WO2019050032A1 - 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体 - Google Patents

熱可塑性エラストマー組成物、発泡粒子及び発泡成形体 Download PDF

Info

Publication number
WO2019050032A1
WO2019050032A1 PCT/JP2018/033454 JP2018033454W WO2019050032A1 WO 2019050032 A1 WO2019050032 A1 WO 2019050032A1 JP 2018033454 W JP2018033454 W JP 2018033454W WO 2019050032 A1 WO2019050032 A1 WO 2019050032A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
foam
pigment
particles
mass
Prior art date
Application number
PCT/JP2018/033454
Other languages
English (en)
French (fr)
Inventor
裕一 権藤
近藤 広隆
洵史 山下
高野 雅之
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65635000&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019050032(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2017173952A external-priority patent/JP6649331B2/ja
Priority claimed from JP2017173948A external-priority patent/JP6649330B2/ja
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to US16/645,556 priority Critical patent/US11643538B2/en
Priority to CN201880058776.5A priority patent/CN111051415B/zh
Priority to EP22180708.4A priority patent/EP4101887A1/en
Priority to EP18854127.0A priority patent/EP3683262B1/en
Publication of WO2019050032A1 publication Critical patent/WO2019050032A1/ja
Priority to US18/080,359 priority patent/US20230110490A1/en
Priority to US18/238,670 priority patent/US20230399501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0052Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic elastomer composition, foamed particles and a foamed molded article.
  • polystyrene foam molded articles using polystyrene as a base resin have been widely used as cushioning materials and packaging materials.
  • the foamed molded product is prepared by heating expandable beads such as expandable polystyrene particles to cause expansion (pre-expansion) to obtain expanded particles, and filling the expanded particles obtained in the cavity of the mold, It can obtain by carrying out secondary foaming and integrating foam particle
  • Patent Document 1 proposes a foamed molded product using a thermoplastic elastomer as a base resin.
  • Patent Document 2 proposes a foam-molded article using an amide-based elastomer, which is a kind of thermoplastic elastomer, as a base resin.
  • Thermoplastic elastomers such as amide elastomers have higher elasticity than polystyrene. Therefore, it is considered that the resilience of the foamed molded article having a thermoplastic elastomer as a base resin can be improved.
  • Patent Document 1 it is also described that a foam-molded article of a desired color can be obtained by using foam particles colored with a dye.
  • Patent Document 1 a foam molded article having good resilience can be obtained.
  • heat resistance improvement is also desired for the foam molded body in addition to the resilience.
  • thermoplastic elastomers have hard segments and soft segments, their heat resistance is lower than existing thermoplastic resins.
  • the inventors of the present invention used a thermoplastic elastomer as a base resin and manufactured a foam-molded article colored with a dye
  • the obtained foam-molded article was uniformly colored.
  • the color was light and it was difficult to make it dark.
  • it is conceivable to increase the addition amount of the dye in order to obtain a deep color if the addition amount of the dye is increased, the physical properties of the molded article are adversely affected. Therefore, it is desired to provide a foamed molded article made of a thermoplastic elastomer with a darker color without adversely affecting the physical properties.
  • the first object of the present invention is to provide a thermoplastic elastomer composition, expanded particles and an expanded molded article having improved heat resistance.
  • a second object of the present invention is to provide foam particles and foam molded articles which are dark in color and rich in design.
  • the inventors of the present invention attempted to add various heat resistance improvers in order to improve the heat resistance of the thermoplastic elastomer foam molded article.
  • the pigment raises the crystallization temperature of the thermoplastic elastomer, and that the heat resistance of the foam molded article produced from the thermoplastic elastomer composition containing the thermoplastic elastomer and the pigment can be improved. I found it unexpectedly.
  • Thermoplastic elastomer composition comprising a thermoplastic elastomer and a pigment.
  • thermoplastic elastomer composition according to Item 1 wherein the pigment is contained in an amount of 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
  • Item 3 The thermoplastic elastomer composition according to Item 1 or 2, wherein the thermoplastic elastomer exhibits crystallinity and is selected from an amide elastomer, an olefin elastomer, an ester elastomer, and a urethane elastomer.
  • thermoplastic elastomer composition according to any one of Items 1 to 3, wherein the thermoplastic elastomer is an amide-based elastomer, and the thermoplastic elastomer composition has a melting point of 20 to 30 ° C. higher than the crystallization temperature.
  • thermoplastic elastomer composition according to any one of Items 1 to 3, wherein the thermoplastic elastomer is an ester-based elastomer, and the thermoplastic elastomer composition has a melting point of 25 to 45 ° C. higher than the crystallization temperature.
  • Item 7 A foamed particle obtained by foaming a resin particle containing the thermoplastic elastomer composition according to any one of items 1 to 6 with a foaming agent.
  • Item 8 The foam particles are colored foam particles having a tinted colored area on the surface thereof, 8.
  • Item 9. Item 9.
  • the pigment is contained in an amount of 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer, and the foam particles have a relationship of A> B (A is an average cell diameter of the surface layer, B is a center The average cell diameter of the surface layer portion is 100 to 400 ⁇ m, and the average cell diameter of the central portion is 10 to 200 ⁇ m.
  • Item 13 A foamed molded article comprising the thermoplastic elastomer composition according to any one of Items 1 to 6.
  • Item 14 A foam molded article comprising a fused body of foam particles according to any one of the items 7 to 12.
  • Item 15 The foam molded article according to Item 13 or 14, wherein the foam molded article is used as a construction material, a member of a shoe or a cushioning material.
  • thermoplastic elastomer composition foamed particles and a foamed molded article having excellent heat resistance.
  • a colored foam particle and a colored foam molded article which is deep in color and rich in design.
  • thermoplastic elastomer composition (hereinafter, also simply referred to as a composition) contains a thermoplastic elastomer and a pigment.
  • the composition is suitably used for the production of foam particles and foam moldings.
  • the pigment serves as a heat resistance improver in the composition.
  • the pigment plays a role of increasing the crystallization temperature of the thermoplastic elastomer. As the crystallization temperature is increased, the crystallinity of the thermoplastic elastomer is increased, and as a result, the heat resistance of the foam molded article is improved.
  • the inventors believe that the phenomenon in which the heat resistance of the thermoplastic elastomer is improved by the pigment is not known in the technical field of using a thermoplastic elastomer for the production of a foam molded article.
  • thermoplastic Elastomer has rubber elasticity at 25 ° C. by having a soft segment which is a flexible component exhibiting rubber elasticity and a hard segment which is a molecular restraint component which plays a role of a crosslinking point. On the other hand, it refers to a polymer that exhibits fluidity by heating.
  • the thermoplastic elastomer can be selected, for example, from the group consisting of an amide based elastomer, an olefin based elastomer, an ester based elastomer, and a urethane based elastomer.
  • the composition may comprise one elastomer or may comprise a mixture of two or more elastomers.
  • the thermoplastic elastomer preferably has crystallinity. The presence or absence of crystallinity can be determined by the presence or absence of the crystallization temperature. The crystallization temperature can be measured by a differential scanning calorimeter.
  • the amide based elastomer may be cross-linked or non-cross-linked.
  • non-crosslinking means that the insoluble gel fraction of the foamed particles in the alcohol solvent is 3.0% by mass or less. Further, crosslinking means that the gel fraction is more than 3.0% by mass.
  • the gel fraction of the amide elastomer (foam) is measured in the following manner.
  • the mass W1 of the foam is measured.
  • the foam is immersed for 24 hours in 100 mL of an alcohol-based solvent (eg, 3-methoxy-3-methyl-1-butanol) at 130 ° C.
  • an alcohol-based solvent eg, 3-methoxy-3-methyl-1-butanol
  • the residue of the alcohol solvent is filtered using an 80 mesh wire mesh, and the residue remaining on the wire mesh is dried at 130 ° C. for 1 hour to measure the mass W2 of the residue remaining on the wire mesh
  • the gel fraction of the foam can be calculated based on the following equation.
  • the base resin constituting the thermoplastic elastomer composition preferably contains a non-crosslinked amide-based elastomer from the viewpoints of low density, good processability, impact resilience, and recovery characteristics.
  • copolymers having polyamide blocks (hard segments) and polyether blocks (soft segments) can be used.
  • polyamide block for example, poly ⁇ capramide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene Methylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), polyundecanamide (nylon 11), poly lauramide (nylon 12), polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalamide ( Polyamide structures such as nylon 6T), polynanomethylene terephthalamide (nylon 9T), polymetaxylylene adipamide (nylon MXD6) and the like can be mentioned.
  • the polyamide block may be a combination of units constituting these polyamide structures.
  • polyether blocks examples include polyether structures such as polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polytetrahydrofuran (PTHF) and the like.
  • the polyether block may be a combination of units constituting these polyether structures.
  • the polyamide blocks and the polyether blocks may be randomly dispersed.
  • the number average molecular weight of the polyamide block is preferably 300 to 15,000, and more preferably 600 to 5,000.
  • the number average molecular weight Mn of the polyether block is preferably 100 to 6000, and more preferably 200 to 3000.
  • non-crosslinked amide elastomers examples include U.S. Pat. No. 4,331,786, U.S. Pat. No. 4,115,475, U.S. Pat. No. 4,195,015, U.S. Pat. No. 4,839,441, U.S. Pat. No. 4,864,014, U.S. Pat.
  • the amide-based elastomers described in U.S. Pat. No. 4,230,838 and U.S. Pat. No. 4,332,920 can also be used.
  • the non-crosslinked amide elastomer is preferably one obtained by copolycondensation of a polyamide block having a reactive end and a polyether block having a reactive end.
  • the following may be mentioned in particular as this copolycondensation: (A) Copolycondensation of a polyamide block having a diamine chain end and a polyoxyalkylene block having a dicarboxyl end, (B) Polyamide block having a diamine chain end obtained by cyanoethylation and hydrogenation of a polyamide block having a dicarboxyl terminus and an aliphatic dihydroxylated ⁇ , ⁇ -polyoxyalkylene block called polyether diol Co-polycondensation with (C) Copolycondensation of a polyamide block having a dicarboxyl end with a polyether diol (in this case, the product obtained in this case is particularly referred to as a polyether ester amide).
  • Examples of the compound giving a polyamide block having a dicarboxyl end include a compound obtained by condensation of a dicarboxylic acid and a diamine in the presence of a chain regulator of ⁇ , ⁇ -aminocarboxylic acid, lactam or dicarboxylic acid.
  • the non-crosslinked amide elastomer is prepared, for example, from polyether diol, lactam (or ⁇ , ⁇ -amino acid) and diacid chain stopper in the presence of a small amount of water. It can be obtained by reaction.
  • the non-crosslinked amide elastomer may have polyether blocks and polyamide blocks of various lengths, and may be dispersed in the polymer chain by reaction of each component at random.
  • the block of polyether diol may be used as it is, or may be used by copolymerizing the hydroxyl group and the polyamide block having a carboxy terminal group, and the hydroxyl group is aminated to polyether diamine After conversion, it may be used by condensation with a polyamide block having a carboxy terminal group. It is also possible to obtain a polymer containing randomly dispersed polyamide blocks and polyether blocks by mixing polyetherdiol blocks with a polyamide precursor and a chain limiting agent for co-polycondensation.
  • Olefin-based elastomer may be crosslinked or non-crosslinked.
  • the non-crosslinking means that the insoluble gel fraction in the foam is 3.0% by mass or less. Further, crosslinking means that the gel fraction is more than 3.0% by mass.
  • the gel fraction of the olefin elastomer is measured in the following manner.
  • the mass W1 of the foam is measured.
  • the foam is then heated to reflux for 3 hours in 80 ml of boiling xylene.
  • the residue in xylene is filtered using an 80 mesh wire mesh, the residue remaining on the wire mesh is dried at 130 ° C. for 1 hour, and the mass W2 of the residue remaining on the wire mesh is measured.
  • the gel fraction of the foam can be calculated based on the following equation.
  • the base resin constituting the thermoplastic elastomer composition preferably contains a non-crosslinked olefin-based elastomer from the viewpoints of low density, good processability, impact resilience, and recovery characteristics.
  • the non-crosslinked olefin elastomer is preferably one which can give the foam a predetermined density and compression set without containing mineral oil.
  • Examples of the non-crosslinked olefin elastomer include those having a structure in which a hard segment and a soft segment are combined. Such a structure exhibits rubber elasticity at normal temperature and is plasticized at high temperature to be able to be molded.
  • non-crosslinked olefin elastomers in which the hard segment is a polypropylene resin and the soft segment is a polyethylene resin are mentioned.
  • polypropylene resin a resin containing polypropylene as a main component can be used.
  • the polypropylene may have stereoregularity selected from isotactic, syndiotactic, atactic and the like.
  • polyethylene resin a resin containing polyethylene as a main component can be used.
  • Components other than polyethylene include polyolefins such as polypropylene and polybutene.
  • the non-crosslinked olefin elastomer may contain a softener such as lubricating oil, paraffin, coconut oil, stearic acid, fatty acid and the like.
  • a non-crosslinking olefin-based elastomer a polymerization type elastomer produced by directly polymerizing a monomer to be a hard segment and a monomer to be a soft segment and directly produced in a polymerization reaction vessel; kneaders such as a Banbury mixer and a twin screw extruder And a blend type elastomer produced by physically dispersing a polypropylene-based resin to be a hard segment and a polyethylene-based resin to be a soft segment.
  • the non-crosslinked olefin elastomer preferably has a Shore A hardness of 30 to 100, and more preferably 40 to 90.
  • the hardness of the non-crosslinked olefin elastomer is measured in accordance with a durometer hardness test (JIS K6253: 97).
  • the non-crosslinked olefin elastomer preferably has a Shore D hardness of 10 to 70, and more preferably 20 to 60.
  • the hardness of the non-crosslinked olefin elastomer is measured in accordance with a durometer hardness test (ASTM D2240: 95).
  • ester-based elastomer includes, for example, an ester-based elastomer containing a hard segment and a soft segment.
  • the hard segment is composed of, for example, a dicarboxylic acid component and / or a diol component. You may be comprised from 2 components of a dicarboxylic acid component, and a dicarboxylic acid component and a diol component.
  • dicarboxylic acid component examples include components derived from aliphatic dicarboxylic acids such as oxalic acid, malonic acid and succinic acid and derivatives thereof, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalene dicarboxylic acid and derivatives thereof.
  • C2-10 alkylene glycol such as ethylene glycol, propylene glycol, butanediol (for example, 1,4-butanediol), (poly) oxy C2-10 alkylene glycol, C5-12 cycloalkanediol, bisphenol Or these alkylene oxide adducts etc.
  • the hard segment may have crystallinity.
  • polyester type and / or polyether type segments can be used as the soft segment.
  • polyester type examples include dicarboxylic acids (aliphatic C4-12 dicarboxylic acids such as adipic acid) and diols (C2-10 alkylene glycols such as 1,4-butanediol, ethylene glycol) And aliphatic polyesters such as polycondensates with oxy C2-10 alkylene glycol), polycondensates of oxycarboxylic acids, and ring-opening polymers of lactones (C3-12 lactones such as ⁇ -caprolactone).
  • the polyester type soft segment may be amorphous.
  • polyesters of C2-6 alkylene glycol such as caprolactone polymer, polyethylene adipate and polybutylene adipate and C6-12 alkanedicarboxylic acid.
  • the number average molecular weight of this polyester may be in the range of 200 to 15,000, may be in the range of 200 to 10,000, and may be in the range of 300 to 8,000.
  • Soft segments of polyether type include segments derived from aliphatic polyethers such as polyalkylene glycols (eg, polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol).
  • the number average molecular weight of the polyether may be in the range of 200 to 10000, may be in the range of 200 to 6000, and may be in the range of 300 to 5000.
  • the soft segment is a polyester having a polyether unit such as a copolymer of aliphatic polyester and polyether (polyether-polyester), and a polyether such as polyoxyalkylene glycol (for example, polyoxy tetramethylene glycol) It may be a segment derived from a polyester of and aliphatic dicarboxylic acid.
  • a polyether unit such as a copolymer of aliphatic polyester and polyether (polyether-polyester)
  • a polyether such as polyoxyalkylene glycol (for example, polyoxy tetramethylene glycol) It may be a segment derived from a polyester of and aliphatic dicarboxylic acid.
  • the mass ratio of the hard segment to the soft segment may be 20:80 to 90:10, 30:70 to 90:10, or 30:70 to 80:20. It may be 40:60 to 80:20, or 40:60 to 75:25.
  • the ester elastomer contains a hard segment in a proportion of 30 to 80% by mass, and the dicarboxylic acid component other than the terephthalic acid component is 5 It may be contained in a proportion of up to 30% by mass.
  • the proportion of the dicarboxylic acid component other than the terephthalic acid component may be 5 to 25% by mass, 5 to 20% by mass, or 10 to 20% by mass.
  • the proportion of the dicarboxylic acid component can be obtained by quantitatively evaluating the NMR spectrum of the resin.
  • dicarboxylic acid components other than a terephthalic acid component are isophthalic acid components.
  • the crystallinity of the elastomer tends to decrease, and the foam moldability can be improved to obtain a foam having a lower density.
  • Urethane-based elastomer for example, an elastomer obtained via a urethane bond in the molecule by a polyaddition reaction can be used by using a long-chain polyol, short-chain glycol, diisocyanate etc.
  • Chain polyols include poly (ethylene adipate), poly (diethylene adipate), poly (1,4-butylene adipate), poly (1,6-hexane adipate), polylactone diol, polycaprolaton diol, polyenant lactone diol And polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (propylene glycol / ethylene glycol), poly (1,6-hexamethylene glycol carbonate) and the like.
  • the molecular weight of the long chain polyol may be 100 to 10000, and may be 500 to 5000.
  • glycol ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol
  • 1,4-butanediol 1,5-pentanediol, 1,6-hexanediol, 1,4-xylylene glycol, bisphenol A, hydroquinone diethylol ether, phenylene bis- ( ⁇ -hydroxyethyl ether), etc. It can be mentioned.
  • diisocyanates examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl diisocyanate, , 5-Naphthalene diisocyanate, 3,3'-Dimethylbiphenyl-4,4'-diisocyanate, o-xylene diisocyanate, m-xylene diisocyanate, p-xylene diisocyanate, tetramethylenediisocyanate Nert, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and the like.
  • the polyurethane elastomer, long chain polyol and diisocyanate may constitute a soft segment, and short chain glycol and diisocyanate may constitute a hard segment.
  • Polyurethane-based elastomers are, if necessary, modification treatment such as maleation, carboxylation, hydroxylation, epoxidation, halogenation, sulfonation, sulfur crosslinking, peroxide crosslinking, metal ion crosslinking, electron beam crosslinking, silane It may be subjected to crosslinking treatment such as crosslinking.
  • the polyurethane elastomer may have a viscosity molecular weight of 5,000 to 100,000 and 10,000 to 100,000 from the viewpoint of toughness and flexibility as a molded body.
  • the polyurethane-based elastomer may have a number average molecular weight of 3000 to 200,000, 5,000 to 180,000 and 8,000 to 150,000.
  • the pigment as the heat resistance improver is not particularly limited as long as it can improve the heat resistance of the foam molded article.
  • the pigment may have a function of enabling the crystallization temperature of the thermoplastic elastomer composition to be 10 ° C. or more higher than the crystallization temperature of the thermoplastic elastomer.
  • the pigment also has a normal coloring function as a pigment. Therefore, the foamed particles and the foamed molded article can be colored in a desired color.
  • the pigment examples include carbon based pigments, titanium oxide based pigments, iron oxide based pigments, iron hydroxide based pigments, chromium oxide based pigments, spinner based pigments, lead chromate based pigments, chromate vermilion based pigments, and bitumen based pigments.
  • Pigment aluminum powder, bronze powder, calcium carbonate based pigment, barium sulfate based pigment, boron oxide based pigment, aluminum hydroxide based pigment, aluminum phthalocyanine based pigment, phthalocyanine based pigment, azo based pigment, condensed azo based pigment, anthraquinone based pigment, azine based pigment, Quinoline pigments, quinacdoline pigments, perinones / perylene pigments, indigo / thioindico pigments, isoindolinenon pigments, azomethine azo pigments, dioxazine pigments, quinacridone pigments, aniline black pigments, triphenylmethane pigments, etc. Pigments are listed.
  • the pigments may be used alone or in combination of two or more.
  • Examples of the carbon-based pigment include carbon black, channel black, furnace black, acetylene black, anthracene black, oil smoke, pine smoke, graphite and the like.
  • Other pigments include copper phthalocyanine, isoindoline, dichloroquinacridone, diketopyrrolopyrrole, C. I. Pigment red 2, C.I. I. Pigment red 3, C.I. I. Pigment red 5, C.I. I. Pigment red 17, C.I. I. Pigment red 22, C.I. I. Pigment red 38, C.I. I. Pigment red 41, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 48: 2, C.I. I. Pigment red 48: 3, C.I.
  • Pigment red 146 C.I. I. Pigment red 149, C.I. I. Pigment red 166, C.I. I. Pigment red 168, C.I. I. Pigment red 170, C.I. I. Pigment red 176, C.I. I. Pigment red 177, C.I. I. Pigment red 178, C.I. I. Pigment red 179, C.I. I. Pigment red 180, C.I. I. Pigment red 185, C.I. I. Pigment red 190, C.I. I. Pigment red 194, C.I. I. Pigment red 202, C.I. I. Pigment red 206, C.I. I. Pigment red 207, C.I. I.
  • the pigment in order to color in deep color, is preferably an inorganic pigment, preferably a carbon-based pigment, and more preferably carbon black.
  • the pigment is preferably contained in an amount of 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
  • the content is 0.05 parts by mass or more, the heat resistance can be sufficiently improved.
  • a pigment of 0.05 parts by mass or more with respect to 100 parts by mass of the thermoplastic elastomer is also preferable in terms of sufficient coloring of the thermoplastic elastomer. In the case of 3.0 parts by mass or less, foaming is not inhibited.
  • the content ratio of the pigment is more preferably 0.1 to 2.0 parts by mass, and still more preferably 0.2 to 1.0 parts by mass.
  • additives In the base resin constituting the thermoplastic elastomer composition, additives, an amide resin (except for the elastomer), an olefin resin (except for the elastomer) within the range not to inhibit the effects of the present invention.
  • Other resins such as ester resins (excluding elastomers), urethane resins (excluding elastomers), and polyether resins may be included.
  • the other resin may be a known thermoplastic resin or thermosetting resin.
  • thermoplastic elastomer is an amide-based elastomer
  • the thermoplastic elastomer composition has a melting point 20 to 30 ° C. higher than the crystallization temperature in terms of heat resistance improvement. It is preferable to have a high melting point of 20 to 25 ° C.
  • the thermoplastic elastomer composition preferably has a melting point 30 to 45 ° C. higher than the crystallization temperature, and 30 to 40 ° C. higher than the crystallization temperature in terms of heat resistance improvement. It is more preferred to have a high melting point.
  • the thermoplastic elastomer composition preferably has a melting point 25 to 45 ° C. higher than the crystallization temperature, and 25 to 40 ° C. higher than the crystallization temperature in terms of heat resistance improvement. It is more preferred to have a high melting point.
  • the composition having the above-described relationship between the crystallization temperature and the melting point can provide a composition capable of producing a foam molded article having higher heat resistance.
  • Expanded Particles (1) Expanded Particles The expanded particles are composed of a thermoplastic elastomer composition containing a thermoplastic elastomer and a pigment as a heat resistance improver. The foamed particles have high heat resistance by containing a pigment. The thermoplastic elastomer, the pigment and the content ratio thereof in the expanded particles are as described above for the thermoplastic elastomer composition.
  • the expanded particles preferably have a bulk density of 0.05 to 0.5 g / cm 3 in terms of heat resistance.
  • the bulk density is more preferably 0.05 to 0.25 g / cm 3 .
  • the foamed particles preferably have an open cell ratio of 10% or less in terms of heat resistance.
  • the open cell rate is more preferably 5% or less.
  • the lower limit is 0%.
  • the expanded particles preferably have an average particle size of 1 to 10 mm.
  • the average particle size is more preferably 2 to 5 mm.
  • the expanded particles are colored expanded particles provided with a tinted colored area on their surface.
  • colored foam particles are used to produce a colored foam molded body.
  • the degree of shading of the colored foam particles can be measured, for example, with a color difference meter. Specifically, when the surface of the colored foam particles is measured with a color difference meter, it is preferable to satisfy the following property (1) in terms of designability by shading.
  • Characteristic (1) XY 0.5 0.5 (X: value of color difference of dark colored portion of colored foam particle, Y: value of color difference of light colored foam particle at light portion)
  • the number of XY is more preferably 1 or more, further preferably 3 or more, and particularly preferably 5 or more.
  • the foam particles have a plurality of cells satisfying the relationship A> B (A is the average cell diameter ( ⁇ m) of the surface layer of the foam particles, B is the average cell diameter ( ⁇ m) in the center of the foam particles) Have.
  • A is the average cell diameter ( ⁇ m) of the surface layer of the foam particles
  • B is the average cell diameter ( ⁇ m) in the center of the foam particles) Have.
  • the pigment is preferably an inorganic pigment. The inventors speculate that the reason is that the diffuse reflection of light can be reduced.
  • the surface layer portion means an area of up to about 30% of the radius of the foam particle from the surface of the foam particle to the center.
  • the central part means an area of up to about 70% of the radius of the foam particle from the center of the foam particle to the surface.
  • the average cell diameter of the surface layer portion is preferably in the range of 100 to 400 ⁇ m.
  • the average cell diameter of the central portion is preferably 10 to 200 ⁇ m.
  • the average cell diameter of the surface layer is preferably 100 ⁇ m or more, and in terms of formability, the average cell diameter of the surface layer is preferably 400 ⁇ m or less.
  • the average cell diameter at the center is preferably 10 ⁇ m or more, and from the point of fusion between the foamed particles during molding, the average cell diameter at the center is preferably 200 ⁇ m or less.
  • a and B preferably have a relationship of A / B> 1.5. This relationship means that the bubbles located in the surface layer portion of the foamed particles have a considerably larger average bubble diameter than the bubbles located in the center portion. According to this configuration, compared to the case where A / B is 1.5 or less, it is possible to provide a foam molded article colored in a dark color even if the content of the pigment is small while increasing the color difference.
  • Expanded particles can be obtained through a step of impregnating resin particles with a foaming agent to obtain expandable particles (impregnation step), and an expanding step of expanding expandable particles.
  • Impregnation step (a) Impregnation step
  • the resin particle can be obtained using a known production method and production equipment.
  • resin particles can be produced by granulating a melt-kneaded product of a resin and a pigment extruded from an extruder by underwater cutting, strand cutting or the like.
  • the thermoplastic elastomer composition can be used as a melt-kneaded product.
  • the temperature, time, pressure and the like at the time of melt-kneading can be appropriately set in accordance with the used raw materials and production equipment.
  • the melt-kneading temperature in the extruder at the time of melt-kneading is preferably 170 to 250 ° C. which is a temperature at which the resin is sufficiently softened, and more preferably 200 to 230 ° C.
  • the melt-kneading temperature means the temperature of the melt-kneaded product inside the extruder obtained by measuring the temperature at the center of the melt-kneaded product flow path in the vicinity of the extruder head with a thermocouple thermometer.
  • the pigments can be fed to the extruder in the form of a masterbatch.
  • resin which comprises a masterbatch thermoplastic elastomer resin, such as polyolefin resin, such as polyethylene and a polypropylene, an amide system elastomer, an ester system elastomer, an olefin system elastomer, a urethane type elastomer, is mentioned, for example.
  • thermoplastic elastomer resins are preferred.
  • the shape of the resin particle is, for example, a true spherical shape, an elliptical spherical shape (oval shape), a cylindrical shape, a prismatic shape, a pellet shape or a granular shape.
  • the resin particles preferably have an average particle size of 0.5 to 3.5 mm. If the average particle size is less than 0.5 mm, the retention of the foaming agent may be reduced to lower the foamability. If the average particle size is larger than 3.5 mm, the filling property into the mold may be reduced.
  • the resin particles preferably have an L / D of 0.5 to 3 when the length is L (mm) and the average diameter is D (mm). If the L / D of the resin particle is less than 0.5 or more than 3, the filling property into the mold may be reduced.
  • the length L of the resin particle refers to the length of the resin particle in the extrusion direction
  • the average diameter D refers to the diameter of the cut surface of the resin particle substantially orthogonal to the direction of the length L.
  • the average diameter D of the resin particles is preferably 0.5 to 3.5 mm. If the average diameter is less than 0.5 mm, the retention of the foaming agent may be reduced and the foaming properties of the expandable particles may be reduced. When it is larger than 3.5 mm, the filling property of the expanded particles in the mold is lowered, and the thickness of the foam may not be able to be reduced when producing a plate-like foam.
  • the resin particles may contain a cell regulator.
  • the cell regulator include sodium bicarbonate citric acid, higher fatty acid amide, higher fatty acid bisamide, higher fatty acid salt, inorganic cell nucleating agent and the like. These cell regulators may be used alone or in combination of two or more. Examples of higher fatty acid amides include stearic acid amide and 12-hydroxystearic acid amide.
  • higher fatty acid bisamides examples include ethylenebisstearic acid amide, ethylenebis-12-hydroxystearic acid amide, and methylene bisstearic acid amide.
  • Higher fatty acid salts include calcium stearate.
  • inorganic cell nucleating agent talc, calcium silicate, synthetically or naturally produced silicon dioxide and the like can be mentioned.
  • the resin particles may further contain a flame retardant such as hexabromocyclododecane or triallyl isocyanurate hexabromide.
  • a flame retardant such as hexabromocyclododecane or triallyl isocyanurate hexabromide.
  • the resin particles are impregnated with a blowing agent to produce expandable particles.
  • a method of impregnating a resin particle with a foaming agent a well-known impregnation method can be used.
  • the resin particles are dispersed in water by supplying and stirring the resin particles, the dispersant and the water in a sealable autoclave, and a dispersion liquid is produced, and a foaming agent is pressed into the dispersion liquid, The method (wet impregnation) in which a foaming agent is impregnated in resin particles is mentioned.
  • the blowing agent may be impregnated without using water (dry impregnation).
  • the dispersant is not particularly limited, and examples thereof include poorly water-soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, magnesium oxide and hydroxyapatite, and surfactants such as sodium dodecylbenzene sulfonate.
  • foaming agent general purpose ones can be used, and examples thereof include inorganic gases such as air, nitrogen and carbon dioxide (carbon dioxide gas); aliphatic hydrocarbons such as propane, butane and pentane; and halogenated hydrocarbons. Aliphatic hydrocarbons and inorganic gases are preferred.
  • a foaming agent may be used independently and may use 2 or more types together.
  • the amount of the foaming agent to be impregnated into the resin particles is preferably 1 to 12 parts by mass with respect to 100 parts by mass of the resin particles.
  • the content of the foaming agent is preferably 1 part by mass or more.
  • the more preferable amount of the blowing agent is 6 to 8 parts by mass.
  • the foaming power can be sufficiently enhanced, and even if the foaming ratio is high, the foam can be further enhanced.
  • the content of the foaming agent is 8 parts by mass or less, breakage of the cell membrane is suppressed and the plasticizing effect is not too large, so excessive decrease in viscosity at the time of foaming is suppressed and contraction is suppressed. .
  • the content (impregnated amount) of the blowing agent impregnated with respect to 100 parts by mass of the resin particles is measured as follows. Measure the mass Xg before putting the resin particles into the pressure vessel. After impregnating the resin particles with the foaming agent in the pressure vessel, the mass Yg after taking out the impregnated material from the pressure vessel is measured. The content (impregnated amount) of the blowing agent impregnated with respect to 100 parts by mass of the resin particles is determined by the following formula.
  • the impregnation temperature of the foaming agent into the resin particles is low, the time required for impregnating the resin particles with the foaming agent may be long, and the production efficiency may be lowered.
  • resin particles may fuse and a bond grain may generate
  • the impregnation temperature is preferably normal temperature (25 ° C.) to 120 ° C., and more preferably 50 to 110 ° C.
  • a blowing aid (plasticizer) may be used in combination with the blowing agent.
  • the foaming assistant (plasticizer) include diisobutyl adipate, toluene, cyclohexane, ethylbenzene and the like.
  • the foaming temperature and the heating medium are not particularly limited, as long as foamable particles can be foamed to obtain foamable particles.
  • the cohesion preventing agent may, for example, be a polyamide powder or a surfactant.
  • the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride.
  • Foam molded body A foam molded body is composed of a thermoplastic elastomer composition containing a thermoplastic elastomer and a pigment as a heat resistance improver.
  • the foam molded body has high heat resistance by containing a pigment.
  • the foam molded body is composed of a fused body of a plurality of foam particles.
  • the thermoplastic elastomer, the pigment and the content ratio thereof in the foam molded body are the same as those of the above-mentioned thermoplastic elastomer composition.
  • the foamed molded article preferably has a density of 0.05 to 0.25 g / cm 3 in terms of heat resistance.
  • the density is more preferably 0.10 to 0.20 g / cm 3 .
  • the foam molded article can be used in a wide range of applications such as various building materials, members of shoes (for example, insole members, midsole members), sports goods, cushioning materials, seat cushions, automobile members and the like.
  • FIG. 1 An example of a foam molding is shown in FIG.
  • the foam molded article shown in FIG. 1 is a colored foam molded article 1 composed of a fused body of a plurality of colored foam particles 2.
  • Each fused colored foam particle 2 has a tinted colored area on its surface. Therefore, the fused colored foam particles 2 give a unique color to the surface of the colored foam molded body 1.
  • the lightness and darkness of the surface of the colored foam molding 1 is randomly given to each of the colored foam molding 1, for example, when the colored foam molding 1 is used as a member of shoes, the designability by lightness and darkness for each shoe Can be made different. As a result, it is possible to give the impression that the purchaser is an article that does not have the same design, thereby stimulating the purchaser's desire for possession.
  • the foam molded body can be manufactured by thermoforming a pair of molds in which a plurality of foam particles are filled in a mold with a heating medium.
  • foam particles are filled in a mold constituted by a mold having a large number of small holes, the foam particles are heated and foamed with pressurized steam, and the voids between the foam particles are filled and the foam particles are fused to each other. Can be obtained by integrating them.
  • the foaming particles may be impregnated with an inert gas or air (hereinafter referred to as an inert gas or the like) to improve the foaming power of the foaming particles.
  • an inert gas a carbon dioxide, nitrogen, helium, argon etc. are mentioned, for example.
  • a method of impregnating the foamed particles with an inert gas or the like for example, a method of impregnating the foamed particles with the inert gas or the like by placing the foamed particles under an atmosphere of an inert gas or the like having a pressure higher than normal pressure.
  • the foam particles may be impregnated with an inert gas or the like before filling into the mold, but after being filled with the foam particles into the mold, the foam particles are impregnated by being placed together with the mold under an atmosphere such as inert gas. May be When the inert gas is nitrogen, it is preferable to leave the foamed particles in a nitrogen atmosphere of 0.1 to 2.0 MPa (gauge pressure) for 20 minutes to 24 hours.
  • the melting point is the temperature at the top of the largest melting peak observed in the 2nd Heating process, and this value was read using analysis software attached to the apparatus.
  • the crystallization temperature is the top temperature of the crystallization peak on the highest temperature side having a heat quantity of 3 mJ / mg or more observed in the cooling process, and this value was read using analysis software attached to the apparatus.
  • the length of the resin particles in the extrusion direction when producing the resin particles is L, and the length in the direction perpendicular to the extrusion direction is the average diameter D.
  • Classification was performed for 5 minutes using a JIS standard sieve of 60 mm, 4.75 mm, 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, 1.40 mm, 1.18 mm, 1.00 mm. .
  • the mass of the sample on the sieve was measured, and the particle size (median size) at which the accumulated mass was 50% based on the accumulated mass distribution curve obtained from the result was defined as the average particle size.
  • ⁇ Open cell rate of foam particles> First, a sample cup of a volumetric air comparison type hydrometer was prepared, and the total mass A (g) of the foamed particles in an amount satisfying about 80% of the sample cup was measured. Next, the volume B (cm 3 ) of the entire foamed particles was measured by a 1-1 / 2-1 atmospheric pressure method using a hydrometer.
  • the hydrometer for example, one commercially available from Tokyo Science Co., Ltd. under the trade name "1000 type" was used.
  • a container made of wire mesh was prepared, this container made of wire mesh was immersed in water, and the mass C (g) of the container made of wire mesh in the state of being immersed in this water was measured.
  • the container made of wire mesh is dipped in water, and the container made of wire mesh in the state immersed in water and the foam placed in the container made of wire mesh Mass D (g) which combined the whole quantity of particles was measured.
  • the apparent volume E (cm 3 ) of the foamed particles is calculated based on the following equation, and the open cell ratio of the foamed particles according to the following equation based on the apparent volume E and the volume B (cm 3 ) of the entire foamed particles.
  • the open cell ratio the volume of 1 g of water was 1 cm 3 .
  • E A + (C-D)
  • Open cell rate (%) 100 ⁇ (EB) / E
  • Density (g / cm 3 ) specimen mass (g) / specimen volume (cm 3 )
  • a specimen for measurement is cut out of a sample which has been 72 hours or more after molding into a thickness of 100 mm ⁇ 100 mm ⁇ original molded body, and the temperature is 23 ⁇ 2 ° C., the humidity is 50 ⁇ 5% or the temperature 27 ⁇ 2 ° C., the humidity is 65 ⁇ What was left to stand for 16 hours or more at 5% of atmosphere conditions was used.
  • ⁇ Solid Viscoelasticity of Foam Molding> A viscoelastic spectrometer EXSTAR DMS6100 (manufactured by SII Nano Technology Inc.) was used as a solid viscoelasticity measuring device.
  • the foam was dried in an oven at 100 ° C. for 3 hours. Thereafter, pressing was performed at 200 ° C. for 5 minutes using a heat press machine to obtain a measurement sample having a length of 40 mm, a width of 10 mm, and a thickness of 0.7 mm.
  • a solid visco-elasticity measuring apparatus in nitrogen atmosphere in tension control mode, frequency 1 Hz, heating rate 5 ° C / min, measuring temperature 30 ° C to 220 ° C, chuck interval 20mm, strain amplitude 5 ⁇ m, minimum tension / compression force 20mN Solid viscoelasticity was measured under the conditions of tension / compression force gain 1.2 and force amplitude initial value 20 mN. The value of the temperature which the intersection of the tangent of the inflexion point of the graph of solid viscoelasticity obtained by measurement showed was computed.
  • the drawing of the tangent lines TL1 and TL2 and an example of the intersection point PI are shown in FIG.
  • Example 1 Resin particle An amide elastomer (trade name: "PEBAX 5533”, manufactured by Arkema Co., Ltd.) containing 100 parts by mass of nylon 12 as a hard segment and polytetramethylene glycol as a soft segment, and an amide elastomer resin of carbon black as a pigment 2.0 parts by mass of a master batch (constituting resin: “PEBAX 5533”, pigment concentration 10% by mass, manufactured by Saika Kagaku Co., Ltd.), and an organic foam control agent (trade name “Kao Wax EBFF”, manufactured by Kao Corp.) 0.
  • An amide-based elastomer composition was obtained by supplying 3 parts by mass to a single-screw extruder and melt-kneading it.
  • the composition was first melt-kneaded at 180 ° C. and then melt-kneaded while raising the temperature to 220 ° C.
  • an amide elastomer was extruded from each nozzle of a multi-nozzle mold attached to the front end of the single screw extruder.
  • the resin was extruded from each nozzle of a multi-nozzle die (having 8 holes with a diameter of 1.0 mm) attached to the front end of the single-screw extruder, and cut in water at 30 to 50 ° C.
  • the obtained resin particles had a particle length L of 1.0 to 1.4 mm and an average particle diameter D of 1.0 to 1.4 mm.
  • the melting point of the resin particles (composition) was 160.5 ° C., and the crystallization temperature was 136.3 ° C.
  • Epan 450 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Foamed molded body Foamed particles are taken out from the closed container, filled in the cavity of a mold having a cavity of 400 mm ⁇ 300 mm ⁇ thickness 11.0 mm, and heated for 35 seconds with 0.25 MPa water vapor for molding Then, a foam was obtained.
  • the density of the foamed molded product was 0.10 g / cm 3 and the solid viscoelasticity was 152.3 ° C.
  • Example 2 A foam molded article is obtained in the same manner as in Example 1 except that the pigment is changed to an amide-based elastomer resin master batch (constituting resin: "PEBAX 5533", pigment concentration 10 mass%, manufactured by Saika Chemical Co., Ltd.) using copper phthalocyanine as a pigment.
  • the melting point of the composition was 161.1 ° C., and the crystallization temperature was 136.4 ° C.
  • the density of the foamed molded product was 0.10 g / cm 3 and the solid viscoelasticity was 153.1 ° C.
  • Example 3 100 parts by mass of an ester-based elastomer (trade name "PELPRENE P-75M", manufactured by Toyobo Co., Ltd.), and an ester-based elastomer resin master batch (constituting resin: “PELPRENE P-75M", pigment concentration 10%, wherein the pigment is isoindoline) And 5.0 parts by mass of Ayaka Kagaku Co., Ltd. and 0.3 parts by mass of an organic bubble regulator (trade name "Kao Wax EBFF", manufactured by Kao Corp.) to a single screw extruder for melt kneading.
  • an ester-based elastomer composition was obtained.
  • Example 2 Thereafter, in the same manner as in Example 1, a foam molded article was obtained.
  • the melting point of the composition was 153.7 ° C., and the crystallization temperature was 116.5 ° C.
  • the density of the foamed molded product was 0.13 g / cm 3 , and the solid viscoelasticity was 150.8 ° C.
  • Example 4 Example 3 and Example 3 except that the ester elastomer resin master batch (constituting resin: “PELPRENE P-75M”, pigment concentration 10 mass%, manufactured by Saika Kagaku Co., Ltd.) having a pigment as diketopyrrolopyrrole (DPP) In the same manner, a foam was obtained.
  • the melting point of the composition was 153.5 ° C., and the crystallization temperature was 116.8 ° C.
  • the density of the foamed molded article was 0.13 g / cm 3 and the solid viscoelasticity was 150.5 ° C.
  • Example 5 A foam molding is carried out in the same manner as in Example 3 except that the ester elastomer resin master batch (constituting resin: “PELPRENE P-75M”, pigment concentration 10 mass%, manufactured by Saihua Chemical Co., Ltd.) using dichloroquinacridone as the pigment is changed. I got a body. The melting point of the composition was 154.1 ° C., and the crystallization temperature was 122.7 ° C. The density of the foamed molded product was 0.13 g / cm 3 , and the solid viscoelasticity was 150.8 ° C.
  • the ester elastomer resin master batch consisttituting resin: “PELPRENE P-75M”, pigment concentration 10 mass%, manufactured by Saihua Chemical Co., Ltd.
  • dichloroquinacridone dichloroquinacridone
  • Example 6 Same as Example 3 except that it is changed to 5 parts by mass of ester-based elastomer resin master batch (constituting resin: "PELPRENE P-75M", pigment concentration 10% by mass, manufactured by Saihua Chemical Co., Ltd.) using carbon black as a pigment
  • ester-based elastomer resin master batch consisting resin: "PELPRENE P-75M", pigment concentration 10% by mass, manufactured by Saihua Chemical Co., Ltd.
  • carbon black carbon black
  • Example 7 Same as Example 3 except that it is changed to 10 parts by mass of ester-based elastomer resin masterbatch (constituting resin: "PERPRENE P-75M, pigment concentration 10% by mass, manufactured by Saihua Chemical Co., Ltd.") using carbon black as a pigment
  • ester-based elastomer resin masterbatch consisting resin: "PERPRENE P-75M, pigment concentration 10% by mass, manufactured by Saihua Chemical Co., Ltd.
  • carbon black carbon black
  • Example 8 Same as Example 3 except that the pigment is changed to 5 parts by mass of ester-based elastomer resin master batch (constituting resin: "PELPRENE P-75M, pigment concentration 10% by mass, manufactured by Saihua Chemical Co., Ltd.) using copper phthalocyanine as the pigment.
  • a foam was obtained.
  • the melting point of the composition was 152.8 ° C., and the crystallization temperature was 121.9 ° C.
  • the density of the foamed molded article was 0.13 g / cm 3 , and the solid viscoelasticity was 148.8 ° C.
  • Example 9 Same as Example 3 except changing to 10 parts by mass of ester type elastomer resin master batch (constituting resin: "PELPRENE P-75M, pigment concentration 10% by mass, manufactured by Saihua Chemical Co., Ltd.") using copper phthalocyanine as a pigment
  • a foam was obtained.
  • the melting point of the composition was 151.2 ° C., and the crystallization temperature was 122.8 ° C.
  • the density of the foamed molded article was 0.13 g / cm 3 and the solid viscoelasticity was 149.3 ° C.
  • Example 10 100 parts by mass of an olefin-based elastomer (trade name "R110E”, manufactured by Prime Polymer Co., Ltd.), and an olefin-based elastomer resin master batch of carbon black as a pigment (made up resin: polypropylene, pigment concentration of 20% by mass, manufactured by Toyo Color Co.)
  • An olefin-based elastomer composition is supplied by melt-kneading by supplying 2.5 parts by mass and 0.3 parts by mass of an organic bubble regulator (trade name "Kao wax EBFF", manufactured by Kao Corporation) to a single-screw extruder. I got Thereafter, in the same manner as in Example 1, a foam molded article was obtained.
  • the melting point of the composition was 153.6 ° C., and the crystallization temperature was 116.3 ° C.
  • the density of the foamed molded article was 0.10 g / cm 3 and the solid viscoelasticity was 150.3 ° C.
  • Comparative Example 1 100 parts by mass of an amide-based elastomer (trade name "PEBAX 5533", manufactured by Arkema Co., Ltd.) having nylon 12 as a hard segment and polytetramethylene glycol as a soft segment, and an organic bubble regulator (trade name "Kao wax EBFF", Kao
  • An amide-based elastomer composition was obtained by supplying 0.3 parts by mass of a product to a single-screw extruder and melt-kneading it. Thereafter, in the same manner as in Example 1, a foam molded article was obtained. The density of the foamed molded article was 0.10 g / cm 3 and the solid viscoelasticity was 146.0 ° C.
  • Comparative example 2 100 parts by mass of an ester-based elastomer (trade name "PELPRENE P-75M", manufactured by Toyobo Co., Ltd.) and 0.3 parts by mass of an organic bubble regulator (trade name "Kao Wax EBFF, manufactured by Kao") as a single-screw extruder The mixture was supplied to the mixture and melt-kneaded to obtain an ester elastomer composition. Thereafter, in the same manner as in Example 1, a foam molded article was obtained. The density of the foamed molded article was 0.13 g / cm 3 and the solid viscoelasticity was 146.6 ° C.
  • Comparative example 3 Supply 100 parts by mass of an olefin-based elastomer (trade name “R110E”, manufactured by Prime Polymer Co., Ltd.) and 0.3 parts by mass of an organic bubble regulator (trade name "Kao Wax EBFF", manufactured by Kao Corp.) to a single-screw extruder The mixture was melt-kneaded to obtain an olefin-based elastomer composition. Thereafter, in the same manner as in Example 1, a foam molded article was obtained. The density of the foamed molded product was 0.10 g / cm 3 and the solid viscoelasticity was 146.2 ° C.
  • Examples 1 to 10 and Comparative Examples 1 to 3 are shown in Table 1.
  • AE indicates an amide based elastomer
  • EE indicates an ester based elastomer
  • OE indicates an olefin based elastomer
  • CB indicates a carbon black
  • CuP indicates copper phthalocyanine
  • iso-I indicates isoindoline
  • DPP indicates diketopyrrolopyrrole
  • di-ClQ indicates dichloro It means quinacridone.
  • the foam molded article obtained from the composition containing a pigment exhibits improved heat resistance (solid viscoelasticity) than the foam molded article not containing a pigment.
  • Test example 2 ⁇ Measurement of color difference between foam particles and foam molded products> It measured according to the method of JISZ8722; 2009 "the measuring method of color-reflection and a transparent object color” description. That is, a light source of foam particles and a foam molded product using a spectral color system SE-2000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) and data processing color mate 5 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) The back was held down and the white board for exclusive use was used, and it measured by the reflection method. The reference color and the color difference to be measured were measured, and the obtained ⁇ E * was taken as a value.
  • test pieces were conditioned at a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 5% for 24 hours or more, and then measured at a temperature of 20 ⁇ 2 ° C. and a humidity of 65 ⁇ 5% as a test environment.
  • the calibration was performed using a standard board before measurement.
  • Examples 1-5, 7, 9 Examples 1-5 of Test Example 2 are the same as Examples 1-5 of Test Example 1 respectively.
  • Example 11 of Test Example 2 is the same as Example 10 of Test Example 1 except that the pigment concentration is changed from 0.5 parts by mass to 0.2 parts by mass with respect to Example 10 of Test Example 1.
  • Example 12 Resin particles were obtained in the same manner as in Example 1.
  • the obtained resin particles were charged in an amount of 1.5 kg into an autoclave having an inner volume of 5 L, and when sealed, carbon dioxide was pressurized from atmospheric pressure to a gauge pressure of 3 MPa. After leaving at room temperature for 24 hours, expandable particles were obtained to obtain expandable particles. After the expandable particles were taken out, expanded particles and an expanded molded article were obtained in the same manner as in Example 1.
  • Comparative example 4 100 parts by mass of an amide-based elastomer (trade name "PEBAX 5533", manufactured by Arkema Co., Ltd.) having nylon 12 as a hard segment and polytetramethylene glycol as a soft segment, and an organic bubble regulator (trade name "Kao wax EBFF", Kao After supplying 0.3 mass part to a single screw extruder and melt-kneading it, it carried out similarly to Example 1, and obtained the resin particle of an amide-type elastomer composition.
  • an amide-based elastomer trade name "PEBAX 5533”, manufactured by Arkema Co., Ltd.
  • an organic bubble regulator trade name "Kao wax EBFF"
  • Example 2 Thereafter, in the same manner as in Example 1, a colored foam was obtained.
  • the density of the colored foam was 0.10 g / cm 3 .
  • Comparative example 5 A colored foam was obtained in the same manner as in Comparative Example 4 except that the elastomer was changed to an ester-based elastomer. The density of the colored foam was 0.13 g / cm 3 .
  • Comparative example 6 A colored foam was obtained in the same manner as in Comparative Example 4 except that the elastomer was changed to an olefin-based elastomer. The density of the colored foam was 0.10 g / cm 3 .
  • AE indicates an amide based elastomer
  • EE indicates an ester based elastomer
  • OE indicates an olefin based elastomer
  • CB indicates a carbon black
  • CuP indicates copper phthalocyanine
  • iso-I indicates isoindoline
  • DPP indicates diketopyrrolopyrrole
  • di-ClQ indicates dichloro It means quinacridone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

熱可塑性エラストマー組成物は、熱可塑性エラストマーと、顔料とを含む。

Description

熱可塑性エラストマー組成物、発泡粒子及び発泡成形体
 本発明は、熱可塑性エラストマー組成物、発泡粒子及び発泡成形体に関する。
 従来、緩衝材や梱包材として、ポリスチレンを基材樹脂とするポリスチレン発泡成形体が汎用されている。ここで、発泡成形体は、発泡性ポリスチレン粒子のような発泡性粒子を加熱して発泡(予備発泡)させて発泡粒子を得、得られた発泡粒子を金型のキャビティ内に充填した後、二次発泡させて発泡粒子同士を熱融着により一体化させることで得ることができる。
 ポリスチレン発泡成形体は、原料となる単量体がスチレンであるため、剛性は高いものの、反発性が低いことが知られている。そのため、繰り返し圧縮される用途や柔軟性が求められる用途では使用し難いという課題がある。
 発泡成形体の反発性を向上させるため、特許文献1に基材樹脂として熱可塑性エラストマーを使用した発泡成形体が提案されている。また、特許文献2には基材樹脂として熱可塑性エラストマーの一種であるアミド系エラストマーを使用した発泡成形体が提案されている。アミド系エラストマーを始めとする熱可塑性エラストマーは、ポリスチレンよりも高い弾性を有している。そのため熱可塑性エラストマーを基材樹脂とする発泡成形体の反発性を向上できると考えられている。
 特許文献1では、染料で着色された発泡粒子により、所望の色の発泡成形体が得られることも記載されている。
特表2016-512850 国際公開第WO2016/052387号
 特許文献1では、反発性が良好な発泡成形体を得ることができる。しかし、発泡成形体には、反発性以外に、耐熱性の向上も望まれている。特に、熱可塑性エラストマーは、ハードセグメントとソフトセグメントを有するため、その耐熱性は既存の熱可塑性樹脂と比べて低い。
 また、本発明の発明者等は、基材樹脂として熱可塑性エラストマーを使用し、染料で着色した発泡成形体を作製してみたところ、得られた発泡成形体は、均一に着色されていた。しかし、色味が薄く、濃く着色することが困難であった。濃く着色するには、染料の添加量を増やすことが考えられるが、染料の添加量を増やすと、成形体の物性に悪影響を生じる。そのため、物性への悪影響なしで、より濃い色味の熱可塑性エラストマー製の発泡成形体の提供が望まれている。
 本発明の第一の目的は、耐熱性の向上した熱可塑性エラストマー組成物、発泡粒子、及び発泡成形体を提供することにある。
 本発明の第二の目的は、色味が濃く、デザイン性に富んだ発泡粒子及び発泡成形体を提供することにある。
 本発明の発明者等は、熱可塑性エラストマー製の発泡成形体の耐熱性を向上させるために、各種耐熱性向上剤の添加を試みた。その結果、顔料が、熱可塑性エラストマーの結晶化温度を上昇させること、及び、熱可塑性エラストマーと顔料とを含む熱可塑性エラストマー組成物から製造される発泡成形体の耐熱性が向上し得ること、を意外にも見い出した。
 また、本発明の発明者等は、熱可塑性エラストマー製の着色発泡成形体の色味を濃くするために、顔料の添加を試みた。その結果、顔料は、発泡成形体の色味を濃くすることが可能であった。更に、意外なことに、顔料は、発泡成形体に独特の色味を付与し得、その結果、デザイン性に富んだ発泡成形体を提供可能であることを見い出した。
項1.熱可塑性エラストマーと、顔料とを含む熱可塑性エラストマー組成物。
項2.前記顔料を、前記熱可塑性エラストマー100質量部に対して、0.05~3.0質量部含む項1に記載の熱可塑性エラストマー組成物。
項3.前記熱可塑性エラストマーが、結晶性を示し、アミド系エラストマー、オレフィン系エラストマー、エステル系エラストマー、ウレタン系エラストマーから選択される項1又は2に記載の熱可塑性エラストマー組成物。
項4.前記熱可塑性エラストマーが、アミド系エラストマーであり、前記熱可塑性エラストマー組成物が、結晶化温度より20~30℃高い融点を有する項1~3のいずれか1つに記載の熱可塑性エラストマー組成物。
項5.前記熱可塑性エラストマーが、オレフィン系エラストマーであり、前記熱可塑性エラストマー組成物が、結晶化温度より30~45℃高い融点を有する項1~3のいずれか1つに記載の熱可塑性エラストマー組成物。
項6.前記熱可塑性エラストマーが、エステル系エラストマーであり、前記熱可塑性エラストマー組成物が、結晶化温度より25~45℃高い融点を有する項1~3のいずれか1つに記載の熱可塑性エラストマー組成物。
項7.項1~6のいずれか1つに記載の熱可塑性エラストマー組成物を含む樹脂粒子を発泡剤で発泡させた発泡粒子。
項8.前記発泡粒子が、その表面に濃淡の着色領域を備える着色発泡粒子であり、
 前記着色発泡粒子が、その表面を色差計にて測定した場合、下記の特性(1)を満足する濃淡を示す項7に記載の発泡粒子。
 特性(1):X-Y≧0.5
(式中、Xは着色発泡粒子の色味が濃い部分の色差の値であり、Yは着色発泡粒子の色味が薄い部分の色差の値である。)
項9.前記発泡粒子が、0.05~0.5g/cm3の嵩密度を有する項7又は8に記載の発泡粒子。
項10.前記発泡粒子が、0.05~0.5g/cm3の嵩密度、10%以下の連続気泡率、1~10mmの平均粒子径を有する項7に記載の発泡粒子。
項11.前記顔料が、熱可塑性エラストマー100質量部に対して、0.05~3.0質量部含まれ、前記発泡粒子が、A>Bの関係(Aは表層部の平均気泡径、Bは中心部の平均気泡径)を満たす複数の気泡を有し、かつ前記表層部の平均気泡径が、100~400μmであり、前記中心部の平均気泡径が、10~200μmである項7~10のいずれか1つに記載の発泡粒子。
項12.前記A及びBが、A/B>1.5の関係を満たす項11に記載の発泡粒子。
項13.項1~6のいずれか1つに記載の熱可塑性エラストマー組成物を含む発泡成形体。
項14.複数の項7~12のいずれか1つに記載の発泡粒子の融着体から構成された発泡成形体。
項15.前記発泡成形体が、建築資材、靴の部材又は緩衝材として用いられる項13又は14に記載の発泡成形体。
 本発明によれば、優れた耐熱性を有する熱可塑性エラストマー組成物、発泡粒子、及び発泡成形体を提供できる。また、色味が濃く、デザイン性に富んだ着色発泡粒子及び着色発泡成形体を提供できる。
本発明の着色発泡成形体の写真である。 固体粘弾性の算出法の説明図である。
1.熱可塑性エラストマー組成物
 熱可塑性エラストマー組成物(以下、単に組成物ともいう)は、熱可塑性エラストマーと、顔料とを含む。組成物は、発泡粒子及び発泡成形体の製造に好適に用いられる。顔料は、組成物中で、耐熱性向上剤としての役割を果たす。具体的には、実施例でも確認されているように、顔料は、熱可塑性エラストマーの結晶化温度を上昇させる役割を果たしている。結晶化温度が上昇することで、熱可塑性エラストマーの結晶性が高くなり、その結果、発泡成形体の耐熱性が向上する。顔料により熱可塑性エラストマーの耐熱性が向上する現象は、熱可塑性エラストマーを発泡成形体の製造に使用する技術分野では、知られていなかったと発明者等は考えている。
 (1)熱可塑性エラストマー
 熱可塑性エラストマーは、ゴム弾性を示す柔軟性成分であるソフトセグメントと、架橋点の役割を果たす分子拘束成分であるハードセグメントとを有することにより、25℃でゴム弾性を有する一方で、加熱により流動性を示す高分子のことを指す。
熱可塑性エラストマーは、例えば、アミド系エラストマー、オレフィン系エラストマー、エステル系エラストマー、ウレタン系エラストマーから成る群から選択できる。組成物は、1種のエラストマーを含んでいてもよく、2種以上のエラストマーの混合物を含んでいてもよい。熱可塑性エラストマーは、結晶性を有していることが好ましい。結晶性の有無は、結晶化温度の有無により判断できる。結晶化温度は示差走査熱量計により測定することができる。
  (i)アミド系エラストマー
 アミド系エラストマーは、架橋していてもよく、非架橋であってもよい。本明細書において、非架橋とは、発泡粒子のアルコール系溶剤への不溶なゲル分率が3.0質量%以下のものを意味する。また、架橋とはこのゲル分率が3.0質量%より多いものを意味する。
 ここで、アミド系エラストマー(発泡体)のゲル分率は下記の要領で測定される。 発泡体の質量W1を測定する。次に、130℃のアルコール系溶剤(例えば、3-メトキシ-3-メチル-1-ブタノール)100mL中に発泡体を24時間に亘って浸漬する。
 次に、アルコール系溶剤の残渣を80メッシュの金網を用いて濾過し、金網上に残った残渣を130℃にて1時間に亘って乾燥させて、金網上に残った残渣の質量W2を測定し、下記式に基づいて発泡体のゲル分率を算出できる。
   ゲル分率(質量%)=W2/W1×100
 熱可塑性エラストマー組成物を構成する基材樹脂としては、低密度化及び加工性の良さや反発弾性率、復元特性の点から、非架橋のアミド系エラストマーが含まれていることが好ましい。
 非架橋のアミド系エラストマーには、ポリアミドブロック(ハードセグメント)とポリエーテルブロック(ソフトセグメント)とを有するコポリマーを使用できる。
 ポリアミドブロックとしては、例えば、ポリεカプラミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリウンデカンアミド(ナイロン11)、ポリラウラミド(ナイロン12)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリナノメチレンテレフタルアミド(ナイロン9T)、ポリメタキシリレンアジパミド(ナイロンMXD6)等のポリアミド構造が挙げられる。ポリアミドブロックは、これらポリアミド構造を構成する単位の組み合わせでもよい。
 ポリエーテルブロックとしては、例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリテトラメチレングリコール(PTMG)、ポリテトラヒドロフラン(PTHF)等のポリエーテル構造が挙げられる。ポリエーテルブロックは、これらポリエーテル構造を構成する単位の組み合わせでもよい。
 ポリアミドブロックとポリエーテルブロックはランダムに分散していてもよい。
 ポリアミドブロックの数平均分子量は300~15000であることが好ましく、600~5000であることがより好ましい。ポリエーテルブロックの数平均分子量Mnは100~6000であることが好ましく、200~3000であることがより好ましい。
 非架橋のアミド系エラストマーには、米国特許第4,331,786号明細書、米国特許第4,115,475号明細書、米国特許第4,195,015号明細書、米国特許第4,839,441号明細書、米国特許第4,864,014号明細書、米国特許第4,230,838号明細書及び米国特許第4,332,920号明細書に記載されたアミド系エラストマーも使用できる。
 非架橋のアミド系エラストマーは、反応性末端を有するポリアミドブロックと反応性末端を有するポリエーテルブロックとの共重縮合で得られるものが好ましい。この共重縮合としては特に下記のものを挙げることができる:
(a)ジアミン鎖端を有するポリアミドブロックとジカルボキシル末端を有するポリオキシアルキレンブロックとの共重縮合、
(b)ジカルボキシル末端を有するポリアミドブロックと、ポリエーテルジオールとよばれる脂肪族ジヒドロキシ化されたα,ω-ポリオキシアルキレンブロックをシアノエチル化及び水素化して得られるジアミン鎖端を有するポリオキシアルキレンブロックとの共重縮合、
(c)ジカルボキシル末端を有するポリアミドブロックとポリエーテルジオールとの共重縮合(この場合に得られるものを特にポリエーテルエステルアミドとよんでいる)。
 ジカルボキシル末端を有するポリアミドブロックを与える化合物としては、例えば、α,ω-アミノカルボン酸、ラクタム又はジカルボン酸の連鎖調節剤の存在下でのジカルボン酸とジアミンの縮合で得られる化合物が挙げられる。(a)の共重縮合の場合、非架橋のアミド系エラストマーは、例えば、ポリエーテルジオールと、ラクタム(又はα,ω-アミノ酸)と、連鎖制限剤のジアシッドとを少量の水の存在下で反応させて得ることができる。非架橋のアミド系エラストマーは、種々の長さのポリエーテルブロックとポリアミドブロックとを有していてもよく、更に各成分がランダムに反応することでポリマー鎖中に分散していてもよい。
 上記共重縮合時において、ポリエーテルジオールのブロックはそのまま用いてもよく、その水酸基とカルボキシ末端基を有するポリアミドブロックとを共重合して用いてもよく、その水酸基をアミノ化してポリエーテルジアミンに変換した後にカルボキシ末端基を有するポリアミドブロックと縮合して用いてもよい。また、ポリエーテルジオールのブロックをポリアミド前駆体及び連鎖制限剤と混合して共重縮合させることで、ランダムに分散させたポリアミドブロックとポリエーテルブロックとを含むポリマーを得ることも可能である。
  (ii)オレフィン系エラストマー
 オレフィン系エラストマーは、架橋していてもよく、非架橋であってもよい。非架橋とは、発泡体のキシレンへの不溶なゲル分率が3.0質量%以下のものを意味する。また、架橋とはこのゲル分率が3.0質量%より多いものを意味する。
 ここで、オレフィン系エラストマー(発泡体)のゲル分率は下記の要領で測定される。発泡体の質量W1を測定する。次に沸騰キシレン80ミリリットル中に発泡体を3時間還流加熱する。次にキシレン中の残渣を80メッシュの金網を用いてろ過し、金網上に残った残渣を130℃にて1時間に亘って乾燥させて、金網上に残った残渣の質量W2を測定し、下記式に基づいて発泡体のゲル分率を算出できる。
 ゲル分率(質量%)=W2/W1×100
 熱可塑性エラストマー組成物を構成する基材樹脂としては、低密度化及び加工性の良さや反発弾性率、復元特性の点から、非架橋のオレフィン系エラストマーが含まれていることが好ましい。
 非架橋のオレフィン系エラストマーは、鉱物性油非含有下で、発泡体に所定の密度と圧縮永久ひずみを与え得るものが好ましい。非架橋のオレフィン系エラストマーとしては、例えば、ハードセグメントとソフトセグメントを組み合わせた構造を有するものが挙げられる。このような構造は、常温でゴム弾性を示し、高温では可塑化され成形可能となるという性質を与える。
 例えば、ハードセグメントがポリプロピレン系樹脂であり、ソフトセグメントがポリエチレン系樹脂である非架橋のオレフィン系エラストマーが挙げられる。
 前者のポリプロピレン系樹脂としては、ポリプロピレンを主成分とする樹脂が使用できる。ポリプロピレンとしては、アイソタクチック、シンジオタクチック、アタクチック等から選択される立体規則性を有していてもよい。
 後者のポリエチレン系樹脂としては、ポリエチレンを主成分とする樹脂が使用できる。ポリエチレン以外の成分としてはポリプロピレン、ポリブテン等のポリオレフィンが挙げられる。
 非架橋のオレフィン系エラストマーには、潤滑油、パラフィン、ヤシ油、ステアリン酸、脂肪酸等の軟化剤が含まれていてもよい。非架橋のオレフィン系エラストマーとしては、ハードセグメントとなるモノマーとソフトセグメントとなるモノマーの重合を行い、重合反応容器内において直接製造される重合タイプのエラストマー;バンバリーミキサーや二軸押出機等の混練機を用いてハードセグメントとなるポリプロピレン系樹脂と、ソフトセグメントとなるポリエチレン系樹脂とを物理的に分散させて製造されたブレンドタイプのエラストマーが挙げられる。
 非架橋のオレフィン系エラストマーは、ショアA硬度が30~100であることが好ましく、40~90であることがより好ましい。非架橋のオレフィン系エラストマーの硬度は、デュロメータ硬さ試験(JIS K6253:97)に準拠して測定される。また非架橋のオレフィン系エラストマーは、ショアD硬度が10~70であることが好ましく、20~60であることがより好ましい。非架橋のオレフィン系エラストマーの硬度は、デュロメータ硬さ試験(ASTM D2240:95)に準拠して測定される。
  (iii)エステル系エラストマー
 エステル系エラストマーとしては、例えば、ハードセグメントとソフトセグメントとを含むエステル系エラストマーが挙げられる。
 ハードセグメントは、例えば、ジカルボン酸成分及び/又はジオール成分から構成される。ジカルボン酸成分と、ジカルボン酸成分及びジオール成分との2成分から構成されていてもよい。
 ジカルボン酸成分としては、シュウ酸、マロン酸、コハク酸等の脂肪族ジカルボン酸及びその誘導体、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びその誘導体に由来する成分が挙げられる。
 ジオール成分としては、エチレングリコール、プロピレングリコール、ブタンジオール(例えば、1,4-ブタンジオール)等のC2-10アルキレングリコール、(ポリ)オキシC2-10アルキレングリコール、C5-12シクロアルカンジオール、ビスフェノール類又はこれらのアルキレンオキサイド付加体等が挙げられる。ハードセグメントは、結晶性を有していてもよい。
 ソフトセグメントは、ポリエステルタイプ及び/又はポリエーテルタイプのセグメントを使用できる。
 ポリエステルタイプのソフトセグメントとしては、ジカルボン酸類(アジピン酸のような脂肪族C4-12ジカルボン酸)とジオール類(1,4-ブタンジオールのようなC2-10アルキレングリコール、エチレングリコールのような(ポリ)オキシC2-10ルキレングリコール)との重縮合体、オキシカルボン酸の重縮合体やラクトン(ε-カプロラクトンのようなC3-12ラクトン)の開環重合体等の脂肪族ポリエステルが挙げられる。ポリエステルタイプのソフトセグメントは、非晶性であってもよい。ソフトセグメントとしてのポリエステルの具体例としては、カプロラクトン重合体、ポリエチレンアジペート、ポリブチレンアジペート等のC2-6アルキレングリコールとC6-12アルカンジカルボン酸とのポリエステルが挙げられる。このポリエステルの数平均分子量は、200~15000の範囲であってもよく、200~10000の範囲であってもよく、300~8000の範囲であってもよい。
 ポリエーテルタイプのソフトセグメントとしては、ポリアルキレングリコール(例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール)のような脂肪族ポリエーテルに由来するセグメントが挙げられる。ポリエーテルの数平均分子量は、200~10000の範囲であってもよく、200~6000の範囲であってもよく、300~5000の範囲であってもよい。
 ソフトセグメントは、脂肪族のポリエステルとポリエーテルとの共重合体(ポリエーテル-ポリエステル)のようなポリエーテル単位を有するポリエステル、ポリオキシアルキレングリコール(例えば、ポリオキシテトラメチレングリコール)のようなポリエーテルと脂肪族ジカルボン酸とのポリエステルに由来するセグメントであってもよい。
 ハードセグメントとソフトセグメントとの質量割合は、20:80~90:10であってもよく、30:70~90:10であってもよく、30:70~80:20であってもよく、40:60~80:20であってもよく、40:60~75:25であってもよい。
 また、ジカルボン酸成分が、テレフタル酸成分とそれ以外のジカルボン酸成分である場合、エステル系エラストマーが、ハードセグメントを30~80質量%の割合で含み、かつテレフタル酸成分以外のジカルボン酸成分を5~30質量%の割合で含んでいてもよい。テレフタル酸成分以外のジカルボン酸成分の割合は5~25質量%であってもよく、5~20質量%でもよく、10~20質量%でもよい。なお、ジカルボン酸成分の割合は、樹脂のNMRスペクトルを定量評価することにより入手できる。テレフタル酸成分以外のジカルボン酸成分が、イソフタル酸成分であることが好ましい。イソフタル酸成分を含むことで、エラストマーの結晶化度が下がる傾向があり、発泡成形性が向上してより低密度の発泡成形体を得ることができる。
  (iv)ウレタン系エラストマー
 ポリウレタン系エラストマーとしては、例えば、長鎖ポリオール、短鎖グリコール、ジイソシアナート等を原料として、重付加反応により、分子内にウレタン結合を介して得られるエラストマーを使用できる 長鎖ポリオールとしては、ポリ(エチレンアジペート)、ポリ(ジエチレンアジペート)、ポリ(1,4-ブチレンアジペート)、ポリ(1,6-ヘキサンアジペート)、ポリラクトンジオール、ポリカプロラトンジオール、ポリエナントラクトンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(プロピレングリコール/エチレングリコール)、ポリ(1,6-ヘキサメチレングリコールカーボネート)等が挙げられる。長鎖ポリオールの分子量は100~10000であってもよく、500~5000であってもよい。
 短鎖グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-キシリレングリコール、ビスフェノールA、ハイドロキノンジエチロールエーテル、フェニレンビス-(β-ヒドロキシエチルエーテル)等が挙げられる。ジイソシアナートとしては、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、フェニレンジイソシアナート、4,4’-ジフェニルメタンジイソシアナート、4,4’-ジフェニルジイソシアナート、1,5-ナフタレンジイソシアナート、3,3’-ジメチルビフェニル-4,4’-ジイソシアナート、o-キシレンジイソシアナート、m-キシレンジイソシアナート、p-キシレンジイソシアナート、テトラメチレンジイソシアナート、ヘキサメチレンジイソシアナート、トリメチルヘキサメチレンジイソシアナート、ドデカメチレンジイソシアナート、シクロヘキサンジイソシアナート、ジシクロヘキシルメタンジイソシアナート、イソホロンジイソシアナート等が挙げられる。
 ポリウレタン系エラストマー、長鎖ポリオールとジイソシアナートでソフトセグメントを、短鎖グリコールとジイソシアナートでハードセグメントを構成していてもよい。ポリウレタン系エラストマーは、必要に応じて、マレイン化、カルボキシル化、水酸化、エポキシ化、ハロゲン化、スルホン化等の変性処理や、イオウ架橋、過酸化物架橋、金属イオン架橋、電子線架橋、シラン架橋等の架橋処理に付されていてもよい。
 ポリウレタン系エラストマーは、成型体としての強靱性や屈曲性の点から、5000~300000の、10000~100000の粘度分子量を有していてもよい。ポリウレタン系エラストマーは、3000~200000の、5000~180000の、8000~150000の数平均分子量を有していてもよい。
 (2)顔料
 耐熱性向上剤としての顔料は、発泡成形体の耐熱性を向上できさえすれば特に限定されない。ここで、顔料は、熱可塑性エラストマー組成物の結晶化温度を、熱可塑性エラストマーの結晶化温度より10℃以上高くし得る機能を有し得る。なお、顔料は、顔料としての通常の着色機能も有している。そのため、発泡粒子や発泡成形体を所望の色に着色可能である。
 顔料としては、例えば、炭素系顔料、酸化チタン系顔料、酸化鉄系顔料、水酸化鉄系顔料、酸化クロム系顔料、スピンネル系顔料、クロム酸鉛系顔料、クロム酸バーミリオン系顔料、紺青系顔料、アルミニウム粉末、ブロンズ粉末、炭酸カルシウム系顔料、硫酸バリウム系顔料、酸化硅素系顔料、水酸化アルミニウム系顔料、フタロシアニン系顔料、アゾ系顔料、縮合アゾ系顔料、アントラキノン系顔料、アジン系顔料、キノリン系顔料、キナクドリン系顔料、ぺリノン・ペリレン系顔料、インジゴ・チオインジコ系顔料、イソインドリンノン系顔料、アゾメチンアゾ系顔料、ジオキサジン系顔料、キナクリドン系顔料、アニリンブラック系顔料、トリフェニルメタン系顔料等の顔料が挙げられる。顔料は、単独で用いてもよいし、2種以上を混合して用いてもよい。
 炭素系顔料としては、カーボンブラック、チャンネルブラック、ファーネスブラック、アセチレンブラック、アントラセンブラック、油煙、松煙、黒鉛等が挙げられる。 他の顔料としては、銅フタロシアニン、イソインドリン、ジクロロキナクリドン、ジケトピロロピロール、
C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド17、C.I.ピグメントレッド22、C.I.ピグメントレッド38、C.I.ピグメントレッド41、C.I.ピグメントレッド48:1、C.I.ピグメントレッド48:2、C.I.ピグメントレッド48:3、C.I.ピグメントレッド48:4、C.I.ピグメントレッド49、C.I.ピグメントレッド50:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド58:2、C.I.ピグメントレッド60、C.I.ピグメントレッド63:1、C.I.ピグメントレッド63:2、C.I.ピグメントレッド64:1、C.I.ピグメントレッド88、C.I.ピグメントレッド112、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド144、C.I.ピグメントレッド146、C.I.ピグメントレッド149、C.I.ピグメントレッド166、C.I.ピグメントレッド168、C.I.ピグメントレッド170、C.I.ピグメントレッド176、C.I.ピグメントレッド177、C.I.ピグメントレッド178、C.I.ピグメントレッド179、C.I.ピグメントレッド180、C.I.ピグメントレッド185、C.I.ピグメントレッド190、C.I.ピグメントレッド194、C.I.ピグメントレッド202、C.I.ピグメントレッド206、C.I.ピグメントレッド207、C.I.ピグメントレッド209、C.I.ピグメントレッド216、C.I.ピグメントレッド245、
C.I.ピグメントヴァイオレット19、
C.I.ピグメントブルー2、C.I.ピグメントブルー15、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:5、C.I.ピグメントブルー16、C.I.ピグメントブルー17、C.I.ピグメントブルー22、C.I.ピグメントブルー25、C.I.ピグメントブルー28、C.I.ピグメントブルー60、C.I.ピグメントブルー66、
C.I.ピグメントグリーン7、C.I.ピグメントグリーン10、C.I.ピグメントグリーン26、C.I.ピグメントグリーン36、C.I.ピグメントグリーン50、
C.I.ピグメントイエロー1、C.I.ピグメントイエロー3、C.I.ピグメントイエロー11、C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー17、C.I.ピグメントイエロー21、C.I.ピグメントイエロー35、C.I.ピグメントイエロー53、C.I.ピグメントイエロー55、C.I.ピグメントイエロー74、C.I.ピグメントイエロー76、C.I.ピグメントイエロー82、C.I.ピグメントイエロー83、C.I.ピグメントイエロー102、C.I.ピグメントイエロー110、C.I.ピグメントイエロー128、C.I.ピグメントイエロー153、C.I.ピグメントイエロー157、C.I.ピグメントイエロー161、C.I.ピグメントイエロー167、C.I.ピグメントイエロー173、C.I.ピグメントイエロー184等が挙げられる。
 一実施形態において、濃い色に着色するためには、顔料は無機顔料であることが好ましく、炭素系顔料であることが好ましく、カーボンブラックがより好ましい。
 (3)熱可塑性エラストマーと顔料との含有割合
 顔料は、熱可塑性エラストマー100質量部に対して、0.05~3.0質量部含まれることが好ましい。0.05質量部以上の場合、耐熱性の十分な向上効果を奏し得る。熱可塑性エラストマー100質量部に対して0.05質量部以上の顔料は、熱可塑性エラストマーへの十分な着色の点でも好ましい。3.0質量部以下の場合、発泡を阻害しない。顔料の含有割合は、0.1~2.0質量部であることがより好ましく、0.2~1.0質量部であることが更に好ましい。
 (4)添加剤
 熱可塑性エラストマー組成物を構成する基材樹脂には、本発明の効果を阻害しない範囲で、添加剤や、アミド系樹脂(エラストマーを除く)、オレフィン系樹脂(エラストマーを除く)、エステル系樹脂(エラストマーを除く)、ウレタン系樹脂(エラストマーを除く)、ポリエーテル樹脂等の他の樹脂が含まれていてもよい。他の樹脂は、公知の熱可塑性樹脂、熱硬化性樹脂であってもよい。
 (5)熱可塑性エラストマー組成物の結晶化温度及び融点
 熱可塑性エラストマーが、アミド系エラストマーである場合、耐熱性向上の点で、熱可塑性エラストマー組成物は、結晶化温度より20~30℃高い融点を有することが好ましく、20~25℃高い融点を有することがより好ましい。
 熱可塑性エラストマーが、オレフィン系エラストマーである場合、耐熱性向上の点で、熱可塑性エラストマー組成物は、結晶化温度より30~45℃高い融点を有することが好ましく、結晶化温度より30~40℃高い融点を有することがより好ましい。
 熱可塑性エラストマーが、エステル系エラストマーである場合、耐熱性向上の点で、熱可塑性エラストマー組成物は、結晶化温度より25~45℃高い融点を有することが好ましく、結晶化温度より25~40℃高い融点を有することがより好ましい。
 組成物が上記の結晶化温度と融点の関係を有することで、より耐熱性の高い発泡成形体を製造し得る組成物を提供できる。
2.発泡粒子
(1)発泡粒子
 発泡粒子は、熱可塑性エラストマーと、耐熱性向上剤としての顔料とを含む熱可塑性エラストマー組成物から構成される。発泡粒子は、顔料を含むことにより、高い耐熱性を有している。発泡粒子における熱可塑性エラストマー、顔料及びそれらの含有割合は、熱可塑性エラストマー組成物に関して上述した通りである。
 発泡粒子は、耐熱性の点で、0.05~0.5g/cm3の嵩密度を有することが好ましい。嵩密度は、0.05~0.25g/cm3であることがより好ましい。
 発泡粒子は、耐熱性の点で、10%以下の連続気泡率を有することが好ましい。連続気泡率は、5%以下であることがより好ましい。下限は0%である。
 発泡粒子は、1~10mmの平均粒子径を有することが好ましい。平均粒子径は、2~5mmであることがより好ましい。
 一実施形態において、発泡粒子は、その表面に濃淡の着色領域を備える着色発泡粒子である。後述するように、着色発泡粒子は着色発泡成形体を製造するために使用される。着色発泡粒子の濃淡の程度は、例えば、色差計で測定できる。具体的には、着色発泡粒子の表面を色差計にて測定した場合、濃淡によるデザイン性の点で、下記の特性(1)を満足することが好ましい。
 特性(1):X-Y≧0.5
(X:着色発泡粒子の色味が濃い部分の色差の値であり、Y:着色発泡粒子の色味が薄い部分の色差の値である)
X-Yは、1以上であることがより好ましく、3以上であることが更に好ましく、5以上であることが特に好ましい。
 一実施形態において、発泡粒子は、A>Bの関係(Aは発泡粒子の表層部の平均気泡径(μm)、Bは発泡粒子の中心部の平均気泡径(μm))を満たす複数の気泡を有する。この関係を有することで、A≦Bの関係を有する発泡粒子よりも、顔料の含有量が少なくても濃い色に着色された発泡成形体を提供できる。この場合、顔料は無機顔料であることが好ましい。発明者等は、この理由を光の乱反射を低減できることにあると推測している。
 なお、本明細書において、表層部とは、発泡粒子の表面から中心に向かって、発泡粒子の半径の約30%までの領域を意味する。一方、中心部とは、発泡粒子の中心から表面に向かって、発泡粒子の半径の約70%までの領域を意味する。
 上記表層部の平均気泡径は、100~400μmの範囲であることが好ましい。一方、上記中心部の平均気泡径は、10~200μmであることが好ましい。十分な着色の点では、表層部の平均気泡径が100μm以上とすることが好ましく、成形性の点から、表層部の平均気泡径が400μm以下とするとが好ましい。収縮防止の点で、中心部の平均気泡径が10μm以上とすることが好ましく、成形時の発泡粒子同士の融着の点で、中心部の平均気泡径を200μm以下とすることが好ましい。
 更に、AとBは、A/B>1.5の関係を有することが好ましい。この関係は、発泡粒子の表層部に位置する気泡が、中心部に位置する気泡よりも、かなり大きな平均気泡径を有していることを意味している。この構成によれば、A/Bが1.5以下である場合と比べて、色差を大きくするとともに、顔料の含有量が少なくても濃い色に着色された発泡成形体を提供できる。
(2)発泡粒子の製造方法
 発泡粒子は、樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程(含浸工程)、発泡性粒子を発泡させる発泡工程を経て得ることができる。
 (i)含浸工程
 (a)樹脂粒子
 樹脂粒子は、公知の製造方法及び製造設備を使用して得ることができる。例えば、押出機から押し出された樹脂と顔料との溶融混練物を、水中カット、ストランドカット等により造粒することによって、樹脂粒子を製造できる。上記熱可塑性エラストマー組成物を溶融混練物として使用することができる。溶融混練時の温度、時間、圧力等は、使用原料及び製造設備に合わせて適宜設定できる。
 溶融混練時の押出機内の溶融混練温度は、樹脂が十分に軟化する温度である170~250℃が好ましく、200~230℃がより好ましい。溶融混練温度とは、押出機ヘッド付近の溶融混練物流路の中心部温度を熱電対式温度計で測定した押出機内部の溶融混練物の温度を意味する。
 顔料は、マスターバッチの形態で押出機に供給することができる。マスターバッチを構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、アミド系エラストマー、エステル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー等の熱可塑性エラストマー樹脂が挙げられる。これらの中でも熱可塑性エラストマー樹脂であることが好ましい。
 樹脂粒子の形状は、例えば、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状である。
 樹脂粒子は、0.5~3.5mmの平均粒子径を有することが好ましい。平均粒子径が0.5mm未満の場合、発泡剤の保持力が低下して発泡性が低下することがある。平均粒子径が3.5mmより大きい場合、成形型内への充填性が低下することがある。 樹脂粒子は、その長さをL(mm)、平均径をD(mm)とした場合のL/Dが0.5~3であることが好ましい。樹脂粒子のL/Dが0.5未満や3を超えている場合、金型内への充填性が低下することがある。なお、樹脂粒子の長さLは、押出方向における樹脂粒子の長さをいい、平均径Dは長さLの方向に実質的に直交する樹脂粒子の切断面の直径をいう。樹脂粒子の平均径Dは0.5~3.5mmが好ましい。平均径が0.5mm未満の場合、発泡剤の保持性が低下して発泡性粒子の発泡性が低下することがある。3.5mmより大きいと、金型内への発泡粒子の充填性が低下すると共に、板状の発泡体を製造する場合に発泡体の厚みを薄くできないことがある。
 樹脂粒子には、気泡調整剤が含まれていてもよい。気泡調整剤としては、重曹クエン酸、高級脂肪酸アミド、高級脂肪酸ビスアミド、高級脂肪酸塩、無機気泡核剤等が挙げられる。これら気泡調整剤は、1種でもよいし、複数種組み合わせてもよい。
高級脂肪酸アミドとしては、ステアリン酸アミド、12-ヒドロキシステアリン酸アミド等が挙げられる。
 高級脂肪酸ビスアミドとしては、エチレンビスステアリン酸アミド、エチレンビス-12-ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド等が挙げられる。
 高級脂肪酸塩としては、ステアリン酸カルシウムが挙げられる。
 無機気泡核剤としては、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素等が挙げられる。
 樹脂粒子は、他に、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化物等の難燃剤を含んでいてもよい。
  (b)発泡性粒子
 樹脂粒子に発泡剤を含浸させて発泡性粒子を製造する。なお、樹脂粒子に発泡剤を含浸させる方法としては、公知の含浸方法を用い得る。例えば、密閉可能なオートクレーブ内に、樹脂粒子、分散剤及び水を供給して撹拌することによって、樹脂粒子を水中に分散させて分散液を製造し、この分散液中に発泡剤を圧入し、樹脂粒子中に発泡剤を含浸させる方法(湿式含浸)が挙げられる。代わりに、水を使用せずに発泡剤を含浸させてもよい(乾式含浸)。
 分散剤としては、特に限定されず、例えば、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム、ハイドロキシアパタイト等の難水溶性無機物や、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤が挙げられる。
 発泡剤としては、汎用のものを用いることができ、例えば、空気、窒素、二酸化炭素(炭酸ガス)等の無機ガス;プロパン、ブタン、ペンタン等の脂肪族炭化水素;ハロゲン化炭化水素が挙げられ、脂肪族炭化水素、無機ガスが好ましい。なお、発泡剤は単独で使用してもよいし、二種以上を併用してもよい。
 樹脂粒子に含浸させる発泡剤の量は、樹脂粒子100質量部に対して、1~12質量部であることが好ましい。発泡力の点では、発泡剤の含有量が1質量部以上であることが好ましい。気泡膜の強度および発泡時の粘度の維持の点では、12質量部以下であることが好ましい。脂肪族炭化水素を発泡剤として用いる場合、より好ましい発泡剤の量は6~8質量部である。この範囲内であれば、発泡力を十分に高めることができ、高い発泡倍率であっても、より一層良好に発泡できる。発泡剤の含有量が8質量部以下であると、気泡膜の破れが抑えられ、可塑化効果が大きくなりすぎないために、発泡時の粘度の過度の低下が抑えられ、かつ収縮が抑えられる。
 樹脂粒子100質量部に対して含浸された発泡剤の含有量(含浸量)は、以下のようにして測定される。樹脂粒子を圧力容器に入れる前の質量Xgを測定する。圧力容器内で、樹脂粒子に発泡剤を含浸させた後、圧力容器から含浸物を取り出した後の質量Ygを測定する。下記式により、樹脂粒子100質量部に対して含浸された発泡剤の含有量(含浸量)が求められる。
 発泡剤の含有量(質量部)=((Y-X)/X)×100
 脂肪族炭化水素を発泡剤として用いる場合、樹脂粒子への発泡剤の含浸温度は、低いと樹脂粒子に発泡剤を含浸させるのに要する時間が長くなって生産効率が低下することがある。また、高いと、樹脂粒子同士が融着して結合粒が発生することがある。含浸温度は、常温(25℃)~120℃が好ましく、50~110℃がより好ましい。発泡助剤(可塑剤)を、発泡剤と併用してもよい。発泡助剤(可塑剤)としては、アジピン酸ジイソブチル、トルエン、シクロヘキサン、エチルベンゼン等が挙げられる。
 (ii)発泡工程
 発泡工程では、発泡性粒子を発泡させて、発泡粒子を得ることができれば、発泡温度、加熱媒体は特に限定されない。なお、発泡前に、発泡性粒子の表面に、合着防止剤または帯電防止剤を塗布してもよい。合着防止剤としては、ポリアミドパウダー、界面活性剤等が挙げられる。帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、及びステアリン酸モノグリセリド等が挙げられる。
3.発泡成形体
 発泡成形体は、熱可塑性エラストマーと、耐熱性向上剤としての顔料とを含む熱可塑性エラストマー組成物から構成される。発泡成形体は、顔料を含むことにより、高い耐熱性を有している。また、発泡成形体は、複数の発泡粒子の融着体から構成される。発泡成形体における熱可塑性エラストマー、顔料及びそれらの含有割合は、上記熱可塑性エラストマー組成物と同様である。
 発泡成形体は、耐熱性の点で、0.05~0.25g/cm3の密度を有することが好ましい。密度は、0.10~0.20g/cm3であることがより好ましい。
 発泡成形体は、各種建築資材、靴の部材(例えば、インソール部材、ミッドソール部材)、スポーツ用品、緩衝材、シートクッション、自動車部材等の幅広い用途で使用できる。
 図1に、発泡成形体の一例を示す。図1に示す発泡成形体は、複数の着色発泡粒子2の融着体から構成された着色発泡成形体1である。個々の融着した着色発泡粒子2は、その表面に濃淡の着色領域を備えている。そのため融着した着色発泡粒子2は、着色発泡成形体1の表面に独特の色味を与えている。また、着色発泡成形体1の表面の濃淡は、着色発泡成形体1毎にランダムに付与されるので、例えば、靴の部材として着色発泡成形体1を使用した場合、靴毎に濃淡によるデザイン性を異ならせることが可能となる。その結果、同じデザインが存在しない一品ものであるという印象を購入者に与え、それにより、購入者の所有欲を刺激することが可能となる。
 発泡成形体は、発泡粒子が型内に複数充填された一対の金型を加熱媒体により加熱成形することで製造できる。例えば、多数の小孔を有する金型により構成された型内に発泡粒子を充填し、加圧水蒸気で発泡粒子を加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させ、一体化させることにより得ることができる。
 発泡粒子に不活性ガス又は空気(以下、不活性ガス等と称する)を含浸させて、発泡粒子の発泡力を向上させてもよい。発泡力を向上させることにより、加熱発泡時に発泡粒子同士の融着性が向上し、発泡体は更に優れた発泡性を有する。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。
 発泡粒子に不活性ガス等を含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス等の雰囲気下に発泡粒子を置くことによって、発泡粒子中に不活性ガス等を含浸させる方法が挙げられる。発泡粒子は、金型内に充填する前に不活性ガス等が含浸されてもよいが、発泡粒子を金型内に充填した後に金型ごと不活性ガス等の雰囲気下に置くことで含浸されてもよい。なお、不活性ガスが窒素である場合、0.1~2.0MPa(ゲージ圧)の窒素雰囲気中に発泡粒子を20分~24時間に亘って放置することが好ましい。
 次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
試験例1
<熱可塑性エラストマー及び熱可塑性エラストマー組成物の融点及び結晶化温度>
 JIS K7121:1987、2012「プラスチックの転移温度測定方法」及び、JIS K7122:1987、2012「プラスチックの転移熱測定方法」に準拠した。但し、サンプリング方法及び温度条件に関しては次のように行った。エスアイアイ・ナノテクノロジー社製「DSC6220、ASD-2」示差走査熱量計又は日立ハイテクサイエンス社製「DSC7000X、AS-3」示差走査熱量計を用い、アルミニウム製測定容器の底にすきまのないよう試料を約6mg充填して、窒素ガス流量20mL/minのもと、30℃から-70℃まで降温した後10分間保持し、-70℃から220℃まで昇温(1st Heating)、10分間保持後220℃から-70℃まで降温(Cooling)、10分間保持後-70℃から220℃まで昇温(2nd Heating)した時のDSC曲線を得た。なお、全ての昇温・降温は速度10℃/minで行い、基準物質としてアルミナを用いた。本発明において、融点とは、2nd Heating過程にみられる最も大きな融解ピークのトップの温度であり、この値は装置付属の解析ソフトを用いて読み取った。また、結晶化温度は、Cooling過程にみられる、3mJ/mg以上の熱量を有する最も高温側の結晶化ピークのトップ温度であり、この値は装置付属の解析ソフトを用いて読み取った。
<樹脂粒子の長さL及び平均径D>
 ノギスを用いて樹脂粒子の長さL(mm)と平均径D(mm)を測った。樹脂粒子を製造する際の押出方向における樹脂粒子の長さをL、押出方向に対して垂直方向の長さを平均径Dとした。
<発泡粒子の嵩密度>
 まず、発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させた後、メスシリンダーの底をたたいて試料の見掛け体積(V)cm3を一定にし、その質量と体積を測定し、次式に基づいて発泡粒子の嵩密度を算出した。
 嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
<発泡粒子の平均粒子径>
 発泡粒子約50gをロータップ型篩振とう機(飯田製作所社製)を用いて、篩目開き16.00mm、13.20mm、11.20mm、9.50mm、8.00mm、6.70mm、5.60mm、4.75mm、4.00mm、3.35mm、2.80mm、2.36mm、2.00mm、1.70mm、1.40mm、1.18mm、1.00mmのJIS標準篩で5分間分級した。篩網上の試料質量を測定し、その結果から得られた累積質量分布曲線を元にして累積質量が50%となる粒子径(メディアン径)を平均粒子径とした。
<発泡粒子の連続気泡率>
 まず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量の発泡粒子の全質量A(g)を測定した。次に、発泡粒子全体の体積B(cm3)を比重計を用いて1-1/2-1気圧法により測定した。比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されているものを用いた。続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の質量C(g)を測定した。次に、この金網製の容器内に前記発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた質量D(g)を測定した。そして、下記式に基づいて発泡粒子の見掛け体積E(cm3)を算出し、この見掛け体積Eと上記発泡粒子全体の体積B(cm3)とに基づいて下記式により発泡粒子の連続気泡率を算出した。なお、連続気泡率の算出においては水1gの体積を1cm3とした。
 E=A+(C-D)
 連続気泡率(%)=100×(E-B)/E
<発泡成形体の密度>
 発泡成形体の密度はJIS K 7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方」記載の方法で測定した。即ち、100cm3以上の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm3)=試験片質量(g)/試験片体積(cm3
 測定用の試験片は、成形後72時間以上経過した試料から100mm×100mm×元の成形体厚みに切り取り、温度23±2℃、湿度50±5%又は、温度27±2℃、湿度65±5%の雰囲気条件に16時問以上放置したものを使用した。
<発泡成形体の固体粘弾性>
 固体粘弾性測定装置には、(エスアイアイ・ナノテクノロジー社製)粘弾性スペクトロメータEXSTAR DMS6100を用いた。まず、発泡成形体をオーブンにて100℃、3時間乾燥させた。その後、熱プレス機にて200℃、5分間プレスを行い、長さ40mm、幅10mm、厚み0.7mmの測定試料を得た。固体粘弾性測定装置を用い、引張制御モードにて窒素雰囲気下で周波数1Hz、昇温速度5℃/分、測定温度30℃~220℃、チャック間隔20mm、歪振幅5μm、最小張力/圧縮力20mN、張力/圧縮力ゲイン1.2、力振幅初期値20mNの条件で固体粘弾性を測定した。測定より得られた固体粘弾性のグラフの変曲点の接線の交点が示す温度の値を算出した。接線TL1,TL2の引き方と交点PIの例を図2に示す。
 実施例1
 (1)樹脂粒子
 ナイロン12をハードセグメントとし、ポリテトラメチレングリコールをソフトセグメントとするアミド系エラストマー(商品名「PEBAX5533」、アルケマ社製)100質量部と、顔料としてのカーボンブラックのアミド系エラストマー樹脂マスターバッチ(構成する樹脂:「PEBAX5533」、顔料濃度10質量%、彩華化学社製)を2.0質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部とを単軸押出機に供給して溶融混練することで、アミド系エラストマー組成物を得た。なお、単軸押出機内において、組成物を始めは180℃にて溶融混練した後に220℃まで昇温させながら溶融混練した。
 続いて、溶融状態の組成物を冷却した後、単軸押出機の前端に取り付けたマルチノズル金型の各ノズルからアミド系エラストマーを押出した。なお、単軸押出機の前端に取り付けたマルチノズル金型(直径1.0mmのノズルを8穴有する)の各ノズルから樹脂を押し出し、30~50℃の水中でカットした。得られた樹脂粒子は、粒子の長さLが1.0~1.4mmで、粒子の平均径Dが1.0~1.4mmであった。樹脂粒子(組成物)の融点は160.5℃、結晶化温度136.3℃であった。
 (2)発泡性粒子
 樹脂粒子(平均粒子径1.2mm)15kg(100質量部)を加温密閉可能な内容積43リットルの耐圧回転式混合機に投入した。更に、合着防止剤としてエパン450(第一工業製薬社製)0.5質量部を投入し撹拌した。樹脂粒子を撹拌させながら、発泡剤としてブタン(ノルマルブタン:イソブタン=7:3)16質量部を圧入し、内部温度を70℃に昇温させ2時間撹拌を続けたその後、20℃まで冷却して混合機から除圧後すぐに取り出すことで、発泡性粒子を得た。
 (3)発泡粒子
 内容積50Lの撹拌機付き円筒型予備発泡機に発泡性粒子を2kg投入し、0.21MPaの水蒸気で撹拌しながら、発泡させ、嵩密度0.09g/cm3の発泡粒子を得た。得られた発泡粒子を密閉容器内に入れ、この密閉容器内に窒素を0.5MPaの圧力で圧入して常温にて18時間に亘って放置して発泡粒子に窒素を含浸した。
 (4)発泡成形体
 発泡粒子を密閉容器から取り出し、400mm×300mm×厚み11.0mmの大きさのキャビティを有する成形型のキャビティ内に充填し、0.25MPaの水蒸気で35秒間加熱し成形を行い、発泡成形体を得た。発泡成形体の密度は0.10g/cm3、固体粘弾性は152.3℃であった。
 実施例2
 顔料を銅フタロシアニンとするアミド系エラストマー樹脂マスターバッチ(構成する樹脂:「PEBAX5533」、顔料濃度10質量%、彩華化学社製)に変更すること以外は実施例1と同様にして発泡成形体を得た。組成物の融点は161.1℃、結晶化温度136.4℃であった。発泡成形体の密度は0.10g/cm3、固体粘弾性は153.1℃であった。
 実施例3
 エステル系エラストマー(商品名「PELPRENE P-75M」、東洋紡社製)100質量部と、顔料をイソインドリンとするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10%、彩華化学社製)5.0質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部とを単軸押出機に供給して溶融混練することで、エステル系エラストマー組成物を得た。以降は実施例1と同様にして発泡成形体を得た。組成物の融点は153.7℃、結晶化温度116.5℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は150.8℃であった。
 実施例4
 顔料をジケトピロロピロール(DPP)とするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10質量%、彩華化学社製)に変更すること以外は実施例3と同様にして発泡成形体を得た。組成物の融点は153.5℃、結晶化温度116.8℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は150.5℃であった。
 実施例5
 顔料をジクロロキナクリドンとするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10質量%、彩華化学社製)に変更すること以外は実施例3と同様にして発泡成形体を得た。組成物の融点は154.1℃、結晶化温度122.7℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は150.8℃であった。
 実施例6
 顔料をカーボンブラックとするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10質量%、彩華化学社製)5質量部に変更すること以外は実施例3と同様にして発泡成形体を得た。組成物の融点は153.2℃、結晶化温度115.0℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は148.3℃であった。
 実施例7
 顔料をカーボンブラックとするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10質量%、彩華化学社製)10質量部に変更すること以外は実施例3と同様にして発泡成形体を得た。組成物の融点は153.9℃、結晶化温度119.3℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は149.5℃であった。
 実施例8
 顔料を銅フタロシアニンとするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10質量%、彩華化学社製)5質量部に変更すること以外は実施例3と同様にして発泡成形体を得た。組成物の融点は152.8℃、結晶化温度121.9℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は148.8℃であった。
 実施例9
 顔料を銅フタロシアニンとするエステル系エラストマー樹脂マスターバッチ(構成する樹脂:「PELPRENE P-75M」、顔料濃度10質量%、彩華化学社製)10質量部に変更すること以外は実施例3と同様にして発泡成形体を得た。組成物の融点は151.2℃、結晶化温度122.8℃であった。発泡成形体の密度は0.13g/cm3、固体粘弾性は149.3℃であった。
 実施例10
 オレフィン系エラストマー(商品名「R110E」、プライムポリマー社製)100質量部と、顔料としてのカーボンブラックのオレフィン系エラストマー樹脂マスターバッチ(構成する樹脂:ポリプロピレン、顔料濃度20質量%、トーヨーカラー社製)2.5質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給して溶融混練することで、オレフィン系エラストマー組成物を得た。以降は実施例1と同様にして発泡成形体を得た。組成物の融点は153.6℃、結晶化温度116.3℃であった。発泡成形体の密度は0.10g/cm3、固体粘弾性は150.3℃であった。
 比較例1
 ナイロン12をハードセグメントとし、ポリテトラメチレングリコールをソフトセグメントとするアミド系エラストマー(商品名「PEBAX5533」、アルケマ社製)100質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給して溶融混練することで、アミド系エラストマー組成物を得た。以降は実施例1と同様にして発泡成形体を得た。発泡成形体の密度は0.10g/cm3、固体粘弾性は146.0℃であった。
 比較例2
 エステル系エラストマー(商品名「PELPRENE P-75M」、東洋紡社製)100質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給して溶融混練することで、エステル系エラストマー組成物を得た。以降は実施例1と同様にして発泡成形体を得た。発泡成形体の密度は0.13g/cm3、固体粘弾性は146.6℃であった。
 比較例3
 オレフィン系エラストマー(商品名「R110E」、プライムポリマー社製)100質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給して溶融混練することで、オレフィン系エラストマー組成物を得た。以降は実施例1と同様にして発泡成形体を得た。発泡成形体の密度は0.10g/cm3、固体粘弾性は146.2℃であった。
 実施例1~10及び比較例1~3の製造条件及び各種物性を表1に示す。表中、AEはアミド系エラストマー、EEはエステル系エラストマー、OEはオレフィン系エラストマー、CBはカーボンブラック、CuPは銅フタロシアニン、iso-Iはイソインドリン、DPPはジケトピロロピロール、di-ClQはジクロロキナクリドンを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1より、顔料を含む組成物から得られた発泡成形体は、顔料未含有の発泡成形体より、向上した耐熱性(固体粘弾性)を示すことが分かる。
試験例2
<発泡粒子及び発泡成形体の色差測定>
 JIS Z8722;2009「色の測定方法―反射及び透過物体色」記載の方法に準じて測定した。即ち、分光式色彩系SE-2000(日本電色工業社製)・データ処理カラーメイト5(日本電色工業社製)を用いて発泡粒子及び発泡成形体を光原(D65/10°視野)にてバックを押さえ専用白板を使用し、反射法で測定した。基準とする色と測定する色差を測定し、得たΔE*を値とした。但し、試験片は温度23±2℃、湿度50±5%で24時間以上状態調節後、試験環境標準板は三刺激値(C/2)、Y=96.09、X=94.13、Z=113.36のものを用いて測定を行った。
<着色発泡粒子及び着色発泡成形体の色の濃淡>
 目視にて着色発泡粒子及び着色発泡成形体の色の濃淡を観察した。評価方法を下記した。
 色の濃淡を確認できた            (Yes)
 色が均一で濃淡がなかった、又は判別不能であった(No)
<発泡成形体の白色度>
 JIS Z 8722:2009「色の測定方法-反射及び透過物体色」記載の方法に準じて、反射法にて測定した。日本電色工業社製「分光式色彩計SE-7700・データ処理カラーメイトプロ」色差計を用いて測定した。試験条件は、光源:D65/10°視野条件、試料面積:28mmφで行った。発泡成形体の蒸気スリットを可能な限り含まない平滑面の3箇所の白色度WIを測定し、これらの平均値を白色度とした。但し、試験片は温度23±2℃、湿度50±5%で24時間以上状態調節後、試験環境として温度20±2℃、湿度65±5%で測定を行った。尚、測定前に標準板を使用して校正を行った。標準板は三刺激値(D65/10°)、X=91.76、Y=96.87、Z=103.75のものを使用した。
 実施例1-5,7,9
 試験例2の実施例1-5,7,9は試験例1の実施例1-5,7,9とそれぞれと同じである。
 実施例11
 試験例2の実施例11は、試験例1の実施例10に対し顔料濃度を0.5質量部から0.2質量部へ変更した以外は、試験例1の実施例10と同じである。
 実施例12
 実施例1と同様にして樹脂粒子を得た。
 得られた樹脂粒子を内容積5Lのオートクレーブに1.5kg投入し、密閉した際、二酸化炭素で大気圧からゲージ圧3MPaまで加圧した。常温で24時間放置した後、徐圧することで発泡性粒子を得た。
発泡性粒子を取り出し以後は実施例1と同様にして発泡粒子、発泡成形体を得た。
 比較例4
 ナイロン12をハードセグメントとし、ポリテトラメチレングリコールをソフトセグメントとするアミド系エラストマー(商品名「PEBAX5533」、アルケマ社製)100質量部と、有機系気泡調整剤(商品名「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給して溶融混練した後、実施例1と同様にして、アミド系エラストマー組成物の樹脂粒子を得た。
 樹脂粒子(平均粒子径1.2mm)15kg(100質量部)を加温密閉可能な内容積43リットルの耐圧回転式混合機に投入した。更に、合着防止剤としてエパン450(第一工業製薬社製)0.5質量部、染料(オリエント化学工業社製 オイルブルー630S)0.2質量部を投入し撹拌した。樹脂粒子を撹拌させながら、発泡剤としてブタン(ノルマルブタン:イソブタン=7:3)12質量部を圧入し、内部温度を70℃に昇温させ2時間撹拌を続けたその後、20℃まで冷却して混合機から除圧後すぐに取り出すことで、発泡性粒子を得た。
 以降は実施例1と同様にして着色発泡成形体を得た。着色発泡成形体の密度は0.10g/cm3であった。
 比較例5
 エラストマーをエステル系エラストマーに変更すること以外は比較例4と同様にして着色発泡成形体を得た。着色発泡成形体の密度は0.13g/cm3であった。
 比較例6
 エラストマーをオレフィン系エラストマーに変更すること以外は比較例4と同様にして着色発泡成形体を得た。着色発泡成形体の密度は0.10g/cm3であった。
 実施例及び比較例の製造条件及び各種物性を表2に記載する。表中、AEはアミド系エラストマー、EEはエステル系エラストマー、OEはオレフィン系エラストマー、CBはカーボンブラック、CuPは銅フタロシアニン、iso-Iはイソインドリン、DPPはジケトピロロピロール、di-ClQはジクロロキナクリドンを意味する。 
  表2より、顔料を含む実施例1-5,7,9,11,12の着色発泡成形体は、染料を含む比較例4~6の着色発泡成形体より、色味が濃く、高いデザイン性を示すことが分かる。
Figure JPOXMLDOC01-appb-T000002

Claims (15)

  1.  熱可塑性エラストマーと、顔料とを含む熱可塑性エラストマー組成物。
  2.  前記顔料を、前記熱可塑性エラストマー100質量部に対して、0.05~3.0質量部含む請求項1に記載の熱可塑性エラストマー組成物。
  3.  前記熱可塑性エラストマーが、結晶性を示し、アミド系エラストマー、オレフィン系エラストマー、エステル系エラストマー、ウレタン系エラストマーから選択される請求項1又は2に記載の熱可塑性エラストマー組成物。
  4.  前記熱可塑性エラストマーが、アミド系エラストマーであり、前記熱可塑性エラストマー組成物が、結晶化温度より20~30℃高い融点を有する請求項1~3のいずれか1つに記載の熱可塑性エラストマー組成物。
  5.  前記熱可塑性エラストマーが、オレフィン系エラストマーであり、前記熱可塑性エラストマー組成物が、結晶化温度より30~45℃高い融点を有する請求項1~3のいずれか1つに記載の熱可塑性エラストマー組成物。
  6.  前記熱可塑性エラストマーが、エステル系エラストマーであり、前記熱可塑性エラストマー組成物が、結晶化温度より25~45℃高い融点を有する請求項1~3のいずれか1つに記載の熱可塑性エラストマー組成物。
  7.  請求項1~6のいずれか1つに記載の熱可塑性エラストマー組成物を含む樹脂粒子を発泡剤で発泡させた発泡粒子。
  8.  前記発泡粒子が、その表面に濃淡の着色領域を備える着色発泡粒子であり、
     前記着色発泡粒子が、その表面を色差計にて測定した場合、下記の特性(1)を満足する濃淡を示す請求項7に記載の発泡粒子。
     特性(1):X-Y≧0.5
    (式中、Xは着色発泡粒子の色味が濃い部分の色差の値であり、Yは着色発泡粒子の色味が薄い部分の色差の値である。)
  9.  前記発泡粒子が、0.05~0.5g/cm3の嵩密度を有する請求項7又は8に記載の発泡粒子。
  10.  前記発泡粒子が、0.05~0.5g/cm3の嵩密度、10%以下の連続気泡率、1~10mmの平均粒子径を有する請求項7に記載の発泡粒子。
  11.  前記顔料が、熱可塑性エラストマー100質量部に対して、0.05~3.0質量部含まれ、前記発泡粒子が、A>Bの関係(Aは表層部の平均気泡径、Bは中心部の平均気泡径)を満たす複数の気泡を有し、かつ前記表層部の平均気泡径が、100~400μmであり、前記中心部の平均気泡径が、10~200μmである請求項7~10のいずれか1つに記載の発泡粒子。
  12.  前記A及びBが、A/B>1.5の関係を満たす請求項11に記載の発泡粒子。
  13.  請求項1~6のいずれか1つに記載の熱可塑性エラストマー組成物を含む発泡成形体。
  14.  複数の請求項7~12のいずれか1つに記載の発泡粒子の融着体から構成された発泡成形体。
  15.  前記発泡成形体が、建築資材、靴の部材又は緩衝材として用いられる請求項13又は14に記載の発泡成形体。
     
PCT/JP2018/033454 2017-09-11 2018-09-10 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体 WO2019050032A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/645,556 US11643538B2 (en) 2017-09-11 2018-09-10 Thermoplastic elastomer composition, foam particle, and foam molded body
CN201880058776.5A CN111051415B (zh) 2017-09-11 2018-09-10 热塑性弹性体组合物、发泡颗粒、和发泡成形体
EP22180708.4A EP4101887A1 (en) 2017-09-11 2018-09-10 Thermoplastic elastomer composition, foam particle, and foam molded body
EP18854127.0A EP3683262B1 (en) 2017-09-11 2018-09-10 Thermoplastic elastomer composition, foam particle, and foam molded body
US18/080,359 US20230110490A1 (en) 2017-09-11 2022-12-13 Thermoplastic elastomer composition, foam particle, and foam molded body
US18/238,670 US20230399501A1 (en) 2017-09-11 2023-08-28 Thermoplastic elastomer composition, foam particle, and foam molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017173952A JP6649331B2 (ja) 2017-09-11 2017-09-11 着色発泡粒子及び着色発泡成形体
JP2017-173948 2017-09-11
JP2017173948A JP6649330B2 (ja) 2017-09-11 2017-09-11 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体
JP2017-173952 2017-09-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/645,556 A-371-Of-International US11643538B2 (en) 2017-09-11 2018-09-10 Thermoplastic elastomer composition, foam particle, and foam molded body
US18/080,359 Continuation US20230110490A1 (en) 2017-09-11 2022-12-13 Thermoplastic elastomer composition, foam particle, and foam molded body

Publications (1)

Publication Number Publication Date
WO2019050032A1 true WO2019050032A1 (ja) 2019-03-14

Family

ID=65635000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033454 WO2019050032A1 (ja) 2017-09-11 2018-09-10 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体

Country Status (5)

Country Link
US (3) US11643538B2 (ja)
EP (2) EP4101887A1 (ja)
CN (1) CN111051415B (ja)
TW (1) TWI805613B (ja)
WO (1) WO2019050032A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065115A (ja) * 2017-09-29 2019-04-25 積水化成品工業株式会社 高光沢発泡粒子、発泡成形体及びそれらの製造方法
JP7139547B1 (ja) * 2021-03-31 2022-09-20 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子の製造方法
EP4015410A4 (en) * 2019-09-30 2022-09-28 Daio Paper Corporation HYGIENIC THIN PAPER RECEPTACLE, DISPENSING PART FOR HYGIENIC THIN PAPER RECEPTACLE AND METHOD FOR MANUFACTURING THE PLUMPING PART OF A HYGIENIC THIN PAPER RECEPTACLE
WO2022209523A1 (ja) * 2021-03-31 2022-10-06 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子の製造方法
WO2023189213A1 (ja) * 2022-03-30 2023-10-05 株式会社ジェイエスピー 発泡性ポリアミド系樹脂粒子の製造方法、及びポリアミド系樹脂発泡粒子の製造方法及びポリアミド系樹脂発泡粒子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550154B (zh) * 2021-07-22 2023-08-01 泉州天勤箱包有限公司 一种箱包布涂覆用tpe组合物及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115475A (en) 1975-07-17 1978-09-19 Ato Chimie Method to prepare copolyesteramides for moulding
US4195015A (en) 1976-07-30 1980-03-25 Ato Chimie Heat and aging stable copolyetheresteramides and method of manufacturing same
US4230838A (en) 1974-05-31 1980-10-28 Ato Chimie Mouldable and extrudable polyether-ester-amide block copolymers
US4331786A (en) 1979-10-02 1982-05-25 Ato Chimie Moldable and/or extrudable polyether-ester-amide block copolymers
US4839441A (en) 1987-02-26 1989-06-13 Atochem Polyesteramides, polyetheresteramides and process for preparation thereof
US4864014A (en) 1987-02-26 1989-09-05 Atochem Polyester amides and polyether thioether ester amides and process for preparing them
JP2001294671A (ja) * 2000-04-17 2001-10-23 Idemitsu Petrochem Co Ltd 着色顔料マスターバッチ及びこれを用いたブロー成形法
JP2002019033A (ja) * 2000-07-10 2002-01-22 Idemitsu Technofine Co Ltd 樹脂積層体、レザー調シートおよび自動車用内装材
JP2004075777A (ja) * 2002-08-13 2004-03-11 Kanegafuchi Chem Ind Co Ltd 柔軟性を有するポリスチレン系発泡シートおよび青果用トレー
WO2009037905A1 (ja) * 2007-09-19 2009-03-26 Techno Polymer Co., Ltd. 発泡成形用熱可塑性樹脂組成物、発泡成形品及び積層品
WO2016052387A1 (ja) 2014-09-30 2016-04-07 積水化成品工業株式会社 アミド系エラストマー発泡粒子、その製造方法、発泡成形体及びその製造方法
JP2016512850A (ja) 2013-03-15 2016-05-09 ナイキ イノヴェイト シーヴィー 装飾発泡体及び方法
JP2018076464A (ja) * 2016-11-11 2018-05-17 株式会社ジェイエスピー 発泡粒子とその成形体
JP2018172643A (ja) * 2017-03-31 2018-11-08 積水化学工業株式会社 発泡シート、及び粘着テープ

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026736A (en) 1987-02-24 1991-06-25 Astro-Valcour, Inc. Moldable shrunken thermoplastic polymer foam beads
DE4307648A1 (de) 1993-03-11 1994-09-15 Basf Ag Schaumstoffe auf Basis thermoplastischer Polyurethane sowie expandierbare, partikelförmige, thermoplastische Polyurethane, insbesondere geeignet zur Herstellung von Schaumstoff-Formkörpern
JP3525946B2 (ja) 1994-05-02 2004-05-10 株式会社ジェイエスピー ポリプロピレン系樹脂着色発泡粒子の製造方法、及びポリプロピレン系樹脂着色発泡粒子成型体
JP3578657B2 (ja) 1999-03-08 2004-10-20 矢崎総業株式会社 オレフィン系発泡マスターバッチ組成物
DE19950420A1 (de) 1999-10-20 2001-04-26 Basf Ag Partikelförmige, expandierbare Olefinpolymerisate
WO2002004204A1 (fr) 2000-07-10 2002-01-17 Idemitsu Technofine Co., Ltd. Stratifie en resine, feuille rappelant le cuir, materiau d'interieur automobile, et procede de fabrication de stratifie en resine
JP2005023302A (ja) 2003-06-12 2005-01-27 Jsp Corp ポリプロピレン系樹脂発泡粒子の製造方法
US7259189B2 (en) 2003-06-12 2007-08-21 Jsp Corporation Expanded polypropylene resin beads and process for the production thereof
JP2005068203A (ja) * 2003-08-28 2005-03-17 Nitto Denko Corp ポリオレフィン系樹脂発泡体用組成物とその発泡体、および発泡体の製造方法
JP4669301B2 (ja) 2005-02-23 2011-04-13 株式会社ジェイエスピー 導電性を有する熱可塑性樹脂発泡粒子及びその発泡成形体
JP5153110B2 (ja) * 2006-10-02 2013-02-27 日東電工株式会社 ポリオレフィン系樹脂発泡体とその製造方法
ITMI20071005A1 (it) 2007-05-18 2008-11-19 Polimeri Europa Spa Procedimento per la preparazione di granuli a base di polimeri termoplastici espandibili e relativo prodotto
ITMI20071003A1 (it) 2007-05-18 2008-11-19 Polimeri Europa Spa Compositi a base di polimeri vinilaromatici aventi migliorate proprieta' di isolamento termico e procedimento per la loro preparazione
WO2010010010A1 (de) 2008-07-25 2010-01-28 Basf Se Thermoplastische polymer blends auf der basis von thermoplastischem polyurethan und styrolpolymerisat, daraus hergestellte schaumstoffe und zugehörige herstellungsverfahren
KR101179414B1 (ko) * 2008-12-02 2012-09-03 주식회사 엘지화학 레이저 마킹용 열가소성 수지 조성물
JP5254103B2 (ja) 2009-03-25 2013-08-07 積水化成品工業株式会社 カーボン含有改質ポリスチレン系樹脂発泡粒子とその製造方法、カーボン含有改質ポリスチレン系樹脂発泡成形体とその製造方法
CN102802907B (zh) 2009-05-26 2015-04-15 巴斯夫欧洲公司 水作为热塑性塑料的发泡剂
WO2011118706A1 (ja) * 2010-03-26 2011-09-29 積水化成品工業株式会社 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、熱可塑性樹脂予備発泡粒子とその製造方法、及び熱可塑性樹脂発泡成形体
WO2013100015A1 (ja) * 2011-12-28 2013-07-04 積水化成品工業株式会社 ポリオレフィン系樹脂発泡シート、その製造方法、及びその用途
FR2985515B1 (fr) 2012-01-05 2013-12-20 Arkema France Solution liquide comprenant du peba.
EP2836543B1 (de) 2012-04-13 2020-03-04 Basf Se Verfahren zur herstellung von expandiertem granulat
JP5582586B2 (ja) * 2012-10-10 2014-09-03 株式会社ジェイエスピー ポリオレフィン系樹脂発泡粒子成形体
EP3005889A4 (en) * 2013-05-28 2017-03-29 Kimree Hi-Tech Inc. Thermoplastic elastomer composite material, electronic cigarette component, and method for manufacturing the electronic cigarette component
KR102217486B1 (ko) * 2013-06-13 2021-02-22 바스프 에스이 팽창된 펠릿의 제조
TWI656153B (zh) * 2013-10-11 2019-04-11 巴斯夫歐洲公司 膨脹熱塑性彈性體珠粒之製造
EP3063225B1 (en) 2013-10-29 2017-12-13 Rhodia Operations Foamable polyamide composition and foam obtained therefrom
CN103804890B (zh) 2014-02-18 2016-01-27 山东美瑞新材料有限公司 一种挤出发泡热塑性聚氨酯弹性体粒子及其制备方法
CN103951965B (zh) 2014-05-09 2015-04-01 晋江国盛新材料科技有限公司 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法
DE102014216992A1 (de) 2014-08-26 2016-03-03 Adidas Ag Expandierte Polymerpellets
US20170283575A1 (en) * 2014-09-30 2017-10-05 Sekisui Plastics Co., Ltd. Expanded article, and expanded particles used to produce same
WO2016146395A1 (de) 2015-03-13 2016-09-22 Basf Se Elektrisch leitfähige partikelschaumstoffe auf basis von thermoplastischen elastomeren
US20180368515A1 (en) * 2015-12-02 2018-12-27 Sekisui Plastics Co., Ltd. Shoe sole member and shoe
CN105968403B (zh) 2016-05-19 2017-09-29 晋江国盛新材料科技有限公司 一种通过共成型来制备彩色tpu成型体的方法
WO2017220671A1 (de) 2016-06-23 2017-12-28 Basf Se Verfahren zur herstellung von schaumstoffpartikeln aus thermoplastischen elastomeren mit polyamidsegmenten
JP2018044042A (ja) 2016-09-13 2018-03-22 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
WO2018003316A1 (ja) 2016-06-29 2018-01-04 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子成形体及びその製造方法、並びに熱可塑性ポリウレタン発泡粒子
WO2018142467A1 (ja) 2017-01-31 2018-08-09 株式会社アシックス 靴底用部材及び靴
CN107383854B (zh) 2017-08-04 2018-04-13 南通德亿新材料有限公司 一种热塑性聚氨酯微气囊弹性体材料的制备方法
KR20210034051A (ko) 2018-07-18 2021-03-29 바스프 에스이 장쇄 폴리아미드계 폼 재료 입자

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230838A (en) 1974-05-31 1980-10-28 Ato Chimie Mouldable and extrudable polyether-ester-amide block copolymers
US4332920A (en) 1974-05-31 1982-06-01 Ato Chimie Mouldable and extrudable polyether-ester-amide block copolymers
US4115475A (en) 1975-07-17 1978-09-19 Ato Chimie Method to prepare copolyesteramides for moulding
US4195015A (en) 1976-07-30 1980-03-25 Ato Chimie Heat and aging stable copolyetheresteramides and method of manufacturing same
US4331786A (en) 1979-10-02 1982-05-25 Ato Chimie Moldable and/or extrudable polyether-ester-amide block copolymers
US4864014A (en) 1987-02-26 1989-09-05 Atochem Polyester amides and polyether thioether ester amides and process for preparing them
US4839441A (en) 1987-02-26 1989-06-13 Atochem Polyesteramides, polyetheresteramides and process for preparation thereof
JP2001294671A (ja) * 2000-04-17 2001-10-23 Idemitsu Petrochem Co Ltd 着色顔料マスターバッチ及びこれを用いたブロー成形法
JP2002019033A (ja) * 2000-07-10 2002-01-22 Idemitsu Technofine Co Ltd 樹脂積層体、レザー調シートおよび自動車用内装材
JP2004075777A (ja) * 2002-08-13 2004-03-11 Kanegafuchi Chem Ind Co Ltd 柔軟性を有するポリスチレン系発泡シートおよび青果用トレー
WO2009037905A1 (ja) * 2007-09-19 2009-03-26 Techno Polymer Co., Ltd. 発泡成形用熱可塑性樹脂組成物、発泡成形品及び積層品
JP2016512850A (ja) 2013-03-15 2016-05-09 ナイキ イノヴェイト シーヴィー 装飾発泡体及び方法
WO2016052387A1 (ja) 2014-09-30 2016-04-07 積水化成品工業株式会社 アミド系エラストマー発泡粒子、その製造方法、発泡成形体及びその製造方法
JP2018076464A (ja) * 2016-11-11 2018-05-17 株式会社ジェイエスピー 発泡粒子とその成形体
JP2018172643A (ja) * 2017-03-31 2018-11-08 積水化学工業株式会社 発泡シート、及び粘着テープ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065115A (ja) * 2017-09-29 2019-04-25 積水化成品工業株式会社 高光沢発泡粒子、発泡成形体及びそれらの製造方法
EP4015410A4 (en) * 2019-09-30 2022-09-28 Daio Paper Corporation HYGIENIC THIN PAPER RECEPTACLE, DISPENSING PART FOR HYGIENIC THIN PAPER RECEPTACLE AND METHOD FOR MANUFACTURING THE PLUMPING PART OF A HYGIENIC THIN PAPER RECEPTACLE
JP7139547B1 (ja) * 2021-03-31 2022-09-20 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子の製造方法
WO2022209523A1 (ja) * 2021-03-31 2022-10-06 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子の製造方法
WO2023189213A1 (ja) * 2022-03-30 2023-10-05 株式会社ジェイエスピー 発泡性ポリアミド系樹脂粒子の製造方法、及びポリアミド系樹脂発泡粒子の製造方法及びポリアミド系樹脂発泡粒子

Also Published As

Publication number Publication date
TWI805613B (zh) 2023-06-21
US20230399501A1 (en) 2023-12-14
US11643538B2 (en) 2023-05-09
CN111051415A (zh) 2020-04-21
US20200369862A1 (en) 2020-11-26
CN111051415B (zh) 2022-05-06
EP3683262B1 (en) 2022-08-03
EP3683262A1 (en) 2020-07-22
EP4101887A1 (en) 2022-12-14
US20230110490A1 (en) 2023-04-13
TW201920386A (zh) 2019-06-01
EP3683262A4 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
WO2019050032A1 (ja) 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体
CN106687511B (zh) 酰胺系弹性体发泡颗粒、其制造方法、发泡成形体和发泡成形体的制造方法
JP6534645B2 (ja) 緩衝材用発泡体及び緩衝材
CN109312100B (zh) 热塑性聚氨酯发泡粒子成形体及其制造方法以及热塑性聚氨酯发泡粒子
CN109476869B (zh) 酯系弹性体发泡成形体、其用途、和酯系弹性体发泡颗粒
CN110283438A (zh) 一种吹塑成型可降解薄膜的基础树脂及吹塑成型可降解薄膜
TW202239842A (zh) 由具有20d至90d之間之蕭氏硬度之tpe構成之粒子泡沫
JP6649331B2 (ja) 着色発泡粒子及び着色発泡成形体
JP6649330B2 (ja) 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体
JP2019044123A (ja) 熱可塑性エラストマー発泡性粒子の製造方法及び発泡成形体の製造方法
JP2018172535A (ja) エステル系エラストマー発泡成形体及びその製造方法
JP6874108B2 (ja) 熱可塑性エラストマー組成物、発泡粒子及び発泡成形体
JP6998808B2 (ja) 発泡体及びその製造方法
TW202146549A (zh) 聚醯胺系樹脂發泡粒子、及聚醯胺系樹脂發泡粒子成形體
JP2019065273A (ja) 顔料含有発泡粒子、発泡成形体及びそれらの製造方法
JP6691839B2 (ja) 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
JP2018050767A (ja) インソール
WO2024070887A1 (ja) アミド系エラストマー発泡粒子、アミド系エラストマー発泡成形体、及び当該発泡成形体の製造方法
KR20180133607A (ko) 내충격성이 우수한 에틸렌 비닐 아세테이트 발포입자
JP7051654B2 (ja) ワックス含有発泡粒子、発泡成形体及びそれらの製造方法
JP6867265B2 (ja) 高光沢発泡粒子、発泡成形体及びそれらの製造方法
JP2017185194A (ja) 玩具
JP2017186868A (ja) 建材
JP2017179254A (ja) 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
JP2017185771A (ja) 車両用内装材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018854127

Country of ref document: EP

Effective date: 20200414