WO2019065128A1 - 光硬化性組成物、積層体、及び、固体撮像素子 - Google Patents

光硬化性組成物、積層体、及び、固体撮像素子 Download PDF

Info

Publication number
WO2019065128A1
WO2019065128A1 PCT/JP2018/032839 JP2018032839W WO2019065128A1 WO 2019065128 A1 WO2019065128 A1 WO 2019065128A1 JP 2018032839 W JP2018032839 W JP 2018032839W WO 2019065128 A1 WO2019065128 A1 WO 2019065128A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable composition
layer
mass
group
light
Prior art date
Application number
PCT/JP2018/032839
Other languages
English (en)
French (fr)
Inventor
貴規 田口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020207008032A priority Critical patent/KR102313710B1/ko
Priority to JP2019544490A priority patent/JP7012733B2/ja
Publication of WO2019065128A1 publication Critical patent/WO2019065128A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a photocurable composition, a laminate, and a solid-state imaging device.
  • a CCD (Charge-Coupled Device) image sensor, a CMOS (complementary metal-oxide semiconductor) image sensor or the like is a solid-state imaging device in which a plurality of pixels having photoelectric conversion parts are two-dimensionally arranged.
  • this solid-state imaging device it is not necessary for the photoelectric conversion unit included in the solid-state imaging device in order to reduce dark current, prevent a decrease in dynamic range, stabilize the operation of peripheral circuits, and suppress a decrease in image quality. It is common to block light.
  • Patent Document 1 discloses a radiation-sensitive composition for forming a light-shielding film which is characterized by containing a black pigment or the like which is carbon black (claims 1 and 2).
  • the present inventors examined the composition described in Patent Document 1. As a result, when the composition layer is formed using the composition until it is exposed and exposed, minute foreign particles are formed in the composition layer. Was found to be prone to defects (hereinafter also referred to as "deferred defects"). It is also desirable that no residue is produced after exposure and development of the composition layer. Hereinafter, it is also referred to as being excellent in residue controllability that residue hardly occurs.
  • this invention makes it a subject to provide the photocurable composition which can form the composition film
  • a photocurable composition comprising carbon black having a content of polycyclic aromatic hydrocarbons of 0.100 mass ppb or more and 0.500 mass ppm or less.
  • the inorganic pigment is a nitride of a metal element of Group 4, an oxynitride of a metal element of Group 4, a nitride of a metal element of Group 5 or an oxynitride of a metal element of Group 5
  • a colored layer and a light attenuating layer formed using the photocurable composition according to any one of [1] to [14] are laminated,
  • the layered product which is at least one sort chosen from a group which the above-mentioned colored layer becomes from a green colored layer, a red colored layer, a blue colored layer, a cyan colored layer, a magenta colored layer, and a yellow colored layer.
  • the difference [Delta] T 1 of the maximum value and the minimum value of the transmittance of light in the wavelength range of 400 ⁇ 700 nm of the light attenuating layer is not more than 11.0%
  • the photocurable composition which can form the composition film which is excellent in a reserve defect suppression property and residue suppression property can be provided.
  • the solid-state image sensor which has a laminated body manufactured using the said photocurable composition and the said laminated body can be provided.
  • FIG. 1 It is a schematic diagram which shows the other example of the combination of the unit pixel in the solid-state image sensor which has a laminated body which concerns on embodiment of this invention. It is an A-A 'sectional view of FIG. It is a schematic sectional drawing which shows the structural example of a solid-state imaging device. It is a schematic sectional drawing which expands and shows the imaging part of FIG.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the notation not describing substitution and non-substitution includes not only those containing no substituent but also those containing a substituent.
  • the "alkyl group” includes not only an alkyl group containing no substituent (unsubstituted alkyl group) but also an alkyl group containing a substituent (substituted alkyl group).
  • active light or “radiation” in the present specification means, for example, far ultraviolet, extreme ultraviolet (EUV), X-ray, electron beam and the like. In the present specification, light means actinic rays and radiation.
  • exposure in the present specification includes not only exposure by far ultraviolet rays, X-rays, EUV and the like but also drawing by particle beams such as electron beams and ion beams.
  • (meth) acrylate represents acrylate and methacrylate.
  • (meth) acryl represents an acryl and a methacryl.
  • (meth) acryloyl represents acryloyl and methacryloyl.
  • (meth) acrylamide refers to acrylamide and methacrylamide.
  • monomer is distinguished from an oligomer and a polymer and refers to a compound having a weight average molecular weight of 2,000 or less.
  • a polymerizable compound refers to a compound containing a polymerizable group, and may be a monomer or a polymer.
  • the polymerizable group refers to a group involved in the polymerization reaction.
  • photocurable composition The feature of the photocurable composition of the present invention is that carbon black having a content of polycyclic aromatic hydrocarbon of 0.100 mass ppb (parts per billion) or more and 0.500 mass ppm (parts per million) or less Containing is mentioned. As a result of intensive studies, the present inventors have found that when the content of polycyclic aromatic hydrocarbon of carbon black is 0.500 mass ppm or less, the retention defect suppressing property of the composition layer is excellent.
  • the polycyclic aromatic hydrocarbon is difficult to be compatible with other solids in the photocurable composition since the SP value (dissolution parameter) is largely different, and the amount is usually 0.500
  • the inventors of the present invention have said that the carbon black containing polycyclic aromatic hydrocarbons (more than mass ppm) is likely to be separated from other solid contents at the time of storage and become particles (defects) aggregated between carbon blacks. I guess.
  • the photocurable composition of the present invention contains carbon black having a content of polycyclic aromatic hydrocarbons of 0.100 mass ppb or more and 0.500 mass ppm or less.
  • Polycyclic aromatic hydrocarbons contained in carbon black (hereinafter, also referred to as "PAH (Polycyclic Aromatic Hydrocarbon)) are mainly derived from precursor substances in the carbon black formation reaction.
  • Main PAHs include naphthalene, fluorene, fluoranthene, pyrene, chrysene and benzopyrene, and the total amount of these is the content of PAH.
  • the content of PAH in carbon black (the content of PAH with respect to the total mass of carbon black) is from 0.100 mass ppb to 0.500 mass ppm from the viewpoint that the retention defect suppression property and the residue suppression property are excellent in a balanced manner. 1.00 mass ppb or more and 0.400 mass ppm or less are preferable, 20.00 mass ppb or more and 0.150 mass ppm or less are more preferable, and 50.00 mass ppb or more and 0.150 mass ppm or less are more preferable.
  • the following method may be mentioned as a method of measuring the content of PAH.
  • 5 g of dried carbon black is put into a flask containing 180 ml of monochlorobenzene and extracted for 48 hours.
  • the extract is set in an evaporator, concentrated to a predetermined concentration at 55 ° C., and subjected to liquid chromatography under the following conditions to measure the content of PAH in carbon black.
  • -Liquid chromatography-"LC-6A" manufactured by Shimadzu Corporation
  • Flow controller ... "SCL-6A” (made by Shimadzu Corporation) ⁇ Detector ... "Waters 490E type” (made by Millipore) ⁇
  • Column ... "ODSA, M type” made by Yamamura Chemical Co., Ltd.
  • Injection amount 5 ⁇ l
  • carbon black examples include furnace black, thermal black, channel black, lamp black and acetylene black. Among them, as carbon black, it is preferable to use furnace black.
  • carbon black can be used as a color chip or color paste previously dispersed in nitrocellulose and / or a binder or the like, using a dispersing agent as necessary, in order to facilitate dispersion, and such a chip And paste are readily available as commercial products.
  • the carbon black may be surface-treated by a known method.
  • the shape of carbon black is not particularly limited, but is preferably in the form of particles.
  • the particle size of the carbon black is not particularly limited, but from the viewpoint of dispersibility and colorability, the average primary particle size is preferably 1 to 2000 nm, more preferably 2 to 100 nm, and still more preferably 5 to 50 nm.
  • the average primary particle size of carbon black can be measured using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a transmission electron microscope for example, a transmission electron microscope HT7700 manufactured by Hitachi High-Technologies Corporation can be used.
  • the sulfur content (content of sulfur relative to the total mass of carbon black) of carbon black is preferably 1 mass ppm or more and 0.75 mass% or less, and 1 mass ppm or more and 0.50 mass or less, from the viewpoint of better retention of holding defects. More preferably, it is 0.01% by mass or more and 0.50% by mass or less, and particularly preferably 0.11% by mass or more and 0.39% by mass or less.
  • the sulfur content of carbon black is measured by the following method.
  • ASTM Standards Vol. 9.01, Method 1619, part C-94, “Standard Test Methods for Carbon Black-Sulphur Content (Standard Test Method for Sulfur Content of Carbon Black)”.
  • 1 mass ppm or more and 0.30 mass% or less of ash content of carbon black are preferable, and 1 mass ppm or more 0.20 mass% or less More preferably, 0.05% by mass or more and 0.14% by mass or less is more preferable, and 0.05% by mass or more and 0.08% by mass or less is particularly preferable.
  • the “ash” of carbon black means the mass fraction of inorganic ash obtained by burning carbon black, and is measured by the following method. (1) Weigh dried carbon black in a porcelain crucible and burn it at a constant temperature of 550 ° C. (2) After cooling with a desiccator, the mass of the porcelain crucible is measured, and the mass fraction of the obtained ash relative to carbon black before oxidation is regarded as ash content. The details are based on JIS K 6218-2: 2005 (Carbon black for rubber-additional characteristics-Part 2: Method of determining ash content).
  • the carbon black may be used singly or in combination of two or more.
  • the content of carbon black in the photocurable composition is preferably 1 to 99% by mass, more preferably 2 to 45% by mass, and 3 to 30% by mass with respect to the total solid content of the photocurable composition. More preferable.
  • the total amount of carbon black and black pigment is preferably 1 to 99% by mass with respect to the total solid content of the photocurable composition, 10 to 50% by mass is more preferable, and 13 to 40% by mass is more preferable.
  • the ratio of the total amount of carbon black and black pigment is 0.1 to 10 It is preferably 0.25 to 1.50, more preferably 0.35 to 0.50.
  • the carbon black can be mixed and dispersed together with a suitable dispersant, solvent and the like using a mixing apparatus such as a bead mill, ball mill or rod mill and used as a dispersion.
  • a solvent used for preparation of the said dispersion liquid the solvent mentioned later as a solvent which a photocurable composition may contain, for example, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2- Methyl 2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 2-methyl-2-butanol, neopentanol, cyclopentanol, 1-hexanol, and And alcohols such as cyclohexanol.
  • PGMEA propylene glycol methyl ether acetate
  • These solvents may be used alone or in combination of two or more.
  • the content of carbon black in the carbon black dispersion is preferably 10 to 90% by mass, more preferably 15 to 60% by mass, and still more preferably 20 to 30% by mass with respect to the total mass of the carbon black dispersion.
  • the photocurable composition of the present invention may contain a colorant in addition to the above-described carbon black.
  • the colorant is not particularly limited, and known colorants can be used.
  • various known pigments (colored pigments), dyes (colored dyes) and the like can be used.
  • the content of the colorant in the photocurable composition is not particularly limited, but it is 1 to 99% by mass with respect to the total solid content of the photocurable composition. Is preferable, and 5 to 50% by mass is more preferable.
  • the colorant may be used alone or in combination of two or more. When two or more colorants are used in combination, the total content is preferably within the above range.
  • the content of the black pigment in the photocurable composition is preferably 1% by mass or more based on the total solid content of the photocurable composition, and 5 The mass% or more is more preferable, and 10 mass% or more is more preferable.
  • the upper limit in particular of content of the black pigment in a photocurable composition is not restrict
  • colored dyes include, in addition to colored dyes such as R (red), G (green) and B (blue) (chromatic dyes), those described in paragraphs 0027 to 0200 of JP-A 2014-42375. Colorants can also be used. Also, black dyes can be used.
  • chromatic pigment various inorganic pigments or organic pigments conventionally known can be used.
  • the average primary particle diameter of the pigment is preferably 0.01 to 0.1 ⁇ m, and more preferably 0.01 to 0.05 ⁇ m.
  • the average primary particle size of the pigment can be measured by the same method as the average primary particle size of carbon black described above.
  • the pigment is not particularly limited, and known inorganic pigments and / or organic pigments can be used.
  • the photocurable composition of the present invention preferably contains an inorganic pigment.
  • an inorganic pigment By using carbon black and an inorganic pigment in combination, a cured film having a more even absorption spectrum in a wide wavelength range can be obtained.
  • the inorganic pigment is not particularly limited, and known inorganic pigments can be used.
  • inorganic pigments include zinc flower, lead white, lithopone, titanium oxide, chromium oxide, iron oxide, precipitated barium sulfate and barite powder, red lead, iron oxide red, yellow lead, zinc yellow (zinc yellow 1 type, Zinc yellow 2), ultramarine blue, Prussian blue (ferrous iron potassium) zircon gray, praseodymium yellow, chromium titanium yellow, chromium green, peacock, Victoria green, bitumen blue (independent of Prussian blue), vanadium zirconium blue Chrome tin pink, pottery test pink, and salmon pink etc. are mentioned.
  • the black inorganic pigment metal oxides containing one or more metal elements selected from the group consisting of Co, Cr, Cu, Mn, Ru, Fe, Ni, Sn, Ti, and Ag , Metal nitrides, and metal oxynitrides.
  • the inorganic pigment may be surface-modified. Examples thereof include those that have been surface-modified with a unique surface treatment agent having both a silicone group and an alkyl group, such as the "KTP-09" series (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • inorganic pigment metal pigments and the like (hereinafter, also referred to as “black pigment”) are preferable in that a photocurable composition capable of forming a cured film having a high optical density at least is contained.
  • black pigment a nitride of a metal element of Group 4, an oxynitride of a metal element of Group 4, a nitride of a metal element of Group 5, or a metal of Group 5
  • An oxynitride of an element is preferred.
  • titanium nitride, titanium oxynitride, niobium nitride, niobium oxynitride, vanadium oxynitride, vanadium nitride, vanadium oxynitride, zirconium nitride, and a metal pigment containing zirconium oxynitride It is preferable to contain at least one selected, and to contain at least one selected from the group consisting of titanium oxynitride, titanium nitride, niobium oxynitride, niobium nitride, zirconium oxynitride, and zirconium nitride.
  • titanium nitride is intended to be TiN, and may contain unavoidable oxygen atoms in production (for example, unintentional oxidation of the surface of TiN particles, etc.).
  • titanium nitride means a compound having a diffraction angle 2 ⁇ of 42.5 ° to 42.8 ° of a peak derived from the (200) plane when a CuK ⁇ ray is used as an X-ray source.
  • titanium oxynitride means a compound having a diffraction angle 2 ⁇ of a peak derived from the (200) plane in the case of using CuK ⁇ radiation as an X-ray source over 42.8 °.
  • the upper limit value of the above-mentioned diffraction angle 2 ⁇ of titanium oxynitride is not particularly limited, but 43.5 ° or less is preferable.
  • the titanium nitride for example, include titanium black or the like, more specifically, for example, low-order titanium oxide represented by TiO 2, Ti n O 2n- 1 (1 ⁇ n ⁇ 20), and / or, forms containing TiN x O y titanium oxynitride represented by (0 ⁇ x ⁇ 2.0,0.1 ⁇ y ⁇ 2.0) can be mentioned.
  • titanium nitride (the diffraction angle 2 ⁇ is 42.5 ° to 42.8 °) and titanium oxynitride (the diffraction angle 2 ⁇ is more than 42.8 °) are collectively referred to as titanium nitride, The form will be described.
  • titanium nitride contains titanium oxide TiO 2
  • TiO 2 is white, when it is intended to obtain a light shielding film by curing the photocurable composition, it becomes a factor to reduce the light shielding property of the light shielding film, and is thus reduced to the extent not observed as a peak Is preferred.
  • the crystallite size of titanium nitride can be determined from the half width of the peak obtained by the measurement of the X-ray diffraction spectrum described above.
  • the crystallite size can be calculated using Scheller's equation.
  • the crystallite size which constitutes titanium nitride 50 nm or less is preferable and 20 nm or more is preferable.
  • the light-shielding film formed using the photocurable composition is likely to have a higher ultraviolet (especially i-line (365 nm)) transmittance, and a photocurable film having higher photosensitivity. A sex composition is obtained.
  • the specific surface area of titanium nitride is not particularly limited, but can be determined by the BET (Brunauer, Emmett, Teller) method.
  • the specific surface area of the titanium nitride is preferably 5 ⁇ 100m 2 / g, more preferably 10 ⁇ 60m 2 / g.
  • the black pigment may contain a layer of a silicon-containing compound (hereinafter referred to as "silicon-containing compound”) on its surface. That is, the (acid) nitride of the metal atom may be coated with a silicon-containing compound to form a black pigment.
  • the method for coating the (acid) nitride of the metal atom is not particularly limited, and any known method can be used.
  • pigments having infrared absorptivity can also be used for the photocurable composition.
  • the pigment having infrared absorptivity tungsten compounds, metal borides and the like are preferable, and among them, tungsten compounds are preferable from the viewpoint of being excellent in the light shielding property at the wavelength of infrared region.
  • a tungsten compound is preferable from the viewpoint of excellent light transmittance between the light absorption wavelength region of the photopolymerization initiator involved in the curing efficiency by exposure and the visible light region.
  • pigments may be used in combination of two or more, and may be used in combination with the dyes described later.
  • a pigment having black or infrared light-shielding property has red, green, yellow, orange, purple and blue etc.
  • the form which mixes a coloring pigment or the dye mentioned later is mentioned. It is preferable to mix a red pigment or dye, or a purple pigment or dye, with a pigment having black or infrared light shielding properties, and more preferable to mix a red pigment with a black or infrared light shielding pigment.
  • near infrared absorbers and infrared absorbers described later may be added.
  • organic pigment for example, color index (CI) pigment yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24 , 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37, 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 108, 109, 110, 113, 114, 115, 117, 118, 119, 120, 123, 125 , 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168 169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,
  • pigments may be used alone or in combination of two or more.
  • Examples of the dyes include, for example, JP-A 64-90403, JP-A 64-91102, JP-A 1-94301, JP-A 6-11614, JP-B 2592 207, and US Pat. No. 4,808,501.
  • the dyes disclosed in JP-A 6-194828 and the like can be used.
  • pyrazole azo compounds When classified as a chemical structure, pyrazole azo compounds, pyrromethene compounds, anilino azo compounds, triphenylmethane compounds, anthraquinone compounds, benzylidene compounds, oxonol compounds, pyrazolotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, and pyrrolopyrazole azomethines Compounds etc. can be used.
  • the dye a dye multimer may be used as the dye. Examples of the dye multimer include the compounds described in JP-A-2011-213925 and JP-A-2013-041097. Moreover, you may use the polymeric dye which has a polymerizability in a molecule
  • the photocurable composition may contain a pigment derivative.
  • the pigment derivative is preferably a compound having a structure in which a part of the organic pigment is substituted with an acidic group, a basic group or a phthalimidomethyl group.
  • a pigment derivative a pigment derivative having an acidic group or a basic group is preferable from the viewpoint of the dispersibility and dispersion stability of carbon black (in the case where the photocurable composition contains a colorant, carbon black and colorant) .
  • pigment derivatives having a basic group are preferable.
  • the combination of the resin (dispersant) described later and the pigment derivative is preferably a combination in which the dispersant is an acidic dispersant and the pigment derivative has a basic group.
  • organic pigments for constituting pigment derivatives include diketopyrrolopyrrole pigments, azo pigments, phthalocyanine pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, perinone pigments, perylene pigments, thioindigo pigments And isoindoline based pigments, isoindolinone based pigments, quinophthalone based pigments, srene based pigments, metal complex based pigments and the like.
  • the pigment derivative preferably has a monocyclic aromatic heterocycle, and more preferably has a triazine ring.
  • the content of the pigment dispersant in the photocurable composition is not particularly limited, but it is 1 to 40 mass based on the total mass of the carbon black and the colorant. % Is preferable, and 3 to 30% by mass is more preferable.
  • the pigment derivative may use only 1 type and may use 2 or more types together.
  • the photocurable composition preferably contains a polymerizable compound.
  • the content of the polymerizable compound in the photocurable composition is not particularly limited, but generally 5 to 50% by mass is preferable with respect to the total solid content of the photocurable composition.
  • the polymerizable compounds may be used alone or in combination of two or more. When two or more types of polymerizable compounds are used in combination, the total content is preferably in the above range.
  • the polymerizable compound means a compound having at least one polymerizable group in the molecule.
  • the number of polymerizable groups is not particularly limited, but is preferably 2 or more, more preferably 3 or more, preferably 15 or less, and more preferably 6 or less.
  • the polymerizable group is not particularly limited, and examples thereof include an ethylenically unsaturated group and a methylol group, and an ethylenically unsaturated group is preferable.
  • a vinyl group, a styryl group, a (meth) allyl group examples include (meth) acryloyl group, and (meth) acryloyloxy group.
  • the polymerizable compound may be, for example, any of chemical forms such as monomers, prepolymers, that is, dimers, trimers and oligomers, or mixtures thereof and multimers thereof, with monomers being preferred.
  • the molecular weight of the polymerizable compound is preferably 100 to 3,000, and more preferably 250 to 1,500.
  • the polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, and more preferably a 3 to 6 functional (meth) acrylate compound.
  • polymerizable compound examples include the compounds described in paragraphs 0248 to 0251 of JP-A-2007-269779. Further, compounds described in JP-A No. 10-62986, in which ethylene oxide or propylene oxide is added to a polyfunctional alcohol and then (meth) acrylated, can also be used as the polymerizable compound.
  • the polymerizable compound is pentaerythritol tetraacrylate (commercially available product: NK ester A-TMMT; Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available product: KAYARAD D-330; Nippon Kayaku Co., Ltd. Ltd.), dipentaerythritol tetraacrylate (commercially available as KAYARAD D-320; Nippon Kayaku Co., Ltd.), dipentaerythritol penta (meth) acrylate (commercially available as KAYARAD D-310; Nippon Kayaku) Co., Ltd.
  • dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.) is preferable, and pentaerythritol tetraacrylate is more preferable from the viewpoint of the pattern shape.
  • it may be a compound having a structure in which these (meth) acryloyl groups are linked via ethylene glycol or propylene glycol residues (for example, SR454, SR499 commercially available from Sartomer).
  • Alonics TO-2349 (Toagosei Co., Ltd.), NK ester A-DPH-12E (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD RP-1040, KAYARAD DPEA-12LT, KAYARAD DPHA LT , KAYARAD RP-3060, and KAYARAD DPEA-12 (manufactured by Nippon Kayaku Co., Ltd.), etc.
  • Etc. can also be used.
  • the polymerizable compound may have an acid group such as a carboxy group, a sulfo group, and a phosphoric acid group.
  • Examples of commercially available products of the polymerizable compound having an acid group include M-305, M-510, and M-520 of the ARONIX series as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the acid value of the polymerizable compound having an acid group is not particularly limited, but in general, 0.1 to 40 mg KOH / g is preferable.
  • the lower limit is more preferably 5 mg KOH / g or more.
  • the upper limit is more preferably 30 mg KOH / g or less.
  • a polymeric compound has a caprolactone structure.
  • the polymerizable compound having a caprolactone structure include ⁇ -caprolactone modified polyfunctional (meth) acrylate.
  • the ⁇ -caprolactone modified polyfunctional (meth) acrylate is typically obtained by subjecting a polyhydric alcohol, (meth) acrylic acid and ⁇ -caprolactone to an esterification reaction.
  • polyhydric alcohols examples include trimethylol ethane, ditrimethylol ethane, trimethylol propane, ditrimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, diglycerol, and trimethylolmelamine.
  • the polymerizable compound having a caprolactone structure can be referred to the description in paragraphs 0091 to 0107 of JP-A-2016-006475, the contents of which are incorporated herein.
  • SR-494 which is a tetrafunctional acrylate having 4 ethyleneoxy groups manufactured by Sartomer Co., Ltd.
  • DPCA which is a hexafunctional acrylate which has 6 pentylene oxy groups manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 which is a trifunctional acrylate having three isobutylene oxy groups, and the like.
  • Examples of the polymerizable compound include urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765; JP-B-58- JP-A-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 can also be used as urethane compounds having an ethylene oxide skeleton; Further, addition polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are also preferable.
  • the polymerizable compound is a commercially available product, Urethane Oligomer UAS-10, UAB-140 (manufactured by Sanyo Kokusaku Pulp Co., Ltd.), U-4HA, U-6LPA, UA-32P, U-10HA, U-10PA, UA- 122P, UA-1100H, UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T -600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), UA-9050, UA-9048 (manufactured by BASF Corp. UA), 8UH-1006, and 8UH-1012 (manufactured by Taisei Fine Chemical Co., Ltd.), etc. It can be used.
  • numerator is also preferable.
  • Commercially available products of polymerizable compounds having a Si atom in the molecule include EBECRYL 1360 (made by Daicel Ornex Co., Ltd.), which is a polyfunctional acrylate having a siloxane bond, and VINYLTRIISOPROPENOXYSILANE, which is a Si atom-containing polyfunctional vinyl compound. And the like.
  • the structure, single use or combined use, details of usage methods such as addition amount and the like can be arbitrarily set according to the final performance design of the composition.
  • a structure having a high content of the ethylenically unsaturated group per molecule is preferable, and typically, a bifunctional or more functional is preferable.
  • trifunctional or more is preferable, and further, a method of adjusting both sensitivity and strength by using a compound having a different functional number and at least one of polymerizable groups in combination. Is also valid.
  • a polymerizable compound having a trifunctional or higher functional group and having a different ethylene oxide chain length it is also preferable to use in combination a polymerizable compound having a trifunctional or higher functional group and having a different ethylene oxide chain length.
  • the developability of the photocurable composition can be adjusted, and excellent pattern formation can be obtained.
  • the polymerizable compound to improve the compatibility and / or the dispersibility with other components (for example, a polymerization initiator described later, a resin described later, etc.) contained in the photocurable composition. You can also.
  • the photocurable composition preferably contains a photopolymerization initiator.
  • the content of the photopolymerization initiator in the photocurable composition is not particularly limited, but relative to the total solid content of the photocurable composition, it is 0. 1 to 30% by mass is preferable, and 1.0 to 8.0% by mass is more preferable.
  • the photopolymerization initiator may be, for example, a halogenated hydrocarbon derivative (for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.), an acyl phosphine compound, a hexaarylbiimidazole, an oxime compound, an organic peroxide And thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxy ketone compounds, and ⁇ -amino ketone compounds.
  • a halogenated hydrocarbon derivative for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.
  • an acyl phosphine compound for example, a compound having a triazine skeleton, a compound having an oxadiazole skeleton, etc.
  • an acyl phosphine compound for example, a compound having a triazine skeleton,
  • the photopolymerization initiator is a trihalomethyl triazine compound, a benzyl dimethyl ketal compound, an ⁇ -hydroxy ketone compound, an ⁇ -amino ketone compound, an acyl phosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triaryl imidazole from the viewpoint of exposure sensitivity.
  • Dimers, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, or halomethyl oxadiazole compounds and 3-aryl substituted coumarin compounds are preferred, oxime compounds, ⁇ -hydroxy ketone compounds, An ⁇ -amino ketone compound or an acyl phosphine compound is more preferable, and an oxime compound is more preferable.
  • the oxime compound By using the oxime compound, the undercut resistance of the composition film, the solvent resistance and the moisture resistance of the cured film can be improved.
  • photopolymerization initiator As the photopolymerization initiator, the description in paragraphs 0065 to 0111 of JP-A-2014-130173 can be referred to, and the contents thereof are incorporated in the present specification. Further, as a photopolymerization initiator, KAYACURE DETX-S (manufactured by Nippon Kayaku Co., Ltd.) can also be used.
  • Examples of commercially available ⁇ -hydroxy ketone compounds include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, and IRGACURE-127 (manufactured by BASF Corporation).
  • Examples of commercially available ⁇ -amino ketone compounds include IRGACURE-907, IRGACURE-369, IRGACURE-379, and IRGACURE-379EG (manufactured by BASF AG).
  • Examples of commercially available products of the acyl phosphine compounds include IRGACURE-819 and DAROCUR-TPO (manufactured by BASF Corporation).
  • oxime compound a compound described in JP-A-2001-233842, a compound described in JP-A-2000-80068, a compound described in JP-A-2006-342166, and JP-A-2016-21012 The description etc. can be used.
  • oxime compounds examples include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2 -Acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxycarbonyloxy Examples include imino-1-phenylpropan-1-one and the like. Also, J.J. C. S. Perkin II (1979, pp. 1653-1660), J. Am. C. S.
  • TR-PBG-304 made by Changzhou Strong Electronic New Material Co., Ltd.
  • Adeka Optomer N-1919 made by ADEKA, photopolymerization initiator 2 described in JP-A-2012-14052
  • oxime compound a compound having no coloring property and / or a compound having high transparency and being hard to discolor is also preferable.
  • commercially available products include Adeka ARKules NCI-730, NCI-831, and NCI-930 (above, manufactured by ADEKA Corporation).
  • an oxime compound having a fluorene ring can also be used.
  • the oxime compound having a fluorene ring compounds described in JP-A-2014-137466 can be mentioned. This content is incorporated herein.
  • an oxime compound having a fluorine atom can also be used.
  • Specific examples of the oxime compound having a fluorine atom include the compounds described in JP-A-2010-262028, the compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A-2013-164471. And the compound (C-3) described in and the like. This content is incorporated herein.
  • an oxime compound having a nitro group can also be used as a photopolymerization initiator.
  • the oxime compound having a nitro group may be a dimer.
  • specific examples of the oxime compound having a nitro group compounds described in paragraphs 0031 to 0047 of JP 2013-114249 A, and paragraphs 0008 to 0012 and 0070 to 0079 of JP 2014-137466 A, patent 4223071 And compounds described in paragraphs [0007] to [0025] of the gazette, and Adeka ARKLS NCI-831 (manufactured by ADEKA Corporation).
  • oxime compound is not limited to the following.
  • the oxime compound is preferably a compound having an absorption maximum in a wavelength range of 350 to 500 nm, and more preferably a compound having an absorption maximum in a wavelength range of 360 to 480 nm. Moreover, the oxime compound is preferably a compound having a high absorbance at 365 nm and 405 nm. From the viewpoint of sensitivity, the molar absorption coefficient of the oxime compound at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, 5,000 to 200, More preferably, it is 000.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • photopolymerization initiators having an absorption coefficient of at least 1.0 ⁇ 10 3 mL / g cm at 365 nm in methanol, and an absorption coefficient of at most 1.0 ⁇ 10 2 mL / g cm at 365 nm in methanol, It is also preferable to use in combination with a photopolymerization initiator having an absorption coefficient of 254 nm of 1.0 ⁇ 10 3 mL / g cm or more.
  • a photopolymerization initiator having an absorption coefficient of 254 nm of 1.0 ⁇ 10 3 mL / g cm or more.
  • combined use of an ⁇ -amino ketone compound and an oxime compound can be mentioned.
  • a film having excellent curability can be produced even under low temperature conditions.
  • the photocurable composition in the pattern formation step, by exposing the photocurable composition in two steps before and after the development step, the photocurable composition can be appropriately cured by the first exposure, and the next exposure The entire photocurable composition can be substantially cured. For this reason, the curability of the photocurable composition can be improved even under low temperature conditions.
  • a bifunctional or trifunctional or higher functional compound can also be used.
  • Specific examples of such an initiator include JP-A-2010-527339, JP-A-2011-524436, International Publication WO 2015/004565, JP-A-2016-532675, paragraphs 0417 to 0412, and International Publication WO 2017
  • the dimer of the oxime compound described in paragraphs 0039 to 0055 of 033680, the compounds (E) and (G) described in JP-A-2013-522445, and WO 2016/034963 Examples thereof include Cmpd 1 to 7 described.
  • the photocurable composition preferably contains a resin.
  • the resin typically functions as a dispersant or binder.
  • the dispersant has a function of dispersing carbon black, an inorganic pigment and the like in the photocurable composition.
  • the photocurable composition may contain at least one resin selected from the group consisting of acrylic resin, phenol resin, melamine resin, epoxy resin, urea resin, unsaturated polyester resin, and alkyd resin. preferable.
  • the photocurable composition contains a colored layer described later and / or a resin of the same type as a lens described later, a layer and a colored layer of a cured film formed using the photocurable composition, and And / or the adhesion between the lens and the layer of the cured film formed using the photocurable composition is excellent.
  • the weight average molecular weight (Mw) of the resin is preferably 1,000 to 200,000, and more preferably 2,000 to 100,000.
  • the photocurable composition preferably contains a binder as a resin from the viewpoint of improving film properties.
  • the content of the binder in the photocurable composition is not particularly limited, but is preferably 5 to 90% by mass with respect to the total solid content of the photocurable composition, 10 to 60% by mass is more preferable.
  • the binder known resins can be optionally used.
  • a binder may be used individually by 1 type from these resin, and 2 or more types may be mixed and used.
  • norbornene resin can be preferably used from a viewpoint of heat resistance improvement.
  • ARTON series for example, ARTON F4520
  • JSR JSR
  • epoxy resin mer proof G-0150M, G-0105SA, G-0130SP, G-0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, and G-01758. (Epoxy group-containing polymer manufactured by NOF Corporation) can also be used.
  • an alkali-soluble resin As the binder, it is preferable to use an alkali-soluble resin as the binder.
  • an alkali-soluble resin resin which has an acidic radical is mentioned.
  • an acid group a carboxy group, a phosphoric acid group, a sulfo group, and phenolic hydroxyl group etc. are mentioned, for example, A carboxy group is preferable.
  • the alkali-soluble resin may have one type of acid group, or may have two or more types.
  • the acid value of the alkali-soluble resin is not particularly limited, but generally, 30 to 500 mg KOH / g is preferable.
  • the lower limit is more preferably 50 mg KOH / g or more, and still more preferably 70 mg KOH / g or more.
  • the upper limit is more preferably 400 mg KOH / g or less, still more preferably 200 mg KOH / g or less, particularly preferably 150 mg KOH / g or less, and most preferably 120 mg KOH / g or less.
  • the alkali soluble resin a polymer having a carboxy group in a side chain is preferable. Specifically, such as methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, and novolak resin etc.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is preferable as the alkali-soluble resin.
  • alkyl (meth) acrylates examples include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, Examples include hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • vinyl compound examples include styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinylpyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, and polymethyl methacrylate macromonomer.
  • N-substituted maleimide monomers described in JP-A-10-300922 such as N-phenyl maleimide and N-cyclohexyl maleimide can also be used.
  • These other monomers copolymerizable with (meth) acrylic acid may be only one type, or two or more types.
  • Alkali-soluble resins include benzyl (meth) acrylate / (meth) acrylic acid copolymer; benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer; benzyl (meth) acrylate / A multicomponent copolymer comprising (meth) acrylic acid / other monomers; and the like are preferable.
  • an alkali soluble resin having a polymerizable group separately from the above-described polymerizable compound It is also preferred to use Examples of the polymerizable group include (meth) allyl group and (meth) acryloyl group.
  • the alkali-soluble resin having a polymerizable group is preferably an alkali-soluble resin having a polymerizable group in the side chain.
  • alkali-soluble resin having a polymerizable group Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (containing COOH containing polyurethane acrylic oligomer. Diamond Shamrock Co., Ltd.), Biscoat R-264, KS Resist 106 (any one) Also, Osaka Organic Chemical Industry Co., Ltd., Cyclomer P series (for example, ACA 230 AA), Plaxel CF 200 series (all of which are manufactured by Daicel), Ebecryl 3800 (manufactured by Daicel Ornex), and Acrycure RD-F 8 (Nippon Catalysts Co., Ltd.) And the like.
  • Cyclomer P series for example, ACA 230 AA
  • Plaxel CF 200 series all of which are manufactured by Daicel
  • Ebecryl 3800 manufactured by Daicel Ornex
  • Acrycure RD-F 8 Nippon Catalysts Co., Ltd.
  • a monomer component containing a compound represented by the following formula (ED1) and / or a compound represented by the following formula (ED2) (hereinafter, these compounds are also referred to as “ether dimer”) is polymerized It is also preferred to include the following polymers.
  • the details of the polymer formed by polymerizing the monomer component containing an ether dimer can be referred to paragraphs 0022 to 0031 of JP-A-2015-34961, the contents of which are incorporated herein.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the description in JP-A-2010-168539 can be referred to.
  • ether dimer for example, paragraph 0317 of JP-A-2013-29760 can be referred to, and the contents thereof are incorporated herein.
  • the ether dimer may be only one type, or two or more types.
  • the alkali-soluble resin may contain a repeating unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 has a hydrogen atom or 1 to 20 carbon atoms which may contain a benzene ring.
  • Represents an alkyl group of n represents an integer of 1 to 15.
  • alkali-soluble resin As a specific example of alkali-soluble resin, the following resin is mentioned, for example. In addition, resins described in paragraph 0037 of JP-A-2015-34961 can also be mentioned. Among these resins, an alkali-soluble resin having a polymerizable group (such as a (meth) acryloyl group) is preferable from the viewpoint of solvent resistance.
  • a polymerizable group such as a (meth) acryloyl group
  • the photocurable composition preferably contains a dispersant as a resin.
  • the dispersant preferably contains at least one selected from the group consisting of an acidic resin, a basic resin, and an amphoteric resin, and at least one selected from the group consisting of an acidic resin and an amphoteric resin is More preferable.
  • an acidic resin is a resin having an acid group, and means a resin having an acid value of 5 mg KOH / g or more and an amine value of less than 5 mg KOH / g.
  • the acidic resin preferably has no basic group.
  • an acid group which acidic resin has a carboxy group, a phosphoric acid group, a sulfo group, and a phenolic hydroxy group etc. are mentioned, for example, A phosphoric acid group or a carboxy group is preferable.
  • the acid value of the acidic resin is preferably 5 to 200 mg KOH / g.
  • the lower limit is more preferably 10 mg KOH / g or more, and still more preferably 20 mg KOH / g or more.
  • the upper limit is more preferably 100 mg KOH / g or less, and still more preferably 60 mg KOH / g or less. Moreover, 2 mgKOH / g or less is preferable and, as for the amine value of acidic resin, 1 mgKOH / g or less is more preferable.
  • a basic resin is a resin having a basic group, and means a resin having an amine value of 5 mg KOH / g or more and an acid value of less than 5 mg KOH / g.
  • the basic resin preferably has no acid group.
  • an amino group is preferable.
  • the amine value of the basic resin is preferably 5 to 200 mg KOH / g, more preferably 5 to 150 mg KOH / g, and still more preferably 5 to 100 mg KOH / g.
  • an amphoteric resin is a resin having an acid group and a basic group, and means a resin having an acid value of 5 mg KOH / g or more and an amine value of 5 mg KOH / g or more.
  • the form of the acid group is the same as that of the above-mentioned acidic resin, and a carboxy group is preferable.
  • the form of the basic group is the same as that of the above basic resin, and an amino group is preferable.
  • the acid value of the amphoteric resin is preferably 5 to 200 mg KOH / g.
  • the lower limit is more preferably 10 mg KOH / g or more, still more preferably 20 mg KOH / g or more, and particularly preferably 40 mg KOH / g or more, from the viewpoint that the retention defect suppression property of the composition film is more excellent.
  • the upper limit is more preferably 150 mg KOH / g or less, and still more preferably 100 mg KOH / g or less.
  • the amine value is preferably 5 to 200 mg KOH / g.
  • the lower limit is more preferably 10 mg KOH / g or more, and still more preferably 20 mg KOH / g or more.
  • the upper limit is more preferably 150 mg KOH / g or less, and still more preferably 100 mg KOH / g or less.
  • the dispersant is a polymerizable group (preferably ethylenic unsaturated) separately from the above-mentioned polymerizable compound. It is also preferred that the compound is a compound having a bond.
  • polymer dispersants for example, resins having an amine group (polyamidoamine and salts thereof etc.), oligoimine resins, polycarboxylic acids and salts thereof, high molecular weight unsaturated acid esters, modified polyurethanes, modified polyesters, Modified poly (meth) acrylates, (meth) acrylic copolymers, and naphthalene sulfonic acid formalin polycondensates] and the like can be mentioned.
  • Polymer dispersants can be further classified into linear polymers, terminal modified polymers, graft polymers, and block polymers according to their structures.
  • the dispersant is preferably carbon black and / or a resin having a site having adsorption ability to the colorant (hereinafter, also referred to as “adsorption site”).
  • adsorption site an acid group, a urea group, a urethane group, a group having a coordinating oxygen atom, a group having a basic nitrogen atom, a heterocyclic group, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxy group, a sulfonamide
  • monovalent substituents having at least one selected from the group consisting of a group, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group.
  • the adsorption site is preferably an acid group. Among them, it is preferable that the adsorption site be at least one of a group containing a phosphorus atom and / or a carboxy group. Examples of phosphorus atom-containing groups include phosphoric acid ester groups, polyphosphoric acid ester groups, and phosphoric acid groups.
  • the details of the adsorption site can be referred to paragraphs 0073 to 0080 of JP-A-2015-34961, the contents of which are incorporated herein.
  • the dispersant is preferably a compound represented by the following formula (111).
  • R 1 represents a (m + n) -valent linking group
  • R 2 represents a single bond or a divalent linking group
  • a 1 represents an acid group, a urea group, a urethane group, a group having a coordinating oxygen atom, a group having a basic nitrogen atom, a heterocyclic group, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxy group, a sulfonamide group
  • a monovalent substituent having at least one selected from the group consisting of an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group.
  • the n A 1 and R 2 may be identical to or different from each other.
  • m represents a positive integer of 8 or less
  • n represents an integer of 1 to 9, and m + n satisfies 3 to 10.
  • P 1 represents a monovalent polymer chain.
  • the m P 1 s may be identical or different
  • a graft copolymer containing a repeating unit represented by any one of the following formulas (11) to (14) can also be used.
  • W 1 , W 2 , W 3 and W 4 each independently represent an oxygen atom or NH
  • X 1 , X 2 , X 3 , X 4 and And X 5 each independently represent a hydrogen atom or a monovalent group
  • Y 1 , Y 2 , Y 3 and Y 4 each independently represent a divalent linking group
  • Z 1 , Z 2 and Z 3 And Z 4 each independently represent a monovalent group
  • R 3 represents an alkylene group
  • R 4 represents a hydrogen atom or a monovalent group
  • n, m, p, and q each independently.
  • J represents an integer of 1 to 500; j and k each independently represent an integer of 2 to 8;
  • a plurality of R 3 s may be the same as or different from each other, and in the formula (14), when q is 2 to 500, a plurality of X 3 s 5 and R 4 may be the same or different.
  • JP 2012-255128 A the description in paragraphs [0025] to [0094] of JP 2012-255128 A can be referred to, and the above contents are incorporated in the present specification.
  • examples of the graft copolymer include the following resins.
  • the resins described in paragraphs 0072 to 0094 of JP 2012-255128 A can be mentioned, and the contents thereof are incorporated in the present specification.
  • the dispersant is also preferably an oligoimine dispersant containing a basic nitrogen atom in at least one selected from the group consisting of a main chain and a side chain.
  • the oligoimine dispersant comprises a repeating unit having a partial structure X having a functional group having a pKa of 14 or less, and a side chain containing an oligomer chain or polymer chain Y having 40 to 10,000 atoms, and a main chain and Resins having a basic nitrogen atom on at least one of the side chains are preferred.
  • the dispersant interacts with the carbon black and / or the colorant at both the nitrogen atom and the functional group having a partial structure X having a pKa of 14 or less, and the oligomer chain or polymer chain Y functions as a steric repulsive group By doing this, good dispersibility can be exhibited, and carbon black and / or colorant can be uniformly dispersed in the composition.
  • the basic nitrogen atom is not particularly limited as long as it is a nitrogen atom exhibiting basicity, but it is preferable that the resin contain a structure having a nitrogen atom of pKb14 or less, and have a nitrogen atom of pKb10 or less It is more preferred to contain a structure.
  • pKb base strength refers to pKb at a water temperature of 25 ° C., which is one of the indices for quantitatively expressing the strength of a base, and is synonymous with the basicity constant.
  • oligoimine dispersant With regard to the oligoimine dispersant, the description in paragraphs [0118] to [0190] of JP-A-2015-34961 can be referred to, and the above contents are incorporated herein. As specific examples of the oligoimine dispersant, for example, the following resins or the resins described in paragraphs 0169 to 0190 of JP-A-2015-34961 can be used.
  • dispersants examples include Solsperse 36000 and 41000 (all manufactured by Lubrizol): Light Ester P-1M, and Light Ester P-2M (all manufactured by Kyoeisha Chemical Co., Ltd.).
  • pigment dispersants described in paragraphs 0041 to 0130 of JP-A-2014-130338 can also be used, the contents of which are incorporated herein.
  • the dispersants can be used alone or in combination of two or more.
  • the dispersant it is also possible to use the resin described for the binder described above. Further, as the dispersant, a resin having a refractive index of 1.5 or less for light of wavelength 589 nm may be used.
  • the content of the dispersant in the photocurable composition is not particularly limited, but from the viewpoint of pattern shape and adhesion, the total solid content of the photocurable composition
  • the amount is 1 to 80% by mass. 70 mass% or less is more preferable, and, as for the upper limit, 60 mass% or less is still more preferable.
  • the lower limit is more preferably 1.5% by mass or more, further preferably 2% by mass or more.
  • the content of the dispersant is preferably 1 to 100 parts by mass with respect to 100 parts by mass in total of carbon black and the colorant.
  • the upper limit is more preferably 65 parts by mass or less.
  • the lower limit is preferably 2.5 parts by mass or more, and more preferably 5 parts by mass or more.
  • the photocurable composition may contain each type of surfactant from the viewpoint of further improving the coating suitability.
  • the surfactant may, for example, be a nonionic surfactant, a cationic surfactant, or an anionic surfactant, and may be a silicone surfactant, a fluorochemical surfactant or the like.
  • the liquid properties in particular, the flowability
  • the uniformity of the coating thickness and / or the liquid saving property are further improved. It can be improved.
  • the content of fluorine in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass.
  • the fluorine-based surfactant having a fluorine content in this range is effective in terms of uniformity of the thickness of the coating film and / or liquid saving property, and the solubility in the photocurable composition is also good. is there.
  • fluorine-based surfactant examples include surfactants described in paragraphs 0060 to 0064 of JP-A-2014-41318 (paragraphs 0060 to 0064 of corresponding international publication WO 2014/17669) and the like, The surfactants described in paragraphs 0117 to 0132 of the publication No. 2011-132503 can be mentioned, the contents of which are incorporated herein.
  • the fluorine-based surfactant is a molecular structure having a functional group containing a fluorine atom, and an acrylic compound in which a portion of the functional group containing a fluorine atom is cleaved when heat is applied to volatilize the fluorine atom is also preferable. It can be used.
  • a fluorochemical surfactant Megafuck DS series (Chemical Chemical Daily, February 22, 2016) manufactured by DIC Corporation (Nikkei Sangyo Shimbun, February 23, 2016), for example, Megafuck DS -21 can be mentioned, and these can also be used.
  • block polymers can also be used.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy and propyleneoxy) (meth)
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be used.
  • the following compounds are also exemplified as fluorosurfactants that can be used in the present invention.
  • the weight average molecular weight of the above-mentioned compounds is preferably 3,000 to 50,000, for example, 14,000.
  • The% indicating the proportion of repeating units is mass%.
  • fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated group in the side chain can also be used.
  • fluorine-based surfactant compounds described in paragraphs 0050 to 0090 and paragraphs 0289 to 0295 of JP 2010-164965 A, Megaface RS-101, RS-102, RS-718K, and RS- manufactured by DIC Corporation 72-K and the like.
  • fluorine-based surfactant compounds described in paragraphs 0015 to 0158 of JP-A-2015-117327 can also be used.
  • silicone surfactants include: Toray silicone DC3PA, Toray silicone SH7PA, Toray silicone DC11PA, Toray silicone SH21PA, Toray silicone SH28PA, Toray silicone SH29PA, Toray silicone SH30PA, and Toray silicone SH8400 (above, Toray Dow Corning Products, TSF-4440, TSF-4300, TSF-4445, TSF-4460, and TSF-4452 (above, Momentive Performance Materials Inc.), KP341, KF6001, and KF6002 (above, Shin-Etsu Silicone) And BYK 307, BYK 323, and BYK 330 (above, manufactured by Big Chemie Co., Ltd.), and the like.
  • the photocurable composition preferably contains a solvent.
  • the content of the solvent in the photocurable composition is not particularly limited, but it is preferably 5 to 90% by mass with respect to the total mass of the photocurable composition.
  • the solvents may be used alone or in combination of two or more.
  • the solvent is not particularly limited, and water, an organic solvent, or a mixture thereof can be used.
  • the organic solvent include esters, ethers, ketones, and aromatic hydrocarbons.
  • the description in paragraph 0223 of International Publication WO 2015/166779 can be referred to, the contents of which are incorporated herein.
  • ester solvents substituted with a cyclic alkyl group and ketone solvents substituted with a cyclic alkyl group can also be used.
  • organic solvent examples include acetone, methyl ethyl ketone, cyclohexane, ethyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, acetylacetone , Cyclohexanone, cyclohexyl acetate, cyclopentanone, diacetone alcohol, ethylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether acetate, 3-methoxypropanol, methoxymethoxyethanol, diethylene glycol Tylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether,
  • 3-methoxy-N, N-dimethylpropanamide and 3-butoxy-N, N-dimethylpropanamide are also preferable from the viewpoint of solubility improvement.
  • These organic solvents can be used alone or in combination.
  • aromatic hydrocarbons benzene, toluene, xylene, ethylbenzene etc.
  • 50 mass ppm relative to the total amount of organic solvents hereinafter, it can be 10 mass ppm or less, or 1 mass ppm or less).
  • a solvent having a low metal content it is preferable to use a solvent having a low metal content.
  • the metal content of the solvent is, for example, preferably 10 parts by weight or less. If necessary, mass ppt (parts per trillion) level may be used. Examples of the method for removing impurities such as metal from the solvent include distillation, filtration, and a combination thereof.
  • the photocurable composition may contain a compound having an epoxy group separately from the above-described polymerizable compound.
  • the cured film formed by the photocurable composition containing the compound having an epoxy group has more excellent solvent resistance.
  • examples of compounds having an epoxy group include monofunctional or polyfunctional glycidyl ether compounds and polyfunctional aliphatic glycidyl ether compounds.
  • compounds having an alicyclic epoxy group can also be used.
  • the compound which has one or more epoxy groups in 1 molecule is mentioned.
  • the number of epoxy groups is preferably 1 to 100 in one molecule.
  • the upper limit may be, for example, 10 or less, or 5 or less.
  • the lower limit is preferably 2 or more.
  • the compound having an epoxy group may be a low molecular weight compound (for example, having a molecular weight of less than 1000) or a macromolecular compound (for example, having a molecular weight of 1000 or more, and in the case of a polymer, a weight average molecular weight of 1000 or more).
  • the weight average molecular weight of the compound having an epoxy group is preferably 200 to 100,000, and more preferably 500 to 50,000.
  • the upper limit of the weight average molecular weight is preferably 10000 or less, more preferably 5000 or less, and still more preferably 3000 or less.
  • the compound having an epoxy group is preferably an aliphatic epoxy resin from the viewpoint of solvent resistance.
  • the content of the compound having an epoxy group in the photocurable composition is not particularly limited, but relative to the total solid content of the photocurable composition 0.1 to 40% by mass is preferable.
  • the lower limit is, for example, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more.
  • the upper limit is, for example, more preferably 30% by mass or less and still more preferably 10% by mass or less.
  • the photocurable composition may contain an adhesion agent other than the above-described polymerizable compound from the viewpoint that the undercut resistance of the composition film is excellent.
  • the adhesion agent is not particularly limited, and known adhesion agents can be used.
  • As an adhesive agent a silane coupling agent is mentioned, for example.
  • the content of the adhesive in the photocurable composition is not particularly limited, but generally 0.01 to 10% by mass is preferable with respect to the total solid content of the photocurable composition.
  • the adhesion agent may be used alone or in combination of two or more. When two or more adhesion agents are used in combination, the total content is preferably within the above range.
  • a silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • the hydrolyzable group is a substituent which is directly bonded to a silicon atom and can form a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction.
  • a hydrolysable group a halogen atom, an alkoxy group, an acyloxy group etc. are mentioned, for example, An alkoxy group is preferable.
  • the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • functional groups other than a hydrolysable group have a group which interacts with resin, or forms a bond and shows affinity.
  • the silane coupling agent is preferably a compound having an alkoxysilyl group, and at least one of a (meth) acryloyl group and an epoxy group.
  • the number of carbon atoms of the alkoxy group in the alkoxysilyl group is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1 or 2.
  • the alkoxysilyl groups are preferably two or more, and more preferably two or three in the same molecule.
  • silane coupling agent a compound described in paragraphs 0018 to 0036 of JP2009-288703A, a compound described in paragraphs 0056 to 0066 of JP2009-242604A, and JP2009-288703A,
  • the compounds can be used in paragraphs 0011 to 0037 of the publication, the contents of which are incorporated herein.
  • the photocurable composition may contain a UV absorber.
  • the UV absorber is preferably a conjugated diene compound, and more preferably a compound represented by the following formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 1 and R 2 represent They may be identical to or different from each other, but do not simultaneously represent a hydrogen atom.
  • the content of the ultraviolet light absorber in the photocurable composition is not particularly limited, but in general, 0.1 to 10% by mass is preferable based on the total solid content of the photocurable composition.
  • the ultraviolet absorber may be used alone or in combination of two or more. When two or more types of ultraviolet light absorbers are used in combination, the total content is preferably in the above range.
  • UV absorber Uvinal A (manufactured by BASF) can also be used.
  • ultraviolet absorbers such as aminodiene compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, and triazine compounds can be used. Specific examples thereof include compounds described in JP-A-2013-68814. Can be mentioned.
  • benzotriazole compound MYUA series (Chemical Industry Daily, February 1, 2016) manufactured by Miyoshi Yushi may be used.
  • the photocurable composition may contain, in addition to the above, a polymerization inhibitor, a coloring inhibitor, a chain transfer agent, a sensitizer and the like.
  • a polymerization inhibitor such as polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, poly(ethylene glycol)-2-diol dimethacrylate, terpolymer, terpolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer,
  • the photocurable composition is prepared by mixing the above-mentioned components by a known mixing method (for example, a mixing method using a stirrer, a homogenizer, a high pressure emulsifying device, a wet grinder, a wet disperser (for example, bead mill), etc.)
  • a known mixing method for example, a mixing method using a stirrer, a homogenizer, a high pressure emulsifying device, a wet grinder, a wet disperser (for example, bead mill), etc.
  • carbon black etc. can be finely divided in a short time uniformly, and a colorant dispersion having more excellent temporal stability can be obtained when heating the colorant dispersion in the colorant dispersion step described later It is preferred to use a bead mill.
  • the method for producing a photocurable composition preferably comprises the step of dispersing carbon black in advance.
  • the step of dispersing the carbon black it is preferable to obtain a dispersion by mixing the carbon black with the above-described solvent, dispersant, pigment derivative and the like.
  • the colorant is preferably dispersed in the same manner.
  • the colorant may be dispersed together with the carbon black, or may be dispersed separately from the carbon black to produce a dispersion of the colorant. Such a process is called a dispersion process.
  • the liquid temperature of the dispersion is not particularly limited, but in general, the liquid temperature is preferably maintained at 0 to 70 ° C.
  • the liquid temperature of the dispersion liquid is more preferably maintained at 5 ° C. or higher, and is maintained at 15 ° C. or higher, since water is less likely to be mixed into the dispersion from outside (for example, in the air). It is further preferable that the temperature be maintained at 30.degree. C. or more.
  • the liquid temperature of the dispersion is more preferably maintained at less than 60 ° C., and kept at 55 ° C.
  • the temperature be kept at 50.degree. C. or less.
  • the photocurable composition obtained also has the superior temporal stability, it is preferable.
  • the dispersion step when the liquid temperature of the dispersion liquid is maintained at 23 ° C. or higher, the wettability of the organic solvent to the carbon black surface is improved, and the homogenization of the solvent also easily progresses.
  • the dispersion contains a dispersant, the resin is more easily adsorbed to carbon black, so that the treatment time is shortened, and the obtained dispersion has more excellent temporal stability.
  • a filter for the purpose of removing foreign substances and / or reducing defects.
  • Any filter may be used without particular limitation as long as it is conventionally used for filtration applications and the like.
  • a filter made of a fluorine resin such as PTFE (polytetrafluoroethylene), a polyamide resin such as nylon, and a polyolefin resin (including high density and ultrahigh molecular weight) such as polyethylene and polypropylene (PP) may be mentioned.
  • PTFE polytetrafluoroethylene
  • nylon such as nylon
  • PP polypropylene
  • polypropylene including high density polypropylene
  • nylon is preferable.
  • the pore size of the filter is preferably 0.1 to 7.0 ⁇ m, more preferably 0.2 to 2.5 ⁇ m, still more preferably 0.2 to 1.5 ⁇ m, and particularly preferably 0.3 to 0.7 ⁇ m.
  • different filters may be combined.
  • the filtering with the first filter may be performed only once or may be performed twice or more.
  • the second and subsequent pore sizes be the same or larger than the pore size of the first filtering.
  • the pore size here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter it is possible to select from, for example, various filters provided by Nippon Pall Co., Advantec Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or Kitz Micro Filter Co., Ltd.
  • the second filter can be formed of the same material as the first filter described above.
  • the pore size of the second filter is preferably 0.2 to 10.0 ⁇ m, more preferably 0.2 to 7.0 ⁇ m, and still more preferably 0.3 to 6.0 ⁇ m.
  • the photocurable composition of the present invention does not contain impurities such as metals, metal salts containing halogen, acids, and alkalis.
  • the content of the impurities contained in these materials is preferably 1 mass ppm or less, more preferably 1 mass ppb or less, still more preferably 100 mass ppt or less, particularly preferably 10 mass ppt or less (not substantially contained) It is most preferable to be below the detection limit of the measuring device.
  • the above impurities can be measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Inc., Agilent 7500cs type).
  • the photocurable composition may be temporarily stored in a container until use.
  • the container for storing the photocurable composition is not particularly limited, and known containers can be used.
  • a container for storing the above-mentioned photocurable composition a container having a high degree of cleanliness in the container and little elution of impurities is preferable.
  • containers for applications commercially available for semiconductor applications may be used.
  • Specific examples of usable containers include, but are not limited to, “Clean Bottle” series manufactured by Icero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Industry, and the like.
  • a multilayer bottle in which the inner wall of the container has a six-layer structure with six resins
  • a multilayer bottle in which the inner wall of the container has a seven-layer structure with six resins.
  • these containers include the containers described in JP-A-2015-123351.
  • the photocurable composition layer (composition layer) formed using the photocurable composition can be cured to obtain a cured film.
  • limit especially as a manufacturing method of a cured film
  • each process is demonstrated.
  • a photocurable composition layer formation process is a process of forming a photocurable composition layer (composition layer) using the above-mentioned photocurable composition.
  • a process of forming a composition layer using a photocurable composition the process of apply
  • the type of the substrate is not particularly limited. However, when used as a solid-state imaging device, for example, a silicon substrate can be mentioned, and when used as a color filter (including a color filter for solid-state imaging device), a glass substrate can be mentioned.
  • the photocurable composition on the substrate for example, various coating methods such as spin coating, slit coating, inkjet method, spray coating, spin coating, cast coating, roll coating, and screen printing method Can be mentioned.
  • the photocurable composition applied on the substrate is usually dried at 70 to 150 ° C. for about 1 to 4 minutes to form a composition layer.
  • the composition layer formed in the step of forming a photocurable composition layer is exposed by irradiation with an actinic ray or radiation to cure the composition layer irradiated with light.
  • the light irradiation method is not particularly limited, but it is preferable to perform light irradiation through a photomask having a pattern-like opening.
  • the exposure is preferably performed by irradiation with radiation, and as radiation which can be used for exposure, ultraviolet rays such as g-line, h-line or i-line are particularly preferable, and a high pressure mercury lamp is preferable as a light source.
  • the irradiation intensity is preferably 5 ⁇ 1500mJ / cm 2, more preferably 10 ⁇ 1000mJ / cm 2.
  • the composition layer may be heated in the exposure step.
  • the heating temperature is not particularly limited, but 80 to 250 ° C. is preferable.
  • the heating time is not particularly limited, but preferably 30 to 300 seconds.
  • the composition layer is heated in the exposure step, it may also serve as a post-heating step described later. In other words, in the case of heating the composition layer in the exposure step, the method for producing a cured film may not include the post-heating step.
  • development processing is performed to elute a light non-irradiated portion in the exposure step into a developer. This leaves only the light-cured portion.
  • An alkaline developer may be used as the developer. In that case, it is preferable to use an organic alkali developer.
  • the development temperature is preferably 20 to 30 ° C., and the development time is preferably 20 to 90 seconds.
  • an aqueous alkali solution alkali developer
  • an inorganic alkali developer and an organic alkali developer can be mentioned.
  • an alkaline compound such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, sodium borate or sodium metaborate is used at a concentration of 0.001 to 10% by mass (preferably). And an alkaline aqueous solution dissolved to have a content of 0.005 to 0.5% by mass).
  • an organic alkali developing solution ammonia water, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, choline ,
  • An alkaline compound such as pyrrole, piperidine, or 1,8-diazabicyclo- [5,4,0] -7-undecene, in a concentration of 0.001 to 10% by mass (preferably 0.005 to 0.5%) % Aqueous solution dissolved to be%).
  • a water-soluble organic solvent such as methanol or ethanol
  • a surfactant may be added to the alkaline aqueous solution.
  • the developing solution which consists of such aqueous alkali solution
  • the cured film is wash
  • the photocurable composition layer uses a resin other than an alkali-soluble resin
  • an organic developer as the developer.
  • the organic developer include polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents, and hydrocarbon solvents.
  • the development temperature is preferably 20 to 30 ° C., and the development time is preferably 20 to 90 seconds.
  • the rinse liquid include polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents, and hydrocarbon solvents.
  • the manufacturing method of a cured film may contain another process.
  • the surface treatment process of a base material, a preheating process (prebaking process), and a postheating process (postbaking process) etc. are mentioned, for example.
  • a method for producing the cured film it is preferable to include a step of heating the composition layer after exposure (post-heating step) between the exposure step and the development step.
  • the heating temperature in the preheating step and the postheating step is preferably 80 to 250 ° C.
  • the upper limit is more preferably 200 ° C. or less, and still more preferably 150 ° C. or less.
  • the lower limit is more preferably 90 ° C. or more.
  • the heating time in the preheating step and the postheating step is preferably 30 to 300 seconds.
  • the upper limit is more preferably 240 seconds, and still more preferably 180 seconds or less.
  • the lower limit is more preferably 60 seconds or more.
  • the cured film obtained from the photocurable composition of the present invention can be used, for example, as a light attenuating layer.
  • Such light attenuating layers are preferably used as laminates.
  • a laminate having a light attenuating layer for example, it is possible to improve the dynamic range of the solid-state imaging device and to improve the color reproducibility.
  • a laminate having a light attenuating layer formed from the photocurable composition of the present invention will be described.
  • the light attenuating layer is a layer having a function of attenuating incident light and transmitting attenuated light.
  • the method for attenuating the incident light is not particularly limited, but includes a method for absorbing the incident light, a method for reflecting the incident light, and a combination thereof, and the effect of improving the dynamic range and a better effect, and From the viewpoint of obtaining a laminate having an effect of improving color reproducibility, a method of absorbing incident light is preferable. That is, the light attenuating layer is preferably a layer having a function of absorbing a part of the incident light.
  • Attenuation characteristic of the light of the light attenuating layer is preferably a difference [Delta] T 1 of the maximum value and the minimum value of the transmittance of light in the wavelength range of 400 ⁇ 700 nm is not more than 11.0%.
  • the method of measuring the difference ⁇ T 1 is as described in the examples.
  • the difference ⁇ T 1 can also be adjusted by the composition of the photocurable composition, or can be adjusted by the thickness of the light attenuating layer.
  • the thickness of the light attenuating layer is not particularly limited, but in general, 0.1 to 1.0 ⁇ m is preferable.
  • the difference [Delta] T 1 of the maximum value and the minimum value of the transmittance of light in the wavelength range of 400 ⁇ 700 nm is equal to or less than 7.0%.
  • the minimum value of the difference ⁇ T 1 is not particularly limited, but in general, 0% or more is preferable.
  • the difference ⁇ T 2 between the maximum value and the minimum value of the light transmittance of the light attenuation layer in the wavelength region of 700 to 1000 nm is not particularly limited, but a difference ⁇ T is obtained in that a laminate having more excellent effects can be obtained 1 is preferably 11.0% or less, and the difference ⁇ T 2 is more preferably 7.0% or less. If the difference ⁇ T 2 is 11.0% or less, an image having better color reproducibility can be obtained when the solid-state imaging device having a light attenuating layer described later has an infrared ray transmitting layer.
  • the transmittance of light having a wavelength of 550 nm of the light attenuating layer is not particularly limited, but the solid-state imaging device has a better dynamic range, and in the obtained image, a phenomenon called "whiteout" occurs more In view of difficulty, it is preferably 5.0 to 75.0%, and more preferably 5.0 to 20.0%.
  • permeability is as having described in the Example.
  • the transmittance of light of wavelength 550 nm of the light attenuation layer can be adjusted by the material and thickness of the light attenuation layer.
  • the light attenuating layer preferably further contains a colorant different from carbon black. That is, when forming a light attenuating layer, it is also preferable that the photocurable composition of the present invention further contains a colorant different from carbon black.
  • the light attenuating layer is preferably laminated with the colored layer to constitute a laminate.
  • the colored layer is more preferably at least one selected from the group consisting of a green colored layer, a red colored layer, a blue colored layer, a cyan colored layer, a magenta colored layer, and a yellow colored layer.
  • FIG. 1 is a schematic cross-sectional view of a unit pixel 10 in a typical solid-state image sensor having a laminate.
  • the unit pixel 10 has a first stacked body 14 in which a colored layer 12 and a light attenuating layer 13 having predetermined optical characteristics are stacked.
  • the lens 11 and the first stacked body 14 are disposed on the substrate 15 in order from the light incident direction (arrow L in the drawing).
  • the first photoelectric conversion unit 16 is formed on the substrate 15.
  • a cover glass or the like is stacked on the upper side of the lens 11, and a wiring layer, a support substrate, and the like are stacked on the lower side of the substrate 15.
  • the difference [Delta] T 1 of the maximum value and the minimum value of the transmittance of light in the wavelength range of 400 ⁇ 700 nm of the light attenuating layer 13 is preferably not more than 11.0%. Therefore, the intensity of the light incident on the first photoelectric conversion unit is uniformly reduced in the wavelength range of 400 to 700 nm, and the light incident on the first photoelectric conversion unit is transmitted through the light attenuating layer 13 before and after transmission. The spectrum at a wavelength of 400 to 700 nm hardly changes. Therefore, the image obtained by the solid-state imaging device having the unit pixel 10 has excellent color reproducibility.
  • ⁇ T 1 7.0% or less is preferable.
  • the lower limit value of ⁇ T 1 is not particularly limited, but in general, 0% or more is preferable.
  • FIG. 2 is a view showing an example of a combination of unit pixels in a solid-state imaging device having a laminate according to an embodiment of the present invention.
  • the unit pixel 20 has a second stacked body 22 and a lens 11-2 formed on the substrate 15 common to the unit pixel 10.
  • the second laminate 22 is a laminate of a colored layer 12 and a transparent layer 21.
  • a second photoelectric conversion unit 23 is formed below the second stacked body 22 in the substrate 15. In FIG. 2, the amount of light entering the second photoelectric conversion unit 23 is greater than the amount of light entering the first photoelectric conversion unit 16. Accordingly, the solid-state imaging device having the combination of unit pixels in FIG. 2 has an expanded dynamic range.
  • the solid-state imaging device is not limited to the above.
  • the area of the unit pixel 10 having the first photoelectric conversion unit may be smaller than the area of the unit pixel 20 having the second photoelectric conversion unit.
  • the amount of light incident on the first photoelectric conversion unit 16 is smaller than the amount of light incident on the second photoelectric conversion unit 23, so the solid-state imaging device having such a combination of unit pixels is dynamic Range is expanded more.
  • the lens 11-1 is disposed on the first photoelectric conversion unit 16, but the solid-state imaging device according to the embodiment of the present invention is not limited to the above.
  • the unit pixel 10 having the first photoelectric conversion unit may not have the lens 11-1.
  • the light incident on the first photoelectric conversion unit 16 is not collected by the lens, and as a result, the light amount incident on the first photoelectric conversion unit 16 is the light amount incident on the second photoelectric conversion unit 23
  • the dynamic range is further expanded.
  • FIG. 3 shows another example of a combination of unit pixels in a solid-state imaging device having a laminate according to an embodiment of the present invention.
  • three unit pixels 10-1 to 10-3 having the same configuration as unit pixel 10 described in FIG. 1 and a unit pixel 20-having the same configuration as unit pixel 20 described in FIG. 2.
  • a total of six unit pixels of 1 to 20-3 are arranged in parallel.
  • the colored layer 12-1 in the unit pixel 10-1 is a red colored layer (in other words, the unit pixel 10-1 is a red pixel). That is, the first stacked body 14-1 in the unit pixel 10-1 is formed by stacking the red colored layer 12-1 and the light attenuating layer 13.
  • the colored layer 12-2 is a green coloring layer (the unit pixel 10-2 is a green pixel). That is, the first stacked body 14-2 in the unit pixel 10-2 is formed by stacking the green colored layer 12-2 and the light attenuating layer 13.
  • the colored layer 12-3 is a blue colored layer (the unit pixel 10-3 is a blue pixel). That is, the first stacked body 14-3 in the unit pixel 10-3 is formed by stacking the blue colored layer 12-3 and the light attenuating layer 13.
  • the colored layer 12-4 in the unit pixel 20-1 is a red colored layer. That is, the second stacked body 22-1 in the unit pixel 20-1 is a stack of the red colored layer 12-4 and the transparent layer 21.
  • the colored layer 12-5 in the unit pixel 20-2 is a green colored layer. That is, the second stacked body 22-2 in the unit pixel 20-2 is a stack of the green colored layer 12-5 and the transparent layer 21.
  • the colored layer 12-6 in the unit pixel 20-3 is a blue colored layer. That is, the second stacked body 22-3 in the unit pixel 20-3 is a stack of the blue colored layer 12-6 and the transparent layer 21.
  • the red colored layer 12-1 and the red colored layer 12-4, the green colored layer 12-2 and the green colored layer 12-5, and the blue colored layer 12-3 and the blue colored layer 12-4 are respectively identical.
  • the first stacked body 14 and the second stacked body 22 are disposed on a common substrate 15, and the lenses 11 are stacked in the light incident direction (L direction in the drawing).
  • a first photoelectric conversion unit is disposed on the substrate 15 below the first stacked body 14 of the unit pixel 10.
  • a second photoelectric conversion unit is disposed on the substrate 15 under the second stacked body 22 of the unit pixel 20. According to the arrangement of the unit pixels, the incident light entering the first photoelectric conversion unit is attenuated by the light attenuation layer 13, and the dynamic range of the solid-state imaging device is expanded.
  • the intensity of light entering the first photoelectric conversion unit uniformly decreases at each wavelength, and enters the first photoelectric conversion unit.
  • the light hardly changes its spectrum at a wavelength of 400 to 700 nm before and after passing through the light attenuating layer 13.
  • the image obtained by the solid-state imaging device having a combination of unit pixels 10-1 to 10-3 and unit pixels 20-1 to 20-3 has better color reproducibility.
  • FIG. 4 shows a modified example of the combination of unit pixels in FIG. That is, the stacking order of the colored layers 12-1 to 12-3 and the light attenuating layer 13 in the first stacked body 14, and the colored layers 12-4 to 12-6 and the transparent layer 21 in the second stacked body 22. Except for the stacking order, it is the same as FIG. The same effect can be obtained also in a solid-state imaging device having a combination of the above unit pixels.
  • FIG. 5 shows another example of the combination of unit pixels in the solid-state imaging device having the laminate according to the embodiment of the present invention. 5, three unit pixels 10-4 to 10-6 having the same configuration as unit pixel 10 described in FIG. 1 and a unit pixel 20- having the same configuration as unit pixel 20 described in FIG. A total of three unit pixels of 4 to 20-6 are arranged in parallel.
  • the colored layer 12-7 in the unit pixel 10-4 is a cyan colored layer (the unit pixel 10-4 is a cyan pixel). That is, the first stacked body 14-4 in the unit pixel 10-4 is formed by stacking the cyan colored layer 12-7 and the light attenuating layer 13.
  • the colored layer 12-8 in the unit pixel 10-5 is a magenta colored layer (the unit pixel 10-5 is a magenta pixel). That is, the first stacked body 14-5 in the unit pixel 10-5 is a stack of the magenta colored layer 12-8 and the light attenuating layer 13.
  • the coloring layer 12-9 is a yellow coloring layer (the unit pixel 10-6 is a yellow pixel). That is, the first stacked body 14-6 in the unit pixel 10-6 is a stack of the yellow colored layer 12-9 and the light attenuating layer 13.
  • the colored layer 12-10 in the unit pixel 20-4 is a cyan colored layer. That is, the second stacked body 22-4 in the unit pixel 20-4 is a stack of the cyan colored layer 12-10 and the transparent layer 21.
  • the colored layer 12-11 in the unit pixel 20-5 is a magenta colored layer. That is, the second stacked body 22-5 in the unit pixel 20-5 is a stack of the magenta colored layer 12-11 and the transparent layer 21.
  • the colored layer 12-12 in the unit pixel 20-6 is a yellow colored layer. That is, the second stacked body 22-6 in the unit pixel 20-6 is a stack of the yellow colored layer 12-12 and the transparent layer 21.
  • the cyan colored layer 12-7 and the cyan colored layer 12-10, the magenta colored layer 12-8 and the magenta colored layer 12-11, and the yellow colored layer 12-9 and the yellow colored layer 12-12 are Each is the same.
  • the first stacked body 14 and the second stacked body 22 are disposed on a common substrate 15, and the lenses 11 are stacked in the light incident direction (L direction in the drawing).
  • a first photoelectric conversion unit is disposed on the substrate 15 below the first stacked body 14 of the unit pixel 10.
  • a second photoelectric conversion unit is disposed on the substrate 15 under the second stacked body 22 of the unit pixel 20. According to the arrangement of the unit pixels, the incident light entering the first photoelectric conversion unit is attenuated by the light attenuation layer 13, and the dynamic range of the solid-state imaging device is expanded.
  • the intensity of light entering the first photoelectric conversion unit uniformly decreases at each wavelength, and enters the first photoelectric conversion unit.
  • the light hardly changes its spectrum at a wavelength of 400 to 700 nm before and after passing through the light attenuating layer 13.
  • the image obtained by the solid-state imaging device having a combination of unit pixels 10-4 to 10-6 and unit pixels 20-4 to 20-6 has better color reproducibility.
  • FIG. 6 shows a modified example of the combination of unit pixels in FIG. That is, the stacking order of the colored layers 12-8 to 12-10 and the light attenuating layer 13 in the first stacked body 14, and the stacking order of the colored layers 12-11 to 13 and the transparent layer 21 in the second stacked body 22. Except as in FIG. The same effect can be obtained also in a solid-state imaging device having a combination of the above unit pixels.
  • FIG. 7 shows another example of the combination of unit pixels in the solid-state imaging device having the laminate according to the embodiment of the present invention.
  • FIG. 7 shows the combination of the unit pixels described in FIG. 3 with the unit pixel 10-70 having the infrared ray transmitting layer and the unit pixel 20-70.
  • an infrared ray transmitting layer 12-70, a light attenuating layer 13, and a lens 11-7 are stacked on a substrate 15.
  • an infrared ray transmitting layer 12-71, a transparent layer 21, and a lens 11-8 are stacked on the substrate 15.
  • a first photoelectric conversion unit is formed on the substrate 15, and in the unit pixel 20-70, a second photoelectric conversion unit is formed on the substrate 15.
  • the difference [Delta] T 2 of the maximum value and the minimum value of the transmittance of light wavelength range of 700 ⁇ 1000 nm of the light attenuating layer 13 is preferably not more than 11.0%.
  • the obtained image has better color reproducibility even in the region of 700 to 1000 nm detected by the unit pixel 10-70 and the unit pixel 20-70.
  • FIG. 8 shows another example of a combination of unit pixels in a solid-state imaging device having a laminate according to an embodiment of the present invention.
  • 4 ⁇ 4 16 unit pixels 80 are arranged.
  • the unit pixel 80 is either a unit pixel 10 or a unit pixel 20.
  • the color of each colored layer 12 in the unit pixel 80 is represented by R (red), G (green), B (blue) in the figure, and has a Bayer arrangement. That is, the coloring layer 12 of a unit pixel 80 of R in the figure is a red coloring layer, the coloring layer 12 of a unit pixel 80 of B is a blue coloring layer, and the coloring layer 12 of a unit pixel 80 of G is It is a green colored layer.
  • positioning of a colored layer was described taking the Bayer arrangement
  • FIG. 9 shows another example of a combination of unit pixels in a solid-state imaging device having a laminate according to an embodiment of the present invention.
  • a plurality of unit pixels 90 and a plurality of unit pixels 91 are arranged in a two-dimensional array.
  • FIG. 10 shows an AA ′ sectional view of FIG.
  • the unit pixel 91 includes the first stacked body 14 on the substrate 15, and the first stacked body 14 is configured by stacking the light attenuating layer 13 and the colored layer 12.
  • the unit pixel 90 has the second stacked body 22 on the substrate 15, and the second stacked body 22 is configured by stacking the transparent layer 21 and the colored layer 12.
  • the first photoelectric conversion unit 16 is formed on the substrate 15 of the unit pixel 91
  • the second photoelectric conversion unit 23 is formed on the substrate 15 of the unit pixel 90.
  • the lens 11 is disposed only in the unit pixel 90 and not disposed in the unit pixel 91. As a result, light is incident on the first photoelectric conversion unit 16 without being collected, so the dynamic range of the solid-state imaging device is further expanded.
  • the unit pixel 91 is formed in a quadrilateral shape, which is a square shape in the illustrated example, and in FIG. 10, the unit pixel 90 is an octagon or circumscribed four corners of the quadrangular pixel 91.
  • the shape is close to a circle, and in the example shown, it is formed in a regular octagon.
  • the area of the unit pixel 91 is smaller than the area of the unit pixel 90, and the amount of light incident on the unit pixel 91 is smaller than the amount of light incident on the unit pixel 90. .
  • the dynamic range of the solid-state imaging device is further expanded.
  • Examples of the colored layer included in the laminate of the solid-state imaging device described above include a green colored layer, a red colored layer, a blue colored layer, a cyan colored layer, a magenta colored layer, and a yellow colored layer. These colored layers can be used alone or in combination of two or more. Among them, a mode in which at least two or more selected from the group consisting of a green colored layer, a red colored layer, and a blue colored layer are used in combination is preferable, and a mode in which the above three types are used in combination is more preferable. Moreover, the form used combining at least 2 or more types selected from the group which consists of a cyan color layer, a magenta color layer, and a yellow color layer is also preferable, and the form used combining said 3 types is more preferable.
  • the wavelength at which the transmission spectrum of the red pixel (that is, the red colored layer used therefor) reaches a maximum is not particularly limited, but generally 575 nm is preferable, 575 to 670 nm is more preferred.
  • the wavelength at which the transmission spectrum of the green pixel (that is, the green colored layer used therefor) reaches a maximum is not particularly limited, but in general, it is from 480 nm to less than 575 nm. Is preferred.
  • the wavelength at which the transmission spectrum of the blue pixel (that is, the blue coloring layer used therein) is maximal is not particularly limited, but less than 480 nm is preferable, and 400 nm or more And less than 480 nm are more preferable.
  • the wavelength at which the absorption spectrum of the cyan pixel (that is, the cyan colored layer used therein) is maximal is not particularly limited, but in general, More than 580 nm and less than or equal to 700 nm are preferred.
  • the wavelength at which the absorption spectrum of the magenta pixel (that is, the magenta colored layer used therein) is maximal is not particularly limited, but in general, 500 to 580 nm is preferred.
  • the wavelength at which the absorption spectrum of the yellow pixel (that is, the yellow colored layer used therein) is maximized is not particularly limited, but generally 350 nm or more And less than 500 nm are preferable.
  • the thickness of the colored layer is not particularly limited. For example, 100 micrometers or less are preferable, 15 micrometers or less are more preferable, 5 micrometers or less are still more preferable, and 1 micrometer or less is especially preferable.
  • the thickness of each layer may be the same or different.
  • the colored layer is typically formed using a composition for forming a colored layer.
  • the composition for forming a colored layer preferably contains a chromatic coloring agent.
  • the chromatic coloring agent may be a pigment or a dye. Examples of chromatic colorants include the above-mentioned chromatic dyes and chromatic pigments.
  • the content of the chromatic coloring agent is preferably 0.1 to 70% by mass with respect to the total solid content of the composition for forming a colored layer. 0.5 mass% or more is preferable, and, as for a lower limit, 1.0 mass% or more is more preferable. 60 mass% or less is preferable, and, as for the upper limit, 50 mass% or less is more preferable.
  • the pigment contained in the colored layer is not particularly limited, and known pigments can be used.
  • the pigments may be used alone or in combination of two or more.
  • Examples of the pigment contained in the colored layer include red colorants, blue colorants, yellow colorants, green colorants, purple colorants, and combinations thereof.
  • a red coloring agent is a coloring agent having an absorption maximum at 450 to 600 nm
  • a blue coloring agent is a coloring agent having an absorption maximum at 500 to 800 nm
  • a yellow coloring agent is 350 to 550 nm.
  • the coloring agent having the absorption maximum at this time the green coloring agent means the coloring agent having the absorption maximum at 550 to 800 nm
  • the purple coloring agent means the coloring agent having the absorption maximum at 450 to 800 nm.
  • C.I. I. Pigment Yellow also referred to as “PY” in the present specification
  • PY139 or PY150 is more preferable
  • PY139 is still more preferable
  • PB blue coloring agent
  • C.I. I. Pigment Blue also referred to herein as "PB”
  • PB blue coloring agent
  • C.I. I. Pigment Violet also referred to herein as "PV” 23 is preferred.
  • Pigment Red also referred to as “PR” in the present specification
  • PR122, PR177, PR254 or PR264 is more preferable
  • PR177, PR254 Or, PR 264 is more preferable.
  • C.I. I. Pigment Green also referred to herein as "PG" 7, 36, 58 or 59 is preferred.
  • the red pixel ie, the red colored layer used therein
  • the red pixel is at least one selected from the group consisting of PR254, PR264, PR177, and PY139. It is preferable to contain some pigments, and when the green colored layer is used to form green pixels, the green pixels (i.e. the green colored layer used therein) are PG58, PG59, PG36, PG7, PY139, PY185.
  • the blue pixel Preferably contains at least one pigment selected from the group consisting of PB15: 6, PB16, and PV23. Arbitrariness.
  • the composition for forming a colored layer further comprises a resin, a curable compound, a polymerization initiator, a solvent, a surfactant, a polymerization inhibitor, an ultraviolet light absorber, a coloring inhibitor, an adhesion agent, a chain transfer agent, a sensitizer, and And additives such as co-sensitizers.
  • the colored layer contains a layer of a cured film (for example, a light attenuating layer) formed using the above-described photocurable composition and / or a resin of the same type as a lens described later
  • a layer of a cured film for example, a light attenuating layer
  • the layer of the cured film formed using the photocurable composition and / or the colored layer and the lens have more excellent adhesion.
  • the minimum value of the light transmittance in the wavelength range of 400 to 700 nm is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the minimum value of light transmittance in the range of 700 to 100 nm is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the material of the transparent layer is not particularly limited, and known materials can be used.
  • the transparent layer is typically formed using a composition for forming a transparent layer.
  • the composition for forming a transparent layer preferably contains a resin.
  • a resin the material used for the photocurable composition mentioned above is mentioned, A preferable range is also the same.
  • the preferable content of the resin is also the same as the content in the photocurable composition.
  • the composition for forming a transparent layer is further selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S. It can also contain oxide particles (also referred to as inorganic particles) containing at least one element.
  • the content of the inorganic particles is preferably 20 to 70% by mass with respect to the total solid content of the composition for forming a transparent layer.
  • the content of the inorganic particles is preferably 20 to 70% by mass with respect to the total solid content of the composition for forming a transparent layer.
  • 25 mass% or more is more preferable, and 30 mass% or more is still more preferable.
  • the upper limit 65 mass% or less is more preferable, and 60 mass% or less is still more preferable.
  • the composition for forming a transparent layer further comprises a resin, a curable compound, a polymerization initiator, a solvent, a surfactant, a polymerization inhibitor, an ultraviolet light absorber, a coloring inhibitor, an adhesion agent, a chain transfer agent, a sensitizer and a coagent.
  • Additives such as sensitizers may be included. About these details, the above-mentioned material used for the photocurable composition mentioned above is mentioned, and the preferable range is also the same. In addition, the preferable content of these materials is also the same as the content in the photocurable composition.
  • the transparent layer contains the above-mentioned colored layer and / or a resin of the same type as the lens described later, the transparent layer and the colored layer, and / or the transparent layer and the lens have more excellent adhesion. .
  • the infrared ray transmitting layer is not particularly limited as long as it is a layer having a spectral characteristic that blocks visible light and transmits at least a part of infrared rays.
  • the infrared ray transmitting layer may be formed of a single layer film (single layer film), or may be formed of a laminate of two or more layers (multilayer film).
  • the entire multilayer film may have the above-described spectral characteristics, and the single layer film itself does not have the above-described spectral characteristics. It is also good.
  • the maximum value of light transmittance in the thickness direction in the wavelength range of 400 to 700 nm is 20% or less (preferably 15% or less, more preferably 10% or less)
  • the minimum value of the light transmittance in the thickness direction in the wavelength range of 700 to 1000 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the infrared ray transmitting layer is typically formed using a composition for forming an infrared ray transmitting layer.
  • the composition for forming an infrared transmitting layer preferably contains a light shielding material.
  • the light shielding material is preferably a coloring material that absorbs light in the violet to red wavelength region.
  • the light blocking material is preferably a color material that blocks light in a wavelength range of 400 to 700 nm.
  • the light shielding material is preferably a color material which transmits light having a wavelength of 700 to 1000 nm. Examples of the light shielding material include a combination of a chromatic coloring agent and a black coloring agent.
  • an organic black colorant When using an organic black colorant as a light shielding material, it is preferable to use it in combination with a chromatic colorant.
  • a chromatic colorant By using an organic black colorant and a chromatic colorant in combination, excellent spectral characteristics are easily obtained.
  • the chromatic coloring agent used in combination with the organic black coloring agent include red coloring agents, blue coloring agents, and purple coloring agents, and red coloring agents and blue coloring agents are preferable. These may be used alone or in combination of two or more.
  • the mixing ratio of the chromatic coloring agent to the organic black coloring agent is preferably 10 to 200 parts by mass, more preferably 15 to 150 parts by mass, with respect to 100 parts by mass of the organic black coloring agent. preferable.
  • the content of the pigment in the light shielding material is preferably 95% by mass or more, more preferably 97% by mass or more, and still more preferably 99% by mass or more based on the total amount of the light shielding material. preferable.
  • the content of the light shielding material is preferably 5 to 50% by mass with respect to the total solid content of the composition for forming an infrared transmitting layer. 9 mass% or more is preferable, and, as for a lower limit, 13 mass% or more is more preferable. 40 mass% or less is preferable, and, as for the upper limit, 30 mass% or less is more preferable.
  • the composition for forming an infrared transmitting layer further comprises a resin, a curable compound, a polymerization initiator, a solvent, a surfactant, a polymerization inhibitor, an ultraviolet light absorber, a coloring inhibitor, an adhesive, a chain transfer agent, a sensitizer, And, additives such as co-sensitizers may be included.
  • composition for forming an infrared ray transmitting layer and the layer (e.g., light attenuating layer) of a cured film in which the infrared ray transmitting layer is formed using a photocurable composition, a transparent layer, and / or the same type as a lens
  • the infrared ray transmitting layer and each layer or lens have better adhesion when containing the specific resin of
  • the lens is typically stacked on the light incident direction side of each stack in a unit pixel.
  • the shape and material of the lens are not particularly limited, and any shape and material known for solid-state imaging devices can be selected.
  • the material of the lens may be resin or glass.
  • the lens may be a resin-containing lens or a glass lens.
  • the lens contains a resin, it is typically formed using a resin-containing composition for forming a lens. The components of the composition for forming a lens will be described below.
  • the composition for lens formation contains resin. Although it does not restrict
  • the laminate of the present invention can be produced through the steps of applying the composition forming each layer to a support or the like to form a composition layer, drying the composition layer, and the like.
  • the method may further include the step of forming a pattern.
  • the step of forming the composition layer and the step of drying the composition layer can be performed in the same manner as the step of forming a photocurable composition layer described for the photocurable composition described above.
  • the step of forming the pattern can be carried out in the same manner as the exposure step and the development step described for the photocurable composition described above.
  • the cured film obtained from the photocurable composition of the present invention can be used other than the use as a light attenuating layer.
  • a cured film can also be used as a light shielding film which a solid-state image sensor has.
  • the light shielding film can be formed on various members in the image display device or sensor module (for example, an infrared light cut filter, an outer peripheral portion of a solid imaging element, an outer peripheral portion of a wafer level lens, a rear surface of a solid imaging element, etc.).
  • a light shielding film may be formed on at least a part of the surface of the infrared light cut filter to form an infrared light cut filter with a light shielding film.
  • the thickness of the light shielding film is not particularly limited, but is preferably 0.2 to 25 ⁇ m, and more preferably 1.0 to 10 ⁇ m.
  • the thickness is an average thickness, and it is a value obtained by measuring the thickness of arbitrary five or more points of the light shielding film and arithmetically averaging them.
  • the light shielding film preferably has an optical density (OD: Optical Density) per film thickness of 1.0 ⁇ m in a wavelength range of 400 to 1100 nm of 3.0 or more, more preferably 3.5 or more.
  • the cured film formed using the photocurable composition which has the said characteristic can be preferably used as a light shielding film.
  • the optical density per film thickness of 1.0 ⁇ m in the wavelength range of 400 to 1100 nm is 3.0 or more if the optical density per film thickness of 1.0 ⁇ m is 3.0 or more in the entire wavelength range of 400 to 1100 nm. Intended to be.
  • optical density is calculated, for example, by forming a cured film (light shielding film) to be 1.8 ⁇ m on a glass substrate, and calculating this cured film using V-7200F (manufactured by JASCO Corporation). Can.
  • Solid-State Imaging Device Having Light-Shielding Film, and Solid-State Imaging Device an example of a solid-state imaging device having a light shielding film obtained by using the photocurable composition of the present invention as a solid-state imaging device other than the solid-state imaging device having the above-described laminate will be described.
  • a solid-state imaging device contains the said solid-state image sensor.
  • the solid-state imaging device 100 includes a rectangular solid-state imaging device 101, and a transparent cover glass 103 held above the solid-state imaging device 101 and sealing the solid-state imaging device 101. There is. Furthermore, on the cover glass 103, a lens layer 111 is provided so as to overlap via a spacer 104.
  • the lens layer 111 is composed of a support 113 and a lens material 112.
  • the lens layer 111 may have a configuration in which the support 113 and the lens material 112 are integrally formed.
  • a light shielding film 114 is provided to shield the peripheral region of the lens layer 111 from light.
  • a cured film using the photocurable composition of the present invention can also be used as the light shielding film 114.
  • the solid-state imaging device 101 photoelectrically converts an optical image formed by the imaging unit 102 serving as the light receiving surface and outputs the image as an image signal.
  • the solid-state imaging device 101 includes a laminated substrate 105 in which two substrates are laminated.
  • the laminated substrate 105 is composed of a rectangular chip substrate 106 and a circuit substrate 107 of the same size, and the circuit substrate 107 is laminated on the back surface of the chip substrate 106.
  • the material of the substrate used as the chip substrate 106 is not particularly limited, and known materials can be used.
  • An imaging unit 102 is provided at the center of the surface of the chip substrate 106.
  • a dark current (noise) is generated from the circuit in the peripheral region, and the peripheral region is shielded by the light shielding film 115 provided.
  • the cured film according to the photocurable composition of the present invention can also be used as the light shielding film 115.
  • a plurality of electrode pads 108 are provided at the surface edge of the chip substrate 106.
  • the electrode pad 108 is electrically connected to the imaging unit 102 via a signal line (not shown) (which may be a bonding wire) provided on the surface of the chip substrate 106.
  • each external connection terminal 109 is connected to the electrode pad 108 through the penetration electrode 110 which penetrates the lamination substrate 105 perpendicularly. Further, each external connection terminal 109 is connected to a control circuit that controls the driving of the solid-state imaging device 101, an image processing circuit that performs image processing on an imaging signal output from the solid-state imaging device 101, etc. It is done.
  • the imaging unit 102 includes components provided on the substrate 204 such as the light receiving element 201, the color filter 202, and the microlens 203.
  • the color filter 202 includes a blue pixel 205 b, a red pixel 205 r, a green pixel 205 g, and a black matrix 205 bm.
  • the cured film obtained by using the photocurable composition of the present invention can also be used as a black matrix 205bm.
  • a material of the substrate 204 As a material of the substrate 204, the same material as the above-described chip substrate 106 can be used.
  • a p well layer 206 is formed on the surface of the substrate 204.
  • light receiving elements 201 which are n type layers and generate and accumulate signal charges by photoelectric conversion are arranged and formed in a square lattice shape.
  • a vertical transfer path 208 formed of an n-type layer is formed on one side of the light receiving element 201 via the readout gate portion 207 on the surface layer of the p well layer 206. Further, on the other side of the light receiving element 201, a vertical transfer path 208 belonging to an adjacent pixel is formed via an element isolation region 209 formed of a p-type layer.
  • the read gate unit 207 is a channel region for reading out the signal charge stored in the light receiving element 201 to the vertical transfer path 208.
  • a gate insulating film 210 made of an ONO (Oxide-Nitride-Oxide) film is formed on the surface of the substrate 204.
  • a vertical transfer electrode 211 made of polysilicon or amorphous silicon is formed so as to cover the vertical transfer path 208, the read gate portion 207, and the element isolation region 209 almost immediately.
  • the vertical transfer electrode 211 functions as a drive electrode that drives the vertical transfer path 208 to perform charge transfer, and a read electrode that drives the read gate unit 207 to read a signal charge.
  • the signal charges are sequentially transferred from the vertical transfer path 208 to a horizontal transfer path and an output unit (floating diffusion amplifier) not shown, and then output as a voltage signal.
  • a light shielding film 212 is formed on the vertical transfer electrode 211 so as to cover the surface thereof.
  • the light shielding film 212 has an opening at a position immediately above the light receiving element 201, and shields the other regions.
  • the cured film using the photocurable composition of the present invention can also be used as the light shielding film 212.
  • a transparent intermediate layer formed of an insulating film 213 made of borophospho silicate glass (BPSG), an insulating film (passivation film) 214 made of P-SiN, and a planarizing film 215 made of a transparent resin or the like is provided on the light shielding film 212.
  • BPSG borophospho silicate glass
  • passivation film insulating film
  • planarizing film 215 made of a transparent resin or the like
  • the application of the cured film obtained from the photocurable composition of the present invention is not limited to the above-mentioned range, and for example, it is preferable to use it for a black matrix, a color filter, an image display device or an infrared sensor.
  • An acid value represents the mass of potassium hydroxide required to neutralize the acidic component per 1 g of solid content.
  • AT-510 trade name: AT-510, manufactured by Kyoto Denshi Kogyo Co., Ltd.
  • Neutralization titration was performed with 0.1 mol / L sodium hydroxide aqueous solution.
  • the acid value was calculated by the following equation, with the inflection point of the titration pH curve as the titration end point.
  • A 56.
  • composition BK was manufactured and evaluated as one form of the photocurable composition of this invention.
  • CB Dispersion ⁇ Production of Carbon Black Dispersion (CB Dispersion)>
  • a CB dispersion was manufactured using an ultra-apex mill manufactured by Kotobuki Kogyo Co., Ltd. as a circulating type dispersing device (bead mill).
  • the abbreviations described in the “type” column of carbon black in Table 1 represent carbon black having the characteristics described in Table 2 below.
  • the carbon blacks listed in Table 3 are all furnace blacks obtained by using the furnace method.
  • the symbol described in the "type" column of the dispersing agent of Table 1 represents the following dispersing agents.
  • the number attached to the side of the parenthesis in Structural formula shows the molar ratio of each repeating unit.
  • PGMEA described in the "type" column of the solvent of Table 1 represents propylene glycol methyl ether acetate.
  • the inorganic dispersion liquid was manufactured with respect to the liquid mixture containing each component of following Table 3 using the Kotosan Kogyo Co., Ltd. product Ultra Apex mill as a circulation type dispersion apparatus (bead mill).
  • composition BK Propylene glycol methyl ether acetate
  • PGME Propylene glycol monomethyl ether
  • the abbreviations described in the “type” column of the binders in Table 5 represent the following binders.
  • the following C-1 and C-2 are alkali-soluble resins.
  • E-1 IRGACURE OXE 02 (manufactured by BASF)
  • E-2 IRGACURE OXE03 (manufactured by BASF)
  • E-3 IRGACURE 369 (manufactured by BASF)
  • E-4 IRGACURE 379 (manufactured by BASF)
  • composition BK [Evaluation of composition BK] The above composition BK was evaluated by the following method.
  • composition BK obtained above is applied by spin coating onto an 8 inch silicon wafer with a subbing layer so that the film thickness after application becomes 1.2 ⁇ m, and then 2 ° C. at 110 ° C. on a hot plate. Heating for a minute gave a composition layer.
  • a 300 ⁇ m line and space pattern is exposed to the obtained composition layer through a mask using an i-line stepper exposure apparatus FPA-3000i5 + (Canon Co., Ltd.) (exposure dose: 500 mJ / cm 2 ) did.
  • evaluation of developability was performed using a developing device (Act-8, manufactured by Tokyo Electron). shower development was performed at 23 ° C.
  • TMAH tetramethylammonium hydroxide
  • composition BK obtained above is coated on an 8-inch glass wafer with an undercoat layer using a spin coater so that the thickness of the composition layer after drying is 0.5 ⁇ m, and a hot plate at 110 ° C.
  • the heat treatment was performed for 120 seconds using it.
  • an i-line stepper exposure apparatus FPA-3000i5 + (Canon Co., Ltd.)
  • light of a wavelength of 365 nm was exposed at 1000 mJ / cm 2 through a mask having a 2 cm ⁇ 2 cm pattern.
  • the glass wafer on which the composition layer (cured film) after exposure is formed is placed on the horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemitronics, Inc.) and hydroxylated.
  • a spin shower developing machine DW-30 type, manufactured by Chemitronics, Inc.
  • paddle development was carried out at 23 ° C. for 60 seconds to form a patterned cured film on a glass wafer.
  • solvent resistance ⁇ T% The spectral variation of the transmittance (solvent resistance ⁇ T%) was measured using MCPD-3000 (manufactured by Otsuka Electronics Co., Ltd.). In addition, the measurement was performed with respect to the location where a cured film existed, and the influence on the transmittance
  • variation in the wavelength with the largest spectral fluctuation was made into solvent resistance (DELTA) T% max, and solvent resistance was evaluated by the following judgment criteria. The smaller the value of the solvent resistance ⁇ T% max, the better the solvent resistance, which is more desirable.
  • Solvent resistance ⁇ T% max is less than 1.0%
  • the fluctuation at the wavelength at which the spectral fluctuation is the largest is taken as the moisture resistance ⁇ T% max, and the moisture resistance was evaluated according to the following judgment criteria. The smaller the value of the moisture resistance ⁇ T% max, the better the moisture resistance, which is more desirable.
  • Moisture resistance ⁇ T% max is less than 1.0%
  • composition BK obtained above is applied by spin coating onto an 8 inch silicon wafer with a subbing layer so that the film thickness after application is 0.5 ⁇ m, and then 2 ° C. at 120 ° C. on a hot plate Heating for a minute gave a composition layer.
  • the obtained composition layer is exposed to a 1.0 ⁇ m square island pattern through a mask using an i-line stepper exposure apparatus FPA-3000i5 + (Canon Co., Ltd.) (exposure 200 mJ / cm 2 )did.
  • the developability of the composition layer (cured film) after exposure was evaluated using a developing device (Act-8, manufactured by Tokyo Electron). shower development was performed at 23 ° C.
  • TMAH tetramethylammonium hydroxide
  • A There is no residue in the non-image area between the patterns.
  • B A residue less than 0.01 ⁇ m was observed in the non-image area between the patterns.
  • C The residue of 0.01 micrometer or more and less than 0.05 micrometer was observed by the non-image part between patterns.
  • D A residue of not less than 0.05 ⁇ m and less than 0.10 ⁇ m was observed in the non-image area between the patterns.
  • E A residue of 0.10 ⁇ m or more was observed in the non-image area between the patterns.
  • the composition BK obtained above is applied on an 8-inch glass wafer using a spin coater such that the film thickness after drying is 0.5 ⁇ m, and heat treatment is performed for 120 seconds using a 110 ° C. hot plate ( Prebaking was performed. With respect to the glass wafer on which the composition layer was formed, foreign matter having a size of 0.5 ⁇ m or more was counted using a defect evaluation apparatus ComPLUS (manufactured by Applied Materials).
  • the defect evaluation of this composition layer is carried out immediately after wafer formation and after 72 hours of room temperature (23 ° C.) aging with time after wafer formation, and based on the rate of increase in foreign matter, the judgment criteria for holding defect inhibition are as follows. It evaluated by. The foreign matter increase rate was calculated by (the number of foreign matter defects after 72 hours of placement / the number of foreign matter defects immediately after preparation).
  • the photocurable composition of the present invention is excellent in retention defect inhibition and excellent in residue inhibition.
  • sulfur content of carbon black was 1 mass ppm or more and 0.50 mass% or less, a tendency was obtained to further improve the retention defect inhibition property (comparison of Examples 1-9 to 1-11).
  • ash content of carbon black is 1 mass ppm or more and 0.20 mass% or less, the tendency for the temporal stability to be more excellent was confirmed (comparison of Examples 1-9 to 1-11).
  • a pigment derivative containing a triazine ring group was used, it was confirmed that solvent resistance and moisture resistance tended to be more excellent (comparison of Examples 1-1 and 1-2).
  • composition GY As one form of the photocurable composition of the present invention, a composition GY was produced and evaluated.
  • Composition GY was prepared by mixing the ingredients listed in the table below. The abbreviations described in the “type” column in the table, and the contents of the CB dispersion and the inorganic dispersion are the same as the contents described in the production of the composition BK.
  • composition GY ⁇ Evaluation of light transmittance>
  • the composition GY was spin-coated on an 8-inch glass wafer with an undercoat layer ("CT-4000L" film thickness 0.1 um manufactured by Fujifilm Electronics Materials Inc.) so that the film thickness after drying was 0.5 ⁇ m. And heat treated (prebaked) for 120 seconds using a 110.degree. C. hot plate.
  • FPA-3000i5 + Canon Co., Ltd.
  • light of a wavelength of 365 nm was exposed at 1000 mJ / cm 2 through a mask having a 2 cm ⁇ 2 cm pattern.
  • the glass wafer on which the composition layer (cured film) after exposure is formed is placed on the horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemitronics, Inc.) and hydroxylated. Using a 0.3% aqueous solution of tetramethylammonium (TMAH), paddle development was performed at 23 ° C. for 60 seconds to form a patterned cured film on a glass wafer.
  • TMAH tetramethylammonium
  • the glass wafer on which the composition layer is formed is fixed to the above horizontal rotary table by a vacuum chuck method, and while rotating the glass wafer at a rotation speed of 50 rpm by a rotary device, pure water is jetted from above the rotation center It was supplied in the form of a shower, rinsed and then dried.
  • Example 3 Production and evaluation of a laminate and a solid-state imaging device having a laminate
  • a photocurable composition of the present invention as a composition for forming a light attenuation layer
  • a laminate and a solid-state imaging device having the laminate were manufactured and evaluated.
  • composition for forming a colored layer The following raw materials were mixed, and the composition for colored layer formation was manufactured.
  • Green composition PGMEA: 25.49 parts by mass Resin 1: 0.2 parts by mass Polymerizable compound 1: 0.9 parts by mass Polymerizable compound 2: 0.3 parts by mass Photopolymerization initiator 1: 0.7 parts by mass UV absorber 1 0.4 parts by weight Surfactant 1: 0.01 parts by weight Green dispersion: 72 parts by weight
  • magenta composition PGMEA: 80.99 parts by mass Resin 1: 7 parts by mass Polymerizable compound 4: 8.4 parts by mass Photopolymerization initiator 1: 2.3 parts by mass Ultraviolet absorber 1: 1.3 parts by mass Surfactant 1: 0 .01 parts by mass Magenta dispersion: 21 parts by mass
  • composition for infrared ray transmitting layer IR-Pass composition
  • ⁇ Composition for infrared ray transmission layer formation PGMEA: 14.79 parts by mass
  • Resin 2 1.3 parts by mass
  • Polymerizable compound 4 1.9 parts by mass
  • Photopolymerization initiator 1 1 part by mass
  • Surfactant 1 0.01 Red dispersion: 44 parts by mass Blue dispersion: 37 parts by mass
  • composition for forming transparent layer PGMEA: 75.89 parts by mass Resin 1: 8.3 parts by mass Polymerizable compound 5: 12.5 parts by mass Photopolymerization initiator 1: 1.3 parts by mass Ultraviolet absorber 1: 2 parts by mass Surfactant 1: 0 .01 parts by mass
  • composition for forming an underlayer -Composition for base layer formation
  • PGMEA 87.99 mass parts
  • Resin 3 12 mass parts
  • Surfactant 1 0.01 mass part
  • the raw materials used for the said composition are as follows. Green dispersion, Red dispersion, Blue dispersion, Magenta dispersion, Cyan dispersion, Yellow dispersion:
  • the raw materials described below are mixed by mass parts described in the column of dispersion in the following table, and further the diameter 230 parts by mass of 0.3 mm zirconia beads were added, dispersion treatment was performed for 5 hours using a paint shaker, and the dispersion liquid obtained by separating the beads by filtration was used.
  • the numerical value added to each repeating unit represents the molar ratio of each repeating unit.
  • the numerical value shown at the side chain repeat site indicates the number of repeat sites at the repeat site.
  • the numerical value added to each repeating unit represents the molar ratio of each repeating unit.
  • the numerical value shown at the side chain repeat site indicates the number of repeat sites at the repeat site.
  • Polymerizable compound 1 Alonics TO-2349 (Toagosei Co., Ltd.)
  • Polymerizable compound 2 NK oligo UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Polymerizable compound 3 NK ester A-DPH-12E (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Polymerizable compound 4 KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.)
  • Polymerizable compound 5 Alonics M-510 (Toagosei Co., Ltd.)
  • Photopolymerization initiator 1 IRGACURE OXE-01 (manufactured by BASF)
  • -Ultraviolet absorber 1 The above-mentioned ultraviolet absorber (J-1)
  • Surfactant 2 Pionin D6315 (manufactured by Takemoto Yushi Co., Ltd.)
  • the composition for forming an underlayer is formed on a silicon wafer which is divided into a two-dimensional array and in which photoelectric conversion parts are formed in each unit section, so that the film thickness after drying becomes 0.1 ⁇ m. It apply
  • the formation of the colored layer, the transparent layer, and the light attenuating layer was performed using the respective compositions described above, and the pattern was formed using a photolithography method.
  • the thickness of each colored layer was 0.6 ⁇ m
  • the thickness of the transparent layer was 0.1 ⁇ m ⁇ m
  • the thickness of the light attenuation layer was 0.5 ⁇ m.
  • the dynamic range of the solid-state imaging device was implemented by a method of subjectively evaluating an image print obtained by real shooting using the solid-state imaging device. Photographing was performed at a photographic studio, and two tungsten type reflective photographic light bulbs with a general color temperature of 3200 K were used for lighting. With respect to the obtained image prints, the gradation fineness was evaluated by a panel of 10 persons. Each image print was evaluated in 10 steps, and the dynamic range of the solid-state imaging device of each example was evaluated according to the following criteria by averaging the evaluation values of each panel. The results are shown in Table 9.
  • the color reproducibility of the solid-state imaging device was implemented by a method of subjectively evaluating an image print obtained by real shooting using the solid-state imaging device. Photographing was carried out under the same conditions as described above, and for the obtained image prints, it was evaluated by a panel of 10 persons whether the color of the subject was reproduced. Each image print was evaluated in 10 steps, and the color reproducibility of the solid-state imaging device of each example was evaluated according to the following criteria by averaging the evaluation values of each panel. The results are shown in Table 9.
  • A The average rating value was 8.0 or more.
  • B The average of the evaluation values was 6.0 or more and less than 8.0.
  • C The average evaluation value was 4.0 or more and less than 6.0.
  • D The average evaluation value was 2.0 or more and less than 4.0.
  • E The average evaluation value was less than 2.0. ⁇ Evaluation results ⁇ The evaluation results are shown in Table 9 below.
  • the dynamic range can be improved by using the laminate having the light attenuating layer obtained by using the photocurable composition of the present invention as the composition for forming the light attenuating layer, and the color reproducibility can be improved. It was confirmed that it could improve. Further, when the difference [Delta] T 1 of the maximum value and the minimum value of the transmittance of light wavelength range of 400 ⁇ 700 nm of the light attenuating layer is not more than 11.0%, more excellent color reproducibility (Example 3-2 As a result, when ⁇ T 1 was 7.0% or less, it was confirmed that the color reproducibility was further excellent (the result of Example 3-3, etc.). It was confirmed that the dynamic range is further improved when the transmittance of light of wavelength 550 nm of the light attenuation layer is 5.0 to 20.0% (Examples 3-1 to 3-4 and Example) Comparison with 3-5 to 3-6 etc.
  • Second laminate Second photoelectric conversion Section 100 solid-state imaging device 101 solid-state imaging device 102 imaging portion 103 cover glass 104 spacer 105 laminated substrate 106 chip substrate 107 circuit substrate 108 electrode pad 109 external connection terminal 110 through electrode 111 lens layer 112 lens material 113 support 114, 115 light shielding film 201 light-receiving element 202 color filter 201 light-receiving element 202 color filter 203 micro lens 204 substrate 205b blue pixel 205r red pixel 205g green pixel 205bm black matrix 206 p well layer 207 readout gate section 208 vertical transfer path 209 element separation area 2 0 gate insulating film 211 vertical transfer electrode 212 light blocking film 213 insulating film 215 flattened film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Polymerisation Methods In General (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、引置き欠陥抑制性及び残渣抑制性に優れる組成物膜を形成できる光硬化性組成物を提供する。また、上記光硬化性組成物を用いて製造される積層体及び上記積層体を有する固体撮像素子を提供する。本発明の光硬化性組成物は、多環芳香族炭化水素の含有量が0.100質量ppb以上0.500質量ppm以下であるカーボンブラックを含有する。

Description

光硬化性組成物、積層体、及び、固体撮像素子
 本発明は、光硬化性組成物、積層体、及び、固体撮像素子に関する。
 CCD(Charge-Coupled Device)イメージセンサ又はCMOS(complementary metal-oxide semiconductor)イメージセンサ等は、光電変換部を有する複数の画素を二次元状に配列した固体撮像素子である。
 この固体撮像素子において、暗電流の低減、ダイナミックレンジの低下防止、周辺回路の動作安定を図るとともに、画質の低下を抑制するために、固体撮像素子に含まれる光電変換部に対して、不要な光を遮ることは、一般的である。
 例えば、特許文献1には、カーボンブラックである黒色顔料等を含有することを特徴とする遮光膜形成用感放射線性組成物が開示されている(請求項1,請求項2)。
特開2010-045191号公報
 本発明者らは、特許文献1に記載された組成物について検討したところ、組成物を用いて組成物層を形成してから露光するまでの引置きの間に組成物層に、微小な異物による欠陥(以下、「引置き欠陥」ともいう)が生じやすいことを知見した。
 また、組成物層を露光して現像した後に、残渣が生じないことも望まれている。以下、残渣が生じにくいことを、残渣抑制性に優れるともいう。
 そこで、本発明は、引置き欠陥抑制性及び残渣抑制性に優れる組成物膜を形成できる光硬化性組成物を提供することを課題とする。
 また、本発明は、上記光硬化性組成物を用いて製造される積層体及び上記積層体を有する固体撮像素子を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を達成できることを見出した。
 〔1〕 多環芳香族炭化水素の含有量が0.100質量ppb以上0.500質量ppm以下であるカーボンブラックを含有する、光硬化性組成物。
 〔2〕 更に、エチレン性不飽和基を有する化合物を含有する、〔1〕に記載の光硬化性組成物。
 〔3〕 更に、光重合開始剤を含有する、〔1〕又は〔2〕に記載の光硬化性組成物。
 〔4〕 上記光重合開始剤が、オキシム化合物である、〔3〕に記載の光硬化性組成物。
 〔5〕 上記カーボンブラックの硫黄含有量が、1質量ppm以上0.50質量%以下である、〔1〕~〔4〕のいずれかに記載の光硬化性組成物。
 〔6〕 上記カーボンブラックの灰分が、1質量ppm以上0.20質量%以下である、〔1〕~〔5〕のいずれかに記載の光硬化性組成物。
 〔7〕 上記カーボンブラックが、ファーネスブラックである、〔1〕~〔6〕のいずれかに記載の光硬化性組成物。
 〔8〕 更に、無機顔料を含有する、〔1〕~〔7〕のいずれかに記載の光硬化性組成物。
 〔9〕 上記無機顔料が、第4族の金属元素の窒化物、第4族の金属元素の酸窒化物、第5族の金属元素の窒化物、又は、第5族の金属元素の酸窒化物である、〔8〕に記載の光硬化性組成物。
 〔10〕 上記無機顔料が、窒化チタン、酸窒化チタン、又は、酸窒化ジルコニウムである、〔8〕又は〔9〕に記載の光硬化性組成物。
 〔11〕 上記無機顔料が酸窒化ジルコニウムである、〔8〕~〔10〕のいずれかに記載の光硬化性組成物。
 〔12〕 更に、エポキシ基を有する化合物を含有する、〔1〕~〔11〕のいずれかに記載の光硬化性組成物。
 〔13〕 更に、アルカリ可溶性樹脂を含有する、〔1〕~〔12〕のいずれかに記載の光硬化性組成物。
 〔14〕 前記アルカリ可溶性樹脂が、重合性基を有する、〔13〕に記載の光硬化性組成物。
 〔15〕 着色層と、〔1〕~〔14〕のいずれかに記載の光硬化性組成物を用いて形成された光減衰層とが積層され、上記光減衰層の400~700nmの波長域の光の透過率の最大値と最小値との差ΔTが11.0%以下である、積層体。
 〔16〕 着色層と、〔1〕~〔14〕のいずれかに記載の光硬化性組成物を用いて形成された光減衰層とが積層され、
 上記着色層が、緑色着色層、赤色着色層、青色着色層、シアン色着色層、マゼンタ色着色層、及び、イエロー色着色層からなる群から選択される少なくとも1種である、積層体。
 〔17〕 上記光減衰層の400~700nmの波長域の光の透過率の最大値と最小値の差ΔTが11.0%以下である、〔16〕に記載の積層体。
 〔18〕 上記差ΔTが7.0%以下である、〔15〕又は〔17〕に記載の積層体。
 〔19〕 上記光減衰層の700~1000nmの波長域の光の透過率の最大値と最小値との差ΔTが11.0%以下である、〔15〕~〔18〕のいずれかに記載の積層体。
 〔20〕 上記差ΔTが7.0%以下である、〔19〕に記載の積層体。
 〔21〕 上記光減衰層の550nmの波長の光の透過率が、5.0~75.0%である、〔15〕~〔20〕のいずれかに記載の積層体。
 〔22〕 上記光減衰層の550nmの波長の光の透過率が、5.0~20.0%である、〔21〕に記載の積層体。
 〔23〕 複数の単位画素が配置され、上記単位画素が第1の光電変換部、又は、第2の光電変換部を有し、上記第1の光電変換部の光が入射する側に、〔15〕~〔22〕のいずれかに記載の積層体が配置されている、固体撮像素子。
 本発明によれば、引置き欠陥抑制性及び残渣抑制性に優れる組成物膜を形成できる光硬化性組成物を提供できる。
 また、本発明によれば、上記光硬化性組成物を用いて製造される積層体及び上記積層体を有する固体撮像素子を提供できる。
本発明の実施形態に係る積層体を有する典型的な固体撮像子における、単位画素の断面模式図である。 本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの例を示す断面模式図である。 本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示す断面模式図である。 図3の単位画素の組み合わせの変形例を示す断面模式図である。 本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示す断面模式図である。 図5の単位画素の組み合わせの変形例を示す断面模式図である。 本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示す断面模式図である。 本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示す模式図である。 本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示す模式図である。 図9のA-A’断面図である。 固体撮像装置の構成例を示す概略断面図である。 図11の撮像部を拡大して示す概略断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を含有しないものと共に置換基を含有するものをも包含するものである。例えば、「アルキル基」とは、置換基を含有しないアルキル基(無置換アルキル基)のみならず、置換基を含有するアルキル基(置換アルキル基)をも包含する。
 また、本明細書中における「活性光線」又は「放射線」とは、例えば、遠紫外線、極紫外線(EUV:Extreme ultraviolet)、X線、並びに電子線等を意味する。また本明細書において光とは、活性光線及び放射線を意味する。本明細書中における「露光」とは、特に断らない限り、遠紫外線、X線、並びにEUV等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
 また、本明細書において、「(メタ)アクリレート」はアクリレート及びメタアクリレートを表す。また、本明細書において、「(メタ)アクリル」はアクリル及びメタアクリルを表す。また、本明細書において、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルを表す。また、本明細書において、「(メタ)アクリルアミド」は、アクリルアミド及びメタアクリルアミドを表す。また、本明細書中において、「単量体」と「モノマー」とは同義である。単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書中において、重合性化合物とは、重合性基を含有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性基とは、重合反応に関与する基をいう。
[光硬化性組成物]
 本発明の光硬化性組成物の特徴点は、多環芳香族炭化水素の含有量が0.100質量ppb(parts per billion)以上0.500質量ppm(parts per million)以下であるカーボンブラックを含有することが挙げられる。
 本発明者らは、鋭意検討の結果、カーボンブラックの多環芳香族炭化水素の含有量が0.500質量ppm以下である場合、組成物層の引置き欠陥抑制性が優れることを知見した。
 このメカニズムは必ずしも明らかではないが、多環芳香族炭化水素は、光硬化性組成物中の他の固形分とSP値(溶解パラメータ)が大きく異なるため相溶しにくく、通常量(0.500質量ppm超)の多環芳香族炭化水素を含有するカーボンブラックでは、引置き時に他の固形分と分離し、カーボンブラック同士で凝集した粒子(欠陥)になり易いためであると本発明者は推測している。
 一方で、驚くべきことに、カーボンブラックの多環芳香族炭化水素の含有量が0.100質量ppb以上である場合、組成物層を露光し、現像した際におけるパターンの凹凸間に存在する残渣の発生を低減できることも知見した。
 このメカニズムとしては、カーボンブラックの多環芳香族炭化水素の含有量が一定量以上であることで、現像時に、組成物層の露光されていない箇所への現像液の浸透性が向上し、現像性が向上することによると本発明者は考えている。
 以下、このようなカーボンブラックを含有する光硬化性組成物について説明する。
〔カーボンブラック〕
 本発明の光硬化性組成物は、多環芳香族炭化水素の含有量が0.100質量ppb以上0.500質量ppm以下であるカーボンブラックを含有する。
 カーボンブラックが含有する多環芳香族炭化水素(以下、「PAH(Polycyclic Aromatic Hydrocarbon)」ともいう)は、主にカーボンブラック生成反応の際の前駆体物質に由来する。主なPAHとしては、ナフタレン、フルオレン、フルオランテン、ピレン、クリセン、及び、ベンゾピレンが挙げられ、これらを総合した量がPAHの含有量である。
 カーボンブラック中におけるPAHの含有量(カーボンブラック全質量に対するPAHの含有量)は、引置き欠陥抑制性と残渣抑制性とがバランス良く優れる点から、0.100質量ppb以上0.500質量ppm以下であり、1.00質量ppb以上0.400質量ppm以下が好ましく、20.00質量ppb以上0.150質量ppm以下がより好ましく、50.00質量ppb以上0.150質量ppm以下が更に好ましい。
 なお、本明細書において、PAHの含有量の測定方法として以下の方法が挙げられる。
 乾燥したカーボンブラック5gをモノクロルベンゼン180mlの入ったフラスコに入れ48時間抽出する。次に、この抽出液をエバポレーターにセットし、55℃で所定濃度まで濃縮した後、下記の条件で液体クロマトグラフィーにかけ、カーボンブラック中におけるPAHの含有量を測定する。
・液体クロマトグラフィー…「LC-6A」(島津製作所製)
・フローコントローラー…「SCL-6A」(島津製作所製)
・検出器…「Waters490E型」(ミリポア社製)
・カラム…「ODSA,Mタイプ」(山村化学製)
・注入量…5μl
 カーボンブラックとしては、例えば、ファーネスブラック、サーマルブラック、チャンネルブラック、ランプブラック、及び、アセチレンブラックが挙げられる。
 中でも、カーボンブラックとしては、ファーネスブラックを用いるのが好ましい。
 なお、カーボンブラックは、分散を容易にするため、必要に応じて分散剤を用い、予めニトロセルロース及び/又はバインダなどに分散させたカラーチップ又はカラーペーストとして使用することができ、このようなチップやペーストは市販品として容易に入手できる。また、カーボンブラックは、公知の方法により表面処理が施されていてもよい。
 カーボンブラックの形状は、特に制限はないが、粒子状であるのが好ましい。
 カーボンブラックの粒子径は、特に制限はないが、分散性及び着色性の点から、平均1次粒子径が、1~2000nmが好ましく、2~100nmがより好ましく、5~50nmが更に好ましい。
 なお、カーボンブラックの平均一次粒子径は、透過型電子顕微鏡(Transmission Electron Microscope、TEM)を用いて測定できる。透過型電子顕微鏡としては、例えば、日立ハイテクノロジーズ社製の透過型電子顕微鏡HT7700を使用できる。
 透過型電子顕微鏡を用いて得た粒子像の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV-max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV-max)1/2を粒子径とする。この方法で100個の粒子の粒子径を測定し、その算術平均値を平均粒子径として、カーボンブラックの平均一次粒子径とする。
 カーボンブラックの硫黄含有量(カーボンブラック全質量に対する硫黄の含有量)は、引置き欠陥抑制性がより優れる点から、1質量ppm以上0.75質量%以下が好ましく、1質量ppm以上0.50質量%以下がより好ましく、0.01質量%以上0.50質量%以下が更に好ましく、0.11質量%以上0.39質量%以下が特に好ましい。
 本明細書においてカーボンブラックの硫黄含有量は、以下の方法で測定される。
 (1)酸素富化雰囲気でカーボンブラック試料を燃焼し、存在するすべての硫黄をSOに転換する。
 (2)発生したSOを、赤外線検出法によって定量化する。
 詳細は、“ASTM Standards”, Vol. 9.01, Method 1619, part C-94,“Standard Test Methods for Carbon Black-sulphur Content(カーボンブラックの硫黄含有量の標準試験方法)”に基づく。
 組成物の経時安定性がより優れる観点から、カーボンブラックの灰分(カーボンブラック全質量に対する灰分)は、1質量ppm以上0.30質量%以下が好ましく、1質量ppm以上0.20質量%以下がより好ましく、0.05質量%以上0.14質量%以下が更に好ましく、0.05質量%以上0.08質量%以下が特に好ましい。
 本明細書においてカーボンブラックの「灰分」とは、カーボンブラックを燃焼させて得られる無機質の灰の質量分率を意味し、以下の方法で測定される。
 (1)乾燥したカーボンブラックを磁器るつぼにはかりとり、550℃で恒量になるまで燃焼させる。
 (2)デシケーターで冷却した後、磁器るつぼの質量を測り、得られた灰の、酸化させる前のカーボンブラックに対する質量分率を灰分とする。
 詳細は、JIS K 6218-2:2005(ゴム用カーボンブラック-付随的特性-第2部:灰分の求め方)に基づく。
 カーボンブラックは、1種単独で使用しても、2種以上を併用してもよい。
 光硬化性組成物中におけるカーボンブラックの含有量は、光硬化性組成物の全固形分に対して、1~99質量%が好ましく、2~45質量%がより好ましく、3~30質量%が更に好ましい。
 なお、光硬化性組成物が、後述の黒色顔料を含有する場合は、カーボンブラックと黒色顔料の合計量は、光硬化性組成物の全固形分に対して、1~99質量%が好ましく、10~50質量%がより好ましく、13~40質量%が更に好ましい。
 また、なお、光硬化性組成物が、後述の黒色顔料を含有する場合は、カーボンブラックと黒色顔料の合計量の比(カーボンブラック/黒色顔料(質量比))は、0.1~10が好ましく、0.25~1.50がより好ましく、0.35~0.50が更に好ましい。
 カーボンブラックは、適当な分散剤及び溶剤等と共に、ビーズミル、ボールミル、又は、ロッドミル等の混合装置を用いて混合分散して、分散液として使用できる。
 上記分散液の調製に使用される溶剤としては、例えば、光硬化性組成物が含有し得る溶剤として後述する溶剤のほか、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、ネオペンタノール、シクロペンタノール、1-ヘキサノール、及び、シクロヘキサノール等のアルコール類等が挙げられる。
 中でも、PGMEA(プロピレングリコールメチルエーテルアセテート)が好ましい。
 これらの溶剤は、1種単独で使用しても、2種以上を併用してもよい。
 カーボンブラック分散液中のカーボンブラックの含有量は、カーボンブラック分散液の全質量に対して、10~90質量%が好ましく、15~60質量%がより好ましく、20~30質量%が更に好ましい。
〔着色剤〕
 本発明の光硬化性組成物は、上述のカーボンブラックの他にも着色剤を含有していてもよい。
 着色剤としては特に制限されず、公知の着色剤を使用できる。着色剤としては、各種公知の顔料(着色顔料)、及び、染料(着色染料)等を使用できる。
 光硬化性組成物が着色剤を含有する場合、光硬化性組成物中における着色剤の含有量としては特に制限されないが、光硬化性組成物の全固形分に対して、1~99質量%が好ましく、5~50質量%がより好ましい。
 着色剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の着色剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
 光硬化性組成物が後述の黒色顔料を含有する場合、光硬化性組成物中の黒色顔料の含有量は、光硬化性組成物の全固形分に対して、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましい。
 光硬化性組成物中における黒色顔料の含有量の上限値は特に制限されないが、一般に、光硬化性組成物の全固形分に対して、50質量%以下が好ましい。
 着色染料としては、例えば、R(レッド)、G(グリーン)、及び、B(ブルー)等の有彩色系の染料(有彩色染料)の他、特開2014-42375の段落0027~0200に記載の着色剤も使用できる。また、黒色染料も使用できる。
 有彩色系の顔料(有彩色顔料)としては、従来公知の種々の無機顔料又は有機顔料を使用できる。また、上記顔料の平均一次粒子径は、0.01~0.1μmが好ましく、0.01~0.05μmがより好ましい。
 なお、顔料の平均一次粒子径は、上述したカーボンブラックの平均一次粒子径と同様の方法で測定できる。
<顔料>
 顔料としては、特に制限されず、公知の無機顔料及び/又は有機顔料を使用できる。
(無機顔料)
 本発明の光硬化性組成物は、着色剤の中でも無機顔料を含有するのが好ましい。
 カーボンブラックと無機顔料とを併用することで、広い波長の範囲で、より均等な吸収スペクトルを有する硬化膜を得ることができる。
 上記無機顔料としては、特に制限されず、公知の無機顔料を使用できる。
 無機顔料としては、例えば、亜鉛華、鉛白、リトポン、酸化チタン、酸化クロム、酸化鉄、沈降性硫酸バリウム及びバライト粉、鉛丹、酸化鉄赤、黄鉛、亜鉛黄(亜鉛黄1種、亜鉛黄2種)、ウルトラマリン青、プロシア青(フェロシアン化鉄カリ)ジルコングレー、プラセオジムイエロー、クロムチタンイエロー、クロムグリーン、ピーコック、ビクトリアグリーン、紺青(プルシアンブルーとは無関係)、バナジウムジルコニウム青、クロム錫ピンク、陶試紅、並びにサーモンピンク等が挙げられる。また、黒色の無機顔料としては、Co、Cr、Cu、Mn、Ru、Fe、Ni、Sn、Ti、及び、Agからなる群より選ばれた1種又は2種以上の金属元素を含む金属酸化物、金属窒化物、及び、金属酸窒化物等が挙げられる。無機顔料は表面修飾処理がなされていてもよい。例えば、シリコーン基とアルキル基を併せ持つ独自の表面処理剤で表面修飾処理がなされているものが挙げられ、「KTP-09」シリーズ(信越化学工業社製)などが挙げられる。
 無機顔料としては、含有量が少なくとも、高い光学濃度を有する硬化膜を形成することができる光硬化性組成物が得られる点で金属顔料等(以下、「黒色顔料」ともいう。)が好ましい。
 このような無機顔料(黒色顔料)としては、第4族の金属元素の窒化物、第4族の金属元素の酸窒化物、第5族の金属元素の窒化物、又は、第5族の金属元素の酸窒化物が好ましい。
 中でもこのような無機顔料(黒色顔料)は、窒化チタン、酸窒化チタン、窒化ニオブ、酸窒化ニオブ、窒化バナジウム、酸窒化バナジウム、窒化ジルコニウム、及び、酸窒化ジルコニウムを含有する金属顔料からなる群から選択される少なくとも1種を含有することが好ましく、酸窒化チタン、窒化チタン、酸窒化ニオブ、窒化ニオブ、酸窒化ジルコニウム、及び、窒化ジルコニウムからなる群から選択される少なくとも1種を含有することがより好ましく、窒化チタン、酸窒化チタン、及び、酸窒化ジルコニウムからなる群から選択される少なくとも1種を含有することが更に好ましい。また、酸窒化ジルコニウムは、組成物膜の耐アンダーカット性がより優れる点でも好ましい。
 なお、本明細書において、窒化チタンとは、TiNを意図し、製造上不可避な酸素原子(例えば、TiNの粒子の表面が意図せず酸化したもの、等)を含有してもよい。
 本明細書において、窒化チタンとは、CuKα線をX線源とした場合の(200)面に由来するピークの回折角2θが42.5°~42.8°である化合物を意図する。
 また、本明細書において、酸窒化チタンとは、CuKα線をX線源とした場合の(200)面に由来するピークの回折角2θが42.8°超の化合物を意図する。酸窒化チタンの上記回折角2θの上限値としては特に制限されないが、43.5°以下が好ましい。
 酸窒化チタンとしては、例えば、チタンブラック等が挙げられ、より具体的には、例えば、TiO、Ti2n-1(1≦n≦20)で表せる低次酸化チタン、及び/又は、TiN(0<x<2.0,0.1<y<2.0)で表せる酸窒化チタンを含有する形態が挙げられる。以下の説明では、窒化チタン(上記回折角2θが42.5°~42.8°)、及び、酸窒化チタン(上記回折角2θが42.8°超)を併せてチタン窒化物といい、その形態について説明する。
 CuKα線をX線源としてチタン窒化物のX線回折スペクトルを測定した場合において、最も強度の強いピークとしてTiNは(200)面に由来するピークが2θ=42.5°近傍に、TiOは(200)面に由来するピークが2θ=43.4°近傍に観測される。一方、最も強度の強いピークではないがアナターゼ型TiOは(200)面に由来するピークは2θ=48.1°近傍に、ルチル型TiOは(200)面に由来するピークは2θ=39.2°近傍に観測される。よって、酸窒化チタンが酸素原子を多く含有するほどピーク位置は42.5°に対して高角度側にシフトする。
 チタン窒化物が、酸化チタンTiOを含有する場合、最も強度の強いピークとしてアナターゼ型TiO(101)に由来するピークが2θ=25.3°近傍に、ルチル型TiO(110)に由来するピークが2θ=27.4°近傍に見られる。しかし、TiOは白色であるため、光硬化性組成物を硬化して遮光膜を得ようとする場合は、遮光膜の遮光性を低下させる要因となるため、ピークとして観察されない程度に低減されていることが好ましい。
 上記のX線回折スペクトルの測定により得られたピークの半値幅から、チタン窒化物を構成する結晶子サイズを求めることができる。結晶子サイズの算出はシェラーの式を用いて行うことができる。
 チタン窒化物を構成する結晶子サイズとしては、50nm以下が好ましく、20nm以上が好ましい。結晶子サイズが20~50nmであると、光硬化性組成物を用いて形成される遮光膜は、紫外線(特にi線(365nm))透過率がより高くなりやすく、より感光性が高い光硬化性組成物が得られる。
 チタン窒化物の比表面積については特に制限されないが、BET(Brunauer,Emmett,Teller)法により求めることができる。チタン窒化物の比表面積は、5~100m/gが好ましく、10~60m/gがより好ましい。
 黒色顔料は、その表面に、ケイ素を含有する化合物(以下「含ケイ素化合物」という。)の層を含有してもよい。すなわち、上記金属原子の(酸)窒化物を含ケイ素化合物で被覆し、黒色顔料としてもよい。
 金属原子の(酸)窒化物を被覆する方法としては、特に制限されず、公知の方法を使用でき、例えば、特開昭53-33228号公報の2頁右下~4頁右上に記載された方法(チタン酸化物に代えて、金属原子の(酸)窒化物を用いる)、特開2008-69193の段落0015~0043段落に記載された方法(微粒子二酸化チタンに代えて、金属原子の(酸)窒化物を用いる)、特開2016-74870号公報の段落0020、及び、段落0124~0138に記載された方法(金属酸化物微粒子に代えて、金属原子の(酸)窒化物を用いる)が挙げられ、上記の内容は本明細書に組み込まれる。
 上記光硬化性組成物には、黒色顔料として記載した顔料以外に、赤外線吸収性を有する顔料も使用できる。
 赤外線吸収性を有する顔料としては、タングステン化合物、及び金属ホウ化物等が好ましく、中でも、赤外領域の波長における遮光性に優れる点から、タングステン化合物が好ましい。特に露光による硬化効率に関わる光重合開始剤の光吸収波長領域と、可視光線領域との透光性に優れる観点からタングステン化合物が好ましい。
 これらの顔料は、2種以上併用してもよく、また、後述する染料と併用してもよい。色味を調整するため、及び、所望の波長領域の遮光性を高めるため、例えば、黒色、又は赤外線遮光性を有する顔料に、赤色、緑色、黄色、オレンジ色、紫色、及び、ブルー等の有彩色顔料又は後述する染料を混ぜる形態が挙げられる。黒色、又は赤外線遮光性を有する顔料に、赤色顔料若しくは染料、又は、紫色顔料若しくは染料を混合することが好ましく、黒色、又は赤外線遮光性を有する顔料に赤色顔料を混合することがより好ましい。
 更に、後述する近赤外線吸収剤、赤外線吸収剤を加えてもよい。
(有機顔料)
 有機顔料としては、例えば、カラーインデックス(C.I.)ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等、
 C.I.ピグメントオレンジ 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等、
 C.I.ピグメントレッド 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等;
 C.I.ピグメントグリーン 7,10,36,37,58,59等;
 C.I.ピグメントバイオレット 1,19,23,27,32,37,42等;
 C.I.ピグメントブルー 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等;
が挙げられる。なお、顔料は1種を単独で用いても、2種以上を併用してもよい。
<染料>
 染料としては、例えば特開昭64-90403号公報、特開昭64-91102号公報、特開平1-94301号公報、特開平6-11614号公報、特登2592207号、米国特許4808501号明細書、米国特許5667920号明細書、米国特許505950号明細書、米国特許5667920号明細書、特開平5-333207号公報、特開平6-35183号公報、特開平6-51115号公報、及び、特開平6-194828号公報等に開示されている色素を使用できる。化学構造として区分すると、ピラゾールアゾ化合物、ピロメテン化合物、アニリノアゾ化合物、トリフェニルメタン化合物、アントラキノン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、及び、ピロロピラゾールアゾメチン化合物等を使用できる。また、染料としては色素多量体を用いてもよい。色素多量体としては、特開2011-213925号公報、及び、特開2013-041097号公報に記載されている化合物が挙げられる。また、分子内に重合性を有する重合性染料を用いてもよく、市販品としては、例えば、和光純薬工業社製RDWシリーズが挙げられる。
〔顔料誘導体〕
 光硬化性組成物は、顔料誘導体を含有してもよい。顔料誘導体は、有機顔料の一部分を、酸性基、塩基性基、又は、フタルイミドメチル基で置換した構造を有する化合物が好ましい。顔料誘導体としては、カーボンブラック(光硬化性組成物が着色剤を含む場合は、カーボンブラック及び着色剤)の分散性及び分散安定性の観点から、酸性基又は塩基性基を有する顔料誘導体が好ましい。中でも、塩基性基を有する顔料誘導体が好ましい。また、後述する樹脂(分散剤)と、顔料誘導体との組み合わせは、分散剤が酸性分散剤で、顔料誘導体が塩基性基を有する組み合わせが好ましい。
 顔料誘導体を構成するための有機顔料としては、ジケトピロロピロール系顔料、アゾ系顔料、フタロシアニン系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、及び、金属錯体系顔料等が挙げられる。
 また、顔料誘導体が有する酸性基としては、スルホン酸基、カルボン酸基、又は、その塩が好ましく、カルボン酸基又はスルホン酸基がより好ましい。顔料誘導体が有する塩基性基としては、アミノ基が好ましく、三級アミノ基がより好ましい。また、顔料誘導体は、硬化膜の耐溶剤性及び耐湿性がより優れる観点から、単環の芳香族ヘテロ環を有しているのも好ましく、トリアジン環を有しているのもより好ましい。
 光硬化性組成物が顔料分散剤を含有する場合、光硬化性組成物中における顔料分散剤の含有量としては特に制限されないが、カーボンブラック及び着色剤の合計質量に対して、1~40質量%が好ましく、3~30質量%がより好ましい。
 顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
〔重合性化合物〕
 光硬化性組成物は、重合性化合物を含有するのが好ましい。光硬化性組成物中における重合性化合物の含有量としては特に制限されないが、一般に、光硬化性組成物の全固形分に対して、5~50質量%が好ましい。重合性化合物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合性化合物を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
 本明細書において、重合性化合物とは、分子内に少なくとも1個の重合性基を有する化合物を意味する。重合性基の数としては特に制限されないが、2個以上が好ましく、3個以上がより好ましく、15個以下が好ましく、6個以下がより好ましい。
 重合性基としては特に制限されないが、エチレン性不飽和基、及び、メチロール基等が挙げられ、エチレン性不飽和基が好ましく、具体的には、ビニル基、スチリル基、(メタ)アリル基、(メタ)アクリロイル基、及び、(メタ)アクリロイルオキシ基等が挙げられる。
 重合性化合物は、例えば、モノマー、プレポリマー、すなわち2量体、3量体及びオリゴマー、又はそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよく、モノマーが好ましい。重合性化合物の分子量は、100~3000が好ましく、250~1500がより好ましい。重合性化合物は、3~15官能の(メタ)アクリレート化合物であるのが好ましく、3~6官能の(メタ)アクリレート化合物であるのがより好ましい。
 重合性化合物の具体例としては、特開2007-269779号公報の段落0248~0251に記載されている化合物が挙げられる。
 また、特開平10-62986号公報に記載の、多官能アルコールにエチレンオキサイド又はプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性化合物として使用できる。
 重合性化合物は、ペンタエリスリトールテトラアクリレート(市販品としては、NKエステル A-TMMT;新中村化学工業(株)製)、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬(株)製)、又は、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製)が好ましく、ペンタエリスリトールテトラアクリレートがパターン形状の観点からより好ましい。更に、これらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)でもよい。また、重合性化合物は、アロニックスTO-2349(東亞合成(株))、NKエステル A-DPH-12E(新中村化学工業(株)製)、KAYARAD RP-1040、KAYARAD DPEA-12LT、KAYARAD DPHA LT、KAYARAD RP-3060、及び、KAYARAD DPEA-12(日本化薬社製)等を使用してもよい。
なども使用できる。
 重合性化合物は、カルボキシ基、スルホ基、及び、リン酸基等の酸基を有してもよい。酸基を有する重合性化合物の市販品としては、例えば、東亞合成社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、及び、M-520等が挙げられる。酸基を有する重合性化合物の酸価は、特に制限されないが、一般に、0.1~40mgKOH/gが好ましい。下限は5mgKOH/g以上がより好ましい。上限は、30mgKOH/g以下がより好ましい。
 また、重合性化合物は、カプロラクトン構造を有することも好ましい。カプロラクトン構造を有する重合性化合物としては、例えば、ε-カプロラクトン変性多官能(メタ)アクリレートが挙げられる。ε-カプロラクトン変性多官能(メタ)アクリレートは、典型的には、多価アルコール、(メタ)アクリル酸、及び、ε-カプロラクトンをエステル化反応させることで得られる。多価アルコールとしては、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、及び、トリメチロールメラミン等が挙げられる。
 カプロラクトン構造を有する重合性化合物は、特開2016-006475号公報の段落0091~0107の記載を参酌でき、この内容は本明細書に組み込まれる。市販品としては、例えばサートマー(株)製のエチレンオキシ基を4個有する4官能アクリレートであるSR-494、日本化薬(株)製のペンチレンオキシ基を6個有する6官能アクリレートであるDPCA-60、及び、イソブチレンオキシ基を3個有する3官能アクリレートであるTPA-330などが挙げられる。
 重合性化合物は、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、及び、特公平2-16765号公報に記載のウレタンアクリレート類;特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、及び、特公昭62-39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類;等も使用できる。
 また、特開昭63-277653号公報、特開昭63-260909号公報、及び、特開平1-105238号公報に記載の分子内にアミノ構造又はスルフィド構造を有する付加重合性化合物も好ましい。
 重合性化合物は市販品である、ウレタンオリゴマーUAS-10、UAB-140(山陽国策パルプ(株)製)、U-4HA、U-6LPA、UA-32P、U-10HA、U-10PA、UA-122P、UA-1100H、UA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学(株)製)、UA-9050、UA-9048(BASF(株)UA製)、8UH-1006、及び、8UH-1012(大成ファインケミカル(株)製)等も使用できる。
 また、重合性化合物としては、分子内にSi原子を有する重合性化合物も好ましい。分子内にSi原子を有する重合性化合物の市販品としては、シロキサン結合含有の多官能アクリレートであるEBECRYL1360(ダイセル・オルネクス(株)製)、及び、Si原子含有多官能ビニル化合物であるVINYLTRIISOPROPENOXYSILANE(アズマックス株式会社製)等が挙げられる。
 これらの重合性化合物について、その構造、単独使用か併用か、添加量等の使用方法の詳細等は、組成物の最終的な性能設計にあわせて任意に設定できる。例えば、感度の観点では、1分子あたりのエチレン性不飽和基の含有量が多い構造が好ましく、典型的には2官能以上が好ましい。また、硬化膜の強度を高める観点では、3官能以上が好ましく、更に、官能数、及び、重合性基のうち少なくとも一方が異なる化合物を併用することで、感度と強度との両方を調節する方法も有効である。更に、3官能以上の化合物であって、エチレンオキサイド鎖長の異なる重合性化合物を併用することも好ましい。この形態によれば、光硬化性組成物の現像性を調節することができ、優れたパターン形成が得られる。また、重合性化合物の選択により、光硬化性組成物に含有される他の成分(例えば、後述する重合開始剤、及び、後述する樹脂等)との相溶性及び/又は分散性を向上することもできる。
〔光重合開始剤〕
 光硬化性組成物は、光重合開始剤を含有するのが好ましい。
 光硬化性組成物が光重合開始剤を含有する場合、光硬化性組成物中における光重合開始剤の含有量としては特に制限されないが、光硬化性組成物の全固形分に対して0.1~30質量%が好ましく、1.0~8.0質量%がより好ましい。
 光重合開始剤は、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、及び、オキサジアゾール骨格を有する化合物等)、アシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、及び、α-アミノケトン化合物等が挙げられる。
 光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、又は、ハロメチルオキサジアゾール化合物及び3-アリール置換クマリン化合物が好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、又は、アシルホスフィン化合物がより好ましく、オキシム化合物が更に好ましい。オキシム化合物を使用することで、組成物膜の耐アンダーカット性、硬化膜の耐溶剤性及び耐湿性を向上できる。
 光重合開始剤としては、特開2014-130173号公報の段落0065~0111の記載を参酌でき、この内容は本明細書に組み込まれる。また、光重合開始剤は、KAYACURE DETX-S(日本化薬社製)も使用できる。
 α-ヒドロキシケトン化合物の市販品としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、及び、IRGACURE-127(以上、BASF社製)等が挙げられる。
 α-アミノケトン化合物の市販品としては、IRGACURE-907、IRGACURE-369、IRGACURE-379、及び、IRGACURE-379EG(以上、BASF社製)等が挙げられる。
 アシルホスフィン化合物の市販品としては、IRGACURE-819、及び、DAROCUR-TPO(以上、BASF社製)等が挙げられる。
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、及び、特開2016-21012号公報に記載等が使用できる。
 オキシム化合物としては、例えば、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び、2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン等が挙げられる。また、J.C.S.Perkin II(1979年、pp.1653-1660)、J.C.S.Perkin II(1979年、pp.156-162)、Journal of Photopolymer Science and Technology(1995年、pp.202-232)、特開2000-66385号公報、特開2000-80068号公報、特表2004-534797号公報、及び、特開2006-342166号公報に記載の化合物等も使用できる。
 市販品としては、IRGACURE-OXE01、IRGACURE-OXE02、IRGACURE-OXE03、及び、IRGACURE-OXE04(以上、BASF社製)も使用できる。また、TR-PBG-304(常州強力電子新材料有限公司製)、及び、アデカオプトマーN-1919(ADEKA社製、特開2012-14052号公報に記載の光重合開始剤2)も使用できる。
 また、オキシム化合物としては、着色性が無い化合物、及び/又は、透明性が高く変色し難い化合物も好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、及び、NCI-930(以上、ADEKA社製)等が挙げられる。
 光重合開始剤としては、フルオレン環を有するオキシム化合物も使用できる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 光重合開始剤としては、フッ素原子を有するオキシム化合物も使用できる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、及び、特開2013-164471号公報に記載の化合物(C-3)等が挙げられる。この内容は本明細書に組み込まれる。
 本発明において、光重合開始剤として、ニトロ基を有するオキシム化合物も使用できる。ニトロ基を有するオキシム化合物は、二量体でもよい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落0031~0047、特開2014-137466号公報の段落0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落0007~0025に記載されている化合物、及び、アデカアークルズNCI-831(ADEKA社製)等が挙げられる。
 オキシム化合物の具体例を以下に示すが、オキシム化合物としては下記に制限されない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 オキシム化合物は、350~500nmの波長領域に吸収極大を有する化合物が好ましく、360~480nmの波長領域に吸収極大を有する化合物がより好ましい。また、オキシム化合物は、365nm及び405nmの吸光度が高い化合物が好ましい。
 オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であるのが好ましく、2,000~300,000であるのがより好ましく、5,000~200,000であるのが更に好ましい。
 化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤は、2種類以上併用することも好ましい。例えば、メタノール中での365nmの吸光係数が1.0×10mL/gcm以上の光重合開始剤と、メタノール中での365nmの吸光係数が1.0×10mL/gcm以下であり、254nmの吸光係数が1.0×10mL/gcm以上の光重合開始剤とを併用することも好ましい。具体例として、α-アミノケトン化合物と、オキシム化合物との併用が挙げられる。この形態によれば、低温条件下であっても、硬化性に優れた膜を製造することができる。例えば、パターン形成工程において、現像工程前及び現像工程後の2段階で光硬化性組成物を露光することにより、最初の露光で光硬化性組成物を適度に硬化させることができ、次の露光で光硬化性組成物全体をほぼ硬化させることができる。このため、低温条件でも、光硬化性組成物の硬化性を向上させることができる。
 光重合開始剤は、2官能又は3官能以上の化合物も使用できる。そのような開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開WO2015/004565号、特表2016-532675号公報の0417~0412段落、国際公開WO2017/033680号の0039~0055段落に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)及び(G)、並びに、国際公開WO2016/034963号に記載されているCmpd1~7等が挙げられる。
〔樹脂〕
 光硬化性組成物は樹脂を含有するのが好ましい。樹脂は、典型的には、分散剤又はバインダとしての機能を有する。分散剤は、カーボンブラック及び無機顔料等を光硬化性組成物中で分散させる機能を有する。ただし、樹脂のこのような用途は一例であって、このような用途以外の目的で樹脂を使用してもよい。
 また、光硬化性組成物は、アクリル樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、尿素樹脂、不飽和ポリエステル樹脂、及び、アルキド樹脂からなる群から選択される少なくとも1種の樹脂を含有することが好ましい。
 なお、光硬化性組成物が、後述する着色層、及び/又は、後述するレンズと同種の樹脂を含有する場合、光硬化性組成物を用いて形成される硬化膜の層と着色層、及び/又は、光硬化性組成物を用いて形成される硬化膜の層とレンズとの密着性に優れる。
 樹脂の重量平均分子量(Mw)は、1000~200000が好ましく、2000~100000がより好ましい。
<バインダ>
 光硬化性組成物は、膜特性を向上させる観点から、樹脂としてバインダを含有することが好ましい。
 光硬化性組成物がバインダを含有する場合、光硬化性組成物中におけるバインダの含有量としては特に制限されないが、光硬化性組成物の全固形分に対して5~90質量%が好ましく、10~60質量%がより好ましい。
 バインダは、公知の樹脂を任意に使用できる。例えば、(メタ)アクリル樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、(メタ)アクリルアミド樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂(なかでも不飽和ポリエステル樹脂が好ましい)、スチレン樹脂、及び、シロキサン樹脂等が挙げられる。バインダは、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 環状オレフィン樹脂としては、耐熱性向上の観点からノルボルネン樹脂が好ましく使用できる。ノルボルネン樹脂の市販品としては、例えば、JSR社製のARTONシリーズ(例えば、ARTON F4520)等が挙げられる。また、エポキシ樹脂としては、マープルーフG-0150M、G-0105SA、G-0130SP、G-0250SP、G-1005S、G-1005SA、G-1010S、G-2050M、G-01100、及び、G-01758(日油社製、エポキシ基含有ポリマー)も使用できる。
 バインダとしては、アルカリ可溶性樹脂を使用するのが好ましい。アルカリ可溶性樹脂を使用すると、光硬化性組成物はより優れた現像性を有する。
 アルカリ可溶性樹脂としては、酸基を有する樹脂が挙げられる。酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、及び、フェノール性水酸基等が挙げられ、カルボキシ基が好ましい。アルカリ可溶性樹脂は、酸基は1種有してもよく、2種以上有してもよい。
 アルカリ可溶性樹脂の酸価としては、特に制限されないが、一般に、30~500mgKOH/gが好ましい。下限は、50mgKOH/g以上がより好ましく、70mgKOH/g以上が更に好ましい。上限は、400mgKOH/g以下がより好ましく、200mgKOH/g以下が更に好ましく、150mgKOH/g以下が特に好ましく、120mgKOH/g以下が最も好ましい。
 アルカリ可溶性樹脂としては、側鎖にカルボキシ基を有するポリマーが好ましい。具体的には、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、及び、ノボラック樹脂等のアルカリ可溶性フェノール樹脂;側鎖にカルボキシ基を有する酸性セルロース誘導体;並びに、ヒドロキシ基を有するポリマーに酸無水物を付加させた樹脂;等が挙げられる。
 特に、(メタ)アクリル酸と、これと共重合可能な他のモノマーとの共重合体が、アルカリ可溶性樹脂として好ましい。(メタ)アクリル酸と共重合可能な他のモノマーとしては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、及び、ビニル化合物等が挙げられる。
 アルキル(メタ)アクリレート及びアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、及び、シクロヘキシル(メタ)アクリレート等が挙げられる。
 ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、及び、ポリメチルメタクリレートマクロモノマー等が挙げられる。
 また、他にも、特開平10-300922号公報に記載のN位置換マレイミドモノマー、例えば、N-フェニルマレイミド、及び、N-シクロヘキシルマレイミド等も使用できる。なお、これらの(メタ)アクリル酸と共重合可能な他のモノマーは1種のみであってもよいし、2種以上であってもよい。
 アルカリ可溶性樹脂は、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体;ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体;ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体;等が好ましい。
 また、2-ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体;2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体;2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体;又は、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体;等も好ましい。
 組成物膜の耐アンダーカット性がより優れ、硬化膜の耐溶剤性及び耐湿性がより優れる観点から、アルカリ可溶性樹脂としては、上述した重合性化合物とは別に、重合性基を有するアルカリ可溶性樹脂も使用するのも好ましい。
 重合性基としては、(メタ)アリル基、及び、(メタ)アクリロイル基等が挙げられる。重合性基を有するアルカリ可溶性樹脂は、重合性基を側鎖に有するアルカリ可溶性樹脂等が好ましい。重合性基を有するアルカリ可溶性樹脂としては、ダイヤナールNRシリーズ(三菱レイヨン社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれもダイセル社製)、Ebecryl3800(ダイセル・オルネクス社製)、及び、アクリキュアーRD-F8(日本触媒社製)等が挙げられる。
 アルカリ可溶性樹脂としては、下記式(ED1)で表される化合物及び/又は下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」ともいう)を含むモノマー成分を重合してなるポリマーを含むことも好ましい。エーテルダイマーを含むモノマー成分を重合してなるポリマーの詳細については、特開2015-34961号公報の段落0022~0031を参酌でき、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000003
 式(ED1)中、R及びRは、それぞれ独立して、水素原子又は置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000004
 式(ED2)中、Rは、水素原子又は炭素数1~30の有機基を表す。式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
 エーテルダイマーの具体例としては、例えば、特開2013-29760号公報の段落0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。
 アルカリ可溶性樹脂は、下記式(X)で示される化合物に由来する繰り返し単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(X)において、Rは、水素原子又はメチル基を表し、Rは炭素数2~10のアルキレン基を表し、Rは、水素原子又はベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
 アルカリ可溶性樹脂の具体例としては、例えば、下記の樹脂が挙げられる。また、特開2015-34961号公報の段落0037に記載の樹脂も挙げられる。これらの樹脂の中でも、重合性基((メタ)アクリロイル基等)を有するアルカリ可溶性樹脂であるのが、耐溶剤性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000006
<分散剤>
 光硬化性組成物は、樹脂として分散剤を含有することが好ましい。分散剤は、酸性樹脂、塩基性樹脂、及び、両性樹脂からなる群から選択される少なくとも1種を含有することが好ましく、酸性樹脂、及び、両性樹脂からなる群から選択される少なくとも1種がより好ましい。
 本明細書において、酸性樹脂とは、酸基を有する樹脂であって、酸価が5mgKOH/g以上、アミン価が5mgKOH/g未満の樹脂を意味する。酸性樹脂は、塩基性基を有さないことが好ましい。酸性樹脂が有する酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、及び、フェノール性ヒドロキシ基等が挙げられ、リン酸基、又は、カルボキシ基が好ましい。酸性樹脂の酸価は、5~200mgKOH/gが好ましい。下限は、10mgKOH/g以上がより好ましく、20mgKOH/g以上が更に好ましい。上限は、100mgKOH/g以下がより好ましく、60mgKOH/g以下が更に好ましい。 また、酸性樹脂のアミン価は、2mgKOH/g以下が好ましく、1mgKOH/g以下がより好ましい。
 本明細書において、塩基性樹脂とは、塩基性基を有する樹脂であって、アミン価が5mgKOH/g以上、酸価が5mgKOH/g未満の樹脂を意味する。塩基性樹脂は、酸基を有さないことが好ましい。塩基性樹脂が有する塩基性基としては、アミノ基が好ましい。塩基性樹脂のアミン価は、5~200mgKOH/gが好ましく、5~150mgKOH/gがより好ましく、5~100mgKOH/gが更に好ましい。
 本明細書において、両性樹脂とは、酸基及び塩基性基を有する樹脂であって、酸価が5mgKOH/g以上で、かつ、アミン価が5mgKOH/g以上である樹脂を意味する。 酸基の形態は、上記の酸性樹脂と同様であり、カルボキシ基が好ましい。塩基性基の形態は、上記の塩基性樹脂と同様であり、アミノ基が好ましい。
 両性樹脂の酸価は、5~200mgKOH/gが好ましい。下限は、組成物膜の引き置き欠陥抑制性がより優れる観点から、10mgKOH/g以上がより好ましく、20mgKOH/g以上が更に好ましく、40mgKOH/g以上が特に好ましい。上限は、150mgKOH/g以下がより好ましく、100mgKOH/g以下が更に好ましい。アミン価は、5~200mgKOH/gが好ましい。下限は、10mgKOH/g以上がより好ましく、20mgKOH/g以上が更に好ましい。上限は、150mgKOH/g以下がより好ましく、100mgKOH/g以下が更に好ましい。両性樹脂の酸価とアミン価の比率は、酸価:アミン価=1:4~4:1が好ましく、1:3~3:1がより好ましい。
 組成物膜の耐アンダーカット性がより優れ、硬化膜の耐溶剤性及び耐湿性がより優れる観点から、分散剤が、上述した重合性化合物とは別に、重合性基(好ましくはエチレン性不飽和結合を含有する基)を有する化合物であるのも好ましい。
 分散剤としては、高分子分散剤〔例えば、アミン基を有する樹脂(ポリアミドアミンとその塩など)、オリゴイミン系樹脂、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、及び、ナフタレンスルホン酸ホルマリン重縮合物〕等が挙げられる。高分子分散剤は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、及び、ブロック型高分子に分類できる。
 分散剤は、カーボンブラック、及び/又は、着色剤に対する吸着能を有する部位(以下、「吸着部位」ともいう。)を有する樹脂が好ましい。吸着部位としては、酸基、ウレア基、ウレタン基、配位性酸素原子を有する基、塩基性窒素原子を有する基、複素環基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボキシ基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基、及び、水酸基からなる群から選択される少なくとも1種を有する1価の置換基等が挙げられる。吸着部位は、酸基が好ましい。中でも、吸着部位がリン原子を含有する基、及び/又は、カルボキシ基の少なくとも一方であるのが好ましい。リン原子を含有する基としては、リン酸エステル基、ポリリン酸エステル基、及び、リン酸基等が挙げられる。吸着部位の詳細については、特開2015-34961号公報の段落0073~0080を参酌でき、この内容は本明細書に組み込まれる。
 本発明において、分散剤は、下記式(111)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(111)中、Rは、(m+n)価の連結基を表し、Rは単結合又は2価の連結基を表す。Aは、酸基、ウレア基、ウレタン基、配位性酸素原子を有する基、塩基性窒素原子を有する基、複素環基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボキシ基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基、及び、水酸基からなる群から選択される少なくとも1種を有する1価の置換基を表す。n個のA及びRは、それぞれ同一でも、異なってもよい。mは8以下の正の整数を表し、nは1~9の整数を表し、m+nは3~10を満たす。Pは1価のポリマー鎖を表す。m個のPは、同一であってもよく、異なっていてもよい。
 上記式(111)で表される樹脂は、特開2007-277514号公報の段落0039(対応する米国特許出願公開第2010/0233595号明細書の段落0053)の記載、特開2015-34961号公報の段落0081~0117の記載、特許5909468号公報、特許5894943号公報、及び、特許5894944号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明において、樹脂(分散剤)は、下記式(11)~式(14)のいずれかで表される繰り返し単位を含むグラフト共重合体も使用できる。
Figure JPOXMLDOC01-appb-C000008
 式(11)~式(14)において、W、W、W、及び、Wはそれぞれ独立に酸素原子、又は、NHを表し、X、X、X、X、及び、Xはそれぞれ独立に水素原子又は1価の基を表し、Y、Y、Y、及び、Yはそれぞれ独立に2価の連結基を表し、Z、Z、Z、及び、Zはそれぞれ独立に1価の基を表し、Rはアルキレン基を表し、Rは水素原子又は1価の基を表し、n、m、p、及び、qはそれぞれ独立に1~500の整数を表し、j及びkはそれぞれ独立に2~8の整数を表す。式(13)において、pが2~500のとき、複数存在するRは互いに同じであっても異なっていてもよく、式(14)において、qが2~500のとき、複数存在するX及びRは互いに同じであっても異なっていてもよい。
 上記グラフト共重合体については、特開2012-255128号公報の段落0025~0094の記載を参酌でき、本明細書には上記内容が組み込まれる。上記グラフト共重合体の具体例としては、例えば、以下の樹脂が挙げられる。また、特開2012-255128号公報の段落0072~0094に記載の樹脂が挙げられ、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000009
 本発明において、分散剤は、主鎖及び側鎖からなる群から選択される少なくとも一方に塩基性窒素原子を含有するオリゴイミン系分散剤も好ましい。オリゴイミン系分散剤としては、pKa14以下の官能基を有する部分構造Xを有する繰り返し単位と、原子数40~10,000のオリゴマー鎖又はポリマー鎖Yを含む側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。この分散剤は、窒素原子と、部分構造Xが有するpKa14以下の官能基との双方で、カーボンブラック、及び/又は、着色剤と相互作用し、オリゴマー鎖又はポリマー鎖Yが立体反発基として機能することにより、良好な分散性を発揮して、組成物中においてカーボンブラック、及び/又は、着色剤を均一に分散できる。
 本明細書において、塩基性窒素原子とは、塩基性を呈する窒素原子であれば特に制限されないが、樹脂がpKb14以下の窒素原子を有する構造を含有することが好ましく、pKb10以下の窒素原子を有する構造を含有することがより好ましい。本発明においてpKb(塩基強度)とは、水温25℃でのpKbをいい、塩基の強さを定量的に表すための指標のひとつであり、塩基性度定数と同義である。塩基強度pKbと、酸強度pKaとは、pKb=14-pKaの関係にある。
 オリゴイミン系分散剤については、特開2015-34961号公報の段落0118~0190の記載を参酌でき、本明細書には上記内容が組み込まれる。オリゴイミン系分散剤の具体例としては、例えば、下記の樹脂、又は、特開2015-34961号公報の段落0169~0190に記載の樹脂を使用できる。
Figure JPOXMLDOC01-appb-C000010
 分散剤の市販品としては、Solsperse 36000、及び、41000(以上、Lubrizol社製):ライトエステルP-1M、及び、ライトエステルP-2M(以上、共栄社化学社製)等が挙げられる。
 また、特開2014-130338号公報の段落0041~0130に記載された顔料分散剤も使用でき、この内容は本明細書に組み込まれる。分散剤は、1種類単独で、あるいは2種類以上を組み合わせて使用できる。分散剤は、上述したバインダで説明した樹脂も使用できる。また、分散剤は、波長589nmの光に対する屈折率が1.5以下である樹脂を用いてもよい。
 光硬化性組成物が分散剤を含有する場合、光硬化性組成物中における分散剤の含有量としては特に制限されないが、パターン形状及び密着性の観点から、光硬化性組成物の全固形分に対して、1~80質量%であるのが好ましい。上限は、70質量%以下がより好ましく、60質量%以下が更に好ましい。下限は、1.5質量%以上がより好ましく、2質量%以上が更に好ましい。
 また、分散剤の含有量は、カーボンブラック及び着色剤の合計100質量部に対して、1~100質量部が好ましい。上限は、65質量部以下がより好ましい。下限は、2.5質量部以上がより好ましく、5質量部以上が更に好ましい。
〔界面活性剤〕
 光硬化性組成物は、塗布適性をより向上させる観点から、各種類の界面活性剤を含有してもよい。界面活性剤としては、ノニオン系界面活性剤、カチオン系界面活性剤、及び、アニオン系界面活性剤が挙げられ、シリコーン系界面活性剤及びフッ素系界面活性剤等であってもよい。
 光硬化性組成物にフッ素系界面活性剤を含有させることで、塗布液として調製したときの液特性(特に、流動性)がより向上し、塗布厚の均一性及び/又は省液性をより改善することができる。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好ましく、5~30質量%がより好ましく、7~25質量%が更に好ましい。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性及び/又は省液性の点で効果的であり、光硬化性組成物中における溶解性も良好である。
 フッ素系界面活性剤として具体的には、特開2014-41318号公報の段落0060~0064(対応する国際公開WO2014/17669号の段落0060~0064)等に記載の界面活性剤、及び、特開2011-132503号公報の段落0117~0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、及び、同F780(以上、DIC(株)製)、フロラードFC430、同FC431、及び、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、及び、同KH-40(以上、旭硝子(株)製)、並びに、PolyFox PF636、PF656、PF6320、PF6520、及び、PF7002(OMNOVA社製)等が挙げられる。
 また、フッ素系界面活性剤は、フッ素原子を含有する官能基を持つ分子構造で、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファックDSシリーズ(化学工業日報、2016年2月22日)(日経産業新聞、2016年2月23日)、例えばメガファックDS-21が挙げられ、これらも使用できる。
 フッ素系界面活性剤は、ブロックポリマーも使用できる。例えば特開2011-89090号公報に記載された化合物が挙げられる。フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も使用できる。下記化合物も本発明で使用できるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000011
 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。繰り返し単位の割合を示す%は質量%である。
 また、フッ素系界面活性剤は、エチレン性不飽和基を側鎖に有する含フッ素重合体も使用できる。具体例としては、特開2010-164965号公報の段落0050~0090及び段落0289~0295に記載された化合物、DIC社製のメガファックRS-101、RS-102、RS-718K、及び、RS-72-K等が挙げられる。フッ素系界面活性剤は、特開2015-117327号公報の段落0015~0158に記載の化合物も使用できる。
 シリコーン系界面活性剤としては、例えば、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、及び、トーレシリコーンSH8400(以上、東レ・ダウコーニング社製)、TSF-4440、TSF-4300、TSF-4445、TSF-4460、及び、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP341、KF6001、及び、KF6002(以上、信越シリコーン社製)、並びに、BYK307、BYK323、及び、BYK330(以上、ビックケミー社製)等が挙げられる。
 界面活性剤は、1種類のみを用いてもよいし、2種類以上を組み合わせてもよい。界面活性剤の含有量は、光硬化性組成物の全固形分に対して、0.001~2.0質量%が好ましい。
〔溶剤〕
 光硬化性組成物は、溶剤を含有するのが好ましい。
 光硬化性組成物が溶剤を含有する場合、光硬化性組成物中における溶剤の含有量としては特に制限されないが、光硬化性組成物の全質量に対して、5~90質量%が好ましい。
 溶剤は、1種を単独で用いても、2種以上を併用してもよい。
 溶剤としては特に制限されず、水、有機溶剤、又は、これらの混合物が使用できる。
 有機溶剤としては、例えば、エステル類、エーテル類、ケトン類、及び、芳香族炭化水素類等が挙げられる。有機溶剤としては、国際公開WO2015/166779号公報の段落0223の記載を参酌でき、この内容は本明細書に組み込まれる。
 また、環状アルキル基が置換したエステル系溶剤、及び、環状アルキル基が置換したケトン系溶剤も使用できる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサン、酢酸エチル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、酢酸シクロヘキシル、シクロペンタノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3-メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピルアセテート、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、乳酸メチル、乳酸エチル、ブチルジグリコールアセテート、及び、3-メトキシブチルアセテート等が挙げられる。また、3-メトキシ-N,N-ジメチルプロパンアミド、及び、3-ブトキシ-N,N-ジメチルプロパンアミドも溶解性向上の観点から好ましい。これらの有機溶剤は、単独、又は、混合して使用できる。ただし、溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、及び、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm以下、10質量ppm以下、あるいは1質量ppm以下とすることができる)。
 本発明において、溶剤は、金属含有量が少ない溶剤を使用するのが好ましい。溶剤の金属含有量は、例えば、10質量ppb以下であるのが好ましい。必要に応じて質量ppt(parts per trillion)レベルのものを使用してもよい。
 溶剤から金属等の不純物を除去する方法としては、例えば、蒸留、ろ過、及び、これらの組合せ等が挙げられる。
〔エポキシ基を有する化合物〕
 硬化膜の耐溶剤性及び耐湿性がより優れる観点から、光硬化性組成物は、上述した重合性化合物とは別に、エポキシ基を有する化合物を含有してもよい。エポキシ基を有する化合物を含有する光硬化性組成物により形成された硬化膜はより優れた耐溶剤性を有する。エポキシ基を有する化合物としては、単官能又は多官能グリシジルエーテル化合物、及び、多官能脂肪族グリシジルエーテル化合物等が挙げられる。また、脂環式エポキシ基を有する化合物も使用できる。
 エポキシ基を有する化合物としては、1分子にエポキシ基を1つ以上有する化合物が挙げられる。エポキシ基は、1分子に1~100個有することが好ましい。上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。下限は、2個以上が好ましい。
 エポキシ基を有する化合物は、エポキシ当量(=エポキシ基を有する化合物の分子量/エポキシ基の数)が500g/当量以下であるのが好ましく、100~400g/当量であるのがより好ましく、100~300g/当量であるのが更に好ましい。
 エポキシ基を有する化合物は、低分子化合物(例えば、分子量1000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1000以上、ポリマーの場合は、重量平均分子量が1000以上)のいずれでもよい。エポキシ基を有する化合物の重量平均分子量は、200~100000が好ましく、500~50000がより好ましい。重量平均分子量の上限は、10000以下が好ましく、5000以下がより好ましく、3000以下が更に好ましい。エポキシ基を有する化合物は、脂肪族エポキシ樹脂であるのが、耐溶剤性の観点から好ましい。
 エポキシ基を有する化合物の市販品としては、EHPE3150(ダイセル社製)、(EPICLON N-695、DIC社製)などが挙げられる。また、エポキシ基を有する化合物は、特開2013-011869号公報の段落0034~0036、特開2014-043556号公報の段落0147~0156、及び、特開2014-089408号公報の段落0085~0092に記載された化合物も使用でき、これらの内容は、本明細書に組み込まれる。
 光硬化性組成物がエポキシ基を有する化合物を含有する場合、光硬化性組成物中におけるエポキシ基を有する化合物の含有量としては特に制限されないが、光硬化性組成物の全固形分に対して0.1~40質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、例えば、30質量%以下がより好ましく、10質量%以下が更に好ましい。
〔密着剤〕
 光硬化性組成物は、組成物膜の耐アンダーカット性が優れる観点から、上述した重合性化合物以外の、密着剤を含有してもよい。密着剤としては特に制限されず、公知の密着剤が使用できる。密着剤としては、例えば、シランカップリング剤が挙げられる。光硬化性組成物中における密着剤の含有量としては特に制限されないが、一般に、光硬化性組成物の全固形分に対して、0.01~10質量%が好ましい。密着剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の密着剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
 本明細書において、シランカップリング剤は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応及び縮合反応のうち少なくとも一方によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基は、樹脂との間で相互作用するか、もしくは結合を形成して親和性を示す基を有することが好ましい。例えば、(メタ)アクリロイル基、フェニル基、メルカプト基、エポキシ基、及び、オキセタニル基等が挙げられ、(メタ)アクリロイル基又はエポキシ基が好ましい。即ち、シランカップリング剤は、アルコキシシリル基、並びに、(メタ)アクリロイル基及びエポキシ基のうち少なくとも一方を有する化合物が好ましい。アルコキシシリル基におけるアルコキシ基の炭素数は、1~5が好ましく、1~3がより好ましく、1又は2が特に好ましい。アルコキシシリル基は、同一分子内に2個以上有することが好ましく、2~3個有することが更に好ましい。また、シランカップリング剤は、特開2009-288703号公報の段落0018~0036に記載の化合物、特開2009-242604号公報の段落0056~0066に記載の化合物、及び、特開2009-288703号公報の段落0011~0037に化合物を使用でき、これらの内容は本明細書に組み込まれる。
〔紫外線吸収剤〕
 光硬化性組成物は、紫外線吸収剤を含有してもよい。
 紫外線吸収剤は、共役ジエン系化合物が好ましく、下記式(I)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(I)において、R及びRは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、又は炭素原子数6~20のアリール基を表し、RとRとは互いに同一でも異なってもよいが、同時に水素原子を表すことはない。
 式(I)で示される紫外線吸収剤の置換基の説明は、WO2009/123109号公報の段落0024~0033(対応する米国特許出願公開第2011/0039195号明細書の段落0040~0059)の記載を参酌でき、これらの内容は本明細書に組み込まれる。式(I)で表される化合物としては、WO2009/123109号公報の段落0034~0037(対応する米国特許出願公開第2011/0039195号明細書の段落0060)の例示化合物(1)~(14)の記載を参酌でき、これらの内容は本明細書に組み込まれる。式(I)で示される紫外線吸収剤の具体例としては、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 光硬化性組成物中における紫外線吸収剤の含有量としては特に制限されないが、一般に、光硬化性組成物の全固形分に対して、0.1~10質量%が好ましい。紫外線吸収剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の紫外線吸収剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
 紫外線吸収剤は、ユビナールA(BASF社製)も使用できる。また、紫外線吸収剤は、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、及び、トリアジン化合物等の紫外線吸収剤を使用でき、具体例としては特開2013-68814号に記載の化合物が挙げられる。ベンゾトリアゾール化合物としてはミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)を用いてもよい。
〔その他の成分〕
 光硬化性組成物は上記以外にも、重合禁止剤、着色防止剤、連鎖移動剤、及び、増感剤等を含有してもよい。上記その他の成分は、いずれも公知の化合物を使用でき、その含有量も適宜定められる。
[光硬化性組成物の製造方法]
 光硬化性組成物は、上記の各成分を公知の混合方法(例えば、攪拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、及び、湿式分散機(例えば、ビーズミル)等を用いた混合方法)により混合して調製することができる。中でも短時間で均一にカーボンブラック等を微細化できるほか、後述する着色剤分散工程において、着色剤分散液を加熱する場合に、より優れた経時安定性を有する着色剤分散液が得られる点で、ビーズミルを使用するのが好ましい。
 光硬化性組成物の製造方法は、カーボンブラックを事前に分散させる工程を含有するのが好ましい。カーボンブラックを分散させる工程では、カーボンブラックと、上述の溶剤、分散剤、及び、顔料誘導体等とを混合させて分散液を得るのが好ましい。
 また、光硬化性組成物が、カーボンブラック以外のその他の着色剤を含有する場合は、着色剤も同様に分散させておくことが好ましい。着色剤は、カーボンブラックと共に分散させてもよいし、カーボンブラックとは別途分散して着色剤の分散液を製造してもよい。
 このような工程を分散工程という。
 その後、上記分散液と、その他の成分を混合する混合工程を経て、光硬化性組成物を得るのが好ましい。
 分散工程において、分散液の液温としては特に制限されないが、一般に0~70℃に保持されることが好ましい。
 中でも、分散工程において、分散液に系外(例えば、大気中)から水分がより混入しにくい点で、分散液の液温は5℃以上に保持されることがより好ましく、15℃以上に保持されることが更に好ましく、30℃以上に保持されることが特に好ましい。
 また、分散工程において、分散液が溶剤を含有する場合、分散液から溶剤がより揮発しにくい点で、分散液の液温は60℃未満に保持されることがより好ましく、55℃以下に保持されることが更に好ましく、50℃以下に保持されることが特に好ましい。
 なお、分散液が、より優れた経時安定性を有する場合、得られる光硬化性組成物もより優れた経時安定性を有するため好ましい。
 また、分散工程において、分散液の液温が23℃以上に保持される場合、カーボンブラック表面に対する有機溶剤の濡れ性が向上し、溶剤の均一化も進みやすい。また、分散液が分散剤を含有する場合、樹脂がカーボンブラックへより吸着しやすくなるため、処理時間が短くなり、得られる分散液はより優れた経時安定性を有する。
 また、異物の除去、及び/又は、欠陥の低減等の目的で、光硬化性組成物、及び/又は、分散液をフィルタで濾過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく使用できる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、及び、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)、又は、ナイロンが好ましい。
 フィルタの孔径は、0.1~7.0μmが好ましく、0.2~2.5μmがより好ましく、0.2~1.5μmが更に好ましく、0.3~0.7μmが特に好ましい。この範囲とすることにより、ろ過詰まりを抑えつつ、着色剤に含有される不純物、及び、凝集物等の、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は、株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2~10.0μmが好ましく、0.2~7.0μmがより好ましく、0.3~6.0μmが更に好ましい。
 本発明の光硬化性組成物は、金属、ハロゲンを含む金属塩、酸、及び、アルカリ等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量としては、1質量ppm以下が好ましく、1質量ppb以下がより好ましく、100質量ppt以下が更に好ましく、10質量ppt以下が特に好ましく、実質的に含まないこと(測定装置の検出限界以下であること)が最も好ましい。
 なお、上記不純物は、誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ社製、Agilent 7500cs型)により測定することができる。
<容器>
 上記光硬化性組成物は、使用時まで一時的に容器内に保管してもよい。上記光硬化性組成物を保管するための容器としては特に制限されず、公知の容器を使用できる。
 上記光硬化性組成物を保管する容器としては、容器内のクリーン度が高く、不純物の溶出が少ない容器が好ましい。例えば、半導体用途向けに市販されている用途の容器を使用してもよい。
 使用可能な容器としては、具体的には、アイセロ化学社製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに限定されない。
 例えば、容器内壁が6種の樹脂で6層構造に構成された多層ボトル、又は、容器内壁が6種の樹脂で7層構造に構成された多層ボトルを使用することも好ましい。これらの容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
[硬化膜]
 上記光硬化性組成物を用いて形成された光硬化性組成物層(組成物層)を硬化して硬化膜を得ることができる。
 硬化膜の製造方法としては特に制限されないが、以下の工程を含有することが好ましい。
・光硬化性組成物層形成工程
・露光工程
・現像工程
 以下、各工程について説明する。
<光硬化性組成物層形成工程>
 光硬化性組成物層形成工程は、上記光硬化性組成物を用いて、光硬化性組成物層(組成物層)を形成する工程である。光硬化性組成物を用いて、組成物層を形成する工程としては、例えば、基板上に、光硬化性組成物を塗布して、組成物層を形成する工程が挙げられる。
 基板の種類は特に制限されないが、固体撮像素子として用いる場合は、例えば、ケイ素基板が挙げられ、カラーフィルタ(固体撮像素子用カラーフィルタを含む)として用いる場合には、ガラス基板等が挙げられる。
 基板上への光硬化性組成物の塗布方法としては、例えば、スピンコート、スリット塗布、インクジェット法、スプレー塗布、回転塗布、流延塗布、ロール塗布、及び、スクリーン印刷法等の各種の塗布方法が挙げられる。
 基板上に塗布された光硬化性組成物は、通常、70~150℃で1~4分程度の条件下で乾燥され、組成物層が形成される。
<露光工程>
 露光工程では、光硬化性組成物層形成工程において形成された組成物層に活性光線又は放射線を照射することにより露光し、光照射された組成物層を硬化させる。
 光照射の方法としては特に制限されないが、パターン状の開口部を有するフォトマスクを解して光照射することが好ましい。
 露光は放射線の照射により行うことが好ましく、露光に際して使用できる放射線としては、特に、g線、h線、又は、i線等の紫外線が好ましく、光源としては高圧水銀灯が好ましい。照射強度は5~1500mJ/cmが好ましく、10~1000mJ/cmがより好ましい。
 なお、光硬化性組成物が、熱重合開始剤を含有する場合、上記露光工程において、組成物層を加熱してもよい。加熱の温度として特に制限されないが、80~250℃が好ましい。また、加熱の時間としては特に制限されないが、30~300秒が好ましい。
 なお、露光工程において、組成物層を加熱する場合、後述する後加熱工程を兼ねてもよい。言い換えれば、露光工程において、組成物層を加熱する場合、硬化膜の製造方法は後加熱工程を含有しなくてもよい。
<現像工程>
 露光工程に次いで、現像処理(現像工程)を行い、露光工程における光未照射部分を現像液に溶出させる。これにより、光硬化した部分だけが残る。
 現像液としては、アルカリ現像液を用いてもよい。その場合は、有機アルカリ現像液を用いるのが好ましい。現像温度としては20~30℃が好ましく、現像時間は20~90秒が好ましい。
 アルカリ水溶液(アルカリ現像液)としては、無機アルカリ現像液及び有機アルカリ現像液が挙げられる。
 無機アルカリ現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、又は、メタ硅酸ナトリウム等のアルカリ性化合物を、濃度が0.001~10質量%(好ましくは0.005~0.5質量%)となるように溶解したアルカリ水溶液が挙げられる。
 また、有機アルカリ現像液としては、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、又は、1,8-ジアザビシクロ-[5,4,0]-7-ウンデセン等のアルカリ性化合物を、濃度が0.001~10質量%(好ましくは0.005~0.5質量%)となるように溶解したアルカリ水溶液が挙げられる。
 アルカリ水溶液には、例えば、メタノール、エタノール等の水溶性有機溶剤、及び/又は、界面活性剤等を適量添加することもできる。なお、このようなアルカリ水溶液からなる現像液を使用した場合には、一般に現像後に硬化膜を純水で洗浄(リンス)する。
 光硬化性組成物層がアルカリ可溶性樹脂以外の樹脂を使用している場合は、現像液として有機系現像液を用いるのも好ましい。
 有機系現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤等の極性溶剤、並びに、炭化水素系溶剤が挙げられる。
 現像温度としては20~30℃が好ましく、現像時間は20~90秒が好ましい。
 有機系現像液を行った後は、リンスを行うのも好ましい。
 リンス液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤等の極性溶剤、並びに、炭化水素系溶剤が挙げられる。
 なお、硬化膜の製造方法は、その他の工程を含有してもよい。
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。
 その他の工程としては、例えば、基材の表面処理工程、前加熱工程(プリベーク工程)、及び、後加熱工程(ポストベーク工程)等が挙げられる。
 上記硬化膜の製造方法としては、露光工程と、現像工程との間に、露光後の組成物層を加熱する工程(後加熱工程)を含有することが好ましい。
 上記前加熱工程、及び、後加熱工程における加熱温度は、80~250℃が好ましい。
上限は、200℃以下がより好ましく、150℃以下が更に好ましい。下限は90℃以上がより好ましい。
 前加熱工程及び後加熱工程における加熱時間は、30~300秒が好ましい。上限は、240秒がより好ましく、180秒以下が更に好ましい。下限は60秒以上がより好ましい。
[光減衰層を有する積層体]
 本発明の光硬化性組成物から得られる硬化膜は、例えば光減衰層として使用できる。このような光減衰層は、積層体として使用されるのが好ましい。
 光減衰層を有する積層体を使用することで、例えば、固体撮像素子のダイナミックレンジの改良、及び、色再現性の向上が可能である。
 以下、本発明の光硬化性組成物から形成される光減衰層を有する積層体について説明する。
〔光減衰層〕
 光減衰層は、入射した光を減衰し、減衰された光を透過させる機能を有する層である。入射した光を減衰させる方法としては特に制限されないが、入射した光を吸収する方法、入射した光を反射する方法、及び、これらの組合せが挙げられ、より優れたダイナミックレンジの改良効果、及び、色再現性の向上効果を有する積層体が得られる点で、入射した光を吸収する方法が好ましい。すなわち、光減衰層は入射した光の一部を吸収する機能を有する層が好ましい。
 光減衰層の光の減衰特性は、400~700nmの波長域の光の透過率の最大値と最小値の差ΔTが11.0%以下であるのが好ましい。差ΔTの測定方法は実施例に記載したとおりである。なお、上記差ΔTは、光硬化性組成物の配合により調整することもできるし、光減衰層の厚みにより調整することもできる。なお光減衰層の厚みとしては特に制限されないが、一般に0.1~1.0μmが好ましい。
 また、より優れた積層体が得られる点で、400~700nmの波長域の光の透過率の最大値と最小値の差ΔTが7.0%以下となることがより好ましい。なお、差ΔTの最小値としては特に制限されないが、一般に0%以上が好ましい。
 また、光減衰層の700~1000nmの波長域の光の透過率の最大値と最小値の差ΔTとしては特に制限されないが、より優れた効果を有する積層体が得られる点で、差ΔTは11.0%以下が好ましく、差ΔTは7.0%以下がより好ましい。差ΔTが11.0%以下であると、後述する光減衰層を有する固体撮像素子が赤外線透過層を有する場合に、より優れた色再現性を有する像が得られる。
 また、光減衰層の550nmの波長の光の透過率としては特に制限されないが、固体撮像素子がより優れたダイナミックレンジを有し、得られる像において、いわゆる「白飛び」と呼ばれる現象がより発生にくい点で、5.0~75.0%が好ましく、5.0~20.0%が好ましい。なお、上記の透過率の測定方法は実施例に記載したとおりである。
 光減衰層の550nmの波長の光の透過率は、光減衰層の材料及び厚みにより調整できる。
 中でも、光減衰層は、カーボンブラックとは異なる着色剤を更に含有することも好ましい。つまり、光減衰層を形成する場合、本発明の光硬化性組成物は、カーボンブラックとは異なる着色剤を更に含有することも好ましい。
 光減衰層は、着色層と積層され、積層体を構成するのが好ましい。
 上記着色層は、緑色着色層、赤色着色層、青色着色層、シアン色着色層、マゼンタ色着色層、及び、イエロー色着色層からなる群から選択される少なくとも1種であるのがより好ましい。
<積層体を有する固体撮像素子>
 光減衰層を有する積層体(以下、単に「積層体」ともいう)の説明を含めて、上記積層体を有する固体撮像素子の構造を説明する。
 図1は、積層体を有する典型的な固体撮像子における、単位画素10の断面模式図である。
 単位画素10は、着色層12と、所定の光学特性を有する光減衰層13とが積層された第1の積層体14を有する。単位画素10は、光の入射方向(図中の矢印L)から順に、レンズ11、第1の積層体14とが、基板15上に配置されている。また、基板15には、第1の光電変換部16が形成されている。なお、図示はしていないが、レンズ11の上側には、カバーガラス等が積層され、基板15の下側には、配線層及び支持基板等が積層されている。以下の説明において必要な部分を適宜図示し、説明を加え、その他の部分については、適宜図示又は説明を省略する。
 光減衰層13の400~700nmの波長域の光の透過率の最大値と最小値の差ΔTは11.0%以下であるのが好ましい。したがって、第1の光電変換部に入射する光は、400~700nmの波長域において、均一にその強度が減少し、第1の光電変換部へ入射する光は、光減衰層13を透過する前後において400~700nmの波長における分光スペクトルが変化しにくい。従って、単位画素10を有する固体撮像素子により得られる像は、優れた色再現性を有する。
 なお、ΔTとしては、7.0%以下が好ましい。なお、ΔTの下限値としては特に制限されないが、一般に0%以上が好ましい。
 図2は、本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの例について示した図である。
 単位画素20は、単位画素10と共通の基板15上に形成された第2の積層体22とレンズ11-2とを有する。第2の積層体22は、着色層12と、透明層21とが積層されたものである。基板15における第2の積層体22の下部には、第2の光電変換部23が形成されている。
 図2においては、第2の光電変換部23に入射する光は、第1の光電変換部16に入射する光と比較して光量がより多くなっている。従って、図2の単位画素の組み合わせを有する固体撮像素子はダイナミックレンジが拡大する。
 図2において、第1の光電変換部16と第2の光電変換部23の受光面積は同一であるが、本発明の実施形態に係る固体撮像素子としては上記に制限されない。第1の光電変換部を有する単位画素10の面積が、第2の光電変換部を有する単位画素20の面積よりも小さく構成されていてもよい。この場合、第1の光電変換部16に入射する光量が、第2の光電変換部23に入射する光量と比較してより少なくなるため、このような単位画素の組合せを有する固体撮像素子はダイナミックレンジがより拡大する。
 また、図2においては、第1の光電変換部16上には、レンズ11-1が配置されているが、本発明の実施形態に係る固体撮像素子としては上記に制限されない。第1の光電変換部を有する単位画素10は、レンズ11-1を有していなくてもよい。この場合、第1の光電変換部16に入射する光は、レンズにより集光されないため、結果として、第1の光電変換部16に入射する光量が、第2の光電変換部23に入射する光量と比較して更に少なくなるため、このような単位画素の組合せを有する固体撮像素子は、ダイナミックレンジが更に拡大する。
 図3には、本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示した。
 図3では、図1で説明した単位画素10と同様の構成である単位画素10-1から10-3の3個と、図2で説明した単位画素20と同様の構成である単位画素20-1から20-3の3個の合計6個の単位画素が並列に配置されている。
 単位画素10-1における着色層12-1は赤色着色層である(言い換えれば、単位画素10-1は赤色画素である。)。すなわち、単位画素10-1における第1の積層体14-1は、赤色着色層12-1と光減衰層13とが積層されたものである。
 また、単位画素10-2においては、着色層12-2が緑色着色層である(単位画素10-2は緑色画素である。)。すなわち、単位画素10-2における第1の積層体14-2は、緑色着色層12-2と光減衰層13とが積層されたものである。
 また、単位画素10-3においては、着色層12-3が青色着色層(単位画素10-3は青色画素である。)である。すなわち、単位画素10-3における第1の積層体14-3は、青色着色層12-3と光減衰層13とが積層されたものである。
 単位画素20-1における着色層12-4は、赤色着色層である。すなわち、単位画素20-1における第2の積層体22-1は、赤色着色層12-4と透明層21とが積層されたものである。
 また、単位画素20-2における着色層12-5は、緑色着色層である。すなわち、単位画素20-2における第2の積層体22-2は、緑色着色層12-5と透明層21とが積層されたものである。
 また、単位画素20-3における着色層12-6は、青色着色層である。すなわち、単位画素20-3における第2の積層体22-3は、青色着色層12-6と透明層21とが積層されたものである。
 なお、赤色着色層12-1と赤色着色層12-4、緑色着色層12-2と緑色着色層12-5、青色着色層12-3と青色着色層12-4はそれぞれ同一である。
 第1の積層体14及び第2の積層体22は、共通する基板15上に配置されており、それぞれ、光の入射方向(図中L方向)には、レンズ11が積層されている。また、図示しないが、単位画素10の第1の積層体14の下の基板15には、第1の光電変換部が配置されている。また、単位画素20の第2の積層体22の下の基板15には、第2の光電変換部が配置されている。
 上記単位画素の配置によれば、第1の光電変換部に入射する入射光が光減衰層13により減衰されるため、固体撮像素子のダイナミックレンジが拡大する。
 また、光減衰層13は、ΔTが11.0%以下である場合、第1の光電変換部に入射する光の強度が各波長において均一に減少し、第1の光電変換部へ入射する光は、光減衰層13を透過する前後において400~700nmの波長における分光スペクトルが変化しにくい。この場合、単位画素10-1~10-3、及び、単位画素20-1~20-3の組み合わせを有する固体撮像素子により得られる像は、より優れた色再現性を有する。
 図4には、図3の単位画素の組み合わせの変形例を示した。すなわち、第1の積層体14における着色層12-1~12-3と光減衰層13の積層順序、及び、第2の積層体22における着色層12-4~12-6と透明層21の積層順序を除いては、図3と同様である。上記の単位画素の組み合わせを有する固体撮像素子においても、同様の効果が得られる。
 図5には、本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示した。
 図5では、図1で説明した単位画素10と同様の構成である単位画素10-4~10-6の3個と、図2で説明した単位画素20と同様の構成である単位画素20-4~20-6の3個の合計6個の単位画素が並列に配置されている。
 単位画素10-4における着色層12-7は、シアン色着色層である(単位画素10-4はシアン色画素である。)。すなわち、単位画素10-4における第1の積層体14-4は、シアン色着色層12-7と光減衰層13とが積層されたものである。
 また、単位画素10-5における着色層12-8がマゼンタ色着色層である(単位画素10-5はマゼンタ色画素である。)。すなわち、単位画素10-5における第1の積層体14-5は、マゼンタ色着色層12-8と光減衰層13とが積層されたものである。
 また、単位画素10-6は着色層12-9がイエロー色着色層である(単位画素10-6はイエロー色画素である。)。すなわち、単位画素10-6における第1の積層体14-6は、イエロー色着色層12-9と光減衰層13とが積層されたものである。
 単位画素20-4における着色層12-10は、シアン色着色層である。すなわち、単位画素20-4における第2の積層体22-4は、シアン色着色層12-10と透明層21が積層されたものである。
 また、単位画素20-5における着色層12-11は、マゼンタ色着色層である。すなわち、単位画素20-5における第2の積層体22-5は、マゼンタ色着色層12-11と透明層21が積層されたものである。
 また、単位画素20-6における着色層12-12は、イエロー色着色層である。すなわち、単位画素20-6における第2の積層体22-6は、イエロー色着色層12-12と透明層21が積層されたものである。
 なお、シアン色着色層12-7とシアン色着色層12-10、マゼンタ色着色層12-8とマゼンタ色着色層12-11、イエロー色着色層12-9とイエロー色着色層12-12はそれぞれ同一である。
 第1の積層体14及び第2の積層体22は、共通する基板15上に配置されており、それぞれ、光の入射方向(図中L方向)には、レンズ11が積層されている。また、図示しないが、単位画素10の第1の積層体14の下の基板15には、第1の光電変換部が配置されている。また、単位画素20の第2の積層体22の下の基板15には、第2の光電変換部が配置されている。
 上記単位画素の配置によれば、第1の光電変換部に入射する入射光が光減衰層13により減衰されるため、固体撮像素子のダイナミックレンジが拡大する。
 また、光減衰層13は、ΔTが11.0%以下である場合、第1の光電変換部に入射する光の強度が各波長において均一に減少し、第1の光電変換部へ入射する光は、光減衰層13を透過する前後において400~700nmの波長における分光スペクトルが変化しにくい。この場合、単位画素10-4~10-6、及び、単位画素20-4~20-6の組み合わせを有する固体撮像素子により得られる像は、より優れた色再現性を有する。
 図6には、図5の単位画素の組み合わせの変形例を示した。すなわち、第1の積層体14における着色層12-8~12-10と光減衰層13の積層順序、及び、第2の積層体22における着色層12-11~13と透明層21の積層順序を除いては、図5と同様である。上記の単位画素の組み合わせを有する固体撮像素子においても、同様の効果が得られる。
 図7には本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示した。
 図7は、図3で説明した単位画素の組み合わせに更に赤外線透過層を有する単位画素10-70及び単位画素20-70を加えたものである。
 単位画素10-70は、基板15上に、赤外線透過層12-70、光減衰層13、及び、レンズ11-7が積層されている。
 単位画素20-70は、基板15上に、赤外線透過層12-71、透明層21、及び、レンズ11-8が積層されている。
 図示しないが、単位画素10-70には、基板15に第1の光電変換部が形成されており、単位画素20-70には、基板15に第2の光電変換部が形成されている。
 この場合、光減衰層13の700~1000nmの波長域の光の透過率の最大値と最小値の差ΔTは11.0%以下であるのが好ましい。この場合、単位画素10-70及び単位画素20-70により検出される700~1000nmの領域についても、得られる像はより優れた色再現性を有する。
 図8には本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示した。
 図8には、4×4の16個の単位画素80が配置されている。単位画素80は単位画素10又は単位画素20のいずれかである。単位画素80における各着色層12の色は、図中、R(赤色)、G(緑色)、B(青色)によって表され、ベイヤー配列となっている。すなわち、図中のRとある単位画素80の着色層12は赤色着色層であり、Bとある単位画素80の着色層12は青色着色層であり、Gとある単位画素80の着色層12は緑色着色層である。なお、ここでは着色層の配置を、ベイヤー配列を例に挙げて説明したが、他の配置であってもよい。
 図9には本発明の実施形態に係る積層体を有する固体撮像素子における、単位画素の組み合わせの他の例を示した。図9では、複数の単位画素90及び複数の単位画素91が2次元アレイ状に配列されている。
 図10は図9のA-A’断面図を表す。単位画素91は、基板15上に第1の積層体14を有しており、第1の積層体14は、光減衰層13と着色層12とが積層されて構成されている。一方、単位画素90は、基板15上に第2の積層体22を有しており、第2の積層体22は、透明層21と着色層12とが積層されて構成されている。単位画素91の基板15には、第1の光電変換部16が形成され、単位画素90の基板15には、第2の光電変換部23が形成されている。
 図10において、レンズ11は、単位画素90にのみ配置されており、単位画素91には配置されていない。これにより、第1の光電変換部16には集光されない状態で光が入射するため、固体撮像素子のダイナミックレンジはより拡大する。
 また、図9においては、単位画素91は四角形状、図示の例では正四角形状に形成され、図10においては、単位画素90は、四角形状の画素91の4つの角を外接する八角形又は円形に近い形状、図示の例では正八角形に形成されている。この際、単位画素91の面積は単位画素90の面積より小さく形成されており、単位画素91に入射する光の量は、単位画素90に入射する光の量と比較してより少なくなっている。これにより、固体撮像素子のダイナミックレンジはより拡大する。
(着色層)
 上述した固体撮像素子が有する積層体に包含される着色層としては、緑色着色層、赤色着色層、青色着色層、シアン色着色層、マゼンタ色着色層、及び、イエロー色着色層が挙げられ、これらの着色層を1種又は2種以上を組み合わせて使用できる。中でも、緑色着色層、赤色着色層、及び、青色着色層からなる群から選択される少なくとも2種以上を組み合わせて用いる形態が好ましく、上記3種を組み合わせて用いる形態がより好ましい。
 また、シアン色着色層、マゼンタ色着色層、及び、イエロー色着色層からなる群から選択される少なくとも2種以上を組み合わせて用いる形態も好ましく、上記3種を組み合わせて用いる形態がより好ましい。
 赤色着色層が赤色画素の形成に使用される場合、赤色画素(すなわちこれに使用される赤色着色層)の透過スペクトルが極大となる波長としては特に制限されないが、一般に、575nmが好ましく、575~670nmがより好ましい。
 緑色着色層が緑色画素の形成に使用される場合、緑色画素(すなわちこれに使用される緑色着色層)の透過スペクトルが極大となる波長としては特に制限されないが、一般に、480nm以上、575nm未満にあることが好ましい。
 青色着色層が青色素画素の形成に使用される場合、青色画素(すなわちこれに使用される青色着色層)の透過スペクトルが極大となる波長としては特に制限されないが、480nm未満が好ましく、400nm以上、480nm未満がより好ましい。
 また、シアン色着色層がシアン色画素の形成に使用される場合、シアン色画素(すなわちこれに使用されるシアン色着色層)の吸収スペクトルが極大となる波長としては特に制限されないが、一般に、580nmを超え、700nm以下が好ましい。
 また、マゼンタ色着色層がマゼンタ色画素の形成に使用される場合、マゼンタ色画素(すなわちこれに使用されるマゼンタ色着色層)の吸収スペクトルが極大となる波長としては特に制限されないが、一般に、500~580nmが好ましい。
 また、着色層がイエロー色画素の形成に使用される場合、イエロー色画素(すなわちこれに使用されるイエロー色着色層)の吸収スペクトルが極大となる波長としては特に制限されないが、一般に、350nm以上、500nm未満が好ましい。
 着色層の厚みとしては、特に制限されない。例えば、100μm以下が好ましく、15μm以下がより好ましく、5μm以下が更に好ましく、1μm以下が特に好ましい。着色層が複数の層から構成されている場合においては、各層の厚さは同一であってもよく、異なっていてもよい。
 着色層は、典型的には、着色層形成用組成物を用いて形成される。着色層形成用組成物は、有彩色着色剤を含むことが好ましい。有彩色着色剤としては、顔料であってもよく、染料であってもよい。有彩色着色剤としては、例えば、上述した有彩色染料及び有彩色顔料が挙げられる。有彩色着色剤の含有量は、着色層形成用組成物の全固形分に対して0.1~70質量%が好ましい。下限は、0.5質量%以上が好ましく、1.0質量%以上がより好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。
 着色層が含有する顔料としては特に制限されず、公知の顔料が使用できる。また、顔料は、1種を単独で用いても、2種以上を併用してもよい。着色層が含有する顔料としては、例えば、赤色着色剤、青色着色剤、黄色着色剤、緑色着色剤、紫色着色剤、及び、これらの組合せが挙げられる。なお、本明細書において、赤色着色剤とは、450~600nmに吸収極大を有する着色剤、青色着色剤とは、500~800nmに吸収極大を有する着色剤、黄色着色剤とは、350~550nmに吸収極大を有する着色剤、緑色着色剤とは、550~800nmに吸収極大を有する着色剤、紫色着色剤とは、450~800nmに吸収極大を有する着色剤を意味する。
 黄色着色剤としては、C.I.Pigment Yellow(本明細書において「PY」ともいう。)139、150、又は、185が好ましく、PY139、又は、PY150がより好ましく、PY139が更に好ましい。
 青色着色剤としては、C.I.Pigment Blue(本明細書において「PB」ともいう。)15:6、又は、16が好ましい。
 紫色着色剤としては、C.I.Pigment Violet(本明細書において「PV」ともいう。)23が好ましい。
 赤色着色剤としては、Pigment Red(本明細書において「PR」ともいう。)122、177、224、254、又は、264が好ましく、PR122、PR177、PR254、又は、PR264がより好ましく、PR177、PR254、又は、PR264が更に好ましい。緑色着色剤としては、C.I.Pigment Green(本明細書において「PG」ともいう。)7、36、58、又は、59が好ましい。
 なかでも、赤色着色層が赤色画素の形成に使用される場合、赤色画素(すなわちこれに使用される赤色着色層)は、PR254、PR264、PR177、及び、PY139からなる群から選択される少なくとも1種の顔料を含有することが好ましく、緑色着色層が緑色画素の形成に使用される場合、緑色画素(すなわちこれに使用される緑色着色層)は、PG58、PG59、PG36、PG7、PY139、PY185、及び、PY150からなる群から選択される少なくとも1種の顔料を含有することが好ましく、青色着色層が青色素画素の形成に使用される場合、青色画素(すなわちこれに使用される青色着色層)は、PB15:6、PB16、及び、PV23からなる群から選択される少なくとも1種の顔料を含有することが好ましい。
 着色層形成用組成物は、更に、樹脂、硬化性化合物、重合開始剤、溶剤、界面活性剤、重合禁止剤、紫外線吸収剤、着色防止剤、密着剤、連鎖移動剤、増感剤、及び、共増感剤などの添加剤を含んでいてもよい。これらの詳細については、上述した光硬化性組成物に用いられる前述の材料が挙げられ、好ましい範囲も同様である。また、これらの材料の好ましい含有量についても光硬化性組成物における含有量と同様である。
 また、着色層が、上述の光硬化性組成物を用いて形成される硬化膜の層(例えば光減衰層)、及び/又は、後述のレンズと同じ種類の樹脂を含有する場合、着色層と光硬化性組成物を用いて形成される硬化膜の層、及び/又は、着色層とレンズとがより優れた密着性を有する。
(透明層)
 透明層としては、波長400~700nmの範囲における光の透過率の最小値が80%以上であるのが好ましく、90%以上であるのがより好ましく、95%以上であるのが更に好ましい。また、700~100nmの範囲における光の透過率の最小値が80%以上であるのが好ましく、90%以上であるのがより好ましく、95%以上であるのが更に好ましい。透明層の材料としては特に制限されず、公知の材料が使用できる。
 透明層は、典型的には、透明層形成用組成物を用いて形成される。透明層形成用組成物は、樹脂を含有することが好ましい。樹脂としては、上述した光硬化性組成物に使用される材料が挙げられ、好ましい範囲も同様である。また、樹脂の好ましい含有量についても光硬化性組成物における含有量と同様である。透明層形成用組成物は、更に、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、及び、Sから選択される少なくとも一種の元素を含む酸化物の粒子(無機粒子ともいう)を含有することもできる。前述の無機粒子を含有する場合、無機粒子の含有量は、透明層形成用組成物の全固形分に対して、20~70質量%であるのが好ましい。下限は、25質量%以上がより好ましく、30質量%以上が更に好ましい。上限は、65質量%以下がより好ましく、60質量%以下が更に好ましい。透明層形成用組成物は、更に、樹脂、硬化性化合物、重合開始剤、溶剤、界面活性剤、重合禁止剤、紫外線吸収剤、着色防止剤、密着剤、連鎖移動剤、増感剤、共増感剤などの添加剤を含んでいてもよい。これらの詳細については、上述した光硬化性組成物に用いられる前述の材料が挙げられ、好ましい範囲も同様である。また、これらの材料の好ましい含有量についても光硬化性組成物における含有量と同様である。
 また、透明層が、上述の着色層、及び/又は、後述のレンズと同じ種類の樹脂を含有すると、透明層と着色層、及び/又は、透明層とレンズとがより優れた密着性を有する。
(赤外線透過層)
 赤外線透過層としては、可視光を遮光し、赤外線の少なくとも一部を透過させる分光特性を有する層であればよく、特に制限されない。また、赤外線透過層は、1層の膜(単層膜)で構成されていてもよく、2層以上の膜の積層体(多層膜)で構成されていてもよい。また、赤外線透過層が多層膜で構成されている場合は、多層膜全体として上述の分光特性を有していればよく、1層の膜自体についてはそれぞれ上述の分光特性を有していなくてもよい。
 赤外線透過層の分光特性としては、例えば、厚み方向における光の透過率の、波長400~700nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、厚み方向における光の透過率の、波長700~1000nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であることが挙げられる。
 赤外線透過層は、典型的には赤外線透過層形成用組成物を用いて形成される。赤外線透過層形成用組成物は遮光材を含有することが好ましい。遮光材は、紫色から赤色の波長領域の光を吸収する色材であるのが好ましい。また、遮光材は、波長400~700nmの波長領域の光を遮光する色材であるのが好ましい。また、遮光材は、波長700~1000nmの光を透過させる色材であるのが好ましい。遮光材は、例えば、有彩色着色剤と黒色の着色剤との組合せが挙げられる。
 遮光材として有機系黒色着色剤を用いる場合、有彩色着色剤と組み合わせて使用することが好ましい。有機系黒色着色剤と有彩色着色剤とを併用することで、優れた分光特性が得られ易い。有機系黒色着色剤と組み合わせて用いる有彩色着色剤としては、例えば、赤色着色剤、青色着色剤、及び、紫色着色剤などが挙げられ、赤色着色剤及び青色着色剤が好ましい。これらは単独で使用してもよく、2種以上を併用してもよい。また、有彩色着色剤と有機系黒色着色剤との混合割合は、有機系黒色着色剤100質量部に対して、有彩色着色剤が10~200質量部が好ましく、15~150質量部がより好ましい。
 本発明において、遮光材における顔料の含有量は、遮光材の全量に対して95質量%以上であるのが好ましく、97質量%以上であるのがより好ましく、99質量%以上であるのが更に好ましい。
 赤外線透過層形成用組成物において、遮光材の含有量は、赤外線透過層形成用組成物の全固形分に対して5~50質量%であるのが好ましい。下限は、9質量%以上が好ましく、13質量%以上がより好ましい。上限は、40質量%以下が好ましく、30質量%以下がより好ましい。
 赤外線透過層形成用組成物は、更に、樹脂、硬化性化合物、重合開始剤、溶剤、界面活性剤、重合禁止剤、紫外線吸収剤、着色防止剤、密着剤、連鎖移動剤、増感剤、及び、共増感剤などの添加剤を含んでいてもよい。これらの詳細については、上述した光硬化性組成物に用いられる前述の材料が挙げられ、好ましい範囲も同様である。また、これらの材料の好ましい含有量についても光硬化性組成物における含有量と同様である。
 また、赤外線透過層形成用組成物、及び、赤外線透過層が、光硬化性組成物を用いて形成される硬化膜の層(例えば光減衰層)、透明層、及び/又は、レンズと同じ種類の特定樹脂を含有すると、赤外線透過層と上記各層又はレンズは、より優れた密着性を有する。
(レンズ)
 レンズは、単位画素において、典型的には、各積層体の光の入射方向側に積層される。レンズの形状及び材料については特に制限されず、固体撮像素子用として公知の形状及び材料を選択できる。レンズの材料としては、樹脂又はガラスが挙げられる。言い換えれば、レンズは、樹脂を含有するレンズ、又は、ガラスレンズであってもよい。
 レンズが樹脂を含有する場合、典型的には、樹脂を含有するレンズ形成用組成物を用いて形成される。以下ではレンズ形成用組成物の成分について説明する。
・レンズ形成用組成物
 レンズ形成用組成物は、樹脂を含有する。レンズ形成用組成物含有する樹脂としては特に制限されないが、既に説明した樹脂を含有することが好ましい。なかでも、光硬化性組成物を用いて形成される硬化膜の層(例えば光減衰層)、透明層、着色層、及び/又は、赤外線透過層が含有する樹脂と同じ種類の樹脂をレンズが含有する場合、レンズと上記各層との密着性により優れる。
〔積層体の製造方法〕
 本発明の積層体は、各層を形成する組成物を支持体などに適用して組成物層を形成する工程と、組成物層を乾燥する工程などを経て製造することができる。更にパターンを形成する工程を有していてもよい。
 上記組成物層を形成する工程及び組成物層を乾燥する工程は、上述した光硬化性組成物について説明した光硬化性組成物層形成工程と同様に実施できる。
 同様に、上記パターンを形成する工程は、上述した光硬化性組成物について説明した露光工程及び現像工程と同様に実施できる。
[遮光膜としての使用]
 本発明の光硬化性組成物から得られる硬化膜は、光減衰層としての用途以外にも使用できる。例えば、硬化膜は、固体撮像素子が有するような遮光膜としても使用できる。
〔遮光膜〕
 遮光膜は、画像表示装置又はセンサモジュール内の各種部材(例えば、赤外光カットフィルタ、固体撮像素子の外周部、ウェハーレベルレンズ外周部、固体撮像素子裏面など)などに形成して使用できる。また、赤外光カットフィルタの表面上の少なくとも一部に、遮光膜を形成して、遮光膜付き赤外光カットフィルタとしてもよい。遮光膜の厚みは特に制限されないが、0.2~25μmが好ましく、1.0~10μmがより好ましい。上記厚みは平均厚みであり、遮光膜の任意の5点以上の厚みを測定し、それらを算術平均した値である。
 遮光膜は、400~1100nmの波長領域における膜厚1.0μmあたりの光学濃度(OD:Optical Density)が、3.0以上であるのが好ましく、3.5以上であるのがより好ましい。上記特性を有する光硬化性組成物を用いて形成された硬化膜は、遮光膜として好ましく使用できる。
 なお、400~1100nmの波長領域における膜厚1.0μmあたりの光学濃度が、3.0以上とは、波長400~1100nmの全域において、膜厚1.0μmあたりの光学濃度が3.0以上であることを意図する。
 なお、光学濃度は、例えば、ガラス基板上に、1.8μmとなるように硬化膜(遮光膜)を形成し、この硬化膜について、V-7200F(日本分光社製)を用いて算出することができる。
〔遮光膜を有する固体撮像素子、及び、固体撮像装置〕
 以下に、上述した積層体を有する固体撮像素子以外の固体撮像素子として、本発明の光硬化性組成物を用いて得られる遮光膜を有する固体撮像素子の例を説明する。
 なお、固体撮像装置は、上記固体撮像素子を含有する。
 固体撮像装置、及び、固体撮像素子の構成例を図11~図12を参照して説明する。なお、図11~図12では、各部を明確にするため、相互の厚み及び/又は幅の比率は無視して一部誇張して表示している。
 図1に示すように、固体撮像装置100は、矩形状の固体撮像素子101と、固体撮像素子101の上方に保持され、この固体撮像素子101を封止する透明なカバーガラス103とを備えている。更に、このカバーガラス103上には、スペーサー104を介してレンズ層111が重ねて設けられている。レンズ層111は、支持体113とレンズ材112とで構成されている。レンズ層111は、支持体113とレンズ材112とが一体成形された構成でもよい。レンズ層111の周縁領域に迷光が入射すると光の拡散によりレンズ材112での集光の効果が弱くなり、撮像部102に届く光が低減する。また、迷光によるノイズの発生も生じる。そのため、このレンズ層111の周縁領域は、遮光膜114が設けられて遮光されている。本発明の光硬化性組成物を用いてられる硬化膜は上記遮光膜114としても使用できる。
 固体撮像素子101は、その受光面となる撮像部102結像した光学像を光電変換して、画像信号として出力する。この固体撮像素子101は、2枚の基板を積層した積層基板105を備えている。積層基板105は、同サイズの矩形状のチップ基板106及び回路基板107からなり、チップ基板106の裏面に回路基板107が積層されている。
 チップ基板106として用いられる基板の材料としては特に制限されず、公知の材料を使用できる。
 チップ基板106の表面中央部には、撮像部102が設けられている。また、撮像部102の周縁領域に迷光が入射すると、この周縁領域内の回路から暗電流(ノイズ)が発生するため、この周縁領域は、遮光膜115が設けられて遮光されている。本発明の光硬化性組成物に係る硬化膜は遮光膜115としても使用できる。
 チップ基板106の表面縁部には、複数の電極パッド108が設けられている。電極パッド108は、チップ基板106の表面に設けられた図示しない信号線(ボンディングワイヤでも可)を介して、撮像部102に電気的に接続されている。
 回路基板107の裏面には、各電極パッド108の略下方位置にそれぞれ外部接続端子109が設けられている。各外部接続端子109は、積層基板105を垂直に貫通する貫通電極110を介して、それぞれ電極パッド108に接続されている。また、各外部接続端子109は、図示しない配線を介して、固体撮像素子101の駆動を制御する制御回路、及び固体撮像素子101から出力される撮像信号に画像処理を施す画像処理回路等に接続されている。
 図2に示すように、撮像部102は、受光素子201、カラーフィルタ202、マイクロレンズ203等の基板204上に設けられた各部から構成される。カラーフィルタ202は、青色画素205b、赤色画素205r、緑色画素205g、及びブラックマトリクス205bmを有している。なお、本発明の光硬化性組成物を用いて得られる硬化膜は、ブラックマトリクス205bmとしても使用できる。
 基板204の材料としては、前述のチップ基板106と同様の材料を使用できる。基板204の表層にはpウェル層206が形成されている。このpウェル層26内には、n型層からなり光電変換により信号電荷を生成して蓄積する受光素子201が正方格子状に配列形成されている。
 受光素子201の一方の側方には、pウェル層206の表層の読み出しゲート部207を介して、n型層からなる垂直転送路208が形成されている。また、受光素子201の他方の側方には、p型層からなる素子分離領域209を介して、隣接画素に属する垂直転送路208が形成されている。読み出しゲート部207は、受光素子201に蓄積された信号電荷を垂直転送路208に読み出すためのチャネル領域である。
 基板204の表面上には、ONO(Oxide-Nitride-Oxide)膜からなるゲート絶縁膜210が形成されている。このゲート絶縁膜210上には、垂直転送路208、読み出しゲート部207、及び素子分離領域209の略直上を覆うように、ポリシリコン又はアモルファスシリコンからなる垂直転送電極211が形成されている。垂直転送電極211は、垂直転送路208を駆動して電荷転送を行わせる駆動電極と、読み出しゲート部207を駆動して信号電荷読み出しを行わせる読み出し電極として機能する。信号電荷は、垂直転送路208から図示しない水平転送路及び出力部(フローティングディフュージョンアンプ)に順に転送された後、電圧信号として出力される。
 垂直転送電極211上には、その表面を覆うように遮光膜212が形成されている。遮光膜212は、受光素子201の直上位置に開口部を有し、それ以外の領域を遮光している。本発明の光硬化性組成物を用いてられる硬化膜は、遮光膜212としても使用できる。
 遮光膜212上には、BPSG(borophospho silicate glass)からなる絶縁膜213、P-SiNからなる絶縁膜(パシベーション膜)214、透明樹脂等からなる平坦化膜215からなる透明な中間層が設けられている。カラーフィルタ202は、中間層上に形成されている。
 本発明の光硬化性組成物から得られる硬化膜の用途は上述した範囲に限られず、例えば、ブラックマトリックス、カラーフィルタ、画像表示装置、または、赤外線センサに使用するのも好ましい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
<重量平均分子量(Mw)の測定>
 樹脂の重量平均分子量(Mw)は、以下の方法で測定した。
カラムの種類:TOSOH TSKgel Super HZM-Hと、TOSOH TSKgel Super HZ4000と、TOSOH TSKgel Super HZ2000とを連結したカラム展開溶媒:テトラヒドロフランカラム温度:40℃流量(サンプル注入量):1.0μL(サンプル濃度:0.1質量%)
装置名:東ソー(株)製 HLC-8220GPC検出器:RI(屈折率)検出器検量線ベース樹脂:ポリスチレン
<酸価の測定方法>
 酸価は、固形分1gあたりの酸性成分を中和するのに要する水酸化カリウムの質量を表したものである。測定サンプルをテトラヒドロフラン/水=9/1(質量比)混合溶媒に溶解し、電位差滴定装置(商品名:AT-510、京都電子工業製)を用いて、得られた溶液を、25℃にて、0.1mol/L水酸化ナトリウム水溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として、次式により酸価を算出した。
 A=56.11×Vs×0.5×f/w
 A:酸価(mgKOH/g)
 Vs:滴定に要した0.1mol/L水酸化ナトリウム水溶液の使用量(mL)
 f:0.1mol/L水酸化ナトリウム水溶液の力価
 w:測定サンプル質量(g)(固形分換算)
[実施例1:組成物BKの製造と評価]
 本発明の光硬化性組成物の一形態として、組成物BKを製造し、評価を行った。
〔組成物BKの製造〕
<カーボンブラック分散液(CB分散液)の製造>
 下記表1に記載の各成分を含有する混合液に対し、循環型分散装置(ビーズミル)として、寿工業(株)製ウルトラアペックスミルを用いて、CB分散液を製造した。
Figure JPOXMLDOC01-appb-T000014
 表1のカーボンブラックの「種類」欄に記載した略号は、下記表2に記載した特徴を有するカーボンブラックを表す。
 なお、表3に記載のカーボンブラックは、いずれもファーネス法を用いて得られたファーネスブラックである。
Figure JPOXMLDOC01-appb-T000015
 また、表1の顔料誘導体の「種類」欄に記載した略号は、以下の顔料誘導体を表す。
Figure JPOXMLDOC01-appb-C000016
 また、表1の分散剤の「種類」欄に記載した略号は、以下の分散剤を表す。
 なお、構造式中の括弧の横に付された数字は、各繰り返し単位のモル比を示す。
Figure JPOXMLDOC01-appb-C000017
 また、表1の溶剤の「種類」欄に記載した、PGMEAは、プロピレングリコールメチルエーテルアセテートを表す。
<無機分散液の製造>
 下記表3に記載の各成分を含有する混合液に対し、循環型分散装置(ビーズミル)として、寿工業(株)製ウルトラアペックスミルを用いて、無機分散液を製造した。
Figure JPOXMLDOC01-appb-T000018
 表3の粒子の「種類」欄に記載した略号は、下記表4に記載した粒子を表す。
Figure JPOXMLDOC01-appb-T000019
 また、表3の分散剤の「種類」欄に記載した略号は、表1の分散剤の「種類」欄に記載した略号と同義である。
 また、表3の溶剤の「種類」欄に記載した略号は、以下の溶剤を表す。
・PGMEA:プロピレングリコールメチルエーテルアセテート
・PGME:プロピレングリコールモノメチルエーテル
<組成物BKの製造>
 下記表5に記載した成分を混合して、組成物BKを製造した。
 
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表5の、CB分散液及び無機分散液の「種類」欄の記載は、先に調製したCB分散液及び無機分散液である。
 表5のバインダの「種類」欄に記載した略号は、以下のバインダを表す。
 なお、下記C-1およびC-2はアルカリ可溶性樹脂である。
Figure JPOXMLDOC01-appb-C000022
 表5の重合性化合物の「種類」欄に記載した略号は、以下の重合性化合物を表す。
・D-1:KAYARAD DPHA (日本化薬社製)
・D-2:NKエステル A-TMMT (新中村化学工業社製)
 表5の光重合開始剤の「種類」欄に記載した略号は、以下の光重合開始剤を表す。
・E-1:IRGACURE OXE02 (BASF社製)
・E-2:IRGACURE OXE03 (BASF社製)
・E-3:IRGACURE 369 (BASF社製)
・E-4:IRGACURE 379 (BASF社製)
 表5のエポキシ基を有する化合物、紫外線吸収剤、又は、密着剤の「種類」欄に記載した略号は、以下の化合物を表す。
・G-1:EHPE 3150 (ダイセル製)
・G-2:EPICLON N-695 (DIC製)
   (G-1及びG-2は、共にエポキシ基を有する化合物)
・G-3(紫外線吸収剤)
Figure JPOXMLDOC01-appb-C000023
・G-4(密着剤)
Figure JPOXMLDOC01-appb-C000024
 表5の界面活性剤の「種類」欄に記載した略号は、以下の界面活性剤を表す。なお下記式に記載のパーセント表記の数値は、各繰り返し単位のモル比を表す。
・W-1
Figure JPOXMLDOC01-appb-C000025
〔組成物BKの評価〕
 上記の組成物BKについて、下記の方法により評価した。
<耐アンダーカット性の評価>
 上記で得られた組成物BKを、塗布後の膜厚が1.2μmになるように、下塗り層付き8インチシリコンウェハ上にスピンコート法で塗布し、その後ホットプレート上で、110℃で2分間加熱して組成物層を得た。
 次いで、得られた組成物層に対し、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、300μmのラインアンドスペースパターンを、マスクを介して露光(露光量500mJ/cm)した。
 次いで、露光後の組成物層(硬化膜)に対し、現像装置(東京エレクトロン製Act-8)を使用し現像性の評価を行った。現像液には水酸化テトラメチルアンモニウム(TMAH)0.3%水溶液を用い、23℃で60秒間シャワー現像を行った。その後、純水を用いたスピンシャワーでリンスを行い、パターン(パターン状の硬化膜)を得た。得られたパターン断面を走査型電子顕微鏡(SEM)(S-4800、(株)日立ハイテクノロジーズ製)観察により、パターンのトップ部分とボトム部分の寸法差を測定し、以下の判定基準にて耐アンダーカット性を評価した。なお、寸法差が小さいほど耐アンダーカット性が優れる。
 A:0.0μm以上0.2μm未満
 B:0.2μm以上0.5μm未満
 C:0.5μm以上1.0μm未満
 D:1.0μm以上1.5μm未満
 E:1.5μm以上
 上記判定基準において、A~Dであれば、実用上問題のないレベルである
<耐溶剤性の評価>
 上記で得られた組成物BKを、下塗り層付8インチガラスウェハ上に乾燥後の組成物層の膜厚が0.5μmになるようにスピンコーターを用いて塗布し、110℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。
 次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、365nmの波長光を1000mJ/cmにて、2cm×2cmのパターンを有するマスクを介して露光した。
 その後、露光後の組成物層(硬化膜)が形成されているガラスウェハをスピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、水酸化テトラメチルアンモニウム(TMAH)0.3%水溶液を用い、23℃で60秒間パドル現像を行い、ガラスウェハ上にパターン状の硬化膜を形成した。
 パターン状の硬化膜が形成されたガラスウェハを真空チャック方式で上記水平回転テーブルに固定してから、回転装置によってガラスウェハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行い、その後、乾燥した。その後、200℃のホットプレートを用いて5分間加熱処理(ポストベーク:200℃/8分)を行った。
 上記加熱処理を経たパターン状の硬化膜が形成されたガラスウエハの作製後と、更に、このガラスウエハをN-メチル-2-ピロリジノン中に5分間浸漬処理をした後の、波長400~700nmにおける透過率の分光変動(耐溶剤ΔT%)をMCPD-3000(大塚電子(株)製)を使用して測定した。
 なお、測定は硬化膜が存在する箇所に対して行い、ガラスウエハの透過率への影響は、ブランクとして除外した。
 最も分光変動が大きい波長での変動を耐溶剤ΔT%maxとし、以下の判定基準にて耐溶剤性を評価した。
 耐溶剤ΔT%maxの値が小さいほど耐溶剤性が良好であり、より望ましい。
 なお、耐溶剤ΔT%は以下の式に従って計算される。
 耐溶剤ΔT%=|処理前における特定波長Xでの透過率(%)-処理後における特定波長Xでの透過率(%)|
 A:耐溶剤ΔT%maxが、1.0%未満
 B:耐溶剤ΔT%maxが、1.0%以上、3.0%未満
 C:耐溶剤ΔT%maxが、3.0%以上、7.0%未満
 D:耐溶剤ΔT%maxが、7.0%以上、10.0%未満
 E:耐溶剤ΔT%maxが、10.0%以上
 上記判定基準において、A~Dであれば、実用上問題のないレベルである。
<耐湿性の評価>
 耐溶剤性の評価で上述したのと同様の方法で、ガラスウェハ上に加熱処理を経たパターン状の硬化膜を形成した。
 ESPEC社製HAST試験機(EHS-221M)にて、このガラスウエハを温度130℃、相対湿度85%の雰囲気中にて、500時間静置する高湿処理前後の、波長400~700nmにおける透過率の分光変動(耐湿ΔT%)をMCPD-3000(大塚電子(株)製)を使用して測定した。
 なお、測定は硬化膜が存在する箇所に対して行い、ガラスウエハの透過率への影響は、ブランクとして除外した。
 最も分光変動が大きい波長での変動を耐湿ΔT%maxとし、以下の判定基準にて耐湿性を評価した。
 耐湿ΔT%maxの値が小さいほど耐湿性が良好であり、より望ましい。
 なお、耐溶剤ΔT%は以下の式に従って計算される。
 耐湿ΔT%=|処理前における特定波長Xでの透過率(%)-処理後における特定波長Xでの透過率(%)|
 A:耐湿ΔT%maxが、1.0%未満
 B:耐湿ΔT%maxが、1.0%以上、3.0%未満
 C:耐湿ΔT%maxが、3.0%以上、7.0%未満
 D:耐湿ΔT%maxが、7.0%以上、10.0%未満
 E:耐湿ΔT%maxが、10.0%以上
 上記判定基準において、A~Dであれば、実用上問題のないレベルである。
<残渣抑制性の評価>
 上記で得られた組成物BKを、塗布後の膜厚が0.5μmになるように、下塗り層付き8インチシリコンウェハ上にスピンコート法で塗布し、その後ホットプレート上で、120℃で2分間加熱して組成物層を得た。
 次いで、得られた組成物層に対し、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、1.0μm四方のアイランドパターンを、マスクを介して露光(露光量200mJ/cm)した。
 次いで、露光後の組成物層(硬化膜)に対し、現像装置(東京エレクトロン製Act-8)を使用して現像性の評価を行った。現像液には水酸化テトラメチルアンモニウム(TMAH)0.3%水溶液を用い、23℃で60秒間シャワー現像を行った。その後、純水を用いたスピンシャワーにてリンスを行い、パターンを得た。得られたパターンの残渣を走査型電子顕微鏡(SEM)(S-4800H、(株)日立ハイテクノロジーズ製)観察(倍率:20000倍)し、残渣抑制性を評価した。評価基準は以下の通りである。
 A:パターン間の非画像部に残渣なし。
 B:パターン間の非画像部に0.01μm未満の残渣が観測された。
 C:パターン間の非画像部に0.01μm以上0.05μm未満の残渣が観測された。
 D:パターン間の非画像部に0.05μm以上0.10μm未満の残渣が観測された。
 E:パターン間の非画像部に0.10μm以上の残渣が観測された。
 上記判定基準において、A~Cの評価であれば、実用上問題のないレベルである。
<引置き後の異物欠陥(引置き欠陥抑制性)の評価>
 上記で得られた組成物BKを、8インチガラスウェハ上に乾燥後の膜厚が0.5μmになるようにスピンコーターを用いて塗布し、110℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。
 組成物層が形成されたガラスウェハに対して、欠陥評価装置ComPLUS(アプライド・マテリアルズ社製)を使用して、0.5μm以上の大きさの異物をカウントした。
 この組成物層の欠陥評価を、ウエハ作成直後と、ウエハ作成後室温(23℃)経時72時間後とのそれぞれにおいて実施し、異物増加率をもとに引置き欠陥抑制性を下記の判定基準で評価した。
 なお、異物増加率は、(72時間引き置き後の異物欠陥数/調製直後の異物欠陥数)で算出した。
 A:異物増加率が、1.1未満
 B:異物増加率が、1.1以上1.3未満
 C:異物増加率が、1.3以上1.5未満
 D:異物増加率が、1.5以上3.0未満
 E:異物増加率が、3.0以上
 上記判定基準において、A~Cの評価であれば、実用上問題のないレベルである。
<経時安定性の評価(沈降)>
 上記で得られた組成物BKを、オーブンを用いて160℃、1時間の条件で揮発分を乾燥させた。乾燥前後の乾燥減量を測定することで、その固形分を算出した。
 また、得られた組成物BKを、室温(23℃)、3500rpmの条件で47分間遠心処理を行った後の上澄み液について、上記と同様の方法で固形分を算出した。
 遠心処理の前後の固形分の変化から沈降率を算出し、液の経時安定性を下記の判定基準で評価した。
 なお、沈降率は以下の式に従って計算される。
 沈降率(%)=|遠心処理前の組成物の固形分-遠心処理後の上澄みの固形分|÷遠心処理前の組成物の固形分×100
 A:沈降率が、1.0%未満
 B:沈降率が、1.0%以上3%未満
 C:沈降率が、3.0%以上5.0%未満
 D:沈降率が、5.0%以上10.0%未満
 E:沈降率が、10.0%以上
 上記判定基準において、A~Dであれば、実用上問題のないレベルである
〔評価結果〕
 組成物BKの評価の結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000026
 表6に示すように、本発明の光硬化性組成物は、引置き欠陥抑制性に優れ、残渣抑制性に優れることが確認された。
 カーボンブラックの硫黄含有量が、1質量ppm以上0.50質量%以下である場合、引置き欠陥抑制性がより優れる傾向が確認された(実施例1-9~1-11の比較)。
 カーボンブラックの灰分が、1質量ppm以上0.20質量%以下である場合、経時安定性がより優れる傾向が確認された(実施例1-9~1-11の比較)。
 トリアジン環基を含有する顔料誘導体を用いる場合、耐溶剤性及び耐湿性がより優れる傾向が確認された(実施例1-1と1-2との比較)。
 分散剤としてエチレン性不飽和結合を含有する基を有する、酸価が40mgKOH/g以上の両性樹脂を用いる場合、引き置き欠陥抑制性がより優れる傾向が確認された(実施例1-5と、1-1及び1-3~1-4との比較)。更に、分散剤が、重合性基を有する場合、耐アンダーカット性、耐溶剤性、及び、耐湿性がより優れる傾向が確認された(実施例1-4と、1-1及び1-3との比較)。
 光重合性化合が、更に酸窒化ジルコニウムを含有する場合、耐アンダーカット性がより優れる傾向が確認された(実施例1-12と1-28との比較)。
 アルカリ可溶性樹脂を用いたほうが、残渣抑制性がより優れる傾向が確認された(実施例1-11と1-32との比較)。
 重合性基を有するアルカリ可溶性樹脂を用いる場合、耐アンダーカット性、耐溶剤性、及び、耐湿性がより優れる傾向が確認された(実施例1-4と1-12との比較)。
 オキシム化合物を光重合開始剤として用いる場合、耐アンダーカット性、耐溶剤性、及び、耐湿性がより優れる傾向が確認された(実施例1-13~1-16の比較)。
 光硬化性組成物が、更に、エポキシ基を有する化合物を含有する場合、耐溶剤性及び耐湿性がより優れる傾向が確認された(実施例1-13と、1-17及び1-18との比較)。
 光硬化性組成物が、更に、密着剤を含有する場合、耐アンダーカット性がより優れる傾向が確認された(実施例1-13と1-20との比較)。
[実施例2:組成物GYの製造と評価]
 本発明の光硬化性組成物の一形態として、組成物GYを製造し、評価を行った。
〔組成物GYの製造〕
 下表に記載した成分を混合して、組成物GYを調製した。
 なお、表中の「種類」欄に記載した略号、並びに、CB分散液及び無機分散液の内容は、組成物BKの製造において説明した内容と同義である。
Figure JPOXMLDOC01-appb-T000027

 
〔組成物GYの評価〕
<光の透過率の評価>
 組成物GYを、それぞれ、下塗り層(富士フイルムエレクトロニクスマテリアルズ社製「CT-4000L」膜厚0.1um)付8インチガラスウェハ上に乾燥後の膜厚が0.5μmになるようにスピンコーターを用いて塗布し、110℃のホットプレートを用いて120秒間加熱処理(プリベーク)した。
 次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、365nmの波長光を1000mJ/cmにて、2cm×2cmのパターンを有するマスクを介して露光した。
 その後、露光後の組成物層(硬化膜)が形成されているガラスウェハをスピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、水酸化テトラメチルアンモニウム(TMAH)0.3%水溶液を用い、23℃で60秒間パドル現像し、ガラスウェハ上にパターン状の硬化膜を形成した。
 組成物層が形成されたガラスウェハを真空チャック方式で上記の水平回転テーブルに固定し、回転装置によって上記ガラスウェハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理し、その後、乾燥した。その後200℃のホットプレートを用いて5分間加熱処理(ポストベーク;200℃/8分)した。
 上記で得られた硬化膜の分光をMCPD-3700(大塚電子(株)製)を使用して測定し、波長400~700nmにおける透過率の最大値と最小値の差をΔT(%)、波長700~1000nmの光の透過率の最大値と最小値の差をΔT(%)、波長400~1000nmの光の透過率の最大値と最小値の差をΔT(%)、とした。
<引置き後の異物欠陥(引置き欠陥抑制性)の評価>
 組成物BKを組成物GYに変更した以外は、上述したのと同様の手法及び基準で、引置き欠陥抑制性を評価した。
<残渣抑制性の評価>
 組成物BKを組成物GYに変更した以外は、上述したのと同様の手法及び基準で、残渣抑制性を評価した。
〔評価結果〕
 測定結果を以下の表8に示す。
 表8中「無機顔料」の欄は、組成物GYが、組成物中に無機顔料を含有しているか否かを示す。Aは含有していることを示し、Bは含有していないことを示す。
Figure JPOXMLDOC01-appb-T000028
 無機顔料を含有する本発明の光硬化性組成物は、広い波長の範囲で、よりフラットな吸収スペクトルを有する硬化膜を得られることが確認された。(実施例2-2~2-6の結果)
[実施例3:積層体及び積層体を有する固体撮像素子の製造と評価]
 本発明の光硬化性組成物を光減衰層形成用組成物として用いて、積層体及び積層体を有する固体撮像素子を製造し、評価を行った。
〔積層体及び積層体を有する固体撮像素子の製造〕
<光減衰層形成用組成物>
 上述の組成物GYを使用した。
<着色層形成用組成物>
 それぞれ以下の原料を混合して着色層形成用組成物を製造した。
・緑色着色層形成用組成物(Green組成物)
 PGMEA :25.49質量部
 樹脂1 :0.2質量部
 重合性化合物1 :0.9質量部
 重合性化合物2 :0.3質量部
 光重合開始剤1 :0.7質量部
 紫外線吸収剤1 :0.4質量部
 界面活性剤1 :0.01質量部
 Green分散液 :72質量部
・赤色着色層形成用組成物(Red組成物)
 PGMEA :47.29質量部
 樹脂1 :0.6質量部
 重合性化合物3 :0.7質量部
 光重合開始剤1 :0.4質量部
 界面活性剤1 :0.01質量部
 Red分散液 :51質量部
・青色着色層形成用組成物(Blue組成物)
 PGMEA :51.19質量部
 樹脂1 :0.8質量部
 重合性化合物1 :1.4質量部
 重合性化合物3 :0.7質量部
 光重合開始剤1 :0.9質量部
 界面活性剤1 :0.01質量部
 Blue分散液 :45質量部
・シアン色着色層形成用組成物(Cyan組成物)
 PGMEA :58.88質量部
 樹脂2 :5.6質量部
 重合性化合物4 :7.5質量部
 光重合開始剤1 :1.2質量部
 紫外線吸収剤1 :0.3質量部
 界面活性剤1 :0.01質量部
 界面活性剤2 :0.01質量部
 Cyan分散液 :26.5質量部
・マゼンタ色着色層形成用組成物(Magenta組成物)
 PGMEA :80.99質量部
 樹脂1 :7質量部
 重合性化合物4 :8.4質量部
 光重合開始剤1 :2.3質量部
 紫外線吸収剤1 :1.3質量部
 界面活性剤1 :0.01質量部
 Magenta分散液 :21質量部
・イエロー色着色層形成用組成物(Yellow組成物)
 PGMEA :45.69質量部
 樹脂2 :5.6質量部
 重合性化合物4 :6.9質量部
 光重合開始剤1 :1.1質量部
 紫外線吸収剤1 :1質量部
 界面活性剤1 :0.01質量部
 界面活性剤2 :0.7質量部
 Yellow分散液 :39質量部
 以下の成分を混合して赤外線透過層形成用組成物(IR-Pass組成物)を調製した。
・赤外線透過層形成用組成物
 PGMEA :14.79質量部
 樹脂2 :1.3質量部
 重合性化合物4 :1.9質量部
 光重合開始剤1 :1質量部
 界面活性剤1 :0.01
 Red分散液 :44質量部
 Blue分散液 :37質量部
 以下の成分を混合して透明層形成用組成物を調製した。
・透明層形成用組成物(Clear組成物)
 PGMEA :75.89質量部
 樹脂1:8.3質量部
 重合性化合物5 :12.5質量部
 光重合開始剤1 :1.3質量部
 紫外線吸収剤1 :2質量部
 界面活性剤1 :0.01質量部
 以下の成分を混合して下地層形成用組成物を調製した。
・下地層形成用組成物
 PGMEA :87.99質量部
 樹脂3 :12質量部
 界面活性剤1 :0.01質量部
 上記組成物に用いた原料は以下の通りである。
 Green分散液、Red分散液、Blue分散液、Magenta分散液、Cyan分散液、Yellow分散液:以下に記載の原料をそれぞれ下記の表の分散液の欄に記載の質量部で混合し、更に直径0.3mmのジルコニアビーズ230質量部を加えて、ペイントシェーカーを用いて5時間分散処理を行い、ビーズをろ過で分離して製造した分散液を用いた。
(Green分散液)
 PGMEA :83質量部
 C.I.Pigment Green36(PG36) :8質量部
 C.I.Pigment Yellow 150(PY150) :5.5質量部
 樹脂4 :3質量部
 樹脂1 :0.5質量部
(Red分散液)
 PGMEA :77.7質量部
 C.I.Pigment Red254(PR254) :8.5質量部
 C.I.Pigment Yellow 139(PY139) :3.8質量部
 顔料誘導体1 :2質量部
 樹脂5 :6質量部
 樹脂1 :2質量部
(Blue分散液)
 PGMEA :82.7質量部
 C.I.Pigment Blue 15:6(PB15:6) :11質量部
 C.I.Pigment Violet 23(PV23) :3質量部
 樹脂6 :2質量部
 樹脂1 :1.3質量部
(Cyan分散液)
 PGMEA :77.6質量部
 C.I.Pigment Green 7(PG7) :14質量部
 顔料誘導体1 :1.4質量部
 樹脂4 :7質量部
(Magenta分散液)
 PGMEA :69.6質量部
 C.I.Pigment Red 177(PR177) :19質量部
 顔料誘導体1 :1.9質量部
 樹脂5 :9.5質量部
(Yellow分散液)
 PGMEA :74.4質量部
 C.I.Pigment Yellow 150(PY150) :16質量部
 顔料誘導体1 :1.6質量部
 樹脂5 :8質量部
・樹脂1:下記構造の樹脂(酸価=32mgKOH/g、Mw=11000)。各繰り返し単位に併記した数値は、全繰り返し単位を100モル%とした場合の、各繰り返し単位のモル比(モル%)を表す。
Figure JPOXMLDOC01-appb-C000029
・樹脂2:下記構造の樹脂(酸価=112mgKOH/g、Mw=30000)。各繰り返し単位に併記した数値は、各繰り返し単位のモル比を表す。
Figure JPOXMLDOC01-appb-C000030
・樹脂3:サイクロマーP(ダイセル・オルネクス製)
・樹脂4:下記構造の樹脂(酸価=36mgKOH/g、Mw=21000)。各繰り返し単位に併記した数値は、各繰り返し単位のモル比を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。
Figure JPOXMLDOC01-appb-C000031
・樹脂5:下記構造の樹脂(酸価=77mgKOH/g、Mw=20000)。各繰り返し単位に併記した数値は、各繰り返し単位のモル比を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。
Figure JPOXMLDOC01-appb-C000032
・樹脂6:Solsperse 36000 Lubrizol(株)製
・顔料誘導体1:下記構造の化合物
Figure JPOXMLDOC01-appb-C000033
・重合性化合物1:アロニックスTO-2349(東亞合成(株))
・重合性化合物2:NKオリゴUA-7200(新中村化学工業(株)製)
・重合性化合物3:NKエステル A-DPH-12E(新中村化学工業(株)製)
・重合性化合物4:KAYARAD DPHA(日本化薬(株)製)
・重合性化合物5:アロニックスM-510(東亞合成(株))
・光重合開始剤1:IRGACURE OXE-01(BASF社製)
・紫外線吸収剤1:上述した紫外線吸収剤(J-1)
・界面活性剤1:下記混合物(Mw=14,000、繰り返し単位の割合を示す%は質量%である。)
Figure JPOXMLDOC01-appb-C000034
・界面活性剤2: パイオニンD6315(竹本油脂(株)製)
〔積層体及び積層体を有する固体撮像素子の製造〕
 2次元アレイ状に区画され、各単位区画には光電変換部が形成されたシリコンウエハ上に、下地層形成用組成物を、乾燥後の膜厚が0.1μmとなるようにスピンコータを用いて塗布し、230℃で10分加熱して下地層を形成した。下地層を形成したシリコンウエハ上に各組成物を用いて図3~図6のいずれかの配置となるよう、着色層、透明層、光減衰層、及び、レンズを形成して積層体を有する固体撮像素子を製造した。着色層、透明層、及び、光減衰層の形成には、上記の各組成物を用い、パターンの形成はフォトリソグラフィ法を用いた。なお、各着色層の厚みは0.6μmであり、透明層の厚みは0.1μmμmであり、光減衰層の厚みは0.5μmだった。
〔固体撮像素子の評価〕
<ダイナミックレンジ>
 固体撮像素子のダイナミックレンジは、上記固体撮像素子を用いた実写により得た画像プリントを主観的に評価する方法により実施した。
 写真撮影は、写真スタジオにおいて行い、照明には、一般的な色温度3200Kのタングステンタイプの反射型写真電球を2灯用いた。
 得られた画像プリントについて、階調の細かさを10名のパネルにより評価した。各画像プリントについて10段階により評価し、各実施例の固体撮像素子のダイナミックレンジは、各パネルの評価値を平均して、以下の基準により評価した。結果を表9に示した。
A:評価値の平均値が8.0以上だった。
B:評価値の平均値が6.0以上、8.0未満だった。
C:評価値の平均値が4.0以上、6.0未満だった。
D:評価値の平均値が2.0以上、4.0未満だった。
E:評価値の平均値が2.0未満だった。    
<色再現性>
 固体撮像素子の色再現性は、上記固体撮像素子を用いた実写により得た画像プリントを主観的に評価する方法により実施した。写真撮影は上記と同様の条件で実施し、得られた画像プリントについて、被写体の色が再現されているかを10名のパネルにより評価した。各画像プリントについて10段階により評価し、各実施例の固体撮像素子の色再現性は、各パネルの評価値を平均して、以下の基準により評価した。結果を表9に示した。
A:評価値の平均値が8.0以上だった。
B:評価値の平均値が6.0以上、8.0未満だった。
C:評価値の平均値が4.0以上、6.0未満だった。
D:評価値の平均値が2.0以上、4.0未満だった。
E:評価値の平均値が2.0未満だった。
〔評価結果〕
 評価結果を以下の表9に示す。
Figure JPOXMLDOC01-appb-T000035
 表9に示す結果から、本発明の光硬化性組成物を光減衰層形成用組成物として用いて得られた光減衰層を有する積層体を用いることで、ダイナミックレンジを改良でき、色再現性を向上できることが確認された。
 更に、光減衰層の400~700nmの波長域の光の透過率の最大値と最小値の差ΔTが11.0%以下である場合、色再現性がより優れ(実施例3-2の結果)、ΔTが7.0%以下である場合、色再現性が更に優れることが確認された(実施例3-3の結果等)。
 光減衰層の550nmの波長の光の透過率が、5.0~20.0%である場合ダイナミックレンジが更に改良されることが確認された(実施例3-1~3-4と実施例3-5~3-6との比較等)。
10、20、80、90、91 単位画素
11 レンズ
12 着色層
13 光減衰層
14 第1の積層体
15 基板
16 第1の光電変換部
21 透明層
22 第2の積層体
23 第2の光電変換部
100 固体撮像装置
101 固体撮像素子
102 撮像部
103 カバーガラス
104 スペーサー
105 積層基板
106 チップ基板
107 回路基板
108 電極パッド
109 外部接続端子
110 貫通電極
111 レンズ層
112 レンズ材
113 支持体
114、115 遮光膜
201 受光素子
202 カラーフィルタ
201 受光素子
202 カラーフィルタ
203 マイクロレンズ
204 基板
205b 青色画素
205r 赤色画素
205g 緑色画素
205bm ブラックマトリクス
206 pウェル層
207 読み出しゲート部
208 垂直転送路
209 素子分離領域
210 ゲート絶縁膜
211 垂直転送電極
212 遮光膜
213、214 絶縁膜
215 平坦化膜

Claims (23)

  1.  多環芳香族炭化水素の含有量が0.100質量ppb以上0.500質量ppm以下であるカーボンブラックを含有する、光硬化性組成物。
  2.  更に、エチレン性不飽和基を有する化合物を含有する、請求項1に記載の光硬化性組成物。
  3.  更に、光重合開始剤を含有する、請求項1又は2に記載の光硬化性組成物。
  4.  前記光重合開始剤が、オキシム化合物である、請求項3に記載の光硬化性組成物。
  5.  前記カーボンブラックの硫黄含有量が、1質量ppm以上0.50質量%以下である、請求項1~4のいずれか1項に記載の光硬化性組成物。
  6.  前記カーボンブラックの灰分が、1質量ppm以上0.20質量%以下である、請求項1~5のいずれか1項に記載の光硬化性組成物。
  7.  前記カーボンブラックが、ファーネスブラックである、請求項1~6のいずれか1項に記載の光硬化性組成物。
  8.  更に、無機顔料を含有する、請求項1~7のいずれか1項に記載の光硬化性組成物。
  9.  前記無機顔料が、第4族の金属元素の窒化物、第4族の金属元素の酸窒化物、第5族の金属元素の窒化物、又は、第5族の金属元素の酸窒化物である、請求項8に記載の光硬化性組成物。
  10.  前記無機顔料が、窒化チタン、酸窒化チタン、又は、酸窒化ジルコニウムである、請求項8又は9に記載の光硬化性組成物。
  11.  前記無機顔料が酸窒化ジルコニウムである、請求項8~10のいずれか1項に記載の光硬化性組成物。
  12.  更に、エポキシ基を有する化合物を含有する、請求項1~11のいずれか1項に記載の光硬化性組成物。
  13.  更に、アルカリ可溶性樹脂を含有する、請求項1~12のいずれか1項に記載の光硬化性組成物。
  14.  前記アルカリ可溶性樹脂が、重合性基を有する、請求項13に記載の光硬化性組成物。
  15.  着色層と、請求項1~14のいずれか1項に記載の光硬化性組成物を用いて形成された光減衰層とが積層され、前記光減衰層の400~700nmの波長域の光の透過率の最大値と最小値との差ΔTが11.0%以下である、積層体。
  16.  着色層と、請求項1~14のいずれか1項に記載の光硬化性組成物を用いて形成された光減衰層とが積層され、
     前記着色層が、緑色着色層、赤色着色層、青色着色層、シアン色着色層、マゼンタ色着色層、及び、イエロー色着色層からなる群から選択される少なくとも1種である、積層体。
  17.  前記光減衰層の400~700nmの波長域の光の透過率の最大値と最小値の差ΔTが11.0%以下である、請求項16に記載の積層体。
  18.  前記差ΔTが7.0%以下である、請求項15又は17に記載の積層体。
  19.  前記光減衰層の700~1000nmの波長域の光の透過率の最大値と最小値との差ΔTが11.0%以下である、請求項15~18のいずれか1項に記載の積層体。
  20.  前記差ΔTが7.0%以下である、請求項19に記載の積層体。
  21.  前記光減衰層の550nmの波長の光の透過率が、5.0~75.0%である、請求項15~20のいずれか1項に記載の積層体。
  22.  前記光減衰層の550nmの波長の光の透過率が、5.0~20.0%である、請求項21に記載の積層体。
  23.  複数の単位画素が配置され、前記単位画素が第1の光電変換部、又は、第2の光電変換部を有し、前記第1の光電変換部の光が入射する側に、請求項15~22のいずれか1項に記載の積層体が配置されている、固体撮像素子。
PCT/JP2018/032839 2017-09-29 2018-09-05 光硬化性組成物、積層体、及び、固体撮像素子 WO2019065128A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207008032A KR102313710B1 (ko) 2017-09-29 2018-09-05 광경화성 조성물, 적층체, 및 고체 촬상 소자
JP2019544490A JP7012733B2 (ja) 2017-09-29 2018-09-05 光硬化性組成物、積層体、及び、固体撮像素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191193 2017-09-29
JP2017-191193 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065128A1 true WO2019065128A1 (ja) 2019-04-04

Family

ID=65901691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032839 WO2019065128A1 (ja) 2017-09-29 2018-09-05 光硬化性組成物、積層体、及び、固体撮像素子

Country Status (4)

Country Link
JP (1) JP7012733B2 (ja)
KR (1) KR102313710B1 (ja)
TW (1) TWI788415B (ja)
WO (1) WO2019065128A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539850A (zh) * 2020-11-24 2022-05-27 爱思开希高科技材料有限公司 颜料分散液及包含其的着色光敏树脂组合物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217613B2 (en) * 2019-11-18 2022-01-04 Omnivision Technologies, Inc. Image sensor with split pixel structure and method of manufacturing thereof
JP7081696B2 (ja) * 2020-01-21 2022-06-07 東レ株式会社 ポジ型感光性樹脂組成物、硬化膜、積層体、導電パターン付き基板、積層体の製造方法、タッチパネル及び有機el表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269360A (ja) * 1995-04-04 1996-10-15 Mitsubishi Chem Corp 着色用カーボンブラック及びその製造法
JP2007249190A (ja) * 2006-02-14 2007-09-27 Fujifilm Electronic Materials Co Ltd 光硬化性組成物、それを用いた反射防止膜、及び固体撮像素子
JP2010045191A (ja) * 2008-08-12 2010-02-25 Jsr Corp 遮光膜形成用感放射線性組成物、固体撮像素子用遮光膜及び固体撮像素子
JP2011068892A (ja) * 2009-09-28 2011-04-07 Evonik Degussa Gmbh カーボンブラック、その製造方法並びにその使用
JP2014111734A (ja) * 2012-11-01 2014-06-19 Fujifilm Corp 感光性組成物、これを用いた灰色硬化膜、灰色画素及び固体撮像素子
JP2017036436A (ja) * 2012-03-02 2017-02-16 キャボット コーポレイションCabot Corporation 低pah量を有する変性カーボンブラック及びそれを含むエラストマー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689553B2 (ja) * 2006-08-11 2011-05-25 富士フイルム株式会社 光硬化性着色組成物及びそれを用いたカラーフィルタ
JP5222624B2 (ja) * 2008-05-12 2013-06-26 富士フイルム株式会社 黒色感光性樹脂組成物、及びカラーフィルタ並びにその製造方法
KR101469519B1 (ko) * 2011-10-07 2014-12-08 (주)경인양행 옥심 에스테르 화합물 및 그것을 포함하는 광중합 개시제
CN104672953B (zh) * 2015-02-10 2017-06-06 安徽黑钰颜料新材料有限公司 具有超长停留段的色素炭黑反应炉及其产出的色素炭黑
JP6767747B2 (ja) 2016-01-15 2020-10-14 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、遮光膜、カラーフィルタおよび固体撮像素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269360A (ja) * 1995-04-04 1996-10-15 Mitsubishi Chem Corp 着色用カーボンブラック及びその製造法
JP2007249190A (ja) * 2006-02-14 2007-09-27 Fujifilm Electronic Materials Co Ltd 光硬化性組成物、それを用いた反射防止膜、及び固体撮像素子
JP2010045191A (ja) * 2008-08-12 2010-02-25 Jsr Corp 遮光膜形成用感放射線性組成物、固体撮像素子用遮光膜及び固体撮像素子
JP2011068892A (ja) * 2009-09-28 2011-04-07 Evonik Degussa Gmbh カーボンブラック、その製造方法並びにその使用
JP2017036436A (ja) * 2012-03-02 2017-02-16 キャボット コーポレイションCabot Corporation 低pah量を有する変性カーボンブラック及びそれを含むエラストマー
JP2014111734A (ja) * 2012-11-01 2014-06-19 Fujifilm Corp 感光性組成物、これを用いた灰色硬化膜、灰色画素及び固体撮像素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539850A (zh) * 2020-11-24 2022-05-27 爱思开希高科技材料有限公司 颜料分散液及包含其的着色光敏树脂组合物
CN114539850B (zh) * 2020-11-24 2023-08-04 爱思开迈克沃解决方案有限公司 颜料分散液及包含其的着色光敏树脂组合物

Also Published As

Publication number Publication date
TWI788415B (zh) 2023-01-01
KR20200042923A (ko) 2020-04-24
JP7012733B2 (ja) 2022-01-28
JPWO2019065128A1 (ja) 2020-11-19
TW201921106A (zh) 2019-06-01
KR102313710B1 (ko) 2021-10-18

Similar Documents

Publication Publication Date Title
JP7232881B2 (ja) 着色感光性組成物、硬化膜、パターン形成方法、遮光膜付き赤外光カットフィルタ、固体撮像素子、画像表示装置および赤外線センサ
TWI772320B (zh) 遮光性組成物、遮光膜、固態攝影元件、濾色器及液晶顯示裝置
KR102597795B1 (ko) 착색 조성물, 경화막, 패턴 형성 방법, 컬러 필터, 고체 촬상 소자 및 화상 표시 장치
WO2020044720A1 (ja) 着色組成物、膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子及び画像表示装置
JPWO2018061583A1 (ja) 組成物、硬化膜、カラーフィルタ、固体撮像素子、赤外線センサ、近赤外線センサ、及び、近接センサ
WO2018155104A1 (ja) 感光性組成物、硬化膜、カラーフィルタ、固体撮像素子および画像表示装置
KR102658622B1 (ko) 경화성 조성물, 막, 컬러 필터, 컬러 필터의 제조 방법, 고체 촬상 소자, 화상 표시 장치, 및 고분자 화합물
JP7012733B2 (ja) 光硬化性組成物、積層体、及び、固体撮像素子
JP2024052779A (ja) 着色組成物、膜、光学フィルタ、固体撮像素子及び画像表示装置
JP2022023971A (ja) 積層体、及び、固体撮像素子
KR20210035234A (ko) 경화성 조성물, 경화막, 패턴의 형성 방법, 광학 필터 및 광센서
KR20220127882A (ko) 착색 조성물, 막, 적색 화소, 컬러 필터, 고체 촬상 소자, 화상 표시 장치 및 키트
KR20220127883A (ko) 착색 조성물, 막, 적색 화소, 컬러 필터, 고체 촬상 소자, 화상 표시 장치 및 키트
JP2024012409A (ja) 着色感光性組成物、硬化物、カラーフィルタ、固体撮像素子、画像表示装置、及び、非対称ジケトピロロピロール化合物
KR20220146572A (ko) 착색 감광성 조성물, 경화물, 컬러 필터, 고체 촬상 소자, 및, 화상 표시 장치
WO2020022248A1 (ja) 硬化性組成物、膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子および画像表示装置
WO2019049635A1 (ja) 近赤外線吸収有機顔料、樹脂組成物、近赤外線吸収有機顔料の製造方法、近赤外線吸収有機顔料の分光調整方法、膜、積層体、近赤外線カットフィルタ、近赤外線透過フィルタ、固体撮像素子、画像表示装置および赤外線センサ
WO2018173524A1 (ja) 着色組成物、顔料分散液、顔料分散液の製造方法、硬化膜、カラーフィルタ、固体撮像素子および画像表示装置
JPWO2020075568A1 (ja) 着色組成物、膜、カラーフィルタの製造方法、カラーフィルタ、固体撮像素子及び画像表示装置
JP7414948B2 (ja) 着色組成物、膜、赤色画素、カラーフィルタ、固体撮像素子、画像表示装置およびキット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207008032

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019544490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863665

Country of ref document: EP

Kind code of ref document: A1