WO2019082392A1 - 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置 - Google Patents

遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Info

Publication number
WO2019082392A1
WO2019082392A1 PCT/JP2017/038960 JP2017038960W WO2019082392A1 WO 2019082392 A1 WO2019082392 A1 WO 2019082392A1 JP 2017038960 W JP2017038960 W JP 2017038960W WO 2019082392 A1 WO2019082392 A1 WO 2019082392A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
bell mouth
tongue
discharge port
blower
Prior art date
Application number
PCT/JP2017/038960
Other languages
English (en)
French (fr)
Inventor
拓矢 寺本
亮 堀江
貴宏 山谷
一也 道上
堤 博司
慶二郎 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/038960 priority Critical patent/WO2019082392A1/ja
Priority to EP20181743.4A priority patent/EP3736451B1/en
Priority to AU2018354693A priority patent/AU2018354693A1/en
Priority to SG11202003783QA priority patent/SG11202003783QA/en
Priority to EP20181735.0A priority patent/EP3736450A1/en
Priority to CN202210384786.6A priority patent/CN114688096A/zh
Priority to EP18871715.1A priority patent/EP3702626A4/en
Priority to JP2019551219A priority patent/JP6940619B2/ja
Priority to CN201880070006.2A priority patent/CN111279085B/zh
Priority to US16/759,021 priority patent/US20210033104A1/en
Priority to PCT/JP2018/039585 priority patent/WO2019082949A1/ja
Priority to TW107137947A priority patent/TWI687596B/zh
Priority to TW109103489A priority patent/TWI731570B/zh
Publication of WO2019082392A1 publication Critical patent/WO2019082392A1/ja
Priority to JP2021143159A priority patent/JP2021183843A/ja
Priority to US17/551,438 priority patent/US11566635B2/en
Priority to AU2022200749A priority patent/AU2022200749B2/en
Priority to AU2022200751A priority patent/AU2022200751B2/en
Priority to US17/899,236 priority patent/US20220412372A1/en
Priority to US18/453,491 priority patent/US20230400036A1/en
Priority to US18/453,565 priority patent/US20230392607A1/en
Priority to US18/453,642 priority patent/US20240011500A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans

Definitions

  • the present invention relates to a centrifugal fan having a scroll casing, and a blower, an air conditioner, and a refrigeration cycle apparatus provided with the same.
  • Patent Document 1 discloses a centrifugal fan in which at least a portion with high air inflow velocity of a bell mouth of a scroll casing is protruded outward from the scroll casing.
  • This invention is made in view of the above, Comprising: It aims at obtaining the centrifugal fan which aimed at the improvement of ventilation efficiency.
  • a centrifugal fan comprises a fan having a disk-shaped main plate, a plurality of blades installed at the peripheral portion of the main plate, and a fan rotation Covering the fan from the axial direction of the rotation axis which is the center of the fan, and a side wall formed with a suction port for taking in air, a discharge port for discharging the air flow generated by the fan, a tongue for guiding the air flow to the discharge port, and the fan And a scroll casing having a peripheral wall whose distance from the rotation axis increases with an increase in the angle of the rotation direction of the fan with respect to the end of the discharge port on the tongue side.
  • the side wall is provided with a bell mouth whose air passage narrows from the upstream side to the downstream side of the flow of the air flow drawn into the scroll casing through the suction port.
  • the radial distance between the upstream end and the downstream end of the bell mouth is the tongue side between the part of the end of the outlet on the tongue side and the part of the end of the outlet on the side away from the tongue. The larger the angle of the rotational direction of the fan with respect to the end of the outlet, the longer it is.
  • the centrifugal fan according to the present invention has an effect that the air blowing efficiency can be improved.
  • the perspective view of the air blower concerning Embodiment 1 of the present invention Top view of the blower according to the first embodiment
  • Cross-sectional view of a blower according to Embodiment 1 The perspective view which shows the modification of the air blower concerning Embodiment 1
  • Sectional drawing which shows the modification of the air blower concerning Embodiment 1.
  • FIG. 10 The perspective view of the air conditioning apparatus which concerns on Embodiment 10 of this invention
  • FIG. 10 The figure which shows the internal structure of the air conditioning apparatus which concerns on Embodiment 10.
  • Cross-sectional view of an air conditioner according to Embodiment 10 The figure which shows the structure of the refrigerating-cycle apparatus based on Embodiment 11 of this invention
  • FIG. 1 is a perspective view of a blower according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of the blower according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the blower according to the first embodiment.
  • FIG. 3 shows a cross section taken along the line III-III in FIG.
  • the fan 1 which is a multi-blade centrifugal type centrifugal fan includes a fan 2 for generating an air flow and a scroll casing 4 provided with a bell mouth 3 for rectifying the air flow taken into the fan 2.
  • the fan 2 includes a disk-shaped main plate 2a, a ring-shaped side plate 2c facing the main plate 2a, and a plurality of blades 2d provided on the peripheral portion of the main plate 2a.
  • the blade 2d surrounds the rotation axis AX between the main plate 2a and the side plate 2c.
  • a boss 2b is provided at the center of the main plate 2a.
  • the output shaft 6 a of the fan motor 6 is connected to the center of the boss 2 b, and the fan 2 is rotated by the driving force of the fan motor 6.
  • the fan 2 may not have the side plate 2c.
  • the scroll casing 4 surrounds the fan 2 and rectifies the air blown from the fan 2.
  • the scroll casing 4 has a side wall 4c covering the fan 2 in the axial direction of the rotation axis AX, a peripheral wall 4a covering the fan 2 in the radial direction of the rotation axis AX, and a discharge port 41 for discharging the air flow generated by the fan 2 And a tongue 4b for guiding the air flow generated by the fan 2 to the discharge port 41.
  • the radial direction of the rotation axis AX is a direction perpendicular to the rotation axis AX.
  • the inside of the scroll portion 4e formed by the peripheral wall 4a and the side wall 4c is a space in which the air blown out from the fan 2 flows along the peripheral wall 4a.
  • the peripheral wall 4 a is provided from the end 41 a of the discharge port 41 on the tongue 4 b side to the end 41 b of the discharge port 41 on the side separated from the tongue 4 b in the rotational direction of the fan 2. Therefore, the peripheral wall 4a is not provided in a portion communicating with the discharge port 41 from the scroll portion 4e.
  • the distance between the rotation axis AX of the fan 2 and the peripheral wall 4 a is an angle ⁇ along the rotational direction of the fan 2 with respect to the tongue 4 b between the tongue 4 b and the location where the peripheral wall 4 a is connected to the discharge port 41. It gets longer as it gets bigger.
  • the distance between the rotation axis AX of the fan 2 and the peripheral wall 4a is shortest at the end 41a.
  • a suction port 5 is formed in the side wall 4 c of the scroll casing 4. Further, a bell mouth 3 is formed on the side wall 4 c to guide the air flow sucked into the scroll casing 4 through the suction port 5.
  • the bell mouth 3 is formed at a position facing the suction port of the fan 2.
  • the bell mouth 3 has a shape in which the air passage narrows from an upstream end 3a which is an upstream end of the air flow sucked into the scroll casing 4 through the suction port 5 to a downstream end 3b which is a downstream end.
  • the bell mouth 3 is formed by a curved surface whose sectional shape in the plane including the rotation axis AX is a curve, but a curved surface whose sectional shape in the plane including the rotation axis AX is a straight line. It may be formed of That is, the bell mouth 3 may be in the shape of a truncated cone.
  • a bent portion 31 having a convex curved surface in a direction away from the main plate 2a and smoothly connecting the bellmouth 3 and the peripheral wall 4a of the scroll casing 4 is provided at the peripheral portion of the bellmouth 3.
  • smooth means that the slope of the curved surface is continuously changed between the bell mouth 3 and the peripheral wall 4a, and that no edge is formed at the boundary between the bell mouth 3 and the peripheral wall 4a.
  • a step 42 is provided at the boundary between the discharge port 41 and the scroll portion 4e, and the air flow traveling from the scroll portion 4e toward the discharge port 41 has a reduced cross-sectional area.
  • the radial distance between the upstream end 3a and the downstream end 3b of the bell mouth 3 is an angle between the end 41a and the end 41b in the rotational direction of the fan 2 with respect to the end 41a. The bigger the place, the longer it is.
  • L ⁇ The radial distance between the upstream end 3a and the downstream end 3b of the bell mouth 3 at a position where the angle along the rotational direction of the fan 2 with respect to the end 41a is ⁇ degrees is L ⁇ .
  • L 0 is be defined as the distance between the upstream end 3a and a downstream end 3b on the line connecting the end portion 41a and the rotation axis AX in top view.
  • L 270 can be defined as the distance between the upstream end 3 a and the downstream end 3 b on the line connecting the end 41 b and the rotation axis AX in top view.
  • L 90 is longer than L 0 and L 180 is longer than L 90 .
  • the radial distance L between the upstream end 3a and the downstream end 3b of the bell mouth 3 is maximized at L 270 connected to the discharge port 41 of the scroll casing 4 and then minimized at L 360 corresponding to the end 41 a. .
  • the radial distance L theta between the upstream end 3a and a downstream end 3b of the bell mouth 3, to over the part of the portion from the end portion 41b of the end portion 41a may be continuously increased, it is increased stepwise Good.
  • the angle at which the radial distance between the upstream end 3a and the downstream end 3b of the bell mouth 3 is maximum may be an angle between 0 degree and 270 degrees, and is not limited to 270 degrees as illustrated. That is, the radial distance between the upstream end 3a and the downstream end 3b of the bell mouth is maximized at a portion where the angle along the rotational direction of the fan 2 is between 0.degree. And 270.degree. Based on the end 41a. It may be gradually reduced along the rotational direction.
  • the peripheral wall 4a is connected to the discharge port 41 at a position where the angle of the rotational direction of the fan 2 with respect to the end 41a is 270 degrees, but the position where the peripheral wall 4a is connected to the discharge port 41 is from the end 41a There is no limitation to the 270 degree position.
  • the blower 1 according to the first embodiment can suppress the decrease in the blowing efficiency and reduce the noise.
  • the blower 1 since the bell mouth 3 and the peripheral wall 4 a of the scroll casing 4 are smoothly connected by the curved portion 31, the air on the side of the peripheral wall 4 a is along the curved portion 31. Led to Therefore, by connecting the boundary between the bell mouth 3 and the peripheral wall 4 a of the scroll casing 4 smoothly by the curved portion 31, the blowing efficiency can be enhanced.
  • the blower 1 according to the first embodiment can achieve high efficiency and low noise by suppressing separation of the flow at the bell mouth 3.
  • FIG. 4 is a perspective view showing a modification of the blower according to the first embodiment.
  • FIG. 5 is a top view showing a modification of the blower according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the blower according to the first embodiment.
  • FIG. 6 shows a cross section taken along the line VI-VI in FIG.
  • the upstream end 3 a of the bell mouth 3 and the side wall 4 c are connected by a connecting portion 43.
  • the blower 1 shown in FIGS. 4 to 6 is the same as the blower 1 shown in FIGS.
  • the bell mouth 3 does not reach the peripheral wall 4 a of the scroll casing 4 except for the end 41 a. It is. Even if the bellmouth 3 does not reach the peripheral wall 4a of the scroll casing 4 in portions other than the end portion 41a, the radial distance between the upstream end 3a and the downstream end 3b of the bellmouth 3 is the rotation of the fan 2 If it increases from the radial direction at the portion of the end portion 41a along the direction, the effect of suppressing flow separation in the bell mouth 3 can be similarly obtained.
  • FIG. 7 is a cross-sectional view of a blower according to Embodiment 2 of the present invention.
  • the radial distance A between the upstream end 3 a and the downstream end 3 b of the bell mouth 3 is greater than the axial distance B between the upstream end 3 a and the downstream end 3 b of the bell mouth 3. It is large and it has become A> B.
  • FIG. 8 is a cross-sectional view of a blower according to Embodiment 3 of the present invention.
  • the curved portion 31 is not provided at the peripheral portion of the bell mouth 3, and the upstream end 3a of the bell mouth 3 is located at the end portion of the peripheral wall 4 a.
  • Others are the same as the blower 1 according to the first embodiment.
  • the blower 1 according to the third embodiment has an air blowing efficiency inferior to that of the blower 1 according to the first embodiment in which the curved portion 31 is provided at the boundary between the peripheral wall 4 a and the bell mouth 3.
  • Efficiency and noise reduction compared to a blower of a structure in which the distance in the radial direction between the end 3a and the downstream end 3b is constant regardless of the angle along the rotation direction of the fan 2 based on the end 41a. The effect of being able to realize
  • FIG. 9 is a top view of a blower according to Embodiment 4 of the present invention.
  • FIG. 10 is a cross-sectional view of a blower according to the fourth embodiment.
  • FIG. 10 shows a cross section along line XX in FIG.
  • the blower 1 according to the fourth embodiment is different from the first embodiment in that the step 42 is not provided at the boundary between the scroll portion 4 e and the discharge port 41.
  • the air flow generated by the fan 2 does not receive resistance by passing through the step when advancing from the scroll portion 4e to the discharge port 41 in the scroll portion 4e. , Can increase the blowing efficiency.
  • FIG. 11 is a cross-sectional view of a blower according to Embodiment 5 of the present invention.
  • the position of the downstream end 3 b of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 is constant.
  • the position of the upstream end 3a of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 changes from the end 41a to the end 41b. Therefore, as shown in FIG. 11, the upstream end 3a at a position at an angle ⁇ of 180 degrees with respect to the end 41a is disposed at a position farther from the main plate 2a than the upstream end 3a at the end 41a. It is done. Others are the same as the blower 1 according to the fourth embodiment.
  • the blower 1 according to the fifth embodiment can suppress separation of the flow at the suction port 5 also in the axial direction, so that higher efficiency and lower noise can be achieved compared to the blower 1 according to the first embodiment. .
  • the fan 1 according to the fifth embodiment is disposed at a position where the upstream end 3a of the bell mouth 3 is separated from the main plate 2a on the case suction port side when housed in the case having the case suction port in the opposite direction to the discharge port 41. Therefore, the curvature of the bellmouth 3 can be increased. Therefore, the blower 1 according to the fifth embodiment can reduce the separation of the air flow at the bell mouth 3 and can increase the blowing efficiency.
  • FIG. 12 is a cross-sectional view of a blower according to Embodiment 6 of the present invention.
  • the position of the downstream end 3b of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 changes from the end 41a to the end 41b.
  • the position of the upstream end 3a of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 changes from the end 41a to the end 41b.
  • the upstream end 3a at a position where the angle ⁇ is 180 degrees with reference to the end 41a is disposed at a position farther from the main plate 2a than the upstream end 3a at the end 41a.
  • the downstream end 3b at a position where the angle ⁇ is 180 degrees with reference to the end 41a is disposed at a position farther from the main plate 2a than the downstream end 3b at the end 41a.
  • the blower 1 according to the sixth embodiment like the blower 1 according to the fifth embodiment, is housed in the case having the case suction port in the opposite direction to the discharge port 41 in the bell mouth 3 on the case suction port side. Since the upstream end 3a is disposed at a position away from the main plate 2a, the curvature of the bell mouth 3 can be increased. Therefore, the blower 1 according to the sixth embodiment can reduce the separation of the air flow at the bell mouth 3 and can increase the blowing efficiency.
  • FIG. 13 is a cross-sectional view of a blower according to Embodiment 7 of the present invention.
  • the position of the downstream end 3 b of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 is constant.
  • the position of the upstream end 3a of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 changes from the end 41a to the end 41b.
  • the upstream end 3a at a position where the angle ⁇ is 180 degrees with reference to the end 41a is disposed at a position closer to the main plate 2a than the upstream end 3a at the end 41a.
  • Others are the same as the blower 1 according to the first embodiment.
  • the upstream end 3a of the bell mouth 3 is disposed at a position close to the main plate 2a on the case suction port side when housed in a case having a case suction port in the opposite direction to the discharge port 41. Therefore, a wide air path between the case housing the blower 1 and the case can be secured. Therefore, the blower 1 according to the seventh embodiment can increase the blowing efficiency.
  • the upstream end 3a of the bellmouth 3 is disposed at a position away from the main plate 2a on the side of the discharge port 41 and the end 41a, and the curvature in the axial direction of the bellmouth 3 is large. By doing this, noise deterioration due to standing waves can be reduced.
  • FIG. 14 is a cross-sectional view of a blower according to Embodiment 8 of the present invention.
  • the position of the downstream end 3b of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 changes from the end 41a to the end 41b.
  • the position of the upstream end 3a of the bell mouth 3 in the axial direction of the rotation axis AX of the fan 2 changes from the end 41a to the end 41b.
  • the upstream end 3a at a position where the angle ⁇ is 180 degrees with reference to the end 41a is disposed at a position closer to the main plate 2a than the upstream end 3a at the end 41a.
  • the downstream end 3b at an angle ⁇ of 180 degrees with respect to the end 41a is disposed at a position closer to the main plate 2a than the downstream end 3b at the end 41a.
  • Others are the same as the blower 1 according to the first embodiment.
  • the upstream end 3a of the bell mouth 3 is disposed at a position near the main plate 2a on the case suction port side. Therefore, a wide air path between the case housing the blower 1 and the case can be secured. Therefore, the blower 1 according to the eighth embodiment can increase the blowing efficiency.
  • FIG. 15 is a diagram showing a configuration of a blower according to Embodiment 9 of the present invention.
  • An air blower 30 according to the ninth embodiment includes the air blower 1 according to the first embodiment and a case 7 for housing the air blower 1.
  • the case 7 is provided with two openings, a case suction port 71 and a case discharge port 72. A part where the case suction port 71 is formed and a part where the case discharge port 72 is formed are separated by a partition plate 73.
  • the blower 1 is installed in a state where the suction port 5 is located in the space where the case suction port 71 is formed and the discharge port 41 is located in the space where the case discharge port 72 is formed.
  • the radial distance between the upstream end 3 a and the downstream end 3 b of the bell mouth 3 is the diameter at the end 41 a of the discharge port 41 along the rotational direction of the fan 2. Since the blower 1 is provided to be longer than the distance in the direction, it is possible to realize the improvement of the blowing efficiency and the reduction of the noise. In addition, the same effect is acquired even if it comprises the air blower 30 using the air blower 1 which concerns on either of Embodiment 2 to Embodiment 8. FIG.
  • FIG. 16 is a perspective view of an air conditioning apparatus according to Embodiment 10 of the present invention.
  • FIG. 17 is a diagram showing an internal configuration of the air conditioning apparatus according to Embodiment 10.
  • FIG. 18 is a cross-sectional view of the air conditioning apparatus according to Embodiment 10.
  • the air conditioning apparatus 40 according to Embodiment 10 includes a case 16 installed on the ceiling of a room to be air-conditioned.
  • case 16 has a rectangular parallelepiped shape including upper surface portion 16a, lower surface portion 16b and side surface portion 16c.
  • the shape of the case 16 is not limited to a rectangular shape.
  • a case discharge port 17 is formed on one of the side surfaces 16 c of the case 16.
  • the shape of the case discharge port 17 is not limited to a specific shape.
  • the shape of the case discharge port 17 can be exemplified by a rectangle.
  • a case suction port 18 is formed on the surface of the side portion 16 c of the case 16 which is the back of the surface on which the case discharge port 17 is formed.
  • the shape of the case suction port 18 is not limited to a specific shape.
  • the shape of the case suction port 18 can be exemplified by a rectangle.
  • a filter for removing dust in the air may be disposed in the case suction port 18.
  • the blower 11 includes a scroll casing 4 in which a fan 2 and a bell mouth 3 are formed.
  • the blower 11 has the same fan 2 and scroll casing 4 as the blower 1 according to the first embodiment, but is different in that the fan motor 6 is not disposed in the scroll casing 4. Therefore, the shape of the bell mouth 3 of the blower 11 is the same as that of the first embodiment.
  • the fan motor 9 is supported by a motor support 9 a fixed to the top surface 16 a of the case 16.
  • the fan motor 9 has a rotation axis AX.
  • the rotation axis AX is disposed so as to extend in parallel to the surface of the side surface portion 16c on which the case suction port 18 is formed and the surface on which the case discharge port 17 is formed.
  • two fans 2 are attached to the rotation axis AX.
  • the fan 2 is drawn into the case 16 from the case suction port 18 and forms a flow of air blown out from the case discharge port 17 to the air conditioning target space.
  • the number of fans 2 attached to the fan motor 9 is not limited to two.
  • the heat exchanger 10 is disposed on the air path.
  • the heat exchanger 10 regulates the temperature of the air.
  • the heat exchanger 10 can apply the thing of a well-known structure.
  • a space on the suction side of the scroll casing 4 and a space on the blowing side are separated by a partition plate 19.
  • the air in the room to be air-conditioned is sucked into the inside of the case 16 through the case suction port 18.
  • the air drawn into the inside of the case 16 is guided to the bell mouth 3 and drawn into the fan 2.
  • the air sucked into the fan 2 is blown outward in the radial direction.
  • the air blown out from the fan 2 is blown out from the discharge port 41 of the scroll casing 4 and supplied to the heat exchanger 10.
  • the air supplied to the heat exchanger 10 is subjected to heat exchange and humidity control as it passes through the heat exchanger 10.
  • the air having passed through the heat exchanger 10 is blown out from the case discharge port 17 into the room.
  • the shape of the bell mouth 3 of the blower 11 is the same as that of the blower 1 according to the first embodiment, but the bell mouth 3 of the blower 1 according to any one of the second to eighth embodiments It may have the same shape.
  • FIG. 19 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 11 of the present invention.
  • the outdoor unit 100 and the indoor unit 200 are connected by refrigerant piping, and a refrigerant circuit in which the refrigerant circulates is configured.
  • a pipe through which a gas phase refrigerant flows is a gas pipe 300
  • a pipe through which a liquid phase refrigerant flows is a liquid pipe 400.
  • a gas-liquid two-phase refrigerant may flow through the liquid pipe 400.
  • the outdoor unit 100 includes a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an outdoor fan 104, and a throttling device 105.
  • the compressor 101 compresses and discharges the sucked refrigerant.
  • the compressor 101 includes an inverter device, and the capacity of the compressor 101 can be changed by changing the operation frequency.
  • the capacity of the compressor 101 is the amount of refrigerant to be sent out per unit time.
  • the four-way valve 102 switches the flow of refrigerant between the cooling operation and the heating operation based on an instruction from a control device (not shown).
  • the outdoor heat exchanger 103 performs heat exchange between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 103 functions as an evaporator during heating operation, performs heat exchange between low-pressure refrigerant flowing from the liquid pipe 400 and outdoor air, and evaporates and evaporates the refrigerant.
  • the outdoor heat exchanger 103 functions as a condenser, and performs heat exchange between the refrigerant compressed in the compressor 101 that has flowed in from the four-way valve 102 and the outdoor air to condense the refrigerant. Let it liquefy.
  • the outdoor heat exchanger 103 is provided with an outdoor air blower 104 in order to increase the efficiency of heat exchange between the refrigerant and the outdoor air.
  • the outdoor fan 104 may change the operating frequency of the fan motor 6 by an inverter device to change the rotational speed of the fan 2.
  • the expansion device 105 adjusts the pressure of the refrigerant by changing the opening degree.
  • the indoor unit 200 includes a load-side heat exchanger 201 that exchanges heat between the refrigerant and room air, and a load-side blower 202 that adjusts the flow of air that the load-side heat exchanger 201 exchanges heat.
  • the load-side heat exchanger 201 functions as a condenser, performs heat exchange between the refrigerant flowing from the gas pipe 300 and the indoor air, condenses the refrigerant, and liquefies the liquid pipe 400 side. Spill out.
  • the load-side heat exchanger 201 functions as an evaporator during cooling operation, performs heat exchange between the refrigerant brought into a low pressure state by the expansion device 105 and room air, and causes the refrigerant to deprive the heat of the air for evaporation. To vaporize and flow out to the gas piping 300 side.
  • the operating speed of the load side fan 202 is determined by the setting of the user.
  • the refrigeration cycle apparatus 50 heats or cools the room to perform air conditioning by transferring heat between the outside air and the room air via the refrigerant.
  • the load-side fan 202 of the indoor unit 200 may have the bell mouth 3 having the same shape as the fan 1 according to any one of the first to eighth embodiments.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

送風機(1)は、円盤状の主板と、ファン(2)と、ファン(2)の回転軸の軸方向からファン(2)を覆い、空気を取り込む吸込口が形成された側壁(4c)と、ファン(2)が発生させた気流を吐出する吐出口(41)と、気流を吐出口(41)に導く舌部(4b)と、ファン(2)を回転軸の径方向から囲み、舌部(4b)側の吐出口(41)の端部(41a)を基準としたファン(2)の回転方向の角度が大きい箇所ほど回転軸との距離が長くなる周壁(4a)とを有するスクロールケーシング(4)とを備え、側壁(4c)は、ベルマウス(3)が設けられており、ベルマウス(3)の上流端(3a)と下流端(3b)との径方向の距離は、舌部(4b)側の吐出口(41)の端部(41a)を基準としたファン(2)の回転方向の角度が大きい箇所ほど長くなっている。

Description

遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
 本発明は、スクロールケーシングを有する遠心送風機並びにこれを備えた送風装置、空気調和装置及び冷凍サイクル装置に関する。
 遠心送風機のスクロールケーシングには吸込口に吸い込まれる気流を案内するベルマウスが設けられる。遠心送風機は、ベルマウスの上流端と下流端との軸方向の距離が短いと、気流の向きが急激に変更することになり、流れの乱れが発生して送風効率が低下する。特許文献1には、スクロールケーシングのベルマウスの少なくとも空気流入速度の大きい部分を、スクロールケーシングから外方に向かって突出させた遠心送風機が開示されている。
 特許文献1に開示される発明は、部分的にベルマウスの上流端と下流端との軸方向の距離が長くなるため、吸込口で気流の流れを緩やかに変更することになり、流れの乱れが発生しにくくなり、送風効率の低下を抑制する効果が得られる。
特公平5-17400号公報
 しかしながら、上記特許文献1に開示される発明は、ベルマウスが径方向には拡大されていないため、送風効率を向上させる余地があった。
 本発明は、上記に鑑みてなされたものであって、送風効率の向上を図った遠心送風機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る遠心送風機は、円盤状の主板と、該主板の周縁部に設置される複数枚の羽根とを有するファンと、ファンの回転の中心となる回転軸の軸方向からファンを覆い、空気を取り込む吸込口が形成された側壁と、ファンが発生させた気流を吐出する吐出口と、気流を吐出口に導く舌部と、ファンを回転軸の径方向から囲み、舌部側の吐出口の端部を基準としたファンの回転方向の角度が大きい箇所ほど回転軸との距離が長くなる周壁とを有するスクロールケーシングとを備える。側壁は、吸込口を通じてスクロールケーシングに吸い込まれる気流の流れの上流側から下流側に向かって風路が狭まるベルマウスが設けられている。ベルマウスの上流端と下流端との径方向の距離は、舌部側の吐出口の端部の部分と舌部から離れた側の吐出口の端部の部分との間において、舌部側の吐出口の端部を基準としたファンの回転方向の角度が大きい箇所ほど長くなっている。
 本発明に係る遠心送風機は、送風効率を向上させることができるという効果を奏する。
本発明の実施の形態1に係る送風機の斜視図 実施の形態1に係る送風機の上面図 実施の形態1に係る送風機の断面図 実施の形態1に係る送風機の変形例を示す斜視図 実施の形態1に係る送風機の変形例を示す上面図 実施の形態1に係る送風機の変形例を示す断面図 本発明の実施の形態2に係る送風機の断面図 本発明の実施の形態3に係る送風機の断面図 本発明の実施の形態4に係る送風機の上面図 実施の形態4に係る送風機の断面図 本発明の実施の形態5に係る送風機の断面図 本発明の実施の形態6に係る送風機の断面図 本発明の実施の形態7に係る送風機の断面図 本発明の実施の形態8に係る送風機の断面図 本発明の実施の形態9に係る送風装置の構成を示す図 本発明の実施の形態10に係る空気調和装置の斜視図 実施の形態10に係る空気調和装置の内部構成を示す図 実施の形態10に係る空気調和装置の断面図 本発明の実施の形態11に係る冷凍サイクル装置の構成を示す図
 以下に、本発明の実施の形態に係る遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る送風機の斜視図である。図2は、実施の形態1に係る送風機の上面図である。図3は、実施の形態1に係る送風機の断面図である。図3は、図2中のIII-III線に沿った断面を示している。多翼遠心型の遠心送風機である送風機1は、気流を発生させるファン2と、ファン2に取り込まれる気流を整流するベルマウス3が設けられたスクロールケーシング4とを有する。
 ファン2は、円盤状の主板2aと、主板2aに対向するリング状の側板2cと、主板2aの周縁部に設けられた複数の羽根2dとを備える。羽根2dは、主板2aと側板2cとの間で回転軸AXを取り囲む。主板2aの中心部には、ボス部2bが設けられている。ボス部2bの中央には、ファンモータ6の出力軸6aが接続され、ファン2はファンモータ6の駆動力によって回転される。なお、ファン2は、側板2cを備えない構造であってもよい。
 スクロールケーシング4は、ファン2を囲んでおり、ファン2から吹き出された空気を整流する。スクロールケーシング4は、ファン2を回転軸AXの軸方向から覆う側壁4cと、ファン2を回転軸AXの径方向から覆う周壁4aと、ファン2が発生させた気流を吐出する吐出口41と、ファン2が発生させる気流を吐出口41へ導く舌部4bとを備える。なお、回転軸AXの径方向とは、回転軸AXに垂直な方向である。周壁4a及び側壁4cが構成するスクロール部4eの内部は、ファン2から吹き出された空気が周壁4aに沿って流れる空間となっている。
 周壁4aは、舌部4b側の吐出口41の端部41aからファン2の回転方向に沿って舌部4bから離れた側の吐出口41の端部41bまでの部分に設けられている。したがって、スクロール部4eから吐出口41に通じる部分には、周壁4aは設けられていない。ファン2の回転軸AXと周壁4aとの距離は、舌部4bと周壁4aが吐出口41に繋がる箇所との間では、舌部4bを基準としたファン2の回転方向に沿った角度θが大きくなるにつれて長くなっている。ファン2の回転軸AXと周壁4aとの距離は、端部41aの部分において最短となっている。
 スクロールケーシング4の側壁4cには、吸込口5が形成されている。また、側壁4cには、吸込口5を通じてスクロールケーシング4に吸い込まれる気流を案内するベルマウス3が形成されている。ベルマウス3は、ファン2の吸込口に対向する位置に形成されている。ベルマウス3は、吸込口5を通じてスクロールケーシング4に吸い込まれる気流の上流側の端部である上流端3aから下流側の端部である下流端3bに向かって風路が狭くなる形状である。実施の形態1に係る送風機1において、ベルマウス3は、回転軸AXを含む平面における断面形状が曲線となる曲面で形成されているが、回転軸AXを含む平面における断面形状が直線となる曲面で形成されていてもよい。すなわち、ベルマウス3は、円錐台の側面状であってもよい。
 ベルマウス3の周縁部には、主板2aから遠ざかる方向に凸の彎曲面を有し、ベルマウス3とスクロールケーシング4の周壁4aとを滑らかに繋ぐ彎曲部31が設けられている。なお、ここでの滑らかとは、ベルマウス3と周壁4aとで曲面の傾きが連続して変化しており、ベルマウス3と周壁4aとの境界にエッジが形成されないことを意味する。
 吐出口41とスクロール部4eとの境界部には、段差42が設けられており、スクロール部4eから吐出口41側に進行する気流は、断面積が縮小される。スクロール部4eから吐出口41側に進行する気流の断面積が縮小されることで、吐出口41を通じてスクロールケーシング4の外に吹き出される気流の流速が速くなる。
 ベルマウス3の上流端3aと下流端3bとの径方向の距離は、端部41aの部分と端部41bの部分との間において、端部41aを基準としたファン2の回転方向の角度が大きい箇所ほど長くなっている。
 端部41aを基準としたファン2の回転方向に沿った角度がθ度の箇所におけるベルマウス3の上流端3aと下流端3bとの径方向の距離をLθとする。Lは、上面視において端部41aと回転軸AXとを結ぶ線分上での上流端3aと下流端3bとの距離と定義できる。また、L270は、上面視において端部41bと回転軸AXとを結ぶ線分上での上流端3aと下流端3bとの距離と定義できる。実施の形態1に係る送風機1においては、LよりもL90の方が長くなっており、L90よりもL180の方が長くなっている。ベルマウス3の上流端3aと下流端3bとの径方向の距離Lは、スクロールケーシング4の吐出口41に繋がるL270で最大となった後、端部41aの部分に当たるL360で最小になる。一例を挙げると、ベルマウス3の上流端3aと下流端3bとの径方向の距離Lθは、θが0度から270度の範囲では、θが大きくなるにともなって長くなる。ベルマウス3の上流端3aと下流端3bとの径方向の距離Lθは、端部41aの部分から端部41bの部分にかけて連続的に増加しても良いし、段階的に増加してもよい。なお、ベルマウス3の上流端3aと下流端3bとの径方向の距離が最大となる角度は、0度から270度の間の角度であればよく、例示する270度には限定されない。すなわち、端部41aを基準としファン2の回転方向に沿う角度が0度から270度の間の部分でベルマウスの上流端3aと下流端3bとの径方向の距離が最大となり、ファン2の回転方向に沿って漸減すればよい。
 ここでは、端部41aを基準としたファン2の回転方向の角度が270度の箇所で周壁4aが吐出口41に繋がっているが、周壁4aが吐出口41に繋がる位置は、端部41aから270度の位置に限定はされない。
 ファン2が回転すると、スクロールケーシング4の外の空気は、吸込口5を通じてスクロールケーシング4の内部に吸い込まれる。スクロールケーシング4の内部に吸い込まれる空気は、ベルマウス3に案内されてファン2に吸い込まれる。ファン2に吸い込まれた空気は、径方向外側に向かってファン2から吹き出される。ファン2から吹き出された空気は、スクロール部4eを通過後、吐出口41からスクロールケーシング4の外へ吹き出される。
 ベルマウス3は、端部41aの部分以外の部分での上流端3aと下流端3bとの距離が、端部41aの部分での上流端3aと下流端3bとの距離よりも長いため、吸込口5からスクロールケーシング4に吸い込まれる気流は、ベルマウス3から剥離しにくい。したがって、実施の形態1に係る送風機1は、送風効率の低下を抑制し、騒音を低減することができる。
 実施の形態1に係る送風機1は、ベルマウス3とスクロールケーシング4の周壁4aとが彎曲部31で滑らかに繋がっているため、周壁4aの側方の空気は彎曲部31に沿ってベルマウス3へと導かれる。したがって、ベルマウス3とスクロールケーシング4の周壁4aとの境界部を彎曲部31で滑らかに繋ぐことにより、送風効率を高めることができる。
 以上のように、実施の形態1に係る送風機1においては、ベルマウス3の上流端3aと下流端3bとの径方向の距離が、ファン2の回転方向に沿って端部41aの部分での径方向から増大するため、ベルマウス3での流れの剥離を抑制できる。したがって、実施の形態1に係る送風機1は、ベルマウス3での流れの剥離を抑制することで、高効率化及び低騒音化を図ることができる。
 なお、ベルマウス3は、端部41a以外の部分ではスクロールケーシング4の周壁4aまで達していなくてもよい。図4は、実施の形態1に係る送風機の変形例を示す斜視図である。図5は、実施の形態1に係る送風機の変形例を示す上面図である。図6は、実施の形態1に係る送風機の変形例を示す断面図である。図6は、図5中のVI-VI線に沿った断面を示している。ベルマウス3の上流端3aと側壁4cとは、接続部43で繋がっている。図4から図6に示す送風機1は、端部41a以外の部分ではベルマウス3がスクロールケーシング4の周壁4aまで達していないことを除いては、図1から図3に示した送風機1と同様である。端部41a以外の部分ではベルマウス3がスクロールケーシング4の周壁4aまで達していない構造であっても、ベルマウス3の上流端3aと下流端3bとの径方向の距離が、ファン2の回転方向に沿って端部41aの部分での径方向から増大していれば、ベルマウス3での流れの剥離を抑制する効果は同様に得られる。
実施の形態2.
 図7は、本発明の実施の形態2に係る送風機の断面図である。実施の形態2に係る送風機1において、ベルマウス3の上流端3aと下流端3bとの径方向の距離Aは、ベルマウス3の上流端3aと下流端3bとの軸方向の距離Bよりも大きく、A>Bとなっている。
 実施の形態2に係る送風機1において、上流端3aから下流端3bにかけてベルマウス3の曲率は、A=Bで断面が円弧状である場合よりも小さくなるため、A=Bで断面が円弧状である場合と比較すると、吸い込み空気流がベルマウス3から剥がれにくくなる効果を高めることができる。
実施の形態3.
 図8は、本発明の実施の形態3に係る送風機の断面図である。実施の形態3に係る送風機1は、ベルマウス3の周縁部に彎曲部31が設けられておらず、ベルマウス3の上流端3aが周壁4aの端部に位置している。この他は実施の形態1に係る送風機1と同様である。
 実施の形態3に係る送風機1は、周壁4aとベルマウス3との境界部に彎曲部31が設けられた実施の形態1に係る送風機1と比較すると送風効率は劣るものの、ベルマウス3の上流端3aと下流端3bとの径方向の距離が、端部41aを基準としたファン2の回転方向に沿った角度によらず一定である構造の送風機と比較して高効率化及び低騒音化を実現できるという効果は得られる。
実施の形態4.
 図9は、本発明の実施の形態4に係る送風機の上面図である。図10は、実施の形態4に係る送風機の断面図である。図10は、図9中のX-X線に沿った断面を示している。実施の形態4に係る送風機1は、スクロール部4eと吐出口41との境界部に段差42が設けられていない点で、実施の形態1と相違する。
 実施の形態4に係る送風機1は、スクロール部4eの内部において、ファン2が発生させる気流が、スクロール部4eから吐出口41へ進行する際に段差を通過することによって抵抗を受けることがないため、送風効率を高めることができる。
実施の形態5.
 図11は、本発明の実施の形態5に係る送風機の断面図である。実施の形態5に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の下流端3bの位置は、一定である。実施の形態5に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の上流端3aの位置は、端部41aの部分から端部41bの部分にかけて、変化している。したがって、図11に示すように、端部41aを基準とした角度θが180度の箇所での上流端3aは、端部41aの部分での上流端3aよりも主板2aから離れた位置に配置されている。この他は、実施の形態4に係る送風機1と同様である。
 実施の形態5に係る送風機1は、吸込口5での流れの剥離を軸方向においても抑制できるため、実施の形態1に係る送風機1よりもさらに高効率化及び低騒音化を図ることができる。
 実施の形態5に係る送風機1は、吐出口41と逆方向にケース吸込口を有するケースに収容する場合に、ケース吸込口側でベルマウス3の上流端3aが主板2aから離れた位置に配置されるため、ベルマウス3の曲率を大きくすることができる。したがって、実施の形態5に係る送風機1は、ベルマウス3での気流の剥離を低減し、送風効率を上げることができる。
実施の形態6.
 図12は、本発明の実施の形態6に係る送風機の断面図である。実施の形態6に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の下流端3bの位置は、端部41aの部分から端部41bの部分にかけて変化している。また、実施の形態6に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の上流端3aの位置は、端部41aの部分から端部41bの部分にかけて、変化している。端部41aを基準とした角度θが180度の箇所での上流端3aは、端部41aの部分での上流端3aよりも主板2aから離れた位置に配置されている。端部41aを基準とした角度θが180度の箇所での下流端3bは、端部41aの部分での下流端3bよりも主板2aから離れた位置に配置されている。この他は、実施の形態4と同様である。
 実施の形態6に係る送風機1は、実施の形態5に係る送風機1と同様に、吐出口41と逆方向にケース吸込口を有するケースに収容する場合に、ケース吸込口側でベルマウス3の上流端3aが主板2aから離れた位置に配置されるため、ベルマウス3の曲率を大きくすることができる。したがって、実施の形態6に係る送風機1は、ベルマウス3での気流の剥離を低減し、送風効率を上げることができる。
実施の形態7.
 図13は、本発明の実施の形態7に係る送風機の断面図である。実施の形態7に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の下流端3bの位置は、一定である。実施の形態7に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の上流端3aの位置は、端部41aの部分から端部41bの部分にかけて、変化している。端部41aを基準とした角度θが180度の箇所での上流端3aは、端部41aの部分での上流端3aよりも主板2aに近い位置に配置されている。この他は、実施の形態1に係る送風機1と同様である。
 実施の形態7に係る送風機1は、吐出口41と逆方向にケース吸込口を有するケースに収容する場合に、ケース吸込口側でベルマウス3の上流端3aが主板2aに近い位置に配置されるため、送風機1を収容するケースとの間の風路を広く確保できる。したがって、実施の形態7に係る送風機1は、送風効率を上げることができる。また、実施の形態7に係る送風機1は、吐出口41及び端部41aの側でベルマウス3の上流端3aを主板2aから離れた位置に配置し、ベルマウス3の軸方向で曲率を大きくすることで、定在波による騒音悪化を低減させることができる。
実施の形態8.
 図14は、本発明の実施の形態8に係る送風機の断面図である。実施の形態8に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の下流端3bの位置は、端部41aの部分から端部41bの部分にかけて変化している。また、実施の形態8に係る送風機1では、ファン2の回転軸AXの軸方向におけるベルマウス3の上流端3aの位置は、端部41aの部分から端部41bの部分にかけて、変化している。端部41aを基準とした角度θが180度の箇所での上流端3aは、端部41aの部分での上流端3aよりも主板2aに近い位置に配置されている。端部41aを基準とした角度θが180度の箇所での下流端3bは、端部41aの部分での下流端3bよりも主板2aに近い位置に配置されている。この他は、実施の形態1に係る送風機1と同様である。
 実施の形態8に係る送風機1は、吐出口41と逆方向にケース吸込口を有するケースに収容する場合に、ケース吸込口側でベルマウス3の上流端3aが主板2aに近い位置に配置されるため、送風機1を収容するケースとの間の風路を広く確保できる。したがって、実施の形態8に係る送風機1は、送風効率を高めることができる。
実施の形態9.
 図15は、本発明の実施の形態9に係る送風装置の構成を示す図である。実施の形態9に係る送風装置30は、実施の形態1に係る送風機1と、送風機1を収容するケース7とを備えている。ケース7は、ケース吸込口71及びケース吐出口72の二つの開口が設けられている。ケース吸込口71が形成された部分とケース吐出口72が形成された部分とは、仕切り板73で仕切られている。送風機1は、ケース吸込口71が形成されている側の空間に吸込口5が位置し、ケース吐出口72が形成されている側の空間に吐出口41が位置する状態で設置される。
 実施の形態9に係る送風装置30は、ベルマウス3の上流端3aと下流端3bとの径方向の距離が、ファン2の回転方向に沿って吐出口41の端部41aの部分での径方向の距離よりも増大する送風機1を備えるため、送風効率の向上及び騒音の低減を実現できる。なお、実施の形態2から実施の形態8のいずれかに係る送風機1を用いて送風装置30を構成しても同様の効果が得られる。
実施の形態10.
 図16は、本発明の実施の形態10に係る空気調和装置の斜視図である。図17は、実施の形態10に係る空気調和装置の内部構成を示す図である。図18は、実施の形態10に係る空気調和装置の断面図である。実施の形態10に係る空気調和装置40は、空調対象の部屋の天井裏に設置されたケース16を備えている。実施の形態10において、ケース16は、上面部16a、下面部16b及び側面部16cを含む直方体状である。なお、ケース16の形状は、直方体状に限定されることはない。
 ケース16の側面部16cのうちの一面には、ケース吐出口17が形成されている。ケース吐出口17の形状は、特定の形状に限定されない。ケース吐出口17の形状は、矩形を例示できる。ケース16の側面部16cのうち、ケース吐出口17が形成された面の裏となる面に、ケース吸込口18が形成されている。ケース吸込口18の形状は、特定の形状に限定されない。ケース吸込口18の形状は、矩形を例示できる。ケース吸込口18に、空気中の塵埃を取り除くフィルタを配置してもよい。
 ケース16の内部には、二つの送風機11と、ファンモータ9と、熱交換器10とが収容されている。送風機11は、ファン2及びベルマウス3が形成されたスクロールケーシング4を備えている。送風機11は、実施の形態1に係る送風機1と同様のファン2、及びスクロールケーシング4を有するが、スクロールケーシング4内にファンモータ6が配置されていない点で相違する。したがって、送風機11のベルマウス3の形状は、実施の形態1と同様である。ファンモータ9は、ケース16の上面部16aに固定されたモータサポート9aによって支持されている。ファンモータ9は、回転軸AXを有する。回転軸AXは、側面部16cのうち、ケース吸込口18が形成された面及びケース吐出口17が形成された面に対して平行に延びるように配置されている。図16に示した空気調和装置40では、二つのファン2が回転軸AXに取り付けられている。ファン2は、ケース吸込口18からケース16内に吸い込まれ、ケース吐出口17から空調対象空間へと吹き出される空気の流れを形成する。なお、ファンモータ9に取り付けられるファン2は、二つに限定されることはない。
 熱交換器10は、風路上に配置される。熱交換器10は、空気の温度を調整する。なお、熱交換器10は、公知の構造のものを適用できる。
 スクロールケーシング4の吸い込み側の空間と、吹き出し側の空間とは、仕切り板19で仕切られている。
 ファン2が回転すると、空調対象の部屋の空気は、ケース吸込口18を通じてケース16の内部に吸い込まれる。ケース16の内部に吸い込まれた空気は、ベルマウス3に案内され、ファン2に吸い込まれる。ファン2に吸い込まれた空気は、径方向外側に向かって吹き出される。ファン2から吹き出された空気は、スクロールケーシング4の内部を通過後、スクロールケーシング4の吐出口41から吹き出され、熱交換器10に供給される。熱交換器10に供給された空気は、熱交換器10を通過する際に、熱交換及び湿度調整される。熱交換器10を通過した空気は、ケース吐出口17から部屋に吹き出される。
 実施の形態10に係る空気調和装置40は、送風機11に吸い込まれる気流がベルマウス3から剥離しにくいため、送風効率を高めることができるとともに、騒音を抑制できる。
 なお、上記の説明において、送風機11のベルマウス3の形状は実施の形態1に係る送風機1と同様であるとしたが、実施の形態2から8のいずれかに係る送風機1のベルマウス3と同じ形状であってもよい。
実施の形態11.
 図19は、本発明の実施の形態11に係る冷凍サイクル装置の構成を示す図である。実施の形態11に係る冷凍サイクル装置50は、室外機100と室内機200とが冷媒配管で接続されて、冷媒が循環する冷媒回路が構成されている。冷媒配管のうち、気相の冷媒が流れる配管はガス配管300であり、液相の冷媒が流れる配管は液配管400である。なお、液配管400には、気液二相の冷媒を流してもよい。
 室外機100は、圧縮機101、四方弁102、室外側熱交換器103、室外側送風機104及び絞り装置105を備える。
 圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機101は、インバータ装置を備え、運転周波数を変化させることにより、圧縮機101の容量を変更可能である。なお、圧縮機101の容量とは、単位時間当たりに送り出す冷媒の量である。四方弁102は、不図示の制御装置からの指示に基づいて、冷房運転時と暖房運転時とで冷媒の流れを切り替える。
 室外側熱交換器103は、冷媒と室外空気との熱交換を行う。室外側熱交換器103は、暖房運転時には蒸発器の働きをし、液配管400から流入した低圧の冷媒と室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外側熱交換器103は、冷房運転時には、凝縮器の働きをし、四方弁102側から流入した圧縮機101で圧縮済の冷媒と室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。
 室外側熱交換器103には、冷媒と室外空気との間の熱交換の効率を高めるために、室外側送風機104が設けられている。室外側送風機104は、インバータ装置によりファンモータ6の運転周波数を変化させてファン2の回転速度を変更してもよい。絞り装置105は、開度を変化させることで、冷媒の圧力を調整する。
 室内機200は、冷媒と室内空気との間で熱交換を行う負荷側熱交換器201及び、負荷側熱交換器201が熱交換を行う空気の流れを調整する負荷側送風機202を有する。負荷側熱交換器201は、暖房運転時には、凝縮器の働きをし、ガス配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、液配管400側に流出させる。負荷側熱交換器201は、冷房運転時には蒸発器の働きをし、絞り装置105によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。負荷側送風機202の運転速度は、ユーザの設定により決定される。
 実施の形態11に係る冷凍サイクル装置50は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房又は冷房して空気調和を行う。
 実施の形態11に係る冷凍サイクル装置50では、実施の形態1から実施の形態8のいずれかに係る送風機1を室外側送風機104に適用することにより、風量の低下及び騒音の抑制を実現できる。
 なお、室内機200の負荷側送風機202は、実施の形態1から8のいずれかに係る送風機1と同じ形状のベルマウス3を有してもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,11 送風機、2 ファン、2a 主板、2b ボス部、2c 側板、2d 羽根、3 ベルマウス、3a 上流端、3b 下流端、4 スクロールケーシング、4a 周壁、4b 舌部、4c 側壁、4e スクロール部、5 吸込口、6,9 ファンモータ、7,16 ケース、9a モータサポート、10 熱交換器、16a 上面部、16b 下面部、16c 側面部、17,72 ケース吐出口、18,71 ケース吸込口、19,73 仕切り板、30 送風装置、31 彎曲部、40 空気調和装置、41 吐出口、41a,41b 端部、42 段差、43 接続部、50 冷凍サイクル装置、100 室外機、101 圧縮機、102 四方弁、103 室外側熱交換器、104 室外側送風機、105 絞り装置、200 室内機、201 負荷側熱交換器、202 負荷側送風機。

Claims (13)

  1.  円盤状の主板と、該主板の周縁部に設置される複数枚の羽根とを有するファンと、
     前記ファンの回転の中心となる回転軸の軸方向から前記ファンを覆い、空気を取り込む吸込口が形成された側壁と、前記ファンが発生させた気流を吐出する吐出口と、前記気流を前記吐出口に導く舌部と、前記ファンを前記回転軸の径方向から囲み、前記舌部側の前記吐出口の端部を基準とした前記ファンの回転方向の角度が大きい箇所ほど前記回転軸との距離が長くなる周壁とを有するスクロールケーシングとを備え、
     前記側壁は、前記吸込口を通じて前記スクロールケーシングに吸い込まれる気流の流れの上流側から下流側に向かって風路が狭まるベルマウスが設けられており、
     前記ベルマウスの上流端と下流端との径方向の距離は、前記舌部側の前記吐出口の端部の部分と前記舌部から離れた側の前記吐出口の端部の部分との間において、前記舌部側の前記吐出口の端部を基準とした前記ファンの回転方向の角度が大きい箇所ほど長くなっている遠心送風機。
  2.  前記ベルマウスの下流端は、前記回転軸の軸方向の位置が一定である請求項1に記載の遠心送風機。
  3.  前記ベルマウスの下流端の前記回転軸の軸方向の位置は、前記舌部側の前記吐出口の端部の部分と前記舌部から離れた側の前記吐出口の端部の部分との間において、前記舌部側の前記吐出口の端部を基準とした前記ファンの回転方向の角度が大きい箇所ほど前記主板から離れている請求項1に記載の遠心送風機。
  4.  前記ベルマウスの下流端の前記回転軸の軸方向の位置は、前記舌部側の前記吐出口の端部の部分と前記舌部から離れた側の前記吐出口の端部の部分との間において、前記舌部側の前記吐出口の端部を基準とした前記ファンの回転方向の角度が大きい箇所ほど前記主板に近い請求項1に記載の遠心送風機。
  5.  前記ベルマウスの上流端は、前記周壁の端部に位置する請求項1から4のいずれか1項に記載の遠心送風機。
  6.  前記ベルマウスの上流端は、前記回転軸の軸方向の位置が一定である請求項1から5のいずれか1項に記載の遠心送風機。
  7.  前記ベルマウスの上流端の前記回転軸の軸方向の位置は、前記舌部側の前記吐出口の端部の部分と前記舌部から離れた側の前記吐出口の端部の部分との間において、前記舌部側の前記吐出口の端部を基準とした前記ファンの回転方向の角度が大きい箇所ほど前記主板から離れている請求項1から5のいずれか1項に記載の遠心送風機。
  8.  前記ベルマウスの上流端の前記回転軸の軸方向の位置は、前記舌部側の前記吐出口の端部の部分と前記舌部から離れた側の前記吐出口の端部の部分との間において、前記舌部側の前記吐出口の端部を基準とした前記ファンの回転方向の角度が大きい箇所ほど前記主板に近い請求項1から5のいずれか1項に記載の遠心送風機。
  9.  前記ベルマウスの上流端と前記ベルマウスの下流端との径方向の距離は、前記舌部側の前記吐出口の端部の部分から前記舌部から離れた側の前記吐出口の端部の部分にかけて連続的に増加する請求項1から8のいずれか1項に記載の遠心送風機。
  10.  前記回転軸を含む平面における前記ベルマウスの断面形状が曲線状である請求項1から8のいずれか1項に記載の遠心送風機。
  11.  請求項1から10のいずれか1項に記載の遠心送風機を収容するケースを備え、
     前記ケースは、前記吸込口に通じるケース吸込口と、前記吐出口に通じるケース吐出口と、前記ケース吸込口が形成された部分と前記ケース吐出口が形成された部分とを隔てる仕切り板とを有する送風装置。
  12.  請求項11に記載の送風装置を備えた空気調和装置であって、前記ケースは、前記ケース吐出口が形成された部分に熱交換器を備える空気調和装置。
  13.  請求項1から10のいずれか1項に記載の遠心送風機を備えた冷凍サイクル装置。
PCT/JP2017/038960 2017-10-27 2017-10-27 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置 WO2019082392A1 (ja)

Priority Applications (21)

Application Number Priority Date Filing Date Title
PCT/JP2017/038960 WO2019082392A1 (ja) 2017-10-27 2017-10-27 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
US16/759,021 US20210033104A1 (en) 2017-10-27 2018-10-25 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
AU2018354693A AU2018354693A1 (en) 2017-10-27 2018-10-25 Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
SG11202003783QA SG11202003783QA (en) 2017-10-27 2018-10-25 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
EP20181735.0A EP3736450A1 (en) 2017-10-27 2018-10-25 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
CN202210384786.6A CN114688096A (zh) 2017-10-27 2018-10-25 离心送风机、送风装置、空调装置以及制冷循环装置
EP18871715.1A EP3702626A4 (en) 2017-10-27 2018-10-25 CENTRIFUGAL BLOWER, BLOWER DEVICE, AIR CONDITIONER, AND REFRIGERATION CYCLE DEVICE
JP2019551219A JP6940619B2 (ja) 2017-10-27 2018-10-25 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
CN201880070006.2A CN111279085B (zh) 2017-10-27 2018-10-25 离心送风机、送风装置、空调装置以及制冷循环装置
EP20181743.4A EP3736451B1 (en) 2017-10-27 2018-10-25 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
PCT/JP2018/039585 WO2019082949A1 (ja) 2017-10-27 2018-10-25 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
TW109103489A TWI731570B (zh) 2017-10-27 2018-10-26 離心式送風機、送風裝置、空調裝置及冷凍循環裝置
TW107137947A TWI687596B (zh) 2017-10-27 2018-10-26 離心式送風機、送風裝置、空調裝置及冷凍循環裝置
JP2021143159A JP2021183843A (ja) 2017-10-27 2021-09-02 送風装置
US17/551,438 US11566635B2 (en) 2017-10-27 2021-12-15 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
AU2022200749A AU2022200749B2 (en) 2017-10-27 2022-02-04 Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
AU2022200751A AU2022200751B2 (en) 2017-10-27 2022-02-04 Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
US17/899,236 US20220412372A1 (en) 2017-10-27 2022-08-30 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
US18/453,491 US20230400036A1 (en) 2017-10-27 2023-08-22 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
US18/453,565 US20230392607A1 (en) 2017-10-27 2023-08-22 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
US18/453,642 US20240011500A1 (en) 2017-10-27 2023-08-22 Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038960 WO2019082392A1 (ja) 2017-10-27 2017-10-27 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019082392A1 true WO2019082392A1 (ja) 2019-05-02

Family

ID=66247502

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/038960 WO2019082392A1 (ja) 2017-10-27 2017-10-27 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
PCT/JP2018/039585 WO2019082949A1 (ja) 2017-10-27 2018-10-25 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039585 WO2019082949A1 (ja) 2017-10-27 2018-10-25 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Country Status (8)

Country Link
US (6) US20210033104A1 (ja)
EP (3) EP3736451B1 (ja)
JP (2) JP6940619B2 (ja)
CN (2) CN111279085B (ja)
AU (3) AU2018354693A1 (ja)
SG (1) SG11202003783QA (ja)
TW (2) TWI687596B (ja)
WO (2) WO2019082392A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021130821A1 (ja) * 2019-12-23 2021-07-01
JPWO2022085143A1 (ja) * 2020-10-22 2022-04-28
WO2023286208A1 (ja) * 2021-07-14 2023-01-19 三菱電機株式会社 室内機及び空気調和機
TWI807298B (zh) * 2020-04-16 2023-07-01 日商三菱電機股份有限公司 葉輪、離心風扇以及空氣調和裝置
TWI832906B (zh) * 2019-06-13 2024-02-21 日商三菱電機股份有限公司 離心式送風機、空調裝置以及冷凍循環裝置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD938570S1 (en) * 2019-02-04 2021-12-14 Mitsubishi Electric Corporation Casing for blower
USD944966S1 (en) * 2019-02-04 2022-03-01 Mitsubishi Electric Corporation Casing for blower
JP1640689S (ja) * 2019-02-04 2019-09-09
JP7337525B2 (ja) * 2019-03-26 2023-09-04 株式会社日立産機システム 遠心式流体機械
WO2021143044A1 (zh) * 2020-01-19 2021-07-22 广东美的环境电器制造有限公司 离心风机以及送风装置
EP4141336A4 (en) * 2020-04-24 2023-05-31 Mitsubishi Electric Corporation AIR CONDITIONER
JP1681183S (ja) * 2020-07-31 2021-03-15
CN114076122B (zh) * 2020-08-10 2023-06-30 佛山市顺德区美的洗涤电器制造有限公司 导风圈、离心风机和抽油烟机
WO2024038506A1 (ja) * 2022-08-16 2024-02-22 三菱電機株式会社 冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118397U (ja) * 1987-01-23 1988-07-30
GB2283060A (en) * 1993-10-20 1995-04-26 Bosch Gmbh Robert Minimising noise production in a fan
JPH08177795A (ja) * 1994-12-20 1996-07-12 Toshiba Corp 遠心送風機
JP2001182692A (ja) * 1999-12-28 2001-07-06 Osaka Gas Co Ltd 遠心式送風機
JP2006097502A (ja) * 2004-09-28 2006-04-13 Daikin Ind Ltd 送風装置及び空気調和装置
JP2007127089A (ja) * 2005-11-07 2007-05-24 Daikin Ind Ltd 遠心送風機及びこれを備えた空気調和装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247099A (ja) 1984-05-21 1985-12-06 Nippon Denso Co Ltd 遠心送風機
JPS628487U (ja) 1985-07-01 1987-01-19
JP2765946B2 (ja) * 1989-05-12 1998-06-18 三洋電機株式会社 送風装置
JP3211279B2 (ja) 1990-10-08 2001-09-25 住友化学工業株式会社 高純度カルボン酸フェニルエステル類の製造方法
US5141397A (en) * 1991-01-18 1992-08-25 Sullivan John T Volute housing for a centrifugal fan, blower or the like
JP3092267B2 (ja) * 1991-11-28 2000-09-25 ダイキン工業株式会社 遠心ファン
JP3700217B2 (ja) * 1995-10-31 2005-09-28 株式会社デンソー 遠心式送風機
FR2772437B1 (fr) * 1997-12-11 2000-02-25 Valeo Climatisation Groupe moto-ventilateur, notamment pour installation de chauffage-climatisation de vehicule automobile
JP4482952B2 (ja) * 1998-12-15 2010-06-16 パナソニック株式会社 多翼送風機
JP2000179496A (ja) * 1998-12-15 2000-06-27 Matsushita Refrig Co Ltd 多翼送風機
JP2002202098A (ja) * 2000-12-28 2002-07-19 Calsonic Kansei Corp 遠心式送風機及びそれを用いた空気調和装置
CN2514148Y (zh) * 2001-11-06 2002-10-02 林钧浩 外流风机
JP4302960B2 (ja) * 2002-10-23 2009-07-29 カルソニックカンセイ株式会社 遠心式の多翼送風機
JP4720203B2 (ja) * 2005-02-14 2011-07-13 三菱電機株式会社 遠心送風機、空気調和機
JP4736748B2 (ja) * 2005-11-25 2011-07-27 ダイキン工業株式会社 多翼遠心送風機
JP5008386B2 (ja) * 2006-12-04 2012-08-22 サンデン株式会社 遠心式多翼送風機
JP4906555B2 (ja) * 2007-03-27 2012-03-28 三菱電機株式会社 シロッコファン及び空気調和装置
US20110052673A1 (en) 2008-01-29 2011-03-03 Arthur Tzianabos Therapeutic compositions
US20120009059A1 (en) 2009-05-27 2012-01-12 Mitsubishi Electric Corporation Multiblade fan
JP2011001838A (ja) * 2009-06-17 2011-01-06 Panasonic Corp 遠心式送風機およびそれを具備した乾燥装置
JP4994433B2 (ja) * 2009-09-04 2012-08-08 三菱電機株式会社 シロッコファン及びこのシロッコファンを用いた空気調和機の室内機
CN104533837B (zh) * 2010-03-17 2017-02-15 广东松下环境系统有限公司 降低换气扇噪音的结构
JP2011226407A (ja) * 2010-04-21 2011-11-10 Daikin Industries Ltd 多翼ファン、空気調和装置及びガイド部材
JP5618951B2 (ja) * 2011-08-30 2014-11-05 日立アプライアンス株式会社 多翼送風機および空気調和機
US9017011B2 (en) * 2011-12-29 2015-04-28 Regal Beloit America, Inc. Furnace air handler blower with enlarged backward curved impeller and associated method of use
JP5432295B2 (ja) * 2012-01-10 2014-03-05 富士工業株式会社 送風機用ベルマウス及びレンジフード
JP6073605B2 (ja) * 2012-09-03 2017-02-01 サンデンホールディングス株式会社 遠心送風機
JP6073604B2 (ja) * 2012-09-03 2017-02-01 サンデンホールディングス株式会社 遠心送風機
JP6143596B2 (ja) * 2013-07-30 2017-06-07 サンデンホールディングス株式会社 遠心送風機及び該遠心送風機を備えた車両用空調装置
JP6091386B2 (ja) * 2013-09-11 2017-03-08 三菱電機株式会社 送風機及び冷凍サイクル装置
JP5952801B2 (ja) * 2013-11-15 2016-07-13 リンナイ株式会社 遠心式ファン
CN104179728A (zh) * 2014-08-22 2014-12-03 广东海信家电有限公司 一种多翼离心风机
JPWO2016139732A1 (ja) * 2015-03-02 2017-09-14 三菱電機株式会社 シロッコファン及びこのシロッコファンを用いた空気調和機の室内機
JP2016203823A (ja) * 2015-04-23 2016-12-08 株式会社デンソー 車両用空調装置
CN107923412B (zh) * 2015-08-26 2020-03-10 三菱电机株式会社 离心式鼓风机及换气扇
DE102015114389A1 (de) * 2015-08-28 2017-03-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Spiralgehäuse eines Radialventilators
JP6634929B2 (ja) * 2015-12-16 2020-01-22 株式会社デンソー 遠心送風機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118397U (ja) * 1987-01-23 1988-07-30
GB2283060A (en) * 1993-10-20 1995-04-26 Bosch Gmbh Robert Minimising noise production in a fan
JPH08177795A (ja) * 1994-12-20 1996-07-12 Toshiba Corp 遠心送風機
JP2001182692A (ja) * 1999-12-28 2001-07-06 Osaka Gas Co Ltd 遠心式送風機
JP2006097502A (ja) * 2004-09-28 2006-04-13 Daikin Ind Ltd 送風装置及び空気調和装置
JP2007127089A (ja) * 2005-11-07 2007-05-24 Daikin Ind Ltd 遠心送風機及びこれを備えた空気調和装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832906B (zh) * 2019-06-13 2024-02-21 日商三菱電機股份有限公司 離心式送風機、空調裝置以及冷凍循環裝置
US11976824B2 (en) 2019-06-13 2024-05-07 Mitsubishi Electric Corporation Centrifugal fan, air conditioning apparatus, and refrigeration cycle apparatus
JPWO2021130821A1 (ja) * 2019-12-23 2021-07-01
WO2021130821A1 (ja) * 2019-12-23 2021-07-01 三菱電機株式会社 羽根車、多翼送風機、及び空気調和装置
JP7471319B2 (ja) 2019-12-23 2024-04-19 三菱電機株式会社 多翼送風機、及び空気調和装置
TWI807298B (zh) * 2020-04-16 2023-07-01 日商三菱電機股份有限公司 葉輪、離心風扇以及空氣調和裝置
JPWO2022085143A1 (ja) * 2020-10-22 2022-04-28
JP7493608B2 (ja) 2020-10-22 2024-05-31 三菱電機株式会社 遠心送風機及び空気調和装置
WO2023286208A1 (ja) * 2021-07-14 2023-01-19 三菱電機株式会社 室内機及び空気調和機
JPWO2023286208A1 (ja) * 2021-07-14 2023-01-19
JP7357827B2 (ja) 2021-07-14 2023-10-06 三菱電機株式会社 室内機及び空気調和機

Also Published As

Publication number Publication date
SG11202003783QA (en) 2020-05-28
US20210033104A1 (en) 2021-02-04
AU2022200749A1 (en) 2022-02-24
CN114688096A (zh) 2022-07-01
CN111279085B (zh) 2022-07-05
JP6940619B2 (ja) 2021-09-29
AU2022200751B2 (en) 2023-04-13
CN111279085A (zh) 2020-06-12
JPWO2019082949A1 (ja) 2020-11-12
US20220106968A1 (en) 2022-04-07
US11566635B2 (en) 2023-01-31
AU2022200751A1 (en) 2022-02-24
EP3736451A1 (en) 2020-11-11
US20240011500A1 (en) 2024-01-11
US20220412372A1 (en) 2022-12-29
US20230400036A1 (en) 2023-12-14
EP3736450A1 (en) 2020-11-11
WO2019082949A1 (ja) 2019-05-02
AU2022200749B2 (en) 2023-07-13
TWI687596B (zh) 2020-03-11
TW201923233A (zh) 2019-06-16
TWI731570B (zh) 2021-06-21
EP3702626A4 (en) 2020-11-25
EP3736451B1 (en) 2024-02-28
US20230392607A1 (en) 2023-12-07
JP2021183843A (ja) 2021-12-02
TW202020309A (zh) 2020-06-01
AU2018354693A1 (en) 2020-05-14
EP3702626A1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US20230400036A1 (en) Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
TWI676741B (zh) 離心式送風機、送風裝置、空調裝置以及冷凍循環裝置
JP6671469B2 (ja) 遠心送風機、空気調和装置および冷凍サイクル装置
CN113906221A (zh) 离心送风机、空调装置以及制冷循环装置
JP7130061B2 (ja) 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
JP6430032B2 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置
JP7301236B2 (ja) 遠心送風機のスクロールケーシング、このスクロールケーシングを備えた遠心送風機、空気調和装置及び冷凍サイクル装置
JP7258099B2 (ja) 空気調和装置及び冷凍サイクル装置
WO2017060973A1 (ja) 送風装置、室外機及び冷凍サイクル装置
JP5558449B2 (ja) 送風機、室外機及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP