基板11の端面に接触した状態でガラス基板11の重量を支持するためである。
 支持機構10には、図4に示すように、リフトピン50と、このリフトピン50を上下動させるリフトピン移動装置(不図示)とが配置される。リフトピン50は、保持部13に設けられている。ガラス基板11が成膜室4(4A)に搬入される際、又は、ガラス基板11が成膜室4(4A)から搬出される際に、リフトピン50は、水平載置位置に配置された保持部13から上方に突出して、保持部13よりも上側に位置するガラス基板11を支持する。
 リフトピン移動装置は、成膜室(チャンバ)4、4Aの外側に配置された駆動モータなどの駆動装置である。リフトピン移動装置は、駆動装置によりリフトピン50が伸長又は退避する構成を有する。リフトピン50は、駆動装置によって、チャンバ4の密閉を維持した状態で駆動可能である。この構成により、成膜室4、4Aに対するガラス基板11の搬入又は搬出の際に、保持部13と搬送装置3aのロボットハンドと間において、ガラス基板11を自在に受け渡すことが可能となる。
 リフトピン50は、保持部13の面内において、ほぼ均等間隔となるように複数配置されている。支持ピン30は、これらリフトピン50の間に位置するように保持部13の面内に配置されている。
 リフトピン50の伸長及び退避する方向と、支持ピン30の軸方向とは略平行である。
 次に、本実施形態に係る基板処理装置1において、支持機構10によって保持されたガラス基板11に対して成膜する方法について説明する。なお、以下の説明では、2つの成膜室4、4Aのうち、成膜室4における基板に対する処理について説明する。ガラス基板11をマスクに密着させる構造については、成膜室4、4Aにおいて同じであるため、成膜室4Aについては説明を省略する。
 まず、ガラス基板11は、基板処理装置1の外部から内部に搬入される。搬入されたガラス基板11は、まず、ロード・アンロード室2の内部の位置決め部材に載置される。これにより、ガラス基板11が、位置決め部材上で所定位置にアライメントされる。
 次に、ロード・アンロード室2の位置決め部材に載置されたガラス基板11は、搬送装置3aのロボットハンドで支持される。ガラス基板11は、搬送装置3aによって、ロード・アンロード室2から取り出される。そして、ガラス基板11は、搬送装置3aによって、搬送室3を経由して成膜室4へと搬送される。
 図8~図12は、本実施形態における成膜室4で行われる工程を示す模式側面図である。なお、これらの図8~図12において、上述した実施形態において説明した構成は省略されている場合がある。
 まず、成膜室4の搬送口4aが開放される。成膜室4では、図8に示すように、支持機構10において、回転駆動部12Aによって回転軸12が回転される。これにより、保持部13が水平載置位置とされる。同時に、図示しないリフトピン移動装置によって、リフトピン50が保持部13の表面から突出した準備位置とされる。同時に、図7に示すように、クランプ40は、外側位置に配置されており、保持部13の上側位置から退避している。
 この状態で、成膜室4へと到達したガラス基板11は、搬送装置3aによって、支持機構10の保持部13上に載置される。
 まず、搬送装置3aは、ガラス基板11を保持部13と略並行状態に支持する。この状態で、搬送装置3aは、図9に矢印Aで示すように、保持部13から突出した多数のリフトピン50の上側の位置にガラス基板11が到達するまで、保持部13の面と平行な方向における横側から成膜室4の内側に向けてガラス基板11を挿入する。
 次いで、図10に示すように、搬送装置3aのロボットハンドが保持部13に近接する。これにより、ガラス基板11は、保持部13の面内における所定の位置にアライメントされた状態となり、ガラス基板11は、保持部13のリフトピン50上に載置される。次に、搬送ロボット3aからリフトピン50にガラス基板11の受け渡しが行われた後、搬送ロボット3aのアームは、成膜室4から搬送室3へ後退し、成膜室4の搬送口4aが閉塞する。
 そして、図11の符号Bに示すように、支持機構10に設けられたリフトピン移動装置でリフトピン50が下降し、保持部13の下側にリフトピン50が格納されることによって、ガラス基板11は、保持部13に載置される。
 このとき、支持ピン30の先端に位置する当接部34がガラス基板11の裏面11Bに当接してガラス基板11を支持する。
 次いで、図示しないクランプ駆動移動装置により、図7に矢印Dで示すように、クランプ40(クランプ機構)が保持部13に近接するように移動する。
 クランプ40の移動が停止することにより、ガラス基板11の周縁の端面が、保持部13の周囲に配置された複数のクランプ40のそれぞれの当接面44と当接する。この状態で、クランプ40は、ガラス基板11を成膜処理位置に配置されるようにアライメントする。クランプ40は、ガラス基板11の周縁を係止する。これによって、ガラス基板11が支持機構10に保持される。この際、ガラス基板11の重量は、保持部13に設けられた支持ピン30によって支持される。加えて、ガラス基板11の重量は、基板ガイドなどによって支持されることも可能である。
 次いで、回転駆動部12Aにより回転軸12が回動される。これにより、図12に矢印Cで示すように、取り付け部材12aを介して取り付けられた保持部13が、回転軸12の軸線周りに回動する。これにより、保持部13は、鉛直処理位置に達するように立ち上がる。このとき、ガラス基板11は、支持ピン30およびクランプ40によって保持された状態が維持される。
 これにより、ガラス基板11と保持部13とによって成膜口4bがほぼ閉塞された状態となる。同時に、図6に示すように、ガラス基板11がマスク20に近接する。
 この状態で、図示しないマスクアライメント部によってマスク20が、マスク20の面内における位置のアライメントが行われる。具体的には、図示しない撮像装置によって、マスク20とガラス基板11との面内における位置を検出する。この検出結果に基づいて、マスクアライメント部によってマスク20を駆動して、マスク20とガラス基板11との輪郭の位置合わせを行う。
 図13は、本実施形態における支持ピンおよびクランプ機構の動作を示す模式断面図であり、図14は、本実施形態における支持ピンおよびクランプ機構の動作を示す模式断面図である。
 マスク20の面内における位置のアライメントが終了した後、同様に、図示しないマスクアライメント部は、マスク20を、マスク20の面に対して鉛直な方向に移動する。これにより、図13に示すように、マスク20をガラス基板11に当接させる。このとき、鉛直処理位置に配置されている保持部13は、鉛直処理位置から移動しない。ガラス基板11に対してマスク20を密着させるために、マスク20がガラス基板11に近接する方向に移動するようにマスク20が駆動されて、マスク20がガラス基板11と接触する。
 このとき、ガラス基板11には、支持ピン30からガラス基板11の自重を支持する以外の押圧力は、作用していない状態となる。また、マスクフレーム20aの裏面20Bに設けられた凹部20dの内部にクランプ40の当接部40dが侵入し、凹部20dと当接部40dとが近接する。さらに、凹部20dの内部にクランプ40が侵入する。そして、マスクフレーム20aの裏面20Bに設けられた凹部20dには、クランプ40の先端に位置する当接部40dが当接した状態となる。
 さらに、ガラス基板11にマスク20が接触した後にも、ガラス基板11に対してマスク20を密着させる。このために、マスク20の面と鉛直な方向において、マスク20とガラス基板11とがさらに近接するようにマスク20が駆動する。このとき、鉛直処理位置となった保持部13は駆動させない。
 マスク20の移動により、マスク20に接触しているガラス基板11がマスク20によって押圧される。これにより、ガラス基板11を介して支持ピン30とクランプ40とが押圧される。
 すると、図14に示すように、マスク20の移動により、ガラス基板11が、ガラス基板11の裏面11Bに当接している支持ピン30の当接部34を押圧する。これにより、支持シャフト31がシャフト支持筒33に対して軸方向に移動する。これにより、支持ピン30の弾性部材32が圧縮変形される。弾性部材32が圧縮変形することによって、弾性部材32の弾性力により、支持シャフト31がシャフト支持筒33に対して押圧される。したがって、当接部34からガラス基板11に押圧力が作用する。弾性部材32では、当接部34からガラス基板11に作用する押圧力が所定の値より小さくなるように、あらかじめ弾性値(押圧力)が設定される。
 同様に、支持シャフト31の当接部34がマスク20に密着したガラス基板11に押圧された際に、図14に示すように、クランプ40の先端に位置する当接部40dが、マスクフレーム20aの裏面20Bに設けられた凹部20dに当接する。これにより、クランプ40の弾性部材42が圧縮される。弾性部材42が圧縮変形することによって、弾性部材42の弾性力により、クランプ40が支持基部43に対して押圧され、支持部41が位置規制穴43aに沿って移動する。これによって、支持シャフト31の軸方向における移動距離と同程度だけ、クランプ40が支持シャフト31の軸方向に移動する。
 このように、クランプ40と支持シャフト31との伸退動作が同期する。このため、ガラス基板11の縁部に余計な変形が生じることがない。したがって、ガラス基板11に割れや欠けが発生することがない。
 このように、保持部13が鉛直処理位置に配置された際、ガラス基板11とマスク20とが密着した状態となる。同時に、マスクフレーム20aによって形成された開口部分からガラス基板11が露出する。ガラス基板11は、カソード電極6に対して対向した位置に配置される。
 この保持部13が鉛直処理位置に配置された際、支持機構10に保持されたガラス基板11はマスク20と密着する。保持部13が鉛直処理位置に配置された際、ガラス基板11は、ガラス基板11の表面11Tとカソード電極6の表面とが略平行な状態で保持される。この状態で成膜室4内において成膜工程が行われ、ガラス基板11の表面11Tに膜が形成される。
 成膜工程においては、ガス導入部から成膜室4にスパッタガスと反応ガスとが供給される。成膜工程においては、外部の電源からバッキングプレート(カソード電極)6にスパッタ電圧を印加する。また、成膜工程においては、マグネトロン磁気回路によりターゲット7上に所定の磁場を形成する。これにより、成膜室4の前側空間4m内でプラズマによりスパッタガスのイオンが励起される。スパッタガスのイオンは、カソード電極6のターゲット7に衝突して、成膜材料の粒子を飛び出させる。そして、ターゲット7から飛び出した成膜材料の粒子と反応ガスとが結合した後、結合した成膜材料の粒子と反応ガスとが、ガラス基板11に付着する。これにより、ガラス基板11の表面11Tに所定の膜が形成される。
 成膜処理が終了したら、図示しないマスクアライメント部によって、マスク20の面に鉛直な方向に離間するように、マスク20が移動される。これにより、図6に示すように、マスク20をガラス基板11から離間させる。
 次いで、回転駆動部12Aにより回転軸12が回動される。これにより、保持部13にガラス基板11が保持された状態で、保持部13は、回転軸12の軸線周りで、図12の矢印Cと逆方向に回動する。回転軸12が回動することにより、保持部13は、水平載置位置に配置される。さらに、クランプ40を図7の矢印Dとは逆方向に揺動させ、クランプ40を解除し、ガラス基板11の周縁の端部から当接面44を離間させる。これにより、クランプ40によるガラス基板11の係止を解除する。
 次いで、リフトピン移動装置は、リフトピン50を上昇させ、リフトピン50は、保持部13の表面から突出する。上昇したリフトピン50によってガラス基板11が支持され、この状態で、搬送装置3aによって、図9の矢印Aと逆方向にガラス基板11が保持部13から取り出される。最終的に、搬送室3を介して、ロード・アンロード室2から基板処理装置1の外部にガラス基板11を搬出する。なお、他のチャンバにおいて、その他の処理を行うことも可能である。
 本実施形態における基板処理装置(スパッタリング装置)1によれば、保持部13の面内に設けた複数の支持ピン30が、ガラス基板11とマスク20とを押圧する。このとき、ガラス基板11とマスク20との押圧力が所定の大きさを越えない状態を維持することができる。これにより、ガラス基板11とマスク20とを密着させた状態で、成膜処理を行うことが可能となる。これにより、マスク20、又は、ガラス基板11に波打ち等の変形が発生していた場合でも、ガラス基板11をマスク20の変形に追従させることができる。このため、ガラス基板11とマスク20とを密着させることが可能となる。したがって、マスク20において、ガラス基板11に対する成膜領域を正確に設定することが可能となる。同時に、膜厚均一性など成膜特性の悪化を防止することが可能となる。
 同時に、支持ピン30の伸退(伸長及び退避)と同期して、クランプ40の位置が調整可能とされている。これにより、支持ピン30によってガラス基板11の変形を吸収される。この際に、ガラス基板11に不必要な荷重を印加されず、ガラス基板11が不必要に変形することもない。これにより、ガラス基板11における割れや欠けの発生を極めて低減することが可能となる。
 また、保持部13においては、ガラス基板11の面内において、複数の支持ピン30が配置されている。したがって、複数の支持ピン30により、多点で、ガラス基板11が押圧される。これにより、それぞれの支持ピン30が配置されるポジション、つまり、ガラス基板11の面内における押圧位置に対応して、押圧位置ごとに、支持ピン30がガラス基板11を押圧する押圧力の大きさを異ならせることが可能となる。これにより、複数の押圧位置の各々において、支持ピン30が、ガラス基板11又はマスク20の変形に追従して、必要な押圧力をガラス基板11に付与することができる。
 同時に、支持ピン30を用いることで、マグネットを利用せずに、ガラス基板11とマスク20とを密着させた状態で、ガラス基板11が成膜処理される。これにより、マグネットがスパッタ粒子に与える影響により成膜特性が悪化することを低減できる。
 なお、保持部13の面内における支持ピン30の配置は、ガラス基板11を安定的に支持するためのリフトピン50の配置に影響を与えないようにする必要があるが、ほぼ均等な間隔で、複数の支持ピン30を配置することができる。
 以下、本発明の第2実施形態に係る基板処理装置を、図面に基づいて説明する。
 図15は、本発明の第2実施形態に係る基板処理装置を構成する成膜室を示す模式正面図である。本実施形態において、上述した第1実施形態と異なるのは、基板を処理する時におけるマスクとガラス基板との位置に関する点である。これ以外の上述した第1実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態においては、スパッタリング処理時に、ガラス基板11が横型、つまり、被処理面が水平面に近い状態で保持部13に保持される。
 本実施形態において、成膜室4の内部には、図15に示すように、成膜中にガラス基板11を水平面と略平行に保持する支持機構10が設けられている。支持機構(基板支持装置)10は、ガラス基板11を加熱するヒータを備えていてもよい。また、成膜室4には、バッキングプレート(カソード電極)6がヒータと対向する上側位置に設けられている。成膜室4には、成膜材料を供給する手段として、バッキングプレート6に加えて、バッキングプレート6に負電位のスパッタ電圧を印加する電源6Aと、この成膜室4内にガスを導入するガス導入部4sと、が設けられている。また、成膜室4には、成膜室4の内部を高真空引きするターボ分子ポンプ等の高真空排気部4tが設けられている。バッキングプレート6には、ガラス基板11と略平行に対面する下面側にターゲットが固定される。
 保持部13は、ガラス基板11の成膜処理時に、ガラス基板11を被処理面の裏面側から支持する。保持部13は、ガラス基板11の輪郭形状よりもやや大きい平板状とされている。保持部13の面内における内側となる位置には、図示しないヒータが配置されている。ヒータは、保持部13に支持されたガラス基板11を、ガラス基板11の裏面側から加熱可能である。
 保持部13の面内における内側となる位置には、第1実施形態と同様に、複数の支持ピン30が設けられている。支持ピン30は、ガラス基板11に対して鉛直方向に伸退可能である。複数の支持ピン30の各々においては、当接部34が上向きに突出した状態となっている。支持ピン30は、保持部13の面内において、ヒータによるガラス基板11の加熱に対する影響を低減するように立設されている。
 また、保持部13の周縁において外側となる位置には、複数のクランプ40が設けられていてもよい。
 従来の基板処理装置では、例えば、保持部13に対応する保持部が剛性を有し、水平な面内における位置で、個別に位置調整できない構成を有していた。このような構成において、従来の保持部がガラス基板11の裏面に当接している場合には、アライメント後にマスク20をガラス基板11に押しつけて密着させた際に、ガラス基板11に必要以上の押圧力がかかる。その上、ガラス基板11の自重により、ガラス基板11の中央付近が下に垂れ下がった状態となる。この状態のガラス基板11とマスク20とを密着させるためには、従来の保持部ではさらに大きな押圧力が必要となる。このため、ガラス基板11に割れや欠けが発生する可能性が高かった。
 さらに、従来の保持部において、波打ちなどの発生したガラス基板11では、さらに必要以上の押圧力がかかる。このため、従来の保持部では、ガラス基板11に割れや欠けが発生する可能性が一層高まる。
 これに対して、本実施形態においては、保持部13の水平な面内において、複数のポジションとされる、ガラス基板11の面内における押圧位置に、複数の支持ピン30の各々が配置されている。しかも、支持ピン30の各々の先端に位置する当接部34が、個別に、鉛直方向に伸退可能とされている。これにより、水平な面内における複数のポジションの各々で、支持ピン30がマスク20あるいはガラス基板11の変形に応じて、伸退する。したがって、マスク20の変形形状に倣って、マスク20に密着するようにガラス基板11を支持することが可能となる。
 本実施形態においては、上述した第1実施形態と同等の効果を奏することができる。
 上記の各実施形態においては、本発明の実施形態に係る基板処理装置がスパッタリング装置である場合を説明したが、上述の基板処理装置は、蒸着処理を行う装置であってもよい。この場合でも、マスクとガラス基板とに過度の押圧力を作用させることなく互いに密着させることが可能となる。
 上記の実施形態においては、保持部13の面内において、均等な間隔で配置された複数のリフトピン50の間に、支持ピン30が配置されている。つまり、保持部13の面内において、支持ピン30が均等な間隔に配置されている。
 本発明では、このような構造に加えて、ガラス基板11の中央部に比べて、ガラス基板11の周縁部において支持ピン30が配置される間隔を小さくすることもできる。つまり、ガラス基板11の中央部に比べてガラス基板11の周縁部において、支持ピン30の密度が高くなるように、複数の支持ピン30を配置することもできる。
 本発明では、ガラス基板11の中央部に比べて、ガラス基板11の周縁部において、支持ピン30の本数を多く配置することもできる。さらに、縦型の基板処理装置の場合には、ガラス基板11の中央部において、支持ピン30が配置される間隔を小さくして多数配置することもできる。つまり、ガラス基板11の周縁部に比べてガラス基板11の中央部において、支持ピン30の密度が高くなるように配置できる。
 本発明では、ガラス基板11の周縁部に比べて、ガラス基板11の中央部において、支持ピン30の本数を多く配置することもできる。あるいは、保持部13の面内で、支持ピン30を均等に配置して、支持ピン30の間隔を一定にすることもできる。
 さらに、上記の実施形態においては、複数の支持ピン30が、いずれも平行状態として配置したが、これに限定されない。例えば、ガラス基板11の周縁部において、支持ピン30の押圧方向がガラス基板11の面内における中央から外側に向けて傾斜することもできる。あるいは、マスク20が平面でない場合には、マスク20の形状に対応して、当接部34の接触する部分におけるマスク20の面に対する法線方向と、支持ピン30がガラス基板11を押圧する方向とが平行な配置とすることも可能である。
 また、上記の実施形態においては、マスク20を保持部13に対して近接させて、ガラス基板11とマスク20とを密着させたが、ガラス基板11とマスク20とは相対的に近接させればよく、ガラス基板11とマスク20とのアライメント後に、保持部13を動作させてガラス基板11とマスク20とを密着させる構成としてもよい。
 以下、本発明にかかる具体例について説明する。
 ここでは、図4に示すように、支持機構10における諸元を示す。
ガラス基板11寸法;2500mm×2200mm
支持ピン30における弾性部材32によって支持シャフト31が伸退する寸法;0.5mm
保持部13の面内において支持ピン30を配置する間隔;300mm
 このようなスパッタリング装置(基板処理装置1)を用いることにより、ガラス基板の割れや欠けの発生を防止して、マスクと基板との密着性の向上を図ることができる。
1…基板処理装置(スパッタリング装置、成膜装置)
2…ロード・アンロード室(チャンバ)
3…搬送室(チャンバ)
3a…搬送装置(搬送ロボット)
4…成膜室(チャンバ)
4a…搬送口
4b…成膜口
4m…前側空間(処理室)
4n…裏側空間(後背室)
6…バッキングプレート(カソード電極)
7…ターゲット
10…支持機構(基板保持装置)
11…ガラス基板(基板)
12…回転軸
12a…取り付け部材
13…保持部(プラテン)
12A…回転駆動部
20…マスク
20a…マスクフレーム
20b…リブ
30…支持ピン
31…支持シャフト
31b…段差
32…弾性部材(シャフト支持部)
33…シャフト支持筒(シャフト支持部)
33a,33b…ブシュ(シャフト支持部)
34…当接部
35…固定部(シャフト支持部)
36…ナット(シャフト支持部)
37…ナット(シャフト支持部)
40…クランプ(クランプ機構)
40a…凸部
40d…当接部
44…当接面
41…支持部(クランプ機構)
42…弾性部材(クランプ機構)
43…支持基部(クランプ機構)
43a…位置規制穴
50…リフトピン

Claims (11)

  1.  基板を処理する装置であって、
     チャンバ内にて前記基板の表面を処理する処理室と、
     前記処理室に隣接し、前記基板を移動するとともに、前記基板を支持する後背室と、
     前記処理室と前記後背室との境界位置に配置されたマスクと、
     基板を処理する時に、前記基板と前記マスクとを密着させるように、前記基板を前記マスクに向けて押圧可能に支持し、前記基板と前記マスクとの変形に追従して前記基板の裏面に作用する押圧力を調整可能に設定する支持機構と、
     を有する基板処理装置。
  2.  前記支持機構は、支持ピンを有し、
     前記支持ピンは、前記マスクの面に直交する方向に延在し、前記支持機構が前記基板を支持する時に前記基板の前記裏面に当接する先端を有し、前記基板の前記裏面に作用する前記押圧力を調整可能とし、軸方向に伸長可能及び退避可能に配置されている
     請求項1に記載の基板処理装置。
  3.  前記支持ピンは、
     前記支持ピンが前記基板の前記裏面を押圧する時に前記基板の前記裏面に当接する先端を有する支持シャフトと、
     可撓性を有する弾性部材を有し、前記支持ピンの前記軸方向において前記支持シャフトを伸長可能及び退避可能として支持するシャフト支持部と、
     を有し、
     前記支持シャフトの伸長及び退避により、前記支持ピンは、前記基板の前記裏面に作用する前記押圧力を調整可能である、
     請求項2に記載の基板処理装置。
  4.  前記支持ピンが、前記基板の前記裏面に対向するように前記支持機構に複数箇所に設けられている、
     請求項2に記載の基板処理装置。
  5.  前記支持ピンは、
     前記支持ピンが前記基板の前記裏面を押圧する時に前記基板の前記裏面に当接する先端を有する支持シャフトを有し、
     前記支持シャフトの先端が、球面状に形成されている、
     請求項2に記載の基板処理装置。
  6.  前記支持機構は、
     前記支持ピンの伸長及び退避に追従して前記軸方向と同方向に伸長可能及び退避可能なクランプ支持部と、
     前記クランプ支持部によって支持されて、前記基板の縁部を支持するクランプと、
     を有する請求項2から請求項5のいずれか一項に記載の基板処理装置。
  7.  前記クランプ支持部は、前記支持ピンの伸長及び退避に追従して前記軸方向に伸長可能及び退避可能な可撓性を有する弾性部材を有する、
     請求項6に記載の基板処理装置。
  8.  前記クランプが、前記基板の周縁部において複数箇所に設けられている、
     請求項6に記載の基板処理装置。
  9.  前記処理室において蒸着処理が行われる、
     請求項1から請求項8のいずれか一項に記載の基板処理装置。
  10.  前記処理室においてスパッタリング処理が行われる、
     請求項1から請求項8のいずれか一項に記載の基板処理装置。
  11.  請求項1から請求項10のいずれか一項に記載の基板処理装置に用いられる支持ピンであって、
     前記マスクの面に直交する方向に延在するように前記基板処理装置に取り付けられ、基板を支持する時に前記基板の裏面に当接する先端を有する支持シャフトと、
     可撓性を有する弾性部材を有し、前記支持シャフトを軸方向に伸長可能及び退避可能として支持するシャフト支持部と、
     を有し、
     前記支持シャフトの伸長及び退避により、前記基板の前記裏面に作用する前記押圧力を調整可能である、
     支持ピン。
PCT/JP2018/039265 2017-10-24 2018-10-23 基板処理装置、支持ピン WO2019082868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197018007A KR102243370B1 (ko) 2017-10-24 2018-10-23 기판 처리 장치
JP2019516025A JP6799147B2 (ja) 2017-10-24 2018-10-23 基板処理装置
CN201880005312.8A CN110100043B (zh) 2017-10-24 2018-10-23 基板处理装置及支撑销

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017205427 2017-10-24
JP2017-205427 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019082868A1 true WO2019082868A1 (ja) 2019-05-02

Family

ID=66246574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039265 WO2019082868A1 (ja) 2017-10-24 2018-10-23 基板処理装置、支持ピン

Country Status (5)

Country Link
JP (1) JP6799147B2 (ja)
KR (1) KR102243370B1 (ja)
CN (1) CN110100043B (ja)
TW (1) TWI705152B (ja)
WO (1) WO2019082868A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115398029A (zh) * 2020-09-17 2022-11-25 株式会社爱发科 溅射装置
WO2023160836A1 (en) * 2022-02-25 2023-08-31 Applied Materials, Inc. Substrate support assembly, substrate processing apparatus method for fixing an edge support frame to a table frame, and method of manufacturing a portion of a display device
KR20240004704A (ko) 2021-07-16 2024-01-11 가부시키가이샤 알박 진공 처리 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158571A (ja) * 2003-11-27 2005-06-16 Seiko Epson Corp 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネルの製造装置及び有機エレクトロルミネッセンスパネル
JP2005281746A (ja) * 2004-03-29 2005-10-13 Seiko Epson Corp 蒸着装置、蒸着方法、電気光学装置、および電子機器
JP2010031345A (ja) * 2008-07-31 2010-02-12 Canon Inc 成膜装置及びそれを用いた成膜方法
JP2012092395A (ja) * 2010-10-27 2012-05-17 Canon Inc 成膜方法及び成膜装置
JP2013093279A (ja) * 2011-10-27 2013-05-16 Hitachi High-Technologies Corp 有機elデバイス製造装置
JP2013204097A (ja) * 2012-03-28 2013-10-07 Hitachi High-Technologies Corp 成膜装置および成膜方法
JP2015137391A (ja) * 2014-01-22 2015-07-30 株式会社アルバック 基板保持装置および成膜装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29707686U1 (de) 1997-04-28 1997-06-26 Balzers Prozess Systeme Vertri Magnethalterung für Folienmasken
CN101667630A (zh) * 2008-09-04 2010-03-10 株式会社日立高新技术 有机el设备制造装置和其制造方法以及成膜装置和成膜方法
JP5074429B2 (ja) 2009-01-16 2012-11-14 株式会社日立ハイテクノロジーズ 成膜装置
KR101337491B1 (ko) * 2012-03-07 2013-12-05 주식회사 선익시스템 기판 정렬장치 및 정렬방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158571A (ja) * 2003-11-27 2005-06-16 Seiko Epson Corp 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネルの製造装置及び有機エレクトロルミネッセンスパネル
JP2005281746A (ja) * 2004-03-29 2005-10-13 Seiko Epson Corp 蒸着装置、蒸着方法、電気光学装置、および電子機器
JP2010031345A (ja) * 2008-07-31 2010-02-12 Canon Inc 成膜装置及びそれを用いた成膜方法
JP2012092395A (ja) * 2010-10-27 2012-05-17 Canon Inc 成膜方法及び成膜装置
JP2013093279A (ja) * 2011-10-27 2013-05-16 Hitachi High-Technologies Corp 有機elデバイス製造装置
JP2013204097A (ja) * 2012-03-28 2013-10-07 Hitachi High-Technologies Corp 成膜装置および成膜方法
JP2015137391A (ja) * 2014-01-22 2015-07-30 株式会社アルバック 基板保持装置および成膜装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115398029A (zh) * 2020-09-17 2022-11-25 株式会社爱发科 溅射装置
KR20240004704A (ko) 2021-07-16 2024-01-11 가부시키가이샤 알박 진공 처리 장치
WO2023160836A1 (en) * 2022-02-25 2023-08-31 Applied Materials, Inc. Substrate support assembly, substrate processing apparatus method for fixing an edge support frame to a table frame, and method of manufacturing a portion of a display device

Also Published As

Publication number Publication date
JP6799147B2 (ja) 2020-12-09
KR20190077591A (ko) 2019-07-03
CN110100043A (zh) 2019-08-06
JPWO2019082868A1 (ja) 2019-11-14
KR102243370B1 (ko) 2021-04-22
TW201923127A (zh) 2019-06-16
TWI705152B (zh) 2020-09-21
CN110100043B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
JP5593299B2 (ja) 接合装置、接合システム、接合方法、プログラム及びコンピュータ記憶媒体
JP4912253B2 (ja) 基板搬送装置、基板処理装置及び基板搬送方法
WO2019082868A1 (ja) 基板処理装置、支持ピン
JP5421967B2 (ja) 接合方法、プログラム、コンピュータ記憶媒体及び接合システム
JPH0249424A (ja) エッチング方法
KR20150103632A (ko) 기판 탑재 장치 및 기판 처리 장치
JP5406257B2 (ja) 接合方法、プログラム、コンピュータ記憶媒体及び接合システム
KR102366901B1 (ko) 기판 처리 장치 및 탑재대의 제전 방법
KR101063127B1 (ko) 기판 처리 장치
JP2011202190A (ja) スパッタリング装置及びスパッタリング方法
TWI684659B (zh) 成膜裝置
JP2003037146A (ja) バッファ機構を有する半導体製造装置及び方法
JP4198443B2 (ja) ガス処理装置
JP6247995B2 (ja) 接合方法、プログラム、コンピュータ記憶媒体、接合装置及び接合システム
JP5315081B2 (ja) 薄膜形成装置
JPS60249329A (ja) スパッタエッチング装置
TWI821430B (zh) 真空處理設備及真空處理基板的方法
KR102579389B1 (ko) 기판 보유지지 유닛, 기판 보유지지 부재, 기판 보유지지 장치, 기판 처리 장치, 기판 처리 방법 및 전자 디바이스의 제조 방법
JP2673538B2 (ja) エッチング装置及びエッチング方法
CN117587369A (zh) 基板处理装置
WO2003030235A1 (fr) Processeur a plasma et procede de traitement au plasma
JP2004266028A (ja) ガス処理装置およびガス処理方法、ならびにガス処理システム
JP2008285712A (ja) スパッタリング装置
JP2012146844A (ja) 薄膜形成システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516025

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018007

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870601

Country of ref document: EP

Kind code of ref document: A1