WO2019054504A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2019054504A1
WO2019054504A1 PCT/JP2018/034256 JP2018034256W WO2019054504A1 WO 2019054504 A1 WO2019054504 A1 WO 2019054504A1 JP 2018034256 W JP2018034256 W JP 2018034256W WO 2019054504 A1 WO2019054504 A1 WO 2019054504A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transmission
antennas
phase
signal
Prior art date
Application number
PCT/JP2018/034256
Other languages
English (en)
French (fr)
Inventor
卓也 ▲高▼山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880059280.XA priority Critical patent/CN111095016B/zh
Priority to DE112018005155.2T priority patent/DE112018005155T5/de
Publication of WO2019054504A1 publication Critical patent/WO2019054504A1/ja
Priority to US16/814,098 priority patent/US11131764B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present disclosure relates to a radar device that detects an object by transmitting and receiving radio waves via a plurality of antennas.
  • Non-Patent Document 1 describes using Doppler division multiplexing (hereinafter, DDMA).
  • each transmitting antenna transmits a continuous wave on which phase shift keying has been performed, which rotates the phase by a different amount of phase rotation, at each preset repetition cycle.
  • the received signal is analyzed.
  • the phase of the signal is detected for each repetition period, and further, the Doppler frequency included in the received signal is set to the frequency corresponding to the change of the phase (i.e., the amount of phase rotation) over a plurality of repetition periods.
  • a Doppler spectrum representing a component of frequency is calculated. That is, since the phase rotation amount of the transmission signal is different for each transmission antenna, the transmission signal from each transmission antenna is extracted as a signal component having a different Doppler frequency on the Doppler spectrum.
  • Doppler frequencies are observed within a frequency range (hereinafter referred to as Doppler observation width) determined by the repetition period in which the phase of the transmission signal changes.
  • Non-Patent Document 1 the technology described in Non-Patent Document 1 is referred to as a conventional technology.
  • 360 ° / M
  • M phases obtained by integer multiplication of ⁇ , ie, 0, ⁇ , 2 ⁇ ,. ⁇ is used as a phase rotation amount used in phase shift keying.
  • peaks of signal components based on transmission signals from the respective transmitting antennas are arranged at equal intervals within the Doppler observation width. Therefore, in the prior art, it is necessary to reduce the transmission repetition period so that the speed range of the observation target is smaller than the interval between peaks.
  • the M peaks on the Doppler spectrum shift in the Doppler direction in the frequency direction while maintaining the relative positional relationship. Do. If the amount of shift is larger than the interval between peaks, frequency folding occurs on the Doppler spectrum. When this aliasing occurs, the correspondence between which peak is attributable to the signal from which transmit antenna can not be uniquely determined.
  • One aspect of the present disclosure is to provide a technique for improving the accuracy of identifying a plurality of transmission signals from reception signals in a radar apparatus using Doppler division multiplexing.
  • a radar device includes a transmission antenna unit, an oscillation unit, a modulation unit, a reception antenna unit, and a processing unit.
  • the transmission antenna unit has a plurality of transmission antennas.
  • the oscillator generates a continuous wave common signal.
  • the modulation unit rotates the phase of the branched signal for each preset repetition cycle with different phase rotation amounts for each of a plurality of branched signals obtained by branching the common signal into the same number as that of the transmitting antenna By performing modulation, a plurality of transmission signals to be input to a plurality of transmission antennas are generated.
  • the receiving antenna unit has one or more receiving antennas.
  • the processing unit is an object in which the radiation wave from the transmission antenna unit is reflected based on a plurality of signal components corresponding to a plurality of transmission signals extracted from each of the one or more reception signals received by the antenna unit. Generate information about
  • the number of transmission antennas of the transmission antenna unit is M
  • the number of phases used for phase shift keying is P
  • the plurality of signal components based on the transmission signal from each transmission antenna extracted from the reception signal by analyzing the reception signal each have a Doppler frequency corresponding to the unique phase rotation amount . Since the number M of transmission antennas is smaller than the number P of phases, by appropriately selecting the amount of phase rotation to be used, signal components based on each transmission signal can be unevenly arranged on the Doppler spectrum. As a result, even if frequency folding occurs on the Doppler spectrum, the correspondence between the plurality of peaks and the plurality of transmitting antennas can be obtained by using the location where the peaks are unevenly arranged on the Doppler spectrum as a clue. Can be accurately recognized.
  • the radar device 1 shown in FIG. 1 is used by being mounted on a vehicle and used to detect various objects present around the vehicle.
  • the radar device 1 is a MIMO radar that simultaneously transmits and receives radio waves with a plurality of antennas.
  • the radar device 1 includes a transmitting unit 2, a transmitting antenna unit 3, a receiving antenna unit 4, a receiving unit 5, and a processing unit 6.
  • the transmitting antenna unit 3 has M transmitting antennas. M is an integer of 2 or more. Each transmit antenna is a first distance d T set in advance, are arranged in a row along a predetermined arrangement direction.
  • the receiving antenna unit 4 has N receiving antennas. N is an integer of 1 or more. When there are a plurality of receiving antennas, each receiving antenna is disposed along the same direction as the arrangement direction of the transmitting antennas at a second interval d R different from the first interval d T.
  • each transmit antenna is described as TX1 and TX2, and each receive antenna is described as RX1 and RX2.
  • the signal transmitted from TX1 and received by RX1 is expressed by equation (1).
  • a signal transmitted from TX1 and received by RX2 is expressed by equation (2).
  • a signal transmitted from TX2 and received by RX1 is expressed by equation (3).
  • a signal transmitted from TX2 and received by RX2 is expressed by equation (4).
  • the transmission unit 2 includes an oscillation unit 21 and a modulation unit 22.
  • the oscillating unit 21 generates a common signal of continuous waves.
  • the oscillation unit 21 supplies the generated common signal to the modulation unit 22 and also supplies the generated common signal to the reception unit 5 as the local signal L.
  • the oscillation unit 21 changes the frequency continuously during the measurement period Tm (for example, 10 ms) at the beginning of each frame, with the measurement cycle Tf (for example, 50 ms) as one frame.
  • a chirp signal is repeatedly generated every repetition period Tp (for example, 50 ⁇ s).
  • the oscillation unit 21 is configured to be able to appropriately change the measurement cycle Tf, the measurement period Tm, and the repetition cycle Tp in accordance with an instruction from the processing unit 6.
  • the frequency width of the chirp signal changed during the repetition period is constant regardless of the repetition period Tp. That is, by changing the repetition cycle Tp, the change rate ⁇ f of the frequency of the chirp signal is changed.
  • the allowable range of the repetition period Tp, and hence the allowable range of the change rate ⁇ f of the frequency of the chirp signal corresponds to the relative velocity with the object when the beat signal generated by mixing the transmit signal and the receive signal is analyzed.
  • the frequency shift that occurs is set to be negligibly small compared to the frequency shift that occurs depending on the distance to the object.
  • the modulation unit 22 branches the common signal generated by the oscillation unit 21 and generates M branched signals having the same number as the number of transmission antennas belonging to the transmission antenna unit 3.
  • the modulation unit 22 performs, for each of the M branch signals, phase shift keying to change the phase of the branch signal every repetition period Tp. This generates M transmit signals to be supplied to each of the transmit antennas.
  • phase shift keying a phase rotation amount ⁇ of a different magnitude is set for each of the M branch signals, and the phase of the branch signal is rotated by the phase rotation amount ⁇ every repetition cycle Tp.
  • P the number of phases used in phase shift keying.
  • P is an integer greater than M.
  • p 4
  • 0 °
  • the level of the transmission signal which is the signal after modulation with respect to the branched signal that is, the common signal
  • the phase difference is 0 ° at all repetitive cycles Tp.
  • phase rotation amounts ⁇ of P types are used for phase shift keying, but some of them are used.
  • the modulation unit 22 selects the M types of phase rotation amounts to be used for phase shift modulation among the setting of the phase number P, and the P types of phase rotation amounts ⁇ , and selects M types of phase rotation amounts and M
  • the configuration of the correspondence with the transmission antenna can be changed as appropriate.
  • the change of the setting may be performed in accordance with an instruction from the processing unit 6 or may be performed automatically. When changing automatically, it may be performed according to a predetermined pattern, and may be performed at random.
  • the receiving unit 5 generates a beat signal which is a difference signal from the local signal L for each of the N received signals output from each of the receiving antennas belonging to the receiving antenna unit 4, and is generated.
  • the beat signal is sampled and supplied to the processing unit 6.
  • the processing unit 6 includes a microcomputer having a CPU 61 and, for example, a semiconductor memory (hereinafter, memory 62) such as a RAM or a ROM. Each function of the processing unit 6 is realized by the CPU 61 executing a program stored in the non-transitional tangible recording medium.
  • the memory 62 corresponds to a non-transitional tangible storage medium storing a program. Also, by executing this program, a method corresponding to the program is executed.
  • the processing unit 6 may include one microcomputer or a plurality of microcomputers.
  • the method for realizing the functions of the processing unit 6 is not limited to software, and some or all of the functions may be realized using one or more hardware.
  • the electronic circuit may be implemented by a digital circuit, an analog circuit, or a combination thereof.
  • This process is repeatedly executed when the processing unit 6 is activated.
  • the processing unit 6 sets the repetition cycle Tp, which is a parameter related to the common signal to be generated by the oscillating unit 21.
  • the repetition cycle Tp may be a fixed value, or a plurality of types of values may be switched and set in accordance with a predetermined pattern or randomly each time the present processing is executed.
  • the measurement cycle Tf and the measurement period Tm may be variably set as appropriate.
  • step S120 the processing unit 6 sets the number P of phases used for phase shift keying in the modulation unit 22.
  • the number of phases P may be a fixed value as in the repetitive cycle Tp, or a plurality of types of values may be switched in accordance with a predetermined pattern or randomly each time this processing is executed. You may
  • the processing unit 6 selects M types of phase rotation amounts to be used for phase shift keying in the modulation unit 22 out of P types of phase rotation amounts determined by the number of phases P.
  • the amount of phase rotation to be selected is selected so that each amount of rotation is not evenly distributed within 360 °, that is, nonuniform distribution.
  • the phase rotation amount may be selected arbitrarily.
  • P and M have common divisors, it is necessary to select so that the arrangement intervals do not repeat in the same pattern.
  • the selection of the phase rotation amount may be constant at all times, or may be switched randomly or in accordance with a predetermined pattern among selectable combinations each time this processing is performed.
  • step S140 the processing unit 6 sets the correspondence between the M types of phase rotation amounts selected in step S130 and the transmission antennas.
  • This correspondence may be assigned, for example, according to a preset rule, or may be randomly assigned. Further, the association may be always constant, or may be switched at random according to a predetermined pattern each time this process is executed.
  • TX1 and TX2 are represented as changing the phase of the phase shift keyed transmission signal supplied to each.
  • step S150 the processing unit 6 determines whether it is the measurement start timing. If the processing unit 6 determines that it is not the measurement start timing, the processing unit 6 stands by by repeating this processing until the measurement start timing is reached. If it is determined that it is the measurement start timing, the processing unit 6 shifts the processing to S160.
  • the measurement start timing is a timing at which a frame whose length is determined by the measurement cycle Tf is switched.
  • the processing unit 6 operates the transmission unit 2 in accordance with the setting results in S110 to S140, and implements radar measurement. Specifically, the processing unit 6 causes the transmission unit 2 to repeatedly transmit the chirp signal every repetition cycle Tp during the measurement period Tm, and acquires the sampling result of the beat signal generated from the reception signal.
  • the number of chirp signals repeatedly transmitted during the measurement period Tm is K.
  • step S170 the processing unit 6 analyzes the frequency of the sampling results of the beat signals obtained from the N reception antennas for each reception antenna and for each chirp signal to obtain K pieces of data for each of the N reception antennas. Calculate the distance spectrum of each In each distance spectrum, a peak appears at a frequency corresponding to the time required to reciprocate the object reflecting the radiation wave transmitted from the transmitting antenna (that is, the distance to the object).
  • the processing unit 6 calculates the velocity spectrum for each receiving antenna using the N ⁇ K distance spectra calculated in S170. Specifically, the processing unit 6 extracts signals of the same frequency bin from K distance spectra related to the receiving antenna of interest, and executes frequency analysis processing in the time axis direction on the extracted signals. This process is performed for all frequency bins (ie, distances).
  • the range in which the Doppler frequency is observed (hereinafter referred to as the Doppler observation range) is determined by the repetition period Tp. Further, as shown in FIG. 9, the Doppler frequencies are detected at M points among the points obtained by dividing the Doppler observation range into P parts. In FIG. 9, the upper limit of the Doppler observation range is normalized to one.
  • these M Doppler frequencies are shifted by an amount according to the relative velocity, and depending on the magnitude of the relative velocity, the frequency is folded back. Occurs.
  • the processing unit 6 From the calculation results of S170 and S180, the processing unit 6 generates a two-dimensional spectrum (hereinafter referred to as a reception spectrum) representing the distance and the relative velocity to the object reflecting the radar wave for each reception antenna.
  • a reception spectrum a two-dimensional spectrum
  • step S190 the processing unit 6 executes an information generation process for calculating the distance and relative velocity with the object reflecting the radar wave and the direction in which the object is present, using the reception spectrum generated for each reception antenna. End the process.
  • S110 corresponds to a cycle setting unit
  • S120 corresponds to a phase number setting unit
  • S140 corresponds to a correspondence setting unit
  • S180 corresponds to a spectrum calculation unit
  • S190 corresponds to a speed determination unit.
  • step S310 the processing unit 6 incoherently integrates the N reception spectra generated for each reception antenna in step S180 to generate one integrated spectrum g (r, v).
  • the integrated spectrum g (r, v) is calculated using equation (5), assuming that the reception spectrum for each receiving antenna is represented by s (r, v, Rch).
  • r is a distance
  • v is a normalized Doppler velocity where the velocity corresponding to the upper limit frequency of the Doppler observation range is 1
  • Rch is a number identifying a receiving antenna.
  • the processing unit 6 sets a distance at which M or more peaks having intensities equal to or greater than a preset threshold are detected on the integrated spectrum as candidate distances, and the following S220 to S280 of the candidate distances.
  • a distance not yet selected as a target of processing is selected as a target distance r.
  • the processing unit 6 sets a velocity corresponding to a peak not yet selected as a processing target in the following S340 to S370 among a plurality of peaks detected in the target distance r selected in S320 as a target velocity v Choose as.
  • the speed is selected in ascending order.
  • step S350 the processing unit 6 determines whether a peak (that is, a second maximum point) exists on the integrated spectrum for all the corresponding points estimated in step S340.
  • a peak that is, a second maximum point
  • the processing unit 6 shifts the processing to S360, and when a negative determination is made, shifts the processing to S390.
  • M peaks corresponding to corresponding points are referred to as candidate peak groups.
  • the processing unit 6 determines whether the candidate peak group satisfies the power condition. When an affirmative determination is made in S360, the processing unit 6 shifts the processing to S370, and when a negative determination is made, shifts the processing to S390.
  • the power condition it is used that the signal intensity difference of the peaks belonging to the candidate peak group is within the preset allowable range. This is based on the finding that the signal intensities of peaks based on the reflected waves from the same object should all be similar.
  • the processing unit 6 determines whether the candidate peak group satisfies the phase condition. When an affirmative determination is made in S370, the processing unit 6 shifts the processing to S380, and when a negative determination is made, shifts the processing to S390.
  • the phase condition the phase difference between the reference reception channel and the other reception channels is used, and it is used that the difference between the phase differences is within the preset allowable range between the candidate peaks. This is based on the finding that the peaks based on the reflected waves from the same object should all come from the same direction, and the phase differences among the receiving channels of the peaks coming from the same direction are all similar Based on being of similar size.
  • candidate peak groups that are positively determined at 370 are referred to as identical object peak groups.
  • the processing unit 6 registers a set of the target distance r and the target velocity v as object information. Furthermore, the azimuth ⁇ calculated as follows is also added to the object information. That is, each peak corresponding to M identical object peak groups is extracted from each of the N received spectrums calculated for each receiving antenna.
  • the azimuth ⁇ of the object can be determined by performing the azimuth detection process such as MUSIC or beamforming while regarding the extracted M ⁇ N peaks as reception signals from M ⁇ N receiving antennas included in the virtual array. Calculate MUSIC is an abbreviation for Multiple signal classification.
  • Each M peaks extracted as the same object peak group from each of the reception signals obtained from the N reception antennas correspond to M ⁇ N reception signals obtained from the virtual array.
  • the processing unit 6 determines whether all the peaks (i.e., speeds) detected at the target distance r have been selected as the target speed v.
  • the processing unit 6 shifts the processing to S400 when the determination is affirmative in S390, and returns the processing to S330 when the determination is negative.
  • the processing unit 6 determines whether all candidate distances have been selected as the target distance r. If the processing unit 6 makes an affirmative determination in S400, the processing ends, and if a negative determination is made, the processing returns to S320.
  • the number of phases P used when performing phase shift keying on the transmission signals supplied to the M transmission antennas is set so that P> M, and on the velocity spectrum
  • the amount of phase rotation used for phase shift keying of each transmission signal is selected so that each peak corresponding to each transmission signal detected in the above is unequally arranged.
  • each peak that is, the same object peak group
  • Ru the relative velocity with the object
  • the lower stage shows a state where the relative velocity is present and the peak is shifted.
  • all the peaks appear at equal intervals, so it is impossible to accurately identify which peak corresponds to which transmitting antenna.
  • the selection of the repetition period Tp, the number of phases P, and the amount of phase rotation that affect the determination of the position where the same object peak group occurs on the velocity spectrum can be changed for each frame. Is configured as. For this reason, it is possible to suppress that each peak of the same object peak group is buried in unnecessary peaks generated based on various stationary objects such as road surfaces and roadside objects.
  • FIG. 12 when the area where the peak of the stationary object occurs on the reception spectrum is the noise area Z, one of the same object peak group may be buried in the noise area Z.
  • the circle in FIG. 12 is a point corresponding to the selected phase rotation amount, that is, a peak belonging to the same object peak group, and the cross in FIG. 12 corresponds to the phase rotation amount not selected. It is a point to do.
  • FIGS. 13 and 14 As illustrated, it is possible to prevent the peaks belonging to the same object peak group from being buried in the noise region Z, depending on how to select the phase rotation amount used for phase shift keying.
  • the parameters for changing the position at which the same object peak group is generated are changed independently of the external situation.
  • these parameters may be changed according to the own vehicle speed or the relative speed with the object being tracked.
  • the power condition and the phase condition are used to determine whether the candidate peak group is the same object peak group, but these may be omitted or another condition may be added. May be
  • object information is registered when all M peaks belonging to the same object peak group are detected in the above embodiment, the present disclosure is not limited to this.
  • object information may be registered as long as three or more peaks belonging to the same object peak group are detected.
  • the multiple functions of one component in the above embodiment may be realized by multiple components, or one function of one component may be realized by multiple components. . Also, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component. In addition, part of the configuration of the above embodiment may be omitted. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other above embodiment.
  • the present disclosure can be realized in various forms, such as a system including the radar device as a component other than the above-described radar device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

送信アンテナ部(3)は、複数の送信アンテナを有し、受信アンテナ部(4)は、一つ以上の受信アンテナを有する。変調部(22)は、発信部(21)が発生させた連続波の共通信号を送信アンテナと同数に分岐させ、その複数の分岐信号のそれぞれに対して、それぞれが異なる位相回転量で位相偏移変調を行う。これにより、複数の送信アンテナに入力される複数の送信信号を生成する。処理部(6)は、アンテナ部にて受信された一つ以上の受信信号のそれぞれから抽出される、複数の送信信号に対応した複数の信号成分に基づいて、送信アンテナ部からの放射波を反射した物体に関する情報を生成する。

Description

レーダ装置 関連出願の相互参照
 本国際出願は、2017年9月15日に日本国特許庁に出願された日本国特許出願第2017-177539号に基づく優先権を主張するものであり、日本国特許出願第2017-177539号の全内容を本国際出願に参照により援用する。
 本開示は、複数のアンテナを介して電波を送受信することで物体を検出するレーダ装置に関する。
 MIMO(Multi Input Multi Output)レーダでは、複数の送信アンテナから同時に送信された複数の信号が重畳された受信信号から、個々の信号を識別する必要がある。その手法の一つとして、下記非特許文献1には、ドップラ分割多重(以下、DDMA)を用いることが記載されている。
 DDMAでは、各送信アンテナは、予め設定された繰返周期毎に、互いに異なる位相回転量で位相を回転させる位相偏移変調が施された連続波を送信する。受信側では、受信信号を解析する。これにより、繰返周期毎に信号の位相を検出し、更に、複数の繰返周期に渡る位相の変化(即ち、上記位相回転量)に対応した周波数をドップラ周波数として、受信信号に含まれるドップラ周波数の成分を表すドップラスペクトラムを算出する。つまり、送信アンテナ毎に送信信号の位相回転量が異なっているため、ドップラスペクトラム上では、各送信アンテナからの送信信号が、それぞれが異なったドップラ周波数を有した信号成分として抽出される。なお、これらのドップラ周波数は、送信信号の位相が変化する繰返周期によって決まる周波数範囲(以下、ドップラ観測幅)内で観測される。
 以下、非特許文献1に記載の技術を従来技術という。
D.W.Bliss,K.W.Forsythe,S.K.Davis,G.S.Fawcett,D.J.Rabideau,L.L.Horowitz,S.Kraut,"GMTI MIMO Radar",2009 international WD&D Conference, p118-p122
 しかしながら、発明者の詳細な検討の結果、従来技術には、以下の課題が見出された。
 即ち、従来技術では、送信アンテナの数をM個、1周期をM等分した位相をΔφ=360°/Mとして、Δφの整数倍したM個の位相、即ち、0、Δφ、2Δφ、…Δφを、位相偏移変調で用いる位相回転量として用いている。このため、ドップラスペクトルにおいて、各送信アンテナからの送信信号に基づく信号成分のピークは、ドップラ観測幅内に等間隔で配置される。従って、従来技術では、観測ターゲットの速度範囲がピーク間の間隔より小さくなるように、送信繰返周期を小さくする必要があった。
 そして、MIMOレーダとMIMOレーダからの放射波を反射する物体との間に相対速度がある場合、ドップラスペクトル上のM個のピークは、相対的な位置関係を保ったまま、周波数方向にドップラシフトする。そのシフト量が、ピーク間の間隔より大きい場合、ドップラスペクトラム上では周波数の折り返しが生じる。この折り返しが生じると、どのピークがどの送信アンテナからの信号に起因するかの対応関係を一意に定めることができなかった。
 本開示の一局面は、ドップラ分割多重を利用するレーダ装置において、受信信号から複数の送信信号を識別する精度を向上させる技術を提供することにある。
 本開示の一態様によるレーダ装置は、送信アンテナ部と、発振部と、変調部と、受信アンテナ部と、処理部とを備える。
 送信アンテナ部は、複数の送信アンテナを有する。発振部は、連続波の共通信号を発生させる。変調部は、共通信号を送信アンテナと同数に分岐させた複数の分岐信号のそれぞれについて、それぞれが異なる位相回転量で、予め設定された繰返周期毎に分岐信号の位相を回転させる位相偏移変調を行うことで、複数の送信アンテナに入力される複数の送信信号を生成する。
 受信アンテナ部は、一つ以上の受信アンテナを有する。処理部は、アンテナ部にて受信された一つ以上の受信信号のそれぞれから抽出される、複数の送信信号に対応した複数の信号成分に基づいて、送信アンテナ部からの放射波を反射した物体に関する情報を生成する。
 そして、レーダ装置では、送信アンテナ部が有する送信アンテナの数をM、位相偏移変調に用いられる位相数をPとし、P>Mに設定されている。
 このような構成によれば、受信信号を解析することで受信信号から抽出される各送信アンテナからの送信信号に基づく複数の信号成分は、それぞれが固有の位相回転量に対応したドップラ周波数を有する。送信アンテナ数Mが位相数Pより少ないため、使用する位相回転量を適宜選択することによって、ドップラスペクトル上で、各送信信号に基づく信号成分を不均等に配置することができる。その結果、ドップラスペクトル上で周波数の折り返しが発生していたとしても、ドップラスペクトル上でピークが不均一な並びとなる箇所を手がかりにすることで、複数のピークと複数の送信アンテナとの対応関係を正確に認識することができる。
レーダ装置の構成を示すブロック図である。 送信アンテナ及び受信アンテナと物体との関係を表す説明図である。 送信アンテナ及び受信アンテナの配置と仮想アレーにおける受信アンテナの配置との関係を示す説明図である。 発振部の機能を示す説明図である。 変調部での位相偏移変調に使用する位相回転量の例を示す説明図である。 処理部が実行する物体検出処理のフローチャートである。 選択可及び選択不可な位相回転量の組み合わせパターンを示す説明図である。 位相回転量の選択例を示す説明図である。 速度スペクトラムに出現する同一物体ピーク群の例を示す説明図である。 処理部が実行する情報生成処理のフローチャートである。 同一物体ピーク群と複数の送信アンテナとの対応関係が不明となる例を示す説明図である。 位相回転量の組み合わせパターンを変化させることによる作用効果を示す説明図である。 位相数を変化させることによる作用効果を示す説明図である。 繰返周期を変化させることによる作用効果を示す説明図である。
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [1.構成]
 図1に示すレーダ装置1は、車両に搭載して使用され、車両の周囲に存在する様々な物体を検出するために使用される。レーダ装置1は、複数のアンテナで同時に電波を送受信するMIMOレーダである。
 レーダ装置1は、送信部2と、送信アンテナ部3と、受信アンテナ部4と、受信部5と、処理部6とを備える。
 送信アンテナ部3は、M個の送信アンテナを有する。Mは2以上の整数である。各送信アンテナは、予め設定された第1間隔dで、予め設定された配列方向に沿って一列に配置される。
 受信アンテナ部4は、N個の受信アンテナを有する。Nは1以上の整数である。受信アンテナが複数存在する場合、各受信アンテナは、第1間隔dとは異なる第2間隔dで、送信アンテナの配列方向と同じ方向に沿って配置される。
 ここで、図2を用いて、M=2、N=2の場合に各受信アンテナで受信される信号ついて説明する。各送信アンテナをTX1,TX2と表記し、各受信アンテナをRX1,RX2と表記する。
 検出対象となる物体が、送信アンテナ部3および受信アンテナ部4の正面方向に対してθだけ傾いた方向に存在すると仮定する。また、物体での反射係数をD、TX1から物体に至る経路での信号の位相変化をαで表し、物体からRX1に至る経路での信号の位相変化をαで表す。なお、α及びαは複素数で表現される。
 この場合、TX1から送信されRX1で受信される信号は(1)式で表される。TX1から送信されRX2で受信される信号は(2)式で表される。TX2から送信されRX1で受信される信号は(3)式で表される。TX2から送信されRX2で受信される信号は(4)式で表される。
Figure JPOXMLDOC01-appb-M000001
 これらの式は、図3に示すように、4つの受信アンテナを、基準となる一つの受信アンテナからの距離が、それぞれd、d、d+dとなる位置に並べた場合と等価である。図3では、最も左に位置する受信アンテナを基準としている。このように並んだ仮想的な受信アンテナを仮想アレーという。
 MIMOレーダでは、仮想アレーを用いることで、1個の送信アンテナとM×N個の受信アンテナとを備える場合と同等の角度分解能が、M+N個の送信アンテナ及び受信アンテナによって実現される。
 図1に戻り、送信部2は、発振部21と、変調部22とを備える。
 発振部21は、連続波の共通信号を生成する。発振部21は、生成した共通信号を、変調部22に供給すると共に、ローカル信号Lとして受信部5にも供給する。また、発振部21は、図4に示すように、測定周期Tf(例えば、50ms)を1フレームとして、各フレームの先頭の測定期間Tm(例えば、10ms)の間、連続的に周波数が変化するチャープ信号を、繰返周期Tp(例えば、50μs)毎に繰り返し生成する。
 発振部21は、測定周期Tf、測定期間Tm、及び繰返周期Tpを、処理部6からの指示に従って適宜変更できるように構成されている。なお、繰返周期の間に変化させるチャープ信号の周波数幅は、繰返周期Tpによらず一定である。つまり、繰返周期Tpを変化させることで、チャープ信号の周波数の変化率Δfが変化するように構成されている。
 また、繰返周期Tpの許容範囲、ひいてはチャープ信号の周波数の変化率Δfの許容範囲は、送信信号と受信信号とを混合して生成するビート信号を解析した時に、物体との相対速度に応じて生じる周波数偏移が、物体との距離に応じて生じる周波数偏移と比較して無視できる程度に小さくなるように設定される。
 変調部22は、発振部21が生成した共通信号を分岐させ、送信アンテナ部3に属する送信アンテナと同数であるM個の分岐信号を生成する。変調部22は、M個の分岐信号のそれぞれについて、繰返周期Tp毎に分岐信号の位相を変化させる位相偏移変調を行う。これにより、送信アンテナのそれぞれに供給するM個の送信信号を生成する。位相偏移変調では、M個の分岐信号のそれぞれに対して互いに異なる大きさの位相回転量Δφを設定し、繰返周期Tp毎に、その位相回転量Δφだけ分岐信号の位相を回転させる。
 ここで、位相偏移変調で使用する位相の数をPとする。PはMより大きい整数である。変調部22では、p=0,1,2,…P-1として、Δφ=p×360°/Pで表されるP種類の位相回転量を用いる。例えば、P=4の場合、図5に示すように、p=0ではΔφ=0°となり、変調前の信号である分岐信号(即ち、共通信号)に対する変調後の信号である送信信号の位相差は、全ての繰返周期Tpで0°となる。p=1ではΔφ=90°となり、共通信号に対する送信信号の位相差は繰返周期Tp毎に切り替わり、0°→90°→180°→270°→0°(以下同様)の順に変化する。p=2ではΔφ=180°となり、共通信号に対する送信信号の位相差は繰返周期毎に切り替わり、0°→180°→0°→180°→0°(以下同様)の順に変化する。p=3ではΔφ=270°となり、共通信号に対する送信信号の位相差は繰返周期毎に切り替わり、0°→270°→180°→90°→0°(以下同様)の順に変化する。
 上述したようにP>Mに設定されるため、位相偏移変調には、P種類の位相回転量Δφの全種類が使用されることはなく、その一部が使用される。
 変調部22は、位相数Pの設定、P種類の位相回転量Δφのうち、位相偏移変調に使用するM種類の位相回転量の選択、選択されたM種類の位相回転量とM個の送信アンテナとの対応関係の設定を適宜変更できるように構成されている。設定の変更は、処理部6からの指示に従ってもよいし、自動的に行ってもよい。自動的に変更する場合は、予め決められたパターンに従って行ってもよいし、ランダムに行ってもよい。
 図1に戻り、受信部5は、受信アンテナ部4に属する各受信アンテナから出力されるN個の受信信号のそれぞれについて、ローカル信号Lとの差信号であるビート信号を生成し、生成されたビート信号をサンプリングして処理部6に供給する。
 処理部6は、CPU61と、例えば、RAM又はROM等の半導体メモリ(以下、メモリ62)と、を有するマイクロコンピュータを備える。処理部6の各機能は、CPU61が非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ62が、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムが実行されることで、プログラムに対応する方法が実行される。なお、処理部6は、1つのマイクロコンピュータを備えてもよいし、複数のマイクロコンピュータを備えてもよい。
 処理部6の機能を実現する手法はソフトウェアに限るものではなく、その一部又は全部の機能は、一つあるいは複数のハードウェアを用いて実現されてもよい。例えば、上記機能がハードウェアである電子回路によって実現される場合、その電子回路は、デジタル回路、又はアナログ回路、あるいはこれらの組合せによって実現されてもよい。
 [2.処理]
 [2-1.物体検出処理]
 次に、処理部6が実行する物体検出処理について、図6のフローチャートを用いて説明する。
 本処理は、処理部6が起動すると繰り返し実行される。
 処理部6は、まず、S110にて、発振部21に生成させる共通信号に関するパラメータである繰返周期Tpを設定する。上述したように、繰返周期Tpを変化させると、チャープ信号の周波数の変化率Δfが変化する。繰返周期Tpは固定値であってもよいし、複数種類の値を、本処理が実行される毎に、予め決められたパターンに従って、或いはランダムに切り替えて設定してもよい。また、本ステップにおいて、測定周期Tf、測定期間Tmを適宜可変設定してもよい。
 処理部6は、S120では、変調部22での位相偏移変調に用いる位相数Pを設定する。位相数Pは、少なくとも送信アンテナ数Mより大きな値が用いられる。例えば、P=M+1に設定してもよい。位相数Pは、繰返周期Tpと同様に、固定値であってもよいし、複数種類の値を、本処理が実行される毎に、予め決められたパターンに従って、或いはランダムに切り替えて設定してもよい。
 処理部6は、S130では、位相数Pによって決まるP種類の位相回転量のうち、変調部22での位相偏移変調に用いるM種類の位相回転量を選択する。選択する位相回転量は、360°の中で各回転量が均等に配置されることがないように、即ち、不均一な配置となるように選択する。
 具体的には、PとMとが公約数を持たない場合は、任意に位相回転量を選択してもよい。PとMとが公約数を有する場合は、配置間隔が同一パターンの繰り返しとなることがないように選択する必要がある。
 例えば、図7に示すように、P=4且つM=2である場合、位相回転量の組み合わせとして、(0°,90°)、(90°,180°)、(180°,270°)、(270°,0°)は選択可であるが、(0°,180°)、(90°,270°)は選択不可である。また、P=4且つM=3である場合、位相回転量の組み合わせとして、(0°,90°,180°)、(90°,180°,270°)、(180°,270°,0°)、(270°,0°,90°)の全てが選択可である。但し、本実施形態では、必ずΔφ=0°を含んだ組み合わせを選択する。
 なお、位相回転量の選択は、常に一定でもよいし、本処理が実行される毎に、選択可能な組み合わせの中で、予め決められたパターンに従って又はランダムに切り替えてもよい。
 処理部6は、S140では、S130で選択されたM種類の位相回転量と、各送信アンテナとの対応関係を設定する。この対応づけは、例えば、予め設定された規則に従って割り当ててもよいし、ランダムに割り当ててもよい。また、対応付けは、常に一定でもよいし、本処理が実行される毎に、予め決められたパターンに従って、或いはランダムに切り替えてもよい。
 図8には、P=4且つM=2であり、位相回転量の組み合わせとして(0°,90°)が選択され、TX1にΔφ=0°、TX2にΔφ=90°を割り当てた場合に、TX1,TX2のそれぞれに供給される位相偏移変調された送信信号の位相が変化する様子が表現されている。
 処理部6は、S150では、測定開始タイミングであるか否かを判断する。処理部6は、測定開始タイミングではないと判断した場合、測定開始タイミングになるまで、本処理を繰り返すことで待機する。処理部6は、測定開始タイミングであると判断した場合、S160に処理を移行する。測定開始タイミングとは、測定周期Tfによって長さが決まるフレームが切り替わるタイミングである。
 処理部6は、S160では、S110~S140での設定結果に従って送信部2を作動させ、レーダ測定を実施する。具体的には、処理部6は、送信部2に、測定期間Tmの間、繰返周期Tp毎にチャープ信号を繰り返し送信させ、その受信信号から生成されるビート信号のサンプリング結果を取得する。以下、測定期間Tm中に繰り返し送信されるチャープ信号の数をK個とする。
 処理部6は、S170では、N個の受信アンテナから得られるビート信号のサンプリング結果を、受信アンテナ毎に、且つ、チャープ信号毎に周波数解析することによって、N個の受信アンテナのそれぞれについてK個ずつの距離スペクトラムを算出する。各距離スペクトラムでは、送信アンテナから送信された放射波を反射した物体を往復するのに要した時間(即ち、物体までの距離)に応じた周波数にピークが出現する。
 処理部6は、S180では、S170にて算出されたN×K個の距離スペクトラムを用いて、受信アンテナ毎に速度スペクトラムを算出する。具体的には、処理部6は、着目する受信アンテナに関するK個の距離スペクトラムから、同一周波数binの信号を抽出し、抽出した信号に対して時間軸方向への周波数解析処理を実行する。この処理を全ての周波数bin(即ち、距離)について実行する。
 速度スペクトラムでは、レーダ装置1を搭載する車両(以下、単に車両)と、送信アンテナ部3からの放射波を反射した物体(以下、単に物体)との相対速度がゼロである場合は、各送信アンテナに割り当てられた位相回転量に応じた周波数が、ドップラ周波数として抽出される。つまり、Δφ=0°に対応する信号成分の周波数は0Hzである。
 なお、ドップラ周波数が観測される範囲(以下、ドップラ観測範囲)は、繰返周期Tpによって決まる。また、ドップラ周波数は、図9に示すように、ドップラ観測範囲をP分割した地点のうち、M個の地点にて検出される。図9では、ドップラ観測範囲の上限が1に正規化されている。
 また、速度スペクトラムでは、車両と物体との間に相対速度がある場合は、これらM個のドップラ周波数は、相対速度に応じた大きさだけシフトし、相対速度の大きさによっては、周波数の折り返しが発生する。
 これらS170およびS180の算出結果から、処理部6は、レーダ波を反射した物体との距離および相対速度を表す二次元スペクトラム(以下、受信スペクトラム)を、受信アンテナ毎に生成する。
 処理部6は、S190では、受信アンテナ毎に生成された受信スペクトラムを用いて、レーダ波を反射した物体との距離および相対速度、物体が存在する方位を算出する情報生成処理を実行して本処理を終了する。
 なお、本処理において、S110が周期設定部、S120が位相数設定部、S140が対応設定部、S180がスペクトラム算出部、S190が速度決定部に相当する。
 [2-2.情報生成処理]
 処理部6が、先のS190で実行する情報生成処理の詳細を、図10のフローチャートを用いて説明する。
 処理部6は、S310では、S180にて受信アンテナ毎に生成されたN個の受信スペクトラムを、インコヒーレント積分して、一つの統合スペクトラムg(r,v)を生成する。受信アンテナ毎の受信スペクトラムをs(r,v,Rch)で表すものとして、統合スペクトラムg(r,v)は、(5)式を用いて算出される。rは距離、vは、ドップラ観測範囲の上限周波数に対応する速度を1とする正規化ドップラ速度、Rchは、受信アンテナを識別する番号である。
Figure JPOXMLDOC01-appb-M000002
 処理部6は、S320では、統合スペクトラム上で、予め設定された閾値以上の強度を有するピークがM個以上検出されている距離を候補距離として、候補距離のうち、以下のS220からS280での処理の対象として未だ選択されていない距離を、対象距離rとして選択する。
 処理部6は、S330では、S320で選択された対象距離rで検出される複数のピークのうち、以下のS340からS370での処理対象として未だ選択されていないピークに対応する速度を対象速度vとして選択する。ここでは、速度が小さいものから順番に選択する。
 処理部6は、S340では、対象速度vのピークが、位相回転量Δφ=0°に対応したピークであると仮定し、(6)式に従って、他の位相回転量に対応したピークが存在すると推定されるM-1個の対応点(r,vj)を算出する。但し、j=2~Mである。x(j)は、S130で選択されたΔφ=0°以外の位相回転量である。v,vjは正規化されたドップラ周波数であり、0~1の値をとる。mod(a,m)は、aをmで割った後の余りを示す。
Figure JPOXMLDOC01-appb-M000003
 処理部6は、S350では、S340で推定された対応点のすべてについて、統合スペクトラム上でピーク(即ち、二次極大点)が存在するか否かを判断する。処理部6は、S350にて肯定判断した場合は、S360に処理を移行し、否定判断した場合は、S390に処理を移行する。以下では、対応点に対応するM個のピークを候補ピーク群という。
 処理部6は、S360では、候補ピーク群が電力条件を満たすか否かを判断する。処理部6は、S360にて肯定判断した場合は、S370に処理を移行し、否定判断した場合は、S390に処理を移行する。ここでは、電力条件として、候補ピーク群に属するピークの信号強度差が、予め設定された許容範囲内にあることを用いる。これは、同一物体からの反射波に基づくピークの信号強度は、いずれも類似しているはずであるとの知見に基づく。
 処理部6は、S370では、候補ピーク群が位相条件を満たすか否かを判断する。処理部6は、S370にて肯定判断した場合は、S380に処理を移行し、否定判断した場合は、S390に処理を移行する。ここでは、位相条件として、基準受信チャンネルとそれ以外の受信チャンネルとの位相差を用い、候補ピーク間でこの位相差の差異が予め設定された許容範囲にあることを用いる。これは、同一物体からの反射波に基づくピークは、いずれも同じ方向から到来するはずであるとの知見に基づき、同じ方向から到来するピークの受信チャンネル間での位相差は、いずれも似たような大きさになることに基づく。
 以下では、370にて肯定判断された候補ピーク群を、同一物体ピーク群という。
 処理部6は、S380では、対象距離r、対象速度vの組を、物体情報として登録する。更に、以下のようにして算出した方位θも物体情報に追加する。即ち、受信アンテナ毎に算出されたN個の受信スペクトラムのそれぞれから、M個の同一物体ピーク群に対応する各ピークを抽出する。抽出されたM×N個のピークを、仮想アレーに含まれるM×N個の受信アンテナからの受信信号とみなして、MUSIC又はビームフォーミング等の方位検出処理を実行することで、物体の方位θを算出する。MUSICは、Multiple signal classificationの略である。
 なお、N個の受信アンテナから得られる受信信号のそれぞれから、同一物体ピーク群として抽出される、各M個のピークは、仮想アレーから得られるM×N個の受信信号に相当する。
 処理部6は、S390では、対象距離rで検出される全てのピーク(即ち、速度)が、対象速度vとして選択された否かを判断する。処理部6は、S390にて肯定判断した場合はS400に処理を移行し、否定判断した場合は、S330に処理を戻す。
 処理部6は、S400では、全ての候補距離が対象距離rとして選択されたか否かを判断する。処理部6は、S400にて肯定判断した場合は、処理を終了し、否定判断した場合は、S320に処理を戻す。
 [3.効果]
 以上詳述した実施形態によれば、以下の効果を奏する。
 (3a)レーダ装置1では、M個の送信アンテナに供給する送信信号に対して位相偏移変調を行う際に用いる位相数Pを、P>Mとなるように設定し、しかも、速度スペクトル上で検出される各送信信号に対応した各ピークが不均等に配置されるように、各送信信号の位相偏移変調に用いる位相回転量を選択している。これにより、速度スペクトル上で周波数の折り返しが発生したとしても、ピークの配置を手がかりにして、ピークと送信アンテナとの対応関係を正しく認識することができる。
 つまり、図11に示すように、P=Mに設定した場合、速度スペクトラム上で検出される各送信信号に対応した各ピーク(即ち、同一物体ピーク群)は、ドップラ観測範囲に均等に配置される。図11中の上段が物体との相対速度がゼロである場合、下段が、相対速度がありピークがシフトした状態を示す。下段の速度スペクトラムでは、すべてのピークが均等な間隔で現れるため、どのピークがどの送信アンテナに対応するかを正確に識別することが不可能である。
 図9は、P=4且つP=2の場合で、p=0及びp=1の位相回転量を用いた場合である。同一物体ピーク群に属する二つのピークは、ドップラ観測範囲内で不均等な間隔で位置するため、相対速度によるドップラシフトが生じたとしても、その不均等な位置関係からピークと送信アンテナとの関係を特定することができる。
 (3b)レーダ装置1では、速度スペクトル上で同一物体ピーク群が発生する位置の決定に影響のある繰返周期Tp、位相数P、位相回転量の選択を、フレーム毎に変化させることができるように構成されている。このため、路面や路側物等、様々な静止物に基づいて発生する不要なピークに、同一物体ピーク群の各ピークが埋もれてしまうことを抑制することができる。
 つまり、図12に示すように、受信スペクトラム上で静止物のピークが発生する領域をノイズ領域Zとすると、同一物体ピーク群の一つが、ノイズ領域Zに埋もれてしまう場合がある。なお、図12中の丸印が、選択された位相回転量に対応する点、即ち、同一物体ピーク群に属するピークであり、図12中のバツ印が、選択されなかった位相回転量に対応する点である。以下、図13及び図14でも同様である。図示されている通り、位相偏移変調に用いる位相回転量の選択の仕方によって、同一物体ピーク群に属するピークが、ノイズ領域Zに埋もれてしまうことを抑制することができる。
 また、図13に示すように、位相偏移変調に用いる位相数Pを変化させると、位相偏移変調で選択可能な位相回転量、即ち、受信スペクトラム上でピークが出現する位置が変化する。このため、位相数Pの設定を変化させることによっても、位相回転量の選択の仕方を変化させた場合と同様の効果を得ることができる。
 更に、図14に示すように、繰返周期Tpを変化させると、ドップラ観測範囲が拡縮するため、位相数Pや選択される位相回転量が同じであっても、受信スペクトラム上での同一物体ピーク群に属するピークの発生位置が変化する。このため、繰返周期Tpの設定を変化させることによっても、位相回転量の選択の仕方を変化させた場合および位相数Pの設定を変化させた場合と同様の効果を得ることができる。
 [4.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (4a)上記実施形態では、同一物体ピーク群を発生させる位置を変化させるパラメータ(即ち、繰返周期Tp、位相数P、位相回転量の選択)を、外部の状況とは無関係に変化させているが、本開示は、これに限定されるものではない。例えば、これらのパラメータを、自車速やトラッキング中の物体との相対速度に応じて変化させてもよい。
 (4b)上記実施形態では、位相偏移変調に用いる位相回転量として、常にΔφ=0°を選択しているが、本開示は、これに限定されるものではない。Δφ=0°を選択しない場合、物体情報を登録する際には、同一物体ピーク群の情報から速度vを推定すればよい。
 (4c)上記実施形態では、候補ピーク群が同一物体ピーク群であるか否かの判断に、電力条件及び位相条件を用いているが、これらを省略したり、別の条件を追加したりしてもよい。
 (4d)上記実施形態では、同一物体ピーク群に属するM個のピークを全て検出した場合に物体情報を登録しているが、本開示は、これに限定されるものではない。例えば、Mが4以上である場合、同一物体ピーク群に属するピークが3個以上検出されていれば物体情報が登録されるようにしてもよい。
 (4e)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。
 (3f)上述したレーダ装置の他、当該レーダ装置を構成要素とするシステムなど、種々の形態で本開示を実現することもできる。

Claims (8)

  1.  レーダ装置(1)であって、
     複数の送信アンテナを有する送信アンテナ部(3)と、
     連続波の共通信号を発生させるように構成された発振部(21)と、
     前記共通信号を前記送信アンテナと同数に分岐させた複数の分岐信号のそれぞれについて、それぞれが異なる位相回転量で、予め設定された繰返周期毎に前記分岐信号の位相を回転させる位相偏移変調を行うことで、前記複数の送信アンテナに入力される複数の送信信号を生成するように構成された変調部(22)と、
     一つ以上の受信アンテナを有する受信アンテナ部(4)と、
     前記受信アンテナ部にて受信された一つ以上の受信信号のそれぞれから抽出される、前記複数の送信信号に対応した複数の信号成分に基づいて、前記送信アンテナ部からの放射波を反射した物体に関する情報を生成するように構成された処理部(6)と、
     を備え、
     前記送信アンテナ部が有する前記送信アンテナの数をM、前記位相偏移変調に用いられる位相数をPとし、P>Mに設定されている
     レーダ装置。
  2.  請求項1に記載のレーダ装置であって、
     前記処理部は、
     前記受信信号を解析することで、前記繰返周期毎に前記受信信号の位相が変化する速度を周波数に対応づけた速度スペクトラムを算出するように構成されたスペクトラム算出部(6:S180)と、
     同一の前記物体に起因して前記速度スペクトラム上に発生する前記送信アンテナの数と同数のピークを同一物体ピーク群として抽出し、該同一物体ピーク群に属する前記複数のピークの前記速度ペクトラム上での位置関係から、前記物体の相対速度を決定するように構成された速度決定部(6:S190)と、
     を備え、
     前記変調部は、前記同一物体ピーク群に属する前記複数のピークの配置間隔が不均一となるように、前記複数の分岐信号のそれぞれに対する前記位相回転量が設定されるように構成された
     レーダ装置。
  3.  請求項2に記載のレーダ装置であって、
     前記速度決定部は、前記同一物体ピーク群を抽出する条件の一つとして、該同一物体ピーク群に属する前記複数のピーク間の電力差が予め設定された許容範囲内であることを用いる(6:S360)ように構成された。
     レーダ装置。
  4.  請求項2または請求項3に記載のレーダ装置であって、
     前記受信アンテナ部が複数の受信アンテナを備え、
     前記スペクトラム算出部は、前記複数の受信アンテナのそれぞれについて速度スペクトラムを算出するように構成され、
     前記速度決定部は、前記同一物体ピーク群を抽出する条件の一つとして、前記複数の受信アンテナのそれぞれにおいて抽出される前記同一物体ピーク群の候補となる前記複数のピーク間の位相差が、前記複数のアンテナ間でいずれも同じであることを用いる(6:S370)ように構成された
     レーダ装置。
  5.  請求項1から請求項4までのいずれか1項に記載のレーダ装置であって、
     前記変調部での位相偏移変調に用いる前記位相数を定期的に変化させるように構成された位相数設定部(6:S120)を更に備える
     レーダ装置。
  6.  請求項1から請求項5までのいずれか1項に記載のレーダ装置であって、
     前記複数の送信アンテナと前記位相回転量との対応関係を定期的に変化させるように構成された対応設定部(6:S140)を更に備える
     レーダ装置。
  7.  請求項1から請求項6までのいずれか1項に記載のレーダ装置であって、
     前記繰返周期を定期的に変化させるように構成された周期設定部(6:S110)を更に備える
     レーダ装置。
  8.  請求項1から請求項7までのいずれか1項に記載のレーダ装置であって、
     前記発振部は、周波数が連続的に変化するチャープ信号を前記共通信号として発生させるように構成された
     レーダ装置。
PCT/JP2018/034256 2017-09-15 2018-09-14 レーダ装置 WO2019054504A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880059280.XA CN111095016B (zh) 2017-09-15 2018-09-14 雷达装置
DE112018005155.2T DE112018005155T5 (de) 2017-09-15 2018-09-14 Radarvorrichtung
US16/814,098 US11131764B2 (en) 2017-09-15 2020-03-10 Radar device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-177539 2017-09-15
JP2017177539A JP6881177B2 (ja) 2017-09-15 2017-09-15 レーダ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/814,098 Continuation US11131764B2 (en) 2017-09-15 2020-03-10 Radar device

Publications (1)

Publication Number Publication Date
WO2019054504A1 true WO2019054504A1 (ja) 2019-03-21

Family

ID=65723702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034256 WO2019054504A1 (ja) 2017-09-15 2018-09-14 レーダ装置

Country Status (5)

Country Link
US (1) US11131764B2 (ja)
JP (1) JP6881177B2 (ja)
CN (1) CN111095016B (ja)
DE (1) DE112018005155T5 (ja)
WO (1) WO2019054504A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929622A1 (en) * 2020-06-25 2021-12-29 NXP USA, Inc. Radar system
DE102022119724A1 (de) 2021-08-06 2023-02-09 Panasonic Intellectual Property Management Co., Ltd. Radar-Vorrichtung
WO2023074275A1 (ja) * 2021-10-29 2023-05-04 パナソニックIpマネジメント株式会社 レーダ装置
WO2023181461A1 (ja) * 2022-03-23 2023-09-28 パナソニックIpマネジメント株式会社 レーダ装置
WO2024004276A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 レーダ装置
WO2024135123A1 (ja) * 2022-12-19 2024-06-27 パナソニックオートモーティブシステムズ株式会社 レーダ装置、レーダ信号の送信方法、及び、レーダ信号の受信方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7361265B2 (ja) * 2019-03-07 2023-10-16 パナソニックIpマネジメント株式会社 レーダ装置
WO2020234923A1 (ja) * 2019-05-17 2020-11-26 三菱電機株式会社 アンテナ装置及びレーダ装置
CN113795767A (zh) * 2019-05-29 2021-12-14 京瓷株式会社 电子设备、电子设备的控制方法以及程序
JP7325011B2 (ja) * 2019-06-13 2023-08-14 パナソニックIpマネジメント株式会社 レーダ装置
DE102020115387A1 (de) 2019-06-13 2020-12-17 Panasonic Intellectual Property Management Co., Ltd. Radar-Vorrichtung
JP7275897B2 (ja) * 2019-06-21 2023-05-18 株式会社デンソー レーダシステム
JP7351706B2 (ja) * 2019-10-15 2023-09-27 株式会社Soken 物体追跡装置
JP7310665B2 (ja) * 2020-03-13 2023-07-19 株式会社デンソー レーダ装置
JP6921339B1 (ja) * 2020-06-11 2021-08-18 三菱電機株式会社 レーダ装置およびレーダ画像生成方法
CN111880171B (zh) * 2020-07-07 2023-09-05 西安电子科技大学 一种消除雷达目标盲速的脉冲分段编码方法
JP7502977B2 (ja) 2020-11-27 2024-06-19 パナソニックオートモーティブシステムズ株式会社 レーダ装置、レーダ信号生成回路、レーダ送信方法およびレーダ受信方法
EP4044172A1 (en) * 2021-02-15 2022-08-17 Furuno Electric Co., Ltd. Target detection device and target detection method
US20230072441A1 (en) * 2021-09-03 2023-03-09 Texas Instruments Incorporated Empty band doppler division multiple access
JP2024034190A (ja) * 2022-08-31 2024-03-13 パナソニックIpマネジメント株式会社 レーダ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109877A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd 周波数シフト回路および通信装置
JP2012145332A (ja) * 2011-01-06 2012-08-02 Mitsubishi Electric Corp Mimoレーダ装置
JP2013088313A (ja) * 2011-10-19 2013-05-13 Japan Radio Co Ltd レーダ装置
JP2016102745A (ja) * 2014-11-28 2016-06-02 パナソニック株式会社 レーダ送信装置およびレーダ受信装置
JP2017522576A (ja) * 2014-06-26 2017-08-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mimoレーダー測定方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108582A1 (de) * 2001-02-22 2002-09-05 Bosch Gmbh Robert Verfahren zum Erkennen gestörter Zustände einer Radareinrichtung und Radareinrichtung
JP4910651B2 (ja) * 2006-11-16 2012-04-04 株式会社デンソー 通信統合レーダ装置、通信統合レーダシステム
JP2009080024A (ja) * 2007-09-26 2009-04-16 Fujitsu Ltd 探知測距装置および探知測距方法
US8095276B2 (en) * 2008-10-15 2012-01-10 Autoliv Asp, Inc. Sensor system including a confirmation sensor for detecting an impending collision
US7791528B2 (en) * 2008-11-24 2010-09-07 Autoliv Asp, Inc. Method and apparatus for radar signal processing
JP2013213916A (ja) * 2012-04-02 2013-10-17 Konica Minolta Inc 画像形成装置
JP5912879B2 (ja) * 2012-05-31 2016-04-27 株式会社デンソー レーダ装置
US9608852B2 (en) * 2013-04-18 2017-03-28 Mitsubishi Electric Corporation Base-station control device, wireless communication system, and base station
JP6432221B2 (ja) * 2014-01-15 2018-12-05 パナソニック株式会社 レーダ装置
JP6331195B2 (ja) * 2014-09-29 2018-05-30 パナソニックIpマネジメント株式会社 レーダ装置
JP6396244B2 (ja) * 2015-03-25 2018-09-26 パナソニック株式会社 レーダ装置
JP6566396B2 (ja) * 2015-08-06 2019-08-28 パナソニック株式会社 レーダ装置
CN106546983B (zh) * 2015-09-17 2021-11-12 松下电器产业株式会社 雷达装置
DE102016101041B4 (de) * 2016-01-21 2018-11-22 Infineon Technologies Ag Konzept für Car2X-Kommunikation
JP2017173227A (ja) * 2016-03-25 2017-09-28 パナソニック株式会社 レーダ装置及びレーダ方法
JP6686626B2 (ja) 2016-03-30 2020-04-22 大日本印刷株式会社 加飾シート及び加飾樹脂成形品
US9806914B1 (en) * 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109877A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd 周波数シフト回路および通信装置
JP2012145332A (ja) * 2011-01-06 2012-08-02 Mitsubishi Electric Corp Mimoレーダ装置
JP2013088313A (ja) * 2011-10-19 2013-05-13 Japan Radio Co Ltd レーダ装置
JP2017522576A (ja) * 2014-06-26 2017-08-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mimoレーダー測定方法
JP2016102745A (ja) * 2014-11-28 2016-06-02 パナソニック株式会社 レーダ送信装置およびレーダ受信装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929622A1 (en) * 2020-06-25 2021-12-29 NXP USA, Inc. Radar system
DE102022119724A1 (de) 2021-08-06 2023-02-09 Panasonic Intellectual Property Management Co., Ltd. Radar-Vorrichtung
WO2023074275A1 (ja) * 2021-10-29 2023-05-04 パナソニックIpマネジメント株式会社 レーダ装置
WO2023181461A1 (ja) * 2022-03-23 2023-09-28 パナソニックIpマネジメント株式会社 レーダ装置
WO2024004276A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 レーダ装置
WO2024135123A1 (ja) * 2022-12-19 2024-06-27 パナソニックオートモーティブシステムズ株式会社 レーダ装置、レーダ信号の送信方法、及び、レーダ信号の受信方法

Also Published As

Publication number Publication date
JP6881177B2 (ja) 2021-06-02
US20200209380A1 (en) 2020-07-02
CN111095016B (zh) 2023-10-27
DE112018005155T5 (de) 2020-06-25
CN111095016A (zh) 2020-05-01
JP2019052952A (ja) 2019-04-04
US11131764B2 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2019054504A1 (ja) レーダ装置
CN111656212B (zh) 雷达装置
JP6911778B2 (ja) レーダ装置
EP3471210B1 (en) Radar apparatus
US10613195B2 (en) Radar apparatus and radar method
JP4496954B2 (ja) 干渉型レーダー
JP4665590B2 (ja) 干渉型レーダ
JP4905457B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
US20190195984A1 (en) Radar device
JP6911861B2 (ja) 物体検知装置および物体検知方法
JP3821688B2 (ja) レーダ装置
JP6844525B2 (ja) アンテナ装置
WO2021177107A1 (ja) レーダ装置
JP2021513657A (ja) 自動車用の角度分解型で広帯域のレーダセンサ
US20220050176A1 (en) Radar device
US7961139B2 (en) Digital beam forming using frequency-modulated signals
JPWO2017159521A1 (ja) 物体検知装置および物体検知方法
JP2005315820A (ja) 障害物検知装置
KR20190113159A (ko) 레이더 장치
JP2006091029A (ja) レーダ装置
WO2023003017A1 (ja) 水位検出装置
JP2020085730A (ja) レーダ装置
JP2019174206A (ja) 信号処理装置、信号処理方法及び信号処理プログラム
WO2024048003A1 (ja) レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857162

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18857162

Country of ref document: EP

Kind code of ref document: A1