WO2021143044A1 - 离心风机以及送风装置 - Google Patents

离心风机以及送风装置 Download PDF

Info

Publication number
WO2021143044A1
WO2021143044A1 PCT/CN2020/096821 CN2020096821W WO2021143044A1 WO 2021143044 A1 WO2021143044 A1 WO 2021143044A1 CN 2020096821 W CN2020096821 W CN 2020096821W WO 2021143044 A1 WO2021143044 A1 WO 2021143044A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind wheel
volute
centrifugal fan
air inlet
fan according
Prior art date
Application number
PCT/CN2020/096821
Other languages
English (en)
French (fr)
Inventor
张玮玮
余勇
胡坤
刘镇根
Original Assignee
广东美的环境电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010060655.3A external-priority patent/CN113137401B/zh
Priority claimed from CN202010060619.7A external-priority patent/CN113137381A/zh
Application filed by 广东美的环境电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的环境电器制造有限公司
Priority to EP20914498.9A priority Critical patent/EP4050221A4/en
Publication of WO2021143044A1 publication Critical patent/WO2021143044A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings

Definitions

  • This application relates to the field of household appliances, and in particular to a centrifugal fan and air supply device.
  • the air duct of the air supply device has a slotted air outlet pattern, which makes the air duct resistance greater.
  • the wind wheel needs to have a higher speed to meet the air supply requirements of the centrifugal fan.
  • the high-speed rotation of the wind wheel requires wind. There is a large gap between the wheel and the volute, otherwise the centrifugal fan will produce a lot of noise when working, but the large gap between the wind wheel and the volute will reduce the working efficiency of the centrifugal fan, resulting in the air output of the centrifugal fan. decline.
  • the present application provides a centrifugal fan, which can reduce the working noise of the centrifugal fan and can also improve the working efficiency of the centrifugal fan.
  • This application further proposes an air supply device.
  • the centrifugal fan according to the present application includes: a volute with an installation space in the volute; a wind wheel, the wind wheel is provided in the installation space, the volute has a volute and a throat, and the volute The distance from the wind wheel is greater than the distance between the throat and the wind wheel.
  • the distance between the volute tongue and the wind wheel is greater than the distance between the throat and the wind wheel, so that the working noise of the centrifugal fan can be reduced, and the environmental pollution caused by noise can be reduced, thereby improving the user experience and also reducing
  • the air leakage of the volute can increase the air output of the centrifugal fan, thereby improving the working efficiency of the volute, and thus the working efficiency of the centrifugal fan.
  • the volute has an Archimedes spiral surface
  • the Archimedes spiral surface has a starting point at the volute tongue and an end section of the volute.
  • the throat is located between the starting point and the end point, and the distance between the Archimedean spiral surface and the wind wheel is the smallest at the throat.
  • the distance between the Archimedes spiral surface and the wind wheel decreases from the starting point to the throat, and increases from the throat to the end point.
  • the distance between the volute tongue and the wind wheel is t 1
  • the distance between the throat and the wind wheel is t 2
  • t 1 and t 2 satisfy the relationship: t 1 /t 2 ⁇ 2.
  • the plane passing through the center of the wind wheel and perpendicular to the end section is a longitudinal section.
  • the Archimedes The minimum distance between the spiral surface and the wind wheel is within the first quadrant of the coordinate system.
  • the plane passing through the center of the wind wheel and perpendicular to the end section is a longitudinal section.
  • the Archimedes The minimum distance between the spiral surface and the wind wheel is within the second quadrant of the coordinate system.
  • the centrifugal fan further includes a drive motor, the volute has a volute air inlet, the wind wheel is rotatably arranged in the volute, and the wind wheel has a wind Wheel outer diameter D and wind wheel inner diameter d, where D and d satisfy the relationship: 0.7 ⁇ d/D ⁇ 0.9; the drive motor is connected to the wind wheel and is used to drive the wind wheel to rotate in the volute .
  • the volute air inlet includes a first volute air inlet and a second volute air inlet, and the first volute air inlet and the second volute air inlet are respectively formed at On two axial sides of the volute;
  • the wind wheel includes: a wind wheel body and a wind wheel mounting plate arranged in the wind wheel body, the wind wheel mounting plate aligns the wind wheel body along the Said wind wheel axially separates a long wind wheel body and a short wind wheel body, the axial length of the long wind wheel body is greater than the axial length of the short wind wheel body, and the long wind wheel body corresponds to and is adjacent to the The first volute air inlet, the short wind wheel body is corresponding to and adjacent to the second volute air inlet, wherein the drive motor is arranged in the short wind wheel body and connected to the wind wheel mounting plate.
  • the radial size of the air inlet of the first volute is larger than the radial size of the air inlet of the second volute.
  • the axial length of the short wind turbine body is H1
  • the axial length of the long wind turbine body is H2, where H2 and H1 satisfy the relationship: 0.5 ⁇ H1/H2 ⁇ 1.
  • the centrifugal fan further includes a motor mounting plate for mounting the drive motor, and the motor mounting plate is arranged around the air inlet of the second volute.
  • the centrifugal fan further includes an air inlet grille, which is provided at the first volute air inlet and/or the second volute air inlet.
  • the wind wheel includes a plurality of blades, the plurality of blades are spaced apart along the circumference of the wind wheel, the blades are arc-shaped, and the chord length of the blades is L, which satisfies Relational formula: 15mm ⁇ L ⁇ 25mm; the separation distance between two adjacent blades is a, which satisfies the relational formula: 0.3L ⁇ a ⁇ 0.7L.
  • the thickness of the blade is t, which satisfies the relationship: 1mm ⁇ t ⁇ 3mm.
  • the inlet angle of the blade is ⁇ , which satisfies the relationship: 40° ⁇ 90°.
  • the exit angle of the blade is ⁇ , which satisfies the relationship: 120° ⁇ 170°.
  • the air supply device includes the above-mentioned centrifugal fan.
  • the distance between the volute tongue and the wind wheel is greater than the distance between the throat and the wind wheel, the working noise of the centrifugal fan can be reduced, the environmental pollution of the noise can be reduced, and the user experience can be improved.
  • Reducing the air leakage of the volute can increase the air output of the centrifugal fan, thereby improving the working efficiency of the volute, and thus the working efficiency of the centrifugal fan.
  • Figure 1 is a cross-sectional view of a centrifugal fan according to an embodiment of the present application
  • Fig. 2 is a distribution diagram of the first quadrant, the second quadrant, the third quadrant III, and the fourth quadrant of the centrifugal fan according to an embodiment of the present application;
  • Figure 3 is an exploded view of a centrifugal fan according to an embodiment of the present application.
  • Fig. 4 is a front view of a wind wheel of a centrifugal fan according to an embodiment of the present application
  • Fig. 5 is a side view of a wind wheel of a centrifugal fan according to an embodiment of the present application.
  • centrifugal fan 100 according to the embodiment of the present application will be described with reference to FIGS. 1 to 5.
  • the centrifugal fan 100 includes: a volute 101 and a wind wheel 102.
  • the volute 101 has an installation space 1011.
  • the wind wheel 102 is arranged in the installation space 1011.
  • the wind wheel 102 can rotate in the installation space 1011.
  • the volute 101 has a volute tongue 1012 and a throat 1013.
  • the volute tongue 1012 is a segment. 1012 is in the shape of an arc, and the distance between the volute tongue 1012 and the wind wheel 102 is greater than the distance between the throat 1013 and the wind wheel 102. It should be explained that FIGS. 1 and 2 are cross-sectional views of the centrifugal fan 100.
  • the cross section of the volute 101 and the wind wheel 102 is a line.
  • the separation distance between the volute tongue 1012 and the wind wheel 102 refers to the minimum separation distance between the surface of the volute tongue 1012 and the surface of the wind wheel 102.
  • the throat The separation distance between 1013 and the wind wheel 102 refers to the minimum separation distance between the inner surface of the throat 1013 and the surface of the wind wheel 102.
  • the separation distance between the volute tongue and the wind wheel is the minimum value of the gap between the wind wheel and the volute.
  • This kind of volute curve structure is suitable for high-speed wind wheels.
  • the periodic pulsation intensity between the blades on the wheel and the volute tongue increases, which leads to increased operating noise of the centrifugal fan. Raising the position of the volute tongue can effectively reduce the noise caused by the pulsation, but the efficiency of the volute is reduced.
  • the wind wheel 102 When the wind wheel 102 rotates at a high speed in the installation space 1011, it can effectively reduce the noise caused by the increase of the pulsation intensity between the blades on the wind wheel 102 and the volute tongue 1012, so that the volute 101 can adapt to
  • the higher speed of the wind wheel 102 can reduce the risk of howling in the volute tongue 1012, and can reduce the working noise of the centrifugal fan 100, thereby reducing noise pollution to the environment, thereby improving the user experience, and can compensate for the volute tongue
  • the gap (that is, the separation distance between the volute tongue 1012 and the wind wheel 102) is too large to cause excessive air flow, which can slow down the air leakage of the volute 101, increase the air output of the centrifugal fan 100, and improve the work of the volute 101 Efficiency, thereby improving the working efficiency of the centrifugal fan 100.
  • the distance between the volute tongue 1012 and the wind wheel 102 is smaller than the distance between the throat 1013 and the wind wheel 102, the working noise of the centrifugal fan 100 can be reduced, the environmental pollution of noise can be reduced, and the user experience can be improved.
  • Reducing the air leakage of the volute 101 can increase the air output of the centrifugal fan 100, so that the working efficiency of the volute 101 can be improved, and the working efficiency of the centrifugal fan 100 can be improved.
  • the volute 101 has an Archimedes spiral surface 103.
  • the Archimedes spiral surface 103 has a starting point 1032 at the volute tongue 1012 and an end point 1033 at the end section 1031 of the volute 101.
  • the throat 1013 is located at the starting point 1032.
  • the end point 1033, and the distance between the Archimedes spiral surface 103 and the wind wheel 102 is the smallest at the throat 1013. It can also be understood that in the radial direction of the wind wheel 102, the Archimedes spiral The distance between the curved surface 103 and the outer diameter of the wind wheel 102 is the smallest at the throat 1013.
  • this setting can better reduce the air leakage of the volute 101, and can better reduce the operation of the centrifugal fan 100
  • the noise can better increase the air output of the centrifugal fan 100, so that the working efficiency of the volute 101 can be further improved, and the working efficiency of the centrifugal fan 100 can be further improved.
  • the distance between the Archimedes spiral surface 103 and the wind wheel 102 decreases from the starting point 1032 to the throat 1013, and the distance between the Archimedes spiral surface 103 and the wind wheel 102
  • the distance increases from the throat 1013 to the end 1033, that is, from the starting point 1032 to the throat 1013, the separation distance between the Archimedes spiral surface 103 and the wind wheel 102 gradually decreases, from the throat 1013 to the In the direction of the end point 1033, the distance between the Archimedes spiral surface 103 and the wind wheel 102 gradually increases.
  • this arrangement can further reduce the pulsation between the blades on the wind wheel 102 and the volute tongue 1012
  • the noise caused by the increase in intensity can further reduce the working noise of the centrifugal fan 100, which can further reduce the environmental pollution caused by noise, and can further reduce the leakage of the volute 101, and can further increase the air output of the centrifugal fan 100, which can further The working efficiency of the volute 101 is improved, and the working efficiency of the centrifugal fan 100 can be further improved.
  • the separation distance between the volute tongue 1012 and the wind wheel 102 is t 1
  • the separation distance between the throat 1013 and the wind wheel 102 is t 2
  • t 1 and t 2 satisfy the relationship: t 1 /t 2 ⁇ 2
  • the plane passing through the center of the wind wheel 102 and perpendicular to the end section 1031 is the longitudinal section 104.
  • the Archimedes spiral surface 103 and the wind wheel 102 The minimum distance between is within the first quadrant I of the coordinate system.
  • the first quadrant I, the second quadrant II, the third quadrant III and the fourth quadrant IV, and the distance between the Archimedes spiral surface 103 and the wind wheel 102 The minimum distance is in the first quadrant I of the coordinate system, that is, the throat 1013 is in the first quadrant I of the coordinate system.
  • This setting can make the location of the throat 1013 more suitable, and can better reduce the air leakage of the volute 101. Thereby, the working efficiency of the volute 101 can be improved, and the working noise of the centrifugal fan 100 can also be better reduced.
  • the plane passing through the center of the wind wheel 102 and perpendicular to the end section 1031 is the longitudinal section 104.
  • the minimum distance between the Archimedes spiral surface 103 and the wind wheel 102 is in the coordinate system Within the second quadrant II.
  • the minimum distance is in the second quadrant II of the coordinate system, that is, the throat 1013 is in the second quadrant II of the coordinate system.
  • This arrangement can also better reduce the air leakage of the volute 101, thereby improving the working efficiency of the volute 101.
  • the operating noise of the centrifugal fan 100 can also be better reduced.
  • the centrifugal fan 100 includes a driving motor 105.
  • the volute 101 has a volute air inlet 1014.
  • the wind outside the centrifugal fan 100 can flow into the volute 101 through the volute air inlet 1014.
  • the wind wheel 102 is rotatably arranged in the volute 101, and the wind wheel 102 has a wind wheel 102 outside.
  • the driving motor 105 is connected to the wind wheel 102, and the driving motor 105 is used to drive the wind wheel 102 to rotate in the volute 101.
  • the outer diameter D of the wind wheel 102 can be set to 150 mm
  • the inner diameter d of the wind wheel 102 can be set to 120 mm
  • d/D is 0.8
  • the rotation speed of the wind wheel 102 can be set to 1500 rpm-3000 rpm.
  • the wind pressure in the volute 101 can be increased, and the air resistance of 100Pa-300Pa in the air duct of the air supply device can be overcome, thereby increasing
  • the working efficiency of the centrifugal fan 100 can further improve the working performance of the centrifugal fan 100, and the centrifugal fan 100 of the present application has a simple structure, which can reduce the manufacturing cost of the centrifugal fan 100.
  • the wind pressure in the volute 101 can be increased, the air resistance in the air duct of the air supply device can be overcome, and the working efficiency of the centrifugal fan 100 can be improved.
  • the volute air inlet 1014 may include: a first volute air inlet 1015 and a second volute air inlet 1016, and the first volute air inlet 1015 and The second volute air inlets 1016 are respectively formed on two axial sides of the volute 101. It can also be understood that the first volute air inlet 1015 is provided on one axial side of the volute 101, and the second volute enters The tuyere 1016 is provided on the other axial side surface of the volute 101.
  • the wind wheel 102 may include a wind wheel body 1021 and a wind wheel mounting plate 1022 arranged in the wind wheel body 1021.
  • the wind wheel mounting plate 1022 separates the wind wheel body 1021 along the axial direction of the wind wheel 102 into a long wind wheel body 1023 and a short wind wheel body 1023.
  • the axial direction of the wind wheel body 1024 and the wind wheel 102 refers to the left and right directions in FIG. 4, the axial length of the long wind wheel body 1023 is greater than the axial length of the short wind wheel body 1024, and the long wind wheel body 1023 corresponds to and is adjacent to the first A volute air inlet 1015 is provided, and the short wind wheel body 1024 is corresponding to and adjacent to the second volute air inlet 1016.
  • the driving motor 105 can be arranged in the short wind wheel body 1024, and the driving motor 105 is connected to the wind wheel mounting plate 1022 When the driving motor 105 works, the driving motor 105 can drive the wind wheel mounting plate 1022 to rotate, so that the wind wheel 102 rotates.
  • the driving motor 105 since the driving motor 105 is arranged in the volute 101, the driving motor 105 will occupy the space in the volute 101. When the driving motor 105 is arranged corresponding to the volute air inlet 1014, the air intake effect of the volute air inlet 1014 will be affected. Therefore, in the present application, by arranging the driving motor 105 in the short wind wheel body 1024, it is possible to prevent the driving motor 105 from affecting the air intake volume of the first volute air inlet 1015, and to ensure the air intake volume of the centrifugal fan 100, thereby ensuring the efficiency of the centrifugal fan 100.
  • the long wind wheel body 1023 and the short wind wheel body 1024 are separated by the wind wheel mounting plate 1022, which can prevent the air flow in the long wind wheel body 1023 and the air flow in the short wind wheel body 1024 from interacting with each other. Reducing the noise in the centrifugal fan 100 can also improve the working efficiency of the centrifugal fan 100, and can reduce the axial length of the driving motor 105, which is beneficial to the dynamic balance of the centrifugal fan 100.
  • the radial dimension of the first volute air inlet 1015 is larger than the radial dimension of the second volute air inlet 1016. This arrangement can increase the air inlet of the first volute air inlet 1015 per unit time.
  • the air volume can further ensure the air inlet volume of the centrifugal fan 100, so that the working performance of the centrifugal fan 100 can be further improved.
  • the axial length of the short rotor body 1024 is H1
  • the axial length of the long rotor body 1023 is H2, where H2 and H1 satisfy the relationship: 0.5 ⁇ H1 /H2 ⁇ 1, where H1 can be set to 42mm and H2 can be set to 75mm.
  • This setting can ensure that the axial length of the long rotor body 1023 is greater than the axial length of the short rotor body 1024, so that the long rotor body 1023
  • the axial length of ⁇ and the axial length of the short rotor body 1024 are more suitable, so that the air intake can be better guaranteed, and the working efficiency of the centrifugal fan 100 can be ensured.
  • the centrifugal fan 100 may further include: a motor mounting plate 106 for mounting the drive motor 105, the motor mounting plate 106 is arranged around the second volute air inlet 1016, wherein, The motor mounting plate 106 may be provided on the inner surface of the volute 101.
  • the drive motor 105 is mounted on the motor mounting plate 106. This arrangement can reliably fix the drive motor 105 on the motor mounting plate 106. When the drive motor 105 is working, the vibration of the drive motor 105 can be reduced. Therefore, the operating noise of the centrifugal fan 100 can be further reduced.
  • the centrifugal fan 100 may further include: an air inlet grill 107, and the air inlet grill 107 may be disposed at the first volute air inlet 1015 and/or the second volute
  • the air inlet 1016 for example, the air inlet grille 107 is arranged at the second volute air inlet 1016.
  • This arrangement can smoothly flow the wind from the air inlet grille 107 into the volute 101, which can avoid the formation of vortex in the volute 101.
  • the airflow noise is prevented in the volute 101, and the air inlet grill 107 has a filtering effect, which can prevent foreign objects from being sucked into the volute 101, and can ensure the working reliability of the centrifugal fan 100.
  • the wind wheel 102 may include a plurality of blades 1025, for example, the number of blades 1025 may be 41, and the plurality of blades 1025 are arranged at intervals along the circumference of the wind wheel 102.
  • the blade 1025 can be set as an arc, and the chord length of the blade 1025 is L, which satisfies the relationship: 15mm ⁇ L ⁇ 25mm, where the chord length of the blade 1025 can be set to 18mm, and the separation distance between two adjacent blades 1025 is a. Satisfy the relational expression: 0.3L ⁇ a ⁇ 0.7L.
  • the thickness of the blade 1025 is set to t, which satisfies the relationship: 1mm ⁇ t ⁇ 3mm.
  • the thickness of the blade 1025 is set to 1.5mm.
  • the inlet angle of the blade 1025 is ⁇ , which satisfies the relation: 40° ⁇ 90°.
  • the inlet angle of the blade 1025 is 70°
  • the outlet angle of the blade 1025 is ⁇ , which satisfies the relation: 120° ⁇ ⁇ 170°
  • the outlet angle of the blade 1025 is 165°
  • the inlet angle of the blade 1025 refers to the intersection of the tangent at the intersection of the inner end of the blade 1025 and the inner diameter of the wind wheel 102 and the inner diameter of the wind wheel 102 and the inner end of the blade 1025
  • the angle between the tangents at the position, the exit angle of the blade 1025 refers to the tangent between the tangent at the intersection of the outer end of the blade 1025 and the outer diameter of the rotor 102 and the tangent between the tangent at the intersection of the outer end of the rotor 102 and the outer end of the blade 1025 Horn.
  • the installation angle of the blade 1025 can be set to 25°-40°, preferably, the installation angle of the blade 1025 is 32°.
  • the multiple blades 1025 provided above can make the flow path between adjacent blades 1025 an acceleration flow path. From the inner end of the blade 1025 to the outer end, the width of the flow path changes from large to small, and the airflow flows through the wind wheel. After 102, enough high-speed and high-pressure airflow can be formed to enter the air duct, so as to better overcome the resistance of the air duct.
  • the air supply device may be a bladeless fan.
  • the air supply device includes the centrifugal fan 100 of the above-mentioned embodiment.
  • the centrifugal fan 100 is arranged on the air supply device, and the centrifugal fan 100 has low operating noise. It can reduce noise pollution to the environment, thereby improving user experience, and can also reduce the leakage of the volute 101, and increase the air output of the centrifugal fan 100, thereby improving the working efficiency of the volute 101, and thereby improving the performance of the centrifugal fan 100 The working efficiency can also improve the working efficiency of the air supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心风机(100)以及送风装置。离心风机(100)包括:蜗壳(101),蜗壳(101)内具有安装空间(1011);风轮(102),风轮(102)设于安装空间(1011)内,蜗壳(101)具有蜗舌(1012)和喉部(1013),蜗舌(1012)与风轮(102)的距离大于喉部(1013)与风轮(102)的距离。该风机能够降低工作噪音,减缓蜗壳漏气,提升出风量。

Description

离心风机以及送风装置
相关申请的交叉引用
本申请要求“广东美的环境电器制造有限公司”和“美的集团股份有限公司”于2020年01月19日提交的、名称为“离心风机以及送风装置”和“用于无叶送风装置的离心风机”的、中国专利申请号“202010060655.3”和“202010060619.7”的优先权。
技术领域
本申请涉及生活电器领域,尤其是涉及一种离心风机以及送风装置。
背景技术
相关技术中,送风装置(无叶风扇)的风道条缝出风形式使风道阻力较大,需要风轮具有较高的转速才能满足离心风机的送风要求,风轮高速转动需要风轮与蜗壳之间具有较大的间隙,否则离心风机工作时产生噪声较大,但是风轮与蜗壳之间的间隙较大会降低离心风机的工作效率,导致离心风机的出风量会有所下降。
申请内容
本申请提供一种离心风机,该离心风机能够降低离心风机的工作噪音,也能够提升离心风机的工作效率。
本申请进一步地提出了一种送风装置。
根据本申请的离心风机包括:蜗壳,所述蜗壳内具有安装空间;风轮,所述风轮设于所述安装空间内,所述蜗壳具有蜗舌和喉部,所述蜗舌与所述风轮的距离大于所述喉部与所述风轮的距离。
根据本申请的离心风机,通过蜗舌与风轮的距离大于喉部与风轮的距离,能够降低离心风机的工作噪音,可以减少噪音对环境污染,从而可以提升用户体验,并且,也能够减缓蜗壳漏气,可以提升离心风机的出风量,从而可以提升蜗壳的工作效率,进而可以提升离心风机的工作效率。
在本申请的一些示例中,所述蜗壳具有阿基米德螺旋曲面,所述阿基米德螺旋曲面具有处在所述蜗舌处的起点和处在所述蜗壳的终了截面处的终点,所述喉部位于所述起点和所述终点之间,且所述阿基米德螺旋曲面与所述风轮的距离在所述喉部处最小。
在本申请的一些示例中,所述阿基米德螺旋曲面与所述风轮的距离自所述起点向所述喉部递减,且自所述喉部向所述终点递增。
在本申请的一些示例中,所述蜗舌与所述风轮的距离为t 1,所述喉部与所述风轮的距离为t 2,其中t 1和t 2满足关系式:t 1/t 2<2。
在本申请的一些示例中,通过所述风轮的中心且垂直于所述终了截面的面为纵截面,在所述纵截面和所述终了截面构成的坐标系中,所述阿基米德螺旋曲面与所述风轮的最小距离在所述坐标系的第一象限内。
在本申请的一些示例中,通过所述风轮的中心且垂直于所述终了截面的面为纵截面,在所述纵截面和所述终了截面构成的坐标系中,所述阿基米德螺旋曲面与所述风轮的最小距离在所述坐标系的第二象限内。
在本申请的一些示例中,所述风轮的外径为D,t 1=0.05D-0.15D。
在本申请的一些示例中,所述风轮的外径为D,t 2=0.05D-0.15D。
在本申请的一些示例中,所述的离心风机还包括:驱动电机,所述蜗壳具有蜗壳进风口,所述风轮可转动地设置在所述蜗壳内,所述风轮具有风轮外径D和风轮内径d,其中D和d满足关系式:0.7≤d/D≤0.9;所述驱动电机与所述风轮相连且用于驱动所述风轮在所述蜗壳内转动。
在本申请的一些示例中,所述蜗壳进风口包括:第一蜗壳进风口和第二蜗壳进风口,所 述第一蜗壳进风口和所述第二蜗壳进风口分别形成在所述蜗壳的两个轴向侧面上;所述风轮包括:风轮本体和设置在所述风轮本体内的风轮安装板,所述风轮安装板将所述风轮本体沿所述风轮的轴向分隔成长风轮本体和短风轮本体,所述长风轮本体的轴向长度大于所述短风轮本体的轴向长度,所述长风轮本体对应并邻近所述第一蜗壳进风口,所述短风轮本体对应并邻近所述第二蜗壳进风口,其中所述驱动电机设置在所述短风轮本体内且与所述风轮安装板相连。
在本申请的一些示例中,所述第一蜗壳进风口的径向尺寸大于所述第二蜗壳进风口的径向尺寸。
在本申请的一些示例中,所述短风轮本体的轴向长度为H1,所述长风轮本体的轴向长度为H2,其中H2和H1满足关系式:0.5≤H1/H2<1。
在本申请的一些示例中,所述的离心风机还包括:用于安装所述驱动电机的电机安装板,所述电机安装板围绕所述第二蜗壳进风口设置。
在本申请的一些示例中,所述的离心风机还包括:进风口格栅,所述进风口格栅设于所述第一蜗壳进风口和/或所述第二蜗壳进风口。
在本申请的一些示例中,所述风轮包括多个叶片,多个所述叶片沿所述风轮的周向间隔开,所述叶片为弧型,所述叶片的弦长为L,满足关系式:15mm≤L≤25mm;相邻的两个所述叶片间的间隔距离为a,满足关系式:0.3L≤a≤0.7L。
在本申请的一些示例中,所述叶片的厚度为t,满足关系式:1mm≤t≤3mm。
在本申请的一些示例中,所述叶片的进口角为α,满足关系式:40°≤α≤90°。
在本申请的一些示例中,所述叶片的出口角为θ,满足关系式:120°≤θ≤170°。
根据本申请的送风装置,包括上述的离心风机。
根据本申请的送风装置,通过蜗舌与风轮的距离大于喉部与风轮的距离,能够降低离心风机的工作噪音,可以减少噪音对环境污染,从而可以提升用户体验,并且,也能够减缓蜗壳漏气,可以提升离心风机的出风量,从而可以提升蜗壳的工作效率,进而可以提升离心风机的工作效率。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的离心风机的截面图;
图2是根据本申请实施例的离心风机的第一象限、第二象限、第三象限Ⅲ、第四象限的分布图;
图3是根据本申请实施例的离心风机的爆炸图;
图4是根据本申请实施例的离心风机的风轮的主视图;
图5是根据本申请实施例的离心风机的风轮的侧视图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图5描述根据本申请实施例的离心风机100。
如图1和图2所示,根据本申请实施例的离心风机100包括:蜗壳101和风轮102。蜗壳101内具有安装空间1011,风轮102设置于安装空间1011内,风轮102可以在安装空间1011内转动,蜗壳101具有蜗舌1012和喉部1013,蜗舌1012为一段,蜗舌1012呈圆弧形,蜗舌1012与风轮102之间的间隔距离大于喉部1013与风轮102之间的间隔距离,需要解释的是,图1和图2是离心风机100的截面图,蜗壳101和风轮102的截 面是线,如图2所示,蜗舌1012与风轮102之间的间隔距离指蜗舌1012表面与风轮102表面之间的最小间隔距离,另外,喉部1013与风轮102之间的间隔距离指喉部1013的内表面与风轮102表面之间的最小间隔距离。
在现有技术中,蜗舌与风轮之间的间隔距离为风轮与蜗壳之间的间隙的最小值,这种蜗壳曲线结构对于高转速的风轮,在蜗舌处,由于风轮上的叶片与蜗舌之间周期性脉动强度增加,导致离心风机工作噪声增大,抬高蜗舌位置可有效降低脉动引起的噪声,但蜗壳效率降低。
而在本申请中,通过把蜗舌1012与风轮102之间的间隔距离值设置成小于喉部1013与风轮102之间的间隔距离值,与现有技术相比,蜗舌1012与风轮102之间的间隔距离变大,风轮102在安装空间1011内高速转动时,能够有效降低风轮102上的叶片与蜗舌1012之间脉动强度增加引起的噪声,可以使蜗壳101适应风轮102的更高转速,可以降低蜗舌1012内啸叫声产生的风险,可以降低离心风机100的工作噪音,从而可以减少噪音对环境污染,进而可以提升用户体验,并且,能够弥补蜗舌间隙(即蜗舌1012与风轮102之间的间隔距离)过大导致的气流回流过多,可以减缓蜗壳101漏气,可以提升离心风机100的出风量,从而可以提升蜗壳101的工作效率,进而可以提升离心风机100的工作效率。
由此,通过蜗舌1012与风轮102的距离小于喉部1013与风轮102的距离,能够降低离心风机100的工作噪音,可以减少噪音对环境污染,从而可以提升用户体验,并且,也能够减缓蜗壳101漏气,可以提升离心风机100的出风量,从而可以提升蜗壳101的工作效率,进而可以提升离心风机100的工作效率。
蜗壳101具有阿基米德螺旋曲面103,阿基米德螺旋曲面103具有处在蜗舌1012处的起点1032和处在蜗壳101的终了截面1031处的终点1033,喉部1013位于起点1032和终点1033之间,而且阿基米德螺旋曲面103与风轮102之间的间隔距离在喉部1013处最小,也可以理解为,在风轮102的径向方向上,阿基米德螺旋曲面103与风轮102的外径之间的间隔距离在喉部1013处最小,离心风机100工作时,如此设置能够更好地减缓蜗壳101漏气,可以更好地降低离心风机100的工作噪音,可以更好地提升离心风机100的出风量,从而可以进一步提升蜗壳101的工作效率,进而可以更好地提升离心风机100的工作效率。
如图1和图2所示,阿基米德螺旋曲面103与风轮102之间的间隔距离自起点1032向喉部1013递减,而且阿基米德螺旋曲面103与风轮102之间的间隔距离自喉部1013向终点1033递增,也就是说,自起点1032向喉部1013的方向上,阿基米德螺旋曲面103与风轮102之间的间隔距离逐渐减小,自喉部1013向终点1033的方向上,阿基米德螺旋曲面103与风轮102之间的间隔距离逐渐变大,离心风机100工作时,这样设置能够进一步降低风轮102上的叶片与蜗舌1012之间脉动强度增加引起的噪声,可以进一步降低离心风机100的工作噪音,从而可以进一步减少噪音对环境污染,并且,也能够进一步减缓蜗壳101漏气,可以进一步提升离心风机100的出风量,从而可以进一步提升蜗壳101的工作效率,进而可以进一步提升离心风机100的工作效率。
蜗舌1012与风轮102之间的间隔距离为t 1,喉部1013与风轮102之间的间隔距离为t 2,其中t 1和t 2满足关系式:t 1/t 2<2,需要说明的是,这样设置能够保证使蜗舌1012与风轮102之间的间隔距离小于喉部1013与风轮102之间的间隔距离,可以减缓蜗壳101漏气,从而可以提升蜗壳101的工作效率,进而可以使t 1和t 2的关系设置形式更加合理。
如图2所示,通过风轮102的中心且垂直于终了截面1031的面为纵截面104,在纵截面104和终了截面1031构成的坐标系中,阿基米德螺旋曲面103与风轮102之间的最小距离在坐标系的第一象限Ⅰ内。其中,在纵截面104和终了截面1031构成的坐标系中具有第一象限Ⅰ、第二象限Ⅱ、第三象限Ⅲ和第四象限Ⅳ,阿基米德螺旋曲面 103与风轮102之间的最小距离在坐标系的第一象限Ⅰ内,即喉部1013在坐标系的第一象限Ⅰ内,如此设置能够使喉部1013的设置位置更加适宜,可以更好地减缓蜗壳101漏气,从而可以提升蜗壳101的工作效率,并且,也可以更好地降低离心风机100工作噪音。
通过风轮102的中心且垂直于终了截面1031的面为纵截面104,在纵截面104和终了截面1031构成的坐标系中,阿基米德螺旋曲面103与风轮102的最小距离在坐标系的第二象限Ⅱ内。其中,在纵截面104和终了截面1031构成的坐标系中具有第一象限Ⅰ、第二象限Ⅱ、第三象限Ⅲ和第四象限Ⅳ,阿基米德螺旋曲面103与风轮102之间的最小距离在坐标系的第二象限Ⅱ内,即喉部1013在坐标系的第二象限Ⅱ内,这样设置也可以更好地减缓蜗壳101漏气,从而可以提升蜗壳101的工作效率,并且,也可以更好地降低离心风机100工作噪音。
风轮102的外径为D,t 1=0.05D-0.15D,如此设置能够使蜗舌1012与风轮102之间的间隔距离更加适宜,可以使蜗壳101适应风轮102的更高转速,从而可以降低蜗舌1012内啸叫声产生的风险,进而可以降低离心风机100的工作噪声。
风轮102的外径为D,t 2=0.05D-0.15D,这样设置能够使喉部1013与风轮102之间的间隔距离更加适宜,可以弥补蜗舌间隙(即蜗舌1012与风轮102之间的间隔距离)过大导致的气流回流过多,从而可以提升离心风机100的效率。
如图3-图5所示,离心风机100包括:驱动电机105。蜗壳101具有蜗壳进风口1014,离心风机100外部的风可以通过蜗壳进风口1014流入蜗壳101内,风轮102可转动地设置在蜗壳101内,风轮102具有风轮102外径D和风轮102内径d,其中D和d满足关系式:0.7≤d/D≤0.9,驱动电机105与风轮102相连,而且驱动电机105用于驱动风轮102在蜗壳101内转动。
具体地,风轮102外径D可以设置为150mm,风轮102内径d可以设置为120mm,d/D为0.8,风轮102的转速可以设置为1500rpm-3000rpm。离心风机100工作时,驱动电机105驱动风轮102转动,在风轮102转动过程中,能够提升蜗壳101内风压,可以克服送风装置的风道内100Pa-300Pa的空气阻力,从而可以提升离心风机100的工作效率,进而可以提升离心风机100的工作性能,并且,本申请的离心风机100结构简单,可以降低离心风机100的制造成本。
由此,通过使0.7≤d/D≤0.9,能够提升蜗壳101内风压,可以克服送风装置的风道内空气阻力,从而可以提升离心风机100的工作效率。
在本申请的一些实施例中,如图3和图4所示,蜗壳进风口1014可以包括:第一蜗壳进风口1015和第二蜗壳进风口1016,第一蜗壳进风口1015和第二蜗壳进风口1016分别形成在蜗壳101的两个轴向侧面上,也可以理解为,第一蜗壳进风口1015设置于蜗壳101的一个轴向侧面上,第二蜗壳进风口1016设置于蜗壳101的另一个轴向侧面上。
风轮102可以包括:风轮本体1021和设置在风轮本体1021内的风轮安装板1022,风轮安装板1022将风轮本体1021沿风轮102的轴向分隔成长风轮本体1023和短风轮本体1024,风轮102的轴向方向是指图4中的左右方向,长风轮本体1023的轴向长度大于短风轮本体1024的轴向长度,长风轮本体1023对应并邻近第一蜗壳进风口1015设置,短风轮本体1024对应并邻近第二蜗壳进风口1016设置,其中驱动电机105可以设置在短风轮本体1024内,并且驱动电机105与风轮安装板1022相连,当驱动电机105工作时,驱动电机105可以驱动风轮安装板1022转动,从而使风轮102转动。
并且,由于驱动电机105设置在蜗壳101内,驱动电机105会占用蜗壳101内空间,驱动电机105与蜗壳进风口1014对应设置时,会影响蜗壳进风口1014的进风效果。因此本申请通过将驱动电机105设置在短风轮本体1024内,能够避免驱动电机105影响第一蜗壳进风口1015的进风量,可以保证离心风机100的进风量,从而可以保证离心 风机100的工作性能,同时,通过风轮安装板1022将长风轮本体1023和短风轮本体1024分隔开,能够避免长风轮本体1023内的气流和短风轮本体1024内的气流相互影响,可以降低离心风机100内的噪音,也可以提升离心风机100的工作效率,可减小驱动电机105轴向长度,有利于离心风机100的动平衡。
在本申请的一些实施例中,第一蜗壳进风口1015的径向尺寸大于第二蜗壳进风口1016的径向尺寸,单位时间内,如此设置能够增加第一蜗壳进风口1015的进风量,可以进一步保证离心风机100的进风量,从而可以进一步提升离心风机100的工作性能。
在本申请的一些实施例中,如图4所示,短风轮本体1024的轴向长度为H1,长风轮本体1023的轴向长度为H2,其中H2和H1满足关系式:0.5≤H1/H2<1,其中,H1可以设置为42mm,H2可以设置为75mm,这样设置能够保证长风轮本体1023的轴向长度大于短风轮本体1024的轴向长度,可以使长风轮本体1023的轴向长度和短风轮本体1024的轴向长度更加适宜,从而可以更好地保证进风量,进而可以保证离心风机100的工作效率。
在本申请的一些实施例中,如图3所示,离心风机100还可以包括:用于安装驱动电机105的电机安装板106,电机安装板106围绕第二蜗壳进风口1016设置,其中,电机安装板106可以设置在蜗壳101的内表面。其中,离心风机100装配完成后,驱动电机105安装在电机安装板106上,如此设置能够把驱动电机105可靠地固定在电机安装板106上,驱动电机105工作时,可以降低驱动电机105的振动,从而可以进一步降低离心风机100的工作噪音。
在本申请的一些实施例中,如图3所示,离心风机100还可以包括:进风口格栅107,进风口格栅107可以设置于第一蜗壳进风口1015和/或第二蜗壳进风口1016,例如:进风口格栅107设置于第二蜗壳进风口1016,如此设置能够使风平缓地从进风口格栅107流入蜗壳101,可以避免蜗壳101内形成涡流,从而可以防止在蜗壳101内出现气流噪声,并且,进风口格栅107具有过滤效果,能够防止外界物体被吸入蜗壳101内,可以保证离心风机100的工作可靠性。
在本申请的一些实施例中,如图5所示,风轮102可以包括多个叶片1025,例如:叶片1025可以设置为41个,多个叶片1025沿风轮102的周向间隔开布置,叶片1025可以设置为弧型,叶片1025的弦长为L,满足关系式:15mm≤L≤25mm,其中,叶片1025的弦长可以设置为18mm,相邻的两个叶片1025间的间隔距离为a,满足关系式:0.3L≤a≤0.7L。并且,叶片1025的厚度设置为t,满足关系式:1mm≤t≤3mm,优选地,叶片1025的厚度设置为1.5mm。
同时,叶片1025的进口角为α,满足关系式:40°≤α≤90°,优选地,叶片1025的进口角为70°,叶片1025的出口角为θ,满足关系式:120°≤θ≤170°,叶片1025的出口角为165°,需要说明的是,叶片1025的进口角指叶片1025的内端和风轮102内径的交点处的切线与风轮102内径和叶片1025的内端的交点处的切线之间的夹角,叶片1025的出口角指叶片1025的外端和风轮102外径的交点处的切线与风轮102外径和叶片1025的外端的交点处的切线之间的夹角。另外,叶片1025的安装角可以设置为25°-40°,优选地,叶片1025的安装角为32°。通过上述内容设置的多个叶片1025,能够使得相邻叶片1025之间的流道为加速流道,由叶片1025的内端向外端的方向,流道宽度由大变小,气流流过风轮102后,可以形成足够的高速高压的气流进入风道,从而可以更好地克服风道阻力。
根据本申请实施例的送风装置,送风装置可以为无叶风扇,送风装置包括上述实施例的离心风机100,离心风机100设置在送风装置上,该离心风机100的工作噪音小,可以减少噪音对环境污染,从而可以提升用户体验,并且,也能够减缓蜗壳101漏气,可以提升离心风机100的出风量,从而可以提升蜗壳101的工作效率,进而可以提升离心风机100的工作效率,也可以提升送风装置的工作效率。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (19)

  1. 一种离心风机,其特征在于,包括:
    蜗壳,所述蜗壳内具有安装空间;
    风轮,所述风轮设于所述安装空间内,所述蜗壳具有蜗舌和喉部,所述蜗舌与所述风轮的距离大于所述喉部与所述风轮的距离。
  2. 根据权利要求1所述的离心风机,其特征在于,所述蜗壳具有阿基米德螺旋曲面,所述阿基米德螺旋曲面具有处在所述蜗舌处的起点和处在所述蜗壳的终了截面处的终点,所述喉部位于所述起点和所述终点之间,且所述阿基米德螺旋曲面与所述风轮的距离在所述喉部处最小。
  3. 根据权利要求2所述的离心风机,其特征在于,所述阿基米德螺旋曲面与所述风轮的距离自所述起点向所述喉部递减,且自所述喉部向所述终点递增。
  4. 根据权利要求2所述的离心风机,其特征在于,所述蜗舌与所述风轮的距离为t 1,所述喉部与所述风轮的距离为t 2,其中t 1和t 2满足关系式:t 1/t 2<2。
  5. 根据权利要求4所述的离心风机,其特征在于,通过所述风轮的中心且垂直于所述终了截面的面为纵截面,在所述纵截面和所述终了截面构成的坐标系中,所述阿基米德螺旋曲面与所述风轮的最小距离在所述坐标系的第一象限内。
  6. 根据权利要求4所述的离心风机,其特征在于,通过所述风轮的中心且垂直于所述终了截面的面为纵截面,在所述纵截面和所述终了截面构成的坐标系中,所述阿基米德螺旋曲面与所述风轮的最小距离在所述坐标系的第二象限内。
  7. 根据权利要求4所述的离心风机,其特征在于,所述风轮的外径为D,t 1=0.05D-0.15D。
  8. 根据权利要求4所述的离心风机,其特征在于,所述风轮的外径为D,t 2=0.05D-0.15D。
  9. 根据权利要求1-8中任一项所述的离心风机,其特征在于,还包括:驱动电机,所述蜗壳具有蜗壳进风口,所述风轮可转动地设置在所述蜗壳内,所述风轮具有风轮外径D和风轮内径d,其中D和d满足关系式:0.7≤d/D≤0.9;
    所述驱动电机与所述风轮相连且用于驱动所述风轮在所述蜗壳内转动。
  10. 根据权利要求9所述的离心风机,其特征在于,所述蜗壳进风口包括:第一蜗壳进风口和第二蜗壳进风口,所述第一蜗壳进风口和所述第二蜗壳进风口分别形成在所述蜗壳的两个轴向侧面上;
    所述风轮包括:风轮本体和设置在所述风轮本体内的风轮安装板,所述风轮安装板将所述风轮本体沿所述风轮的轴向分隔成长风轮本体和短风轮本体,所述长风轮本体的轴向长度大于所述短风轮本体的轴向长度,所述长风轮本体对应并邻近所述第一蜗壳进风口,所述短风轮本体对应并邻近所述第二蜗壳进风口,其中所述驱动电机设置在所述短风轮本体内且与所述风轮安装板相连。
  11. 根据权利要求10所述的离心风机,其特征在于,所述第一蜗壳进风口的径向尺寸大于所述第二蜗壳进风口的径向尺寸。
  12. 根据权利要求10所述的离心风机,其特征在于,所述短风轮本体的轴向长度为H1,所述长风轮本体的轴向长度为H2,其中H2和H1满足关系式:0.5≤H1/H2<1。
  13. 根据权利要求10所述的离心风机,其特征在于,还包括:用于安装所述驱动电机的电机安装板,所述电机安装板围绕所述第二蜗壳进风口设置。
  14. 根据权利要求10所述的离心风机,其特征在于,还包括:进风口格栅,所述进风口格栅设于所述第一蜗壳进风口和/或所述第二蜗壳进风口。
  15. 根据权利要求9所述的离心风机,其特征在于,所述风轮包括多个叶片,多个所述叶片沿所述风轮的周向间隔开,
    所述叶片为弧型,所述叶片的弦长为L,满足关系式:15mm≤L≤25mm;
    相邻的两个所述叶片间的间隔距离为a,满足关系式:0.3L≤a≤0.7L。
  16. 根据权利要求15所述的离心风机,其特征在于,所述叶片的厚度为t,满足关系式:1mm≤t≤3mm。
  17. 根据权利要求15所述的离心风机,其特征在于,所述叶片的进口角为α,满足关系式:40°≤α≤90°。
  18. 根据权利要求15所述的离心风机,其特征在于,所述叶片的出口角为θ,满足关系式:120°≤θ≤170°。
  19. 一种送风装置,其特征在于,包括根据权利要求1-18中任一项所述的离心风机。
PCT/CN2020/096821 2020-01-19 2020-06-18 离心风机以及送风装置 WO2021143044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20914498.9A EP4050221A4 (en) 2020-01-19 2020-06-18 CENTRIFUGAL FAN AND AIR SUPPLY DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010060655.3A CN113137401B (zh) 2020-01-19 2020-01-19 离心风机以及送风装置
CN202010060619.7A CN113137381A (zh) 2020-01-19 2020-01-19 用于无叶送风装置的离心风机
CN202010060619.7 2020-01-19
CN202010060655.3 2020-01-19

Publications (1)

Publication Number Publication Date
WO2021143044A1 true WO2021143044A1 (zh) 2021-07-22

Family

ID=76863511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096821 WO2021143044A1 (zh) 2020-01-19 2020-06-18 离心风机以及送风装置

Country Status (2)

Country Link
EP (1) EP4050221A4 (zh)
WO (1) WO2021143044A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286162A (en) * 1993-01-04 1994-02-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of reducing hydraulic instability
WO2015048231A1 (en) * 2013-09-30 2015-04-02 Borgwarner Inc. Controlling turbocharger compressor choke
CN207145321U (zh) * 2017-08-31 2018-03-27 广东美的制冷设备有限公司 多翼离心风机以及空调器
CN109973438A (zh) * 2019-04-24 2019-07-05 宁波方太厨具有限公司 一种离心风机蜗壳
CN110145493A (zh) * 2019-04-24 2019-08-20 宁波方太厨具有限公司 一种用于吸油烟机的离心风机蜗壳

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591335B1 (ko) * 2004-06-16 2006-06-19 엘지전자 주식회사 원심 송풍기
JP6142285B2 (ja) * 2013-03-21 2017-06-07 パナソニックIpマネジメント株式会社 片吸込み型遠心送風機
WO2019082392A1 (ja) * 2017-10-27 2019-05-02 三菱電機株式会社 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286162A (en) * 1993-01-04 1994-02-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of reducing hydraulic instability
WO2015048231A1 (en) * 2013-09-30 2015-04-02 Borgwarner Inc. Controlling turbocharger compressor choke
CN207145321U (zh) * 2017-08-31 2018-03-27 广东美的制冷设备有限公司 多翼离心风机以及空调器
CN109973438A (zh) * 2019-04-24 2019-07-05 宁波方太厨具有限公司 一种离心风机蜗壳
CN110145493A (zh) * 2019-04-24 2019-08-20 宁波方太厨具有限公司 一种用于吸油烟机的离心风机蜗壳

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050221A4 *

Also Published As

Publication number Publication date
EP4050221A1 (en) 2022-08-31
EP4050221A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
KR20210006485A (ko) 송풍장치 및 이를 포함하는 공기조화기의 실외기
EP1979623B1 (en) Improved impeller and fan
JP2013124624A (ja) 遠心ターボ機械
CN102269169A (zh) 贯流风机及具有其的空调器
CN106989034B (zh) 离心风机及具有其的吸尘器
CN114352573B (zh) 一种紧凑型离心风机
JP2014001656A (ja) 遠心送風機及びそれを具備する衣類乾燥機
WO2021143044A1 (zh) 离心风机以及送风装置
CN109595197B (zh) 一种风机
CN201687736U (zh) 贯流风机及具有其的空调器
TWI414681B (zh) 軸流式風扇之扇輪
WO2021135696A1 (zh) 空调室外机
WO2019011315A1 (zh) 离心叶轮和具有其的离心风机、吸尘器
CN107339260B (zh) 助推流离心风机
CN114352574B (zh) 一种具有防涡片的离心风机
CN215109624U (zh) 组合风机以及烹饪器具
JPH05149297A (ja) 遠心フアン
CN113137401B (zh) 离心风机以及送风装置
WO2022142359A1 (zh) 送风装置
CN213953930U (zh) 一种降噪轴流风机
WO2021139508A1 (zh) 扩压器、送风装置及吸尘设备
JPH0593523A (ja) 空気調和装置
CN109595198B (zh) 一种风机叶轮
CN209818372U (zh) 一种高效静音的负压式轴流风机
CN113309714A (zh) 多翼离心风机和家用电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020914498

Country of ref document: EP

Effective date: 20220523

NENP Non-entry into the national phase

Ref country code: DE