WO2019058616A1 - 作業機械の作業腕 - Google Patents

作業機械の作業腕 Download PDF

Info

Publication number
WO2019058616A1
WO2019058616A1 PCT/JP2018/014928 JP2018014928W WO2019058616A1 WO 2019058616 A1 WO2019058616 A1 WO 2019058616A1 JP 2018014928 W JP2018014928 W JP 2018014928W WO 2019058616 A1 WO2019058616 A1 WO 2019058616A1
Authority
WO
WIPO (PCT)
Prior art keywords
boss
main body
body portion
arm
outer diameter
Prior art date
Application number
PCT/JP2018/014928
Other languages
English (en)
French (fr)
Inventor
博 青山
下平 貴之
高橋 毅
友厚 飯浜
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020207008214A priority Critical patent/KR102412348B1/ko
Priority to US16/643,028 priority patent/US11225770B2/en
Priority to CN201880061617.0A priority patent/CN111108247B/zh
Priority to EP18857776.1A priority patent/EP3660222B1/en
Publication of WO2019058616A1 publication Critical patent/WO2019058616A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/006Pivot joint assemblies
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/14Booms only for booms with cable suspension arrangements; Cable suspensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting

Definitions

  • the present invention relates to a working arm of a working machine, and more particularly to a working arm of a working machine provided with a bearing member called a boss.
  • a working machine such as a hydraulic shovel has a working arm configured by a boom, an arm, and the like.
  • a telescopic member such as a hydraulic cylinder is attached to the working arm via a freely rotatable shaft (pin).
  • the boom and the arm often have a welded structure of box-shaped steel plates.
  • the rotary shaft (pin) to which the hydraulic cylinder is attached is supported by a bearing member called a boss provided on a side plate which constitutes a part of a box-shaped boom or arm. The boss is often fixed to the side plate by welding.
  • the boss receives loads in various directions from the hydraulic cylinder via the rotation shaft (pin). Therefore, various stresses are generated in the welding portion for joining the boss and the side plate in accordance with the movement of the boom and the arm, the load condition thereof and the like.
  • a method of reducing the stress generated in the weld between the boss and the side plate those described in Patent Document 1 and Patent Document 2 are known.
  • each of the pair of bosses has a bearing at the center, a cylindrical portion extending in the axial direction from the bearing, and a flange extending in the radial direction from the bearing And consists of
  • the left and right symmetrical center bosses are constructed by joining the end faces of the cylindrical portions of these bosses to each other, and then the peripheral portions of the left and right flange portions of the center boss are welded to the side plates of the boom.
  • the surface of the flange portion of the center boss is scraped in order to secure a good weld quality of the weld portion between the boss and the side plate (reduce the load on the weld portion).
  • the groove height is made equal to the thickness of the side plate.
  • the boss is fixed to the side plate by welding the flange portion formed on the boss to the side plate of the boom. Moreover, the cylindrical connection member for reinforcement is provided between the fixed bosses of the side plate.
  • a groove-like thickness adjusting portion is formed in the flange portion in order to prevent stress concentration on the welded portion between the side plate of the boom and the boss to enhance the reliability of the boom. The thickness of the side plate at the welding position is made equal to the thickness of the flange portion.
  • Patent Document 1 and Patent Document 2 have the following problems.
  • the technique described in Patent Document 1 by making the thickness of the weld between the flange portion of the boss and the side plate of the boom equal to the thickness of the side plate, the magnitudes of the stresses generated in both can be made approximately equal.
  • the fatigue strength is different between the welding material and the material to be welded, and the fatigue strength of the welding material is smaller than that of the material to be welded. Therefore, even if the magnitudes of the generated stresses in the welded portion and the side plates are substantially the same, the fatigue crack is generated from the welded portion.
  • the thickness of the weld between the flange portion of the boss and the side plate Since the plate thickness of the side plate is equal to that of the side plate, the magnitudes of bending stress generated in the welds and the side plate are approximately equal. For this reason, fatigue failure occurs in the welded portion with smaller fatigue strength.
  • the thickness of the weld between the flange portion of the boss and the side plate of the boom is equal to the thickness of the side plate.
  • the magnitudes of the generated stresses are approximately equal. Therefore, a fatigue crack is generated from a weld with a lower fatigue strength.
  • the present invention has been made based on the above-described matters, and an object thereof is to provide a working arm of a working machine capable of improving the fatigue life of a weld joining a boss and a plate member.
  • the present application includes a plurality of means for solving the above problems
  • one example thereof is a box-shaped structure constituted by a plurality of plate members, and the plate structure attached to the opposing plate member of the plurality of plate members.
  • a pair of bosses and a cylindrical boss connection member disposed between the pair of bosses and connecting the pair of bosses, each of the pair of bosses having a pin insertion hole through which a connection pin is inserted And extending outward from the outer peripheral portion of the boss main portion, the tip end portion being joined to the opposing plate member via the first welding portion.
  • a boss portion having a flange portion, and the boss main body portion is a cylindrical first body portion positioned on the outer surface side of the box-shaped structure bordering on the position of the flange portion; and an inner surface side of the box-shaped structure
  • the boss connecting member comprises Both axial end portions thereof are respectively joined to axial end portions of the second main body portion via a second welded portion, and the outer diameter of the portion on the flange side of the second main body portion is the first main body portion It is characterized in that it is smaller than the outer diameter of the axial end of the
  • the outer diameter of the portion on the flange side of the second main body located on the inner surface side of the box-shaped structure of the working arm is the first main body located on the outer surface Since the diameter is smaller than the outer diameter of the axial end of the portion, the bending rigidity in the out-of-plane direction of the flange portion of the boss is reduced accordingly. Therefore, the bending stress of the 1st welding part which joins the plate member of a work arm, and the flange of a boss is eased, and the fatigue life of the 1st welding part concerned can be improved. As a result, the durability and reliability of the working machine are improved. Problems, configurations, and effects other than the above are clarified by the description of the embodiments below.
  • FIG. 1 is a side view showing a hydraulic shovel to which a first embodiment of a working arm of a working machine of the present invention is applied. It is a side view showing the work front including the 1st embodiment of the work arm of the work machine of the present invention. It is a figure which shows the action position and direction of the bucket inner surface pushing load of 1st Embodiment of the working arm of the working machine of this invention, and the direction of the thrust generate
  • FIG. 1 is a side view showing a hydraulic shovel to which a first embodiment of a working arm of a working machine according to the present invention is applied. Here, it demonstrates using the direction seen from the operator who seated at the driver's seat.
  • the hydraulic shovel 1 is rotatably mounted on a lower traveling unit 2 of a crawler type capable of self-propelled movement and the lower traveling unit 2 via a turning bearing device 5 and constitutes a vehicle body together with the lower traveling unit 2.
  • An upper swing body 3 is provided.
  • a work front 4 is provided on the front end portion of the upper swing body 3 so as to be movable up and down.
  • the upper swing body 3 includes a swing frame 6 which is a supporting structure mounted on the lower traveling body 2 in a pivotable manner, a cab 7 installed on the right front side on the swing frame 6, and a rear end portion of the swing frame 6 And a machine room 9 disposed between the cab 7 and the counterweight 8.
  • a machine room 9 disposed between the cab 7 and the counterweight 8.
  • the counterweight 8 is for weight balance with the work front 4.
  • an engine, a hydraulic pump (both not shown) and the like are accommodated.
  • the work front 4 is a multi-joint type actuating device for excavating work and the like, and the boom 11 and the arm 12 as a work arm, and the bucket 13 as a work tool (attachment) attached to the tip of the work arm It consists of
  • the base end side of the boom 11 is pivotably connected to the front end of the upper swing body 3.
  • the proximal end of the arm 12 is rotatably connected to the distal end of the boom 11.
  • the proximal end of the bucket 13 is rotatably connected to the distal end of the arm 12.
  • a bucket link 15 is provided between the tip end of the arm 12 and the bucket 13.
  • the boom 11 is pivoted by a pair of boom cylinders 16 (only one is shown in FIG. 1).
  • the arm 12 is rotated by an arm cylinder 17.
  • the bucket 13 is rotated by the bucket cylinder 18 via the bucket link 15. That is, the boom cylinder 16, the arm cylinder 17 and the bucket cylinder 18 constitute a driving device for driving the boom 11, the arm 12 and the bucket 13.
  • the boom cylinder 16, the arm cylinder 17 and the bucket cylinder 18 are constituted by hydraulic cylinders.
  • FIG. 2 is a side view showing a work front including the first embodiment of the working arm of the working machine of the present invention
  • FIG. 5 is a first embodiment of the working arm of the working machine of the present invention shown in FIG. It is sectional drawing seen from the VV arrow.
  • the boom 11 which constitutes a part of the working arm is provided with a long box-shaped structure 21 which is curved in an arched shape and extends in one direction (in FIG. .
  • the box-shaped structure 21 has a closed cross-sectional structure having a rectangular cross section by joining a plurality of steel plates (plate members) by welding. Specifically, the box-shaped structure 21 extends in one direction (generally in the lateral direction in FIG. 2) while facing each other at an interval in the width direction (lateral direction in FIG. 5) of the hydraulic shovel 1 (see FIG. 1).
  • upper plate 23 and lower plate 24 for example, a steel material made of high-tensile steel is used.
  • Each side plate 22, the upper plate 23, and the lower plate 24 are configured by, for example, bonding a plurality of plate members.
  • the base end side boss 25 is joined to the base end portion (left end portion in FIG. 2) of the box-shaped structure 21 by welding.
  • the base end side boss 25 supports a connecting pin (not shown) that relatively rotatably connects the boom 11 and the front end of the swing frame 6 (see FIG. 1) of the hydraulic shovel 1.
  • An arm mounting member 26 is provided on the tip end side (right end in FIG. 2) of the box-shaped structure 21.
  • the arm attachment member 26 pivotally connects the proximal end side of the arm 12 to the boom 11 via the connection pin 28.
  • An arm cylinder first bracket 27 is provided at a longitudinal middle portion of the upper plate 23 of the box-shaped structure 21.
  • the arm cylinder first bracket 27 is composed of a pair of plate members facing each other at an interval in the width direction of the upper plate 23, and the pair of plate members are joined to the upper plate 23 by welding.
  • the bottom end of the arm cylinder 17 is rotatably pin-connected to the arm cylinder first bracket 27.
  • circular boss fitting holes 22 a are provided at central portions in the longitudinal direction of each side plate 22.
  • the boom center bosses 30 are respectively joined to the boss fitting holes 22 a of the side plates 22 by welding. Both boom center bosses 30 are connected by a cylindrical boss connecting member 42 disposed between the boom center bosses 30. Both boom center bosses 30, together with the boss connecting member 42, support a connecting pin 48 that rotatably mounts the rod end of the pair of boom cylinders 16 (see FIG. 1) relative to the boom 11.
  • the detailed structure of the boom center boss 30 and the boss connection member 42 will be described later.
  • the box-shaped structure 51 has a closed cross-sectional structure having a rectangular cross section by joining a plurality of steel plates (plate members) by welding.
  • the box-shaped structure 51 includes a pair of side plates 52 extending in one direction while facing each other with an interval in the width direction of the hydraulic shovel 1 (see FIG. 1) and an upper end side of the side plates 52 A rear plate closing the opening on the base end side (rear end side) formed by the lower plate 54, the lower plate 54 joined to the lower end side of the side plates 52, the side plates 52, the upper plate 53, and the lower plate 54 And 55.
  • each side plate 52, upper plate 53, lower plate 54, and rear plate 55 for example, a steel material made of high-tensile steel is used.
  • Each side plate 52, the upper plate 53, and the lower plate 54 are configured by, for example, bonding a plurality of plate members.
  • a bucket connecting boss 57 is provided on the tip end side of the box-shaped structure 51.
  • the bucket connection boss 57 supports a connection pin 58 that relatively connects the bucket 13 and the arm 12 rotatably.
  • each side plate 52 constituting the box-shaped structure 51 On the base end side of each side plate 52 constituting the box-shaped structure 51, a concave-shaped notch 52a is provided.
  • the boom connection boss 60 is joined to the notch 52a of the both side plates 52 by welding.
  • the boom connection boss 60 supports a connection pin 28 that rotatably connects the distal end (arm attachment member 26) of the boom 11 and the base end side of the arm 12 relatively.
  • a link connection boss (not shown) is provided on the front end side of the side plates 52. The link connection boss is for pivotally attaching the bucket link 15 to the arm 12 via the connection pin 63.
  • An arm cylinder second bracket 65 is provided on the rear plate 55 constituting the box-shaped structure 51.
  • the arm cylinder second bracket 65 is composed of a pair of plate members facing each other at an interval in the width direction of the box-shaped structure 51, and the pair of plate members are joined to the rear plate 55 by welding.
  • the rod side end of the arm cylinder 17 is rotatably pin-connected to the arm cylinder second bracket 65.
  • a bucket cylinder bracket 66 is provided on the base end side of the upper plate 53 constituting the box-shaped structure 51.
  • the bucket cylinder bracket 66 includes a pair of plate members facing each other at an interval in the width direction of the upper plate 53, and the pair of plate members are joined to the upper plate 53 by welding.
  • the bottom end of the bucket cylinder 18 is rotatably pin-connected to the bucket cylinder bracket 66.
  • the bucket 13 as a work implement includes a bracket 71.
  • the bracket 71 is formed of a pair of substantially plate-like members facing each other at an interval in the left-right direction.
  • the tip of the bucket link 15 is rotatably pin-connected to the bracket 71.
  • the bracket 71 is for pivotally connecting the bucket 13 to the tip end side of the arm 12 via the connection pin 58.
  • each of the boom center bosses (hereinafter referred to as bosses) 30 has a cylindrical boss main body 31 extending in the direction in which the side plates 22 of the boom 11 are aligned (horizontal direction in FIG. 5); And an annular collar portion 32 extending radially outward from a substantially middle portion in the axial direction at the outer peripheral portion of the lens.
  • the boss main body portion 31 and the collar portion 32 are integrally formed, for example, by casting.
  • the inner peripheral side of the cylindrical boss main body 31 is a pin insertion hole 31 a into which the connection pin 48 is inserted.
  • the boss main body portion 31 is configured such that the axial length thereof is larger than the thickness of the collar portion 32, and the outer main body located on the outer surface side of the box-shaped structure 21 bordering the position of the collar portion 32. It is comprised by the part 33 and the inner side main-body part 34 located in the inner surface side of the box-shaped structure 21. As shown in FIG.
  • the tip end portion of the flange portion 32 abuts on the inner peripheral edge portion of the boss fitting hole 22 a of the side plate 22 of the boom 11 and is joined to the side plate 22 via the first welded portion 44.
  • the flange portion 32 is configured such that the thickness of the tip end portion thereof is substantially the same as the thickness of the side plate 22, and a load (force) acting on the boss 30 is transmitted from the flange portion 32 through the first welded portion 44. It is smoothly transmitted to the side plate 22.
  • the thickness on the outer surface side of the box-shaped structure 21 gradually increases toward the outer main portion 33 (radially inward).
  • the first curved surface portion 32 b is provided, and the second curved surface portion 32 c is provided such that the thickness on the inner surface side of the box-shaped structure 21 gradually increases toward the inner main body portion 34 (radially inner side).
  • the boss connection member 42 is a cylindrical member having an axially symmetrical annular cross section and having no reinforcing portion such as a rib.
  • the boss connection member 42 connects the bosses 30 so that the axes L of their pin insertion holes 31a coincide with each other.
  • the cylindrical boss connection member 42 is disposed such that its axis coincides with the axis L of the pin insertion hole 31a, and the inside thereof communicates with the pin insertion hole 31a. Both end portions in the axial direction of the boss connecting member 42 are joined to the axial end portions of the inner main body portion 34 of the boss main body portion 31 via the second welding portion 45, respectively.
  • a backing member 46 is provided on the inner surface side of the box-shaped structure 21 at the abutting portion between the flange 32 of the boss 30 and the side plate 22.
  • the backing member 46 is, for example, an annular member, and is used for the purpose of positioning of the flange portion 32 of the boss 30 when welding the boss 30 to the side plate 22 and prevention of weld metal burnout.
  • an annular backing member 46 is welded to the side of the inner body portion 34 at the tip of the flange portion 32 of each boss 30.
  • the boss connection member 42 is welded to both bosses 30 to which the backing member 46 is welded to connect the bosses 30.
  • the side plates 22 are fitted from the outside to the coupled bosses 30, respectively.
  • the side plate 22 is positioned with respect to the flange 32 of the boss 30 by the backing member 46.
  • the upper plate 23 and the lower plate 24 are temporarily welded to the side plate 22 to form a box-shaped structure having a rectangular cross section.
  • the bosses 30 are joined to the side plates 22 respectively by welding from the outside of the box-shaped structure.
  • the backing member 46 prevents the weld metal from leaking into the interior of the box-shaped structure.
  • a part of the backing member 46 is welded to the first welded portion 44. Since the object to which the bosses 30 are welded is the box-shaped structure 21, it is difficult to remove the backing member 46 after the bosses 30 are welded. Therefore, even after welding of the bosses 30, the backing member 46 remains inside the box-shaped structure 21 in a state of being partially welded to the first welded portion 44.
  • FIG. 6 is a cross-sectional view showing, in an enlarged state, the structure of a boss and its peripheral portion constituting a first embodiment of a working arm of a working machine according to the present invention indicated by reference numeral X in FIG.
  • FIG. 6 since the thing of the code
  • the boom cylinders 16 (see FIG. 1) are attached to both ends of the connection pins 48 inserted into the pin insertion holes 31 a of the bosses 30 shown in FIG. 5, and the load from the boom cylinders 16 is via the connection pins 48. It acts on both bosses 30.
  • both end sides of the connection pin 48 in the vicinity of the mounting position of the boom cylinder 16 is the inner surface of the pin insertion hole 31a at the axial end of the outer main body 33 of the boss main body 31 (portion indicated by broken line S) It is particularly strongly pressed to Therefore, a surface pressure higher than that of the other portions is generated in the corresponding portion of the outer main body portion 33.
  • the outer diameter D1 of the axial end of the outer main body 33 of the boss main body 31 is the pin insertion hole 31a at the axial end of the outer main body 33.
  • the diameter is set such that plastic deformation does not occur on the inner surface (the portion indicated by the broken line S) of. That is, the boss main body 31 (outer main body 33) is configured to support the load received from the connecting pin 48 without plastically deforming the pin insertion hole 31a.
  • the outer diameter D1 of the outer main body portion 33 is set to be substantially equal to the actual value of the outer diameter of the outer surface side (outer main body portion) of the conventional boom center boss.
  • the outer main body portion 33 is formed in a cylindrical shape having a substantially constant outer diameter from an axial end portion to a portion on the collar portion 32 side.
  • the outer diameter D2 of the portion on the flange 32 side of the inner main body 34 is set to be smaller than the outer diameter D1 of the outer main body 33.
  • the inner main body portion 34 is formed in a cylindrical shape having a substantially constant outer diameter from the axial end portion to the portion on the collar portion 32 side. That is, the thickness of the cylindrical portion of the inner main body portion 34 is thinner than the thickness of the cylindrical portion of the outer main body portion 33.
  • the outer diameter of the inner surface side (inner body portion) is set to be larger than the outer diameter of the outer surface side (outer main body portion). That is, the outer diameter D2 of the inner main body portion 34 of the present embodiment is smaller than the actual value of the outer diameter of the inner surface side (inner main body portion) of the conventional boom center boss.
  • the outer diameter D3 of the boss connection member 42 is set to be substantially the same as the outer diameter D2 of (the axial direction end portion of) the inner main body portion 34 of the boss main body portion 31. That is, the outer diameter D3 of the boss connection member 42 is smaller than the actual value of the outer diameter of the conventional boss connection member. Further, the boss connection member 42 is configured such that the thickness of the cylindrical portion is thinner than the thickness of the cylindrical portion of the inner main body portion 34. That is, the inner diameter of the boss connection member 42 is larger than the inner diameter of the inner main body portion 34.
  • FIG. 3 is a view showing the action position and direction of the inner surface pushing load and the direction of the thrust generated in the boom cylinder and the arm cylinder in the first embodiment of the working arm of the working machine according to the present invention
  • FIG. 7 is a view showing the working position and direction of the bucket outer surface pressing load and the direction of thrust generated in the boom cylinder and the arm cylinder of the first embodiment of the working arm of the working machine
  • FIG. 7 is a working arm of the working machine of the present invention Explanatory drawing which shows the deformation state at the time of the bucket inner surface pushing load shown in FIG. 3 of 1st Embodiment, FIG.
  • FIG. 8 is the bucket outer surface pushing shown in FIG. 4 of 1st Embodiment of the working arm of the working machine of this invention.
  • FIG. 9 is a characteristic diagram showing the relationship between the ratio of the outer diameter on the inner surface side to the outer diameter on the outer surface side of the boss and the fatigue life of the welded portion of the boss.
  • the horizontal axis D2 / D1 represents the ratio of the outer diameter of the inner surface of the boss main body to the outer diameter of the outer surface of the boss main body
  • the vertical axis Nf represents the fatigue of the first and second welds. It shows the lifetime.
  • the solid line A shows the characteristic curve of the first weld and the broken line B shows the characteristic curve of the second weld.
  • a load acts on the boss 30 of the boom 11 shown in FIG. 5 from the boom cylinder 16 (see FIG. 1) via the connection pin 48.
  • This load bending deformation occurs in the out-of-plane direction (the direction of the outer surface side of the box-shaped structure 21 or the direction of the inner surface) in the flange 32 of the boss 30 and the side plate 22 of the boom 11, and the flange of the boss 30 Stress is generated on the side plate 22 and the side plate 22.
  • FIG. 3 when a contraction direction thrust is generated in the boom cylinder 16 by an excavation operation or the like, an expansion direction thrust is generated in the arm cylinder 17 and a bucket inner surface pressing load is applied to the bucket 13, as shown in FIG.
  • the boss body 31 of the boss 30 and the boss connection member 42 are deformed upward to form the flange portion 32, the side plate 22, the upper plate 23, and the lower plate 24 of the boss 30 constituting the boom 11. In the out-of-plane direction.
  • FIG. 4 when an extension direction thrust is generated in the boom cylinder 16 by pressing operation etc. and a compression direction thrust is generated in the arm cylinder 17 and a bucket outer surface pushing load is applied to the bucket 13, as shown in FIG.
  • the boss main body 31 and the boss connection member 42 are deformed downward in a convex shape, bending deformation in an out-of-plane direction occurs in the flange 32, the side plate 22, the upper plate 23, and the lower plate 24.
  • both bosses 30 attached to each side plate 22 are connected by the boss connecting member 42, excessive bending deformation of the side plate 22 is prevented, and buckling and plastic deformation of the side plate 22 are prevented. Can be prevented.
  • the bending deformation of the flange portion 32 and the side plate 22 of the boss 30 is also high in the first welded portion 44 joining the boss 30 and the side plate 22 and the second welded portion 45 joining the boss 30 and the boss connecting member 42. It generates stress.
  • the stress of the first welding portion 44 and the second welding portion 45 fluctuates according to the operation of the boom cylinder 16. Fatigue failure occurs when the stress value and the number of cycles of stress variation exceed material-specific thresholds. In particular, in welds joining parts to be welded, residual stress and residual deformation often occur due to heat during welding, so it is known that the threshold value of fatigue failure in the weld is smaller than that of the parts to be welded. There is.
  • the outer diameter D2 of the portion on the collar 32 side of the inner main body 34 of the boss main body 31 is set smaller than the outer diameter D1 of the outer main body 33. Because the outer diameter of the inner main body is larger than the outer diameter of the outer main body, the radial length of the flange 32 of the boss 30 on the inner main body 34 side is longer than that of the conventional structure. The bending stiffness in the out-of-plane direction of the flange portion 32 is reduced. Therefore, the bending deformation in the out-of-plane direction caused by the load acting on the boss 30 mainly occurs at the flange 32 of the boss 30.
  • the outer diameter D2 of the inner main body portion 34 is set to be smaller than the outer diameter D1 of the outer main body portion 33. That is, the outer diameter D2 of the inner body portion 34 is smaller than the inner body portion of the boss of the conventional structure. Therefore, the mass of the boss 30 is smaller than that of the conventional structure, and the boss 30 can be reduced in weight, and as a result, the weight of the boom 11 can be reduced.
  • the outer diameter D3 of the boss connection member 42 is set to be substantially the same as the outer diameter D2 of the inner main body portion 34 of the boss main body portion 31. That is, the outer diameter D3 of the boss connection member 42 is smaller than that of the conventional boss connection member. Therefore, since the mass of the boss connection member 42 is smaller than that of the conventional boss connection member, the weight of the boss connection member 42 can be reduced, and as a result, the weight of the boom 11 can be reduced.
  • the stress that causes the first welded portion 44 to crack starting from the boundary between the backing member 46 and the first welded portion 44 causes the second welded portion 45 to join the boss 30 and the boss connection member 42. Less than the stress that causes cracking. That is, regarding the stress value, the second welded portion 45 is less likely to generate a fatigue crack than the first welded portion 44.
  • the fatigue life of the first welded portion 44 is the ratio of the outer diameter D2 of the inner main body portion 34 to the outer diameter D1 of the outer main body portion 33 of the boss 30 (D2 / As D1) gets smaller, it gets longer.
  • the outer diameter D1 of the outer main body portion 33 is limited to a size that can support the connection pin 48 without plastically deforming the inner surface of the pin insertion hole 31a.
  • the fatigue life of the second welded portion 45 becomes shorter as D2 / D1 becomes smaller.
  • D2 / D1 in view of the durability and reliability of the boom 11, it is desirable to set D2 / D1 to at least 0.7 and less than 1.0. If the outer diameter D2 of the inner body portion 34 is smaller than the outer diameter D1 of the outer body portion 33, the fatigue life of the first welded portion 44 is extended while the fatigue life of the second welded portion 45 is shortened. Therefore, in order to maintain the fatigue life of the first welded portion 44 and the second welded portion 45 within a predetermined range, the above range is desirable.
  • the outer diameter D2 of the portion on the flange 32 side of the inner main body 34 (second main body) located is determined from the outer diameter D1 of the axial direction end of the outer main body 33 (first main body) located on the outer surface side.
  • the bending rigidity in the out-of-plane direction of the flange portion 32 of the boss 30 is reduced.
  • FIG. 10 is an enlarged sectional view showing the structure of the boss and its periphery in the second embodiment of the working arm of the working machine according to the present invention
  • FIG. 11 is the groove of the boss body with respect to the thickness of the flange of the boss. It is a characteristic view showing the relation between the ratio of the curvature radius at the bottom and the stress concentration factor.
  • the abscissa ⁇ / t represents the ratio of the radius of curvature ⁇ at the bottom of the groove of the boss to the thickness t of the flange of the boss
  • the ordinate ⁇ represents the stress concentration factor of the groove.
  • the same components as those of the first embodiment are designated by the same reference numerals as those of the first embodiment, and the detailed description thereof will be omitted.
  • the second embodiment of the work arm of the work machine of the present invention shown in FIG. 10 differs from the first embodiment in the following three main points.
  • the boss 30A is configured such that the outer diameter D2 of the inner main body portion 34A of the boss main body portion 31A is the same as the outer diameter D1 of the outer main body portion 33. That is, the inner main body portion 34A has an outer diameter larger than that of the first embodiment.
  • the boss connecting member 42A is configured such that the outer diameter D3 thereof is substantially the same as the outer diameter D2 of the inner main body portion 34A, that is, the outer diameter D1 of the outer main body portion 33.
  • the boss connection member 42A has an outer diameter larger than that of the first embodiment.
  • a groove 35 is provided along the root of the collar 32 on the outer periphery of the inner body 34A on the collar 32 side.
  • the groove portion 35 is formed in an annular shape such that the axis L is the same as that of the pin insertion hole 31a of the boss main portion 31A.
  • the diameter D4 of the bottom of the groove 35 is set to be smaller than the outer diameter D1 of the outer main body 33. It is desirable that a ratio D4 / D1 of the diameter D4 of the groove 35 of the inner main body 34A to the outer diameter D1 of the outer main body 33 be 0.7 or more and less than 1.0.
  • the groove 35 has a radius of curvature ⁇ with a constant cross-sectional shape at the bottom, and is configured such that breakage due to stress concentration does not occur.
  • the characteristic diagram shown in FIG. 11 shows the calculation result of the relationship between the ratio of the radius of curvature ⁇ of the groove 35 of the boss body 31A to the thickness t of the flange 32 of the boss 30A and the stress concentration coefficient ⁇ of the groove 35. is there.
  • ⁇ / t it is desirable to set to be 1.5 or more. In this case, since the stress concentration coefficient ⁇ is equal to or less than 1.1, the decrease in the fatigue strength of the groove 35 of the boss 30A can be substantially ignored.
  • the outer diameter D1 of the outer main body portion 33 causes plastic deformation on the inner surface (the portion indicated by the broken line S) of the pin insertion hole 31a of the outer main body portion 33 causing high surface pressure. It is set to such a diameter.
  • the annular groove portion 35 is provided on the outer peripheral portion of the inner main body portion 34A of the boss 30A on the flange 32 side, and the diameter D4 of the groove portion 35 is smaller than the outer diameter D1 of the outer main body portion 33. Since the radial length on the side of the inner main body portion 34A of the collar portion 32 includes that of the groove portion 35, the conventional structure is substantially the same as the structure of the first embodiment. It will be longer than that. Therefore, the bending rigidity in the out-of-plane direction at the flange 32 of the boss 30A is smaller than that in the conventional structure, and the bending deformation in the out-of-plane direction mainly occurs at the flange 32 of the boss 30A.
  • the amount of bending deformation in the out-of-plane direction of the first welded portion 44 is relatively reduced, and the bending stress of the first welded portion 44 is correspondingly reduced. Therefore, the fatigue life of the first welded portion 44 is increased.
  • the bending rigidity of the boss connecting member 42A is higher than that of the first embodiment. Will also grow. Therefore, the stress generated in the second welded portion 45 joining the boss 30A and the boss connecting member 42A is reduced accordingly, and the fatigue life of the second welded portion 45 can be improved as compared with the first embodiment. . Furthermore, since the bending rigidity of the boss connection member 42A is larger than that of the first embodiment, the buckling tolerance of the side plate 22 of the boom 11 is also improved.
  • the first welded portion 44 for joining the additionally processed boss and the side plate of the boom The fatigue life can be improved.
  • FIG. 12 is a cross-sectional view showing an enlarged structure of a boss and its periphery in a third embodiment of the working arm of the working machine according to the present invention.
  • the same components as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and the detailed description thereof will be omitted.
  • the third embodiment of the work arm of the work machine of the present invention shown in FIG. 12 is different from the second embodiment in the following two points.
  • the boss 30B is configured such that the outer diameter D2 of the inner main body portion 34B of the boss main portion 31B is larger than the outer diameter D1 of the outer main body portion 33. That is, the inner main body portion 34B has an outer diameter larger than that of the second embodiment.
  • the boss connecting member 42B is configured such that the outer diameter D3 thereof is substantially the same as the outer diameter D2 of the inner main portion 34B of the boss main portion 31B, ie, larger than the outer diameter D1 of the outer main portion 33. ing.
  • the boss connection member 42B has an outer diameter larger than that of the second embodiment.
  • a groove 35 is provided along the collar 32 on the outer peripheral part of the inner main body 34B on the collar 32 side, as in the second embodiment.
  • the diameter D4 of the bottom of the groove 35 is set to be smaller than the outer diameter D1 of the outer main body 33, and it is desirable that D4 / D1 be 0.7 or more and less than 1.0.
  • the ratio ⁇ / t of the radius of curvature ⁇ of the groove 35 of the boss body 31B to the thickness t of the flange 32 of the boss 30B is preferably set to 1.5 or more.
  • the annular groove portion 35 is provided on the outer peripheral portion of the inner main body portion 34B on the flange portion 32 side, and the diameter D4 of the groove portion 35 is outside the outer main body portion 33. Since the diameter is set to be smaller than the diameter D1, the radial length of the inner main body 34B of the flange 32 is substantially the same as the second embodiment, including the groove 35. It becomes longer than the conventional structure. Therefore, the bending rigidity in the out-of-plane direction of the flange portion 32 becomes smaller than that of the conventional structure, and the bending deformation in the out-of-plane direction mainly occurs in the flange portion 32.
  • the amount of bending deformation in the out-of-plane direction of the first welded portion 44 is relatively reduced, and the bending stress of the first welded portion 44 is correspondingly reduced. Therefore, the fatigue life of the first welded portion 44 is increased.
  • the bending rigidity of the boss connecting member 42B is higher than that of the second embodiment. Will also grow. Therefore, the stress generated in the second welded portion 45 joining the boss 30B and the boss connecting member 42B is reduced accordingly, and the fatigue life of the second welded portion 45 can be improved as compared with the second embodiment. . Furthermore, since the bending rigidity of the boss connection member 42B is larger than that of the second embodiment, the buckling margin of the side plate 22 of the boom 11 is further improved.
  • FIG. 13 is a cross-sectional view showing an enlarged structure of a boss and its periphery in a fourth embodiment of a working arm of a working machine according to the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the detailed description thereof will be omitted.
  • a boss main body portion for supporting a load from 48 is a reinforcing member fitted to a cylindrical cylindrical boss portion 36 having a substantially constant outer diameter and an outer peripheral portion of the cylindrical boss portion 36. It is composed of the annular reinforcing ring 40.
  • the boss 30C is substantially in the middle of the axial direction at the outer peripheral portion of the cylindrical boss portion 36 extending in the alignment direction (the left and right direction in FIG. 13) of the side plates 22 of the boom 11.
  • the ring-shaped collar portion 32 extending radially outward from the portion and integrally formed with the cylindrical boss portion 36 and the collar portion 32 at the outer peripheral portion of the cylindrical boss portion 36 are positioned on the outer surface side of the box structure 21 It comprises with the reinforcement ring 40 fitted by the part to be.
  • the inner peripheral side of the cylindrical boss portion 36 is a pin insertion hole 31 a into which the connection pin 48 is inserted.
  • the cylindrical boss portion 36 is composed of an outer cylindrical portion 37 located on the outer surface side of the box-shaped structure 21 with the position of the flange portion 32 and an inner cylindrical portion 38 located on the inner surface side of the box-shaped structure 21. ing.
  • the reinforcing ring 40 is disposed such that a gap is formed between the reinforcing ring 40 and the collar 32, and is attached to the outer peripheral portion of the cylindrical boss 36 by shrink fitting or cold fitting.
  • the outer diameter D5 of the reinforcing ring 40 is such a diameter that the inner surface of the pin insertion hole 31a of the outer cylindrical portion 37 is not plastically deformed by contact with the connecting pin 48 in a state where the reinforcing ring 40 is fitted to the cylindrical boss 36 It is set to. That is, in the reinforcing ring 40, the outer diameter D5 is the actual value of the outer diameter of the outer surface side (outer main body portion) of the conventional boom center boss as in the outer main body portion 33 of the boss main body 31 of the first embodiment. It is comprised so that it may become substantially equivalent.
  • the cylindrical boss portion 36 is configured such that the outer diameter D6 of the outer cylindrical portion 37 and the outer diameter D7 of the inner cylindrical portion 38 are the same.
  • the outer cylindrical portion 37 is configured such that the outer diameter D6 thereof is smaller than the outer diameter D1 of the outer main body portion 33 of the boss main body portion 31 of the first embodiment, as the reinforcing ring 40 is attached. That is, the outer diameter D6 of the outer cylindrical portion 37 and the outer diameter D7 of the inner cylindrical portion 38 are set to be smaller than the actual value of the conventional structure.
  • the outer cylindrical portion 37 of the cylindrical boss portion 36 and the reinforcing ring 40 constitute the outer main body portion of the boss main body portion of the boss 30C.
  • the inner cylindrical portion 38 of the cylindrical boss portion 36 constitutes an inner main body portion of the boss main body portion of the boss 30C.
  • the outer diameter D6 of the outer cylindrical portion 37 and the outer diameter D7 of the inner cylindrical portion 38 are obtained.
  • the diameter can be set smaller than the outer diameter D1 of the outer main body portion 33 of the boss main body portion 31 according to the first embodiment, so the diameters of the outer cylindrical portion 37 side and the inner cylindrical portion 38 side in the flange portion 32 of the boss 30C.
  • the length of the direction is larger than that of the conventional structure. Further, the radial length of the flange portion 32 on the outer cylindrical portion 37 side is larger than that of the first embodiment.
  • the bending stiffness in the out-of-plane direction of the flange portion 32 becomes smaller than that in the conventional structure and the first embodiment, and the bending deformation in the out-of-plane direction mainly occurs in the flange portion 32.
  • the amount of bending deformation in the out-of-plane direction of the first welded portion 44 is relatively reduced, and the bending stress of the first welded portion 44 is correspondingly reduced. Therefore, the fatigue life of the first welded portion 44 is increased.
  • the reinforcing ring 40 is fitted to the outer cylindrical portion 37 of the cylindrical boss portion 36 mainly in contact with the connection pin 48, the inner surface of the pin insertion hole 31 a of the outer cylindrical portion 37 ( Even if a high surface pressure occurs due to the contact of the connecting pin 48 with respect to the portion indicated by the broken line S, plastic deformation of the inner surface of the pin insertion hole 31a is suppressed. Therefore, the connecting pin 48 can be smoothly rotated without being disturbed by the deformed portion of the pin insertion hole 31a.
  • a component in which the cylindrical boss portion 36 having a smaller diameter than the boss main body portion of the conventional boss and the collar portion 32 are integrally formed is used as a common component of various working machines and acts on the boss 30C.
  • FIG. 14 is a cross-sectional view showing, in an enlarged state, the structure of the boss and its peripheral portion in a modification of the fourth embodiment of the work arm of the work machine according to the present invention.
  • the same components as those of the fourth embodiment are designated by the same reference numerals as those of the fourth embodiment, and the detailed description thereof will be omitted.
  • the main difference of the modification of the fourth embodiment of the work arm of the work machine according to the present invention shown in FIG. 14 with respect to the fourth embodiment is in the outer peripheral portion of the cylindrical boss portion 36 of the boss 30D. That is, the reinforcing ring 40 is fixed by welding. The reinforcing ring 40 is annularly joined to the axial end of the outer cylindrical portion 37 of the cylindrical boss portion 36 via the third welding portion 41.
  • the reinforcing ring 40 is fixed to the cylindrical boss portion 36 by welding, dropping off of the reinforcing ring 40 can be suppressed even in long-term use.
  • FIG. 15 is a side view showing a fifth embodiment of the work arm of the work machine of the present invention.
  • the same components as in the modification of the fourth embodiment are designated by the same reference numerals as in the modification of the fourth embodiment, and the detailed description thereof will be omitted.
  • a modification of the fourth embodiment is obtained by welding the annular reinforcing ring 40 to the outer cylindrical portion 37 of the boss 30D.
  • a plurality (two in FIG. 15) of arc-shaped reinforcing members 40E are welded to the outer peripheral portion of the outer cylindrical portion 37 of the boss 30E.
  • the outer dimension of the reinforcing member 40E is an outer cylinder by contact with the connecting pin 48 (see FIG. 5) in a state where the reinforcing member 40E is fixed to the outer cylindrical portion 37.
  • the diameter is set so that the inner surface of the pin insertion hole 31a of the portion 37 is not plastically deformed.
  • the reinforcing member 40E is fixed at a position on the line of the direction Y of the telescopic operation of the boom cylinder 16 (see FIG. 1).
  • the arc-shaped reinforcing member 40E is attached to the outer peripheral portion of the outer cylindrical portion 37 of the boss 30E, so that the surface of the flange 32 of the boss 30E is the same as in the modification of the fourth embodiment.
  • the bending stiffness in the outward direction can be made smaller than in the conventional structure and the first embodiment. Therefore, the bending deformation in the out-of-plane direction mainly occurs at the flange portion 32 of the boss 30E, which results in an increase in the fatigue life of the first welded portion 44.
  • the boss 30E is configured such that the arc-shaped reinforcing member 40E is disposed only at a specific position instead of the entire circumference, the annular shape of the modification of the fourth embodiment The weight can be reduced as compared with the boss 30D using the reinforcing ring 40, and the material cost of the boss 30E can be reduced.
  • the present invention is not limited to the present embodiment, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • Part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention is applied to the boom center boss, the present invention is applied to the base end boss 25 of the boom 11, the boom connection boss 60 of the arm 12, and the bucket connection of the arm 12. It is possible to apply to the boss 57 as well.
  • the boom 11 having a configuration in which the backing member 46 is provided at the abutting portion between the flange portion 32 of the bosses 30, 30A, 30B, 30C, 30D, and 30E and the side plate 22 is illustrated. It is also possible to apply the present invention to a boom which is not provided with the backing member 46.
  • the flanges 32 of the bosses 30, 30A, 30B, 30C, 30D, and 30E are formed in an annular shape, but the shape of the flanges 32 is not limited thereto.
  • the flange portion of the boss is a portion that is abutted and joined to a plate member that constitutes a working arm such as a boom or arm, and may be formed into an arbitrary shape such as a fan shape or a trapezoidal shape depending on the plate member to be joined. Is possible.
  • SYMBOLS 1 hydraulic shovel (work machine), 11 ... boom (work arm), 12 ... arm (work arm), 21 ... box-shaped structure, 22 ... side plate (plate member), 25 ... proximal end boss (boss), 30, 30A, 30B, 30C, 30D, 30E ... boom center boss (boss), 31, 31A, 31B ... boss main body, 31a ... pin insertion hole, 32 ... collar, 33 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Connection Of Plates (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)

Abstract

作業機械の作業腕は、複数の板部材で構成した箱型構造体21、対向する板部材22に取り付けた一対のボス30、一対のボス30を連結した円筒状のボス連結部材42を備える。ボス30は、連結ピン48が挿通されるピン挿通孔31aを有し板部材22の並び方向に延びるボス本体部31、ボス本体部31の外周部から外側に延出して板部材22に第1溶接部44を介して接合されたつば部32を有する。ボス本体部31は、箱型構造体21の外面側の円筒状の外側本体部33、内面側の円筒状の内側本体部34で構成される。ボス連結部材42は、両端部が内側本体部34の端部に第2溶接部45を介して接合される。内側本体部34は、そのつば部32側の外径D2が外側本体部33の軸方向端部の外径D1よりも小さくなるように構成された。これにより、ボス30と板部材22とを接合する溶接部44の疲労寿命を向上させることができる。

Description

作業機械の作業腕
 本発明は、作業機械の作業腕に係り、更に詳しくは、ボスと呼ばれる軸受部材を備えた作業機械の作業腕に関する。
 油圧ショベル等の作業機械は、ブームやアーム等で構成される作業腕を備えている。作業腕を動作させるため、油圧シリンダ等の伸縮部材が回転自由な軸(ピン)を介して作業腕に取り付けられている。ブームやアームは、箱形状をした鋼板の溶接構造である場合が多い。油圧シリンダが取り付けられる回転軸(ピン)は、箱形状のブームやアームの一部を構成する側板に設けたボスと呼ばれる軸受部材によって支持される。このボスは、溶接によって側板に固定される場合が多い。
 ボスは、回転軸(ピン)を介して油圧シリンダから様々な方向の負荷を受ける。そのため、ボスと側板とを接合する溶接部には、ブームやアームの動き、それらの負荷状況等に合わせて様々な応力が生じる。ボスと側板との溶接部に生じる応力を低減する方法として、特許文献1及び特許文献2に記載のものが知られている。
 特許文献1に記載の建設機械の作業機のボス構造では、一対のボスをそれぞれ、中心部の軸受部と、軸受部から軸心方向に延伸する円筒部と、軸受部から径方向に広がるフランジ部とで構成している。これらのボスの円筒部の端面同士を接合することで左右対称のセンタボスを構成した上で、センタボスの左右両側のフランジ部の周縁部をブームの側板に溶接している。このボス構造では、ボスと側板との溶接部の良好な溶接品質を確保する(溶接部の負担を軽減する)ことを目的として、センタボスのフランジ部の表面を削り込み、フランジ部の周縁部の開先高さを側板の板厚と等しくしている。
 特許文献2に記載の建設機械のブーム構造では、ボスに形成したフランジ部をブームの側板に溶接することによりボスを側板に固定している。また、側板の固定したボスの間に補強のための筒状の連結部材を設けている。このブーム構造では、ブームの側板とボスとの溶接部に応力が集中することを防止してブームの信頼性を高めることを目的として、フランジ部に溝状の肉厚調整部を形成することにより、溶接位置における側板の肉厚とフランジ部の肉厚とを等しくなるようにしている。
特開2002-332654号公報 特開2012-219441号公報
 しかし、特許文献1及び特許文献2に記載の従来技術には、次の課題がある。
  特許文献1に記載の技術においては、ボスのフランジ部とブームの側板との溶接部の厚みを側板の板厚と等しくすることで、両者に生じる応力の大きさを略等しくすることができる。しかし、溶接材と被溶接材とでは疲労強度が異なっており、溶接材の疲労強度は被溶接材のそれよりも小さい。したがって、溶接部と側板の発生応力の大きさを略同じにしても、疲労き裂は、溶接部から生じてしまう。例えば、ボスに作用する荷重によってブームの側板に面外方向(ブームの箱形状の内面側及び外面側の方向)の曲げ変形が生じる場合においては、ボスのフランジ部と側板との溶接部の厚みと側板の板厚とを等しくしているので、当該溶接部及び側板に生じる曲げ応力の大きさは略等しくなる。このため、疲労強度のより小さい溶接部の方に疲労破壊が生じてしまう。
 特許文献2に記載の技術においても、特許文献1に記載の技術と同様に、ボスのフランジ部とブームの側板との溶接部の肉厚を側板の肉厚と等しくしているので、両者に生じる応力の大きさが略等しくなる。したがって、疲労強度のより小さい溶接部から疲労き裂が生じてしまう。
 本発明は、上記の事柄に基づいてなされたもので、その目的は、ボスと板部材とを接合する溶接部の疲労寿命を向上させることができる作業機械の作業腕を提供することである。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、複数の板部材により構成された箱型構造体と、前記複数の板部材のうち対向する板部材に取り付けられた一対のボスと、前記一対のボスの間に配置されて前記一対のボスを連結する円筒状のボス連結部材とを備え、前記一対のボスの各々は、連結ピンが挿通されるピン挿通孔を有し、前記対向する板部材の並び方向に延びるボス本体部と、前記ボス本体部の外周部から外側に延出し、先端部が前記対向する板部材に第1溶接部を介して接合されたつば部とを有し、前記ボス本体部は、前記つば部の位置を境に前記箱型構造体の外面側に位置する円筒状の第1本体部と、前記箱型構造体の内面側に位置する円筒状の第2本体部とで構成され、前記ボス連結部材は、その軸方向両端部がそれぞれ前記第2本体部の軸方向端部に第2溶接部を介して接合され、前記第2本体部は、そのつば部側の部分の外径が前記第1本体部の軸方向端部の外径よりも小さくなるように構成されたことを特徴とする。
 本発明によれば、ボスのボス本体部のうち、作業腕の箱型構造体の内面側に位置する第2本体部のつば部側の部分の外径を、外面側に位置する第1本体部の軸方向端部の外径よりも小さくしたので、その分、ボスのつば部の面外方向の曲げ剛性が小さくなる。そのため、作業腕の板部材とボスのつば部とを接合する第1溶接部の曲げ応力が緩和され、当該第1溶接部の疲労寿命を向上させることができる。その結果、作業機械の耐久性及び信頼性が向上する。
  上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の作業機械の作業腕の第1の実施の形態を適用した油圧ショベルを示す側面図である。 本発明の作業機械の作業腕の第1の実施の形態を含む作業フロントを示す側面図である。 本発明の作業機械の作業腕の第1の実施の形態のバケット内面押し荷重の作用位置と方向及びブームシリンダ、アームシリンダに発生する推力の方向を示す図である。 本発明の作業機械の作業腕の第1の実施の形態のバケット外面押し荷重の作用位置と方向及びブームシリンダ、アームシリンダに発生する推力の方向を示す図である。 図2に示す本発明の作業機械の作業腕の第1の実施の形態をV-V矢視から見た断面図である。 図5の符号Xで示す本発明の作業機械の作業腕の第1の実施の形態を構成するボス及びその周辺部の構造を拡大した状態で示す断面図である。 本発明の作業機械の作業腕の第1の実施の形態の図3に示すバケット内面押し荷重時における変形状態を示す説明図である。 本発明の作業機械の作業腕の第1の実施の形態の図4に示すバケット外面押し荷重時における変形状態を示す説明図である。 ボスの外面側の外径に対する内面側の外径の比と、ボスの溶接部の疲労寿命との関係を示す特性図である。 本発明の作業機械の作業腕の第2の実施の形態におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。 ボスのつば部の厚みに対するボス本体部の溝底部の曲率半径の比と、応力集中係数との関係を示す特性図である。 本発明の作業機械の作業腕の第3の実施の形態におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。 本発明の作業機械の作業腕の第4の実施の形態におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。 本発明の作業機械の作業腕の第4の実施の形態の変形例におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。 本発明の作業機械の作業腕の第5の実施の形態を示す側面図である。
 以下、本発明の作業機械の作業腕の実施の形態を図面を用いて説明する。本実施の形態においては、作業機械の一例として油圧ショベルを例に挙げて説明する。
  まず、本発明の作業機械の作業腕の第1の実施の形態を適用した油圧ショベルの構成を図1を用いて説明する。図1は本発明の作業機械の作業腕の第1の実施の形態を適用した油圧ショベルを示す側面図である。ここでは、運転席に着座したオペレータから見た方向を用いて説明する。
 図1において、油圧ショベル1は、自走可能なクローラ式の下部走行体2と、下部走行体2上に旋回軸受装置5を介して旋回可能に搭載され、下部走行体2と共に車体を構成する上部旋回体3とを備えている。上部旋回体3の前端部には、作業フロント4が俯仰動可能に設けられている。
 上部旋回体3は、下部走行体2上に旋回可能に搭載された支持構造体である旋回フレーム6と、旋回フレーム6上の右前側に設置されたキャブ7と、旋回フレーム6の後端部に設けられたカウンタウェイト8と、キャブ7とカウンタウェイト8の間に配置された機械室9とを含んで構成されている。キャブ7には、下部走行体2や作業フロント4等の動作を指示する操作装置やオペレータが着座する運転席等(ともに図示せず)が配置されている。カウンタウェイト8は、作業フロント4と重量バランスをとるためのものである。機械室9には、エンジンや油圧ポンプ(ともに図示せず)等が収容されている。
 作業フロント4は、掘削作業等を行うための多関節型の作動装置であり、作業腕としてのブーム11及びアーム12と、作業腕の先端に取り付けられた作業具(アタッチメント)としてのバケット13とで構成されている。ブーム11の基端側は、上部旋回体3の前端部に回動可能に連結されている。ブーム11の先端部には、アーム12の基端部が回動可能に連結されている。アーム12の先端部には、バケット13の基端部が回動可能に連結されている。アーム12の先端側とバケット13との間には、バケットリンク15が設けられている。
 ブーム11は、一対のブームシリンダ16(図1では、1つのみ図示)によって回動される。アーム12は、アームシリンダ17によって回動される。バケット13は、バケットリンク15を介してバケットシリンダ18によって回動される。すなわち、ブームシリンダ16、アームシリンダ17及びバケットシリンダ18は、ブーム11、アーム12及びバケット13を駆動する駆動装置を構成する。本実施の形態では、ブームシリンダ16、アームシリンダ17及びバケットシリンダ18は、油圧シリンダにより構成されている。
 次に、本発明の作業機械の作業腕の第1の実施の形態を含む作業フロントの各部の構成を図2及び図5を用いて説明する。図2は本発明の作業機械の作業腕の第1の実施の形態を含む作業フロントを示す側面図、図5は図2に示す本発明の作業機械の作業腕の第1の実施の形態をV-V矢視から見た断面図である。
 図2及び図5において、作業腕の一部を構成するブーム11は、弓形状に湾曲しつつ一方向(図2では、略左右方向)に延びる長尺な箱型構造体21を備えている。箱型構造体21は、複数の鋼板(板部材)を溶接により接合することで横断面が矩形状の閉断面構造をなしている。具体的には、箱型構造体21は、油圧ショベル1(図1参照)の幅方向(図5では、左右方向)で間隔をもって対向しつつ一方向(図2では、略左右方向)に延びる一対の側板22と、両側板22の上端側に溶接により接合された上板23と、両側板22の下端側に溶接により接合された下板24とで構成されている。各側板22、上板23、及び下板24には、例えば、高張力鋼からなる鋼材が用いられている。各側板22、上板23、及び下板24は、例えば、複数の板部材を接合して構成されている。
 図2に示すように、箱型構造体21の基端部(図2では、左端部)には、基端側ボス25が溶接により接合されている。基端側ボス25は、ブーム11と油圧ショベル1の旋回フレーム6(図1参照)の前端部とを相対的に回動可能に連結する連結ピン(図示せず)を支持するものである。箱型構造体21の先端側(図2では、右端部)には、アーム取付部材26が設けられている。アーム取付部材26は、アーム12の基端側をブーム11に連結ピン28を介して回動可能に連結するものである。
 箱型構造体21の上板23における長手方向の中間部には、アームシリンダ第1ブラケット27が設けられている。アームシリンダ第1ブラケット27は、上板23の幅方向に間隔をもって対向する一対の板部材からなり、一対の板部材は上板23に溶接により接合されている。アームシリンダ第1ブラケット27には、アームシリンダ17のボトム側端部が回動可能にピン結合されている。
 各側板22の長手方向の中央部には、図2及び図5に示すように、それぞれ円形のボス嵌合孔22aが設けられている。両側板22のボス嵌合孔22aには、それぞれブームセンターボス30が溶接により接合されている。両ブームセンターボス30は、両ブームセンターボス30の間に配置された円筒状のボス連結部材42により連結されている。両ブームセンターボス30は、ボス連結部材42と共に、一対のブームシリンダ16(図1参照)のロッド側先端部をブーム11に相対的に回動可能に取り付ける連結ピン48を支持するものである。ブームセンターボス30及びボス連結部材42の詳細な構造は、後述する。
 作業腕の一部を構成するアーム12は、図2に示すように、一方向に延びる長尺な箱型構造体51を備えている。箱型構造体51は複数の鋼板(板部材)を溶接により接合することで横断面が矩形状の閉断面構造をなしている。具体的には、箱型構造体51は、油圧ショベル1(図1参照)の幅方向で間隔をもって対向しつつ一方向に延びる一対の側板52と、両側板52の上端側に接合された上板53と、両側板52の下端側に接合された下板54と、両側板52、上板53、下板54とで形成される基端側(後端側)の開口を閉塞する後板55とにより構成されている。各側板52、上板53、下板54、及び後板55には、例えば、高張力鋼からなる鋼材が用いられている。各側板52、上板53、及び下板54は、例えば、複数の板部材を接合して構成されている。箱型構造体51の先端部側には、バケット連結ボス57が設けられている。バケット連結ボス57は、バケット13とアーム12とを相対的に回動可能に連結する連結ピン58を支持するものである。
 箱型構造体51を構成する各側板52の基端側には、それぞれ凹湾形状の切欠き52aが設けられている。両側板52の切欠き52aには、ブーム連結ボス60が溶接により接合されている。ブーム連結ボス60は、ブーム11の先端部(アーム取付部材26)とアーム12の基端側とを相対的に回動可能に連結する連結ピン28を支持するものである。両側板52の先端側には、リンク連結ボス(図示せず)が設けられている。リンク連結ボスは、バケットリンク15をアーム12に連結ピン63を介して回動可能に取り付けるものである。
 箱型構造体51を構成する後板55には、アームシリンダ第2ブラケット65が設けられている。アームシリンダ第2ブラケット65は、箱型構造体51の幅方向に間隔をもって対向する一対の板部材からなり、一対の板部材は後板55に溶接により接合されている。アームシリンダ第2ブラケット65には、アームシリンダ17のロッド側端部が回動可能にピン結合されている。
 箱型構造体51を構成する上板53の基端側には、バケットシリンダブラケット66が設けられている。バケットシリンダブラケット66は、上板53の幅方向に間隔をもって対向する一対の板部材からなり、一対の板部材は上板53に溶接により接合されている。バケットシリンダブラケット66には、バケットシリンダ18のボトム側端部が回動可能にピン結合されている。
 作業具(アタッチメント)としてのバケット13は、ブラケット71を備えている。ブラケット71は、左右方向に間隔をもって対向する一対の略板状の部材からなっている。ブラケット71には、バケットリンク15の先端部が回動可能にピン結合されている。また、ブラケット71は、バケット13をアーム12の先端側に連結ピン58を介して回動可能に連結するためのものである。
 次に、本発明の作業機械の作業腕の第1の実施の形態の一部を構成するブームセンターボス及びボス連結部材の構造を図5を用いて説明する。
 図5において、ブームセンターボス(以下、ボスという)30の各々は、ブーム11の両側板22の並び方向(図5では、左右方向)に延びる筒状のボス本体部31と、ボス本体部31の外周部における軸方向の略中間部から径方向外側に延出した円環状のつば部32とを有している。ボス本体部31とつば部32は、例えば、鋳造により一体形成されている。
 筒状のボス本体部31の内周側は連結ピン48が挿通されるピン挿通孔31aとなっている。ボス本体部31は、その軸方向の長さがつば部32の厚みよりも大きくなるように構成されており、つば部32の位置を境に箱型構造体21の外面側に位置する外側本体部33と、箱型構造体21の内面側に位置する内側本体部34とで構成されている。
 つば部32は、その先端部がブーム11の側板22のボス嵌合孔22aの内周縁部に突き合わされて第1溶接部44を介して側板22に接合されている。つば部32は、その先端部の厚みが側板22の板厚と略同じになるように構成されており、ボス30に作用した荷重(力)がつば部32から第1溶接部44を介して側板22へ滑らかに伝達されるようになっている。また、つば部32は、その根元部(ボス本体部31に連続する部分)において、箱型構造体21の外面側の厚みが外側本体部33(径方向内側)に向かって漸増するような第1曲面部32bを有すると共に、箱型構造体21の内面側の厚みが内側本体部34(径方向内側)に向かって漸増するような第2曲面部32cを有している。
 ボス連結部材42は、軸対称の円環断面を有しリブ等の補強部のない円筒状の部材である。ボス連結部材42は、ボス30同士をそれらのピン挿入孔31aの軸Lが一致するように連結している。また、円筒状のボス連結部材42は、その軸がピン挿入孔31aの軸Lと一致するように配置されており、その内部がピン挿通孔31aに連通している。ボス連結部材42は、その軸方向両端部がそれぞれボス本体部31の内側本体部34の軸方向端部に第2溶接部45を介して接合されている。
 ボス30のつば部32と側板22との突き合わせ部分における箱型構造体21の内面側には、裏当部材46が設けられている。裏当部材46は、例えば、円環状の部材であり、ボス30を側板22に溶接する際のボス30のつば部32の位置決めや溶接金属の溶け落ちの防止を目的として用いられるものである。
 ここで、ブーム11の箱型構造体21の溶接手順の一例の概略を説明する。先ず、各ボス30のつば部32の先端部における内側本体部34側に円環状の裏当部材46を溶接する。裏当部材46が溶接された両ボス30にボス連結部材42を溶接して両ボス30を連結する。次に、連結された両ボス30に対してそれぞれ側板22を外側から嵌め込む。このとき、裏当部材46により、側板22がボス30のつば部32に対して位置決めされる。次いで、側板22に対して、上板23及び下板24を仮溶接することで、断面が矩形状の箱型の構造物が形成される。その後、箱型の構造物の外側から溶接することで、両ボス30をそれぞれ側板22に接合する。このとき、裏当部材46により、箱型の構造物の内部への溶接金属の溶け落ちが防止される。また、ボス30のつば部32と側板22の溶接時に、裏当部材46の一部が第1溶接部44に溶着する。ボス30を溶接する対象物が箱型構造体21であるので、ボス30の溶接施工後に裏当部材46を除去することは困難である。したがって、ボス30の溶接施工後も、裏当部材46は、第1溶接部44に一部溶着した状態で箱型構造体21の内部に残留する。
 次に、本実施の形態におけるボスの特徴部の構造を図5及び図6を用いて説明する。図6は図5の符号Xで示す本発明の作業機械の作業腕の第1の実施の形態を構成するボス及びその周辺部の構造を拡大した状態で示す断面図である。なお、図6において、図1、図2及び図5に示す符号と同符号のものは、同一の部分であるので、その詳細な説明は省略する。
 図5に示すボス30のピン挿入孔31aに挿入された連結ピン48の両端部にそれぞれブームシリンダ16(図1参照)が取り付けられており、ブームシリンダ16からの荷重が連結ピン48を介して両ボス30に作用する。このような構成の場合、ブームシリンダ16の取付位置近傍の連結ピン48の両端部側がボス本体部31の外側本体部33の軸方向端部におけるピン挿入孔31aの内面(破線Sで示す部分)に特に強く押し付けられる。そのため、外側本体部33の当該部分には他の部分よりも高い面圧が生じる。
 そこで、本実施の形態においては、ボス本体部31の外側本体部33における軸方向端部の外径D1を、図6に示すように、外側本体部33の軸方向端部におけるピン挿入孔31aの内面(破線Sで示す部分)に塑性変形が生じないような径に設定している。すなわち、ボス本体部31(外側本体部33)は、連結ピン48から受けた荷重を、ピン挿通孔31aを塑性変形させることなく支持するように構成されている。具体的には、外側本体部33の外径D1を従来のブームセンターボスの外面側(外側本体部)の外径の実績値と略同等となるように設定している。外側本体部33は、軸方向端部からつば部32側の部分まで外径が略一定の円筒状に形成されている。
 一方、ボス本体部31の内側本体部34におけるピン挿入孔31aの内面には、外側本体部33ほど高い面圧は生じない。そこで、内側本体部34のつば部32側の部分の外径D2を、外側本体部33の外径D1よりも小さくなるように設定している。内側本体部34は、軸方向端部からつば部32側の部分まで外径が略一定の円筒状に形成されている。つまり、内側本体部34の円筒部の厚みは、外側本体部33の円筒部の厚みよりも薄くなっている。従来のブームセンターボスでは、その内面側(内側本体部)の外径が外面側(外側本体部)の外径よりも大きくなるように設定されていた。つまり、本実施の形態の内側本体部34の外径D2は、従来のブームセンターボスの内面側(内側本体部)の外径の実績値よりも小さくなっている。
 また、ボス連結部材42の外径D3は、ボス本体部31の内側本体部34(の軸方向端部)の外径D2と略同じとなるように設定されている。すなわち、ボス連結部材42の外径D3は従来のボス連結部材の外径の実績値よりも小さくなっている。また、ボス連結部材42は、円筒部の厚みが内側本体部34の円筒部の厚みよりも薄くなるように構成されている。つまり、ボス連結部材42の内径は、内側本体部34の内径よりも大きくなっている。
 次に、本発明の作業機械の作業腕の第1の実施の形態の作用及び効果を図3乃至図9を用いて説明する。図3は本発明の作業機械の作業腕の第1の実施の形態のバケット内面押し荷重の作用位置と方向及びブームシリンダ、アームシリンダに発生する推力の方向を示す図、図4は本発明の作業機械の作業腕の第1の実施の形態のバケット外面押し荷重の作用位置と方向及びブームシリンダ、アームシリンダに発生する推力の方向を示す図、図7は本発明の作業機械の作業腕の第1の実施の形態の図3に示すバケット内面押し荷重時における変形状態を示す説明図、図8は本発明の作業機械の作業腕の第1の実施の形態の図4に示すバケット外面押し荷重時における変形状態を示す説明図、図9はボスの外面側の外径に対する内面側の外径の比と、ボスの溶接部の疲労寿命との関係を示す特性図である。図9中、横軸D2/D1はボスのボス本体部の外面側の外径に対するボス本体部の内面側の外径の比を、縦軸Nfは第1溶接部及び第2溶接部の疲労寿命を示している。実線Aは第1溶接部の特性曲線を、破線Bは第2溶接部の特性曲線を示している。
 図5に示すブーム11のボス30には、連結ピン48を介してブームシリンダ16(図1参照)から荷重が作用する。この荷重によって、ボス30のつば部32及びブーム11の側板22には、面外方向(箱型構造体21の外面側の方向又は内面側の方向)に曲げ変形が生じ、ボス30のつば部32及び側板22に応力が発生する。具体的には、図3に示すように掘削作業等でブームシリンダ16に縮み方向推力が発生し、アームシリンダ17に伸び方向推力が発生し、バケット13にバケット内面押し荷重が作用すると、図7に示すように、ボス30のボス本体部31及びボス連結部材42が上に凸形状に変形することで、ブーム11を構成するボス30のつば部32、側板22、上板23、下板24に面外方向の曲げ変形が生じる。一方、図4に示すように押付作業等でブームシリンダ16に伸び方向推力が発生し、アームシリンダ17に縮み方向推力が発生し、バケット13にバケット外面押し荷重が作用すると、図8に示すように、ボス本体部31とボス連結部材42が下に凸形状に変形することで、つば部32、側板22、上板23、下板24に面外方向の曲げ変形が生じる。
 側板22の曲げ変形が過度になると、側板22が座屈あるいは塑性変形を起こす虞がある。本実施の形態においては、各側板22に取り付けられた両ボス30の間をボス連結部材42により連結しているので、側板22の過度の曲げ変形が防止され、側板22の座屈及び塑性変形を防止することができる。
 また、ボス30のつば部32及び側板22の曲げ変形は、ボス30と側板22とを接合する第1溶接部44及びボス30とボス連結部材42とを接合する第2溶接部45にも高い応力を発生させる。第1溶接部44及び第2溶接部45の応力は、ブームシリンダ16の動作に応じて変動する。応力値及び応力変動の繰返し数が材料に固有の閾値を超えると疲労破壊が発生する。特に、被溶接部材を接合する溶接部では、溶接時の熱によって残留応力や残留変形が生じることが多いので、溶接部における疲労破壊の閾値は被溶接部材のそれよりも小さいことが知られている。すなわち、ブーム11では、第1溶接部44及び第2溶接部45の方が、ボス30のつば部32や側板22、ボス連結部材42よりも疲労破壊が生じやすい。特に、第1溶接部44に一部溶着した状態の裏当部材46と第1溶接部44との境界部において疲労き裂が発生する虞がある。
 本実施の形態においては、図6に示すように、ボス本体部31の内側本体部34のつば部32側の部分の外径D2を外側本体部33の外径D1よりも小さくなるように設定しているので、内側本体部の外径が外側本体部の外径よりも大きい従来構造よりも、ボス30のつば部32における内側本体部34側の径方向の長さが長くなり、その分、つば部32の面外方向の曲げ剛性が小さくなる。そのため、ボス30に作用する荷重によって生じる面外方向の曲げ変形は、主にボス30のつば部32で発生するようになる。その結果、つば部32と側板22とを接合する第1溶接部44における面外方向の曲げ変形量が相対的に低減する。これにより、第1溶接部44における曲げ応力が小さくなるので、第1溶接部44の疲労寿命が増加する結果となる。
 また、本実施の形態においては、内側本体部34の外径D2を外側本体部33の外径D1よりも小さくなるように設定している。つまり、内側本体部34の外径D2が従来構造のボスの内側本体部よりも小さくなっている。したがって、ボス30の質量が従来構造のボスよりも小さくなり、ボス30を軽量化することができ、その結果、ブーム11の軽量化となる。
 さらに、本実施の形態においては、ボス連結部材42の外径D3をボス本体部31の内側本体部34の外径D2と略同じとなるように設定している。つまり、ボス連結部材42の外径D3は従来構造のボス連結部材よりも小さくなっている。したがって、ボス連結部材42の質量が従来のボス連結部材よりも小さくなるので、ボス連結部材42を軽量化することができ、その結果、ブーム11の軽量化となる。
 また、第1溶接部44及び第2溶接部45の疲労亀裂に関する解析結果から次のことが判明している。第1に、裏当部材46と第1溶接部44との境界部を起点として第1溶接部44に亀裂を生じさせる応力は、ボス30とボス連結部材42とを接合する第2溶接部45に亀裂を生じさせる応力よりも小さい。すなわち、応力値に関して、第2溶接部45は、第1溶接部44よりも疲労き裂が発生しにくい。
 第2に、図9の特性曲線Aが示すように、第1溶接部44の疲労寿命は、ボス30の外側本体部33の外径D1に対する内側本体部34の外径D2の比(D2/D1)が小さくなるほど長くなる。ここでは、外側本体部33の外径D1を、ピン挿通孔31aの内面を塑性変形させることなく連結ピン48を支持可能な大きさに限定している。また、図9の特性曲線Bが示すように、第2溶接部45の疲労寿命はD2/D1が小さくなるほど短くなる。
 本実施の形態においては、ブーム11の耐久性及び信頼性の観点から、D2/D1を0.7以上1.0未満にすることが望ましい。外側本体部33の外径D1に対して内側本体部34の外径D2を小さくすると、第1溶接部44の疲労寿命は延びる一方、第2溶接部45の疲労寿命が短くなる。したがって、第1溶接部44及び第2溶接部45の疲労寿命を所定の範囲に維持するには、上記範囲が望ましい。
 また、疲労き裂が発生しやすい裏当部材46と第1溶接部44との境界部は、ブーム11の箱型構造体21の内部に位置するので、当該部分の検査を行うことは困難である。D2/D1を0.7以上1.0未満にすることで、第1溶接部44の強度上の安全率を大きくすることができ、疲労き裂の発生を抑制することができる。
 上述したように、本発明の作業機械の作業腕の第1の実施の形態によれば、ボス30のボス本体部31のうち、ブーム11(作業腕)の箱型構造体21の内面側に位置する内側本体部34(第2本体部)のつば部32側の部分の外径D2を、外面側に位置する外側本体部33(第1本体部)の軸方向端部の外径D1よりも小さくしたので、その分、ボス30のつば部32の面外方向の曲げ剛性が小さくなる。そのため、ブーム11(作業腕)の側板22(板部材)とつば部32とを接合する第1溶接部44の曲げ応力が緩和され、当該第1溶接部44の疲労寿命を向上させることができる。その結果、油圧ショベル1(作業機械)の耐久性及び信頼性が向上する。
 次に、本発明の作業機械の作業腕の第2の実施の形態を図10及び図11を用いて説明する。図10は本発明の作業機械の作業腕の第2の実施の形態におけるボス及びその周辺部の構造を拡大した状態で示す断面図、図11はボスのつば部の厚みに対するボス本体部の溝底部の曲率半径の比と、応力集中係数との関係を示す特性図である。図11中、横軸ρ/tはボスのつば部の厚みtに対するボス本体部の溝部の底部における曲率半径ρの比を、縦軸αは溝部の応力集中係数を示している。なお、図10において、第1の実施の形態と共通する構成については、第1の実施の形態の場合と同一の符号を付し、その詳細な説明は省略する。
 図10に示す本発明の作業機械の作業腕の第2の実施の形態が第1の実施の形態に対して相違する主な点は、以下の3つである。
 第1に、ボス30Aは、ボス本体部31Aの内側本体部34Aの外径D2が外側本体部33の外径D1と同じになるように構成されている。つまり、内側本体部34Aは、第1の実施の形態よりも大きな外径を有している。
 第2に、ボス連結部材42Aは、その外径D3が内側本体部34Aの外径D2と略同じ、すなわち、外側本体部33の外径D1と略同じになるように構成されている。ボス連結部材42Aは、第1の実施の形態よりも大きな外径を有している。
 第3に、内側本体部34Aのつば部32側の外周部に、つば部32の根元部に沿って溝部35を設けている。溝部35は、ボス本体部31Aのピン挿入孔31aと軸Lを同じくするような円環状に形成されている。溝部35の底部の直径D4は、外側本体部33の外径D1よりも小さくなるように設定されている。外側本体部33の外径D1に対する内側本体部34Aの溝部35の直径D4との比D4/D1を0.7以上1.0未満とすることが望ましい。
 また、溝部35は、底部の断面形状が一定の曲率半径ρを有しており、応力集中による破壊が起きないように構成されている。図11に示す特性図は、ボス30Aのつば部32の厚みtに対するボス本体部31Aの溝部35の曲率半径ρの比と溝部35の応力集中係数αとの関係の計算結果を示したものである。本実施の形態においては、溝部35の底部における応力集中による疲労破壊を防止する観点から、ρ/tが1.5以上となるように設定することが望ましい。この場合、応力集中係数αが1.1以下になるので、ボス30Aの溝部35の疲労強度の低下をほぼ無視することができる。
 なお、外側本体部33の外径D1は、第1の実施の形態と同様に、高い面圧が生じる外側本体部33のピン挿入孔31aの内面(破線Sで示す部分)に塑性変形が生じないような径に設定されている。
 本実施の形態においては、ボス30Aの内側本体部34Aのつば部32側の外周部に円環状の溝部35を設けると共に、溝部35の直径D4を外側本体部33の外径D1よりも小さくなるように設定しているので、つば部32の内側本体部34A側の径方向の長さが、溝部35の分を含めると、第1の実施の形態の構造と同様に、実質的に従来構造よりも長くなる。したがって、ボス30Aのつば部32における面外方向の曲げ剛性が従来構造よりも小さくなり、面外方向の曲げ変形が主にボス30Aのつば部32で発生するようになる。その結果、第1溶接部44における面外方向の曲げ変形量が相対的に低減し、その分、第1溶接部44の曲げ応力が小さくなる。それ故、第1溶接部44の疲労寿命が増加する結果となる。
 上述した本発明の作業機械の作業腕の第2の実施の形態によれば、前述した第1の実施の形態と同様の効果を得ることができる。
 また、本実施の形態によれば、ボス連結部材42Aの外径D3を第1の実施の形態よりも大きくなるように設定したので、ボス連結部材42Aの曲げ剛性が第1の実施の形態よりも大きくなる。したがって、ボス30Aとボス連結部材42Aとを接合する第2溶接部45に生じる応力がその分低減するので、第2溶接部45の疲労寿命を第1の実施の形態よりも向上させることができる。さらに、ボス連結部材42Aの曲げ剛性が第1の実施の形態よりも大きくなるので、ブーム11の側板22の座屈裕度も向上する。
 また、本実施の形態によれば、既存のブームに使用されている既存構造のボスに溝部35を追加工することで、追加工したボスとブームの側板とを接合する第1溶接部44の疲労寿命を向上させることができる。
 次に、本発明の作業機械の作業腕の第3の実施の形態を図12を用いて説明する。図12は本発明の作業機械の作業腕の第3の実施の形態におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。なお、図12において、第2の実施の形態と共通する構成については、第2の実施の形態の場合と同一の符号を付し、その詳細な説明は省略する。
 図12に示す本発明の作業機械の作業腕の第3の実施の形態が第2の実施の形態に対して相違する主な点は、以下の2つである。
 第1に、ボス30Bは、ボス本体部31Bの内側本体部34Bの外径D2が外側本体部33の外径D1よりも大きくなるように構成されている。つまり、内側本体部34Bは、第2の実施の形態よりも大きな外径を有している。
 第2に、ボス連結部材42Bは、その外径D3がボス本体部31Bの内側本体部34Bの外径D2と略同じ、すなわち、外側本体部33の外径D1よりも大きくなるように構成されている。ボス連結部材42Bは、第2の実施の形態よりも大きな外径を有している。
 なお、内側本体部34Bのつば部32側の外周部には、第2の実施の形態と同様に、溝部35がつば部32に沿って設けられている。溝部35の底部の直径D4は、外側本体部33の外径D1よりも小さくなるように設定されており、D4/D1を0.7以上1.0未満とすることが望ましい。また、ボス30Bのつば部32の厚みtに対するボス本体部31Bの溝部35の曲率半径ρの比ρ/tが1.5以上となるように設定することが望ましい。
 本実施の形態においては、第2実施の形態と同様に、内側本体部34Bのつば部32側の外周部に円環状の溝部35を設けると共に、溝部35の直径D4を外側本体部33の外径D1よりも小さくなるように設定しているので、つば部32の内側本体部34B側の径方向の長さは、溝部35の分を含めると、第2の実施の形態と同様に、実質的に従来構造よりも長くなる。したがって、つば部32の面外方向の曲げ剛性が従来構造よりも小さくなり、面外方向の曲げ変形が主につば部32で発生するようになる。その結果、第1溶接部44における面外方向の曲げ変形量が相対的に低減し、その分、第1溶接部44の曲げ応力が小さくなる。それ故、第1溶接部44の疲労寿命が増加する結果となる。
 上述した本発明の作業機械の作業腕の第3の実施の形態によれば、前述した第2の実施の形態と同様の効果を得ることができる。
 また、本実施の形態によれば、ボス連結部材42Bの外径D3を第2の実施の形態よりも大きくなるように設定したので、ボス連結部材42Bの曲げ剛性が第2の実施の形態よりも大きくなる。したがって、ボス30Bとボス連結部材42Bとを接合する第2溶接部45に生じる応力がその分低減するので、第2溶接部45の疲労寿命を第2の実施の形態よりも向上させることができる。さらに、ボス連結部材42Bの曲げ剛性が第2の実施の形態よりも大きくなるので、ブーム11の側板22の座屈裕度も更に向上する。
 次に、本発明の作業機械の作業腕の第4の実施の形態を図13を用いて説明する。図13は本発明の作業機械の作業腕の第4の実施の形態におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。なお、図13において、第1の実施の形態と共通する構成については、第1の実施の形態の場合と同一の符号を付し、その詳細な説明は省略する。
 図13に示す本発明の作業機械の作業腕の第4の実施の形態が第1の実施の形態に対して相違する主な点は、ピン挿通孔31aの内面を塑性変形させることなく連結ピン48(図5参照)からの荷重を支持するものであるボス本体部を、外径が略一定の円筒状の円筒ボス部36と、円筒ボス部36の外周部に嵌合した補強部材としての円環状の補強リング40とで構成したことである。
 具体的には、ボス30Cは、ブーム11の両側板22の並び方向(図13では、左右方向)に延びる円筒状の円筒ボス部36と、円筒ボス部36の外周部における軸方向の略中間部から径方向外側に延出し、円筒ボス部36と一体形成された円環状のつば部32と、円筒ボス部36の外周部のおけるつば部32よりも箱型構造体21の外面側に位置する部分に嵌合された補強リング40とで構成されている。円筒ボス部36の内周側は、連結ピン48が挿通されるピン挿通孔31aとなっている。円筒ボス部36は、つば部32の位置を境に箱型構造体21の外面側に位置する外側円筒部37と、箱型構造体21の内面側に位置する内側円筒部38とで構成されている。補強リング40は、つば部32との間に隙間が形成されるように配置されており、焼き嵌め又は冷やし嵌めによって円筒ボス部36の外周部に取り付けられている。
 補強リング40の外径D5は、補強リング40が円筒ボス部36に嵌合された状態において、連結ピン48との接触により外側円筒部37のピン挿入孔31aの内面が塑性変形しないような径に設定されている。すなわち、補強リング40は、第1の実施の形態のボス本体部31の外側本体部33と同様に、外径D5が従来のブームセンターボスの外面側(外側本体部)の外径の実績値と略同等となるように構成されている。
 円筒ボス部36は、外側円筒部37の外径D6と内側円筒部38の外径D7とが同じとなるように構成されている。外側円筒部37は、補強リング40を取り付けた分、その外径D6が第1の実施の形態のボス本体部31の外側本体部33の外径D1よりも小さくなるように構成されている。すなわち、外側円筒部37の外径D6及び内側円筒部38の外径D7は、従来構造の実績値よりも小さくなるように設定されている。
 本実施の形態においては、円筒ボス部36の外側円筒部37と補強リング40がボス30Cのボス本体部の外側本体部を構成している。また、円筒ボス部36の内側円筒部38がボス30Cのボス本体部の内側本体部を構成している。
 また、本実施の形態においては、ボス30Cの円筒ボス部36の外側円筒部37に補強リング40を嵌合することで、外側円筒部37の外径D6及び内側円筒部38の外径D7を第1の実施の形態のボス本体部31の外側本体部33の外径D1よりも小さくなるように設定できるので、ボス30Cのつば部32における外側円筒部37側及び内側円筒部38側の径方向の長さが従来構造よりも大きくなる。また、つば部32の外側円筒部37側の径方向の長さが第1の実施の形態よりも大きくなる。したがって、つば部32の面外方向の曲げ剛性が従来構造及び第1の実施の形態よりも小さくなり、面外方向の曲げ変形が主につば部32で発生するようになる。その結果、第1溶接部44における面外方向の曲げ変形量が相対的に低減し、その分、第1溶接部44の曲げ応力が小さくなる。それ故、第1溶接部44の疲労寿命が増加する結果となる。
 また、本実施の形態においては、連結ピン48が主に接触する円筒ボス部36の外側円筒部37に補強リング40を嵌合しているので、外側円筒部37のピン挿入孔31aの内面(破線Sで示す部分)に対して連結ピン48の接触による高い面圧が生じても、ピン挿入孔31aの内面の塑性変形が抑制される。したがって、連結ピン48はピン挿入孔31aの変形部に邪魔されることなく滑らかな回転が可能である。
 また、本実施の形態においては、従来構造のボスのボス本体部よりも径の小さい円筒ボス部36とつば部32とが一体形成された部品を各種作業機械の共通部品とし、ボス30Cに作用する異なるピン荷重に応じて補強リング40の大きさ(外径)を任意に設計することで、各種の作業機械に対応したボスを構成できる。これにより、各種の作業機械の部品を共通化できるので、製造コストの削減が可能となる。
 上述した本発明の作業機械の作業腕の第4の実施の形態によれば、前述した第1の実施の形態と同様の効果を得ることができる。
 次に、本発明の作業機械の作業腕の第4の実施の形態の変形例を図14を用いて説明する。図14は本発明の作業機械の作業腕の第4の実施の形態の変形例におけるボス及びその周辺部の構造を拡大した状態で示す断面図である。なお、図14において、第4の実施の形態と共通する構成については、第4の実施の形態の場合と同一の符号を付し、その詳細な説明は省略する。
 図14に示す本発明の作業機械の作業腕の第4の実施の形態の変形例が第4の実施の形態に対して相違する主な点は、ボス30Dの円筒ボス部36の外周部に補強リング40を溶接して固定したことである。補強リング40は、円筒ボス部36の外側円筒部37の軸方向端部に第3溶接部41を介して円環状に接合されている。
 上述した本発明の作業機械の作業腕の第4の実施の形態の変形例によれば、前述した第4の実施の形態と同様の効果を得ることができる。
 また、本実施の形態においては、補強リング40を溶接により円筒ボス部36に固定しているので、補強リング40の脱落を長期間の使用においても抑制することができる。
 次に、本発明の作業機械の作業腕の第5の実施の形態を図15を用いて説明する。図15は本発明の作業機械の作業腕の第5の実施の形態を示す側面図である。なお、図15において、第4の実施の形態の変形例と共通する構成については、第4の実施の形態の変形例の場合と同一の符号を付し、その詳細な説明は省略する。
 図15に示す本発明の作業機械の作業腕の第5の実施の形態は、第4の実施の形態の変形例がボス30Dの外側円筒部37に円環状の補強リング40を溶接したものであるのに対して、ボス30Eの外側円筒部37の外周部に複数(図15では2つ)の円弧状の補強部材40Eを溶接したものである。補強部材40Eの外寸は、第4の実施の形態の変形例と同様に、補強部材40Eが外側円筒部37に固定された状態において、連結ピン48(図5参照)との接触により外側円筒部37のピン挿入孔31aの内面が塑性変形しないような径に設定されている。補強部材40Eは、ブームシリンダ16(図1参照)の伸縮動作の方向Yの線上の位置に固定されている。
 本実施の形態においては、ボス30Eの外側円筒部37の外周部に円弧状の補強部材40Eを取り付けることで、第4の実施の形態の変形例と同様に、ボス30Eのつば部32における面外方向の曲げ剛性を従来構造及び第1の実施の形態よりも小さくすることができる。したがって、面外方向の曲げ変形は、主にボス30Eのつば部32で発生するようになり、第1溶接部44の疲労寿命が増加する結果となる。
 上述した本発明の作業機械の作業腕の第5の実施の形態によれば、前述した第4の実施の形態の変形例と同様の効果を得ることができる。
 また、本実施の形態によれば、円弧状の補強部材40Eを全周でなく特定の位置のみに配置するようにボス30Eを構成したので、第4の実施の形態の変形例の円環状の補強リング40を用いたボス30Dよりも軽量化を図ることができ、ボス30Eの材料費を削減することができる。
 なお、本発明は本実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 例えば、上述した本発明の作業機械の作業腕の第1乃至第5の実施の形態及びその変形例においては、本発明を油圧ショベル1に適用した例を示したが、本発明を箱型構造の作業腕を備える各種の作業機械に広く適用することができる。
 また、上述した実施の形態においては、本発明をブームセンターボスに適用した例を示したが、本発明をブーム11の基端側ボス25やアーム12のブーム連結ボス60、アーム12のバケット連結ボス57にも適用することが可能である。
 さらに、上述した実施の形態においては、ボス30、30A、30B、30C、30D、30Eのつば部32と側板22との突き合わせ部分に裏当部材46を設けた構成のブーム11を例示したが、裏当部材46を設けていないブームに本発明を適用することも可能である。
 また、上述した実施の形態においては、ボス30、30A、30B、30C、30D、30Eのつば部32を円環状に形成した例を示したが、つば部32の形状はこれに限られない。ボスのつば部は、ブームやアーム等の作業腕を構成する板部材に突き合わせて接合される部分であり、接合される板部材に応じて扇形状や台形形状等に任意の形状に形成することが可能である。
 1…油圧ショベル(作業機械)、 11…ブーム(作業腕)、 12…アーム(作業腕)、 21…箱型構造体、 22…側板(板部材)、 25…基端側ボス(ボス)、 30、30A、30B、30C、30D、30E…ブームセンターボス(ボス)、 31、31A、31B…ボス本体部、 31a…ピン挿入孔、32…つば部、 33…外側本体部(第1本体部)、 34、34A、34B…内側本体部(第2本体部)、 35…溝部、 36…円筒ボス部(ボス本体部)、37…外側円筒部(第1本体部)、38…内側円筒部(第2本体部)、 40…補強リング(補強部材)、40E…補強部材、41…第3溶接部、 42、42A、42B…ボス連結部材、44…第1溶接部、 45…第2溶接部、 48…連結ピン、 51…箱型構造体、 52…側板(板部材)、 57…バケット連結ボス(ボス)、 60…ブーム連結ボス(ボス)

Claims (10)

  1.  複数の板部材により構成された箱型構造体と、
     前記複数の板部材のうち対向する板部材に取り付けられた一対のボスと、
     前記一対のボスの間に配置されて前記一対のボスを連結する円筒状のボス連結部材とを備え、
     前記一対のボスの各々は、
     連結ピンが挿通されるピン挿通孔を有し、前記対向する板部材の並び方向に延びるボス本体部と、
     前記ボス本体部の外周部から外側に延出し、先端部が前記対向する板部材に第1溶接部を介して接合されたつば部とを有し、
     前記ボス本体部は、
     前記つば部の位置を境に前記箱型構造体の外面側に位置する円筒状の第1本体部と、
     前記箱型構造体の内面側に位置する円筒状の第2本体部とで構成され、
     前記ボス連結部材は、その軸方向両端部がそれぞれ前記第2本体部の軸方向端部に第2溶接部を介して接合され、
     前記第2本体部は、そのつば部側の部分の外径が前記第1本体部の軸方向端部の外径よりも小さくなるように構成された
     ことを特徴とする作業機械の作業腕。
  2.  請求項1に記載の作業機械の作業腕において、
     前記第2本体部は、その軸方向端部の外径が前記第1本体部の軸方向端部の外径よりも小さくなるように構成された
     ことを特徴とする作業機械の作業腕。
  3.  請求項1に記載の作業機械の作業腕において、
     前記第2本体部は、その軸方向端部の外径が前記第1本体部の軸方向端部の外径と同じになるように構成され、
     前記第2本体部は、そのつば部側の外周部に設けられた円環状の溝部を有し、
     前記溝部の底部の径が前記第1本体部の軸方向端部の外径よりも小さい
     ことを特徴とする作業機械の作業腕。
  4.  請求項1に記載の作業機械の作業腕において、
     前記第2本体部は、その軸方向端部の外径が前記第1本体部の軸方向端部の外径よりも大きくなるように構成され、
     前記第2本体部は、そのつば部側の外周部に設けられた円環状の溝部を有し、
     前記溝部の底部の径が前記第1本体部の軸方向端部の外径よりも小さい
     ことを特徴とする作業機械の作業腕。
  5.  請求項1に記載の作業機械の作業腕において、
     前記ボス本体部は、
     前記ピン挿通孔を有し、前記対向する板部材の並び方向に延び外径が一定の円筒状の円筒ボス部と、
     前記円筒ボス部の外周部に配置された補強部材とで構成され、
     前記第1本体部は、
     前記円筒ボス部のうち、前記つば部の位置を境に前記箱型構造体の外面側に位置する外側円筒部と、
     前記外側円筒部の外周部に固定された前記補強部材とで構成され、
     前記第2本体部は、前記円筒ボス部のうち、前記つば部の位置を境に前記箱型構造体の内面側に位置する内側円筒部で構成されている
     ことを特徴とする作業機械の作業腕。
  6.  請求項5に記載の作業機械の作業腕において、
     前記補強部材は、円環状の部材であり、前記外側円筒部の外周部に嵌合されている
     ことを特徴とする作業機械の作業腕。
  7.  請求項6に記載の作業機械の作業腕において、
     前記補強部材は、前記外側円筒部の軸方向端部において第3溶接部を介して接合されている
     ことを特徴とする作業機械の作業腕。
  8.  請求項5に記載の作業機械の作業腕において、
     前記補強部材は、円弧状の部材であり、
     前記補強部材は、前記連結ピンの荷重が作用する方向に配置される
     ことを特徴とする作業機械の作業腕。
  9.  請求項1に記載の作業機械の作業腕において、
     前記第1本体部の軸方向端部の外径に対する前記第2本体部のつば部側の部分の外径の比が0.7以上かつ1.0未満である
     ことを特徴とする作業機械の作業腕。
  10.  請求項3又は4に記載の作業機械の作業腕において、
     前記溝部は、その底部の断面形状が一定の曲率半径を有するように構成され、
     前記つば部の厚みに対する前記溝部の前記曲率半径の比が1.5以上である
     ことを特徴とする作業機械の作業腕。
PCT/JP2018/014928 2017-09-25 2018-04-09 作業機械の作業腕 WO2019058616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207008214A KR102412348B1 (ko) 2017-09-25 2018-04-09 작업 기계의 작업 암
US16/643,028 US11225770B2 (en) 2017-09-25 2018-04-09 Work arm of work machine
CN201880061617.0A CN111108247B (zh) 2017-09-25 2018-04-09 作业机械的作业臂
EP18857776.1A EP3660222B1 (en) 2017-09-25 2018-04-09 Work arm for work machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184061A JP6829674B2 (ja) 2017-09-25 2017-09-25 作業機械の作業腕
JP2017-184061 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019058616A1 true WO2019058616A1 (ja) 2019-03-28

Family

ID=65810699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014928 WO2019058616A1 (ja) 2017-09-25 2018-04-09 作業機械の作業腕

Country Status (6)

Country Link
US (1) US11225770B2 (ja)
EP (1) EP3660222B1 (ja)
JP (1) JP6829674B2 (ja)
KR (1) KR102412348B1 (ja)
CN (1) CN111108247B (ja)
WO (1) WO2019058616A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389577B2 (ja) 2019-07-12 2023-11-30 株式会社小松製作所 作業機械の評価システムおよび作業機械の評価方法
CN114473146B (zh) * 2021-12-24 2023-11-03 江苏徐工工程机械研究院有限公司 一种箱形臂架及其焊接变形控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199240A (ja) * 1998-12-28 2000-07-18 Yutani Heavy Ind Ltd 油圧ショベルのブ―ム構造
JP2002332654A (ja) 2001-05-08 2002-11-22 Komatsu Ltd 建設機械の作業機のボス構造
JP2012021335A (ja) * 2010-07-15 2012-02-02 Hitachi Constr Mach Co Ltd 作業機械のボス構造
JP2012219441A (ja) 2011-04-04 2012-11-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械のブーム構造
JP2013147794A (ja) * 2012-01-17 2013-08-01 Hitachi Constr Mach Co Ltd 建設機械用アーム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034876A (en) * 1974-05-28 1977-07-12 Caterpillar Tractor Co. Boom construction and method for making same
US3902295A (en) * 1974-05-28 1975-09-02 Caterpillar Tractor Co Boom construction and method for making same
FR2445413A1 (fr) * 1978-12-29 1980-07-25 Poclain Sa Bras de force muni d'attaches d'attelage d'un organe de reglage de sa position
JPH078624U (ja) * 1993-07-08 1995-02-07 日立建機株式会社 ピン結合装置
JP4293719B2 (ja) * 2000-09-28 2009-07-08 株式会社小松製作所 吊りフックを有するバケットリンク
US7165929B2 (en) * 2001-12-20 2007-01-23 Caterpillar Inc Load bearing member arrangement and method
JP2004092210A (ja) 2002-08-30 2004-03-25 Komatsu Ltd 作業機
KR20080050682A (ko) * 2006-12-04 2008-06-10 두산인프라코어 주식회사 굴삭기용 아암의 보스부 보강구조
KR101821273B1 (ko) * 2011-05-19 2018-01-23 히다치 겡키 가부시키 가이샤 건설 기계용 아암
JP6232643B2 (ja) * 2014-06-05 2017-11-22 日立建機株式会社 建設機械用ブーム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199240A (ja) * 1998-12-28 2000-07-18 Yutani Heavy Ind Ltd 油圧ショベルのブ―ム構造
JP2002332654A (ja) 2001-05-08 2002-11-22 Komatsu Ltd 建設機械の作業機のボス構造
JP2012021335A (ja) * 2010-07-15 2012-02-02 Hitachi Constr Mach Co Ltd 作業機械のボス構造
JP2012219441A (ja) 2011-04-04 2012-11-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械のブーム構造
JP2013147794A (ja) * 2012-01-17 2013-08-01 Hitachi Constr Mach Co Ltd 建設機械用アーム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660222A4

Also Published As

Publication number Publication date
KR20200044065A (ko) 2020-04-28
US20200190767A1 (en) 2020-06-18
CN111108247B (zh) 2022-03-15
CN111108247A (zh) 2020-05-05
US11225770B2 (en) 2022-01-18
KR102412348B1 (ko) 2022-06-23
JP2019060091A (ja) 2019-04-18
EP3660222A1 (en) 2020-06-03
EP3660222B1 (en) 2023-08-09
JP6829674B2 (ja) 2021-02-10
EP3660222A4 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US10370817B2 (en) Boom for construction machine
JP4247222B2 (ja) トラクターローダーバックホーの掘削装置固定構造
WO2019058616A1 (ja) 作業機械の作業腕
US11772724B2 (en) Track pin and bushing retention design for a track chain
JP5898896B2 (ja) 作業機械の軸部シール構造
KR20070096762A (ko) 붐 어셈블리
JP6970028B2 (ja) 油圧ショベル
JP6647980B2 (ja) 油圧ショベル
US9334624B2 (en) Articulated work machine
JP2012021336A (ja) 建設機械のアーム及びその製作方法
JP6518635B2 (ja) 建設機械の回動角検出装置
JP2008095298A (ja) 軸受装置
JPH10122235A (ja) 軸受装置
JP6579004B2 (ja) 建設機械のアッパーフレーム
JP2007231579A (ja) 建設機械のフロント装置
JP4446471B2 (ja) 建設機械のブームとアームの連結構造
JP6840662B2 (ja) 作業機のアーム、軸受部材、及び作業機のアームの製造方法
JP2024505164A (ja) 密封接合部を利用したマイニングトラックの破片経路
JP2019135363A (ja) 油圧ショベル
CN116368059A (zh) 用于卡盘销组件的单个压环凹槽
JPH09151934A (ja) 軸受装置
JPH10102539A (ja) 建設機械のハンドレール装置
JPH08218425A (ja) ピン結合装置
JPH11236913A (ja) 軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018857776

Country of ref document: EP

Effective date: 20200227

ENP Entry into the national phase

Ref document number: 20207008214

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE