WO2019049630A1 - 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス - Google Patents

成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス Download PDF

Info

Publication number
WO2019049630A1
WO2019049630A1 PCT/JP2018/030478 JP2018030478W WO2019049630A1 WO 2019049630 A1 WO2019049630 A1 WO 2019049630A1 JP 2018030478 W JP2018030478 W JP 2018030478W WO 2019049630 A1 WO2019049630 A1 WO 2019049630A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
packaging material
heat
resin
fusible resin
Prior art date
Application number
PCT/JP2018/030478
Other languages
English (en)
French (fr)
Inventor
賢二 吉野
誠 唐津
孝司 長岡
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017170957A external-priority patent/JP7033411B2/ja
Priority claimed from JP2017170958A external-priority patent/JP6994326B2/ja
Priority claimed from JP2017179875A external-priority patent/JP6936088B2/ja
Priority claimed from JP2017180007A external-priority patent/JP6917255B2/ja
Priority to KR1020217023187A priority Critical patent/KR102451964B1/ko
Priority to CN201880053694.1A priority patent/CN111033788B/zh
Priority to KR1020207003677A priority patent/KR102359195B1/ko
Priority to DE112018004914.0T priority patent/DE112018004914B4/de
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Priority to CN202310228801.2A priority patent/CN116315326A/zh
Priority to US16/644,569 priority patent/US11766848B2/en
Publication of WO2019049630A1 publication Critical patent/WO2019049630A1/ja
Priority to US18/231,487 priority patent/US20230382084A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is suitably used as, for example, a case for a notebook personal computer, a mobile phone, an on-vehicle, or a stationary secondary battery (lithium ion secondary battery), and is also preferably used as a food packaging material and a pharmaceutical packaging material.
  • the present invention relates to a molding packaging material used for
  • an acid resistance-imparting layer is provided as the outermost layer on one surface of the substrate layer, and on the other surface of the substrate layer, (1)
  • An exterior material for a lithium ion battery in which an adhesive layer, an aluminum foil layer provided with a corrosion prevention treatment layer on at least one surface, a second adhesive layer, and a sealant layer are sequentially laminated, and the slip agent is applied to the outer surface of the sealant layer. At least one of (fatty acid amide, etc.) and anti-blocking agent (silica particles, etc.) is applied, or at least one of slip agent (fatty acid amide, etc.) and anti-blocking agent (silica particles, etc.) is blended in the sealant layer.
  • An exterior material for a lithium ion battery having a different configuration has been proposed (see Patent Document 2).
  • the slipperiness of the surface of the inner sealant layer can be improved, and good formability can be ensured.
  • the present invention has been made in view of such technical background, and can secure good slipperiness at the time of molding of a packaging material for molding, and can ensure good moldability, and at the same time, white powder is surfaced on the surface of the packaging material.
  • An object of the present invention is to provide a packaging material for molding, an outer case for an electric storage device, and an electric storage device that are difficult to release.
  • the present invention provides the following means.
  • a molding packaging material comprising a base material layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between both layers,
  • the heat fusible resin layer is composed of a single layer or a plurality of layers, and the innermost layer of the heat fusible resin layer is a resin containing a heat fusible resin, an antiblocking agent, a slip agent, and a fluorocarbon polymer lubricant.
  • a molding packaging material comprising the composition.
  • One or two fluoropolymers selected from the group consisting of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer and hexafluoropropylene-vinylidene fluoride copolymer
  • the molding packaging material according to any one of the above items 1 to 3, which is a lubricant.
  • An outer case for a storage battery device which is formed of the molded packaging material of any one of items 1 to 8 above.
  • electric storage device main unit An exterior member including at least the exterior case for a storage battery device according to the above-mentioned 9; An electricity storage device characterized in that the electricity storage device main body is covered with the exterior member.
  • a forming packaging material comprising a base material layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between both layers,
  • the heat fusible resin layer is composed of a single layer or a plurality of layers, and the innermost layer of the heat fusible resin layer is a resin containing a heat fusible resin, an antiblocking agent, a slip agent, and a fluorocarbon polymer lubricant. It consists of a composition,
  • a molding packaging material characterized in that a first slippery layer containing a fluoropolymer lubricant at a content of more than 50% by mass is formed on the inner surface of the innermost layer.
  • One or two fluoropolymers selected from the group consisting of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer and hexafluoropropylene-vinylidene fluoride copolymer
  • the molding packaging material according to any one of the above items 11 to 14, which is a lubricant.
  • a storage device main body An exterior member including at least the exterior case for a storage battery device according to item 20.
  • An electricity storage device characterized in that the electricity storage device main body is covered with the exterior member.
  • a heat-sealable single layer or a plurality of layers is formed by laminating a base material layer on one side of a metal foil via an outer adhesive and on the other side of the metal foil via an inner adhesive.
  • a forming packaging material comprising a base material layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between both layers,
  • the thermally fusible resin layer is composed of a single layer or a plurality of layers, and the innermost layer of the thermally fusible resin layer contains a thermally fusible resin, a surface-roughening material, a slip agent and a fluorocarbon polymer lubricant. Consisting of a resin composition,
  • the surface-roughening material contains a thermoplastic resin.
  • thermoplastic resin constituting the roughening material is a high density polyethylene resin.
  • An outer case for a storage battery device which comprises the molded packaging material of any one of the preceding items 26 to 34.
  • electric storage device main unit An exterior member at least including the exterior case for a power storage device according to item 35, An electricity storage device characterized in that the electricity storage device main body is covered with the exterior member.
  • a forming packaging material comprising a base material layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between both layers,
  • the thermally fusible resin layer is composed of a single layer or a plurality of layers, and the innermost layer of the thermally fusible resin layer contains a thermally fusible resin, a surface-roughening material, a slip agent and a fluorocarbon polymer lubricant.
  • the surface-roughening material contains a thermoplastic resin
  • a molding packaging material characterized in that a first slippery layer containing a fluoropolymer lubricant at a content of more than 50% by mass is formed on the inner surface of the innermost layer.
  • One or two fluoropolymers selected from the group consisting of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer and hexafluoropropylene-vinylidene fluoride copolymer as the above-mentioned fluoropolymer lubricant.
  • the molding packaging material according to any one of the above items 37 to 40, which is a lubricant.
  • thermoplastic resin constituting the roughening material is a high density polyethylene resin.
  • An exterior case for a storage battery device which comprises the molded packaging material of any one of the preceding items 37 to 46.
  • electric storage device main unit An exterior member at least including the exterior case for a power storage device according to item 47, An electricity storage device characterized in that the electricity storage device main body is covered with the exterior member.
  • a heat-sealable single layer or a plurality of layers is formed by laminating a base material layer on one side of a metal foil via an outer adhesive and on the other side of the metal foil via an inner adhesive.
  • a heat-sealable resin layer wherein the innermost layer of the heat-sealable resin layer comprises a heat-sealable resin, a roughening material, a slip agent, and a resin composition containing a fluorine-based polymer lubricant.
  • the innermost layer of the heat fusible resin layer is composed of a resin composition containing a heat fusible resin, an antiblocking agent, a slip agent and a fluorine-based polymer lubricant, so the packaging material
  • the sliding property between the surface of the innermost layer of the heat fusible resin layer and the surface of the molding die at the time of molding is improved, and the moldability at the time of molding such as deep drawing and stretch forming can be improved. According to the present invention, stable slip during molding can be secured even if the amount of bleeding of the slip agent is small.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the slipperiness in the fluorine-containing polymer-based lubricant is 50% by mass or more, the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the slipperiness can be further improved, and the formability at the time of forming the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the slipperiness can be further improved, and the formability at the time of forming the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the innermost layer of the heat-fusible resin layer is composed of a resin composition containing a heat-fusible resin, an antiblocking agent, a slip agent and a fluorine-based polymer lubricant, and the innermost layer Since the first sliding layer containing the fluorine-containing polymer lubricant at a content of more than 50% by mass is formed on the inner surface of the housing, the sliding between the inner surface of the packaging material and the molding die surface during molding of the packaging material The properties are improved, and the formability at the time of forming such as deep drawing and stretch forming can be improved, and at the same time, it is difficult for white powder to appear on the surface of the packaging material. According to the present invention, stable slip during molding can be ensured even if the amount of bleeding of the slip agent is smaller than that of the prior art.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the fluorocarbon polymer lubricant one or two selected from the group consisting of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer and hexafluoropropylene-vinylidene fluoride copolymer. Since the fluorocarbon polymer lubricant is used, the slipperiness can be further improved and the moldability at the time of molding can be further improved.
  • the slipperiness can be further improved, and the formability at the time of formation of the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the slipperiness can be further improved, and the formability at the time of formation of the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the inner surface of the innermost layer comprising a resin composition containing a heat fusible resin, an antiblocking agent, a slip agent and a fluorine-based polymer lubricant
  • a first sliding layer is formed containing a fluorine-containing lubricant at a content of more than 50% by mass, and a second agent containing a slip agent at a content of more than 50% by mass on the inner surface of the first sliding layer.
  • the sliding layer is formed, the sliding property between the inner surface of the packaging material and the molding die surface at the time of molding of the packaging material is improved, and the molding at the time of molding such as deep drawing and stretch forming While improving the properties, it is difficult for white powder to appear on the surface of the packaging material.
  • the heating temperature for aging is 30 ° C. to 50 ° C.
  • the second slip layer can be formed with certainty, and the white powder on the surface of the packaging material can be sufficiently prevented.
  • the heating temperature of the aging is preferably set to 35 ° C. to 45 ° C.
  • the layer formation of the innermost layer is performed by melt extrusion film formation of the resin composition, the first slippery layer can be surely formed, and the white powder on the surface of the packaging material is exposed. Can be sufficiently prevented.
  • the layer formation of the innermost layer is performed by applying and drying the coating solution containing the resin composition and the solvent, the first slip layer can be formed surely, and also the package White powder expression on the surface of the material can be sufficiently prevented.
  • the surface of the innermost layer of the heat fusible resin layer is in contact with the surface of the base layer, but the surface of the innermost layer of the heat fusible resin layer Is roughened, the area of contact between the surface of the innermost layer and the surface of the base material layer is small, and the amount of transfer of the slip agent onto the surface of the base material layer (innermost layer of heat fusible resin layer) (The amount of transfer of the slip agent from the surface of the substrate) is reduced, so that the adhesive strength to the surface of the base material layer of the adhesive tape for fixing the storage device (battery etc.) inside the electronic device is sufficiently obtained.
  • An advantageous effect is obtained that the printed matter is less likely to be peeled off when printed items such as product name and lot number are printed on the surface of the packaging material (battery etc.) (surface of the base layer).
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • thermoplastic resin constituting the roughening material is a high density polyethylene resin
  • the high density polyethylene resin is effective when the compatibility with the heat fusible resin is appropriately low. Can be roughened to further improve the slipperiness.
  • the slipperiness can be further improved, and the formability at the time of formation of the packaging material can be further improved.
  • the slipperiness can be further improved, and the formability at the time of formation of the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the innermost layer of the heat fusible resin layer is composed of a resin composition containing a heat fusible resin, a thermoplastic resin-containing roughening material, a slip agent and a fluorine-based polymer lubricant. Since the first sliding layer containing the fluorine-based polymer lubricant at a content of more than 50% by mass is formed on the inner surface of the innermost layer, the inner surface of the packaging material and the forming gold at the time of forming the packaging material The slidability with the mold surface is improved, and the formability at the time of forming such as deep drawing and stretch forming can be improved, and at the same time, it is difficult for white powder to appear on the surface of the packaging material. According to the present invention, stable slip during molding can be ensured even if the amount of bleeding of the slip agent is smaller than that of the prior art.
  • the surface of the innermost layer of the heat fusible resin layer is in contact with the surface of the base layer, but the surface of the innermost layer of the heat fusible resin layer Is roughened, the area of contact between the surface of the innermost layer and the surface of the base material layer is small, and the amount of transfer of the slip agent onto the surface of the base material layer (innermost layer of heat fusible resin layer) (The amount of transfer of the slip agent from the surface of the substrate) is reduced, so that the adhesive strength to the surface of the base material layer of the adhesive tape for fixing the storage device (battery etc.) inside the electronic device is sufficiently obtained.
  • An advantageous effect is obtained that the printed matter is less likely to be peeled off when printed items such as product name and lot number are printed on the surface of the packaging material (battery etc.) (surface of the base layer).
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • thermoplastic resin constituting the roughening material is a high density polyethylene resin
  • the high density polyethylene resin is effective when the compatibility with the heat fusible resin is appropriately low. Can be roughened to further improve the slipperiness.
  • the slipperiness can be further improved, and the formability at the time of forming the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the slipperiness can be further improved, and the formability at the time of formation of the packaging material can be further improved.
  • the slipperiness can be further improved, and the moldability at the time of molding can be further improved.
  • the packaging material for molding obtained by the invention (production method) of [49] is most preferably composed of a resin composition containing a heat fusible resin, a thermoplastic resin-containing roughening material, a slip agent and a fluorine-based polymer lubricant.
  • a first lubricating layer containing a fluoropolymer lubricant at a content of more than 50% by mass is formed on the inner surface of the inner layer, and a content of a slip agent at more than 50% by mass on the inner surface of the first lubricating layer. Since the second lubricious layer contained in the above is formed, the slipperiness between the inner surface of the packaging material and the molding die surface at the time of molding of the packaging material is improved, and deep drawing, stretch forming, etc. While being able to improve the moldability at the time of molding, it is difficult for white powder to appear on the surface of the packaging material.
  • the surface of the innermost layer of the heat fusible resin layer is in contact with the surface of the base material layer. Since the surface of the innermost layer is roughened, the contact area between the surface of the innermost layer and the surface of the base layer is small, and the amount of transfer of the slip agent onto the surface of the base layer (heat fusion) The amount of transfer of the slip agent from the surface of the innermost layer of the resin layer is reduced, and hence the adhesive strength to the surface of the base material layer of the adhesive tape for fixing the storage device (battery etc.) inside the electronic device etc. It is advantageous that the printing is difficult to be peeled off when the description items such as the product name and the lot number are printed on the surface of the packaging material (the surface of the base material layer) packaging the storage device (battery etc.) Play an effect.
  • the heating temperature for aging is 30 ° C. to 50 ° C.
  • the second slip layer can be formed with certainty, and the white powder on the surface of the packaging material can be sufficiently prevented.
  • the heating temperature of the aging is preferably set to 35 ° C. to 45 ° C.
  • the layer formation of the innermost layer is performed by melt extrusion film formation of the resin composition, the first slippery layer can be surely formed, and white powder on the surface of the packaging material is exposed. Can be sufficiently prevented.
  • the layer formation of the innermost layer is performed by applying and drying a coating solution containing the resin composition and the solvent, the first slip layer can be formed surely, and also the package White powder expression on the surface of the material can be sufficiently prevented.
  • FIG. 5 is a perspective view showing an exterior material (planar one), an electricity storage device main body and an exterior case (a molded body formed into a three-dimensional shape) which constitute the storage device of FIG. 4 in a separated state before heat sealing.
  • the molding packaging material 1 according to the first invention includes a base material layer 2 as an outer layer, a heat-fusible resin layer 3 as an inner layer, and a metal foil layer 4 disposed between both layers.
  • the thermally fusible resin layer 3 is composed of a single layer or a plurality of layers, and the innermost layer 7 of the thermally fusible resin layer 3 is composed of a thermally fusible resin, an antiblocking agent, a slip agent and a fluorocarbon polymer lubricant.
  • a resin composition containing see FIGS. 1 to 3 and 6 to 8).
  • FIGS. 1 to 3 and 6 to 8 Six embodiments of the molding packaging material 1 according to the first invention are shown in FIGS. 1 to 3 and 6 to 8, respectively. These six embodiments are only representative embodiments and are not particularly limited to such a configuration.
  • the molding packaging material 1 shown in FIGS. 1 to 3 and 6 to 8 is used for a lithium ion secondary battery case.
  • the molding packaging material 1 is used, for example, for forming such as deep drawing and stretch forming, and is used as a case of a secondary battery or the like.
  • the molding packaging material 1 is a heat fusible resin layer (inner layer) 3 with an inner adhesive layer 6 on one side of the metal foil layer 4.
  • the base layer (outer layer) 2 is integrally laminated on the other surface of the metal foil layer 4 via the outer adhesive layer 5.
  • the heat-fusible resin layer (inner layer) 3 is a first heat-fusible resin layer constituting the innermost layer 7 of the inner layer 3 and the first heat.
  • the second heat-fusible resin layer 8 is laminated on the surface on the metal foil layer 4 side of the fusible resin layer 7 (two-layer laminated structure).
  • the first heat fusible resin layer (innermost layer) 7 is exposed on the inner surface of the molding packaging material 1 (see FIG. 1).
  • the heat fusible resin layer (inner layer) 3 is a first heat fusible resin layer constituting the innermost layer 7 of the inner layer 3; A second heat-fusible resin layer 8 laminated on the surface of the heat-fusible resin layer 7 on the metal foil layer 4 side, and a surface of the second heat-fusible resin layer 8 on the metal foil layer 4 side And a third heat-fusible resin layer 9 laminated to the above.
  • the first heat sealable resin layer (innermost layer) 7 is exposed on the inner surface of the molding packaging material 1 (see FIG. 2).
  • the heat fusible resin layer (inner layer) 3 has a single-layer structure including only the first heat fusible resin layer (innermost layer) 7. Similarly to the above, the first heat sealable resin layer (innermost layer) 7 is exposed on the inner surface of the molding packaging material 1 (see FIG. 3).
  • the heat fusible resin layer (inner layer) 3 is a first heat fusible resin layer constituting the innermost layer 7 of the inner layer 3 and the first heat.
  • the second heat-fusible resin layer 8 is laminated on the surface on the metal foil layer 4 side of the fusible resin layer 7 (two-layer laminated structure).
  • a first slip layer 11 containing a fluorine-based polymer lubricant at a content of more than 50% by mass is laminated, and the first slip layer 11
  • a second slip layer 12 containing a slip agent at a content of more than 50% by mass is laminated (see FIG. 6).
  • a third slip layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2 (see FIG. 6).
  • the heat-fusible resin layer (inner layer) 3 is a first heat-fusible resin layer constituting the innermost layer 7 of the inner layer 3; A second heat-fusible resin layer 8 laminated on the surface of the heat-fusible resin layer 7 on the metal foil layer 4 side, and a surface of the second heat-fusible resin layer 8 on the metal foil layer 4 side And a third heat-fusible resin layer 9 laminated to the above.
  • a first slip layer 11 containing a fluorine-based polymer lubricant at a content of more than 50% by mass is laminated, and the first slip layer 11
  • a second slip layer 12 containing a slip agent at a content of more than 50% by mass is laminated (see FIG. 7).
  • a third slip layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2 (see FIG. 7).
  • the said heat fusible resin layer (inner layer) 3 is the single layer structure which consists only of the 1st heat fusible resin layer (innermost layer) 7.
  • the first lubricating layer 11 containing a fluorine-based polymer lubricant at a content of more than 50% by mass is laminated on the inner surface 7a of the first heat-fusible resin layer (innermost layer) 7
  • a second slip layer 12 containing a slip agent at a content of more than 50% by mass is laminated (see FIG. 8).
  • a third slip layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2 (see FIG. 8).
  • the innermost layer 7 of the heat fusible resin layer 3 is composed of a heat fusible resin, an antiblocking agent, a slip agent and a fluoropolymer.
  • a first sliding layer comprising a resin composition containing a lubricant and containing a fluorine-based polymer lubricant at a content of greater than 50% by mass on the inner surface 7a of the first heat-fusible resin layer (innermost layer) 7 11, and the second slippery layer 12 containing a slip agent at a content of more than 50% by mass is further stacked on the inner surface 11a of the first slippery layer 11, so that the packaging material 1 is formed.
  • the sliding property between the inner surface of the packaging material 1 and the molding die surface at the time of molding is improved, and the formability at the time of forming such as deep drawing and stretch forming can be improved (deep forming is favorably performed be able to). Furthermore, since the third lubricating layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2, the formability can be further improved.
  • the molding packaging material 1 according to the second invention includes a base material layer 2 as an outer layer, a heat-fusible resin layer 3 as an inner layer, and a metal foil layer 4 disposed between the two layers.
  • the thermally fusible resin layer 3 is composed of a single layer or a plurality of layers, and the innermost layer 7 of the thermally fusible resin layer 3 is composed of a thermally fusible resin, a roughening material, a slip agent, and a fluoropolymer
  • the surface-roughening material comprises a resin composition containing a lubricant, and the surface-roughening material contains a thermoplastic resin (see FIGS. 1 to 3 and 6 to 8).
  • FIGS. 1-3 and 6-8 Six embodiments of the molding packaging material 1 according to the present invention are shown in FIGS. 1-3 and 6-8, respectively. These six embodiments are only representative embodiments and are not particularly limited to such a configuration.
  • the molding packaging material 1 shown in FIGS. 1 to 3 and 6 to 8 is used for a lithium ion secondary battery case.
  • the molding packaging material 1 is used, for example, for forming such as deep drawing and stretch forming, and is used as a case of a secondary battery or the like.
  • the molding packaging material 1 is a heat fusible resin layer (inner layer) 3 with an inner adhesive layer 6 on one side of the metal foil layer 4.
  • the base layer (outer layer) 2 is integrally laminated on the other surface of the metal foil layer 4 via the outer adhesive layer 5.
  • the heat-fusible resin layer (inner layer) 3 is a first heat-fusible resin layer constituting the innermost layer 7 of the inner layer 3 and the first heat.
  • the second heat-fusible resin layer 8 is laminated on the surface on the metal foil layer 4 side of the fusible resin layer 7 (two-layer laminated structure).
  • the first heat fusible resin layer (innermost layer) 7 is exposed on the inner surface of the molding packaging material 1 (see FIG. 1).
  • the heat fusible resin layer (inner layer) 3 is a first heat fusible resin layer constituting the innermost layer 7 of the inner layer 3; A second heat-fusible resin layer 8 laminated on the surface of the heat-fusible resin layer 7 on the metal foil layer 4 side, and a surface of the second heat-fusible resin layer 8 on the metal foil layer 4 side And a third heat-fusible resin layer 9 laminated to the above.
  • the first heat sealable resin layer (innermost layer) 7 is exposed on the inner surface of the molding packaging material 1 (see FIG. 2).
  • the heat fusible resin layer (inner layer) 3 has a single-layer structure including only the first heat fusible resin layer (innermost layer) 7. Similarly to the above, the first heat sealable resin layer (innermost layer) 7 is exposed on the inner surface of the molding packaging material 1 (see FIG. 3).
  • the heat fusible resin layer (inner layer) 3 is a first heat fusible resin layer constituting the innermost layer 7 of the inner layer 3 and the first heat fusible resin layer.
  • a first slip layer 11 containing a fluorine-based polymer lubricant at a content of more than 50% by mass is laminated, and the first slip layer 11
  • a second slip layer 12 containing a slip agent at a content of more than 50% by mass is laminated (see FIG. 6).
  • a third slip layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2 (see FIG. 6).
  • the heat-fusible resin layer (inner layer) 3 is a first heat-fusible resin layer constituting the innermost layer 7 of the inner layer 3; A second heat-fusible resin layer 8 laminated on the surface of the heat-fusible resin layer 7 on the metal foil layer 4 side, and a surface of the second heat-fusible resin layer 8 on the metal foil layer 4 side And a third heat-fusible resin layer 9 laminated to the above.
  • a first slip layer 11 containing a fluorine-based polymer lubricant at a content of more than 50% by mass is laminated, and the first slip layer 11
  • a second slip layer 12 containing a slip agent at a content of more than 50% by mass is laminated (see FIG. 7).
  • a third slip layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2 (see FIG. 7).
  • the said heat fusible resin layer (inner layer) 3 is the single layer structure which consists only of the 1st heat fusible resin layer (innermost layer) 7.
  • the first lubricating layer 11 containing a fluorine-based polymer lubricant at a content of more than 50% by mass is laminated on the inner surface 7a of the first heat-fusible resin layer (innermost layer) 7
  • a second slip layer 12 containing a slip agent at a content of more than 50% by mass is laminated (see FIG. 8).
  • a third slip layer 13 containing a slip agent is laminated on the outer surface 2a of the base material layer (outer layer) 2 (see FIG. 8).
  • the innermost layer 7 of the heat fusible resin layer 3 is a rough surface containing a heat fusible resin and a thermoplastic resin.
  • a resin composition containing a slip agent and a fluorine-based polymer lubricant, wherein the inner surface 7a of the first heat-fusible resin layer (innermost layer) 7 contains a fluorine-based resin greater than 50% by mass The first slip layer 11 containing the first slip layer is laminated, and the second slip layer 12 containing the slip agent at a content of more than 50% by mass is further laminated on the inner surface 11a of the first slip layer 11 Since the configuration is as described above, the slidability between the inner surface of the packaging material 1 and the molding die surface at the time of molding the packaging material 1 is improved, and the formability at the time of forming such as deep drawing and stretch forming is improved. Yes (deep molding can be done well). Furthermore, since the third lubricating
  • the heat fusible resin layer (inner layer; sealant layer) 3 has excellent chemical resistance to highly corrosive electrolytes and the like used in lithium ion secondary batteries and the like. It plays a role of imparting heat sealability to the packaging material.
  • the resin constituting the thermally fusible resin layer 3 (including the first thermally fusible resin layer 7, the second thermally fusible resin layer 8 and the third thermally fusible resin layer 9) is particularly limited. Although not preferred, it is preferred to use at least one heat fusible resin selected from the group consisting of polyethylene, polypropylene, olefin copolymers and ionomers. In addition, it is unpreferable from an economical viewpoint to use acid-modified polyolefin resin as resin which comprises the said heat fusible resin layer 3. As shown in FIG. That is, it is preferable to use a non-acid-modified polyolefin resin as a resin constituting the heat-fusible resin layer 3.
  • the heat constituting the first heat-fusible resin layer (innermost layer) 7 While using a random copolymer containing “propylene” and “the other copolymer component excluding propylene” as a copolymer component as the fusion-bondable resin, the thermal fusion forming the second heat-fusible resin layer 8 As the adhesive resin, it is preferable to use a block copolymer containing "propylene” and "another copolymer component excluding propylene” as a copolymer component.
  • the heat fusible resin constituting the fusible resin layer 8 it is preferable to use a block copolymer containing “propylene” and “other copolymerization components excluding propylene” as copolymerization components.
  • the third heat-fusible resin layer 9 may also contain a fluorine-containing lubricant, but there is a concern that the laminate strength may be reduced. Therefore, it is preferable to set the content of the fluorine-based polymer lubricant to less than 1000 ppm in the third heat-fusible resin layer 9 so as not to contain the fluorine-based polymer lubricant or when it is contained.
  • the heat fusion constituting the first heat fusible resin layer (innermost layer) 7 As the adhesive resin, it is preferable to use a random copolymer containing “propylene” and “the other copolymer component excluding propylene” as a copolymer component.
  • examples of the “other copolymer components other than propylene” include, but are not particularly limited to, ethylene, 1-butene, 1-hexene, 1-pentene, 4-methyl-1 -In addition to olefin components such as pentene, butadiene and the like can be mentioned.
  • the said block copolymer it is although it does not specifically limit as said "other copolymer components except propylene", For example, ethylene, 1-butene, 1-hexene, 1-pentene, 4-methyl Other than olefin components such as -1-pentene, butadiene and the like can be mentioned.
  • the innermost layer 7 of the heat fusible resin layer 3 is composed of a resin composition containing a heat fusible resin, an antiblocking agent, a slip agent and a fluorine-based polymer lubricant,
  • the sliding property between the surface 7a of the innermost layer 7 of the heat fusible resin layer 3 and the molding die surface at the time of molding the packaging material 1 is improved, and the formability at the time of forming such as deep drawing and stretch forming is improved. (Deep molding can be done well).
  • the antiblocking agent is not particularly limited, and examples thereof include inorganic particles and resin particles.
  • the inorganic particles are not particularly limited, and examples thereof include silica particles and aluminum silicate particles.
  • the resin particles are not particularly limited, and examples thereof include acrylic resin particles, polyolefin resin particles (polyethylene resin particles, polypropylene resin particles), and polystyrene resin particles.
  • the particle size of the antiblocking agent is preferably in the range of 0.1 ⁇ m to 10 ⁇ m in average particle size, and more preferably in the range of 1 ⁇ m to 5 ⁇ m in average particle size.
  • the concentration (content) of the antiblocking agent in the innermost layer 7 is preferably set to 100 ppm to 50000 ppm, and particularly preferably set to 500 ppm to 15000 ppm.
  • thermoplastic resin containing pellet a thermoplastic resin containing powder, etc. are used.
  • thermoplastic resin-containing powders are preferable in terms of dispersibility.
  • the thermoplastic resin constituting the roughening material is not particularly limited, but, for example, polyethylene resin (high density polyethylene resin, low density polyethylene resin, etc.), polypropylene resin, ethylene-olefin (except ethylene)
  • olefin resins such as olefin resin, ethylene-vinyl ester copolymer resin and the like, polystyrene resins and the like can be mentioned.
  • the surface roughening material it is preferable to use a surface roughening material containing a high density polyethylene resin, and in this case, the innermost layer of the heat fusible resin layer without impairing the heat sealability.
  • the surface 7a of 7 can be effectively roughened to further improve the slidability.
  • the surface-roughening material on the surface 7 a of the innermost layer 7 in a state in which the surface-roughening material having low compatibility with the matrix is dispersed in the matrix of the heat-fusible resin constituting the innermost layer 7
  • asperities are formed on the surface 7a (the surface is roughened).
  • thermoplastic resin pellets or thermoplastic resin powder as a roughening material with the pellets or powder of the heat fusible resin, and melt-kneading this mixture with an extruder or the like to finely disperse the mixture.
  • the surface 7a of the innermost layer 7 is provided with irregularities (the surface is roughened).
  • the average diameter (average value of the major axis) of the roughening material in a dispersed state is preferably in the range of 0.05 ⁇ m to 10 ⁇ m, and in this case, the slipperiness can be further improved.
  • the density of the high density polyethylene resin (HDPE) constituting the roughening material is preferably in the range of 0.935 g / cm 3 to 0.965 g / cm 3 . In the case of such a density range, the slipperiness can be further improved and the formability can be further improved. Above all, the density of the high density polyethylene resin (HDPE) constituting the roughening material is more preferably in the range of 0.945 g / cm 3 to 0.960 g / cm 3 .
  • the density of the high density polyethylene resin can be adjusted by changing the content of the comonomer (copolymer component).
  • comonomers include, but are not limited to, unsaturated olefins other than ethylene such as 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc. .
  • the comonomer at least one comonomer selected from the group consisting of 1-butene and 1-hexene is preferably used.
  • the melt flow rate (MFR) at 190 ° C. of the high density polyethylene resin constituting the roughening material is preferably in the range of 0.01 g / 10 minutes to 2 g / 10 minutes.
  • the MFR is "0.01 g / 10 min or more”
  • the roughening material can be finely and uniformly dispersed in the thermally adhesive resin, and the MFR is "2 g / 10 min” or less. By doing so, surface roughness can be increased and slipperiness can be further improved.
  • the melt flow rate (MFR) at 190 ° C. of the high density polyethylene resin (HDPE) constituting the roughening material is particularly preferably in the range of 0.1 g / 10 minutes to 1 g / 10 minutes.
  • the melt flow rate (MFR) of the high density polyethylene resin can be adjusted, for example, as follows.
  • the MFR of the high density polyethylene resin can be adjusted by changing the reactor temperature during polymerization, or after adding a small amount of hydrogen, the reactor temperature is adjusted.
  • the MFR of high density polyethylene resin can be adjusted by changing it.
  • the MFR of the high density polyethylene resin can be adjusted by changing the amount of hydrogen supplied to the reactor at the time of polymerization.
  • the said Phillips catalyst although the said high density polyethylene resin can be manufactured by slurry polymerization using an isobutane as a solvent, it is not specifically limited to such a method.
  • the melting point of the high density polyethylene resin constituting the roughening material is preferably in the range of 130 ° C. to 145 ° C. Moreover, it is preferable that a high density polyethylene resin is what has the branch which is a long chain (C10 or more).
  • a high-density polyethylene resin having long-chain branches when the surface-roughening material is melt-kneaded with the heat-fusible resin, the molten surface-roughening material (thermoplastic resin) is finely dispersed. Since it is easy to form the above-mentioned particles, the surface 7a of the innermost layer of the heat-fusible resin layer 3 can be roughened more effectively, and the slidability can be further improved.
  • the swell of the high density polyethylene resin constituting the roughening material is preferably in the range of 25% to 55%.
  • the melt viscoelasticity of the resin constituting the roughening material is relatively high. It is easy to form particles of high density polyethylene resin, the surface 7a of the innermost layer can be roughened more effectively, and the slipperiness can be further improved.
  • the swell of the high density polyethylene resin constituting the roughening material is more preferably in the range of 35% to 45%.
  • swell refers to the room temperature die swell percentage (%) according to the capillary rheometer A method defined by JIS K 7119-2001, and the standard die defined by JIS K 7210-2014 (pore diameter : 2.095 mm, length: 8 mm), at a temperature of 190 ° C.
  • the high load polyethylene resin high load swell (swell at a load of 21.6 kg) constituting the roughening material is preferably in the range of 55% to 90%, and in this case the roughening material Since the melt viscoelasticity of the resin constituting the resin is relatively high, particles of high density polyethylene resin can be easily formed, and the surface 7a of the innermost layer can be roughened more effectively, and the slipperiness can be further improved.
  • the high load well used a temperature of 190 ° C., using a standard die (pore diameter: 2.095 mm, length: 8 mm) defined by JIS K 7210-2014 according to JIS K 7119-2001.
  • a standard die pore diameter: 2.095 mm, length: 8 mm
  • the diameter of the strand 1 cm from the tip is When measured with a micrometer and this measured value is D 2 (mm)
  • High load swell (%) ⁇ (D 2- D 0 ) / D 0 ) ⁇ ⁇ 100
  • D 2 Diameter of extruded resin
  • D 0 Standard die hole diameter (2.095 mm) It is a value determined by the above formula.
  • the “high load MFR (MFR at 21.6 kg load) / MFR (MFR at 2.16 kg load) of the high density polyethylene resin constituting the roughening material is preferably in the range of 25 to 40. In this case, the compatibility between the random copolymer and the roughening material can be secured to a certain extent, and the whitening of the sealant layer 3 at the time of molding can be further suppressed.
  • the difference between the melt density of the roughening material and the density of the roughening material is preferably in the range of 0.15 g / cm 3 to 0.25 g / cm 3 , in which case the mixed resin is melted Since the volume contraction rate of the roughening material becomes large in the process of cooling and solidifying from the state, the surface 7a of the innermost layer 7 can be efficiently roughened, and the centerline average roughness Ra of the surface 7a of the innermost layer 7 Can be easily adjusted to 0.05 ⁇ m to 1 ⁇ m.
  • the density of the random copolymer (a random copolymer containing propylene as a copolymer component and other copolymer components other than propylene) and the roughening
  • the difference between the density and the density of the material is preferably in the range of 0.04 g / cm 3 to 0.07 g / cm 3 , and in this case, the random copolymer is in the process of cooling and solidifying the mixed resin in the molten state. Since the difference in volume contraction ratio between the surface and the roughening material becomes large, the unevenness of the surface 7a of the innermost layer 7 becomes large, the surface 7a of the innermost layer can be roughened more effectively, and the slipperiness is further improved. be able to.
  • the difference between the melt density of the random copolymer (a random copolymer containing propylene and other copolymer components excluding propylene as a copolymer component) and the melt density of the roughening material is 0.3 g It is preferable that it is / cm ⁇ 3 > or less.
  • the content of the roughening material in the innermost layer 7 of the heat-fusible resin layer 3 is preferably set to 1% by mass to 30% by mass, and in this case, the content of the lubricant in the innermost layer 7 is Even if it is 1000 ppm or less, excellent formability can be ensured.
  • the content of the lubricant in the innermost layer 7 is more than 0 ppm and not more than 1000 ppm, white powder is more difficult to appear on the surface 7 a of the innermost layer 7 of the heat-fusible resin layer of the exterior material. Become. Among them, the content of the roughening material in the innermost layer 7 is particularly preferably set to 1% by mass to 20% by mass.
  • the slip agent is not particularly limited, but a fatty acid amide is suitably used.
  • the fatty acid amide is not particularly limited, and examples thereof include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, fatty acid ester amide, aromatic bisamide, etc. Can be mentioned.
  • the saturated fatty acid amide is not particularly limited, and examples thereof include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide and hydroxystearic acid amide.
  • the unsaturated fatty acid amide is not particularly limited, and examples thereof include oleic acid amide and erucic acid amide.
  • the substituted amide is not particularly limited, and examples thereof include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid. An amide etc. are mentioned.
  • the methylolamide is not particularly limited, and examples thereof include methylol stearic acid amide and the like.
  • the saturated fatty acid bisamide is not particularly limited.
  • the unsaturated fatty acid bisamide is not particularly limited, and examples thereof include ethylene bis oleic acid amide, ethylene bis erucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl sebacic acid amide and the like. It can be mentioned.
  • the fatty acid ester amide is not particularly limited, and examples thereof include stearoamidoethyl stearate and the like.
  • the aromatic bisamide is not particularly limited, and examples thereof include m-xylylene bis-stearic acid amide, m-xylylene bis-hydroxystearic acid amide, and N, N'-stearyl isophthalic acid amide. It can be mentioned.
  • the concentration (content) of the slip agent in the innermost layer 7 is preferably set to 100 ppm to 3,000 ppm, and particularly preferably set to 500 ppm to 1,500 ppm.
  • the second heat fusible resin layer 8 also contain a slip agent.
  • the slip agent is preferably contained in the second heat-fusible resin layer 8 at a content of 100 ppm to 5000 ppm, and particularly preferably at a content of 500 ppm to 3000 ppm.
  • the third heat fusible resin layer 9 may also contain a slip agent.
  • the third thermally fusible resin layer 9 may be configured not to contain a slip agent, or the content of the slip agent may be set to less than 2000 ppm. Is preferred.
  • the fluorine-based polymer lubricant is a fluorine-containing polymer (polymer having one or more fluorine atoms in the molecule) capable of imparting slipperiness, and examples thereof include fluorine elastomers and fluorine resins (not including elastomers).
  • fluorine-based polymer lubricant has less interaction with the slip agent, and a sliding layer can be formed on the surface 7a of the innermost layer 7, thereby causing dynamic friction.
  • the coefficient can be reduced, the formability at the time of forming such as deep drawing can be greatly improved (a good formed body can be obtained even if deeper forming is performed). Further, by containing the fluorine-containing polymer lubricant in the innermost layer 7, surface roughness of the surface 7a of the innermost layer 7 can be suppressed.
  • the copolymer of a fluorine-containing monomer, etc. are mentioned.
  • the copolymer of the fluorine-containing monomer is not particularly limited, and, for example, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-propylene copolymer, tetrafluoroethylene-vinylidene fluoride- A hexafluoropropylene copolymer etc. are mentioned.
  • the exemplified copolymer is a polymer having a Tg in the range of ⁇ 35 ° C. to ⁇ 5 ° C. and not showing a melting point.
  • vinylidene fluoride-hexafluoropropylene copolymer is preferably used.
  • polyethylene glycol may be added to the vinylidene fluoride-hexafluoropropylene copolymer, and at this time, the blending amount of polyethylene glycol is 1 mass per 100 parts by mass of the vinylidene fluoride-hexafluoropropylene copolymer.
  • the amount is preferably set to 70 to 70 parts by mass, and more preferably 5 to 65 parts by mass.
  • an inorganic anti-blocking agent may be blended with the fluorine elastomer.
  • the inorganic antiblocking agent is not particularly limited, and examples thereof include talc, amorphous silica, kaolin (aluminum silicate), calcium carbonate and the like.
  • talc amorphous silica
  • kaolin aluminum silicate
  • calcium carbonate calcium carbonate
  • fluorine elastomer for example, Dynamer (trademark) “FX5920A”, Dynamer (trademark) “FX9613” manufactured by 3M Corporation containing vinylidene fluoride-hexafluoropropylene copolymer can be mentioned.
  • the fluorine resin having a melting point is not particularly limited, and, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer Polymer (FEP), tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPA), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-propylene copolymer (TFE / P), tetrafluoroethylene-hexafluoroprop
  • the fluorine resin having the above-mentioned melting point is excellent in heat resistance as compared with the above-mentioned fluorine elastomer, and has an advantage that the interaction (reaction) with the slip agent (fatty acid amide or the like) is smaller.
  • the fluorine resin it is preferable to use one having a melting point in the range of 100 ° C. to 300 ° C. as the fluorine resin (not including the elastomer).
  • the melting point is 100 ° C. or more, the dispersibility of the fluororesin (fluoropolymer-based lubricant) in the resin composition can be improved.
  • the melting point is 300 ° C. or less (there is no need to increase the molding temperature), the processability can be improved.
  • fluorine resins exemplified above those having a melting point of 100 ° C. to 300 ° C. are FEP, PCTFE, ETFE, PVDF, TFE / P, THV and the like. Further, those having a melting point of 110 ° C. to 230 ° C. are PVDF, TFE / P, THV and the like. Among these, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV) is most suitable.
  • the tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer is classified into “fluorinated elastomer” and “fluorinated resin having a melting point” both of which correspond to the point of being able to further improve the formability. It is particularly preferred to use the one corresponding to the latter (ie tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer having a melting point).
  • the fluorocarbon polymer lubricant As the fluorocarbon polymer lubricant, the fluoroelastomer lubricant and the fluorocarbon resin lubricant (not including the elastomer) may be used in combination (may be mixed and used).
  • the content of fluorine (F atom) in the fluorine-containing lubricant is preferably 50% by mass or more. By being 50 mass% or more, heat resistance can be further improved, and bleeding on the surface 7 a of the innermost layer can be further facilitated.
  • the content of fluorine (F atom) in the fluorine-based polymer lubricant is more preferably 60% by mass to 80% by mass, and particularly preferably 66% by mass to 76% by mass.
  • the concentration (content ratio) of the fluoropolymer lubricant in the innermost layer 7 is preferably set to 5 ppm to 5000 ppm. While being able to fully improve a moldability by being 5 ppm or more, uniform extrusion molding (film shaping
  • the master-batch formed by mixing the fluorine-containing lubricant with a resin such as a polyolefin resin is used.
  • a batch may be blended to obtain the resin composition of the innermost layer 7.
  • the base material layer (outer layer) 2 is preferably formed of a heat resistant resin layer.
  • a heat resistant resin which comprises the said heat resistant resin layer 2 the heat resistant resin which is not fuse
  • heat resistant resin heat resistance having a melting point higher by 10 ° C. or more than the melting point of the heat fusible resin layer 3 (the melting point of the layer having the highest melting point when the heat fusible resin layer is composed of plural layers)
  • heat resistance having a melting point higher by 20 ° C. or more than the melting point of the heat fusible resin layer 3 the melting point of the layer having the highest melting point when the heat fusible resin layer is composed of plural layers
  • the heat-resistant resin layer (outer layer) 2 is not particularly limited, and examples thereof include a polyamide film such as a nylon film and a polyester film, and a stretched film of these is preferably used.
  • the heat-resistant resin layer 2 is a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film or a biaxially stretched polyethylene na It is particularly preferred to use a phthalate (PEN) film.
  • PEN phthalate
  • the heat-resistant resin layer 2 may be formed as a single layer, or may be formed, for example, as a multilayer composed of a polyester film / polyamide film (a multilayer composed of a PET film / nylon film, etc.) Also good.
  • the thickness of the heat resistant resin layer (outer layer) 2 is preferably 2 ⁇ m to 50 ⁇ m.
  • the thickness is preferably 2 ⁇ m to 50 ⁇ m, and when a nylon film is used, the thickness is preferably 7 ⁇ m to 50 ⁇ m.
  • Sufficient strength as a packaging material can be secured by setting it above the above-mentioned suitable lower limit value, and stress at the time of forming such as stretch forming, squeeze molding can be made small by setting it below the above-mentioned suitable upper limit, and moldability is improved. It can be done.
  • the metal foil layer 4 plays the role of providing the packaging material 1 with a gas barrier property that prevents the entry of oxygen and moisture.
  • the metal foil layer 4 is not particularly limited, and examples thereof include aluminum foil, SUS foil (stainless steel foil), copper foil and the like, among which aluminum foil and SUS foil (stainless steel foil) are used Is preferred.
  • the thickness of the metal foil layer 4 is preferably 5 ⁇ m to 120 ⁇ m. While being 5 micrometers or more, while being able to prevent the pinhole generation at the time of rolling at the time of manufacturing metal foil, being 120 micrometers or less, stress at the time of forming, such as stretch forming and draw forming, can be made small and formability is improved. be able to. Among them, the thickness of the metal foil layer 4 is more preferably 10 ⁇ m to 80 ⁇ m.
  • the metal foil layer 4 is subjected to a chemical conversion treatment at least on the inner surface (surface on the inner layer 3 side).
  • a chemical conversion treatment can sufficiently prevent the corrosion of the metal foil surface due to the contents (such as the electrolyte solution of the battery).
  • the metal foil is subjected to a chemical conversion treatment by the following treatment.
  • the chemical conversion film preferably has a chromium deposition amount (per one surface) of 0.1 mg / m 2 to 50 mg / m 2 , and particularly preferably 2 mg / m 2 to 20 mg / m 2 .
  • the outer adhesive 5 is not particularly limited, and examples thereof include a thermosetting adhesive.
  • the thermosetting adhesive is not particularly limited, and examples thereof include an olefin adhesive, an epoxy adhesive, an acrylic adhesive and the like.
  • the thickness of the outer adhesive layer 5 is preferably set to 1 ⁇ m to 5 ⁇ m. Among them, the thickness of the outer adhesive layer 5 is particularly preferably set to 1 ⁇ m to 3 ⁇ m from the viewpoint of thinning and reducing the weight of the packaging material 1.
  • the inner adhesive 6 is not particularly limited, and examples thereof include the thermosetting adhesive and the like.
  • the thickness of the inner adhesive layer 6 is preferably set to 1 ⁇ m to 5 ⁇ m. Among them, the thickness of the inner adhesive layer 6 is particularly preferably set to 1 ⁇ m to 3 ⁇ m from the viewpoint of reducing the thickness and weight of the packaging material 1.
  • the following additives are added to the base material layer 2 and the heat fusible resin layer 3 (including the innermost layer 7) constituting the molding packaging material 1 as long as the effects of the present invention are not impaired. May be Examples of the additive include, but are not limited to, antioxidants, plasticizers, UV absorbers, fungicides, colorants (pigments, dyes, etc.), antistatic agents, rust inhibitors, moisture absorption Agents, oxygen absorbers and the like.
  • the plasticizer is not particularly limited.
  • glycerin fatty acid ester monoglyceride glycerin fatty acid ester acetylated monoglyceride, glycerin fatty acid ester organic acid monoglyceride, glycerin fatty acid ester medium chain fatty acid triglyceride, polyglycerin fatty acid ester, sorbitan
  • fatty acid esters propylene glycol fatty acid esters, special fatty acid esters, and higher alcohol fatty acid esters.
  • a part of the slip agent and the fluorine are provided on the surface 7 a of the innermost layer 7 of the heat fusible resin layer 3.
  • a part of the polymeric lubricant is exposed (bleeded) and attached.
  • the adhesion amount of the slip agent on the surface 7a of the innermost layer 7 is preferably in the range of 0.05 ⁇ g / cm 2 to 1.0 ⁇ g / cm 2
  • the adhesion amount of the fluorocarbon polymer lubricant on the surface 7a of the innermost layer 7 Is preferably in the range of 0.05 ⁇ g / cm 2 to 1.0 ⁇ g / cm 2 .
  • the dynamic friction coefficient of the surface 7a of the innermost layer 7 becomes 0.5 or less by such exposed adhesion.
  • the dynamic friction coefficient of the surface 7a of the innermost layer 7 is preferably 0.25 or less, more preferably 0.20 or less, and particularly preferably 0.18 or less.
  • the slip agent contained in the innermost layer 7 is attached to the surface 2 a of the base material layer 2. .
  • the adhesive slip agent is transferred from the innermost layer 7 by contact with the surface 7a of the innermost layer 7 in the wound state when the packaging material 1 obtained by laminating is stored in the wound state. It is a thing.
  • the adhesion amount after the transfer is preferably in the range of 0.05 ⁇ g / cm 2 to 1.0 ⁇ g / cm 2 . If the adhesion amount is in such a range, the formability of the forming packaging material 1 can be enhanced.
  • the dynamic friction coefficient of the surface 2 a of the base material layer 2 becomes 0.5 or less by such transfer and adhesion.
  • the dynamic friction coefficient of the surface 2a of the base material layer 2 is preferably 0.25 or less, more preferably 0.20 or less, and particularly preferably 0.18 or less.
  • the thickness of the first slip layer 11 is preferably 0.01 ⁇ m to 5 ⁇ m.
  • the thickness of the second slipping layer 12 is preferably 0.01 ⁇ m to 5 ⁇ m.
  • the thickness of the third slip layer 13 is preferably 0.01 ⁇ m to 5 ⁇ m.
  • the formation amount of the first slip layer 11 is in the range of 0.05 ⁇ g / cm 2 to 1.0 ⁇ g / cm 2 . Is preferred.
  • the amount of the second slip layer 12 formed is preferably in the range of 0.05 ⁇ g / cm 2 to 1.0 ⁇ g / cm 2 . With such a formation amount, the dynamic friction coefficient of the inner surface of the molding packaging material 1 becomes 0.5 or less. Among them, the dynamic friction coefficient of the inner surface of the molding packaging material 1 is preferably 0.25 or less, more preferably 0.20 or less, and particularly preferably 0.18 or less.
  • the first lubricious layer 11 By forming the innermost layer 7 by melt extrusion film formation of the resin composition forming the innermost layer 7, the first lubricious layer 11 can be reliably formed, and the first lubricity can be formed. The content of the fluoropolymer lubricant in the layer 11 can be increased.
  • the first lubricious layer 11 can be surely formed by forming the innermost layer 7 by applying and drying a coating solution containing the resin composition and the solvent which form the innermost layer 7.
  • the content of the fluorocarbon polymer lubricant in the first slip layer 11 can be increased.
  • the second sliding layer 12 can be reliably formed. While being possible, the content of the slip agent in the second sliding layer 12 can be increased. While the 2nd lubricious layer 12 can fully be formed because the heating temperature at the time of aging is 30 ° C or more, the appearance of the white powder on the surface of the packaging material for molding can be sufficiently prevented because it is 50 ° C or less. . Among them, it is preferable to set the heating temperature during the aging to 35 ° C. to 45 ° C.
  • the amount of the third slip layer 13 formed is in the range of 0.05 ⁇ g / cm 2 to 1.0 ⁇ g / cm 2 . Is preferred. With such a formation amount, the dynamic friction coefficient of the outer surface of the molding packaging material 1 becomes 0.5 or less. Among them, the dynamic friction coefficient of the outer surface of the molding packaging material 1 is preferably 0.25 or less, more preferably 0.20 or less, and particularly preferably 0.18 or less.
  • the packaging material obtained by laminating is It is a layer transferred and formed from the inner surface by contact between the inner surface and the outer surface of the wrapping material in a wound state.
  • the third slippery layer 13 may be removed, or may be left as it is, or disappears naturally. It may be closed.
  • an outer case (battery case etc.) 10 can be obtained (see FIGS. 4 and 5).
  • FIG. 3 One embodiment of a power storage device 30 configured using the packaging material 1 of the present invention is shown in FIG.
  • the storage device 30 is a lithium ion secondary battery.
  • the exterior member 15 is configured by the exterior case 10 obtained by shaping the packaging material 1 and the planar packaging material 1 without being subjected to shaping. ing.
  • an approximately rectangular parallelepiped storage device body (e.g., an electrochemical element) 31 is housed in the housing recess of the outer case 10 obtained by molding the packaging material 1 of the present invention.
  • the flat packaging material 1 is disposed on the inner layer 3 with the inner layer 3 side facing inward (downward), and the peripheral portion of the inner layer 3 (innermost layer 7) of the flat outer packaging material 1, and
  • the electric storage device 30 of the present invention is configured by seal-sealing and sealing the inner layer 3 (innermost layer 7) of the flange portion (peripheral edge portion for sealing) 29 of the outer case 10 by heat sealing. (See Figures 4 and 5).
  • the inner surface of the housing recess of the outer case 10 is the inner layer 3 (innermost layer 7), and the outer surface of the housing recess is the base layer 2 (see FIG. 5). .
  • reference numeral 39 denotes a heat seal portion in which the peripheral portion of the packaging material 1 and the flange portion (peripheral portion for sealing) 29 of the outer case 10 are joined (welded).
  • tip part of the tab lead connected to the electrical storage device main-body part 31 in the said electrical storage device 30 is derived
  • illustration is abbreviate
  • the storage device body 31 is not particularly limited, and examples thereof include a battery body, a capacitor body, and a capacitor body.
  • Example 1 After applying a chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol on both sides of a 30 ⁇ m thick aluminum foil 4, drying is performed at 180 ° C. , Formed a chemical conversion film.
  • the chromium deposition amount of this chemical conversion film was 10 mg / m 2 per one side.
  • a 15 ⁇ m-thick biaxially stretched 6 nylon film 2 was dry laminated (bonded) to one surface of the aluminum foil 4 subjected to the chemical conversion treatment via a two-component curable urethane adhesive 5.
  • ethylene-propylene random copolymer, 1000 ppm of erucic acid amide (slip agent), 5000 ppm of silica particles (average particle size 2 ⁇ m; anti blocking agent) and 50 ppm of fluorine-containing polymer lubricant A (manufactured by 3M "FX 5911" 1) a first heat fusible resin unstretched film 7 having a thickness of 3 ⁇ m, an ethylene-propylene block copolymer, and a second heat fusible property having a thickness of 14 ⁇ m comprising 1000 ppm of erucic acid amide
  • a 20 ⁇ m thick sealant film is obtained by laminating these three layers by coextrusion using
  • the sealant film after the formation of the film (first heat fusible resin non-oriented film layer 7 / second heat fusible resin non-oriented film layer 8 / third heat fusible resin non-oriented film layer 9) 3
  • the third heat fusible resin non-oriented film layer 9 of No. 3 is superposed on the other side of the aluminum foil 4 after the dry lamination through a two-component curable maleic acid-modified polypropylene adhesive 6,
  • the laminate is sandwiched between a rubber nip roll and a laminate roll heated to 100 ° C. and dry laminated by pressure bonding, wound around a roll shaft, and then aged at 33 ° C. for 13 days (heated), then the roll shaft
  • the power storage device packaging material (forming packaging material) 1 having the configuration shown in FIG. 2 was obtained.
  • Example 2 The structure shown in FIG. 2 in the same manner as in Example 1 except that the content of fluorocarbon polymer lubricant A ("FX5911" manufactured by 3M) in the first heat fusible resin unstretched film 7 is changed to 500 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • Comparative Example 1 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 1 except that the first heat-fusible resin unstretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 3 The thickness of the aluminum foil 4 was changed to 35 ⁇ m, and the thickness was changed only as the sealant film (without changing the composition) 30 ⁇ m thick sealant film (3 ⁇ m thick first heat fusible resin unstretched Same as Example 1 except that the film layer 7 / the second heat fusible resin unstretched film layer 8 having a thickness of 24 ⁇ m / the third heat fusible resin unstretched film layer 9 having a thickness of 3 ⁇ m is used Thus, the packaging material for a storage battery device (forming packaging material) 1 having the configuration shown in FIG. 2 was obtained.
  • Example 4 A 30 ⁇ m thick sealant film (a 4.5 ⁇ m thick first heat fusible resin) in which the thickness of the aluminum foil 4 was changed to 35 ⁇ m and only the thickness was changed as a sealant film (without changing the composition)
  • a packaging material for a storage battery device (forming packaging material) 1 having a configuration shown in FIG. 2 was obtained.
  • Comparative Example 2 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 3, except that the first heat-fusion-bonding resin non-stretched film 7 did not contain the fluorine-based polymer lubricant.
  • Example 5 The structure shown in FIG. 2 in the same manner as in Example 3 except that the content of the fluorocarbon polymer lubricant A ("FX5911" manufactured by 3M) in the first heat fusible resin unstretched film 7 is changed to 1000 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorocarbon polymer lubricant A
  • Example 6 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co., Ltd.) instead of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co.) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 3 except that 50 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 7 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 250ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 3 except that 250 ppm of a fluorine elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 8 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 500ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 3 except that 500 ppm of a fluoroelastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 9 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 is fluorine A 40 ⁇ m thick sealant film (4 ⁇ m thick first heat fusible resin unstretched film layer 7/32 ⁇ m thick second heat fusing as a sealant film, changing to an elastomeric lubricant ("FX 5920A" manufactured by 3M) Of the power storage device shown in FIG.
  • Example 2 in the same manner as in Example 1 except that the conductive resin non-stretched film layer 8 / the third heat-fusible resin non-stretched film layer 9 having a thickness of 4 ⁇ m was used. (Making packaging material) 1 was obtained.
  • Example 10 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and 500 ppm of the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 40 ⁇ m thick sealant film (6 ⁇ m thick first heat fusible resin unstretched film layer 7/28 ⁇ m thick second heat) as a sealant film, changing to a fluorine elastomer lubricant ("FX 5920A" manufactured by 3M)
  • FX 5920A fluorine elastomer lubricant
  • Example 11 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 50 ppm fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) as a sealant film Shown in FIG.
  • Example 2 in the same manner as in Example 1 except that the second heat fusible resin non-stretched film layer 8 of 64 ⁇ m / the third heat fusible resin non-stretched film layer 9 of 8 ⁇ m thickness was used.
  • An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Example 12 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 500 ppm of a fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film (80 ⁇ m thick) as a sealant film (12 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) Shown in FIG.
  • Example 2 in the same manner as in Example 1 except that the 56 ⁇ m second heat fusible resin non-stretched film layer 8 / the 12 ⁇ m thick third heat fusible resin non-stretched film layer 9) was used.
  • An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Comparative Example 3 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 11 except that the first heat-fusion-bonding resin non-stretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 13 The thickness of the aluminum foil 4 is changed to 40 ⁇ m while using a laminated film of 27 ⁇ m in thickness (polyethylene terephthalate film of 12 ⁇ m in thickness / biaxially stretched 6 nylon film of 15 ⁇ m in thickness) as the outer layer 2 Adhesive resin Unstretched film 7
  • the fluorine-based polymer lubricant contained in the 7 is changed to 500 ppm fluoroelastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat) as a sealant film Fusing resin non-stretching film layer 7 / second heat-fusing resin non-stretching film layer 8 having a thickness of 64 ⁇ m / third heat-fusing resin non-stretching film layer 9 having a thickness of 8 ⁇ m)
  • FX 9613 fluoroelastomer lubricant
  • Comparative Example 4 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 13, except that the first heat-fusion-bonding resin non-stretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 14 As a fluorine-based polymer lubricant contained in the first heat-fusion resin unstretched film 7, 250 ppm fluorine-elastomer lubricant ("FX9613" manufactured by 3M) instead of 50ppm fluorine resin lubricant ("FX5911” manufactured by 3M) And a covering material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 3 except that 250 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 15 50 ppm as a fluorine-based polymer lubricant contained in the first heat-fusible resin unstretched film 7 using 6000 ppm aluminum silicate particles (average particle diameter 2 ⁇ m) in place of 5000 ppm silica particles as an antiblocking agent
  • the experiment was conducted except that 750 ppm of fluorine resin lubricant ("FX5911” manufactured by 3M) and 250 ppm fluorine elastomer lubricant (“FX5920A” manufactured by 3M) were used instead of the fluorine resin lubricant ("FX5911” manufactured by 3M)
  • FX5911 fluorine resin lubricant
  • FX5911 fluorine resin lubricant
  • FX5920A fluorine elastomer lubricant
  • Example 16 50 ppm of a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7 using 4000 ppm acrylic resin beads (average particle diameter 3 ⁇ m) in place of 5000 ppm silica particles as an antiblocking agent
  • a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7 using 4000 ppm acrylic resin beads (average particle diameter 3 ⁇ m) in place of 5000 ppm silica particles as an antiblocking agent
  • Example 17 As a slip agent contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm of stearic acid amide is used in place of 1000 ppm of erucic acid amide, As a slip agent to be contained in the fusible resin unstretched film 8, a fluorine polymer based on 1000 ppm stearamide instead of 1000 ppm erucic acid amide and contained in the first heat fusible resin unstretched film 7 As a lubricant, 500 ppm of a fluorocarbon resin lubricant ("FX5911" manufactured by 3M) and 250 ppm fluoroelastomer lubricant (“FX5920A" manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) As shown in FIG. 2 in the same manner as Example 3 except for the above. Formation of an energy storage device for
  • Example 18 As a slip agent to be contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm behenic acid amide is used in place of 1000 ppm erucic acid amide as a slip agent.
  • 750 ppm of a fluorocarbon resin lubricant (“FX5911” manufactured by 3M) and a 750 ppm fluoroelastomer lubricant (“FX5920A” manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M)
  • Comparative Example 5 The content (concentration) of erucic acid amide contained in the first heat fusible resin unstretched film 7 is changed to 2500 ppm, and the content of erucic acid amide contained in the second heat fusible resin unstretched film 8
  • the storage material for a power storage device (for molding, in the same manner as in Example 3, except that the concentration) was changed to 2500 ppm and the first heat-fusible resin unstretched film 7 contained no fluorine-based polymer lubricant. Packaging material).
  • Example 21 After applying a chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol on both sides of a 30 ⁇ m thick aluminum foil 4, drying is performed at 180 ° C. , Formed a chemical conversion film.
  • the chromium deposition amount of this chemical conversion film was 10 mg / m 2 per one side.
  • a 15 ⁇ m-thick biaxially stretched 6 nylon film 2 was dry laminated (bonded) to one surface of the aluminum foil 4 subjected to the chemical conversion treatment via a two-component curable urethane adhesive 5.
  • ethylene-propylene random copolymer 1000 ppm of erucic acid amide (slip agent), 5000 ppm of silica particles (average particle size 2 ⁇ m; anti blocking agent) and 50 ppm of fluorine-containing polymer lubricant A (manufactured by 3M "FX 5911" 1) a first heat fusible resin unstretched film 7 having a thickness of 3 ⁇ m, an ethylene-propylene block copolymer, and a second heat fusible property having a thickness of 14 ⁇ m comprising 2000 ppm of erucic acid amide
  • a 3 ⁇ m-thick third heat-fusible resin unstretched film 9 composed of a resin non-stretched film 8
  • an ethylene-propylene random copolymer and 1000 ppm erucic acid amide is laminated in this order in three layers
  • Example 22 The configuration shown in FIG. 7 is the same as in Example 21 except that the content of the fluorine-containing polymer lubricant A ("FX5911" manufactured by 3M) in the first heat-fusion-bonding resin non-oriented film 7 is changed to 500 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorine-containing polymer lubricant A
  • Comparative Example 6 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 21 except that the first heat-fusible resin unstretched film 7 did not contain the fluorine-containing polymer-based lubricant.
  • Example 23 The thickness of the aluminum foil 4 was changed to 35 ⁇ m, and the thickness was changed only as the sealant film (without changing the composition) 30 ⁇ m thick sealant film (3 ⁇ m thick first heat fusible resin unstretched Same as Example 21 except that film layer 7 / second heat fusible resin unstretched film layer 8 having a thickness of 24 ⁇ m / third heat fusible resin unstretched film layer 9 having a thickness of 3 ⁇ m is used Thus, the packaging material for a storage battery device (forming packaging material) 1 having the configuration shown in FIG. 7 was obtained.
  • Example 24 A 30 ⁇ m thick sealant film (a 4.5 ⁇ m thick first heat fusible resin) in which the thickness of the aluminum foil 4 was changed to 35 ⁇ m and only the thickness was changed as a sealant film (without changing the composition)
  • an outer covering material for a storage battery device (forming packaging material) 1 having a configuration shown in FIG. 7 was obtained.
  • Comparative Example 7 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 23, except that the first heat-fusion-bonding resin non-stretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 25 The configuration shown in FIG. 7 is the same as in Example 23, except that the content of the fluorine-containing polymer lubricant A (“FX5911” manufactured by 3M) in the first heat-fusible resin unstretched film 7 is changed to 1000 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorine-containing polymer lubricant A
  • Example 26 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co., Ltd.) instead of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co.) 7) was obtained in the same manner as in Example 23, except that 50 ppm of a fluoroelastomer lubricant ("FX5920A" manufactured by 3M) was used. .
  • Example 27 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 250ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 7 in the same manner as in Example 23 except that 250 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 28 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 500ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 7 in the same manner as in Example 23 except that 500 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 29 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 is fluorine A 40 ⁇ m thick sealant film (4 ⁇ m thick first heat fusible resin unstretched film layer 7/32 ⁇ m thick second heat fusing as a sealant film, changing to an elastomeric lubricant ("FX 5920A" manufactured by 3M) 7 as in Example 21 except that the conductive resin non-stretched film layer 8 / the third heat-fusible resin non-stretched film layer 9 having a thickness of 4 ⁇ m is used. (Making packaging material) 1 was obtained.
  • Example 30 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and 500 ppm of the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 40 ⁇ m thick sealant film (6 ⁇ m thick first heat fusible resin unstretched film layer 7/28 ⁇ m thick second heat) as a sealant film, changing to a fluorine elastomer lubricant ("FX 5920A" manufactured by 3M)
  • FX 5920A fluorine elastomer lubricant
  • Example 31 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 50 ppm fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) as a sealant film Shown in FIG.
  • Example 7 in the same manner as in Example 21 except that the second heat fusible resin non-oriented film layer 8 of 64 ⁇ m / the third heat fusible resin non-oriented film layer 9 having a thickness of 8 ⁇ m was used.
  • An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Example 32 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 500 ppm of a fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film (80 ⁇ m thick) as a sealant film (12 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) Shown in FIG.
  • Example 7 in the same manner as in Example 21 except that the 56 ⁇ m second heat fusible resin non-stretched film layer 8 / the 12 ⁇ m thick third heat fusible resin non-stretched film layer 9) was used.
  • An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Comparative Example 8 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 31 except that the first heat-fusion-bonding resin non-stretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 33 The thickness of the aluminum foil 4 is changed to 40 ⁇ m while using a laminated film of 27 ⁇ m in thickness (polyethylene terephthalate film of 12 ⁇ m in thickness / biaxially stretched 6 nylon film of 15 ⁇ m in thickness) as the outer layer 2 Adhesive resin Unstretched film 7
  • the fluorine-based polymer lubricant contained in the 7 is changed to 500 ppm fluoroelastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat) as a sealant film Fusing resin non-stretching film layer 7 / second heat-fusing resin non-stretching film layer 8 having a thickness of 64 ⁇ m / third heat-fusing resin non-stretching film layer 9 having a thickness of 8 ⁇ m)
  • FX 9613 fluoroelastomer lubricant
  • Comparative Example 9 An exterior material for an electricity storage device (a packaging material for molding) was obtained in the same manner as in Example 33 except that the first heat-fusible resin unstretched film 7 did not contain a fluoropolymer lubricant.
  • Example 34 As a fluorine-based polymer lubricant contained in the first heat-fusion resin unstretched film 7, 250 ppm fluorine-elastomer lubricant ("FX9613" manufactured by 3M) instead of 50ppm fluorine resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 7 in the same manner as in Example 23, except that 250 ppm of a fluorine elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 35 50 ppm as a fluorine-based polymer lubricant contained in the first heat-fusible resin unstretched film 7 using 6000 ppm aluminum silicate particles (average particle diameter 2 ⁇ m) in place of 5000 ppm silica particles as an antiblocking agent
  • the experiment was conducted except that 750 ppm of fluorine resin lubricant ("FX5911” manufactured by 3M) and 250 ppm fluorine elastomer lubricant (“FX5920A” manufactured by 3M) were used instead of the fluorine resin lubricant ("FX5911” manufactured by 3M)
  • FX5911 fluorine resin lubricant
  • FX5911 fluorine resin lubricant
  • FX5920A fluorine elastomer lubricant
  • Example 36 50 ppm of a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7 using 4000 ppm acrylic resin beads (average particle diameter 3 ⁇ m) in place of 5000 ppm silica particles as an antiblocking agent
  • a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7 using 4000 ppm acrylic resin beads (average particle diameter 3 ⁇ m) in place of 5000 ppm silica particles as an antiblocking agent
  • Example 37 As a slip agent contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm of stearic acid amide is used in place of 1000 ppm of erucic acid amide, As a slip agent to be contained in the fusible resin unstretched film 8, a fluoropolymer based on 2000 ppm of stearic acid amide instead of 2000 ppm of erucic acid amide and contained in the first heat fusible resin unstretched film 7 As a lubricant, 500 ppm of a fluorocarbon resin lubricant ("FX5911" manufactured by 3M) and 250 ppm fluoroelastomer lubricant (“FX5920A" manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) As shown in FIG. 7 in the same manner as in Example 23 except for Structure of the
  • Example 38 As a slip agent to be contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm behenic acid amide is used in place of 1000 ppm erucic acid amide as a slip agent.
  • 750 ppm of a fluorocarbon resin lubricant (“FX5911” manufactured by 3M) and a 750 ppm fluoroelastomer lubricant (“FX5920A” manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M)
  • FX5911 fluorocarbon resin lubricant
  • Comparative Example 10 The content (concentration) of erucic acid amide contained in the first heat fusible resin unstretched film 7 is changed to 2500 ppm, and the content of erucic acid amide contained in the second heat fusible resin unstretched film 8
  • the storage material for a power storage device (for molding, in the same manner as in Example 23, except that the concentration) was changed to 2500 ppm, and the first heat-fusible resin unstretched film 7 contained no fluoropolymer lubricant. Packaging material).
  • Example 41 After applying a chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol on both sides of a 30 ⁇ m thick aluminum foil 4, drying is performed at 180 ° C. , Formed a chemical conversion film.
  • the chromium deposition amount of this chemical conversion film was 10 mg / m 2 per one side.
  • ethylene-propylene random copolymer 1000 ppm erucic acid amide (slip agent), 5.0% by mass high density polyethylene resin powder A (average particle size 650 ⁇ m; roughening material), 50 ppm fluoropolymer Lubricant A (3M "FX5911") and 2500 ppm of silica particles (average particle diameter 2 ⁇ m; anti blocking agent) 1 ⁇ m thick first heat-fusible resin unstretched film 7, ethylene-propylene block Copolymer, second heat-sealable resin unstretched film 8 having a thickness of 14 ⁇ m comprising 1000 ppm of erucic acid amide, ethylene-propylene random copolymer, thickness comprising 1000 ppm of erucic acid amide
  • a 20 ⁇ m thick sealant film a first heat-fusible resin unstretched film layer 7
  • the high density polyethylene resin A (roughening material) has an MFR at 190 ° C. of 0.2 g / 10 min, a density of 0.963 g / cm 3 , a swell of 40%, and the high density polyethylene resin A , Manufactured by a slurry loop method using a Phillips catalyst.
  • Example 42 The structure shown in FIG. 2 in the same manner as in Example 41 except that the content of the fluorine-containing polymer lubricant A ("FX5911" manufactured by 3M) in the first heat fusible resin unstretched film 7 is changed to 500 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorine-containing polymer lubricant A
  • Comparative Example 11 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 1 except that the first heat-fusible resin unstretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 43 The thickness of the aluminum foil 4 was changed to 35 ⁇ m, and the thickness was changed only as the sealant film (without changing the composition) 30 ⁇ m thick sealant film (3 ⁇ m thick first heat fusible resin unstretched Same as Example 41 except that film layer 7 / second heat fusible resin unstretched film layer 8 having a thickness of 24 ⁇ m / third heat fusible resin unstretched film layer 9 having a thickness of 3 ⁇ m is used Thus, the packaging material for a storage battery device (forming packaging material) 1 having the configuration shown in FIG. 2 was obtained.
  • Example 44 A 30 ⁇ m thick sealant film (a 4.5 ⁇ m thick first heat fusible resin) in which the thickness of the aluminum foil 4 was changed to 35 ⁇ m and only the thickness was changed as a sealant film (without changing the composition)
  • an outer covering material (forming packaging material) 1 for an electric storage device having a configuration shown in FIG. 2 was obtained.
  • Comparative Example 12 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 43, except that the first heat-fusion-bonding resin non-stretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 45 The configuration shown in FIG. 2 is the same as in Example 43 except that the content of the fluorine-containing polymer lubricant A ("FX5911" manufactured by 3M) in the first heat fusible resin unstretched film 7 is changed to 1000 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorine-containing polymer lubricant A
  • Example 46 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co., Ltd.) instead of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co.) 2 and 50 ppm of a fluoroelastomer lubricant ("FX5920A" manufactured by 3M) was used to obtain a packaging material 1 for a storage battery device (forming packaging material) having the configuration shown in FIG. 2 in the same manner as in Example 43). .
  • Example 47 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 250ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 43 except that 250 ppm of a fluorine-elastomer lubricant ("FX5920A" manufactured by 3M) was used. .
  • Example 48 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 500ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 43 except that 500 ppm of a fluoroelastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 49 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 is fluorine A 40 ⁇ m thick sealant film (4 ⁇ m thick first heat fusible resin unstretched film layer 7/32 ⁇ m thick second heat fusing as a sealant film, changing to an elastomeric lubricant ("FX 5920A" manufactured by 3M) Of the structure shown in FIG.
  • Example 41 in the same manner as in Example 41 except that the conductive resin non-stretched film layer 8 / the third heat fusible resin non-stretched film layer 9 having a thickness of 4 ⁇ m is used. (Making packaging material) 1 was obtained.
  • Example 50 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and 500 ppm of the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 40 ⁇ m thick sealant film (6 ⁇ m thick first heat fusible resin unstretched film layer 7/28 ⁇ m thick second heat) as a sealant film, changing to a fluorine elastomer lubricant ("FX 5920A" manufactured by 3M) Example 2 for an electric storage device having the configuration shown in FIG.
  • FX 5920A fluorine elastomer lubricant
  • Example 42 in the same manner as Example 42 except that the fusion bondable resin non-stretched film layer 8 / the third heat fusion bondable resin non-stretched film layer 9) having a thickness of 6 ⁇ m was used.
  • An exterior material (forming packaging material) 1 was obtained.
  • Example 51 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 50 ppm fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) as a sealant film Shown in FIG.
  • Example 41 in the same manner as in Example 41, except that a 64 ⁇ m second heat-fusible resin unstretched film layer 8 / a third heat-fusible resin unstretched film layer 9 having a thickness of 8 ⁇ m was used.
  • An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Example 52 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 500 ppm of a fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film (80 ⁇ m thick) as a sealant film (12 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) Shown in FIG.
  • Example 41 in the same manner as in Example 41, except that 56 ⁇ m of the second heat fusible resin unstretched film layer 8 / the third heat fusible resin unstretched film layer 9 having a thickness of 12 ⁇ m was used. An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Comparative Example 13 An exterior material for an electricity storage device (a packaging material for molding) was obtained in the same manner as in Example 51 except that the first heat-fusible resin unstretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 53 The thickness of the aluminum foil 4 is changed to 40 ⁇ m while using a laminated film of 27 ⁇ m in thickness (polyethylene terephthalate film of 12 ⁇ m in thickness / biaxially stretched 6 nylon film of 15 ⁇ m in thickness) as the outer layer 2 Adhesive resin Unstretched film 7
  • the fluorine-based polymer lubricant contained in the 7 is changed to 500 ppm fluoroelastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat) as a sealant film Fusing resin non-stretching film layer 7 / second heat-fusing resin non-stretching film layer 8 having a thickness of 64 ⁇ m / third heat-fusing resin non-stretching film layer 9 having a thickness of 8 ⁇ m)
  • FX 9613 fluoroelastomer lubricant
  • Comparative Example 14 An exterior material for an electricity storage device (a packaging material for molding) was obtained in the same manner as in Example 53 except that the first heat-fusible resin unstretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 54 As a fluorine-based polymer lubricant contained in the first heat-fusion resin unstretched film 7, 250 ppm fluorine-elastomer lubricant ("FX9613" manufactured by 3M) instead of 50ppm fluorine resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 2 in the same manner as in Example 43 except that 250 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 55 As a roughening material, in place of the 5.0% by mass high density polyethylene resin powder A (average particle diameter 650 ⁇ m), a 10.0% by mass high density polyethylene resin powder B (average particle diameter 1.1 mm) is used as a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7, 750 ppm of a fluorine-containing resin lubricant ("FX5911" manufactured by 3M Co. And a 250 ppm fluorine-elastomer lubricant ("FX5920A” manufactured by 3M Co., Ltd.) in the same manner as in Example 43 to obtain an outer covering material (forming packaging material) 1 for an electric storage device having the configuration shown in FIG.
  • a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7, 750 ppm of a fluorine-containing resin lubricant ("FX5911" manufactured by 3M Co. And
  • the high density polyethylene resin B (roughening material) has an MFR at 190 ° C. of 0.2 g / 10 min, a density of 0.945 g / cm 3 , a swell of 35%, and the high density polyethylene resin B , Manufactured by a slurry loop method using a Phillips catalyst.
  • Example 56 As a roughening material, 15.0 mass% of low density polyethylene resin powder C (average particle size of 1.0 mm) is used in place of 5.0 mass% of high density polyethylene resin powder A (average particle size of 650 ⁇ m) As a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7, a fluorine-based resin lubricant (“FX5911” manufactured by 3M) as a fluorine-based polymer lubricant contained in the first heat-fusion resin 7; ) And 500 ppm of a fluorine-elastomer lubricant ("FX5920A" manufactured by 3M Co., Ltd.) in the same manner as in Example 43 to obtain a packaging material 1 for an electricity storage device (forming packaging material) having the configuration shown in FIG.
  • the fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7
  • FX5911 fluorine-based resin
  • the low density polyethylene resin C (roughening material) has an MFR at 190 ° C. of 2 g / 10 min, a density of 0.921 g / cm 3 and a swell of 20%, and the low density polyethylene resin C has a Ziegler structure. It is a linear low density polyethylene resin produced in a gas phase fluidized bed using a catalyst.
  • Example 57 As a slip agent contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm of stearic acid amide is used in place of 1000 ppm of erucic acid amide, As a slip agent to be contained in the fusible resin unstretched film 8, a fluorine polymer based on 1000 ppm stearamide instead of 1000 ppm erucic acid amide and contained in the first heat fusible resin unstretched film 7 As a lubricant, 500 ppm of a fluorocarbon resin lubricant ("FX5911" manufactured by 3M) and 250 ppm fluoroelastomer lubricant (“FX5920A” manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) As shown in FIG. 2 in the same manner as Example 43 except for Structure of the electric storage device for exterior materials
  • Example 58 As a slip agent to be contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm behenic acid amide is used in place of 1000 ppm erucic acid amide as a slip agent.
  • 750 ppm of a fluorocarbon resin lubricant (“FX5911” manufactured by 3M) and a 750 ppm fluoroelastomer lubricant (“FX5920A” manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M)
  • FX5911 fluorocarbon resin lubricant
  • Example 59 As a slip agent to be contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 500 ppm of ethylene bis-stearic acid amide is used together with 1000 ppm of erucic acid amide. In the same manner as in Example 57, except that 1000 ppm of erucic acid amide and 500 ppm of ethylenebisstearic acid amide were used in place of 1000 ppm of erucic acid amide as the slip agent contained in the adhesive resin non-oriented film 8. An outer covering material for a storage battery device (forming packaging material) 1 having a configuration shown in FIG. 2 was obtained.
  • Example 60 The thickness of the aluminum foil 4 is changed to 40 ⁇ m by using a 27 ⁇ m thick laminated film (polyethylene terephthalate film of 12 ⁇ m thick / biaxially stretched 6 nylon film of 15 ⁇ m thickness) disposed as the outer layer 2 Together with the fluorine-based polymer lubricant contained in the first heat-fusion adhesive resin unstretched film 7 to a 500 ppm fluorine-elastomer lubricant ("FX 9613" manufactured by 3M), and the first heat-fusion resin unstretched material It is set as the structure which does not contain a silica particle (anti blocking agent) in the film 7, and it is a sealant film (heat-fusion resin layer 3).
  • a 27 ⁇ m thick laminated film polyethylene terephthalate film of 12 ⁇ m thick / biaxially stretched 6 nylon film of 15 ⁇ m thickness
  • FX 9613 fluorine-elastomer lubricant
  • Comparative Example 15 The content (concentration) of erucic acid amide contained in the first heat fusible resin unstretched film 7 is changed to 2500 ppm, and the content of erucic acid amide contained in the second heat fusible resin unstretched film 8
  • the storage material for a power storage device (for molding, in the same manner as in Example 43, except that the concentration) was changed to 2500 ppm and the first heat fusible resin unstretched film 7 contained no fluorine-containing polymer lubricant. Packaging material).
  • Example 61 After applying a chemical conversion treatment solution consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol on both sides of a 30 ⁇ m thick aluminum foil 4, drying is performed at 180 ° C. , Formed a chemical conversion film.
  • the chromium deposition amount of this chemical conversion film was 10 mg / m 2 per one side.
  • a 15 ⁇ m-thick biaxially stretched 6 nylon film 2 was dry laminated (bonded) to one surface of the aluminum foil 4 subjected to the chemical conversion treatment via a two-component curable urethane adhesive 5.
  • 3 ⁇ m of the third heat-bonding resin unstretched film 9 to be laminated in this order in three layers
  • a 20 ⁇ m-thick sealant film a first heat fusible resin non-oriented film layer 7
  • the high density polyethylene resin A (roughening material) has an MFR at 190 ° C. of 0.2 g / 10 min, a density of 0.963 g / cm 3 , a swell of 40%, and the high density polyethylene resin A , Manufactured by a slurry loop method using a Phillips catalyst.
  • Example 62 The structure shown in FIG. 7 is the same as in Example 61 except that the content of the fluorine-containing polymer lubricant A ("FX5911" manufactured by 3M) in the first heat fusible resin unstretched film 7 is changed to 500 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorine-containing polymer lubricant A
  • Comparative Example 16 An exterior material for an electricity storage device (a packaging material for molding) was obtained in the same manner as in Example 61 except that the first heat-fusible resin unstretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 63 The thickness of the aluminum foil 4 was changed to 35 ⁇ m, and the thickness was changed only as the sealant film (without changing the composition) 30 ⁇ m thick sealant film (3 ⁇ m thick first heat fusible resin unstretched Example 61 is the same as Example 61 except that the film layer 7 / the second heat fusible resin unstretched film layer 8 with a thickness of 24 ⁇ m and the third heat fusible resin unstretched film layer 9 with a thickness of 3 ⁇ m are used.
  • the packaging material for a storage battery device (forming packaging material) 1 having the configuration shown in FIG. 7 was obtained.
  • Example 64 A 30 ⁇ m thick sealant film (a 4.5 ⁇ m thick first heat fusible resin) in which the thickness of the aluminum foil 4 was changed to 35 ⁇ m and only the thickness was changed as a sealant film (without changing the composition)
  • an outer covering material for a storage battery device (forming packaging material) 1 having a configuration shown in FIG. 7 was obtained.
  • Comparative Example 17 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 63, except that the first heat-fusion-bonding resin non-stretched film 7 did not contain a fluorine-containing polymer-based lubricant.
  • Example 65 The structure shown in FIG. 7 is the same as in Example 63 except that the content of the fluorine-containing polymer lubricant A ("FX5911" manufactured by 3M) in the first heat-welding resin unstretched film 7 is changed to 1000 ppm. Thus, the packaging material for a storage battery device (forming packaging material) 1 was obtained.
  • FX5911 fluorine-containing polymer lubricant A
  • Example 66 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co., Ltd.) instead of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M Co.) 7) was obtained in the same manner as in Example 63 except that 50 ppm of a fluoroelastomer lubricant ("FX5920A" manufactured by 3M) was used. .
  • Example 67 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 250ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 7 in the same manner as in Example 63 except that 250 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 68 As a fluorocarbon polymer lubricant to be contained in the first heat fusible resin unstretched film 7, 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M) is substituted for 500ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 7 in the same manner as in Example 63 except that 500 ppm of a fluorine elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 69 The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 is fluorine A 40 ⁇ m thick sealant film (4 ⁇ m thick first heat fusible resin unstretched film layer 7/32 ⁇ m thick second heat fusing as a sealant film, changing to an elastomeric lubricant ("FX 5920A" manufactured by 3M) 7 is used in the same manner as in Example 61 except that the conductive resin non-stretched film layer 8 / the third heat-fusible resin non-stretched film layer 9 having a thickness of 4 ⁇ m is used. (Making packaging material) 1 was obtained.
  • FX 5920A elastomeric lubricant
  • Example 70> The thickness of the biaxially stretched 6 nylon film 2 is changed to 25 ⁇ m, and the thickness of the aluminum foil 4 is changed to 40 ⁇ m, and 500 ppm of the fluorine-based lubricant contained in the first heat-fusible resin unstretched film 7 40 ⁇ m thick sealant film (6 ⁇ m thick first heat fusible resin unstretched film layer 7/28 ⁇ m thick second heat) as a sealant film, changing to a fluorine elastomer lubricant ("FX 5920A" manufactured by 3M)
  • FX 5920A fluorine elastomer lubricant
  • Example 71 Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 50 ppm fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) as a sealant film Shown in FIG.
  • Example 7 in the same manner as in Example 61, except that the second heat fusible resin non-oriented film layer 8 of 64 ⁇ m / the third heat fusible resin non-oriented film layer 9 having a thickness of 8 ⁇ m was used.
  • An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Example 72> Using a 12 ⁇ m thick polyethylene terephthalate film instead of the biaxially stretched 6 nylon film, changing the thickness of the aluminum foil 4 to 35 ⁇ m, and adding the fluorine to the first heat fusible resin unstretched film 7
  • the polymer lubricant was changed to 500 ppm of a fluorine elastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film (80 ⁇ m thick) as a sealant film (12 ⁇ m thick first heat fusible resin unstretched film layer 7 / thickness) Shown in FIG.
  • Example 61 in the same manner as in Example 61, except that 56 ⁇ m of the second heat fusible resin non-oriented film layer 8 / the third heat fusible resin non-oriented film layer 9 having a thickness of 12 ⁇ m was used. An exterior material for a storage battery device (forming packaging material) 1 having a constitution was obtained.
  • Example 73 The thickness of the aluminum foil 4 is changed to 40 ⁇ m while using a laminated film of 27 ⁇ m in thickness (polyethylene terephthalate film of 12 ⁇ m in thickness / biaxially stretched 6 nylon film of 15 ⁇ m in thickness) as the outer layer 2 Adhesive resin Unstretched film 7
  • the fluorine-based polymer lubricant contained in the 7 is changed to 500 ppm fluoroelastomer lubricant ("FX 9613" manufactured by 3M), and a sealant film 80 ⁇ m thick (8 ⁇ m thick first heat) as a sealant film Fusing resin non-stretching film layer 7 / second heat-fusing resin non-stretching film layer 8 having a thickness of 64 ⁇ m / third heat-fusing resin non-stretching film layer 9 having a thickness of 8 ⁇ m)
  • FX 9613 fluoroelastomer lubricant
  • Comparative Example 19 An exterior material for an electricity storage device (forming packaging material) was obtained in the same manner as in Example 73, except that the first heat-fusion-bonding resin non-stretched film 7 contained no fluorine-containing polymer-based lubricant.
  • Example 74 As a fluorine-based polymer lubricant contained in the first heat-fusion resin unstretched film 7, 250 ppm fluorine-elastomer lubricant ("FX9613" manufactured by 3M) instead of 50ppm fluorine resin lubricant ("FX5911” manufactured by 3M) And a packaging material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG. 7 in the same manner as in Example 63 except that 250 ppm of a fluorine-elastomer lubricant (“FX5920A” manufactured by 3M) was used. .
  • Example 75 As a roughening material, in place of the 5.0% by mass high density polyethylene resin powder A (average particle diameter 650 ⁇ m), a 10.0% by mass high density polyethylene resin powder B (average particle diameter 1.1 mm) is used As a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7, 750 ppm of a fluorine-containing resin lubricant ("FX5911" manufactured by 3M) is used in place of 50ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) And a 250 ppm fluorine-elastomer lubricant ("FX5920A” manufactured by 3M Co., Ltd.) in the same manner as in Example 63 to obtain an outer covering material for an electricity storage device (forming packaging material) 1 having the configuration shown in FIG.
  • the fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7, 750 ppm
  • the high density polyethylene resin B (roughening material) has an MFR at 190 ° C. of 0.2 g / 10 min, a density of 0.945 g / cm 3 , a swell of 35%, and the high density polyethylene resin B , Manufactured by a slurry loop method using a Phillips catalyst.
  • Example 76 As a roughening material, 15.0 mass% of low density polyethylene resin powder C (average particle size of 1.0 mm) is used in place of 5.0 mass% of high density polyethylene resin powder A (average particle size of 650 ⁇ m) As a fluorine-based polymer lubricant to be contained in the first heat-fusible resin unstretched film 7, a fluorine-based resin lubricant (“FX5911” manufactured by 3M) as a fluorine-based polymer lubricant contained in the first heat-fusion resin 7; ) And 500 ppm of a fluorine-elastomer lubricant ("FX5920A" manufactured by 3M) in the same manner as in Example 63 to obtain an outer covering material (forming packaging material) 1 for an electric storage device having the configuration shown in FIG.
  • FX5911 fluorine-based resin lubricant
  • FX5920A a fluorine-elastomer lubricant
  • the low density polyethylene resin C (roughening material) has an MFR at 190 ° C. of 2 g / 10 min, a density of 0.921 g / cm 3 and a swell of 20%, and the low density polyethylene resin C has a Ziegler structure. It is a linear low density polyethylene resin produced in a gas phase fluidized bed using a catalyst.
  • Example 77 As a slip agent contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm of stearic acid amide is used in place of 1000 ppm of erucic acid amide, As a slip agent to be contained in the fusible resin unstretched film 8, a fluoropolymer based on 2000 ppm of stearic acid amide instead of 2000 ppm of erucic acid amide and contained in the first heat fusible resin unstretched film 7 As a lubricant, 500 ppm of a fluorocarbon resin lubricant ("FX5911" manufactured by 3M) and 250 ppm fluoroelastomer lubricant (“FX5920A" manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911” manufactured by 3M) In the same manner as in Example 63, except for FIG.
  • Example 78 As a slip agent to be contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 1000 ppm behenic acid amide is used in place of 1000 ppm erucic acid amide as a slip agent.
  • a fluorocarbon resin lubricant 750 ppm of a fluorocarbon resin lubricant ("FX5911” manufactured by 3M) and a 750 ppm fluoroelastomer lubricant (“FX5920A" manufactured by 3M) were used in place of 50 ppm fluorocarbon resin lubricant ("FX5911" manufactured by 3M)
  • the structure shown in FIG. 7 is the same as in Embodiment 63 except for the above. Exterior materials for electric devices to give the (molding packaging) 1.
  • Example 79 As a slip agent to be contained in the first heat fusible resin non-stretched film 7 and the third heat fusible resin non-stretched film 9, 500 ppm of ethylene bis-stearic acid amide is used together with 1000 ppm of erucic acid amide.
  • Example 77 In the same manner as in Example 77 except that 2000 ppm of erucic acid amide and 500 ppm of ethylenebisstearic acid amide were used as a slip agent contained in the adhesive resin non-oriented film 8 instead of 1000 ppm of erucic acid amide.
  • An outer covering material for a storage battery device (forming packaging material) 1 having a configuration shown in FIG. 7 was obtained.
  • the thickness of the aluminum foil 4 is changed to 40 ⁇ m by using a 27 ⁇ m thick laminated film (polyethylene terephthalate film of 12 ⁇ m thick / biaxially stretched 6 nylon film of 15 ⁇ m thickness) disposed as the outer layer 2 Together with the fluorine-based polymer lubricant contained in the first heat-fusion adhesive resin unstretched film 7 to a 500 ppm fluorine-elastomer lubricant ("FX 9613" manufactured by 3M), and the first heat-fusion resin unstretched material It is set as the structure which does not contain a silica particle (anti blocking agent) in the film 7, and it is a sealant film (heat-fusion resin layer 3).
  • a 27 ⁇ m thick laminated film polyethylene terephthalate film of 12 ⁇ m thick / biaxially stretched 6 nylon film of 15 ⁇ m thickness
  • FX 9613 fluorine-elastomer lubricant
  • Comparative Example 20 The content (concentration) of erucic acid amide contained in the first heat fusible resin unstretched film 7 is changed to 2500 ppm, and the content of erucic acid amide contained in the second heat fusible resin unstretched film 8
  • the storage material for a power storage device (for molding, in the same manner as in Example 63, except that the concentration) was changed to 2500 ppm and the first heat-fusible resin unstretched film 7 contained no fluorine-based polymer lubricant. Packaging material).
  • the acetone in the bag was removed.
  • the amount of components contained in the withdrawn liquid was measured and analyzed using a gas chromatograph to determine the amount of slip agent ( ⁇ g / cm 2 ) present on the surface 7a of the innermost layer of the exterior material. That is, the amount of slip agent per 1 cm 2 of the surface of the innermost layer was determined.
  • 100 mL of acetone was injected into the inner space of the bag using a syringe, and left in contact with the surface 7a of the innermost layer 7 of the inner layer for 3 minutes at room temperature, then the acetone in the bag was removed .
  • the slip agent was removed by repeating this operation twice.
  • 100 mL of acetone is further injected into the inner space of the bag using a syringe and left in an oven at 50 ° C. for 30 minutes in a state where the surface 7a of the innermost layer 7 of the inner layer is in contact with acetone.
  • the acetone in the bag was removed.
  • the extracted solution is concentrated by a rotary evaporator, and then vacuum dried at 140 ° C.
  • the mass of the residue is measured to determine the amount of fluoropolymer lubricant present on the surface 7 a of the innermost layer of the exterior material ( ⁇ g / cm 2 ) was determined. That is, the amount of fluoropolymer lubricant per 1 cm 2 of the surface of the innermost layer was determined.
  • the acetone in the bag was removed.
  • the amount of components contained in the extracted liquid was measured and analyzed using a gas chromatograph to determine the amount of slip agent ( ⁇ g / cm 2 ) present on the surface 2 a of the base material layer 2 of the exterior material. That was determined slip agent per surface 1 cm 2 of the base layer 2.
  • the amount of components contained in the extracted liquid was measured and analyzed using a gas chromatograph to determine the amount of slip agent ( ⁇ g / cm 2 ) of the second sliding layer 12 of the exterior material. That was determined formation of the second lubricating layer 12 per 1 cm 2 of ( ⁇ g / cm 2).
  • the amount of components contained in the extracted liquid was measured and analyzed using a gas chromatograph to determine the amount of slip agent ( ⁇ g / cm 2 ) of the third slippery layer 13 outside the exterior material. That was determined formation of the third lubricating layer 13 per 1 cm 2 of ( ⁇ g / cm 2).
  • Mold forming depth free straight die mold is used to perform deep drawing one-step forming on the exterior material under the following forming conditions, each forming depth (9.0 mm, 8.5 mm, 8.0 mm, 7.5 mm, 7. Evaluate formability every 0 mm, 6.5 mm, 6.0 mm, 5.5 mm, 5.0 mm, 4.5 mm, 4.0 mm, 3.5 mm, 3.0 mm, 2.5 mm, 2.0 mm), The maximum forming depth (mm) capable of performing good forming without any pinholes at the corners was investigated. Table 2 shows this maximum forming depth (mm).
  • Mold Punch: 33.3 mm x 53.9 mm, die: 80 mm x 120 mm, corner R: 2 mm, punch R: 1.3 mm, die R: 1 mm Wrinkle pressure ⁇ ⁇ ⁇ Gauge pressure: 0.475MPa, actual pressure (calculated value): 0.7MPa
  • Material SC (carbon steel) material, punch R only chrome plating.
  • the packaging material for a storage battery device (molding packaging material) of Examples 1 to 18 and 21 to 38 of the present invention has a maximum molding depth of 4.0 mm or more and performs deeper molding.
  • Comparative Examples 1 to 4 and 6 to 9 in which the slip agent and the anti-blocking agent were added to the innermost layer of the heat fusible resin layer but the fluorine-based polymer lubricant was not added.
  • the maximum forming depth at the time of drawing was lower than in Examples 1 to 18 and 21 to 38.
  • white powder was significantly exposed on the surface of the exterior material.
  • the packaging material for a storage battery device (molding packaging material) of Examples 41 to 80 of the present invention has a maximum molding depth of 4.5 mm or more, and is favorable even if deeper molding is performed. While being able to obtain a molded article, it was difficult for white powder to appear on the surface of the exterior material.
  • the molding packaging material according to the present invention is suitably used as a case of a battery such as a notebook personal computer, a mobile phone, an on-vehicle, or a stationary lithium ion polymer secondary battery, and in addition to this, a food packaging material
  • a battery such as a notebook personal computer, a mobile phone, an on-vehicle, or a stationary lithium ion polymer secondary battery
  • a food packaging material it is suitable as a packaging material for pharmaceuticals, it is not particularly limited to these applications.
  • the battery case is particularly suitable.
  • base material layer (outer layer) 2a Surface of base material layer 3: heat fusible resin layer (inner layer) 4 Metal foil layer 7 Innermost layer (innermost layer of heat fusible resin layer; first heat fusible resin layer) 7a: Surface of innermost layer of packaging material 8: second heat sealable resin layer 9: third heat sealable resin layer 10: outer case 15 for an electric storage device: outer case 30: electric storage device 31: electric storage device main portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

成形用包装材の成形時に良好なすべり性を確保できて良好な成形性を確保できると共に、包装材の表面に白粉が表出し難い、成形用包装材を提供する。 外側層としての基材層2と、内側層としての熱融着性樹脂層3と、これら両層間に配置された金属箔層4と、を含み、熱融着性樹脂層3は、単層または複数層からなり、熱融着性樹脂層3の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成とする。

Description

成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
 本発明は、例えば、ノートパソコン用、携帯電話用、車載用、定置型の二次電池(リチウムイオン二次電池)のケースとして好適に用いられ、また食品の包装材、医薬品の包装材として好適に用いられる成形用包装材に関する。
 近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層/接着剤層/金属箔層/接着剤層/熱可塑性樹脂層(内側シーラント層)からなる積層体が用いられている。また、電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。前記積層体に対して張り出し成形や深絞り成形が行われることによって、略直方体形状等の立体形状に成形される。このような立体形状に成形することにより、蓄電デバイス本体部を収容するための収容空間を確保することができる。
  このような立体形状にピンホールや破断等なく良好状態に成形するには内側シーラント層の表面の滑り性を向上させることが求められる。内側シーラント層の表面の滑り性を向上させて良好な成形性を確保するものとして、内側シーラント層に脂肪酸アミドを含有せしめた構成のものが公知である(特許文献1参照)。
 また、同様に滑り性を向上させて良好な成形性を確保するものとして、基材層の一方の面に最外層として耐酸性付与層が設けられ、該基材層の他方の面に、第1接着層、少なくとも片面に腐食防止処理層を設けたアルミニウム箔層、第2接着層、シーラント層が順次積層されたリチウムイオン電池用外装材であって、前記シーラント層の外側の表面にスリップ剤(脂肪酸アミド等)およびアンチブロッキング剤(シリカ粒子等)の少なくとも一方が塗布されるか、または前記シーラント層にスリップ剤(脂肪酸アミド等)およびアンチブロッキング剤(シリカ粒子等)の少なくとも一方が配合された構成のリチウムイオン電池用外装材が提案されている(特許文献2参照)。
 上記いずれの技術においても、内側シーラント層の表面の滑り性を向上させることができて良好な成形性を確保できる。
特開2013-101764号公報 特開2015-53289号公報
  しかしながら、上記従来技術では、良好な成形性を確保するために十分な量の脂肪酸アミドを添加する必要があり、この場合、脂肪酸アミドが表面に過度に析出することになり、外装材の成形時に成形金型の成形面に脂肪酸アミドが付着堆積していって白粉(脂肪酸アミドによる白粉)が発生する。このような白粉が成形面に付着堆積した状態になると、良好な成形を行い難くなるし、成形品に白粉が付着する可能性があることから、白粉が付着して堆積する毎に清掃して白粉の除去を行う必要が生じるが、このような白粉の清掃除去を行うことで外装材の生産性が低下するという問題があった。
 また、脂肪酸アミドの添加量、エージング温度、エージング時間について種々調整を試みても、脂肪酸アミドの表面へのブリード量にバラツキが生じやすく、その結果、成形性、白粉付着の有無の程度にバラツキが生じやすく、安定した品質を確保するのが難しいという問題があった。
 勿論、脂肪酸アミドの添加量を少なくすれば、白粉の付着堆積を抑制することが可能になるが、この場合には表面への脂肪酸アミド析出量が不足して成形性が悪くなるという問題を生じる。このように従来では、優れた成形性と、外装材表面での白粉表出の抑制とを両立させることが難しかった。
 本発明は、かかる技術的背景に鑑みてなされたものであって、成形用包装材の成形時に良好なすべり性を確保できて良好な成形性を確保できると共に、包装材の表面に白粉が表出し難い、成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイスを提供することを目的とする。
  前記目的を達成するために、本発明は以下の手段を提供する。
 [1]外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
 前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなることを特徴とする成形用包装材。
 [2]前記最内層におけるフッ素ポリマー系滑剤の含有率が5ppm~5000ppmである前項1に記載の成形用包装材。
 [3]前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上である前項1または2に記載の成形用包装材。
 [4]前記フッ素ポリマー系滑剤が、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤である前項1~3のいずれか1項に記載の成形用包装材。
 [5]前記最内層の内側表面において前記スリップ剤の一部および前記フッ素ポリマー系滑剤の一部がともに付着している前項1~4のいずれか1項に記載の成形用包装材。
 [6]前記最内層の内側表面の動摩擦係数が0.5以下である前項1~5のいずれか1項に記載の成形用包装材。
 [7]前記基材層の外側の表面にスリップ剤が付着している前項1~6のいずれか1項に記載の成形用包装材。
 [8]前記基材層の外側表面の動摩擦係数が0.5以下である前項1~7のいずれか1項に記載の成形用包装材。
 [9]前項1~8のいずれか1項に記載の成形用包装材の成形体からなる蓄電デバイス用外装ケース。
 [10]蓄電デバイス本体部と、
  前項9に記載の蓄電デバイス用外装ケースを少なくとも含む外装部材とを備え、
  前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
 [11]外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
 前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、
  前記最内層の内側表面に、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成されていることを特徴とする成形用包装材。
 [12]前記第1滑性層の内側表面に、スリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成されている前項11に記載の成形用包装材。
 [13]前記最内層におけるフッ素ポリマー系滑剤の含有率が5ppm~5000ppmである前項11または12に記載の成形用包装材。
 [14]前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上である前項11~13のいずれか1項に記載の成形用包装材。
 [15]前記フッ素ポリマー系滑剤が、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤である前項11~14のいずれか1項に記載の成形用包装材。
 [16]前記スリップ剤が、脂肪酸アミドである前項11~15のいずれか1項に記載の成形用包装材。
 [17]前記基材層の外側表面にスリップ剤を含有する第3滑性層が形成されている前項11~16のいずれか1項に記載の成形用包装材。
 [18]前記包装材の外側表面の動摩擦係数が0.5以下である前項17に記載の成形用包装材。
 [19]前記包装材の内側表面の動摩擦係数が0.5以下である前項11~18のいずれか1項に記載の成形用包装材。
 [20]前項11~19のいずれか1項に記載の成形用包装材の成形体からなる蓄電デバイス用外装ケース。
 [21]蓄電デバイス本体部と、
  前項20に記載の蓄電デバイス用外装ケースを少なくとも含む外装部材とを備え、
  前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
 [22]金属箔の一方の面に外側接着剤を介して基材層が積層されると共に前記金属箔の他方の面に内側接着剤を介して、単層または複数層からなる熱融着性樹脂層であって、該熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成の熱融着性樹脂層が積層されてなる積層体を準備する工程と、
  前記積層体を加熱処理して成形用包装材を得るエージング工程と、を含むことを特徴とする成形用包装材の製造方法。
 [23]前記エージング工程における加熱処理の加熱温度が30℃~50℃である前項22に記載の成形用包装材の製造方法。
 [24]前記準備工程において前記樹脂組成物を溶融押出製膜することにより前記最内層の層形成を行う前項22または23に記載の成形用包装材の製造方法。
 [25]前記準備工程において前記樹脂組成物および溶剤を含有した塗布溶液を塗布して乾燥させることによって前記最内層の層形成を行う前項22または23に記載の成形用包装材の製造方法。
 [26]外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
 前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、
  前記粗面化材は、熱可塑性樹脂を含有してなることを特徴とする成形用包装材。
 [27]前記最内層におけるフッ素ポリマー系滑剤の含有率が5ppm~5000ppmである前項26に記載の成形用包装材。
 [28]前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上である前項26または27に記載の成形用包装材。
 [29]前記フッ素ポリマー系滑剤が、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤である請求項26~28のいずれか1項に記載の成形用包装材。
 [30]前記粗面化材を構成する熱可塑性樹脂が、高密度ポリエチレン樹脂である前項26~29のいずれか1項に記載の成形用包装材。
 [31]前記最内層の内側表面において前記スリップ剤の一部および前記フッ素ポリマー系滑剤の一部がともに付着している前項26~30のいずれか1項に記載の成形用包装材。
 [32]前記最内層の内側表面の動摩擦係数が0.5以下である前項26~31のいずれか1項に記載の成形用包装材。
 [33]前記基材層の外側の表面にスリップ剤が付着している前項26~32のいずれか1項に記載の成形用包装材。
 [34]前記基材層の外側表面の動摩擦係数が0.5以下である前項26~33のいずれか1項に記載の成形用包装材。
 [35]前項26~34のいずれか1項に記載の成形用包装材の成形体からなる蓄電デバイス用外装ケース。
 [36]蓄電デバイス本体部と、
  前項35に記載の蓄電デバイス用外装ケースを少なくとも含む外装部材とを備え、
  前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
 [37]外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
 前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、
 前記粗面化材は、熱可塑性樹脂を含有し、
  前記最内層の内側表面に、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成されていることを特徴とする成形用包装材。
 [38]前記第1滑性層の内側表面に、スリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成されている前項37に記載の成形用包装材。
 [39]前記最内層におけるフッ素ポリマー系滑剤の含有率が5ppm~5000ppmである前項37または38に記載の成形用包装材。
 [40]前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上である前項37~39のいずれか1項に記載の成形用包装材。
 [41]前記フッ素ポリマー系滑剤が、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤である前項37~40のいずれか1項に記載の成形用包装材。
 [42]前記粗面化材を構成する熱可塑性樹脂が、高密度ポリエチレン樹脂である前項37~41のいずれか1項に記載の成形用包装材。
 [43]前記スリップ剤が、脂肪酸アミドである前項37~42のいずれか1項に記載の成形用包装材。
 [44]前記基材層の外側表面にスリップ剤を含有する第3滑性層が形成されている前項37~43のいずれか1項に記載の成形用包装材。
 [45]前記包装材の外側表面の動摩擦係数が0.5以下である前項44に記載の成形用包装材。
 [46]前記包装材の内側表面の動摩擦係数が0.5以下である前項37~45のいずれか1項に記載の成形用包装材。
 [47]前項37~46のいずれか1項に記載の成形用包装材の成形体からなる蓄電デバイス用外装ケース。
 [48]蓄電デバイス本体部と、
  前項47に記載の蓄電デバイス用外装ケースを少なくとも含む外装部材とを備え、
  前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
 [49]金属箔の一方の面に外側接着剤を介して基材層が積層されると共に前記金属箔の他方の面に内側接着剤を介して、単層または複数層からなる熱融着性樹脂層であって、該熱融着性樹脂層の最内層が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成の熱融着性樹脂層が積層されてなる積層体を準備する工程と、
  前記積層体を加熱処理して成形用包装材を得るエージング工程と、を含み、
 前記粗面化材は、熱可塑性樹脂を含有することを特徴とする成形用包装材の製造方法。
 [50]前記エージング工程における加熱処理の加熱温度が30℃~50℃である前項49に記載の成形用包装材の製造方法。
 [51]前記準備工程において前記樹脂組成物を溶融押出製膜することにより前記最内層の層形成を行う前項49または50に記載の成形用包装材の製造方法。
 [52]前記準備工程において前記樹脂組成物および溶剤を含有した塗布溶液を塗布して乾燥させることによって前記最内層の層形成を行う前項49または50に記載の成形用包装材の製造方法。
 [1]の発明では、熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成であるから、包装材の成形時における前記熱融着性樹脂層の最内層の表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができる。本発明によれば、スリップ剤のブリード量が少なくても成形時に安定した滑り性を確保することができる。
 [2]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [3]の発明では、前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上であるから、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [4]の発明では、前記フッ素ポリマー系滑剤として、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体および/またはヘキサフルオロプロピレン-ビニリデンフルオライド共重合体が用いられているので、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [5]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [6]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [7]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [8]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [9]の発明では、良好な成形がなされた蓄電デバイス用外装ケースを提供できる。
 [10]の発明では、良好な成形がなされた外装ケースを用いて構成された蓄電デバイスを提供できる。
 [11]の発明では、熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成であり、該最内層の内側表面にフッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成されているから、包装材の成形時における包装材の内側表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができると共に、包装材の表面に白粉が表出し難いものである。本発明によれば、スリップ剤のブリード量が従来よりも少なくても成形時に安定した滑り性を確保できる。
 [12]の発明では、第1滑性層の内側表面にスリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成されているので、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [13]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [14]の発明では、前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上であるから、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [15]の発明では、前記フッ素ポリマー系滑剤として、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤が用いられているので、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [16]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [17]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [18]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [19]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [20]の発明では、良好な成形がなされた蓄電デバイス用外装ケースを提供できる。
 [21]の発明では、良好な成形がなされた外装ケースを用いて構成された蓄電デバイスを提供できる。
 [22]の発明(製造方法)で得られた成形用包装材では、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる最内層の内側表面にフッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成され、さらに前記第1滑性層の内側表面にスリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成された構成になっているので、包装材の成形時における包装材の内側表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができると共に、包装材の表面に白粉が表出し難い。
 [23]の発明では、エージングの加熱温度が30℃~50℃であるから、上記第2滑性層を確実に形成できると共に、包装材の表面における白粉表出を十分に防止できる。中でも、前記エージングの加熱温度を35℃~45℃に設定するのが好ましい。
 [24]の発明では、前記樹脂組成物を溶融押出製膜することにより前記最内層の層形成を行うから、上記第1滑性層を確実に形成できると共に、包装材の表面における白粉表出を十分に防止できる。
 [25]の発明では、前記樹脂組成物および溶剤を含有した塗布溶液を塗布して乾燥させることによって前記最内層の層形成を行うから、上記第1滑性層を確実に形成できると共に、包装材の表面における白粉表出を十分に防止できる。
 なお、[24]と[25]の発明では、フッ素ポリマー系滑剤の含有率のより高い且つ均一な第1滑性層を確実に形成できて、成形性をより一層向上させることができる点で、[24]の発明(製造方法)を採用するのが好適である。
 [26]の発明では、熱融着性樹脂層の最内層が、熱融着性樹脂、熱可塑性樹脂含有粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成であるから、熱融着性樹脂層の最内層の表面が粗面化されており、包装材の成形時における前記熱融着性樹脂層の最内層の表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができる。本発明によれば、スリップ剤のブリード量が少なくても成形時に安定した滑り性を確保することができる。
 更に、本発明の成形用包装材をロール状に巻いた際に熱融着性樹脂層の最内層の表面が基材層の表面と接触するが、熱融着性樹脂層の最内層の表面が粗面化されているので、最内層の表面と基材層の表面とが接触する面積が小さいものとなり、基材層表面へのスリップ剤の転写量(熱融着性樹脂層の最内層の表面からのスリップ剤の転写の量)が少なくなり、従って蓄電デバイス(電池等)を電子機器等の内部に固定するための粘着テープの基材層表面への粘着強度が十分に得られると共に、蓄電デバイス(電池等)を包装している包装材の表面(基材層の表面)に製品名、ロット番号等の記載事項を印字した際に印字が剥がれ難いという有利な効果を奏する。
 [27]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [28]の発明では、前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上であるから、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [29]の発明では、前記フッ素ポリマー系滑剤として、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体および/またはヘキサフルオロプロピレン-ビニリデンフルオライド共重合体が用いられているので、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [30]の発明では、粗面化材を構成する熱可塑性樹脂が高密度ポリエチレン樹脂であるので、該高密度ポリエチレン樹脂が前記熱融着性樹脂との相溶性が適度に低いことにより効果的に粗面化することができて滑り性をより向上させることができる。
 [31]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [32]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [33]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [34]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [35]の発明では、良好な成形がなされた蓄電デバイス用外装ケースを提供できる。
 [36]の発明では、良好な成形がなされた外装ケースを用いて構成された蓄電デバイスを提供できる。
 [37]の発明では、熱融着性樹脂層の最内層が、熱融着性樹脂、熱可塑性樹脂含有粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成であり、該最内層の内側表面にフッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成されているから、包装材の成形時における包装材の内側表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができると共に、包装材の表面に白粉が表出し難いものである。本発明によれば、スリップ剤のブリード量が従来よりも少なくても成形時に安定した滑り性を確保できる。
 更に、本発明の成形用包装材をロール状に巻いた際に熱融着性樹脂層の最内層の表面が基材層の表面と接触するが、熱融着性樹脂層の最内層の表面が粗面化されているので、最内層の表面と基材層の表面とが接触する面積が小さいものとなり、基材層表面へのスリップ剤の転写量(熱融着性樹脂層の最内層の表面からのスリップ剤の転写の量)が少なくなり、従って蓄電デバイス(電池等)を電子機器等の内部に固定するための粘着テープの基材層表面への粘着強度が十分に得られると共に、蓄電デバイス(電池等)を包装している包装材の表面(基材層の表面)に製品名、ロット番号等の記載事項を印字した際に印字が剥がれ難いという有利な効果を奏する。
 [38]の発明では、第1滑性層の内側表面にスリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成されているので、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [39]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [40]の発明では、前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上であるから、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [41]の発明では、前記フッ素ポリマー系滑剤として、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤が用いられているので、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [42]の発明では、粗面化材を構成する熱可塑性樹脂が高密度ポリエチレン樹脂であるので、該高密度ポリエチレン樹脂が前記熱融着性樹脂との相溶性が適度に低いことにより効果的に粗面化することができて滑り性をより向上させることができる。
 [43]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [44]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [45]の発明では、前記滑り性をより向上させることができて、包装材の成形時の成形性をさらに向上させることができる。
 [46]の発明では、前記滑り性をより向上させることができて、成形時の成形性をさらに向上させることができる。
 [47]の発明では、良好な成形がなされた蓄電デバイス用外装ケースを提供できる。
 [48]の発明では、良好な成形がなされた外装ケースを用いて構成された蓄電デバイスを提供できる。
 [49]の発明(製造方法)で得られた成形用包装材では、熱融着性樹脂、熱可塑性樹脂含有粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる最内層の内側表面にフッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成され、さらに前記第1滑性層の内側表面にスリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成された構成になっているので、包装材の成形時における包装材の内側表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができると共に、包装材の表面に白粉が表出し難い。
 更に、本発明の製法で得られた成形用包装材をロール状に巻いた際に熱融着性樹脂層の最内層の表面が基材層の表面と接触するが、熱融着性樹脂層の最内層の表面が粗面化されているので、最内層の表面と基材層の表面とが接触する面積が小さいものとなり、基材層表面へのスリップ剤の転写量(熱融着性樹脂層の最内層の表面からのスリップ剤の転写の量)が少なくなり、従って蓄電デバイス(電池等)を電子機器等の内部に固定するための粘着テープの基材層表面への粘着強度が十分に得られると共に、蓄電デバイス(電池等)を包装している包装材の表面(基材層の表面)に製品名、ロット番号等の記載事項を印字した際に印字が剥がれ難いという有利な効果を奏する。
 [50]の発明では、エージングの加熱温度が30℃~50℃であるから、上記第2滑性層を確実に形成できると共に、包装材の表面における白粉表出を十分に防止できる。中でも、前記エージングの加熱温度を35℃~45℃に設定するのが好ましい。
 [51]の発明では、前記樹脂組成物を溶融押出製膜することにより前記最内層の層形成を行うから、上記第1滑性層を確実に形成できると共に、包装材の表面における白粉表出を十分に防止できる。
 [52]の発明では、前記樹脂組成物および溶剤を含有した塗布溶液を塗布して乾燥させることによって前記最内層の層形成を行うから、上記第1滑性層を確実に形成できると共に、包装材の表面における白粉表出を十分に防止できる。
 なお、[51]と[52]の発明では、フッ素ポリマー系滑剤の含有率のより高い且つ均一な第1滑性層を確実に形成できて、成形性をより一層向上させることができる点で、[51]の発明(製造方法)を採用するのが好適である。
本発明に係る成形用包装材の第1実施形態を示す断面図である。 本発明に係る成形用包装材の第2実施形態を示す断面図である。 本発明に係る成形用包装材の第3実施形態を示す断面図である。 本発明に係る蓄電デバイスの一実施形態を示す断面図である。 図4の蓄電デバイスを構成する外装材(平面状のもの)、蓄電デバイス本体部及び外装ケース(立体形状に成形された成形体)をヒートシールする前の分離した状態で示す斜視図である。 本発明に係る成形用包装材の他の実施形態を示す断面図である。 本発明に係る成形用包装材のさらに他の実施形態を示す断面図である。 本発明に係る成形用包装材のさらに他の実施形態を示す断面図である。
 <第1発明>
 第1発明に係る成形用包装材1は、外側層としての基材層2と、内側層としての熱融着性樹脂層3と、これら両層間に配置された金属箔層4と、を含み、前記熱融着性樹脂層3は、単層または複数層からなり、前記熱融着性樹脂層3の最内層7が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成である(図1~3、6~8参照)。
 第1発明に係る成形用包装材1について6つの実施形態をそれぞれ図1~3、6~8に示す。これら6つの実施形態は、代表的な実施形態を示したものに過ぎず、特にこのような構成に限定されるものではない。
  図1~3、6~8に示す成形用包装材1は、リチウムイオン2次電池ケース用として用いられるものである。前記成形用包装材1は、例えば、深絞り成形、張り出し成形等の成形に供されて2次電池のケース等として用いられる。
  図1~3、6~8に示す実施形態では、前記成形用包装材1は、金属箔層4の一方の面に内側接着剤層6を介して熱融着性樹脂層(内側層)3が積層一体化されると共に、前記金属箔層4の他方の面に外側接着剤層5を介して基材層(外側層)2が積層一体化された構成からなる。
  そして、図1に示す第1実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層および該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8からなる構成(2層積層構成)である。前記第1熱融着性樹脂層(最内層)7が成形用包装材1の内側の表面に露出している(図1参照)。
 また、図2に示す第2実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層と、該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8と、該第2熱融着性樹脂層8における前記金属箔層4側の面に積層された第3熱融着性樹脂層9と、からなる3層積層構成である。前記第1熱融着性樹脂層(最内層)7が成形用包装材1の内側の表面に露出している(図2参照)。
 また、図3に示す第3実施形態では、前記熱融着性樹脂層(内側層)3は、第1熱融着性樹脂層(最内層)7のみからなる単層構成である。前記同様に、前記第1熱融着性樹脂層(最内層)7が成形用包装材1の内側の表面に露出している(図3参照)。
 また、図6に示す第4実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層および該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8からなる構成(2層積層構成)である。前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層されている(図6参照)。また、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されている(図6参照)。
 また、図7に示す第5実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層と、該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8と、該第2熱融着性樹脂層8における前記金属箔層4側の面に積層された第3熱融着性樹脂層9と、からなる3層積層構成である。前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層されている(図7参照)。また、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されている(図7参照)。
 また、図8に示す第6実施形態では、前記熱融着性樹脂層(内側層)3は、第1熱融着性樹脂層(最内層)7のみからなる単層構成である。前記同様に、前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層されている(図8参照)。また、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されている(図8参照)。
 第4~6実施形態(図6~8)の成形用包装材1では、前記熱融着性樹脂層3の最内層7が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層された構成であるので、包装材1の成形時における包装材1の内側表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができる(より深い成形を良好に行うことができる)。更に、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されているので、前記成形性をさらに向上させることができる。
 <第2発明>
 第2発明に係る成形用包装材1は、外側層としての基材層2と、内側層としての熱融着性樹脂層3と、これら両層間に配置された金属箔層4と、を含み、前記熱融着性樹脂層3は、単層または複数層からなり、前記熱融着性樹脂層3の最内層7が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、前記粗面化材は、熱可塑性樹脂を含有する構成である(図1~3、6~8参照)。
 本発明に係る成形用包装材1について6つの実施形態をそれぞれ図1~3、6~8に示す。これら6つの実施形態は、代表的な実施形態を示したものに過ぎず、特にこのような構成に限定されるものではない。
  図1~3、6~8に示す成形用包装材1は、リチウムイオン2次電池ケース用として用いられるものである。前記成形用包装材1は、例えば、深絞り成形、張り出し成形等の成形に供されて2次電池のケース等として用いられる。
  図1~3、6~8に示す実施形態では、前記成形用包装材1は、金属箔層4の一方の面に内側接着剤層6を介して熱融着性樹脂層(内側層)3が積層一体化されると共に、前記金属箔層4の他方の面に外側接着剤層5を介して基材層(外側層)2が積層一体化された構成からなる。
  そして、図1に示す第1実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層および該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8からなる構成(2層積層構成)である。前記第1熱融着性樹脂層(最内層)7が成形用包装材1の内側の表面に露出している(図1参照)。
 また、図2に示す第2実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層と、該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8と、該第2熱融着性樹脂層8における前記金属箔層4側の面に積層された第3熱融着性樹脂層9と、からなる3層積層構成である。前記第1熱融着性樹脂層(最内層)7が成形用包装材1の内側の表面に露出している(図2参照)。
 また、図3に示す第3実施形態では、前記熱融着性樹脂層(内側層)3は、第1熱融着性樹脂層(最内層)7のみからなる単層構成である。前記同様に、前記第1熱融着性樹脂層(最内層)7が成形用包装材1の内側の表面に露出している(図3参照)。
 図6に示す第4実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層および該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8からなる構成(2層積層構成)である。前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層されている(図6参照)。また、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されている(図6参照)。
 また、図7に示す第5実施形態では、前記熱融着性樹脂層(内側層)3は、該内側層3の最内層7を構成する第1熱融着性樹脂層と、該第1熱融着性樹脂層7における前記金属箔層4側の面に積層された第2熱融着性樹脂層8と、該第2熱融着性樹脂層8における前記金属箔層4側の面に積層された第3熱融着性樹脂層9と、からなる3層積層構成である。前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層されている(図7参照)。また、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されている(図7参照)。
 また、図8に示す第6実施形態では、前記熱融着性樹脂層(内側層)3は、第1熱融着性樹脂層(最内層)7のみからなる単層構成である。前記同様に、前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層されている(図8参照)。また、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されている(図8参照)。
  第2発明の第4~6実施形態(図6~8)の成形用包装材1では、前記熱融着性樹脂層3の最内層7が、熱融着性樹脂、熱可塑性樹脂含有粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、前記第1熱融着性樹脂層(最内層)7の内側表面7aに、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層11が積層され、さらに該第1滑性層11の内側表面11aに、スリップ剤を50質量%より大きい含有率で含有する第2滑性層12が積層された構成であるので、包装材1の成形時における包装材1の内側表面と成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができる(より深い成形を良好に行うことができる)。更に、前記基材層(外側層)2の外側表面2aに、スリップ剤を含有する第3滑性層13が積層されているので、前記成形性をさらに向上させることができる。
  本発明において、前記熱融着性樹脂層(内側層;シーラント層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液等に対しても優れた耐薬品性を具備させると共に、包装材にヒートシール性を付与する役割を担うものである。
 前記熱融着性樹脂層3(第1熱融着性樹脂層7、第2熱融着性樹脂層8および第3熱融着性樹脂層9を含む)を構成する樹脂としては、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体およびアイオノマーからなる群より選ばれた少なくとも1種の熱融着性樹脂を用いるのが好ましい。なお、前記熱融着性樹脂層3を構成する樹脂として、酸変性ポリオレフィン樹脂を使用するのは、経済性の観点から、好ましくない。即ち、前記熱融着性樹脂層3を構成する樹脂として、酸変性されていないポリオレフィン樹脂を用いるのが好ましい。
  そして、第1実施形態のように熱融着性樹脂層(内側層)3として2層積層構成を採用する場合には、前記第1熱融着性樹脂層(最内層)7を構成する熱融着性樹脂として、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するランダム共重合体を用いると共に、前記第2熱融着性樹脂層8を構成する熱融着性樹脂として、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するブロック共重合体を用いるのが好ましい。
  また、第2実施形態のように熱融着性樹脂層(内側層)3として3層積層構成を採用する場合には、前記第1熱融着性樹脂層(最内層)7および前記第3熱融着性樹脂層9を構成する熱融着性樹脂として、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するランダム共重合体を用いると共に、前記第2熱融着性樹脂層8を構成する熱融着性樹脂として、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するブロック共重合体を用いるのが好ましい。なお、前記熱融着性樹脂層3として3層積層構成を採用する場合において前記第3熱融着性樹脂層9にもフッ素ポリマー系滑剤を含有せしめてもよいが、ラミネート強度が低下する懸念があるので、前記第3熱融着性樹脂層9にはフッ素ポリマー系滑剤を含有せしめない構成か、又は含有せしめてもフッ素ポリマー系滑剤の含有率を1000ppm未満に設定するのが好ましい。
  また、第3実施形態のように熱融着性樹脂層(内側層)3として単層構成を採用する場合には、前記第1熱融着性樹脂層(最内層)7を構成する熱融着性樹脂としては、共重合成分として「プロピレン」及び「プロピレンを除く他の共重合成分」を含有するランダム共重合体を用いるのが好ましい。
 前記ランダム共重合体に関して、前記「プロピレンを除く他の共重合成分」としては、特に限定されるものではないが、例えば、エチレン、1-ブテン、1-ヘキセン、1-ペンテン、4メチル-1-ペンテン等のオレフィン成分の他、ブタジエン等が挙げられる。また、前記ブロック共重合体に関して、前記「プロピレンを除く他の共重合成分」としては、特に限定されるものではないが、例えば、エチレン、1-ブテン、1-ヘキセン、1-ペンテン、4メチル-1-ペンテン等のオレフィン成分の他、ブタジエン等が挙げられる。
  そして、本発明では、前記熱融着性樹脂層3の最内層7が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成であるので、包装材1の成形時における前記熱融着性樹脂層3の最内層7の表面7aと成形金型表面との滑り性が向上し、深絞り成形、張り出し成形等の成形時の成形性を向上させることができる(より深い成形を良好に行うことができる)。
 [アンチブロッキング剤]
 前記アンチブロッキング剤としては、特に限定されるものではないが、例えば、無機粒子、樹脂粒子等が挙げられる。前記無機粒子としては、特に限定されるものではないが、例えば、シリカ粒子、ケイ酸アルミニウム粒子等が挙げられる。前記樹脂粒子としては、特に限定されるものではないが、例えば、アクリル樹脂粒子、ポリオレフィン樹脂粒子(ポリエチレン樹脂粒子、ポリプロピレン樹脂粒子)、ポリスチレン樹脂粒子等が挙げられる。
 前記アンチブロッキング剤の粒子径は、平均粒子径で0.1μm~10μmの範囲にあるのが好ましく、中でも平均粒子径で1μm~5μmの範囲にあるのがより好ましい。
 前記最内層7における前記アンチブロッキング剤の濃度(含有率)は、100ppm~50000ppmに設定されるのが好ましく、中でも500ppm~15000ppmに設定されるのが特に好ましい。
 [粗面化材]
  前記粗面化材としては、特に限定されるものではないが、例えば、熱可塑性樹脂含有ペレット、熱可塑性樹脂含有パウダー等が使用される。これらの中でも、分散性の点で、熱可塑性樹脂含有パウダーが好適である。前記粗面化材を構成する熱可塑性樹脂としては、特に限定されるものではないが、例えば、ポリエチレン樹脂(高密度ポリエチレン樹脂、低密度ポリエチレン樹脂等)、ポリプロピレン樹脂、エチレン-オレフィン(エチレンを除くオレフィン)共重合樹脂、エチレン-ビニルエステル共重合樹脂などのオレフィン系樹脂の他、ポリスチレン系樹脂等が挙げられる。中でも、前記粗面化材としては、高密度ポリエチレン樹脂を含有してなる粗面化材を用いるのが好ましく、この場合にはヒートシール性を損なうことなく、熱融着性樹脂層の最内層7の表面7aを効果的に粗面化できて滑り性をより向上させることができる。
  前記最内層7を構成する前記熱融着性樹脂のマトリックス中に該マトリックスに対して相溶性が低い前記粗面化材が分散された状態で前記最内層7の表面7aに前記粗面化材が一部露出(突出)した状態になっていることにより表面7aに凹凸が形成される(表面が粗面化される)。例えば、前記熱融着性樹脂のペレットまたはパウダーに、粗面化材としての熱可塑性樹脂ペレットまたは熱可塑性樹脂パウダーを混合し、この混合物を押出機等で溶融混練して微細に分散させた後、冷却固化することによって前記最内層7の表面7aに凹凸が形成されたもの(表面が粗面化されたもの)が得られる。
  前記粗面化材の分散状態での平均径(長径の平均値)は、0.05μm~10μmの範囲であるのが好ましく、この場合には滑り性をさらに向上させることができる。
 前記粗面化材を構成する高密度ポリエチレン樹脂(HDPE)の密度は、0.935g/cm3~0.965g/cm3の範囲であるのが好ましい。このような密度範囲である場合には、滑り性をより向上させることができて成形性をさらに向上させることができる。中でも、前記粗面化材を構成する高密度ポリエチレン樹脂(HDPE)の密度は、0.945g/cm3~0.960g/cm3の範囲であるのがより好ましい。
  前記高密度ポリエチレン樹脂の密度は、コモノマー(共重合成分)の含有率を変えることで調整できる。このようなコモノマーとしては、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等のエチレン以外の不飽和オレフィンを挙げることができるが、特にこれらに限定されるものではない。前記コモノマーとしては、1-ブテン及び1-ヘキセンからなる群より選ばれる少なくとも1種のコモノマーを用いるのが好ましい。
 前記粗面化材を構成する高密度ポリエチレン樹脂の190℃でのメルトフローレート(MFR)が、0.01g/10分~2g/10分の範囲であるのが好ましい。MFRが「0.01g/10分」以上であることで、粗面化材を前記熱融着性樹脂に微細にかつ均一に分散させることができると共に、MFRが「2g/10分」以下であることで表面の荒れを増大させることができて滑り性をより向上させることができる。中でも、前記粗面化材を構成する高密度ポリエチレン樹脂(HDPE)の190℃でのメルトフローレート(MFR)が0.1g/10分~1g/10分の範囲であるのが特に好ましい。
  前記高密度ポリエチレン樹脂のメルトフローレート(MFR)は、例えば次のようにして調整できる。前記高密度ポリエチレン樹脂をフィリップス触媒を用いて製造するものでは、重合する際にリアクター温度を変更することで高密度ポリエチレン樹脂のMFRを調整できるし、或いは微量の水素を添加した上でリアクター温度を変更することで高密度ポリエチレン樹脂のMFRを調整できる。また、前記高密度ポリエチレン樹脂をチーグラー触媒を用いて製造するものでは、重合する際にリアクターに供給する水素量を変更することで高密度ポリエチレン樹脂のMFRを調整できる。前記フィリップス触媒を用いる場合には溶媒としてイソブタンを用いてスラリー重合により前記高密度ポリエチレン樹脂を製造できるが、特にこのような手法に限定されるものではない。
 前記粗面化材を構成する高密度ポリエチレン樹脂の融点は、130℃~145℃の範囲であるのが好ましい。また、高密度ポリエチレン樹脂は、長鎖(炭素数が10以上)である分岐を有するものであるのが好ましい。長鎖である分岐を有する高密度ポリエチレン樹脂を用いた場合には、前記熱融着性樹脂に粗面化材を溶融混練させる際に、溶融した粗面化材(熱可塑性樹脂)を微分散した粒子を形成しやすいので、熱融着性樹脂層3の最内層の表面7aをより効果的に粗面化できて滑り性をさらに向上させることができる。
 前記粗面化材を構成する高密度ポリエチレン樹脂のスウェルは、25%~55%の範囲であるのが好ましく、この場合には粗面化材を構成する樹脂の溶融粘弾性が比較的高いため高密度ポリエチレン樹脂の粒子を形成しやすく、最内層の表面7aをより効果的に粗面化できて滑り性をさらに向上させることができる。中でも、前記粗面化材を構成する高密度ポリエチレン樹脂のスウェルは、35%~45%の範囲であるのがより好ましい。
 なお、前記「スウェル」は、JIS K7119-2001で規定されるキャピラリレオメターA法による室温ダイスウェルパーセント(%)を意味するものであり、JIS K7210-1-2014で規定される標準ダイ(孔径:2.095mm、長さ:8mm)を使用して、温度190℃、荷重2.16kgにおける、キャピラリダイから押し出される樹脂のストランド(ひも状の樹脂)が長さ2cmになった時にストランドをピンセットで採取し、自然冷却固化した後に、先端から1cm部分のストランドの直径をマイクロメーターで測定し、この測定値をD1(mm)としたとき、
  スウェル(%)={(D1-D0)/D0)}×100
     D1:押出樹脂の直径
     D0:標準ダイ孔径(2.095mm)
上記計算式で求められる値(%)である。
 前記粗面化材を構成する高密度ポリエチレン樹脂のハイロードスウェル(荷重が21.6kgの時のスウェル)は、55%~90%の範囲であるのが好ましく、この場合には粗面化材を構成する樹脂の溶融粘弾性が比較的高いため高密度ポリエチレン樹脂の粒子を形成しやすく、最内層の表面7aをより効果的に粗面化できて滑り性をさらに向上させることができる。
 なお、前記ハイロードスウェルは、JIS K7119-2001に準拠して、JIS K7210-1-2014で規定される標準ダイ(孔径:2.095mm、長さ:8mm)を使用して、温度190℃、荷重21.6kgにおける、キャピラリダイから押し出される樹脂のストランド(ひも状の樹脂)が長さ2cmになった時にストランドをピンセットで採取し、自然冷却固化した後に、先端から1cm部分のストランドの直径をマイクロメーターで測定し、この測定値をD2(mm)としたとき、
  ハイロードスウェル(%)={(D2-D0)/D0)}×100
     D2:押出樹脂の直径
     D0:標準ダイ孔径(2.095mm)
上記計算式で求められる値である。
 前記粗面化材を構成する高密度ポリエチレン樹脂の「ハイロードMFR(荷重21.6kgでのMFR)/MFR(荷重2.16kgでのMFR)」は、25~40の範囲であるのが好ましく、この場合には前記ランダム共重合体と粗面化材との相溶性をある程度確保できて、成形時のシーラント層3の白化を一層抑制することができる。
 前記粗面化材の溶融密度と前記粗面化材の密度との差は、0.15g/cm3~0.25g/cm3の範囲であるのが好ましく、この場合には混合樹脂が溶融状態から冷却固化する過程で粗面化材の体積収縮率が大きくなるので前記最内層7の表面7aを効率的に粗すことができて前記最内層7の表面7aの中心線平均粗さRaを0.05μm~1μmに容易に調整できる。
 前記熱融着性樹脂層3の最内層7において、前記ランダム共重合体(共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体)の密度と、前記粗面化材の密度との差は、0.04g/cm3~0.07g/cm3の範囲であるのが好ましく、この場合には溶融状態での混合樹脂が冷却固化する過程で前記ランダム共重合体と粗面化材との体積収縮率の差が大きくなるので、前記最内層7の表面7aの凹凸が大きくなり最内層の表面7aをより効果的に粗面化できて滑り性をさらに向上させることができる。
 また、前記ランダム共重合体(共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体)の溶融密度と、前記粗面化材の溶融密度との差は0.3g/cm3以下であるのが好ましい。
 前記熱融着性樹脂層3の最内層7における粗面化材の含有率は1質量%~30質量%に設定されるのが好ましく、この場合には前記最内層7における滑剤の含有率が1000ppm以下であっても優れた成形性を確保できるものとなる。また、このように最内層7における滑剤の含有率が0ppmを超えて1000ppm以下であることにより、外装材の熱融着性樹脂層の最内層7の表面7aに白粉がさらに表出し難いものとなる。中でも、前記最内層7における粗面化材の含有率は、1質量%~20質量%に設定されるのが特に好ましい。
  [スリップ剤]
 前記スリップ剤としては、特に限定されるものではないが、脂肪酸アミドが好適に用いられる。前記脂肪酸アミドとしては、特に限定されるものではないが、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族系ビスアミド等が挙げられる。
 前記飽和脂肪酸アミドとしては、特に限定されるものではないが、例えば、ラウリン酸アミド、パルチミン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド等が挙げられる。前記不飽和脂肪酸アミドとしては、特に限定されるものではないが、例えば、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 前記置換アミドとしては、特に限定されるものではないが、例えば、N-オレイルパルチミン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド等が挙げられる。また、前記メチロールアミドとしては、特に限定されるものではないが、例えば、メチロールステアリン酸アミド等が挙げられる。
 前記飽和脂肪酸ビスアミドとしては、特に限定されるものではないが、例えば、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミド等が挙げられる。
 前記不飽和脂肪酸ビスアミドとしては、特に限定されるものではないが、例えば、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルセバシン酸アミド等が挙げられる。
 前記脂肪酸エステルアミドとしては、特に限定されるものではないが、例えば、ステアロアミドエチルステアレート等が挙げられる。前記芳香族系ビスアミドとしては、特に限定されるものではないが、例えば、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-システアリルイソフタル酸アミド等が挙げられる。
 前記最内層7における前記スリップ剤の濃度(含有率)は、100ppm~3000ppmに設定されるのが好ましく、中でも500ppm~1500ppmに設定されるのが特に好ましい。
 なお、前記熱融着性樹脂層3として上述した2層積層構成(図1、6参照)を採用する場合において、前記第2熱融着性樹脂層8にもスリップ剤を含有せしめるのが好ましい。この場合、前記第2熱融着性樹脂層8にスリップ剤を100ppm~5000ppmの含有率で含有せしめるのが好ましく、中でも500ppm~3000ppmの含有率で含有せしめるのが特に好ましい。
 また、前記熱融着性樹脂層3として上述した3層積層構成(図2、7参照)を採用する場合において、前記第3熱融着性樹脂層9にもスリップ剤を含有せしめてもよいが、ラミネート強度が低下する懸念があるので、前記第3熱融着性樹脂層9にはスリップ剤を含有せしめない構成か、又は含有せしめてもスリップ剤の含有率を2000ppm未満に設定するのが好ましい。
 [フッ素ポリマー系滑剤]
  前記フッ素ポリマー系滑剤は、滑り性を付与し得るフッ素含有ポリマー(分子中に1ないし複数個のフッ素原子を有するポリマー)であり、例えば、フッ素エラストマー、フッ素樹脂(エラストマーを含まない)等が挙げられる。このようなフッ素ポリマー系滑剤を前記最内層7に含有せしめることにより、該フッ素ポリマー系滑剤は前記スリップ剤との相互作用が少なく、最内層7の表面7aに滑性層を形成し得て動摩擦係数を低減できるので、深絞り成形等の成形時の成形性を大きく向上させることができる(より深い成形を行っても良好な成形体を得ることができる)。また、前記フッ素ポリマー系滑剤を最内層7に含有せしめることにより、最内層7の表面7aの表面荒れを抑制できる。
  前記フッ素エラストマーとしては、特に限定されるものではないが、例えば、フッ素含有モノマーの共重合体などが挙げられる。前記フッ素含有モノマーの共重合体としては、特に限定されるものではないが、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-プロピレン共重合体、テトラフルオロエチレン-ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体等が挙げられる。前記例示した共重合体は、Tgが-35℃~-5℃の範囲にあって、融点を示さないポリマーである。中でも、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体を用いるのが好ましい。この場合、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体にポリエチレングリコールを配合してもよく、この時、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体100質量部に対してポリエチレングリコールの配合量を1質量部~70質量部に設定するのが好ましく、中でも5質量部~65質量部に設定するのがより好ましい。前記フッ素エラストマーに、例えば、無機系の粘着防止剤等を配合してもよい。前記無機系の粘着防止剤としては、特に限定されるものではないが、例えば、タルク、アモルファスシリカ、カオリン(ケイ酸アルミニウム)、炭酸カルシウム等が挙げられる。前記フッ素エラストマーとして、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体を含有するスリーエム社製のダイナマー(商標)「FX5920A」、ダイナマー(商標)「FX9613」を挙げることができる。
 前記フッ素樹脂(エラストマーは含まない)としては、融点を有する(融点を示す結晶性の)フッ素樹脂を用いるのが好ましい。融点を有するフッ素樹脂としては、特に限定されるものではないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体(EPA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリビニリデンフルオライド(PVDF)、テトラフルオロエチレン-プロピレン共重合体(TFE/P)、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体(THV)等が挙げられる。上記融点を有するフッ素樹脂は、前記フッ素エラストマーと比較して、耐熱性に優れている上に、前記スリップ剤(脂肪酸アミド等)との相互作用(反応)がより少ないという利点がある。
 前記フッ素樹脂(エラストマーは含まない)としては、融点が100℃~300℃の範囲内のものを用いるのが好ましい。融点が100℃以上であることで、樹脂組成物におけるフッ素樹脂(フッ素ポリマー系滑剤)の分散性を向上させることができる。融点が300℃以下であることで(成形温度を高くする必要がなく)加工性を向上できる。中でも、前記フッ素樹脂(エラストマーは含まない)としては、融点が110℃~230℃の範囲内のものを用いるのが特に好ましい。前記例示したフッ素樹脂の中で、融点が100℃~300℃のものは、FEP、PCTFE、ETFE、PVDF、TFE/P、THV等である。また、融点が110℃~230℃であるものは、PVDF、TFE/P、THV等である。これらの中でも、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体(THV)が最適である。
 なお、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体は、「フッ素エラストマー」に該当するものと「融点を有するフッ素樹脂」に該当するものと両方あるが、成形性をより向上できる点で、後者に該当するもの(即ち融点を有するテトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体)を用いるのが特に好ましい。前記融点を有するテトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体として、スリーエム社製のダイナマー(商標)「FX5911」を挙げることができる。
 前記フッ素ポリマー系滑剤としては、前記フッ素エラストマー滑剤と前記フッ素樹脂滑剤(エラストマーを含まない)を併用してもよい(混合して使用してもよい)。
  前記フッ素ポリマー系滑剤におけるフッ素(F原子)の含有率は、50質量%以上であるのが好ましい。50質量%以上であることで耐熱性をより向上できるし、最内層の表面7aに一層ブリードしやすくできる。中でも、前記フッ素ポリマー系滑剤におけるフッ素(F原子)の含有率は、60質量%~80質量%であるのがより好ましく、さらに66質量%~76質量%であるのが特に好ましい。
 前記最内層7における前記フッ素ポリマー系滑剤の濃度(含有率)は、5ppm~5000ppmに設定されるのが好ましい。5ppm以上であることで成形性を十分に向上させることができると共に、5000ppm以下であることで最内層7の均一な押出成形(フィルム成形)が可能となる。中でも、前記最内層7における前記フッ素ポリマー系滑剤の濃度(含有率)は、50ppm~3000ppmに設定されるのがより好ましく、100ppm~1500ppmに設定されるのが特に好ましく、200ppm~1200ppmに設定されるのが最も好適である。なお、前記フッ素ポリマー系滑剤を配合して前記最内層7の樹脂組成物を得る際には、該フッ素ポリマー系滑剤をポリオレフィン樹脂等の樹脂に混合してなるマスターバッチにしておいて、該マスターバッチを配合して前記最内層7の樹脂組成物を得るようにしてもよい。
 本発明において、前記基材層(外側層)2は、耐熱性樹脂層で形成されているのが好ましい。前記耐熱性樹脂層2を構成する耐熱性樹脂としては、包装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱融着性樹脂層3の融点(熱融着性樹脂層が複数層からなる場合には最も高い融点を有する層の融点)より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱融着性樹脂層3の融点(熱融着性樹脂層が複数層からなる場合には最も高い融点を有する層の融点)より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。
 前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。なお、前記耐熱性樹脂層2は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。
 前記耐熱性樹脂層(外側層)2の厚さは、2μm~50μmであるのが好ましい。ポリエステルフィルムを用いる場合には厚さは2μm~50μmであるのが好ましく、ナイロンフィルムを用いる場合には厚さは7μm~50μmであるのが好ましい。上記好適下限値以上に設定することで包装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。
 前記金属箔層4は、包装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、SUS箔(ステンレス箔)、銅箔等が挙げられ、中でも、アルミニウム箔、SUS箔(ステンレス箔)を用いるのが好ましい。前記金属箔層4の厚さは、5μm~120μmであるのが好ましい。5μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、120μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記金属箔層4の厚さは、10μm~80μmであるのがより好ましい。
 前記金属箔層4は、少なくとも内側の面(内側層3側の面)に、化成処理が施されているのが好ましい。このような化成処理が施されていることによって内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
 クロム酸と、
 フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
 アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
 クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
 アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
 クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
 フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
 上記1)~3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。
 前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2~50mg/m2が好ましく、特に2mg/m2~20mg/m2が好ましい。
 前記外側接着剤5としては、特に限定されるものではないが、例えば、熱硬化性接着剤等が挙げられる。前記熱硬化性接着剤としては、特に限定されるものではないが、例えば、オレフィン系接着剤、エポキシ系接着剤、アクリル系接着剤等が挙げられる。前記外側接着剤層5の厚さは、1μm~5μmに設定されるのが好ましい。中でも、包装材1の薄膜化、軽量化の観点から、前記外側接着剤層5の厚さは、1μm~3μmに設定されるのが特に好ましい。
  前記内側接着剤6としては、特に限定されるものではないが、例えば、前記熱硬化性接着剤等が挙げられる。前記内側接着剤層6の厚さは、1μm~5μmに設定されるのが好ましい。中でも、包装材1の薄膜化、軽量化の観点から、前記内側接着剤層6の厚さは、1μm~3μmに設定されるのが特に好ましい。
 前記成形用包装材1を構成する基材層2、熱融着性樹脂層3(最内層7を含む)中に、本発明の効果を阻害しない範囲で、次のような添加剤を添加してもよい。前記添加剤としては、特に限定されるものではないが、例えば、酸化防止剤、可塑剤、紫外線吸収剤、防かび剤、着色剤(顔料、染料等)、帯電防止剤、防さび剤、吸湿剤、酸素吸収剤等が挙げられる。前記可塑剤としては、特に限定されるものではないが、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステルアセチル化モノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、グリセリン脂肪酸エステル中鎖脂肪酸トリグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、特殊脂肪酸エステル、高級アルコール脂肪酸エステルなどが挙げられる。
 しかして、第1、第2発明の第1~3実施形態の成形用包装材1は、前記熱融着性樹脂層3の最内層7の表面7aに、前記スリップ剤の一部および前記フッ素ポリマー系滑剤の一部が表出して(ブリードして)付着している。前記最内層7の表面7aにおけるスリップ剤の付着量は0.05μg/cm2~1.0μg/cm2の範囲であるのが好ましく、前記最内層7の表面7aにおけるフッ素ポリマー系滑剤の付着量は0.05μg/cm2~1.0μg/cm2の範囲であるのが好ましい。しかして、このような表出付着によって、前記最内層7の表面7aの動摩擦係数が0.5以下になる。中でも、前記最内層7の表面7aの動摩擦係数が0.25以下であるのが好ましく、さらには0.20以下であるのがより好ましく、0.18以下であるのが特に好ましい。
 また、第1、第2発明の第1~3実施形態の成形用包装材1において、前記基材層2の表面2aには、前記最内層7に含有されていたスリップ剤が付着している。この付着スリップ剤は、ラミネート加工して得た成形用包装材1を巻いた状態で保管する際に、巻いた状態での最内層7の表面7aとの接触により該最内層7から転写されたものである。前記転写後の付着量は、0.05μg/cm2~1.0μg/cm2の範囲であるのが好ましい。付着量がこのような範囲であれば、成形用包装材1の成形性を高めることができる。中でも、前記転写後の付着量は、0.1μg/cm2~0.6μg/cm2の範囲であるのがより好ましい。しかして、このような転写付着によって、前記基材層2の表面2aの動摩擦係数が0.5以下になる。中でも、前記基材層2の表面2aの動摩擦係数が0.25以下であるのが好ましく、さらに0.20以下であるのがより好ましく、0.18以下であるのが特に好ましい。前記成形用包装材1を深絞り成形等により成形した後は、この転写スリップ剤は、除去してもよいし、或いは放置しておいてもよいし、或いはまた自然に消失してしまってもよい。
 一方、第1、第2発明の第4~6実施形態の成形用包装材1において、前記第1滑性層11の厚さは、0.01μm~5μmであるのが好ましい。また、前記第2滑性層12の厚さは、0.01μm~5μmであるのが好ましい。また、前記第3滑性層13の厚さは、0.01μm~5μmであるのが好ましい。
  また、第1、第2発明の第4~6実施形態の成形用包装材1において、前記第1滑性層11の形成量は、0.05μg/cm2~1.0μg/cm2の範囲であるのが好ましい。前記第2滑性層12の形成量は、0.05μg/cm2~1.0μg/cm2の範囲であるのが好ましい。このような形成量であることにより、成形用包装材1の内側表面の動摩擦係数が0.5以下になる。中でも、前記成形用包装材1の内側表面の動摩擦係数が0.25以下であるのが好ましく、さらには0.20以下であるのがより好ましく、0.18以下であるのが特に好ましい。
 前記最内層7を形成する樹脂組成物を溶融押出製膜することにより前記最内層7を形成することにより、上記第1滑性層11を確実に形成することができると共に、該第1滑性層11におけるフッ素ポリマー系滑剤の含有率を高めることができる。
 また、前記最内層7を形成する樹脂組成物および溶剤を含有した塗布溶液を塗布して乾燥させることによって前記最内層7を形成することにより、上記第1滑性層11を確実に形成することができると共に、該第1滑性層11におけるフッ素ポリマー系滑剤の含有率を高めることができる。
  第1、第2発明の第4~6実施形態の成形用包装材1において、エージング時における加熱処理温度を30℃~50℃に設定することにより、上記第2滑性層12を確実に形成できると共に、該第2滑性層12におけるスリップ剤の含有率を高めることができる。エージング時の加熱温度が30℃以上であることで第2滑性層12を十分に形成できると共に、50℃以下であることで成形用包装材の表面での白粉の表出を十分に防止できる。中でも、前記エージング時の加熱温度を35℃~45℃に設定するのが好ましい。
 また、第1、第2発明の第4~6実施形態の成形用包装材1において、前記第3滑性層13の形成量は、0.05μg/cm2~1.0μg/cm2の範囲であるのが好ましい。このような形成量であることにより、成形用包装材1の外側表面の動摩擦係数が0.5以下になる。中でも、前記成形用包装材1の外側表面の動摩擦係数が0.25以下であるのが好ましく、さらには0.20以下であるのがより好ましく、0.18以下であるのが特に好ましい。
 また、第1、第2発明の第4~6実施形態の成形用包装材1において、前記第3滑性層13は、ラミネート加工して得た包装材を巻いた状態で保管する際に、巻いた状態での包装材の内側表面と外側表面との接触により該内側表面から転写されて形成された層である。前記成形用包装材1を深絞り成形等により成形した後は、この第3滑性層13は、除去してもよいし、或いはそのまま残しておいてもよいし、或いはまた自然に消失してしまってもよい。
 本発明の包装材1を成形(深絞り成形、張り出し成形等)することにより、外装ケース(電池ケース等)10を得ることができる(図4、5参照)。
 本発明の包装材1を用いて構成された蓄電デバイス30の一実施形態を図4に示す。この蓄電デバイス30は、リチウムイオン2次電池である。本実施形態では、図4、5に示すように、包装材1を成形して得られた外装ケース10と、成形に供されることなく平面状の包装材1とにより外装部材15が構成されている。しかして、本発明の包装材1を成形して得られた外装ケース10の収容凹部内に、略直方体形状の蓄電デバイス本体部(電気化学素子等)31が収容され、該蓄電デバイス本体部31の上に、前記平面状の包装材1がその内側層3側を内方(下側)にして配置され、該平面状外装材1の内側層3(最内層7)の周縁部と、前記外装ケース10のフランジ部(封止用周縁部)29の内側層3(最内層7)とがヒートシールによりシール接合されて封止されることによって、本発明の蓄電デバイス30が構成されている(図4、5参照)。なお、前記外装ケース10の収容凹部の内側の表面は、内側層3(最内層7)になっており、収容凹部の外面が基材層(外側層)2になっている(図5参照)。
 図4において、39は、前記包装材1の周縁部と、前記外装ケース10のフランジ部(封止用周縁部)29とが接合(溶着)されたヒートシール部である。なお、前記蓄電デバイス30において、蓄電デバイス本体部31に接続されたタブリードの先端部が、外装部材15の外部に導出されているが、図示は省略している。
 前記蓄電デバイス本体部31としては、特に限定されるものではないが、例えば、電池本体部、キャパシタ本体部、コンデンサ本体部等が挙げられる。
 前記ヒートシール部39の幅は、0.5mm以上に設定するのが好ましい。0.5mm以上とすることで封止を確実に行うことができる。中でも、前記ヒートシール部39の幅は、3mm~15mmに設定するのが好ましい。
 なお、上記実施形態では、外装部材15が、包装材1を成形して得られた外装ケース10と、平面状の包装材1と、からなる構成であったが(図4、5参照)、特にこのような組み合わせに限定されるものではなく、例えば、一対の外装ケース10からなる構成であってもよい。
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
 <使用材料>
[フッ素ポリマー系滑剤A(フッ素樹脂でありエラストマーでない)]
 スリーエム社製のダイナマー(商標)「FX5911」…テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体(該共重合体の融点が118℃、該共重合体中のフッ素含有率が69質量%)
[フッ素ポリマー系滑剤B(フッ素エラストマー)]
 スリーエム社製のダイナマー(商標)「FX5920A」…ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体(該共重合体中のフッ素含有率が66質量%)35質量%、エチレングリコール65質量%の混合物。
[フッ素ポリマー系滑剤C(フッ素エラストマー)]
 スリーエム社製のダイナマー(商標)「FX9613」…ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体(該共重合体中のフッ素含有率が66質量%)90質量%、無機粒子(タルク6.5質量%、アモルファスシリカ2.5質量%、炭酸カルシウム1質量%)10質量%の混合物。
 <実施例1>
 厚さ30μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
  次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して厚さ15μmの二軸延伸6ナイロンフィルム2をドライラミネートした(貼り合わせた)。
 次に、エチレン-プロピレンランダム共重合体、1000ppmのエルカ酸アミド(スリップ剤)、5000ppmのシリカ粒子(平均粒子径2μm;アンチブロッキング剤)および50ppmのフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)を含有してなる厚さ3μmの第1熱融着性樹脂無延伸フィルム7、エチレン-プロピレンブロック共重合体、1000ppmのエルカ酸アミドを含有してなる厚さ14μmの第2熱融着性樹脂無延伸フィルム8、エチレン-プロピレンランダム共重合体、1000ppmのエルカ酸アミドを含有してなる厚さ3μmの第3熱融着性樹脂無延伸フィルム9がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ20μmのシーラントフィルム(第1熱融着性樹脂無延伸フィルム層7/第2熱融着性樹脂無延伸フィルム層8/第3熱融着性樹脂無延伸フィルム層9)3を得た後、該シーラントフィルム3の第3熱融着性樹脂無延伸フィルム層9面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、ロール軸に巻き取り、しかる後、33℃で13日間エージングした(加熱した)後、ロール軸から引き出すことによって、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 なお、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布して、加熱乾燥させた後、前記シーラントフィルム3の第3無延伸フィルム層9面に重ね合わせた。
 <実施例2>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を500ppmに変更した以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例1>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例1と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例3>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ3μmの第1熱融着性樹脂無延伸フィルム層7/厚さ24μmの第2熱融着性樹脂無延伸フィルム層8/厚さ3μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例4>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ4.5μmの第1熱融着性樹脂無延伸フィルム層7/厚さ21μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4.5μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例2>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例3と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例5>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を1000ppmに変更した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例6>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および50ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例7>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例8>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例9>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤をフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ4μmの第1熱融着性樹脂無延伸フィルム層7/厚さ32μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例10>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ6μmの第1熱融着性樹脂無延伸フィルム層7/厚さ28μmの第2熱融着性樹脂無延伸フィルム層8/厚さ6μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例11>
  二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を50ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例12>
  二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ12μmの第1熱融着性樹脂無延伸フィルム層7/厚さ56μmの第2熱融着性樹脂無延伸フィルム層8/厚さ12μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例3>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例11と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例13>
 外側層2として厚さ27μmの積層フィルム(厚さ12μmのポリエチレンテレフタレートフィルム/厚さ15μmの二軸延伸6ナイロンフィルム)を用い、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例4>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例13と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <実施例14>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)及び250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例15>
  アンチブロッキング剤として、5000ppmのシリカ粒子に代えて、6000ppmのケイ酸アルミニウム粒子(平均粒子径2μm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例16>
  アンチブロッキング剤として、5000ppmのシリカ粒子に代えて、4000ppmのアクリル樹脂ビーズ(平均粒子径3μm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、1000ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例17>
 第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのステアリン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのステアリン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例18>
 第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのベヘン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのベヘン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および750ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例3と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例5>
  第1熱融着性樹脂無延伸フィルム7に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第2熱融着性樹脂無延伸フィルム8に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例3と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <実施例21>
 厚さ30μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
  次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して厚さ15μmの二軸延伸6ナイロンフィルム2をドライラミネートした(貼り合わせた)。
 次に、エチレン-プロピレンランダム共重合体、1000ppmのエルカ酸アミド(スリップ剤)、5000ppmのシリカ粒子(平均粒子径2μm;アンチブロッキング剤)および50ppmのフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)を含有してなる厚さ3μmの第1熱融着性樹脂無延伸フィルム7、エチレン-プロピレンブロック共重合体および2000ppmのエルカ酸アミドを含有してなる厚さ14μmの第2熱融着性樹脂無延伸フィルム8、エチレン-プロピレンランダム共重合体および1000ppmのエルカ酸アミドを含有してなる厚さ3μmの第3熱融着性樹脂無延伸フィルム9がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ20μmのシーラントフィルム(第1熱融着性樹脂無延伸フィルム層7/第2熱融着性樹脂無延伸フィルム層8/第3熱融着性樹脂無延伸フィルム層9)3を得た後、該シーラントフィルム3の第3熱融着性樹脂無延伸フィルム層9面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、ロール軸に巻き取り、しかる後、ロール軸に巻いた状態で40℃で10日間エージングした(加熱した)後、ロール軸から引き出すことによって、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 なお、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布して、加熱乾燥させた後、前記シーラントフィルム3の第3無延伸フィルム層9面に重ね合わせた。
 <実施例22>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を500ppmに変更した以外は、実施例21と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例6>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例21と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例23>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ3μmの第1熱融着性樹脂無延伸フィルム層7/厚さ24μmの第2熱融着性樹脂無延伸フィルム層8/厚さ3μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例21と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例24>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ4.5μmの第1熱融着性樹脂無延伸フィルム層7/厚さ21μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4.5μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例22と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例7>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例23と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例25>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を1000ppmに変更した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例26>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および50ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例27>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例28>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例29>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤をフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ4μmの第1熱融着性樹脂無延伸フィルム層7/厚さ32μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例21と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例30>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ6μmの第1熱融着性樹脂無延伸フィルム層7/厚さ28μmの第2熱融着性樹脂無延伸フィルム層8/厚さ6μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例22と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例31>
 二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を50ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例21と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例32>
  二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ12μmの第1熱融着性樹脂無延伸フィルム層7/厚さ56μmの第2熱融着性樹脂無延伸フィルム層8/厚さ12μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例21と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例8>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例31と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例33>
 外側層2として厚さ27μmの積層フィルム(厚さ12μmのポリエチレンテレフタレートフィルム/厚さ15μmの二軸延伸6ナイロンフィルム)を用い、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例21と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例9>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例33と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <実施例34>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)及び250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例35>
  アンチブロッキング剤として、5000ppmのシリカ粒子に代えて、6000ppmのケイ酸アルミニウム粒子(平均粒子径2μm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例36>
  アンチブロッキング剤として、5000ppmのシリカ粒子に代えて、4000ppmのアクリル樹脂ビーズ(平均粒子径3μm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、1000ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例37>
  第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのステアリン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、2000ppmのエルカ酸アミドに代えて、2000ppmのステアリン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例38>
  第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのベヘン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、2000ppmのエルカ酸アミドに代えて、2000ppmのベヘン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および750ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例23と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例10>
 第1熱融着性樹脂無延伸フィルム7に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第2熱融着性樹脂無延伸フィルム8に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例23と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 <実施例41>
 厚さ30μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
  次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して厚さ15μmの二軸延伸6ナイロンフィルム(外側層)2をドライラミネートした(貼り合わせた)。
 次に、エチレン-プロピレンランダム共重合体、1000ppmのエルカ酸アミド(スリップ剤)、5.0質量%の高密度ポリエチレン樹脂パウダーA(平均粒子径650μm;粗面化材)、50ppmのフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)および2500ppmのシリカ粒子(平均粒子径2μm;アンチブロッキング剤)を含有してなる厚さ3μmの第1熱融着性樹脂無延伸フィルム7、エチレン-プロピレンブロック共重合体、1000ppmのエルカ酸アミドを含有してなる厚さ14μmの第2熱融着性樹脂無延伸フィルム8、エチレン-プロピレンランダム共重合体、1000ppmのエルカ酸アミドを含有してなる厚さ3μmの第3熱融着性樹脂無延伸フィルム9がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ20μmのシーラントフィルム(第1熱融着性樹脂無延伸フィルム層7/第2熱融着性樹脂無延伸フィルム層8/第3熱融着性樹脂無延伸フィルム層9)3を得た後、該シーラントフィルム3の第3熱融着性樹脂無延伸フィルム層9面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、ロール軸に巻き取り、しかる後、33℃で13日間エージングした(加熱した)後、ロール軸から引き出すことによって、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 なお、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布して、加熱乾燥させた後、前記シーラントフィルム3の第3無延伸フィルム層9面に重ね合わせた。
  上記高密度ポリエチレン樹脂A(粗面化材)は、190℃でのMFRが0.2g/10分、密度が0.963g/cm3、スウェルが40%であり、上記高密度ポリエチレン樹脂Aは、フィリップス触媒を使用してスラリーループ法で製造されたものである。
 <実施例42>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を500ppmに変更した以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例11>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例1と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例43>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ3μmの第1熱融着性樹脂無延伸フィルム層7/厚さ24μmの第2熱融着性樹脂無延伸フィルム層8/厚さ3μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例44>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ4.5μmの第1熱融着性樹脂無延伸フィルム層7/厚さ21μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4.5μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例42と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例12>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例43と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例45>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を1000ppmに変更した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例46>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および50ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例47>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例48>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例49>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤をフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ4μmの第1熱融着性樹脂無延伸フィルム層7/厚さ32μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例50>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ6μmの第1熱融着性樹脂無延伸フィルム層7/厚さ28μmの第2熱融着性樹脂無延伸フィルム層8/厚さ6μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例42と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例51>
  二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を50ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例52>
  二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ12μmの第1熱融着性樹脂無延伸フィルム層7/厚さ56μmの第2熱融着性樹脂無延伸フィルム層8/厚さ12μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例13>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例51と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例53>
 外側層2として厚さ27μmの積層フィルム(厚さ12μmのポリエチレンテレフタレートフィルム/厚さ15μmの二軸延伸6ナイロンフィルム)を用い、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例14>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例53と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例54>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)及び250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例55>
  粗面化材として、5.0質量%の高密度ポリエチレン樹脂パウダーA(平均粒子径650μm)に代えて、10.0質量%の高密度ポリエチレン樹脂パウダーB(平均粒子径1.1mm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
  上記高密度ポリエチレン樹脂B(粗面化材)は、190℃でのMFRが0.2g/10分、密度が0.945g/cm3、スウェルが35%であり、上記高密度ポリエチレン樹脂Bは、フィリップス触媒を使用してスラリーループ法で製造されたものである。
 <実施例56>
  粗面化材として、5.0質量%の高密度ポリエチレン樹脂パウダーA(平均粒子径650μm)に代えて、15.0質量%の低密度ポリエチレン樹脂パウダーC(平均粒子径1.0mm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、1000ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
  上記低密度ポリエチレン樹脂C(粗面化材)は、190℃でのMFRが2g/10分、密度が0.921g/cm3、スウェルが20%であり、上記低密度ポリエチレン樹脂Cは、チーグラー触媒を用いて気相法流動床で製造された線状低密度ポリエチレン樹脂である。
 <実施例57>
 第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのステアリン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのステアリン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例58>
 第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのベヘン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのベヘン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および750ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例43と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例59>
 第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドと共に500ppmのエチレンビスステアリン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのエルカ酸アミド及び500ppmのエチレンビスステアリン酸アミドを使用した以外は、実施例57と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例60>
  外側層2として厚さ27μmの積層フィルム(最外側に配置される厚さ12μmのポリエチレンテレフタレートフィルム/厚さ15μmの二軸延伸6ナイロンフィルム)を用い、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、かつ該第1熱融着性樹脂無延伸フィルム7中にシリカ粒子(アンチブロッキング剤)を含有させない構成とし、シーラントフィルム(熱融着性樹脂層3)として厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例41と同様にして、図2に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例15>
  第1熱融着性樹脂無延伸フィルム7に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第2熱融着性樹脂無延伸フィルム8に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例43と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 <実施例61>
 厚さ30μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
  次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して厚さ15μmの二軸延伸6ナイロンフィルム2をドライラミネートした(貼り合わせた)。
 次に、エチレン-プロピレンランダム共重合体、1000ppmのエルカ酸アミド(スリップ剤)、5.0質量%の高密度ポリエチレン樹脂パウダーA(平均粒子径650μm;粗面化材)、50ppmのフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)および2500ppmのシリカ粒子(平均粒子径2μm;アンチブロッキング剤)を含有してなる厚さ3μmの第1熱融着性樹脂無延伸フィルム7、エチレン-プロピレンブロック共重合体および2000ppmのエルカ酸アミドを含有してなる厚さ14μmの第2熱融着性樹脂無延伸フィルム8、エチレン-プロピレンランダム共重合体および1000ppmのエルカ酸アミドを含有してなる厚さ3μmの第3熱融着性樹脂無延伸フィルム9がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ20μmのシーラントフィルム(第1熱融着性樹脂無延伸フィルム層7/第2熱融着性樹脂無延伸フィルム層8/第3熱融着性樹脂無延伸フィルム層9)3を得た後、該シーラントフィルム3の第3熱融着性樹脂無延伸フィルム層9面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、ロール軸に巻き取り、しかる後、ロール軸に巻いた状態で40℃で10日間エージングした(加熱した)後、ロール軸から引き出すことによって、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 なお、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布して、加熱乾燥させた後、前記シーラントフィルム3の第3無延伸フィルム層9面に重ね合わせた。
  上記高密度ポリエチレン樹脂A(粗面化材)は、190℃でのMFRが0.2g/10分、密度が0.963g/cm3、スウェルが40%であり、上記高密度ポリエチレン樹脂Aは、フィリップス触媒を使用してスラリーループ法で製造されたものである。
 <実施例62>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を500ppmに変更した以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例16>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例61と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例63>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ3μmの第1熱融着性樹脂無延伸フィルム層7/厚さ24μmの第2熱融着性樹脂無延伸フィルム層8/厚さ3μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例64>
  アルミニウム箔4の厚さを35μmに変更すると共に、シーラントフィルムとして厚さのみを変更した(組成は変更することなく)厚さ30μmのシーラントフィルム(厚さ4.5μmの第1熱融着性樹脂無延伸フィルム層7/厚さ21μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4.5μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例62と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例17>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例63と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例65>
  第1熱融着性樹脂無延伸フィルム7中のフッ素ポリマー系滑剤A(スリーエム社製「FX5911」)の含有率を1000ppmに変更した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例66>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および50ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例67>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例68>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例69>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤をフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ4μmの第1熱融着性樹脂無延伸フィルム層7/厚さ32μmの第2熱融着性樹脂無延伸フィルム層8/厚さ4μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例70>
  二軸延伸6ナイロンフィルム2の厚さを25μmに変更し、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)に変更し、シーラントフィルムとして厚さ40μmのシーラントフィルム(厚さ6μmの第1熱融着性樹脂無延伸フィルム層7/厚さ28μmの第2熱融着性樹脂無延伸フィルム層8/厚さ6μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例62と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例71>
 二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を50ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例72>
  二軸延伸6ナイロンフィルムに代えて、厚さ12μmのポリエチレンテレフタレートフィルムを使用し、アルミニウム箔4の厚さを35μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ12μmの第1熱融着性樹脂無延伸フィルム層7/厚さ56μmの第2熱融着性樹脂無延伸フィルム層8/厚さ12μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例18>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例71と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例73>
 外側層2として厚さ27μmの積層フィルム(厚さ12μmのポリエチレンテレフタレートフィルム/厚さ15μmの二軸延伸6ナイロンフィルム)を用い、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、シーラントフィルムとして厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例19>
  第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例73と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
 <実施例74>
  第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、250ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)及び250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例75>
 粗面化材として、5.0質量%の高密度ポリエチレン樹脂パウダーA(平均粒子径650μm)に代えて、10.0質量%の高密度ポリエチレン樹脂パウダーB(平均粒子径1.1mm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
  上記高密度ポリエチレン樹脂B(粗面化材)は、190℃でのMFRが0.2g/10分、密度が0.945g/cm3、スウェルが35%であり、上記高密度ポリエチレン樹脂Bは、フィリップス触媒を使用してスラリーループ法で製造されたものである。
 <実施例76>
 粗面化材として、5.0質量%の高密度ポリエチレン樹脂パウダーA(平均粒子径650μm)に代えて、15.0質量%の低密度ポリエチレン樹脂パウダーC(平均粒子径1.0mm)を用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、1000ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および500ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
  上記低密度ポリエチレン樹脂C(粗面化材)は、190℃でのMFRが2g/10分、密度が0.921g/cm3、スウェルが20%であり、上記低密度ポリエチレン樹脂Cは、チーグラー触媒を用いて気相法流動床で製造された線状低密度ポリエチレン樹脂である。
 <実施例77>
  第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのステアリン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、2000ppmのエルカ酸アミドに代えて、2000ppmのステアリン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、500ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および250ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例78>
  第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、1000ppmのベヘン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、2000ppmのエルカ酸アミドに代えて、2000ppmのベヘン酸アミドを用い、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤として、50ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)に代えて、750ppmのフッ素樹脂滑剤(スリーエム社製「FX5911」)および750ppmのフッ素エラストマー滑剤(スリーエム社製「FX5920A」)を使用した以外は、実施例63と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例79>
 第1熱融着性樹脂無延伸フィルム7および第3熱融着性樹脂無延伸フィルム9に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドと共に500ppmのエチレンビスステアリン酸アミドを用い、第2熱融着性樹脂無延伸フィルム8に含有せしめるスリップ剤として、1000ppmのエルカ酸アミドに代えて、2000ppmのエルカ酸アミド及び500ppmのエチレンビスステアリン酸アミドを使用した以外は、実施例77と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <実施例80>
  外側層2として厚さ27μmの積層フィルム(最外側に配置される厚さ12μmのポリエチレンテレフタレートフィルム/厚さ15μmの二軸延伸6ナイロンフィルム)を用い、アルミニウム箔4の厚さを40μmに変更すると共に、第1熱融着性樹脂無延伸フィルム7中に含有せしめるフッ素ポリマー系滑剤を500ppmのフッ素エラストマー滑剤(スリーエム社製「FX9613」)に変更し、かつ該第1熱融着性樹脂無延伸フィルム7中にシリカ粒子(アンチブロッキング剤)を含有させない構成とし、シーラントフィルム(熱融着性樹脂層3)として厚さ80μmのシーラントフィルム(厚さ8μmの第1熱融着性樹脂無延伸フィルム層7/厚さ64μmの第2熱融着性樹脂無延伸フィルム層8/厚さ8μmの第3熱融着性樹脂無延伸フィルム層9)を用いた以外は、実施例61と同様にして、図7に示す構成の蓄電デバイス用外装材(成形用包装材)1を得た。
 <比較例20>
 第1熱融着性樹脂無延伸フィルム7に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第2熱融着性樹脂無延伸フィルム8に含有せしめるエルカ酸アミドの含有率(濃度)を2500ppmに変更し、第1熱融着性樹脂無延伸フィルム7中に、フッ素ポリマー系滑剤を非含有とした以外は、実施例63と同様にして、蓄電デバイス用外装材(成形用包装材)を得た。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 上記のようにして得られた各蓄電デバイス用外装材(成形用包装材)について下記評価法に基づいて評価を行った。その結果を表2に示す。なお、表3、4、7、8、11、12、15、16に記載の最内層の表面の動摩擦係数は、JIS K7125-1995に準拠して、各外装材の最内層の表面7aについて測定した動摩擦係数である。また、表3、4、7、8、11、12、15、16に記載の基材層の表面2aの動摩擦係数は、JIS K7125-1995に準拠して、各外装材の基材層の表面2aについて測定した動摩擦係数である。
 <外装材の最内層の表面に存在するスリップ剤量の評価法(実施例1~18、41~60、比較例1~5、11~15)>
 各蓄電デバイス用外装材から縦110mm×横110mmの矩形状の試験片を2枚切り出した後、これら2枚の試験片を重ね合わせて互いの熱融着性樹脂層(内側層)の最内層の周縁部同士をヒートシール温度200℃でシール幅5mmでヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン1mLを注入し、内側層の最内層7の表面7aとアセトンとが接触した状態で3分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液中に含まれる成分量をガスクロマトグラフを用いて測定、分析することにより、外装材の最内層の表面7aに存在するスリップ剤量(μg/cm2)を求めた。即ち、最内層の表面1cm2あたりのスリップ剤量を求めた。
 <外装材の最内層の表面に存在するフッ素ポリマー系滑剤量の評価法(実施例1~18、41~60、比較例1~5、11~15)>
 各蓄電デバイス用外装材から縦101mm×横100.5mmの矩形状の試験片を1枚切り出した後、試験片を半折りにして重ね合わせて互いの熱融着性樹脂層(内側層)の最内層の周縁部同士をヒートシール温度200℃でシール幅5mmでヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン100mLを注入し、内側層の最内層7の表面7aとアセトンとが接触した状態で室温で3分間放置した後、袋体内のアセトンを抜き取った。この操作を2回繰り返すことによりスリップ剤を除去した。次いで、更に前記袋体の内部空間内にシリンジを用いてアセトン100mLを注入し、内側層の最内層7の表面7aとアセトンとが接触した状態で50℃のオーブン中で30分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液をロータリーエバポレーターで濃縮し、その後140℃で6時間真空乾燥を行った後、残渣の質量を計量することにより、外装材の最内層の表面7aに存在するフッ素ポリマー系滑剤量(μg/cm2)を求めた。即ち、最内層の表面1cm2あたりのフッ素ポリマー系滑剤量を求めた。
 <外装材の基材層の表面に存在するスリップ剤量の評価法(実施例1~18、41~60、比較例1~5、11~15)>
 各蓄電デバイス用外装材から縦110mm×横110mmの矩形状の試験片を2枚切り出した後、これら2枚の試験片を重ね合わせて互いの基材層(外側層)の表面(最外層の表面)2aの周縁部同士をヒートシール温度250℃でシール幅5mmでヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン1mLを注入し、基材層2の表面2aとアセトンとが接触した状態で3分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液中に含まれる成分量をガスクロマトグラフを用いて測定、分析することにより、外装材の基材層2の表面2aに存在するスリップ剤量(μg/cm2)を求めた。即ち、基材層2の表面1cm2あたりのスリップ剤量を求めた。
 <外装材の内側表面に存在するスリップ剤量の評価法(実施例21~38、61~80、比較例6~10、16~20)>
 各蓄電デバイス用外装材から縦110mm×横110mmの矩形状の試験片を2枚切り出した後、これら2枚の試験片を重ね合わせて互いの熱融着性樹脂層(内側層)の最内層の周縁部同士をヒートシール温度200℃でシール幅5mmでヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン1mLを注入し、袋体の内側表面とアセトンとが接触した状態で3分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液中に含まれる成分量をガスクロマトグラフを用いて測定、分析することにより、外装材の第2滑性層12のスリップ剤量(μg/cm2)を求めた。即ち、1cm2当たりの第2滑性層12の形成量(μg/cm2)を求めた。
 <外装材の内側表面に存在するフッ素ポリマー系滑剤量の評価法(実施例21~38、61~80、比較例6~10、16~20)>
 各蓄電デバイス用外装材から縦101mm×横100.5mmの矩形状の試験片を1枚切り出した後、試験片を半折りにして重ね合わせて互いの熱融着性樹脂層(内側層)の最内層の周縁部同士をヒートシール温度200℃でシール幅5mmでヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン100mLを注入し、袋体の内側表面とアセトンとが接触した状態で室温で3分間放置した後、袋体内のアセトンを抜き取った。この操作を2回繰り返すことによりスリップ剤(第2滑性層12)を除去した。次いで、更に前記袋体の内部空間内にシリンジを用いてアセトン100mLを注入し、袋体の内側表面とアセトンとが接触した状態で50℃のオーブン中で30分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液をロータリーエバポレーターで濃縮し、その後140℃で6時間真空乾燥を行った後、残渣の質量を計量することにより、外装材の第1滑性層11のフッ素ポリマー系滑剤量(μg/cm2)を求めた。即ち、1cm2当たりの第1滑性層11の形成量(μg/cm2)を求めた。
 <外装材の基材層の表面に存在するスリップ剤量の評価法(実施例21~38、61~80、比較例6~10、16~20)>
 各蓄電デバイス用外装材から縦110mm×横110mmの矩形状の試験片を2枚切り出した後、これら2枚の試験片を重ね合わせて互いの外側表面の周縁部同士をヒートシール温度250℃でシール幅5mmでヒートシールして袋体を作製した。この袋体の内部空間内にシリンジを用いてアセトン1mLを注入し、この袋体の内面とアセトンとが接触した状態で3分間放置した後、袋体内のアセトンを抜き取った。この抜き取った液中に含まれる成分量をガスクロマトグラフを用いて測定、分析することにより、外装材の外側の第3滑性層13のスリップ剤量(μg/cm2)を求めた。即ち、1cm2当たりの第3滑性層13の形成量(μg/cm2)を求めた。
 <成形性評価法>
  成形深さフリーのストレート金型を用いて外装材に対し下記成形条件で深絞り1段成形を行い、各成形深さ(9.0mm、8.5mm、8.0mm、7.5mm、7.0mm、6.5mm、6.0mm、5.5mm、5.0mm、4.5mm、4.0mm、3.5mm、3.0mm、2.5mm、2.0mm)毎に成形性を評価し、コーナー部にピンホールが全く発生しない良好な成形を行うことができる最大成形深さ(mm)を調べた。表2にこの最大成形深さ(mm)を示した。なお、ピンホールの有無は、ピンホールを透過してくる透過光の有無を目視により観察することにより調べた。
(成形条件)
 成形型…パンチ:33.3mm×53.9mm、ダイ:80mm×120mm、コーナーR:2mm、パンチR:1.3mm、ダイR:1mm
  しわ押さえ圧…ゲージ圧:0.475MPa、実圧(計算値):0.7MPa
  材質…SC(炭素鋼)材、パンチRのみクロムメッキ。
 <白粉の有無評価法>
  各蓄電デバイス用外装材から縦600mm×横100mmの矩形状の試験片を切り出した後、得られた試験片を内側層3面(即ち最内層の表面7a)を上側にして試験台の上に載置し、この試験片の上面に、黒色のウェスが巻き付けられて表面が黒色を呈しているSUS製錘(質量1.3kg、接地面の大きさが55mm×50mm)を載せた状態で、該錘を試験片の上面と平行な水平方向に引張速度4cm/秒で引っ張ることによって錘を試験片の上面に接触状態で長さ400mmにわたって引張移動させた。引張移動後の錘の接触面のウェス(黒色)を目視で観察し、ウェス(黒色)の表面に白粉が顕著に生じていたものを「×」とし、白粉が僅かに生じていたに過ぎないものを「△」とし、白粉が殆どないか又は白粉が認められなかったものを「○」とした。なお、上記黒色のウェスとしては、TRUSCO社製「静電気除去シートS SD2525 3100」を使用した。
 表から明らかなように、本発明の実施例1~18、21~38の蓄電デバイス用外装材(成形用包装材)は、最大成形深さが4.0mm以上であり、より深い成形を行っても良好な成形品を得ることができると共に、外装材の表面に白粉が表出し難いものであった。
  これに対し、熱融着性樹脂層の最内層中に、スリップ剤およびアンチブロッキング剤が添加されているものの、フッ素ポリマー系滑剤が添加されていない比較例1~4、6~9では、深絞り成形を行った際の最大成形深さが、実施例1~18、21~38と比べて低い結果となった。また、比較例5、10では、外装材の表面に白粉が顕著に表出していた。
 表から明らかなように、本発明の実施例41~80の蓄電デバイス用外装材(成形用包装材)は、最大成形深さが4.5mm以上であり、より深い成形を行っても良好な成形品を得ることができると共に、外装材の表面に白粉が表出し難いものであった。
  これに対し、熱融着性樹脂層の最内層中に、スリップ剤および粗面化材が添加されているものの、フッ素ポリマー系滑剤が添加されていない比較例11~14、16~19では、深絞り成形を行った際の最大成形深さが、実施例41~80と比べて低い結果となった。また、比較例15、20では、外装材の表面に白粉が顕著に表出していた。
 本発明に係る成形用包装材は、ノートパソコン用、携帯電話用、車載用、定置型のリチウムイオンポリマー二次電池等の電池のケースとして好適に用いられ、これ以外にも、食品の包装材、医薬品の包装材として好適であるが、特にこれらの用途に限定されるものではない。中でも、電池ケース用として特に好適である。
 本出願は、
・2017年9月6日付で出願された日本国特許出願特願2017-170957号
・2017年9月6日付で出願された日本国特許出願特願2017-170958号
・2017年9月20日付で出願された日本国特許出願特願2017-179875号
・2017年9月20日付で出願された日本国特許出願特願2017-180007号
 上記4件の日本出願の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
 ここで用いられた用語及び説明は、本発明に係る実施形態を説明するために用いられたものであって、本発明はこれに限定されるものではない。本発明は、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。
1…成形用包装材
2…基材層(外側層)
 2a…基材層の表面
3…熱融着性樹脂層(内側層)
4…金属箔層
7…最内層(熱融着性樹脂層の最内層;第1熱融着性樹脂層)
 7a…包装材の最内層の表面
8…第2熱融着性樹脂層
9…第3熱融着性樹脂層
10…蓄電デバイス用外装ケース
15…外装部材
30…蓄電デバイス
31…蓄電デバイス本体部

Claims (22)

  1.  外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
     前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなることを特徴とする成形用包装材。
  2.  外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
     前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、
      前記最内層の内側表面に、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成されていることを特徴とする成形用包装材。
  3.  外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
     前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、
      前記粗面化材は、熱可塑性樹脂を含有してなることを特徴とする成形用包装材。
  4.  外側層としての基材層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む成形用包装材であって、
     前記熱融着性樹脂層は、単層または複数層からなり、前記熱融着性樹脂層の最内層が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなり、
     前記粗面化材は、熱可塑性樹脂を含有し、
      前記最内層の内側表面に、フッ素ポリマー系滑剤を50質量%より大きい含有率で含有する第1滑性層が形成されていることを特徴とする成形用包装材。
  5.  前記粗面化材を構成する熱可塑性樹脂が、高密度ポリエチレン樹脂である請求項3または4に記載の成形用包装材。
  6.   前記最内層の内側表面において前記スリップ剤の一部および前記フッ素ポリマー系滑剤の一部がともに付着している請求項1または3に記載の成形用包装材。
  7.   前記基材層の外側の表面にスリップ剤が付着している請求項1、3または6に記載の成形用包装材。
  8.   前記第1滑性層の内側表面に、スリップ剤を50質量%より大きい含有率で含有する第2滑性層が形成されている請求項2または4に記載の成形用包装材。
  9.   前記基材層の外側表面にスリップ剤を含有する第3滑性層が形成されている請求項2、4または8に記載の成形用包装材。
  10.  前記最内層におけるフッ素ポリマー系滑剤の含有率が5ppm~5000ppmである請求項1~9のいずれか1項に記載の成形用包装材。
  11.  前記フッ素ポリマー系滑剤におけるフッ素含有率が50質量%以上である請求項1~10のいずれか1項に記載の成形用包装材。
  12.   前記フッ素ポリマー系滑剤が、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体およびヘキサフルオロプロピレン-ビニリデンフルオライド共重合体からなる群より選ばれる1種または2種のフッ素ポリマー系滑剤である請求項1~11のいずれか1項に記載の成形用包装材。
  13.   前記スリップ剤が、脂肪酸アミドである請求項1~12のいずれか1項に記載の成形用包装材。
  14.  前記包装材の外側表面の動摩擦係数が0.5以下である請求項1~13のいずれか1項に記載の成形用包装材。
  15.   前記包装材の内側表面の動摩擦係数が0.5以下である請求項1~14のいずれか1項に記載の成形用包装材。
  16.   請求項1~15のいずれか1項に記載の成形用包装材の成形体からなる蓄電デバイス用外装ケース。
  17.  蓄電デバイス本体部と、
      請求項16に記載の蓄電デバイス用外装ケースを少なくとも含む外装部材とを備え、
      前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
  18.   金属箔の一方の面に外側接着剤を介して基材層が積層されると共に前記金属箔の他方の面に内側接着剤を介して、単層または複数層からなる熱融着性樹脂層であって、該熱融着性樹脂層の最内層が、熱融着性樹脂、アンチブロッキング剤、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成の熱融着性樹脂層が積層されてなる積層体を準備する工程と、
      前記積層体を加熱処理して成形用包装材を得るエージング工程と、を含むことを特徴とする成形用包装材の製造方法。
  19.   金属箔の一方の面に外側接着剤を介して基材層が積層されると共に前記金属箔の他方の面に内側接着剤を介して、単層または複数層からなる熱融着性樹脂層であって、該熱融着性樹脂層の最内層が、熱融着性樹脂、粗面化材、スリップ剤およびフッ素ポリマー系滑剤を含有する樹脂組成物からなる構成の熱融着性樹脂層が積層されてなる積層体を準備する工程と、
      前記積層体を加熱処理して成形用包装材を得るエージング工程と、を含み、
     前記粗面化材は、熱可塑性樹脂を含有することを特徴とする成形用包装材の製造方法。
  20.   前記エージング工程における加熱処理の加熱温度が30℃~50℃である請求項18または19に記載の成形用包装材の製造方法。
  21.   前記準備工程において前記樹脂組成物を溶融押出製膜することにより前記最内層の層形成を行う請求項18~20のいずれか1項に記載の成形用包装材の製造方法。
  22.   前記準備工程において前記樹脂組成物および溶剤を含有した塗布溶液を塗布して乾燥させることによって前記最内層の層形成を行う請求項18~20のいずれか1項に記載の成形用包装材の製造方法。
PCT/JP2018/030478 2017-09-06 2018-08-17 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス WO2019049630A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/644,569 US11766848B2 (en) 2017-09-06 2018-08-17 Molding packaging material, power storage device packaging case, and power storage device
CN202310228801.2A CN116315326A (zh) 2017-09-06 2018-08-17 成型用包装材料、蓄电设备用外包装壳体及蓄电设备
KR1020217023187A KR102451964B1 (ko) 2017-09-06 2018-08-17 성형용 포장재, 축전 디바이스용 외장 케이스 및 축전 디바이스
DE112018004914.0T DE112018004914B4 (de) 2017-09-06 2018-08-17 Formverpackungsmaterial, Verpackungsgehäuse für Energiespeicher und Energiespeicher sowie Verfahren zur Herstellung eines Formverpackungsmaterials
CN201880053694.1A CN111033788B (zh) 2017-09-06 2018-08-17 成型用包装材料、蓄电设备用外包装壳体及蓄电设备
KR1020207003677A KR102359195B1 (ko) 2017-09-06 2018-08-17 성형용 포장재, 축전 디바이스용 외장 케이스 및 축전 디바이스
US18/231,487 US20230382084A1 (en) 2017-09-06 2023-08-08 Molding packaging material, power storage device packaging case, and power storage device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-170957 2017-09-06
JP2017-170958 2017-09-06
JP2017170957A JP7033411B2 (ja) 2017-09-06 2017-09-06 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP2017170958A JP6994326B2 (ja) 2017-09-06 2017-09-06 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP2017180007A JP6917255B2 (ja) 2017-09-20 2017-09-20 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP2017-179875 2017-09-20
JP2017-180007 2017-09-20
JP2017179875A JP6936088B2 (ja) 2017-09-20 2017-09-20 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/644,569 A-371-Of-International US11766848B2 (en) 2017-09-06 2018-08-17 Molding packaging material, power storage device packaging case, and power storage device
US18/231,487 Continuation US20230382084A1 (en) 2017-09-06 2023-08-08 Molding packaging material, power storage device packaging case, and power storage device

Publications (1)

Publication Number Publication Date
WO2019049630A1 true WO2019049630A1 (ja) 2019-03-14

Family

ID=65633950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030478 WO2019049630A1 (ja) 2017-09-06 2018-08-17 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス

Country Status (5)

Country Link
US (2) US11766848B2 (ja)
KR (2) KR102359195B1 (ja)
CN (2) CN116315326A (ja)
DE (1) DE112018004914B4 (ja)
WO (1) WO2019049630A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217931A1 (ja) * 2019-04-26 2020-10-29 東洋紡株式会社 ポリエチレン系樹脂フィルム
CN112864501A (zh) * 2019-11-27 2021-05-28 无锡恩捷新材料科技有限公司 一种电池用包装材料及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990629B2 (en) * 2018-10-24 2024-05-21 Dai Nippon Printing Co., Ltd. Casing material for power storage device, production method therefor, and power storage device
KR20220053414A (ko) 2020-10-22 2022-04-29 주식회사 엘지에너지솔루션 전지케이스 성형장치 및 이를 이용한 전지케이스 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050325A (ja) * 2000-08-01 2002-02-15 Dainippon Printing Co Ltd 電池外装用積層体及びその製造方法
JP2004327044A (ja) * 1998-03-20 2004-11-18 Dainippon Printing Co Ltd 電池ケース用シート
JP2005032456A (ja) * 2003-07-07 2005-02-03 Showa Denko Packaging Co Ltd 成形用包装材料の製造方法
JP2013149397A (ja) * 2012-01-17 2013-08-01 Showa Denko Packaging Co Ltd 電池用外装材、電池用外装材の成形方法及びリチウム二次電池
JP2014022080A (ja) * 2012-07-12 2014-02-03 Dainippon Printing Co Ltd 電池用包装材料
JP2015033828A (ja) * 2013-08-09 2015-02-19 昭和電工パッケージング株式会社 成形用包装材
JP2017112014A (ja) * 2015-12-18 2017-06-22 大日本印刷株式会社 電池用包装材料
JP2018073649A (ja) * 2016-10-31 2018-05-10 昭和電工パッケージング株式会社 蓄電デバイス用外装材、蓄電デバイス用外装ケースおよび蓄電デバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3133719B2 (ja) * 1997-02-03 2001-02-13 古河電気工業株式会社 樹脂被覆アルミニウム合金板材
CN1293651C (zh) 1998-02-05 2007-01-03 大日本印刷株式会社 电池盒形成片和电池组件
JP5089833B2 (ja) * 1999-09-20 2012-12-05 大日本印刷株式会社 ポリマー電池用包装材料
JP4736188B2 (ja) 2001-01-18 2011-07-27 大日本印刷株式会社 リチウムイオン電池用包装材料およびその製造方法
JP5035495B2 (ja) * 2001-05-23 2012-09-26 大日本印刷株式会社 電池用包装材料
EP1945451B1 (en) * 2005-10-12 2017-11-08 Jindal Films Europe Virton SPRL Sealable packaging structures and applications related thereto
JP5912214B2 (ja) * 2008-09-30 2016-04-27 大日本印刷株式会社 電気化学セル用包装材料
US20110300430A1 (en) 2008-12-24 2011-12-08 Mitsubishi Chemical Corporation Separator for battery, and non-aqueous lithium battery
JP5500425B2 (ja) * 2009-06-04 2014-05-21 三菱樹脂株式会社 非水系リチウム二次電池
US20120312366A1 (en) 2010-12-22 2012-12-13 E. I. Du Pont De Nemours And Company Fire resistant back-sheet for photovoltaic module
WO2012133663A1 (ja) * 2011-03-29 2012-10-04 昭和電工パッケージング株式会社 成形用包装材および電池用ケース
JP5942384B2 (ja) 2011-11-07 2016-06-29 凸版印刷株式会社 二次電池用外装材及び二次電池
JP6230233B2 (ja) * 2012-04-23 2017-11-15 日東電工株式会社 表面保護フィルム
US10020494B2 (en) 2013-08-08 2018-07-10 Nanotek Instruments, Inc. Anode containing active material-coated graphene sheets and lithium-ion batteries containing same
CN106663751B (zh) 2014-07-17 2020-02-07 大日本印刷株式会社 电池用包装材料
JP2015053289A (ja) 2014-11-20 2015-03-19 凸版印刷株式会社 リチウムイオン電池用外装材
KR102384888B1 (ko) * 2015-06-03 2022-04-07 에스케이온 주식회사 리튬 이차 전지 및 이를 포함하는 이차 전지 서브 모듈
JP6487869B2 (ja) 2016-03-18 2019-03-20 ヤンマー株式会社 作業車両
JP6435284B2 (ja) 2016-03-18 2018-12-05 ヤンマー株式会社 作業車両
JP6662680B2 (ja) 2016-03-30 2020-03-11 三和シヤッター工業株式会社 受信装置
JP6692199B2 (ja) 2016-03-31 2020-05-13 ナブコドア株式会社 防護柵
DE102016213840A1 (de) 2016-07-27 2018-02-01 Tesa Se Klebeband zur Verkapselung elektronischer Aufbauten

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327044A (ja) * 1998-03-20 2004-11-18 Dainippon Printing Co Ltd 電池ケース用シート
JP2002050325A (ja) * 2000-08-01 2002-02-15 Dainippon Printing Co Ltd 電池外装用積層体及びその製造方法
JP2005032456A (ja) * 2003-07-07 2005-02-03 Showa Denko Packaging Co Ltd 成形用包装材料の製造方法
JP2013149397A (ja) * 2012-01-17 2013-08-01 Showa Denko Packaging Co Ltd 電池用外装材、電池用外装材の成形方法及びリチウム二次電池
JP2014022080A (ja) * 2012-07-12 2014-02-03 Dainippon Printing Co Ltd 電池用包装材料
JP2015033828A (ja) * 2013-08-09 2015-02-19 昭和電工パッケージング株式会社 成形用包装材
JP2017112014A (ja) * 2015-12-18 2017-06-22 大日本印刷株式会社 電池用包装材料
JP2018073649A (ja) * 2016-10-31 2018-05-10 昭和電工パッケージング株式会社 蓄電デバイス用外装材、蓄電デバイス用外装ケースおよび蓄電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217931A1 (ja) * 2019-04-26 2020-10-29 東洋紡株式会社 ポリエチレン系樹脂フィルム
CN112864501A (zh) * 2019-11-27 2021-05-28 无锡恩捷新材料科技有限公司 一种电池用包装材料及其制造方法

Also Published As

Publication number Publication date
CN116315326A (zh) 2023-06-23
CN111033788A (zh) 2020-04-17
KR102451964B1 (ko) 2022-10-07
US20230382084A1 (en) 2023-11-30
US20210362473A1 (en) 2021-11-25
KR20200027987A (ko) 2020-03-13
US11766848B2 (en) 2023-09-26
KR20210094157A (ko) 2021-07-28
DE112018004914B4 (de) 2023-09-07
DE112018004914T5 (de) 2020-06-18
CN111033788B (zh) 2023-03-31
KR102359195B1 (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2019049630A1 (ja) 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
KR101989331B1 (ko) 전지용 포장 재료
JP6990505B2 (ja) 蓄電デバイス用外装材、蓄電デバイス用外装ケースおよび蓄電デバイス
JP6936093B2 (ja) 蓄電デバイス用外装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP6943547B2 (ja) 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材及びその製造方法
JP7394949B2 (ja) 蓄電デバイス用外装材
KR102426166B1 (ko) 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 그 제조 방법
JP6917255B2 (ja) 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP2019046729A (ja) 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
KR20190126710A (ko) 축전 디바이스용 외장재 및 축전 디바이스
JP6936088B2 (ja) 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP6994326B2 (ja) 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP6767795B2 (ja) 蓄電デバイス用外装材及びその製造方法
JP7182587B2 (ja) 蓄電デバイス用外装材、蓄電デバイス用外装ケースおよび蓄電デバイス
WO2024128260A1 (ja) 電池用包装材および電池用ケース
JP2024084904A (ja) 電池用包装材および電池用ケース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207003677

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18854782

Country of ref document: EP

Kind code of ref document: A1