WO2019043865A1 - サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ - Google Patents

サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ Download PDF

Info

Publication number
WO2019043865A1
WO2019043865A1 PCT/JP2017/031343 JP2017031343W WO2019043865A1 WO 2019043865 A1 WO2019043865 A1 WO 2019043865A1 JP 2017031343 W JP2017031343 W JP 2017031343W WO 2019043865 A1 WO2019043865 A1 WO 2019043865A1
Authority
WO
WIPO (PCT)
Prior art keywords
degrees
susceptor
silicon wafer
epitaxial layer
epitaxial
Prior art date
Application number
PCT/JP2017/031343
Other languages
English (en)
French (fr)
Inventor
和宏 楢原
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to JP2019538845A priority Critical patent/JP6813096B2/ja
Priority to DE112017007978.0T priority patent/DE112017007978T5/de
Priority to CN201780094456.0A priority patent/CN111295737B/zh
Priority to KR1020207002974A priority patent/KR102370157B1/ko
Priority to US16/641,996 priority patent/US11501996B2/en
Priority to PCT/JP2017/031343 priority patent/WO2019043865A1/ja
Priority to TW107123226A priority patent/TWI711114B/zh
Publication of WO2019043865A1 publication Critical patent/WO2019043865A1/ja
Priority to US18/046,400 priority patent/US11984346B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System

Definitions

  • the present invention relates to a susceptor and an epitaxial growth apparatus comprising the susceptor. Furthermore, the present invention relates to a method of manufacturing an epitaxial silicon wafer using the susceptor, and an epitaxial silicon wafer.
  • a silicon wafer grows single crystal silicon by the Czochralski method (CZ method) or the like, cuts the silicon single crystal into blocks, and then thinly slices it into a flat surface grinding (lapping) process, etching process and mirror polishing It can be obtained by final cleaning through the (polishing) step. After that, if various quality inspections are performed and no abnormality is confirmed, the product is shipped.
  • CZ method Czochralski method
  • an epitaxial layer made of a single crystal silicon thin film is vapor-phase grown (epitaxial growth) on the surface of a silicon wafer. To produce an epitaxial silicon wafer.
  • FIG. 1 shows a plan view of a conventionally known general susceptor 1 and a schematic view of an AA sectional view.
  • the susceptor 1 is provided with a circular concave counterbore 11, and the silicon wafer W is mounted so that the center of the silicon wafer W is positioned at the center of the counterbore 11.
  • the silicon wafer W and the susceptor 100 are in contact at the ledge portion 110L.
  • the radial distance L between the center of the susceptor and the opening edge 11C of the counterbore 11 is constant in the circumferential direction. Therefore, the radially outer end face of the silicon wafer W, called pocket width L p, a constant distance L also circumferential direction of the inner peripheral wall surface 11A. Therefore, the opening edge 11C draws a circular arc when the susceptor 1 is viewed from the top.
  • the difference H (also referred to as "sack depth") of the height between the upper end (corresponding to the opening edge 11C) and the lower end of the inner peripheral wall surface 11A on the opening edge 11C side of the counterbore 11 of the susceptor 1 is because it is constant in direction, it is the inner and upper end of the peripheral wall 11A, a difference H w also constant height with the surface of the silicon wafer W.
  • a silicon wafer whose main surface is a ⁇ 100 ⁇ plane repeats the ⁇ 110> orientation and the ⁇ 100> orientation in units of 45 degrees. Due to the periodicity of the crystal orientation, when an epitaxial layer is grown on the surface of a silicon wafer, the epitaxial layer grows with a growth rate (referred to as “growth rate orientation dependency”) which is different in a 90 degree cycle.
  • growth rate orientation dependency a growth rate which is different in a 90 degree cycle.
  • the film thickness of the epitaxial layer largely fluctuates in the circumferential direction due to the growth rate difference for each crystal orientation, and the influence is larger as the wafer edge region (outer peripheral region). Therefore, the growth rate orientation dependency is known as the cause of deteriorating the flatness of the epitaxial silicon wafer.
  • Patent Document 1 discloses a susceptor which changes its structure and / or shape periodically according to a change in crystal orientation of a semiconductor wafer near the inner circumferential surface of a susceptor opening. Further, in Patent Document 1, the partial heat capacity of the susceptor, the pocket counterbore depth, or the pocket width changes periodically at a cycle of 90 degrees, 180 degrees, or 270 degrees. It is disclosed that it is preferable to change the shape and / or.
  • Patent Document 1 when the pocket width of the susceptor is increased, the silicon source gas is smoothly supplied to the peripheral portion of the silicon wafer, and the epitaxial layer growth rate in the peripheral portion is increased. On the other hand, when the pocket width of the susceptor becomes narrow, the opposite phenomenon occurs and the growth rate becomes slow. In addition, when the counterbore depth of the susceptor is reduced, the silicon source gas is smoothly supplied to the wafer peripheral portion, and the epitaxial layer growth rate in the peripheral portion is increased. On the other hand, when the counterbore depth of the susceptor becomes deep, the opposite phenomenon occurs and the growth rate becomes slow.
  • the susceptor according to Patent Document 1 the growth rate orientation dependency can be suppressed, and the film thickness distribution of the epitaxial layer can be improved.
  • the susceptor 2 can be exemplified in which the opening edge 21C of the counterbore 21 draws four arcs when the susceptor 2 is viewed from the top.
  • the susceptor 2 shown in FIG. 3 can change the pocket width L p periodically according to the change in the crystal orientation of the silicon wafer.
  • an object of this invention is to provide the susceptor which can improve the circumferential direction uniformity of the flatness of the epitaxial layer of an epitaxial silicon wafer.
  • Another object of the present invention is to provide an epitaxial growth apparatus provided with this susceptor.
  • Another object of the present invention is to provide a method of manufacturing an epitaxial silicon wafer using this susceptor, and an epitaxial silicon wafer having improved circumferential uniformity of flatness obtained thereby.
  • the present inventors diligently studied to solve the above problems.
  • the inventor formed the epitaxial layer using the susceptor 2 in which the opening edge 21C of the counterbore 21 shown in FIG. 3 draws four arcs (curvature radius R).
  • This and opening edge 21C of the counterbore 21 of the susceptor 2 the pocket width L P is the distance between the silicon wafer W varies in the circumferential direction at 90 ° intervals. Then, assuming that the angle of the position where the pocket width L P is minimum is 0 degree, the pocket width L P becomes minimum at each of 90 degrees, 180 degrees, and 270 degrees, and 45 degrees, 135 degrees, 225 degrees The pocket width L P is maximum at 315 degrees.
  • a susceptor for mounting a silicon wafer in an epitaxial growth apparatus comprising: The susceptor is provided with a recessed counterbore portion on which the silicon wafer is mounted; When the radial distance between the center of the susceptor and the opening edge of the counterbore varies in the circumferential direction with a cycle of 90 degrees, and the angle at the position where the radial distance is the minimum is 0 degrees, The radial distance is minimized at each of 90 degrees, 180 degrees, and 270 degrees, and the radial distance is maximized at each of 45 degrees, 135 degrees, 225 degrees, and 315 degrees,
  • the susceptor is characterized in that the opening edge when viewed from above the susceptor draws four elliptical arcs that are convex radially outward.
  • a susceptor for mounting a silicon wafer in an epitaxial growth apparatus comprising: The susceptor is provided with a recessed counterbore portion on which the silicon wafer is mounted;
  • the difference in height between the upper end and the lower end of the inner peripheral wall surface on the opening edge side of the counterbore fluctuates in the circumferential direction at a cycle of 90 degrees, and the angle of the position at which the difference in height becomes maximum is 0 degrees
  • the opening edge of the counterbore describes four elliptical arcs with the bottom surface side of the counterbore convex.
  • the epitaxial silicon wafer which mounted the silicon wafer so that the ⁇ 110> orientation of a silicon wafer may be located in the direction of said 0 degree of ⁇ 3> said susceptor, and formed the epitaxial layer on the surface of the said silicon wafer.
  • t Max is the maximum thickness of the epitaxial layer in the circumferential direction at the position of 1 mm
  • t Max is the minimum thickness of the epitaxial layer in the position of 1 mm
  • t Ave is the edge Average thickness of circumferential epitaxial layer at 1 mm position
  • a susceptor for mounting a silicon wafer in an epitaxial growth apparatus comprising: The susceptor is provided with a recessed counterbore portion on which the silicon wafer is mounted; When the radial distance between the center of the susceptor and the opening edge of the counterbore varies in the circumferential direction with a cycle of 90 degrees, and the angle at the position where the radial distance is the minimum is 0 degrees, The radial distance is minimized at each of 90 degrees, 180 degrees, and 270 degrees, and the radial distance is maximized at each of 45 degrees, 135 degrees, 225 degrees, and 315 degrees, When the susceptor is viewed from the top, the opening edge draws four first elliptic arcs that are convex radially outward, The difference in height between the upper end and the lower end of the inner peripheral wall surface on the opening edge side of the counterbore fluctuates in the circumferential direction at a cycle of 90 degrees, and the angle of the position at which the difference in height becomes maximum is
  • the epitaxial silicon wafer which mounted the silicon wafer so that the ⁇ 110> orientation of a silicon wafer may be located in the direction of said 0 degree of ⁇ 5> said susceptor, and formed the epitaxial layer on the surface of the said silicon wafer.
  • t Max is the maximum thickness of the epitaxial layer in the circumferential direction at the position of 1 mm
  • t Max is the minimum thickness of the epitaxial layer in the position of 1 mm
  • t Ave is the edge Average thickness of circumferential epitaxial layer at 1 mm position
  • An epitaxial growth apparatus comprising the susceptor according to any one of ⁇ 1> to ⁇ 5>.
  • An epitaxial silicon wafer characterized in that a circumferential variation index ⁇ t 0 of a film thickness distribution of the epitaxial layer in the circumferential direction at a position of an edge 1 mm in accordance with is 0.75% or less.
  • the present invention it is possible to provide a susceptor capable of enhancing the circumferential uniformity of the flatness of the epitaxial layer of the epitaxial silicon wafer. Further, according to the present invention, an epitaxial growth apparatus provided with this susceptor can be provided. Furthermore, according to the present invention, it is possible to provide a method of manufacturing an epitaxial silicon wafer using this susceptor and an epitaxial silicon wafer having improved circumferential uniformity of flatness obtained thereby.
  • FIG. 1A is a schematic plan view of a conventionally known susceptor and FIG. It is a schematic diagram explaining the crystal orientation of the silicon wafer which makes a main surface a ⁇ 100 ⁇ surface. It is a schematic diagram of the susceptor in which the opening edge of a counterbore draws four circular arcs. It is a model top view of the susceptor according to 1st Embodiment of this invention.
  • FIG. 4B is an enlarged schematic view in the vicinity of the range of 0 degrees to 90 degrees of FIG. 4A.
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A. It is CC sectional drawing in FIG. 4A.
  • FIG. 6 is a schematic cross-sectional view of a susceptor according to another embodiment of the present invention.
  • 1 is an epitaxial growth apparatus comprising a susceptor in accordance with an embodiment of the present invention.
  • FIG. 1 Relative value ⁇ t of circumferential film thickness distribution of epitaxial layer at thickness 1 mm of epitaxial silicon wafers obtained using susceptors according to Examples 1 and 2 and Comparative Examples 1 and 2 and Conventional Example 1 to thickness average t Ave It is a graph which shows theta .
  • the susceptor 100 according to a first embodiment of the present invention is a susceptor for mounting a silicon wafer W in an epitaxial growth apparatus.
  • the susceptor 100 is provided with a concave counterbore portion 110 on which the silicon wafer W is mounted, and the radial distance L between the center of the susceptor 100 and the opening edge 110C of the counterbore portion 110 is a cycle of 90 degrees It fluctuates in the circumferential direction.
  • the radial distance L becomes minimum at each of 90 degrees, 180 degrees, and 270 degrees, and 45 degrees, 135 degrees, and 225 degrees.
  • the radial distance L is maximum at each of 315 degrees. Therefore, following the fluctuation of the radial direction distance L, the pocket width Lp also fluctuates.
  • the opening edge 110C when the susceptor 100 is viewed from the top draws four elliptical arcs that are convex radially outward. Because the radial distance L varies in the circumferential direction at a cycle of 90 degrees, the four elliptic arcs have a four-fold rotational symmetry relationship.
  • FIG. 4A only one ellipse which comprises an elliptical arc is shown in figure for simplification of a figure.
  • FIG. 4B shows an enlarged schematic view in the vicinity of the range of 0 degrees to 90 degrees of FIG. 4A.
  • the opening edge 110C draws an elliptical arc convex outward in the radial direction, and the radial distance L becomes the minimum value L 1 at the positions of 0 degree and 90 degrees, and the radial distance L becomes the maximum value L at the position of 45 degrees. 2 (see also FIG. 4C and FIG. 4D).
  • the direction of 45 degrees coincides with the minor axis direction of the elliptic arc.
  • a circular arc (curvature radius R, illustrated by an alternate long and short dash line) is illustrated for comparison with the elliptic arc.
  • the radial distance L from the susceptor center is an elliptic arc at positions of 0 degree (minimum radial distance L), 45 degrees (maximum radial distance L) and 90 degrees (minimum radial distance L).
  • an ellipse shown by a two-dot chain line
  • the variation rate of radial direction distance L from the position of 0 degree is large compared with the variation rate in the case of a circle.
  • the arc is inscribed in an elliptical arc drawn by the opening edge 110C at a position of 45 degrees at which the radial distance L is maximum.
  • the pocket width L p1 of the susceptor 100 is minimized at the 0 degree position, and the pocket width L p2 of the susceptor 100 is maximized at the 45 degree position as shown in FIG. 4D.
  • the pocket width L P of the susceptor 100 is widened, it silicon source gas is easily supplied smoothly to the peripheral portion of the silicon wafer W, the epitaxial layer growth rate of the peripheral portion is increased.
  • the pocket width L p of the susceptor 100 becomes narrow, the opposite phenomenon occurs, and the growth rate becomes slow.
  • the epitaxial layer growth rate is slow near 0 degrees and 0 degrees in the circumferential direction, while the epitaxial layer growth rate becomes fast near 45 degrees and 45 degrees in the circumferential direction. Then, since the opening edge 110C draws the above-mentioned elliptical arc, the pocket width L P and the variation of the radial distance L from the center of the susceptor also follow the shape of the elliptical arc.
  • the growth rate orientation dependency is extremely effective. Can be suppressed. And, by carrying out epitaxial growth while suppressing the growth rate orientation dependency in this way, circumferential uniformity of the flatness of the epitaxial layer of the epitaxial silicon wafer can be enhanced.
  • the silicon wafer W is placed such that the ⁇ 110> orientation of the silicon wafer W is in the direction of 0 degree, 90 degrees, 180 degrees, and 270 degrees of the susceptor 100,
  • the 100> orientation is located in the directions of 45 degrees, 135 degrees, 225 degrees, and 315 degrees of the susceptor 100.
  • a susceptor 100, so as to vary from the pocket width L p of 1 mm ⁇ 4 mm is a radial distance between the silicon wafer W, it is preferable to form the elliptical arc of the foregoing.
  • the scope of the pocket width L p is not limited diameter of the silicon wafer, it is sufficient to vary in the range also comparable to a diameter 150 mm ⁇ 450 mm. For example, when the diameter of the silicon wafer is 300 mm (radius 150 mm), the radial distance L corresponding to the pocket width L p is 151 mm to 154 mm.
  • the relationship between the major axis (length of the major axis) and minor axis (length of the minor axis) of the ellipse constituting the elliptical arc and the chord of the elliptical arc is the maximum and minimum relationships of the radial distance L at the above-mentioned angular positions.
  • an elliptical arc is provided to be satisfactory.
  • the elliptic conditions (major axis and minor axis, minor axis direction and elliptic arc chord) of the elliptic arc which satisfy this condition are generally determined by the geometrical positional relationship.
  • the periphery of the epitaxial silicon wafer on which the silicon wafer W is placed so that the ⁇ 110> orientation of the silicon wafer is positioned in the 0 degree direction of the susceptor 100 and the epitaxial layer is formed on the surface of the silicon wafer W
  • an elliptical arc is provided such that the circumferential variation index ⁇ t 0 of the film thickness distribution of the epitaxial layer in the direction is 0.75% or less.
  • the circumferential direction variation index ⁇ t 0 is expressed by the following equation [1]: (In the formula [1], t Max is the maximum thickness of the epitaxial layer in the circumferential direction at the position of 1 mm in the edge, t Max is the minimum thickness of the epitaxial layer in the circumferential direction at the position of 1 mm in the edge, t Ave is the edge of 1 mm
  • the average thickness of the circumferential epitaxial layer at the position of More preferably, the major axis of the ellipse which comprises an elliptical arc is 1/2 or more of the largest aperture diameter of the counterbore part 110. As shown in FIG.
  • the circumferential variation index ⁇ t 0 can be 0.10% or more according to the present embodiment.
  • FIG. 4D the opening of the counterbore
  • the inclination angle of the ledge portion 110L which is a portion where the silicon wafer W contacts the susceptor 100, may be changed in addition to the provision of the flat surface 110D. Absent.
  • it is possible to change the period of the control member such as the change of the angle of the counterbore wall, the heat capacity of the susceptor, and the asperities near the counterbore of the susceptor.
  • the difference H between the upper end (opening edge 110C) and the lower end of the inner peripheral wall surface 110A on the opening edge 110C side of the counterbore 110 of the susceptor 100 Is illustrated as being constant at H 0 , so the shoulder opening height H W 0 is also constant.
  • the height difference H and the shoulder opening height H W0 do not have to be constant, and may be varied.
  • a susceptor 200 according to a second embodiment of the present invention will be described with reference to FIGS. 5A-5D.
  • the susceptor 200 according to the second embodiment of the present invention is a susceptor for mounting a silicon wafer W in an epitaxial growth apparatus.
  • the susceptor 200 is provided with a concave counterbore 210 on which the silicon wafer W is placed, and the upper end (corresponding to the opening edge 210C) and the lower end of the inner peripheral wall surface 210A on the opening edge 210C side of the counterbore 210
  • the height difference H varies in the circumferential direction at a cycle of 90 degrees and the angle at the position at which the height difference H is maximum is 0 degrees, it is 90 degrees, 180 degrees, and 270 degrees, respectively. While the height difference H is maximized, the height difference H is minimized at 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
  • the opening edge 210C of the counterbore 210 draws four elliptical arcs with the bottom side of the counterbore 210 as a convex.
  • FIG. 5B shows a radially outward projection of the susceptor 200 of the opening edge 210 in FIG. 5A.
  • the solid line in FIG. 5B is an elliptic arc, and the broken line is an arc.
  • This elliptic arc is flat with respect to the arc as described in detail with reference to FIG. 4B, and the rate of change of the height difference H from the position of 0 degrees is larger than the rate of change in the case of the arc.
  • the four elliptic arcs in the radially outward projection are in a rotationally symmetric relationship with the elliptic arc shown in FIG. 4B and 90 degrees with respect to the center of the susceptor. Referring also to FIGS.
  • the height difference H becomes the maximum value H 1 at the positions of 0 degree, 90 degrees, 180 degrees, and 270 degrees, and 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
  • the height difference H becomes the minimum value H 2 at the position of.
  • the short axis direction of the ellipse constituting the elliptic arc in FIG. 5B coincides with the vertical direction.
  • the silicon source gas is smoothly supplied to the wafer peripheral portion, and the epitaxial layer growth rate in the peripheral portion is increased. That is, when the height difference H w between the surface of the silicon wafer W, which is also called shoulder height, and the opening edge 210C of the susceptor, and hence the height difference H, becomes smaller, the epitaxial layer growth rate in the peripheral portion becomes faster.
  • the counterbore depth of the susceptor becomes deep, the opposite phenomenon occurs and the growth rate becomes slow. That is, when the shoulder opening height difference H w and hence the height difference H become large, the epitaxial layer growth rate in the peripheral portion becomes slow.
  • the epitaxial layer growth rate is high near 0 degrees and 0 degrees in the circumferential direction, while the epitaxial layer growth rate becomes slow near 45 degrees and 45 degrees in the circumferential direction.
  • the opening edge 210C draws an elliptical arc in the radial outward projection, the height difference H also follows the shape of the elliptical arc.
  • the silicon wafer W is placed so that the ⁇ 110> orientation of the silicon wafer W is located in the direction of 0 degree, 90 degrees, 180 degrees, and 270 degrees of the susceptor 100, as in the first embodiment described above.
  • the growth rate orientation dependency can be extremely effectively suppressed. And, by carrying out epitaxial growth while suppressing the growth rate orientation dependency in this way, circumferential uniformity of the flatness of the epitaxial layer of the epitaxial silicon wafer can be enhanced.
  • the relationship between the major axis (length of the major axis) and minor axis (length of the minor axis) of the ellipse constituting the elliptic arc in the radial projection and the chord of the elliptic arc is the difference H in height at the above-mentioned angular position
  • H the difference in height at the above-mentioned angular position
  • the elliptic arc is provided such that a circumferential variation index ⁇ t 0 of the film thickness distribution of the epitaxial layer in the direction is 0.75% or less.
  • the circumferential variation index ⁇ t 0 is defined by the above-mentioned equation [1].
  • the circumferential variation index ⁇ t 0 is 0.70% or less
  • the circumferential variation index ⁇ t 0 can be 0.10% or more according to the present embodiment.
  • the height difference H is varied in the circumferential direction (as a result, the shoulder height H w necessarily varies in the circumferential direction), and in FIG. 5D, the susceptor 200 is changed.
  • the height difference H may be varied in the circumferential direction by another method.
  • the variation width of the height difference H is preferably about 0.20 mm to 0.40 mm.
  • the radial distance L between the center of the susceptor 200 and the opening edge 210C of the counterbore 210 is shown to be constant at L 0 , and hence the pocket width P W0 Is also constant.
  • the height difference H and the shoulder opening height H W0 do not have to be constant, and may be variable.
  • the height difference H may vary, and in the susceptor 200 of the second embodiment, the radial distance L may vary. In this case, it is preferable that the fluctuation of the radial direction distance L according to the first embodiment and the fluctuation of the height difference H according to the second embodiment be interlocked.
  • the susceptor according to the third embodiment is provided with a concave counterbore portion on which a silicon wafer is mounted, and the radial distance between the center of the susceptor and the opening edge of the counterbore portion is a cycle of 90 degrees
  • the radial distance L becomes minimum at each of 90 degrees, 180 degrees, and 270 degrees, and 45 degrees, 135
  • the radial distance L is maximized at each of 225 degrees and 315 degrees, and the opening edge when the susceptor is viewed from the top draws four first elliptic arcs with the radially outer side convex.
  • the conditions of the first elliptic arc are as described in the first embodiment, and the conditions of the second elliptic arc are as described in the second embodiment.
  • the elliptic arcs may be provided such that the growth rate orientation dependency can be suppressed by appropriately adjusting the ellipticity of the first elliptic arc and the ellipticity of the second oval arc.
  • the first elliptic arc and the second elliptic arc are provided such that the circumferential variation index ⁇ t 0 of the film thickness distribution of the epitaxial layer is 0.75% or less.
  • the circumferential variation index ⁇ t 0 is defined by the above-mentioned equation [1]. Further, it is more preferable to provide the first elliptic arc and the second elliptic arc so that the circumferential variation index ⁇ t 0 is 0.70% or less, and to provide the first elliptic arc and the second elliptic arc so as to be 0.65% or less Is more preferred.
  • the circumferential variation index ⁇ t 0 can be 0.10% or more according to the present embodiment.
  • the silicon wafer is placed so that the ⁇ 110> orientation of the silicon wafer is positioned in the direction of 0 degrees of the susceptor and the epitaxial layer is formed on the surface of the silicon wafer, the flatness of the epitaxial layer of the epitaxial silicon wafer The circumferential uniformity can be enhanced.
  • the susceptor As a material of the susceptor, it is common to use a carbon substrate coated with silicon carbide (SiC) in order to reduce contamination from the susceptor when forming an epitaxial film.
  • SiC silicon carbide
  • the entire susceptor may be formed of SiC, and if the susceptor surface is coated with SiC, the susceptor may be configured to include other materials therein.
  • the susceptor surface is coated with a silicon film. The contamination from the susceptor to the epitaxial film can be prevented.
  • the ledge portions 110L and 210L where the susceptor and the silicon wafer W are in contact are formed as tapered inclined surfaces. This aspect is one of the preferable aspects because the silicon wafer W and the susceptor are in point contact and the contact area is reduced.
  • the portion (ledge portion) where the susceptor and the silicon wafer W are in contact with each other is not necessarily inclined, and may be horizontal. In this case, the horizontal surface and the silicon wafer W can be in surface contact to support the silicon wafer W.
  • lift pin through holes are generally provided on the bottom surfaces 110B and 210B of the counterbore for inserting the elevating lift pins and elevating the silicon wafer W when mounting the silicon wafer (see FIG. Not shown). Furthermore, one or a plurality of through holes may be provided to penetrate from the bottom surfaces 110B and 210B to the back surface side of the susceptor. It is useful for discharging the gas between the susceptor and the silicon wafer to the back side of the susceptor when the silicon wafer W is loaded to the counterbore of the susceptor.
  • the shape of the inner peripheral wall surface of the counterbore can take various forms.
  • the inner peripheral wall surfaces 110A and 210A are illustrated as perpendicular to the silicon wafer W, but as shown in FIG. 6, the inner peripheral wall surface 310A on the opening edge 310C is an inclined surface It may be
  • An epitaxial growth apparatus includes the susceptor according to the first to third embodiments described above.
  • this epitaxial growth apparatus 150 can include an upper liner 151 and a lower liner 152 for maintaining airtightness, and partitioning an epitaxial growth furnace by an upper dome 153 and a low wordome 154.
  • a susceptor 100 for horizontally mounting the silicon wafer W is provided inside the epitaxial growth furnace.
  • the susceptor 100 according to the first embodiment is illustrated in FIG. 7, it goes without saying that the susceptor according to the second embodiment or the third embodiment can be applied to an epitaxial growth apparatus instead.
  • the silicon wafer is mounted such that the ⁇ 110> orientation of the silicon wafer is positioned in the direction of 0 degrees of the susceptor according to the first to third embodiments described above. And a step of forming an epitaxial layer on the surface of the silicon wafer.
  • the step of mounting can be carried out according to a conventional method such as spraying silicon source gas onto the surface of a silicon wafer under lift-off lift pins, forming an epitaxial layer under suitable vapor deposition conditions suitable for forming epitaxial layers.
  • the epitaxial silicon wafer has an epitaxial layer formed on the surface of the silicon wafer, and the circumferential variation index ⁇ t 0 of the film thickness distribution of the epitaxial layer in the circumferential direction at the position of 1 mm of edge is An epitaxial silicon wafer which is 0.75% or less can be obtained.
  • the circumferential variation index ⁇ t 0 is defined by the above-mentioned equation [1].
  • the circumferential direction variation index ⁇ t 0 is more preferably set to 0.70% or less, and further preferably set to 0.65% or less. Although the lower limit is not limited, the circumferential variation index ⁇ t 0 can be 0.10% or more according to the present embodiment.
  • the silicon wafer was introduce
  • hydrogen gas was supplied at 1130 ° C. to perform hydrogen baking, and then an epitaxial silicon film was grown to 4 ⁇ m at 1130 ° C. to obtain an epitaxial silicon wafer.
  • trichlorosilane gas was used as a source gas
  • diborane gas was used as a dopant gas
  • hydrogen gas was used as a carrier gas.
  • a susceptor was prepared in which the radial distance L from the susceptor center to the opening edge of the counterbore was changed at intervals of 90 degrees by the amount of fluctuation shown in Table 1 and FIG. 8A.
  • the opening edge draws four arcs.
  • the counterbore depth was made constant (the height difference H and the shoulder opening height HW also become constant), and the shoulder opening height Hw was 0.80 mm as in the conventional example 1.
  • Example 1 A susceptor was prepared in which the radial distance L from the susceptor center to the opening edge of the counterbore was changed at intervals of 90 degrees by the amount of fluctuation shown in Table 1 and FIG. 8A.
  • the opening edge draws four elliptical arcs.
  • the counterbore depth was made constant (the height difference H and the shoulder opening height HW also become constant), and the shoulder opening height Hw was 0.80 mm as in the conventional example 1.
  • the graph of FIG. 8B is made relative to the average film thickness of the epitaxial layer, that is, it is represented by the relative value ⁇ t ⁇ of the thickness at the angle ⁇ with respect to the thickness average t Ave of the circumferential film thickness distribution of the epitaxial layer.
  • the graph is shown in FIG. 8C.
  • (DELTA) t ( theta ) obeys following formula [2].
  • the vertical axis is expressed in%.
  • t ⁇ is the thickness of the epitaxial layer at the position of the circumferential angle ⁇ at the position of the edge 1 mm
  • t Ave is the average thickness of the epitaxial layer at the position of the edge 1 mm is there.
  • Comparative Example 1 the film thickness distribution fluctuated at a cycle of 45 degrees. It is considered that this is because when the opening edge has an arc shape, the variation rate of the pocket width is insufficient and the growth rate of the epitaxial layer is insufficient. On the other hand, in Example 1, since the variation rate of the pocket width is sharper than in Comparative Example 1, it is considered that the epitaxial layer could be grown following the growth rate orientation dependency of the silicon wafer.
  • Example 2 In addition to the susceptor according to Conventional Example 1 used in Experimental Example 1, susceptors according to Comparative Example 2 and Example 2 described below were manufactured. Then, using these three types of susceptors, a silicon epitaxial layer was epitaxially grown on the surface of a boron-doped silicon wafer 300 mm in diameter in the same manner as in Experimental Example 1, to obtain an epitaxial silicon wafer.
  • FIG. 9A A susceptor was prepared in which the shoulder opening height H W in the circumferential direction was changed at a cycle of 90 degrees by the variation shown in Table 2 and FIG. 9A.
  • the opening edge of the spot facing portion describes four circular arcs in which the bottom surface side of the spot facing portion is convex.
  • the radial direction distance L from the susceptor center to the opening edge of the counterbore is constant, and is set to 151.25 mm (pocket width 1.25 mm).
  • Example 2 A susceptor was prepared in which the shoulder opening height H W in the circumferential direction was changed at a cycle of 90 degrees by the variation shown in Table 2 and FIG. 9A.
  • the opening edge of the spot facing portion describes four elliptical arcs in which the bottom surface side of the spot facing portion is convex.
  • the radial distance L from the center of the susceptor to the opening edge of the counterbore is constant, and is 151.25 mm (pocket width 1.25 mm).
  • FIG. 9B a graph in which the graph of FIG. 9B is made relative to the average film thickness of the epitaxial layer, ie, with respect to the thickness average t Ave of the circumferential film thickness distribution of the epitaxial layer the graph showing the relative value Delta] t theta thickness at an angle theta shown in FIG 9C.
  • ⁇ t ⁇ follows the above-mentioned equation [2].
  • the vertical axis is indicated by% as in FIG. 8C.
  • Comparative Example 2 As in Comparative Example 1, a change in the film thickness distribution at a cycle of 45 degrees was observed. This is considered to be because when the opening edge has an arc shape, the variation rate of shoulder height is insufficient and the growth rate of the epitaxial layer is insufficient. On the other hand, in Example 2, compared with Comparative Example 2, the variation rate of the shoulder opening height is steeper than in Comparative Example 2, so it is considered that the epitaxial layer could be grown following the growth rate orientation dependency of the silicon wafer.
  • the circumferential film thickness distribution at the position of 1 mm of the wafer edge of the epitaxial silicon wafer manufactured using the susceptor according to the conventional example 1 and the comparative examples 1 and 2 and the examples 1 and 2 above is shown in the graph of FIG. Moreover, the graph which relativeed the graph of FIG. 10A with respect to the average film thickness of an epitaxial layer is shown to FIG. 10B. It is confirmed that good results can be obtained even if the pocket width is changed as in the first embodiment and the shoulder opening height is changed as in the second embodiment.
  • the present invention it is possible to provide a susceptor capable of enhancing the circumferential uniformity of the flatness of the epitaxial layer of the epitaxial silicon wafer. Further, according to the present invention, an epitaxial growth apparatus provided with this susceptor can be provided. Furthermore, according to the present invention, it is possible to provide a method of manufacturing an epitaxial silicon wafer using this susceptor and an epitaxial silicon wafer having improved circumferential uniformity of flatness obtained thereby.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることのできるサセプタを提供する。 本発明によるサセプタ100は、シリコンウェーハWが載置される凹形状の座ぐり部が設けられ、サセプタの中心と座ぐり部の開口縁との間の径方向距離Lが90度周期で周方向に変動するとともに、径方向距離Lが最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで径方向距離Lが最小値L1となると共に、45度、135度、225度、315度のそれぞれで径方向距離Lが最大値L2となり、サセプタ100を上面視したときの開口縁110Cが、径方向外側を凸とする4つの楕円弧を描く。

Description

サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ
 本発明は、サセプタおよび該サセプタを備えるエピタキシャル成長装置に関する。さらに本発明は、該サセプタを用いたエピタキシャルシリコンウェーハの製造方法と、エピタキシャルシリコンウェーハに関する。
 一般に、シリコンウェーハは、チョクラルスキー法(CZ法)等により単結晶シリコンを育成し、該シリコン単結晶をブロックに切断した後、薄くスライスし、平面研削(ラッピング)工程、エッチング工程および鏡面研磨(ポリッシング)工程を経て最終洗浄することにより得られる。その後、各種品質検査を行って異常が確認されなければ製品として出荷される。
 ここで、結晶の完全性がより要求される場合や、抵抗率の異なる多層構造を必要とする場合などには、シリコンウェーハの表面に単結晶シリコン薄膜からなるエピタキシャル層を気相成長(エピタキシャル成長)させてエピタキシャルシリコンウェーハを製造する。
 エピタキシャル成長は、シリコンウェーハをサセプタの座ぐり部に載置し、該サセプタを回転させながら成長ガスをシリコンウェーハ表面に吹き付けてることにより行われる。図1に、従来公知の一般的なサセプタ1の平面図およびA-A断面図の模式図を示す。
 サセプタ1には、円形凹状の座ぐり部11が設けられ、この座ぐり部11の中心にシリコンウェーハWの中心が位置するよう、シリコンウェーハWが載置される。シリコンウェーハWとサセプタ100とは、レッジ部110Lで接触している。シリコンウェーハWはサセプタ100図1において、サセプタの中心と座ぐり部11の開口縁11Cとの間の径方向距離Lは周方向で一定である。そのため、ポケット幅Lと呼ばれるシリコンウェーハWの径方向外側端面と、内周壁面11Aとの距離Lも周方向で一定である。そのため、サセプタ1を上面視したときの開口縁11Cは円弧を描く。
 また、サセプタ1の座ぐり部11の開口縁11C側の、内周壁面11Aの上端(開口縁11Cに相当)と下端との高さの差H(「座ぐり深さ」とも呼ばれる)は周方向で一定であるため、内周壁面11Aの上端と、シリコンウェーハWの表面との高さの差Hも一定である。
 ここで、図2に示すように、主表面を{100}面とするシリコンウェーハは、45度単位で<110>方位と<100>方位を繰り返す。この結晶方位の周期性に起因して、シリコンウェーハ表面にエピタキシャル層を成長させると90度周期で異なり成長速度(「成長速度方位依存性」と呼ばれる)によりエピタキシャル層が成長する。こうした結晶方位ごとの成長速度差に伴い、エピタキシャル層の膜厚が周方向に大きく変動することとなり、その影響はウェーハエッジ領域(外周領域)ほど大きい。そのため、成長速度方位依存性はエピタキシャルシリコンウェーハの平坦度を悪化させる原因として知られている。
 特許文献1には、サセプタ開口部の内周面の近傍で、半導体ウェーハの結晶方位の変化に従って周期的に構造及び/又は形状が変化するサセプタが開示されている。さらに、特許文献1には、このサセプタの部分熱容量、ポケットの座ぐり深さ、又は、ポケットの幅が、90度、180度、又は、270度の周期で変化することにより、周期的に構造及び/又は形状が変化することが好ましいと開示されている。
 特許文献1に開示されているように、サセプタのポケット幅が広くなると、シリコンソースガスがシリコンウェーハ周縁部にスムーズに供給されるようになり、周縁部のエピタキシャル層成長速度が速くなる。これに対して、サセプタのポケット幅が狭くなると逆の現象となり成長速度が遅くなる。また、サセプタの座ぐり深さが浅くなるとシリコンソースガスがウェーハ周縁部にスムーズに供給されるようになり、周縁部のエピタキシャル層成長速度が速くなる。これに対して、サセプタの座ぐり深さが深くなると逆の現象となり成長速度が遅くなる。
 したがって、特許文献1に従うサセプタを用いることにより、成長速度方位依存性を抑制して、エピタキシャル層の膜厚分布を改善することができる。
特開2007-294942号公報
 特許文献1の技術に従うサセプタとして、図3に示すような、サセプタ2を上面視したときに、座ぐり部21の開口縁21Cが4つの円弧を描くサセプタ2を例示することができる。図3に示すサセプタ2により、ポケット幅Lをシリコンウェーハの結晶方位の変化に従って周期的に変化させることができる。こうしたサセプタ2を用いることで、エピタキシャル成長時の成長速度方位依存性を抑制できるため、図1に示すサセプタ1に比べてエピタキシャルシリコンウェーハの平坦度の周方向均一性(特に、膜厚分布の周方向ばらつき)を大幅に改善することができる。しかしながら、平坦度の周方向均一性はウェーハエッジほど悪化しやすく、更なる改良が期待される。
 そこで本発明は、エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることのできるサセプタを提供することを目的とする。また、本発明は、このサセプタを備えるエピタキシャル成長装置を提供することを目的とする。さらに本発明は、このサセプタを用いたエピタキシャルシリコンウェーハの製造方法と、それにより得られる平坦度の周方向均一性が改善されたエピタキシャルシリコンウェーハを提供することを目的とする。
 上記課題を解決すべく本発明者は鋭意検討した。本発明者は、図3に示した座ぐり21の開口縁21Cが4つ円弧(曲率半径R)を描くサセプタ2を用いてエピタキシャル層を形成した。このサセプタ2の座ぐり部21の開口縁21Cと、シリコンウェーハW間の距離であるポケット幅Lは90度周期で周方向に変動する。そして、ポケット幅Lが最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれでポケット幅Lが最小となると共に、45度、135度、225度、315度のそれぞれでポケット幅Lが最大となる。
 すると、得られたエピタキシャルシリコンウェーハでは、45度周期で周方向にエピタキシャル層の平坦度が変動することが確認された。こうした結果が得られる理由として、開口縁21Cが円弧を描く場合、周方向におけるポケット幅の変動量が成長速度方位依存性に追従しきれず、成長速度方位依存性の制御が不十分であるからだと推定される。そこで、ポケット幅Lの変動量をより適正化するため、サセプタの開口縁が楕円弧を描くよう設計したサセプタを用いてエピタキシャル成長を行ったところ、サセプタ2に比べても、成長速度方位依存性を大幅に抑制することができた。そして、同様の考えが座ぐり深さの変動量にも当てはまることを本発明者は見出し、その効果も実験的に確認された。上記知見に基づき完成した本発明の要旨構成は以下のとおりである。
<1>エピタキシャル成長装置内でシリコンウェーハを載置するためのサセプタであって、
 前記サセプタには、前記シリコンウェーハが載置される凹形状の座ぐり部が設けられ、
 前記サセプタの中心と前記座ぐり部の開口縁との間の径方向距離が90度周期で周方向に変動するとともに、前記径方向距離が最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記径方向距離が最小となると共に、45度、135度、225度、315度のそれぞれで前記径方向距離が最大となり、
 前記サセプタを上面視したときの前記開口縁が、径方向外側を凸とする4つの楕円弧を描く
ことを特徴とするサセプタ。
<2>エピタキシャル成長装置内でシリコンウェーハを載置するためのサセプタであって、
 前記サセプタには、前記シリコンウェーハが載置される凹形状の座ぐり部が設けられ、
 前記座ぐり部の開口縁側の、内周壁面の上端と下端との高さの差が90度周期で周方向に変動するとともに、前記高さの差が最大となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記高さの差が最大となると共に、45度、135度、225度、315度のそれぞれで前記高さの差が最小となり、
 前記サセプタの径方向外側投影図において、前記座ぐり部の開口縁が、前記座ぐり部の底面側を凸とする4つの楕円弧を描く
ことを特徴とするサセプタ。
<3>前記サセプタの前記0度の方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハを載置して前記シリコンウェーハの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、下記式[1]:
Figure JPOXMLDOC01-appb-M000004
(前記式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)
に従うエッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように前記楕円弧が設けられる、上記<1>または<2>に記載のサセプタ。
<4>エピタキシャル成長装置内でシリコンウェーハを載置するためのサセプタであって、
 前記サセプタには、前記シリコンウェーハが載置される凹形状の座ぐり部が設けられ、
 前記サセプタの中心と前記座ぐり部の開口縁との間の径方向距離が90度周期で周方向に変動するとともに、前記径方向距離が最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記径方向距離が最小となると共に、45度、135度、225度、315度のそれぞれで前記径方向距離が最大となり、
 前記サセプタを上面視したときの前記開口縁が、径方向外側を凸とする4つの第1楕円弧を描き、
 前記座ぐり部の開口縁側の、内周壁面の上端と下端との高さの差が90度周期で周方向に変動するとともに、前記高さの差が最大となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記高さの差が最大となると共に、45度、135度、225度、315度のそれぞれで前記高さの差が最小となり、
 前記サセプタの径方向外側投影図において、前記座ぐり部の開口縁が、前記座ぐり部の底面側を凸とする4つの第2楕円弧を描く
ことを特徴とするサセプタ。
<5>前記サセプタの前記0度の方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハを載置して前記シリコンウェーハの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、下記式[1]:
Figure JPOXMLDOC01-appb-M000005
(前記式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)
に従うエッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように前記第1楕円弧および前記第2楕円弧が設けられる、上記<4>に記載のサセプタ。
<6>上記<1>~<5>のいずれかに記載のサセプタを備えるエピタキシャル成長装置。
<7>上記<1>、<2>、<4>のいずれかにサセプタの前記0度の方向にシリコンウェーハの<110>方位が位置するよう、該シリコンウェーハを載置する工程と、
 前記シリコンウェーハの表面にエピタキシャル層を形成する工程と、を含むエピタキシャルシリコンウェーハの製造方法。
<8>シリコンウェーハの表面にエピタキシャル層が形成されたエピタキシャルシリコンウェーハであって、
 下記式[1]:
Figure JPOXMLDOC01-appb-M000006
(前記式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)
に従うエッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下であることを特徴とするエピタキシャルシリコンウェーハ。
 本発明によれば、エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることのできるサセプタを提供することができる。また、本発明によれば、このサセプタを備えるエピタキシャル成長装置を提供することができる。さらに本発明によれば、このサセプタを用いたエピタキシャルシリコンウェーハの製造方法と、それにより得られる平坦度の周方向均一性が改善されたエピタキシャルシリコンウェーハを提供することができる。
従来公知のサセプタの模式平面図およびそのA-A断面図である。 主面を{100}面とするシリコンウェーハの結晶方位を説明する模式図である。 座ぐり部の開口縁が4つの円弧を描くサセプタの模式図である。 本発明の第1実施形態に従うサセプタの模式平面図である。 図4Aの0度~90度範囲近傍の拡大模式図である。 図4AにおけるB-B断面図である。 図4AにおけるC-C断面図である。 本発明の第2実施形態に従うサセプタの模式平面図である。 図5Aの径方向外側投影図における座ぐり部の開口縁の軌跡の模式図である。 図5AにおけるD-D断面図である。 図5AにおけるE-E断面図である。 本発明の他の実施形態に従うサセプタの模式断面図である。 本発明の一実施形態に従うサセプタを備えるエピタキシャル成長装置である。 実施例1、比較例1および従来例1によるサセプタの、周方向角度と、サセプタ中心から座ぐり部の開口縁までの径方向距離との関係を示すグラフである。 実施例1、比較例1および従来例1によるサセプタを用いて得られたエピタキシャルシリコンウェーハの、エッジ1mmの位置におけるエピタキシャル層の周方向膜厚分布を示すグラフである。 実施例1、比較例1および従来例1によるサセプタを用いて得られたエピタキシャルシリコンウェーハの、エッジ1mmの位置におけるエピタキシャル層の周方向膜厚分布の厚み平均tAveに対する相対値Δtθを示すグラフである。 実施例2、比較例2および従来例1によるサセプタの、周方向角度と、肩口高さとの関係を示すグラフである。 実施例2、比較例2および従来例1によるサセプタを用いて得られたエピタキシャルシリコンウェーハの、エッジ1mmの位置におけるエピタキシャル層の周方向膜厚分布を示すグラフである。 実施例2、比較例2および従来例1によるサセプタを用いて得られたエピタキシャルシリコンウェーハの、エッジ1mmの位置におけるエピタキシャル層の周方向膜厚分布の厚み平均tAveに対する相対値Δtθを示すグラフである。 実施例1,2、比較例1,2および従来例1によるサセプタを用いて得られたエピタキシャルシリコンウェーハの、エッジ1mmの位置におけるエピタキシャル層の周方向膜厚分布を示すグラフである。 実施例1,2、比較例1,2および従来例1によるサセプタを用いて得られたエピタキシャルシリコンウェーハの、エッジ1mmの位置におけるエピタキシャル層の周方向膜厚分布の厚み平均tAveに対する相対値Δtθを示すグラフである。
 以下、図面を参照して、本発明に従うサセプタおよびそれを備えるエピタキシャル成長装置を説明する。さらに、本発明に従うサセプタを用いたエピタキシャルシリコンウェーハの製造方法およびそれにより得られるエピタキシャルシリコンウェーハを説明する。図4A~4D、図5A~5D、図6,図7は説明の便宜上、各構成の縦横比を誇張して表記しており、実際の比率とは異なる。
 なお、本明細書において、「楕円弧」、「周期」、「角度」、「対称」、「一定」の記載が数学的および幾何学な意味での厳密性を要件とするものではないことは当然に理解され、サセプタ作製に伴う不可避の寸法公差および幾何公差は許容される。
(第1実施形態によるサセプタ)
 図4A~図4Dを参照して、本発明の第1実施形態に従うサセプタ100を説明する。本発明の第1実施形態によるサセプタ100は、エピタキシャル成長装置内でシリコンウェーハWを載置するためのサセプタである。サセプタ100には、シリコンウェーハWが載置される凹形状の座ぐり部110が設けられ、サセプタ100の中心と座ぐり部110の開口縁110Cとの間の径方向距離Lが90度周期で周方向に変動する。そして、径方向距離Lが最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで径方向距離Lが最小となると共に、45度、135度、225度、315度のそれぞれで径方向距離Lが最大となる。そのため、径方向距離Lの変動に追従して、ポケット幅Lも変動することになる。さらに、サセプタ100を上面視したときの開口縁110Cが、径方向外側を凸とする4つの楕円弧を描く。径方向距離Lが90度周期で周方向に変動するため、上記4つの楕円弧は4回回転対称の関係にある。なお、図4Aでは図の簡略化のため、楕円弧を構成する楕円を1つだけ図示している。
 図4Bに、図4Aの0度~90度範囲近傍の拡大模式図を示す。開口縁110Cは、径方向外側を凸とする楕円弧を描き、0度および90度の位置で径方向距離Lが最小値Lとなり、かつ、45度の位置で径方向距離Lが最大値Lとなる(図4C,図4Dも参照)。図4A,図4Bを参照すると、45度の方向と楕円弧の短軸方向が一致することになる。また、図4Bには、当該楕円弧と対比するために円弧(曲率半径R、1点鎖線で図示)を図示した。この円弧は、0度(径方向距離Lが最小)、45度(径方向距離Lが最大)および90度(径方向距離Lが最小)の位置でサセプタ中心からの径方向距離Lが楕円弧と一致する。この円弧と比べると、楕円弧を構成する楕円(2点鎖線で図示)は円弧を構成する半径Rの円よりも扁平していることになる。そして、0度の位置からの径方向距離Lの変動率は、円弧の場合の変動率に比べ大きい。なお、径方向距離Lが最大となる45度の位置で、当該円弧は開口縁110Cが描く楕円弧に内接している。
 図4Cに示すように、0度の位置でサセプタ100のポケット幅Lp1が最小となり、図4Dに示すように45度の位置でサセプタ100のポケット幅Lp2が最大となる。従来知られるように、サセプタ100のポケット幅Lが広くなると、シリコンソースガスがシリコンウェーハWの周縁部にスムーズに供給されやすくなり、周縁部のエピタキシャル層成長速度が速くなる。これに対して、サセプタ100のポケット幅Lが狭くなると逆の現象となり成長速度が遅くなる。そのため、周方向における0度および0度近傍ではエピタキシャル層成長速度が遅く、一方、周方向における45度および45度近傍ではエピタキシャル層成長速度が速くなる。そして、開口縁110Cが上記した楕円弧を描くため、ポケット幅Lおよびサセプタ中心からの径方向距離Lの変化量もその楕円弧の形状に追従することとなる。
 そこで、シリコンウェーハWの<110>方位がサセプタ100の0度、90度、180度、270度の方向に位置するようにシリコンウェーハWを載置すれば、成長速度方位依存性を極めて効果的に抑制することができる。そして、こうして成長速度方位依存性を抑制してエピタキシャル成長を行えば、エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることができる。なお、上記のとおり、シリコンウェーハWの<110>方位がサセプタ100の0度、90度、180度、270度の方向に位置するようにシリコンウェーハWを載置すれば、シリコンウェーハWの<100>方位がサセプタ100の45度、135度、225度、315度の方向に位置することとなる。
 サセプタ100と、シリコンウェーハWとの径方向距離であるポケット幅Lを1mm~4mmの範囲で変動するよう、前述の楕円弧を構成することが好ましい。このポケット幅Lの範囲はシリコンウェーハの直径は限定されず、直径150mm~450mmであっても同程度の範囲で変動させればよい。なお、例えばシリコンウェーハの直径が300mm(半径150mm)の場合、このポケット幅Lに対応する径方向距離Lは151mm~154mmとなる。
 楕円弧を構成する楕円の長径(長軸の長さ)および短径(短軸の長さ)と、楕円弧の弦との関係は、上述した角度位置での径方向距離Lの最大および最小関係を満足するように楕円弧を設ける限りは限定されない。ただし、この条件を満足する楕円弧の楕円条件(長径および短径、短軸方向並びに楕円弧の弦)は幾何学的位置関係により概ね定まる。ただし、サセプタ100の0度方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハWを載置してシリコンウェーハWの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、エッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように楕円弧が設けられることが好ましい。ここで、周方向ばらつき指標Δtは、下記式[1]:
Figure JPOXMLDOC01-appb-M000007
(式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)によって定義される。また、こうした楕円弧とするためには、より好ましくは楕円弧を構成する楕円の長径は座ぐり部110の最大開口径の1/2以上である。なお、周方向ばらつき指標Δtを0.70%以下となるように楕円弧を設けることがより好ましく、0.65%以下となるように楕円弧を設けることが更に好ましい。下限が限定されるものではないが、本実施形態に従い周方向ばらつき指標Δtを0.10%以上とすることができる。
 なお、図4C、図4Dでは、径方向距離Lを周方向に変動させるため(この結果、必然的にポケット幅Lも周方向に変動することとなる)に、図4Dでは、座ぐりの開口縁110C側に平坦面110Dを設けた場合を例示している。しかしながら、径方向距離Lが周方向に変動する限りは、こうした平坦面110Dを設ける以外に、シリコンウェーハWがサセプタ100と接触する部分であるレッジ部110Lの傾斜角を変動させるなどしても構わない。併せて、座ぐり壁の角度変更、サセプタの熱容量、サセプタの座ぐり近傍表面部分凹凸等の制御部材の周期を変化させてもよい。
 なお、図4A~図4Dでは、サセプタ100の座ぐり部110の開口縁110C側の、内周壁面110Aの上端(開口縁110C)と下端との高さの差H(所謂座ぐり深さ)はHで一定であると図示しており、このため、肩口高さHW0も一定である。しかしながら第3実施形態において後述するように、第1実施形態のサセプタ100において高さの差Hおよび肩口高さHW0は一定である必要はなく、変動しても構わない。
(第2実施形態によるサセプタ)
 図5A~図5Dを参照して、本発明の第2実施形態に従うサセプタ200を説明する。本発明の第2実施形態によるサセプタ200は、エピタキシャル成長装置内でシリコンウェーハWを載置するためのサセプタである。サセプタ200には、シリコンウェーハWが載置される凹形状の座ぐり部210が設けられ、座ぐり部210の開口縁210C側の、内周壁面210Aの上端(開口縁210Cに相当)と下端との高さの差Hが90度周期で周方向に変動するとともに、高さの差Hが最大となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで高さの差Hが最大となると共に、45度、135度、225度、315度のそれぞれで高さの差Hが最小となる。さらに、サセプタ200の径方向外側投影図において、座ぐり部210の開口縁210Cが、座ぐり部210の底面側を凸とする4つの楕円弧を描く。
 図5Bに、図5Aにおける開口縁210の、サセプタ200の径方向外側投影図を示す。なお、図5Bにおける実線は楕円弧であり、破線が円弧である。この楕円弧は図4Bを用いて詳述したのと同様、円弧に対して扁平しており、0度の位置からの高さの差Hの変動率は、円弧の場合の変動率に比べ大きい。なお、径方向外側投影図における4つの楕円弧は、図4Bに示した楕円弧と、サセプタ中心に対して90度の回転対称の関係にある。図5C,図5Dを併せて参照すると、0度、90度、180度、270度の位置で高さの差Hが最大値Hとなり、かつ、45度、135度、225度、315度の位置で高さの差Hが最小値Hとなる。なお、図5Bにおける楕円弧を構成する楕円の短軸方向は鉛直方向と一致することになる。
 従来知られるように、サセプタ200の座ぐり深さが浅くなるとシリコンソースガスがウェーハ周縁部にスムーズに供給されるようになり、周縁部のエピタキシャル層成長速度が速くなる。すなわち、肩口高さとも呼ばれるシリコンウェーハWの表面とサセプタの開口縁210Cとの高さの差H、ひいては上記の高さの差Hが小さくなると、周縁部のエピタキシャル層成長速度が速くなる。これに対して、サセプタの座ぐり深さが深くなると逆の現象となり成長速度が遅くなる。すなわち、肩口高さ差H、ひいては上記の高さの差Hが大きくなると周縁部のエピタキシャル層成長速度が遅くなる。そのため、周方向における0度および0度近傍ではエピタキシャル層成長速度が速く、一方、周方向における45度および45度近傍ではエピタキシャル層成長速度が遅くなる。そして、開口縁210Cが径方向外側投影図において楕円弧を描くため、高さの差Hもその楕円弧の形状に従うこととなる。
 そこで、シリコンウェーハWの<110>方位がサセプタ100の0度、90度、180度、270度の方向に位置するようにシリコンウェーハWを載置すれば、前述した第1実施形態と同様に、成長速度方位依存性を極めて効果的に抑制することができる。そして、こうして成長速度方位依存性を抑制してエピタキシャル成長を行えば、エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることができる。
 径方向投影図において楕円弧を構成する楕円の長径(長軸の長さ)および短径(短軸の長さ)と、楕円弧の弦との関係は、上述した角度位置での高さの差Hの最大および最小関係を満足するように楕円弧を設ける限りは限定されない。また、この条件を満足する楕円弧は幾何学的位置関係により概ね定まる。ただし、サセプタ200の0度方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハWを載置してシリコンウェーハWの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、エッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように前記楕円弧が設けられることが好ましい。なお、周方向ばらつき指標Δtは前述の式[1]により定義される。また、周方向ばらつき指標Δtを0.70%以下となるように楕円弧を設けることがより好ましく、0.65%以下となるように楕円弧を設けることが更に好ましい。下限が限定されるものではないが、本実施形態に従い周方向ばらつき指標Δtを0.10%以上とすることができる。
 なお、図5C、図5Dでは、高さの差Hを周方向に変動させるため(この結果、必然的に肩口高さHも周方向に変動することとなる)、図5Dでは、サセプタ200の周縁部の上端面の肉厚を変動させた場合を例示しているが、他の手法により高さの差Hを周方向に変動させてもよい。なお、高さの差Hの変動幅(肩口高さHの変動幅と等しい)を0.20mm~0.40mm程度とすることが好ましい。
 なお、図5A~図5Dでは、サセプタ200の中心と座ぐり部210の開口縁210Cとの間の径方向距離LはLで一定であると図示しており、このため、ポケット幅PW0も一定である。しかしながら、第3実施形態において後述するように、第2実施形態のサセプタ200において高さの差Hおよび肩口高さHW0は一定である必要はなく、変動しても構わない。
(第3実施形態によるサセプタ)
 前述のとおり、第1実施形態のサセプタ100において高さの差Hの変動はあってもよいし、第2実施形態のサセプタ200において径方向距離Lの変動はあってもよい。この場合、第1実施形態による径方向距離Lの変動と、第2実施形態による高さの差Hの変動が連動していることが好ましい。すなわち、第3実施形態によるサセプタは、シリコンウェーハが載置される凹形状の座ぐり部が設けられ、サセプタの中心と座ぐり部の開口縁との間の径方向距離が90度周期で周方向に変動するとともに、径方向距離Lが最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで径方向距離Lが最小となると共に、45度、135度、225度、315度のそれぞれで径方向距離Lが最大となり、サセプタを上面視したときの開口縁が、径方向外側を凸とする4つの第1楕円弧を描く。さらに、このサセプタにおいて、座ぐり部の開口縁側の、内周壁面の上端と下端との高さの差Hが90度周期で周方向に変動するとともに、高さの差Hが最大となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで高さの差Hが最大となると共に、45度、135度、225度、315度のそれぞれで高さの差Hが最小となり、サセプタの径方向外側投影図において、座ぐり部の開口縁が、座ぐり部の底面側を凸とする4つの第2楕円弧を描く。
 第1楕円弧の条件は第1実施形態に既述のとおりであり、第2楕円弧の条件は第2実施形態に既述のとおりである。第1楕円弧を構成する楕円の扁平率と、第2楕円弧を構成する楕円の扁平率とを適宜調整して、成長速度方位依存性を抑制できるようにそれぞれの楕円弧を設ければよい。特に、このサセプタの0度の方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハを載置してシリコンウェーハの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、エッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように第1楕円弧および第2楕円弧を設けることが好ましい。なお、周方向ばらつき指標Δtは前述の式[1]により定義される。また、周方向ばらつき指標Δtを0.70%以下となるように第1楕円弧および第2楕円弧を設けることがより好ましく、0.65%以下となるように第1楕円弧および第2楕円弧を設けることが更に好ましい。下限が限定されるものではないが、本実施形態に従い周方向ばらつき指標Δtを0.10%以上とすることができる。
 そして、このサセプタの0度の方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハを載置してシリコンウェーハの表面にエピタキシャル層を形成すれば、エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることができる。
 以下、第1実施形態乃至第3実施形態によるサセプタの好適な具体的態様について説明する。
 サセプタの素材としては、エピタキシャル膜の形成の際、サセプタからの汚染を低減するために、炭素基材の表面にシリコンカーバイド(SiC)をコーティングしたものを用いることが一般的である。しかしながら、サセプタ全体がSiCで形成されてもよく、サセプタ表面がSiCでコーティングされていれば、内部には他の材料を含んでサセプタが構成されてもよい。さらに、サセプタ表面がシリコン膜で被覆されていることも好ましい態様である。サセプタからエピタキシャル膜への汚染を防止することができる。
 図4C,4D、図5C,図5Dでは、サセプタとシリコンウェーハWとが接触するレッジ部110L、210Lをテーパー状の傾斜面としている。この態様はシリコンウェーハWとサセプタとが点接触となり、接触面積が小さくなるため好ましい態様の一つである。一方、サセプタとシリコンウェーハWとが接触する部分(レッジ部)は必ずしも傾斜面である必要はなく、水平面であっても構わない。この場合、当該水平面とシリコンウェーハWとが面接触してシリコンウェーハWを支持することができる。
 また、上記実施形態に従うサセプタにおいて、座ぐり部の底面110B、210Bに、シリコンウェーハを載置する際に昇降リフトピンを挿通してシリコンウェーハWを昇降させるためのリフトピン貫通孔が通常設けられる(図示せず)。さらに、底面110B、210Bからサセプタの裏面側に貫通する貫通孔が1箇所または複数箇所設けられていてもよい。サセプタの座ぐり部にシリコンウェーハWをローディングする際に、サセプタとシリコンウェーハとの間のガスをサセプタの裏面側に排出するのに有用である。
 また、上記実施形態に従うサセプタにおいて、座ぐり部の内周壁面の形状は種々の態様を取ることができる。図4C,4D、図5C,図5Dでは、内周壁面110A、210AはシリコンウェーハWに対して垂直面として図示したが、図6に示すように開口縁310C側の内周壁面310Aは傾斜面であってもよい。
(エピタキシャル成長装置)
 また、本発明に従うエピタキシャル成長装置は、前述した第1実施形態乃至第3実施形態に従うサセプタを備える。例えば図7に示すように、このエピタキシャル成長装置は150は、気密性を保持するためのアッパーライナー151およびローワーライナー152とを備えることができ、アッパードーム153、ローワードーム154によってエピタキシャル成長炉を区画することができる。そして、このエピタキシャル成長炉の内部にシリコンウェーハWを水平に載置するためのサセプタ100が設けられている。大口径のエピタキシャルウェーハを製造する場合には、図7に示したような、枚葉式の気相成長装置を用いるのが一般的である。なお、図7では第1実施形態に従うサセプタ100を図示したが、これに替えて、第2実施形態または第3実施形態に従うサセプタをエピタキシャル成長装置に適用可能であることはもちろんである。
(エピタキシャルシリコンウェーハの製造方法)
 また、本発明に従うエピタキシャルシリコンウェーハの製造方法は、前述した第1実施形態乃至第3実施形態によるサセプタの0度の方向にシリコンウェーハの<110>方位が位置するよう、シリコンウェーハを載置する工程と、シリコンウェーハの表面にエピタキシャル層を形成する工程と、を含む。載置する工程は昇降リフトピンを用いる、エピタキシャル層を形成する好適は一般的な気相成長条件でシリコンソースガスをシリコンウェーハ表面に吹き付けるなどの、常法に従い行うことができる。
(エピタキシャルシリコンウェーハ)
 また、上記製造方法に従うことにより、シリコンウェーハの表面にエピタキシャル層が形成されたエピタキシャルシリコンウェーハであって、エッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下であるエピタキシャルシリコンウェーハを得ることができる。なお、周方向ばらつき指標Δtは前述の式[1]により定義される。このような周方向均一性に優れたエピタキシャルシリコンウェーハは、第1乃至第3実施形態によるサセプタを用いることで初めて実現することができる。また、周方向ばらつき指標Δtを0.70%以下とすることがより好ましく、0.65%以下とすることが更に好ましい。下限が限定されるものではないが、本実施形態に従い周方向ばらつき指標Δtを0.10%以上とすることができる。
<実験例1>
 まず、以下に説明する従来例1,比較例1,実施例1に係るサセプタを作製した。そして、これら3種のサセプタを用いて、ウェーハ成長面を(100)面とするボロンドープされた直径300mmのシリコンウェーハの表面に、シリコンエピタキシャル層をエピタキシャル成長させ、エピタキシャルシリコンウェーハを得た。
 なお、シリコンエピタキシャルウェーハの製造にあたり、シリコンウェーハをエピタキシャル膜形成室内に導入し、リフトピンを用いてサセプタ上に載置した。続いて、1130℃にて、水素ガスを供給し、水素ベークを行った後、1130℃にて、シリコンのエピタキシャル膜を4μm成長させてエピタキシャルシリコンウェーハを得た。ここで、原料ソースガスとしてはトリクロロシランガスを用い、また、ドーパントガスとしてジボランガス、キャリアガスとして水素ガスを用いた。
(従来例1)
 サセプタ中心から座ぐり部の開口縁までの径方向距離Lと、座ぐり深さを一定(ポケット幅Lならびに高さの差Hおよび肩口高さHも一定である)とするサセプタを用意した。なお、肩口高さHwは0.80mmとした。比較例1に係るサセプタを上面視すると、開口縁は単一の円弧を描く。
(比較例1)
 サセプタ中心から座ぐり部の開口縁までの径方向距離Lを表1および図8Aに示す変動量で90度周期で変化させたサセプタを用意した。比較例1に係るサセプタを上面視すると、開口縁は4つの円弧を描く。なお、座ぐり深さを一定(高さの差Hおよび肩口高さHも一定となる)とし、従来例1と同様、肩口高さHwを0.80mmとした。
(実施例1)
 サセプタ中心から座ぐり部の開口縁までの径方向距離Lを表1および図8Aに示す変動量で90度周期で変化させたサセプタを用意した。比較例1に係るサセプタを上面視すると、開口縁は4つの楕円弧を描く。なお、座ぐり深さを一定(高さの差Hおよび肩口高さHも一定となる)とし、従来例1と同様、肩口高さHwを0.80mmとした。
 
Figure JPOXMLDOC01-appb-T000008
<評価>
 従来例1、比較例1、実施例1のそれぞれのサセプタを用いて作製したエピタキシャルシリコンウェーハのウェーハエッジ1mmの位置における周方向膜厚分布を、膜厚測定装置(ナノメトリクス社製:QS3300)を用いて測定した。結果を図8Bのグラフに示す。このグラフから明らかなように、実施例1に係るサセプタを用いることで、周方向膜厚分布の均一性を極めて良好なものとできたことが確認できる。
 さらに、図8Bのグラフをエピタキシャル層の平均膜厚に対して相対化したグラフ、すなわち、エピタキシャル層の周方向膜厚分布の厚み平均tAveに対する、角度θにおける厚みの相対値Δtθにより表したグラフを図8Cに示す。なお、Δtθは下記式[2]に従う。また、縦軸は%表示としている。
Figure JPOXMLDOC01-appb-M000009
 ここで、式[2]中、tθはエッジ1mmの位置における周方向の角度θの位置でのエピタキシャル層の厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである。
 図8Cのグラフからも、実施例1に係るサセプタを用いることで、周方向膜厚分布の均一性を極めて良好なものとできたことが確認できる。
 なお、比較例1では膜厚分布に45度周期での変動が見られた。これは、開口縁が円弧形状である場合、ポケット幅の変動率が不足し、エピタキシャル層の成長速度が不足してしまうためと考えられる。一方、実施例1では比較例1に比べてポケット幅の変動率が急峻となるため、シリコンウェーハの成長速度方位依存性に追従してエピタキシャル層を成長させることができたと考えられる。
<実験例2>
 実験例1で用いた従来例1によるサセプタに加えて、以下に説明する比較例2,実施例2に係るサセプタを作製した。そして、これら3種のサセプタを用いて、実験例1と同様に、ボロンドープされた直径300mmのシリコンウェーハの表面に、シリコンエピタキシャル層をエピタキシャル成長させ、エピタキシャルシリコンウェーハを得た。
(比較例2)
 周方向における肩口高さHを表2および図9Aに示す変動量で90度周期で変化させたサセプタを用意した。比較例2に係るサセプタの径方向外側投影図において、座ぐり部の開口縁が、座ぐり部の底面側を凸とする4つの円弧を描くこととなる。なお、サセプタ中心から座ぐりの開口縁までの径方向距離Lを一定であり、151.25mm(ポケット幅1.25mm)とした。
(実施例2)
 周方向における肩口高さHを表2および図9Aに示す変動量で90度周期で変化させたサセプタを用意した。実施例2に係るサセプタの径方向外側投影図において、座ぐり部の開口縁が、座ぐり部の底面側を凸とする4つの楕円弧を描くこととなる。なお、サセプタ中心から座ぐりの開口縁までの径方向距離Lは一定であり、151.25mm(ポケット幅1.25mm)とした。
Figure JPOXMLDOC01-appb-T000010
<評価>
 従来例1、比較例2、実施例2のそれぞれのサセプタを用いて作製したエピタキシャルシリコンウェーハのウェーハエッジ1mmの位置における周方向膜厚分布を、膜厚測定装置(ナノメトリクス社製:QS3300)を用いて測定した。結果を図9Bのグラフに示す。このグラフから明らかなように、実施例2に係るサセプタを用いることで、周方向膜厚分布の均一性を極めて良好なものとできたことが確認できる。
 さらに、図8Bと図8Cとの関係と同様に、図9Bのグラフをエピタキシャル層の平均膜厚に対して相対化したグラフ、すなわち、エピタキシャル層の周方向膜厚分布の厚み平均tAveに対する、角度θにおける厚みの相対値Δtθにより表したグラフを図9Cに示す。なお、Δtθは前述の式[2]に従う。また、縦軸は図8Cと同様、%表示としている。
 図9Cのグラフからも、実施例1に係るサセプタを用いることで、周方向膜厚分布の均一性を極めて良好なものとできたことが確認できる。
 なお、比較例2では比較例1と同様に、膜厚分布に45度周期での変動が見られた。これは、開口縁が円弧形状である場合、肩口高さの変動率が不足し、エピタキシャル層の成長速度が不足してしまうためと考えられる。一方、実施例2では比較例2に比べて肩口高さの変動率が急峻となるため、シリコンウェーハの成長速度方位依存性に追従してエピタキシャル層を成長させることができたと考えられる。
 以上の従来例1、比較例1,2、実施例1,2に係るサセプタを用いて作製したエピタキシャルシリコンウェーハのウェーハエッジ1mmの位置における周方向膜厚分布を図10Aのグラフに示す。また、図10Aのグラフをエピタキシャル層の平均膜厚に対して相対化したグラフを図10Bに示す。実施例1のようにポケット幅を変動させても、実施例2のように肩口高さを変動させても、良好な結果が得られることが確認される。
 また、実施例1,2、比較例1,2および従来例1の膜厚分布の周方向ばらつき指標Δt(前述の式[1]に従う)を下記表3に示す。実施例1,2により、従来では不可能であった水準で、周方向ばらつき指標の極めて小さなエピタキシャルシリコンウェーハが得られたことが確認できる。
Figure JPOXMLDOC01-appb-T000011
 本発明によれば、エピタキシャルシリコンウェーハのエピタキシャル層の平坦度の周方向均一性を高めることのできるサセプタを提供することができる。また、本発明によれば、このサセプタを備えるエピタキシャル成長装置を提供することができる。さらに本発明によれば、このサセプタを用いたエピタキシャルシリコンウェーハの製造方法と、それにより得られる平坦度の周方向均一性が改善されたエピタキシャルシリコンウェーハを提供することができる。
100、200、300    サセプタ
110、210、310    座ぐり部
110A、210A、310A 内周壁面
110B、210B、310B 低面
110C、210C、310C 開口縁
110L、210L、310L レッジ部
W  シリコンウェーハ
L  サセプタの中心と座ぐり部の開口縁との間の径方向距離
 ポケット幅
H  内周壁面の上端と下端との高さの差
 肩口高さ
 

Claims (8)

  1.  エピタキシャル成長装置内でシリコンウェーハを載置するためのサセプタであって、
     前記サセプタには、前記シリコンウェーハが載置される凹形状の座ぐり部が設けられ、
     前記サセプタの中心と前記座ぐり部の開口縁との間の径方向距離が90度周期で周方向に変動するとともに、前記径方向距離が最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記径方向距離が最小となると共に、45度、135度、225度、315度のそれぞれで前記径方向距離が最大となり、
     前記サセプタを上面視したときの前記開口縁が、径方向外側を凸とする4つの楕円弧を描く
    ことを特徴とするサセプタ。
  2.  エピタキシャル成長装置内でシリコンウェーハを載置するためのサセプタであって、
     前記サセプタには、前記シリコンウェーハが載置される凹形状の座ぐり部が設けられ、
     前記座ぐり部の開口縁側の、内周壁面の上端と下端との高さの差が90度周期で周方向に変動するとともに、前記高さの差が最大となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記高さの差が最大となると共に、45度、135度、225度、315度のそれぞれで前記高さの差が最小となり、
     前記サセプタの径方向外側投影図において、前記座ぐり部の開口縁が、前記座ぐり部の底面側を凸とする4つの楕円弧を描く
    ことを特徴とするサセプタ。
  3.  前記サセプタの前記0度の方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハを載置して前記シリコンウェーハの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、下記式[1]:
    Figure JPOXMLDOC01-appb-M000001
    (前記式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)
    に従うエッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように前記楕円弧が設けられる、請求項1または2に記載のサセプタ。
  4.  エピタキシャル成長装置内でシリコンウェーハを載置するためのサセプタであって、
     前記サセプタには、前記シリコンウェーハが載置される凹形状の座ぐり部が設けられ、
     前記サセプタの中心と前記座ぐり部の開口縁との間の径方向距離が90度周期で周方向に変動するとともに、前記径方向距離が最小となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記径方向距離が最小となると共に、45度、135度、225度、315度のそれぞれで前記径方向距離が最大となり、
     前記サセプタを上面視したときの前記開口縁が、径方向外側を凸とする4つの第1楕円弧を描き、
     前記座ぐり部の開口縁側の、内周壁面の上端と下端との高さの差が90度周期で周方向に変動するとともに、前記高さの差が最大となる位置の角度を0度としたときに、90度、180度、270度のそれぞれで前記高さの差が最大となると共に、45度、135度、225度、315度のそれぞれで前記高さの差が最小となり、
     前記サセプタの径方向外側投影図において、前記座ぐり部の開口縁が、前記座ぐり部の底面側を凸とする4つの第2楕円弧を描く
    ことを特徴とするサセプタ。
  5.  前記サセプタの前記0度の方向にシリコンウェーハの<110>方位が位置するようシリコンウェーハを載置して前記シリコンウェーハの表面にエピタキシャル層を形成したエピタキシャルシリコンウェーハの、下記式[1]:
    Figure JPOXMLDOC01-appb-M000002
    (前記式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)
    に従うエッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下となるように前記第1楕円弧および前記第2楕円弧が設けられる、請求項4に記載のサセプタ。
  6.  請求項1~5のいずれか1項に記載のサセプタを備えるエピタキシャル成長装置。
  7.  請求項1、2、4のいずれか1項に記載のサセプタの前記0度の方向にシリコンウェーハの<110>方位が位置するよう、該シリコンウェーハを載置する工程と、
     前記シリコンウェーハの表面にエピタキシャル層を形成する工程と、を含むエピタキシャルシリコンウェーハの製造方法。
  8.  シリコンウェーハの表面にエピタキシャル層が形成されたエピタキシャルシリコンウェーハであって、
     下記式[1]:
    Figure JPOXMLDOC01-appb-M000003
    (前記式[1]中、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最大厚みであり、tMaxはエッジ1mmの位置における周方向のエピタキシャル層の最小厚みであり、tAveはエッジ1mmの位置における周方向のエピタキシャル層の平均厚みである)
    に従うエッジ1mmの位置における周方向の前記エピタキシャル層の膜厚分布の周方向ばらつき指標Δtが0.75%以下であることを特徴とするエピタキシャルシリコンウェーハ。
     
PCT/JP2017/031343 2017-08-31 2017-08-31 サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ WO2019043865A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019538845A JP6813096B2 (ja) 2017-08-31 2017-08-31 サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ
DE112017007978.0T DE112017007978T5 (de) 2017-08-31 2017-08-31 Suszeptor, epitaxiewachstumsvorrichtung, verfahren zum produzieren eines siliziumepitaxialwafers und siliziumepitaxialwafer
CN201780094456.0A CN111295737B (zh) 2017-08-31 2017-08-31 基座、外延生长装置、外延硅晶片的制造方法及外延硅晶片
KR1020207002974A KR102370157B1 (ko) 2017-08-31 2017-08-31 서셉터, 에피택셜 성장 장치, 에피택셜 실리콘 웨이퍼의 제조 방법, 그리고 에피택셜 실리콘 웨이퍼
US16/641,996 US11501996B2 (en) 2017-08-31 2017-08-31 Susceptor, epitaxial growth apparatus, method of producing epitaxial silicon wafer, and epitaxial silicon wafer
PCT/JP2017/031343 WO2019043865A1 (ja) 2017-08-31 2017-08-31 サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ
TW107123226A TWI711114B (zh) 2017-08-31 2018-07-05 晶座、磊晶成長裝置、磊晶矽晶圓的製造方法以及磊晶矽晶圓
US18/046,400 US11984346B2 (en) 2022-10-13 Susceptor, epitaxial growth apparatus, method of producing epitaxial silicon wafer, and epitaxial silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031343 WO2019043865A1 (ja) 2017-08-31 2017-08-31 サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/641,996 A-371-Of-International US11501996B2 (en) 2017-08-31 2017-08-31 Susceptor, epitaxial growth apparatus, method of producing epitaxial silicon wafer, and epitaxial silicon wafer
US18/046,400 Continuation US11984346B2 (en) 2022-10-13 Susceptor, epitaxial growth apparatus, method of producing epitaxial silicon wafer, and epitaxial silicon wafer

Publications (1)

Publication Number Publication Date
WO2019043865A1 true WO2019043865A1 (ja) 2019-03-07

Family

ID=65525155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031343 WO2019043865A1 (ja) 2017-08-31 2017-08-31 サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ

Country Status (7)

Country Link
US (1) US11501996B2 (ja)
JP (1) JP6813096B2 (ja)
KR (1) KR102370157B1 (ja)
CN (1) CN111295737B (ja)
DE (1) DE112017007978T5 (ja)
TW (1) TWI711114B (ja)
WO (1) WO2019043865A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189812A1 (ko) * 2019-03-18 2020-09-24 에스케이실트론 주식회사 서셉터 및 반도체 제조장치
JP2020191346A (ja) * 2019-05-21 2020-11-26 クアーズテック株式会社 サセプタおよびエピタキシャル成長装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393723B (zh) * 2022-01-20 2023-06-13 中环领先半导体材料有限公司 一种实现滚磨设备定位开槽复检自检一体化的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091638A1 (ja) * 2006-02-09 2007-08-16 Sumco Techxiv Corporation サセプタおよびエピタキシャルウェハの製造装置
JP2007294942A (ja) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法及び製造装置
JP2010040534A (ja) * 2008-07-31 2010-02-18 Sumco Corp サセプタ、気相成長装置およびエピタキシャルウェーハの製造方法
JP2015535142A (ja) * 2012-10-16 2015-12-07 エルジー シルトロン インコーポレイテッド エピタキシャル成長用サセプタ及びエピタキシャル成長装置
JP2016122779A (ja) * 2014-12-25 2016-07-07 株式会社Sumco エピタキシャルシリコンウェーハの製造方法
JP2017510088A (ja) * 2014-01-27 2017-04-06 ビーコ インストルメンツ インコーポレイテッド 化学蒸着システム用の複合半径を有する保持ポケットを有するウェハキャリア

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196602B2 (ja) * 2002-07-12 2008-12-17 信越半導体株式会社 エピタキシャル成長用シリコンウエーハ及びエピタキシャルウエーハ並びにその製造方法
TW200802552A (en) 2006-03-30 2008-01-01 Sumco Techxiv Corp Method of manufacturing epitaxial silicon wafer and apparatus thereof
CN100479221C (zh) * 2007-03-21 2009-04-15 山东大学 一种氧化锡单晶薄膜的制备方法
JP2009087989A (ja) * 2007-09-27 2009-04-23 Nuflare Technology Inc エピタキシャル成長膜形成方法
JP2009176959A (ja) * 2008-01-24 2009-08-06 Shin Etsu Handotai Co Ltd サセプタ及び気相成長装置並びに気相成長方法
US9758871B2 (en) * 2008-12-10 2017-09-12 Sumco Techxiv Corporation Method and apparatus for manufacturing epitaxial silicon wafer
JP2011077476A (ja) * 2009-10-02 2011-04-14 Sumco Corp エピタキシャル成長用サセプタ
DE112011103491B4 (de) * 2010-11-15 2020-09-24 Shin-Etsu Handotai Co., Ltd. Suszeptor und Verfahren zum Herstellen eines Epitaxialwafers
JP5834632B2 (ja) * 2011-08-30 2015-12-24 株式会社Sumco サセプタ、該サセプタを用いた気相成長装置およびエピタキシャルウェーハの製造方法
US8940094B2 (en) * 2012-04-10 2015-01-27 Sunedison Semiconductor Limited Methods for fabricating a semiconductor wafer processing device
US9401271B2 (en) * 2012-04-19 2016-07-26 Sunedison Semiconductor Limited (Uen201334164H) Susceptor assemblies for supporting wafers in a reactor apparatus
JP5791004B2 (ja) * 2012-09-27 2015-10-07 信越半導体株式会社 エピタキシャルウェーハの製造装置及び製造方法
WO2014062000A1 (ko) 2012-10-16 2014-04-24 주식회사 엘지실트론 에피택셜 성장용 서셉터 및 에피택셜 성장방법
US9517539B2 (en) * 2014-08-28 2016-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer susceptor with improved thermal characteristics
US9478697B2 (en) * 2014-11-11 2016-10-25 Applied Materials, Inc. Reusable substrate carrier
JP6330720B2 (ja) * 2015-04-30 2018-05-30 信越半導体株式会社 エピタキシャルウェーハの製造方法及び気相成長装置
DE102016210203B3 (de) * 2016-06-09 2017-08-31 Siltronic Ag Suszeptor zum Halten einer Halbleiterscheibe, Verfahren zum Abscheiden einer epitaktischen Schicht auf einer Vorderseite einer Halbleiterscheibe und Halbleiterscheibe mit epitaktischer Schicht
DE102017206671A1 (de) * 2017-04-20 2018-10-25 Siltronic Ag Suszeptor zum Halten einer Halbleiterscheibe mit Orientierungskerbe während des Abscheidens einer Schicht auf einer Vorderseite der Halbleiterscheibe und Verfahren zum Abscheiden der Schicht unter Verwendung des Suszeptors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091638A1 (ja) * 2006-02-09 2007-08-16 Sumco Techxiv Corporation サセプタおよびエピタキシャルウェハの製造装置
JP2007294942A (ja) * 2006-03-30 2007-11-08 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法及び製造装置
JP2010040534A (ja) * 2008-07-31 2010-02-18 Sumco Corp サセプタ、気相成長装置およびエピタキシャルウェーハの製造方法
JP2015535142A (ja) * 2012-10-16 2015-12-07 エルジー シルトロン インコーポレイテッド エピタキシャル成長用サセプタ及びエピタキシャル成長装置
JP2017510088A (ja) * 2014-01-27 2017-04-06 ビーコ インストルメンツ インコーポレイテッド 化学蒸着システム用の複合半径を有する保持ポケットを有するウェハキャリア
JP2016122779A (ja) * 2014-12-25 2016-07-07 株式会社Sumco エピタキシャルシリコンウェーハの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189812A1 (ko) * 2019-03-18 2020-09-24 에스케이실트론 주식회사 서셉터 및 반도체 제조장치
JP2020191346A (ja) * 2019-05-21 2020-11-26 クアーズテック株式会社 サセプタおよびエピタキシャル成長装置

Also Published As

Publication number Publication date
JP6813096B2 (ja) 2021-01-13
US11501996B2 (en) 2022-11-15
KR102370157B1 (ko) 2022-03-03
CN111295737B (zh) 2023-08-11
DE112017007978T5 (de) 2020-06-04
JPWO2019043865A1 (ja) 2020-03-26
TWI711114B (zh) 2020-11-21
KR20200023457A (ko) 2020-03-04
US20230061603A1 (en) 2023-03-02
TW201913873A (zh) 2019-04-01
CN111295737A (zh) 2020-06-16
US20200185263A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP6128198B1 (ja) ウェーハの両面研磨方法及びこれを用いたエピタキシャルウェーハの製造方法
KR101516164B1 (ko) 에피텍셜 성장용 서셉터
JP5834632B2 (ja) サセプタ、該サセプタを用いた気相成長装置およびエピタキシャルウェーハの製造方法
US10519566B2 (en) Wafer support, chemical vapor phase growth device, epitaxial wafer and manufacturing method thereof
KR102210290B1 (ko) 반도체 웨이퍼를 에피택셜 코팅하는 방법 및 반도체 웨이퍼
CN104756244A (zh) 用于外延生长的衬托器和用于外延生长的方法
JP6813096B2 (ja) サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ
TWI653368B (zh) 用於保持半導體晶圓的基座、用於在半導體晶圓的正面上沉積磊晶層的方法、以及具有磊晶層的半導體晶圓
US20200181798A1 (en) Susceptor and chemical vapor deposition apparatus
JP7151664B2 (ja) エピタキシャルウェーハの製造方法
WO2018207942A1 (ja) サセプタ、エピタキシャル基板の製造方法、及びエピタキシャル基板
CN213538160U (zh) 在晶圆的正面上沉积外延层的装置
JP6832770B2 (ja) 熱化学蒸着装置の基板ホルダー
US11984346B2 (en) Susceptor, epitaxial growth apparatus, method of producing epitaxial silicon wafer, and epitaxial silicon wafer
JP6968670B2 (ja) サセプタ、エピタキシャルウェーハの製造方法
JP6841218B2 (ja) サセプタおよび該サセプタを用いたエピタキシャルウェーハの製造方法
JP6733802B1 (ja) エピタキシャルウェーハの製造方法及びサセプタ
JP6493982B2 (ja) サセプタ
JP7276582B1 (ja) エピタキシャル成長用サセプタ及びエピタキシャルウェーハの製造方法
US20240006225A1 (en) Susceptor for epitaxial processing and epitaxial reactor including the susceptor
JP2022159954A (ja) サセプタ
JP2022103933A (ja) ウェハ保持具、化学気相成長装置及びSiCエピタキシャルウェハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538845

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207002974

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17923205

Country of ref document: EP

Kind code of ref document: A1