WO2019039332A1 - 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極 - Google Patents

金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極 Download PDF

Info

Publication number
WO2019039332A1
WO2019039332A1 PCT/JP2018/030135 JP2018030135W WO2019039332A1 WO 2019039332 A1 WO2019039332 A1 WO 2019039332A1 JP 2018030135 W JP2018030135 W JP 2018030135W WO 2019039332 A1 WO2019039332 A1 WO 2019039332A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
metal foil
metal
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2018/030135
Other languages
English (en)
French (fr)
Inventor
順二 川口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18848329.1A priority Critical patent/EP3675257A4/en
Priority to CN201880054629.0A priority patent/CN111033837A/zh
Priority to KR1020207003275A priority patent/KR20200024915A/ko
Priority to JP2019538082A priority patent/JP6858868B2/ja
Publication of WO2019039332A1 publication Critical patent/WO2019039332A1/ja
Priority to US16/797,026 priority patent/US20200194779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a metal foil, a method for producing a metal foil, a negative electrode for a secondary battery, and a positive electrode for a secondary battery.
  • lithium ion capacitors lithium ion secondary batteries
  • electric double layer capacitors electric double layer capacitors
  • an active material such as activated carbon is coated on the surface of an electrode current collector (hereinafter simply referred to as "current collector") made of metal foil is used as an electrode of a positive electrode or a negative electrode. It is known to be used.
  • a current collector a metal foil such as an aluminum foil or a copper foil is used.
  • Patent Document 1 describes an electrode having a metal foil having a plurality of through holes and an active material layer coated on one side or both sides of the metal foil (see claim 1).
  • storage devices such as lithium ion secondary batteries
  • storage devices are required to be further reduced in size and weight and to have higher energy density.
  • the thickness of the current collector thinner as a measure for reducing the size and weight and increasing the energy density. It is possible to reduce the size and weight by thinning the thickness of the current collector, or to increase the thickness of the active material to achieve high energy density.
  • materials of the active material are being studied as other measures for reducing the size and weight and increasing the energy density.
  • silicon (Si), tin (Sn), oxides of these, and the like has been studied.
  • sulfur or a compound containing sulfur is being considered to use as a positive electrode material.
  • the present invention has an object to provide a thin metal foil having high strength and high adhesion to an active material, a method for producing the metal foil, a negative electrode for a secondary battery, and a positive electrode for a secondary battery. .
  • the inventors of the present invention have a thickness of 5 ⁇ m to less than 100 ⁇ m, and are copper foil, silver foil, gold foil, platinum foil, stainless steel foil, titanium foil, tantalum foil, molybdenum foil, niobium foil, Zirconium foil, tungsten foil, beryllium copper foil, phosphor blue copper foil, yellow copper foil, nickel foil, tin foil, zinc foil, iron foil, nickel foil, permalloy foil, nichrome foil, 42 alloy foil, kovar foil, monel foil, inconel foil And a foil selected from the group consisting of Hastelloy foils, or a metal foil formed by laminating a foil selected from this group and a metal different from the selected foil, wherein with between force microscope, and the actual area S x obtained by a three-point method approximation from three-dimensional data obtained by measuring 512 ⁇ 512 points to the range of 50 [mu] m ⁇ 50
  • the thickness is 5 ⁇ m or more and less than 100 ⁇ m, Copper foil, silver foil, gold foil, platinum foil, stainless steel foil, titanium foil, tantalum foil, molybdenum foil, niobium foil, zirconium foil, tungsten foil, beryllium copper foil, phosphor blue copper foil, yellow copper foil, nickel white foil, tin foil, zinc foil
  • a metal foil formed by laminating a metal different from the selected foil The actual area S x obtained by the approximate three-point method from three-dimensional data obtained by measuring 512 ⁇ 512 points on a 50 ⁇ m ⁇ 50 ⁇ m range of the surface of a metal foil using an atomic force microscope and a geometrically measured area metal foil from S 0 Prefecture is the
  • a negative electrode current collector comprising the metal foil according to any one of [1] to [6], And an active material layer containing a negative electrode active material formed on the surface of the negative electrode current collector, A negative electrode for a secondary battery, wherein the negative electrode active material is at least one of silicon, tin, and oxides thereof.
  • a positive electrode current collector comprising the metal foil according to any one of [1] to [6], And an active material layer containing a positive electrode active material formed on the surface of the positive electrode current collector, A positive electrode for a secondary battery, wherein the positive electrode active material is at least one of sulfur and a compound containing sulfur.
  • method for producing a metal foil surface area ratio ⁇ S required to produce a metal foil is at least 2% by the following equation (i).
  • Metal foil is copper foil, A through hole forming step of forming a through hole in the copper foil; The method for producing a metal foil according to [9], further comprising the step of removing the residue with at least one selected from the group consisting of hydrochloric acid, aqueous ammonia, sodium thiosulfate and ethanol after forming the through holes. .
  • a thin metal foil having high strength and high adhesion to an active material a method for producing the metal foil, a negative electrode for a secondary battery, and a positive electrode for a secondary battery Can be provided.
  • FIG. 2 is a cross-sectional view taken along the line BB of FIG. It is a typical sectional view for explaining an example of the method of manufacturing the metal foil of the present invention. It is a typical sectional view for explaining an example of the method of manufacturing the metal foil of the present invention. It is a typical sectional view for explaining an example of the method of manufacturing the metal foil of the present invention. It is a typical sectional view for explaining an example of the method of manufacturing the metal foil of the present invention. It is a typical sectional view for explaining an example of the method of manufacturing the metal foil of the present invention. It is a typical sectional view for explaining an example of the method of manufacturing the metal foil of the present invention. It is a typical sectional view for explaining other examples of the method of manufacturing the metal foil of the present invention.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the metal foil of the present invention is Thickness is 5 micrometers or more and less than 100 micrometers, Copper foil, silver foil, gold foil, platinum foil, stainless steel foil, titanium foil, tantalum foil, molybdenum foil, niobium foil, zirconium foil, tungsten foil, beryllium copper foil, phosphor blue copper foil, yellow copper foil, nickel white foil, tin foil, zinc foil
  • a metal foil formed by laminating a metal different from the selected foil The actual area S x obtained by the approximate three-point method from three-dimensional data obtained by measuring 512 ⁇ 512 points on a 50 ⁇ m ⁇ 50 ⁇ m range of the surface of a metal foil using an atomic force microscope and a geometrically measured area
  • the metal foil of the present invention is It has a plurality of through holes penetrating in the thickness direction, It is a metal foil in which the average opening diameter of the through holes is 1 to 100 ⁇ m and the average opening ratio by the through holes is 0.5 to 30%.
  • FIG. 1 is a plan view schematically showing the metal foil of the present invention
  • FIG. 2 is a cross-sectional view taken along the line BB in FIG.
  • the metal foil 10 shown in FIGS. 1 and 2 has a plurality of through holes 6 in the thickness direction.
  • the thickness of metal foil is 5 micrometers or more and less than 100 micrometers.
  • the surface of the metal foil is roughened, and the surface area ratio ⁇ S is 2% or more.
  • the thickness is 5 ⁇ m or more and less than 100 ⁇ m
  • the metal foil a foil selected from the above group, or a foil selected from the above group and a metal different from the selected foil are laminated.
  • the surface area ratio ⁇ S is made 2% or more using a foil obtained by Since the thickness is as thin as 5 ⁇ m or more and less than 100 ⁇ m, using this metal foil as a current collector makes it possible to reduce the size and weight of the electric storage device, or increase the thickness of the active material to achieve high energy density .
  • metal foils of the above-mentioned types have high strength, even when a material having a large volume expansion and contraction at the time of charge and discharge is used as a negative electrode material and a positive electrode material of a secondary battery, the volume expansion and contraction at the charge and discharge It can prevent damage.
  • the surface area ratio ⁇ S of the surface of the metal foil is 2% or more, the contact area with the active material (negative electrode material or positive electrode material) is increased. Therefore, even when a material having a large volume expansion and contraction at the time of charge and discharge is used as the negative electrode material and the positive electrode material of the secondary battery, the adhesion between the active material and the current collector is high due to the volume expansion and contraction at the charge and discharge time. It is possible to suppress peeling.
  • the contact area increases, the output characteristics, cycle characteristics, rate characteristics, and the like become good.
  • the metal foil is roughened by a method described later, even a thin metal foil having a thickness of 5 ⁇ m or more and less than 100 ⁇ m can be roughened without breakage.
  • the surface shape is measured by an atomic force microscope (AFM) to obtain three-dimensional data.
  • the measurement can be performed, for example, under the following conditions. That is, a metal foil is cut into a size of 1 cm square and set on a horizontal sample table on a piezo scanner, the cantilever is approached to the sample surface, and in the region where the atomic force works, it is scanned in the XY direction. At that time, the surface shape (wave structure) of the sample is captured by the displacement of the piezo in the Z direction.
  • the piezo scanner is capable of scanning 150 ⁇ m in the X and Y directions and 10 ⁇ m in the Z direction.
  • the cantilever is measured in a DFM mode (Dynamic Force Mode) using a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m (SI-DF20, manufactured by NANOPROBE).
  • a slight inclination of the sample is corrected by least squares approximation of the obtained three-dimensional data to obtain a reference surface.
  • the area of 50 ⁇ m ⁇ 50 ⁇ m on the surface is measured at 512 ⁇ 512 points.
  • the resolution in the X and Y directions is 1.9 ⁇ m
  • the resolution in the Z direction is 1 nm
  • the scanning speed is 60 ⁇ m / sec.
  • Three adjacent points are extracted using the three-dimensional data (f (x, y)) determined above, and the sum of the areas of the minute triangles formed by the three points is determined to be the actual area Sx .
  • the surface area ratio ⁇ S is obtained from the obtained actual area S x and the geometrically measured area S 0 according to the above equation (i).
  • the surface area ratio ⁇ S is preferably 2% or more and 100% or less, and more preferably 5% or more and 60% or less.
  • the metal foil of the present invention has a plurality of through holes penetrating in the thickness direction, the average opening diameter of the through holes is 1 to 100 ⁇ m, and the average opening ratio by the through holes is 0.5 to 30%.
  • a method called Li pre-doping is known as a technique for increasing the energy density by adding lithium to the negative electrode in excess. This is a technology necessary for lithium ion capacitors and next-generation lithium ion secondary batteries. Li pre-doping can be efficiently performed because the metal foil to be a current collector has a large number of fine through holes.
  • the metal foil of the present invention is a high strength obtained by laminating a foil selected from the above group, or a foil selected from the above group and a metal different from the selected foil. Even when the metal foil has a plurality of through holes, damage due to expansion and contraction of the volume during charge and discharge can be prevented.
  • the average aperture ratio of the through holes is preferably high.
  • the average aperture ratio is constant, if the number density of the through holes is too large, the opening diameter of each through hole becomes too small, and it becomes difficult for the negative electrode material to penetrate into the through holes. There is a possibility that pre-doping characteristics may be degraded. Therefore, it is preferable that the average opening diameter and the average opening ratio of the through holes be in an appropriate range.
  • the average aperture ratio of the through holes be lower. Also, if the average aperture ratio is constant, it is preferable to make a large number of small through holes rather than make a small number of large through holes, but if it is excessively large, there is a concern that the holes will be connected and the strength may be reduced. There is an appropriate range because As described above, from the viewpoint of pre-doping characteristics and strength, the average opening ratio of the through holes is preferably 0.5 to 30%, more preferably 1 to 10%, and still more preferably 2 to 8%. .
  • the average aperture ratio by the through holes is determined by placing a parallel light optical unit on one side of the metal foil and transmitting parallel light, and using the optical microscope from the other side of the metal foil. Take a photo of the surface at a magnification of 100x. From the sum of the aperture area of the through hole projected by the parallel light transmitted and the area (geometrical area) of the visual field, for the 1 mm ⁇ 1 mm visual field (5 places) in the range of 10 cm ⁇ 10 cm of the obtained photograph The ratio (aperture area / geometrical area) is calculated, and the average value in each visual field (five places) is calculated as an average aperture ratio.
  • the number density of through holes is measured by the following method. First, a parallel light optical unit is placed on one side of the metal foil, parallel light is transmitted, and the surface of the metal foil is photographed at a magnification of 100 using the optical microscope from the other side of the metal foil. Get a photo. For a 1 mm ⁇ 1 mm field of view (5 locations) in the 10 cm ⁇ 10 cm range of the obtained photograph, the number density (number of geometrical fields) and the number of through holes projected by the transmitted parallel light The number of through holes / geometrical area) is calculated, and the average value in each visual field (five places) is calculated as the number density.
  • the average opening diameter of the through holes is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 80 ⁇ m, still more preferably 1 ⁇ m to 40 ⁇ m, and particularly preferably 1 ⁇ m to 30 ⁇ m. preferable.
  • the average opening diameter of the through holes is obtained by photographing the surface of the metal foil from directly above at a magnification of 100 to 10000 at a magnification of 100 to 10000 using a high resolution scanning electron microscope (SEM). At least 20 of the through holes in a ring form are extracted, and the diameter is read to determine the opening diameter, and the average value of these is calculated as the average opening diameter.
  • the magnification of the range mentioned above can be suitably selected so that the SEM photograph which can extract 20 or more through holes can be obtained.
  • the opening diameter measured the maximum value of the distance between the ends of the through-hole part.
  • the shape of the opening of the through hole is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the end portions of the through holes is taken as the opening diameter. Therefore, for example, even in the case of a through hole having a shape in which two or more through holes are integrated, this is regarded as one through hole, and the maximum value of the distance between the ends of the through hole portions is taken as the opening diameter. .
  • foil type In the metal foil of the present invention, the following metal foil is used. Specifically, as the metal foil, copper foil, silver foil, gold foil, platinum foil, stainless steel foil (SUS (Steel Use Stainless) foil), titanium foil, tantalum foil, molybdenum foil, niobium foil, zirconium foil, tungsten foil, beryllium Copper foil, phosphor blue copper foil, yellow copper foil, nickel foil, tin foil, zinc foil, iron foil, nickel foil, permalloy foil, nichrome foil, 42 alloy foil, kovar foil, monel foil, inconel foil, and hastelloy foil Included are foils selected from the group.
  • the metal foil may be a laminate of two or more different metals including the above-mentioned types of metals.
  • the method of laminating the metal foil is not particularly limited, but is preferably a plated or clad material.
  • the metal used for plating is not particularly limited, but in the case where a through hole is formed by the manufacturing method described later, any metal containing a metal atom that dissolves in an etchant used for forming the through hole may be used.
  • the plating species include nickel, chromium, cobalt, iron, zinc, tin, copper, silver, gold, platinum, palladium, aluminum, and the like.
  • the method of plating is not particularly limited, and any of electroless plating, electrolytic plating, hot-dip plating, chemical conversion treatment, and the like can be used.
  • the metal used to form the clad material for the metal foil is not particularly limited, and it is preferable that the metal contains a metal atom that dissolves in the etchant.
  • the metal used for the said metal foil is mentioned, for example.
  • stainless steel foil or nickel plated steel foil as the metal foil, and use stainless steel foil. Is more preferred.
  • the stainless steel foil is known to change its corrosion resistance depending on its constituent elements, and in particular, correlates with the contents of chromium (Cr) and molybdenum (Mo).
  • the mass ratio of Cr + 3.3 ⁇ Mo in the constituent elements of the stainless steel foil is preferably 16 wt% or more, and 18 wt% or more and 20 wt% or less, from the viewpoint of surface shape and hole formability. More preferable.
  • the copper foil When a copper foil is used as the metal foil, the copper foil preferably has a detected amount of halogen of at most 0.4 mass% according to XRF (X-ray fluorescence) analysis.
  • XRF analysis can be performed with, for example, ZSX Primus II manufactured by RIGAKU Co., and the amount of detected halogen can be measured.
  • reaction residue may generate
  • the amount of reaction residue can be judged by the amount of detection of halogen by XRF analysis, and the amount of detection of halogen of 0.4% by mass or less is preferable because the possibility of corrosion over time can be reduced.
  • breaking strength of the metal foil in the state that is not a through-hole is preferably 340 N / mm 2 or more, more preferably of is 600N / mm 2 or more, at 800 N / mm 2 or more Is more preferred.
  • breaking strength of the metal foil in the state in which the through hole is not formed is preferably 340 N / mm 2 or more, more preferably of is 600N / mm 2 or more, at 800 N / mm 2 or more Is more preferred.
  • the measurement of the breaking strength of metal foil is performed based on the metal material tension test method of JISZ2241.
  • JISZ2241 As a tensile tester, AUTOGRAPH AGS-X 5kN manufactured by Shimadzu Corporation is used.
  • N 3
  • the average value is measured as the breaking strength.
  • the thickness of the metal foil is 5 ⁇ m or more and less than 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m from the viewpoint of handling property, and more preferably 8 ⁇ m to 30 ⁇ m.
  • the average thickness of metal foil refers to the average value of the thickness which measured arbitrary five points using the contact-type film thickness measurement meter (digital electronic micrometer).
  • the manufacturing method of metal foil is It has a roughening process which roughens the surface of metal foil.
  • the manufacturing method of metal foil has the through-hole formation process of forming the several through-hole penetrated to a thickness direction as a suitable aspect.
  • the through hole forming step may be performed before or after the roughening step. Alternatively, the through hole formation process and the roughening process may be performed simultaneously.
  • Roughening process As a method of roughening a thin metal foil of 5 ⁇ m or more and less than 100 ⁇ m, a metal foil is brought into contact with an etchant to localize intermetallic compound (precipitates or crystallized substances) in the metal foil or defective portions of metal crystals. There is a method of dissolving it to roughen the surface. In the case of this method, since the existence state of the intermetallic compound and the type of solid solution metal differ depending on the material of the metal foil, the conditions are taken out beforehand for each material, and the conditions of the etchant and the etching time are adjusted. Good.
  • a metal foil is brought into contact with an etchant to locally start from the intermetallic compound (precipitate or crystallized matter) in the metal foil.
  • an etchant to locally start from the intermetallic compound (precipitate or crystallized matter) in the metal foil.
  • the conditions since the existence state of the intermetallic compound differs depending on the material of the metal foil, the conditions may be described in advance for each material, and the conditions such as the etchant condition and the etching time may be adjusted.
  • the step may be performed simultaneously with the roughening step.
  • conditions may be set in advance for each material, and conditions such as etchant conditions and etching time may be adjusted so that the surface of the metal foil is roughened and through holes are formed. .
  • the through hole forming step 2 is a resin that forms a resin layer in which a part of each of the metal particles is embedded in one main surface of the metal foil using a composition containing a plurality of metal particles and a polymer component. It has a layer forming process.
  • a metal foil having a resin layer is brought into contact with an etchant to dissolve metal particles and a part of the metal foil, thereby forming through holes in the metal foil.
  • the through hole forming step 2 has a resin layer removing step of removing the resin layer after the dissolving step.
  • a protective layer is formed on the main surface of the metal foil opposite to the surface on which the resin layer is formed, using a composition containing a polymer component. It is preferable to have a protective layer forming step.
  • the through hole forming step 2 after passing through the resin layer forming step, the metal particles and a part of the metal foil are dissolved to form a through hole, and then the resin layer is removed to obtain a plurality of layers.
  • a metal foil having fine through holes can be easily produced. That is, by including the resin layer forming step and the dissolving step, the metal foil is dissolved in the thickness direction at the position corresponding to the portion in which the metal particles are embedded together with the metal particles as shown in FIGS. Since the through holes are formed, it is considered that they can be easily manufactured.
  • Through-hole forming step 2 is a resin layer forming step using a composition containing a plurality of metal particles and a polymer component, as shown in FIG. 3, on one main surface of metal foil 1 before through-hole formation.
  • the resin layer 3 in which a part of each of the plurality of metal particles 2 is embedded is formed.
  • the resin layer 3 of the metal foil 1 before the through hole is formed by an optional protective layer forming step using a composition containing a polymer component.
  • the protective layer 4 is formed on the main surface opposite to the surface to be formed.
  • the resin layer 3 and the metal foil in the step of dissolving the metal particles and the metal foil
  • the through holes 5 are formed in the metal foil 7) after the through holes are formed.
  • the metal foil 7 after forming the through holes having the plurality of through holes 6 is formed by the resin layer removing step of removing the resin layer.
  • the resin layer and the protective layer are removed by the resin layer removal process, so that the through holes having the plurality of through holes 6 are formed.
  • the metal foil 7 is formed.
  • ⁇ Resin layer formation process> In the resin layer forming step included in the through hole forming step 2, at least one of each of the metal particles is formed using a composition containing a plurality of metal particles and a polymer component on one main surface of the metal foil before forming the through holes. It is the process of forming the resin layer in which a part was embedded.
  • composition used in the resin layer forming step is a composition containing at least a plurality of metal particles and a polymer component.
  • the metal particle contained in the above composition is not particularly limited as long as it is a particle containing a metal atom that dissolves in an etchant used in the dissolution step described later, but it is a particle composed of a metal and / or a metal compound Preferably, particles composed of metal are more preferred.
  • the metal constituting the metal particles include, for example, aluminum, nickel, iron, copper, stainless steel, titanium, tantalum, molybdenum, niobium, zirconium, tungsten, beryllium, and alloys of these, These may be used alone or in combination of two or more.
  • aluminum, nickel and copper are preferable, and aluminum and copper are more preferable.
  • Examples of the metal compound constituting the metal particles include oxides, complex oxides, hydroxides, carbonates, sulfates, silicates, phosphates, nitrides, carbides, sulfides, and at least these. Two or more types of composites can be mentioned. Specifically, copper oxide, aluminum oxide, aluminum nitride, and aluminum borate etc. may be mentioned.
  • the metal particles and the metal foil contain the same metal atoms. Is preferred.
  • the shape of the metal particles is not particularly limited, but is preferably spherical, and more preferably closer to a true spherical shape.
  • the average particle size of the metal particles is preferably 1 to 10 ⁇ m, and more preferably more than 2 ⁇ m and 6 ⁇ m or less, from the viewpoint of dispersibility in the composition and the like.
  • the average particle diameter of the metal particles refers to the 50% cumulative diameter of the particle size distribution measured by a laser diffraction / scattering particle diameter measuring device (Microtrac MT 3000 manufactured by Nikkiso Co., Ltd.).
  • the content of the metal particles is preferably 0.05 to 95% by mass, more preferably 1 to 50% by mass, and more preferably 3 to 25% by mass with respect to the total solid content contained in the composition. More preferably, it is%.
  • the polymer component contained in the said composition is not specifically limited, A conventionally well-known polymer component can be used.
  • the polymer component specifically, for example, epoxy resin, silicone resin, acrylic resin, urethane resin, ester resin, urethane acrylate resin, silicone acrylate resin, epoxy acrylate resin, ester acrylate A system resin, a polyamide system resin, a polyimide system resin, a polycarbonate system resin, and a phenol system resin etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together.
  • the polymer component is a phenolic resin or an acrylic resin because it is easy to obtain a desired through-hole even if an acid solution is used as an etchant which is excellent in acid resistance and is used in a dissolving step to be described later. It is preferable that it is a resin material selected from the group consisting of and polyimide resins.
  • the polymer component contained in the composition is a water-insoluble and alkaline water-soluble polymer (hereinafter, “alkaline water-soluble polymer It is preferable that it is a homopolymer which contains an acidic group in the main chain or side chain in the polymer, a copolymer thereof, or a mixture thereof.
  • the alkaline water-soluble polymer one having an acidic group in the main chain and / or side chain of the polymer is preferable from the viewpoint of further facilitating the removal in the resin layer removing step described later.
  • the acidic group include phenol group (-Ar-OH), sulfonamide group (-SO 2 NH-R), substituted sulfonamide group acid group (hereinafter referred to as "active imide group”) [-SO 2 NHCOR, -SO 2 NHSO 2 R, -CONHSO 2 R !, carboxyl group (-CO 2 H), sulfo group (-SO 3 H) and phosphonic group (-OPO 3 H 2 ) can be mentioned.
  • Ar represents a divalent aryl linking group which may have a substituent
  • R represents a hydrocarbon group which may have a substituent.
  • alkaline water-soluble polymers having an acidic group alkaline water-soluble polymers having a phenol group, a carboxyl group, a sulfonamide group and an active imido group are preferable, and particularly an alkaline water-soluble polymer having a phenol group or a carboxyl group
  • alkaline water-soluble polymer having an acidic group examples include the following.
  • alkaline water-soluble polymers having a phenol group examples include one or more of phenols such as phenol, o-cresol, m-cresol, p-cresol, and xylenol, and aldehydes such as formaldehyde and paraformaldehyde.
  • a copolymer obtained by copolymerizing a compound having a phenol group can also be mentioned.
  • acrylamide which has a phenol group methacrylamide, acrylic acid ester, methacrylic acid ester, or hydroxystyrene etc. are mentioned.
  • novolak resins or copolymers of hydroxystyrene are preferable.
  • Commercially available hydroxystyrene copolymers are Marukan Chemical Industries, Ltd., Maruka Linker M H-2, Marca Linker M S-4, Marca Linker M S-2, Marca Linker M S-1, Nippon Soda Co., Ltd. Company-made, VP-8000, VP-15000, etc. can be mentioned.
  • Examples of the alkaline water-soluble polymer having a sulfonamide group include a polymer composed of a minimum structural unit derived from a compound having a sulfonamide group as a main component.
  • Examples of such a compound include a compound having one or more sulfonamide groups in which at least one hydrogen atom is bonded to a nitrogen atom, and one or more polymerizable unsaturated groups in the molecule.
  • a low molecular weight compound having an acryloyl group, an allyl group or a vinyloxy group and a substituted or monosubstituted aminosulfonyl group or a substituted sulfonylimino group in a molecule is preferable.
  • m-aminosulfonylphenyl methacrylate, N- (p-aminosulfonylphenyl) methacrylamide, N- (p-aminosulfonylphenyl) acrylamide and the like can be suitably used.
  • alkaline water-soluble polymer having an active imide group examples include a polymer composed of a minimum structural unit derived from a compound having an active imide group as a main component.
  • examples of such compounds include compounds having one or more active imide groups represented by the following structural formulas and one or more polymerizable unsaturated groups in the molecule.
  • N- (p-toluenesulfonyl) methacrylamide, N- (p-toluenesulfonyl) acrylamide and the like can be suitably used.
  • an alkaline water-soluble polymer having a carboxyl group for example, a polymer having as a main constituent component a minimum structural unit derived from a compound having one or more carboxyl group and one or more polymerizable unsaturated groups in the molecule It can be mentioned. Specifically, polymers using unsaturated carboxylic acid compounds such as acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and the like can be mentioned.
  • an alkali-soluble polymer having a sulfo group for example, a polymer having as a main constitutional unit a minimum constitutional unit derived from a compound having one or more sulfo group and at least one polymerizable unsaturated group in the molecule is mentioned.
  • alkaline water-soluble polymer having a phosphonic group for example, a polymer having as a main constituent component a minimum structural unit derived from a compound having one or more of a phosphonic group and a polymerizable unsaturated group in the molecule It can be mentioned.
  • the minimum constituent unit having an acidic group which constitutes the alkaline water-soluble polymer does not have to be particularly limited to one type, and the minimum constitution unit having two or more types of minimum constituent units having the same acidic group or different acidic groups What co-polymerized 2 or more types of units can also be used.
  • a method of copolymerization As a method of copolymerization, a graft copolymerization method, a block copolymerization method, a random copolymerization method and the like which are conventionally known can be used.
  • the copolymer preferably contains 10 mol% or more of a compound having an acidic group to be copolymerized in the copolymer, and more preferably 20 mol% or more.
  • the compound when the compound is copolymerized to form a copolymer, another compound not containing an acidic group can also be used as the compound.
  • the other compounds containing no acidic group include the compounds listed in the following (m1) to (m11).
  • (M1) Acrylic acid esters having aliphatic hydroxyl group such as 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate, and methacrylic acid esters.
  • (M2) methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, benzyl acrylate, 2-chloroethyl acrylate, glycidyl acrylate, N-dimethylaminoethyl acrylate Alkyl acrylates such as acrylates;
  • (M3) Methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, 2-ch
  • (M4) Acrylamide, methacrylamide, N-methylol acrylamide, N-ethyl acrylamide, N-hexyl methacrylamide, N-cyclohexyl acrylamide, N-hydroxyethyl acrylamide, N-phenyl acrylamide, N-nitrophenyl acrylamide, N-ethyl- Acrylamide or methacrylamide such as N-phenyl acrylamide.
  • (M5) Vinyl ethers such as ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, octyl vinyl ether, phenyl vinyl ether and the like.
  • (M6) Vinyl esters such as vinyl acetate, vinyl chloroacetate, vinyl butyrate and vinyl benzoate.
  • Styrenes such as styrene, ⁇ -methylstyrene, methylstyrene and chloromethylstyrene.
  • (M8) Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, phenyl vinyl ketone and the like.
  • Olefins such as ethylene, propylene, isobutylene, butadiene and isoprene.
  • (M10) N-vinylpyrrolidone, N-vinylcarbazole, 4-vinylpyridine, acrylonitrile, methacrylonitrile and the like.
  • (M11) Unsaturated imides such as maleimide, N-acryloyl acrylamide, N-acetyl methacrylamide, N-propionyl methacrylamide, N- (p-chlorobenzoyl) methacrylamide and the like.
  • the weight average molecular weight is 1.0 ⁇ 10 3 to 2.0 ⁇ 10 5 and the number average molecular weight is 5.0 ⁇ 10 2 to 1.0 Those in the range of ⁇ 10 5 are preferable. Further, those having a polydispersity (weight-average molecular weight / number-average molecular weight) of 1.1 to 10 are preferable.
  • a copolymer When a copolymer is used as the polymer component, it constitutes the minimum structural unit derived from the compound having an acidic group, which constitutes the main chain and / or the side chain, and constitutes a part of the main chain and / or the side chain
  • the compounding weight ratio with the other minimum structural unit not containing an acidic group is preferably in the range of 50:50 to 5:95, and more preferably in the range of 40:60 to 10:90.
  • each of the above polymer components may be used, or two or more types of them may be used in combination, and in the range of 30 to 99% by mass with respect to the total solid content contained in the composition It is preferable to use it, more preferably in the range of 40 to 95% by mass, and still more preferably in the range of 50 to 90% by mass.
  • the specific gravity of the metal particles is larger than the specific gravity of the polymer component with respect to the metal particles and the polymer component described above, because the formation of the through holes is easy in the dissolving step described later.
  • the specific gravity of the metal particles is 1.5 or more, and the specific gravity of the polymer component is more preferably 0.9 or more and less than 1.5.
  • the above-mentioned composition is a nonionic surfactant as described in JP-A-62-251740 and JP-A-3-208514, JP-A-59-121044, JP-A-4-104. Amphoteric surfactants as described in 13149 can be added.
  • nonionic surfactant examples include sorbitan tristearate, sorbitan monopalmitate, sorbitan trioleate, stearic acid monoglyceride, polyoxyethylene nonyl phenyl ether and the like.
  • amphoteric surfactant examples include alkyldi (aminoethyl) glycine, alkylpolyaminoethylglycine hydrochloride, 2-alkyl-N-carboxyethyl-N-hydroxyethylimidazolinium betaine, N-tetradecyl-N, N- Betaine type (for example, trade name Amogen K, manufactured by Dai-ichi Kogyo Co., Ltd.) and the like can be mentioned.
  • the content in the case of containing the surfactant is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass with respect to the total solid content contained in the composition. preferable.
  • solvent can be added to the composition from the viewpoint of workability when forming a resin layer.
  • the solvent include, for example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, methanol, ethanol, propanol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-methoxyethyl acetate, 1-methoxy-2-propyl Acetate, dimethoxyethane, methyl lactate, ethyl lactate, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylurea, N-methylpyrrolidone, dimethylsulfoxide, sulfolane, ⁇ -butyrolactone, toluene, water, etc. These may be used alone or in combination of two or more.
  • the formation method of the resin layer using the composition mentioned above is not specifically limited, The method of apply
  • the coating method on the metal foil before the formation of the through holes is not particularly limited.
  • bar coating method, slit coating method, ink jet method, spray method, roll coating method, spin coating method, cast coating method, slit and spin method Methods such as a method and a transfer method can be used.
  • n the thickness of the resin layer to be formed
  • r the average particle size of the particles contained in the composition
  • the units of n and r both represent ⁇ m.
  • the thickness of the resin layer formed in the resin layer forming step is 0.5 to 4 ⁇ m from the viewpoint of the resistance to the etchant used in the dissolving step described later and the workability in the resin layer removing step described later. And preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the average thickness of the resin layer refers to the average value of the thickness of any five points measured when the cross section was observed with an electron microscope by cutting using a microtome.
  • a polymer component the same thing as the polymer component contained in the composition used at the resin layer formation process mentioned above is mentioned.
  • the protective layer formed in the optional protective layer forming step is the same layer as the above-described resin layer except that the above-described metal particles are not embedded, and the above-described metal is also used for the method of forming the protective layer. It can form by the method similar to the resin layer mentioned above except not using particle
  • a protective layer formation process as long as it is a process before a dissolution process, an order in particular is not limited, It may be a process performed before and / or simultaneously with a resin layer formation process mentioned above.
  • the metal foil before forming the through hole having the resin layer is brought into contact with the etchant to form metal particles and metal foil before forming the through hole. It is a process of dissolving a part and forming a penetration hole in metal foil, and is a process of forming a penetration hole in metal foil by what is called chemical etching processing.
  • Etchant As the etchant, if it is an etchant suitable for the metal species of the metal particles and the metal foil, it is possible to appropriately use a chemical solution of acid or alkali or the like.
  • the acid include hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrogen peroxide, acetic acid and the like.
  • an alkali, caustic soda, caustic potash etc. are mentioned.
  • alkali metal salt for example, alkali metal silicates such as sodium tasilicate, sodium silicate, potassium metasilicate, potassium silicate, etc .; alkali metal carbonates such as sodium carbonate, potassium carbonate; sodium aluminate, aluminum Alkali metal aluminates such as potassium hydroxide; alkali metal aldonates such as sodium gluconate and potassium gluconate; sodium dibasic phosphate, potassium dibasic phosphate, sodium tribasic phosphate, potassium tribasic phosphate and the like And alkali metal hydrogen phosphates.
  • inorganic salts such as iron (III) chloride and copper (II) chloride can also be used. In addition, these may be used alone or in combination of two or more.
  • the processing for forming the through holes is performed by bringing the metal foil prior to the formation of the through holes having the resin layer into contact with the above-described etchant.
  • the method of contact is not particularly limited, and examples thereof include a dipping method and a spraying method.
  • the immersion time is preferably 15 seconds to 10 minutes, more preferably 30 seconds to 6 minutes.
  • the liquid temperature of the etchant at the time of immersion is preferably 25 to 70 ° C., and more preferably 30 to 60 ° C.
  • the resin layer removing step included in the through hole forming step 2 is a step of removing the resin layer after the above-described dissolving step.
  • the method for removing the resin layer is not particularly limited, but in the case of using the above-described alkaline water-soluble polymer as the polymer component, a method for dissolving and removing the resin layer using an alkaline aqueous solution is preferable.
  • alkaline aqueous solution examples include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia; primary amines such as ethylamine and n-propylamine ; Secondary amines such as diethylamine and di-n-butylamine; Tertiary amines such as triethylamine and methyl diethylamine; Alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide and tetraethylammonium hydroxide And quaternary ammonium salts such as; cyclic amines such as pyrrole and pigeridine; and the like. These may be used alone or in combination of two or more. An appropriate amount of alcohol and surfactant can be added to the above alkaline aqueous solution.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate,
  • the process of removing the resin layer is performed, for example, by bringing the metal foil having the resin layer after the dissolving step into contact with the above-described alkaline aqueous solution.
  • the method of contact is not particularly limited, and examples thereof include a dipping method and a spraying method.
  • the immersion time is preferably 5 seconds to 5 minutes, more preferably 10 seconds to 2 minutes.
  • the alkaline aqueous solution at the time of immersion is preferably 25 to 60 ° C., and more preferably 30 to 50 ° C.
  • the average opening diameter, the average opening ratio and the number density of the through holes in the metal foil are, for example, the immersion time in the etchant in the melting step described above, and the content of the metal particles in the composition used in the resin layer forming step described above. It can be adjusted, etc.
  • the through-hole formation process 2 has a process of performing anticorrosion treatment.
  • the timing of applying the anticorrosion treatment is not particularly limited.
  • the treatment may be applied to the metal foil used in the resin layer forming step, and the triazole or the like described later with respect to the alkaline aqueous solution in the resin layer removing step It may be a treatment to be added or a treatment to be applied after the resin layer removal step.
  • the anticorrosive treatment for example, a treatment of immersing a metal foil in a solution having a pH of 5 to 8.5 in which at least a triazole is dissolved in a solvent to form an organic dielectric film can be mentioned.
  • triazoles include benzotriazole (BTA) and tolyltriazole (TTA).
  • BTA benzotriazole
  • TTA tolyltriazole
  • various organic rustproofing agents, thiazoles, imidazoles, mercaptans, toluethanolamine and the like can also be used.
  • Water or an organic solvent (especially alcohol) can be suitably used as a solvent used for the anticorrosion treatment, but the uniformity of the organic dielectric film to be formed and the thickness control at the time of mass production can be easily performed, and it is simple. Furthermore, in view of the influence on the environment, etc., it is preferable that the water is mainly composed of deionized water.
  • the dissolution concentration of the triazoles is appropriately determined in relation to the thickness of the organic dielectric film to be formed and the processing time, but generally, it may be about 0.005 to 1% by weight.
  • the temperature of the solution may be room temperature, but if necessary, it may be used by heating.
  • the immersion time of the metal foil in the solution is appropriately determined depending on the dissolution concentration of the triazole and the thickness of the organic dielectric film to be formed, but it may be usually about 0.5 to 30 seconds.
  • Another specific example of the anticorrosion treatment is a method of immersing the metal foil in an aqueous solution formed by dissolving at least one member selected from the group of chromium trioxide, chromate, and dichromate in water.
  • a method of forming an inorganic dielectric film mainly composed of a mixed oxide is a method of forming an inorganic dielectric film mainly composed of a mixed oxide.
  • potassium chromate or sodium chromate is preferable as the chromate
  • potassium dichromate or sodium dichromate is suitable as the dichromate.
  • the dissolution concentration is usually set to 0.1 to 10% by mass, and the liquid temperature may be about room temperature to 60 ° C.
  • the pH value of the aqueous solution is not particularly limited from the acidic region to the alkaline region, but is usually set to 1 to 12.
  • the immersion time of metal foil is suitably selected by the thickness etc. of the inorganic dielectric film to form.
  • the processing of each step may be performed in a so-called sheet-fed method using a cut sheet metal foil, or a long metal foil may be elongated by a predetermined transport path.
  • a process by so-called Roll to Roll (hereinafter, also referred to as “RtoR”) may be performed, in which the process of each process is performed while being transported in the direction.
  • RtoR refers to the resin layer forming process described above by each processing device disposed on the transport path while delivering the metal foil from a roll formed by winding a long metal foil and transporting it in the longitudinal direction.
  • the melting step, etc. sequentially and successively, and the treated metal foil (that is, the metal foil after forming the through holes) is wound again in a roll shape.
  • the through hole forming step 2 as described above, the metal particles and a part of the metal foil before forming the through hole are dissolved by the melting step to form the through hole. Therefore, since each process can be performed continuously without complicating the process, each process can be easily performed with RtoR. The productivity can be further improved by performing the through hole forming step 2 with RtoR.
  • the through hole forming step may be performed before or after the surface roughening step. Therefore, as shown in FIG. 6 and FIG. 7, the metal foil of the present invention can be manufactured by performing the above-mentioned roughening process after the above-mentioned through-hole formation process 2.
  • the metal foil of the present invention may be produced by performing the above-mentioned through hole forming step 2 on the metal foil which has been subjected to the surface roughening treatment.
  • each process of the roughening process and the through hole forming process 2 may be sequentially and continuously performed by RtoR.
  • through hole forming step 3 by performing the dissolving step after the resin layer forming step, the metal particles and a part of the metal foil are brought into contact with the etchant and dissolved to form through holes in the metal foil, and then the resin In the through hole forming step 3, as shown in FIG. 8 to FIG. 11, after the resin layer forming step (FIG. 8), the particles are removed before the dissolving step (the through hole forming step 3).
  • a dissolving step FIG. 9 and FIG.
  • a resin layer removing step (FIG. 10 and FIG. 11) is performed.
  • the respective steps of the through hole forming step 3 are the same as the respective steps of the through hole forming step 2 except for the particle removing step.
  • the particles contained in the resin layer are not limited to metal particles, and inorganic fillers, inorganic-organic composite fillers, etc. can be used.
  • the resin layer in which the recess is formed in the part where the particle is embedded is obtained, and in the subsequent dissolving step, it penetrates from the recess of the resin layer as a starting point A hole is formed.
  • the through hole is formed starting from the recess of the resin layer, in the deepest part of the recess, the extremely thin resin layer remains or there is a portion where the metal foil is exposed. It is considered that the etchant infiltrates from the concave portion more preferentially than that and a through hole is formed in the metal foil.
  • Inorganic fillers include metals and metal compounds, and metal compounds include, for example, oxides, complex oxides, hydroxides, carbonates, sulfates, silicates, phosphates, nitrides, carbides, etc. Sulfides, and at least two or more complex compounds of these, and the like can be mentioned.
  • glass, silica, alumina, potassium titanate, strontium titanate, aluminum borate, magnesium oxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium phosphate and calcium sulfate are preferable.
  • organic-organic composite filler examples include composites in which particle surfaces of synthetic resin particles, natural polymer particles and the like are coated with the above-mentioned inorganic filler.
  • synthetic resin particles include acrylic resin, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polyethylene imine, polystyrene, polyurethane, polyurea, polyester, polyamide, polyimide, carboxymethyl cellulose, gelatin, starch, Chitin and resin particles such as chitosan can be mentioned.
  • resin particles of acrylic resin, polyethylene, polypropylene and polystyrene are preferable.
  • the method for removing the particles is not particularly limited. For example, as shown in FIG. 8, if it is a resin layer in which a part of each particle is embedded, it is embedded in the resin layer of the particles.
  • the particles can be removed by applying an external force to a portion not covered with a sponge or a brush.
  • the method of removing the particles is that the surface of the resin layer in which at least a part of each of the particles is embedded is a solvent because the method of removing the particles can be quickly removed without changing the shape of the resin layer.
  • grains by rubbing in the state which was immersed in is preferable.
  • “the surface of the resin layer in which at least a part of each particle is embedded” means each particle and resin when a part of each particle is embedded in the resin layer as shown in FIG. The surface of the layer is referred to, and when all of the particles are embedded in the resin layer, the surface of the resin layer is referred to.
  • the solvent is not particularly limited as long as it dissolves the resin layer, and, for example, the same solvent as the solvent described as an optional component of the composition used in the above-described resin layer forming step can be used.
  • the method of rubbing the surface of a resin layer is not specifically limited, For example, the method of rubbing using a sponge, a brush (for example, a wire brush, a nylon brush roll) etc. is mentioned.
  • reaction residues may be generated depending on the combination of the etchant and the metal foil in the step of dissolving the metal foil. The presence of reaction residues can cause corrosion over time. Therefore, after the through hole forming step, the step of washing with a treatment liquid may be included to remove the reaction residue.
  • the metal foil when a copper foil is used as the metal foil and an aqueous solution of iron (III) chloride is used as the etchant, at least one selected from the group consisting of hydrochloric acid, aqueous ammonia, sodium thiosulfate, and ethanol as the processing solution.
  • the reaction residue can be removed by subjecting it to a seed removal step.
  • a method of immersing in a liquid or a method of applying a liquid by a spray can be used.
  • the residue removing step may be performed before or after the resin layer removing step, as long as the metal foil is dissolved to form the through holes.
  • the metal foil of the present invention can be used as a current collector for a power storage device (hereinafter, also referred to as “current collector”).
  • a current collector for a power storage device
  • the current collector can reduce the size and weight of the power storage device, or increase the thickness of the active material to achieve high energy density.
  • the surface area ratio ⁇ S of the surface of the metal foil is 2% or more, the current collector has good adhesion to the active material layer and the activated carbon, and peeling of the active material layer can be suppressed.
  • an electricity storage device excellent in productivity such as cycle characteristics, output characteristics, coating suitability and the like can be manufactured.
  • the current collector using the metal foil of the present invention has a surface area ratio ⁇ S of 2% or more despite the small thickness, so the volume expansion during charge and discharge as a negative electrode material and a positive electrode material of a secondary battery Even when a material with a large shrinkage is used, peeling of the negative electrode material and the positive electrode material from the current collector due to expansion and contraction of the volume during charge and discharge can be prevented.
  • the metal foil of the current collector since the metal foil of the current collector has high strength, even when a material having a large expansion and contraction during charging and discharging is used as the negative electrode material and the positive electrode material of the secondary battery, the expansion of the volume during charging and discharging Damage due to contraction can be prevented.
  • the metal foil has a plurality of through holes in the thickness direction
  • pre-doping of lithium in a short time becomes possible, and lithium is dispersed more uniformly.
  • the current collector using the metal foil of the present invention has high strength in spite of having a plurality of through holes, and therefore, as a negative electrode material and a positive electrode material of a secondary battery, expansion and contraction of volume during charge and discharge Even when a large material is used, damage due to expansion and contraction of the volume during charge and discharge can be prevented.
  • active material layer There is no limitation in particular as an active material layer, and the well-known active material layer used in the conventional electrical storage device can be utilized. Specifically, when a metal foil is used as a current collector of a positive electrode (positive electrode for secondary battery), the active material and the conductive material, binder, solvent, etc. which may be contained in the active material layer are as follows. The materials described in paragraphs [0077] to [0088] of JP 2012-216513 A can be suitably adopted, the contents of which are incorporated herein by reference. Above all, when using sulfur or a compound containing sulfur as the active material of the positive electrode, expansion and contraction of the volume at the time of charge and discharge become large.
  • the metal foil of the present invention which can suppress peeling and breakage due to expansion and contraction of the volume during charge and discharge is suitably used as the current collector of the positive electrode.
  • the active material in the case of using a metal foil as a current collector of a negative electrode (a negative electrode for a secondary battery)
  • appropriately employing the material described in paragraph [0089] of JP-A-2012-216513 The contents of which are incorporated herein by reference.
  • a material containing a metal that can form an alloy with lithium such as Sn and Si as the active material of the negative electrode, for example, tin oxide, silicon oxide, amorphous tin oxide, tin silicon oxide, etc. Expansion and contraction of the volume of the Therefore, when such an active material is used, the metal foil of the present invention which can suppress peeling and breakage due to expansion and contraction of the volume during charge and discharge is suitably used as the current collector of the negative electrode.
  • the electrode using the metal foil of the present invention as a current collector can be used as a positive electrode or a negative electrode of an electricity storage device.
  • the materials and applications described in paragraphs [0090] to [0123] of JP 2012-216513 A are suitably used. It may be employed, the contents of which are incorporated herein by reference.
  • the positive electrode using the metal foil of the present invention as a collector is a positive electrode collector using a metal foil for the positive electrode, and a layer containing a positive electrode active material formed on the surface of the positive electrode collector (positive electrode active material layer) And a positive electrode (positive electrode for secondary battery).
  • a positive electrode active material the conductive material which may be contained in the above-mentioned positive electrode active material layer, the binder, the solvent and the like, see paragraphs [0077] to [0088] of JP 2012-216513A.
  • the materials described can be employed as appropriate, the contents of which are incorporated herein by reference.
  • the negative electrode using the metal foil of the present invention as a current collector has a negative electrode current collector using a metal foil as the negative electrode, and a negative electrode (two layers including a negative electrode active material formed on the surface of the negative electrode current collector). (Negative electrode for the next battery).
  • the negative electrode active material the material described in paragraph [0089] of JP-A-2012-216513 can be appropriately adopted, and the contents thereof are incorporated herein by reference.
  • the metal foil of the present invention is not only a current collector for an electricity storage device, but also a heat resistant filter, a heat resistant particulate filter, a soundproofing material, an oil recovery filter, an electrostatic filter, an antibacterial filter, a liquid reforming filter, a water electrolytic filter, an exhaust gas purification filter Food filter, marine biological filter, dust filter, DNA (deoxyribonucleic acid) filter, fine particle classification filter, solid-liquid separation filter, deodorizing filter, photocatalyst support, hydrogen generation catalyst carrier, enzyme electrode, carrier of noble metal absorbent, Carrier for antibacterial, adsorbent, absorbent, optical filter, far infrared cut filter, soundproof / sound absorbing material, electromagnetic wave shield, gas diffusion layer / separator of direct type fuel cell, net for oxygen storage of microorganism storage container, material for construction, It can also be used for lighting applications, metal decoration applications, and the like.
  • ⁇ SUS foil A Nippon Steel & Sumikin Materials Co., Ltd.
  • NSSCFW2 thickness 10 ⁇ m
  • SUS foil B Nippon Steel & Sumikin Materials Co., Ltd.
  • SUS foil C NSSCWF1 manufactured by Nippon Steel & Sumikin Materials Co., Ltd. 10 ⁇ m thick
  • Aluminum foil 1085 material made by UACJ, 20 ⁇ m thick
  • Electrolytic copper foil Fukuda Metal Foil & Powder Industry Co., Ltd.
  • the mass ratio of Cr + 3.3 ⁇ Mo, which is a constituent element of each SUS foil, is 19 wt% of SUS foil A, 21 wt% of SUS foil B, and 15 wt% of SUS foil C.
  • composition 1 for resin layer formation prepared to the following composition was apply
  • a composition prepared in the same ratio as the composition 1 for forming a resin layer described below is applied except that copper particles are removed, dried, and a protective layer having a thickness of about 1 ⁇ m. B1 was formed.
  • ⁇ Negative electrode 1> The negative electrode active material containing Si as a negative electrode material was coated on both sides of the prepared metal foil to prepare a negative electrode (negative electrode 1).
  • a slurry was prepared by adding 70 parts by mass of ground Si, 30 parts by mass of a binder (manufactured by Nippon Zeon Co., Ltd. BM-400B), and 30 parts by mass as an active material for a negative electrode, and dispersing it in water.
  • the prepared slurry is coated on both sides of the produced metal foil by a die coater to a total thickness of 200 ⁇ m, dried at 120 ° C. for 30 minutes, and an active material layer is formed on the surface of the metal foil.
  • a negative electrode was produced.
  • ⁇ Positive electrode 1> The positive electrode active material containing LiCoO 2 as a positive electrode material was applied to both sides of the prepared metal foil to prepare a positive electrode (positive electrode 1).
  • a slurry was prepared by adding 90 parts by mass of a powder of LiCoO 2 and 10 parts by mass of a binder (KF polymer manufactured by Kleha Co., Ltd.) as active materials for positive electrodes to water and dispersing.
  • the prepared slurry is coated on both sides of the produced metal foil by a die coater to a total thickness of 200 ⁇ m, dried at 120 ° C. for 30 minutes, and an active material layer is formed on the surface of the metal foil.
  • the positive electrode was produced.
  • Example 1 The negative electrode 1 was manufactured using the SUS foil A subjected to the surface roughening step and the through hole forming step 1 as a current collector for the negative electrode. Moreover, said positive electrode 1 was produced by using the aluminum foil which formed the through-hole as mentioned above as a positive electrode collector.
  • Example 2 A negative electrode 1 and a positive electrode 1 were produced in the same manner as in Example 1 except that the SUS foil B subjected to the roughening step and the through hole forming step was used as the current collector for the negative electrode.
  • Example 3 A negative electrode 1 and a positive electrode 1 were produced in the same manner as in Example 1 except that the SUS foil C subjected to the surface roughening step and the through hole forming step was used as the current collector for the negative electrode.
  • Comparative Example 1 A negative electrode 1 and a positive electrode 1 were produced in the same manner as in Example 1 except that an untreated SUS foil A not subjected to the roughening step and the through hole forming step was used as the current collector for the negative electrode.
  • coin-type batteries were produced, and charge / discharge cycles and adhesion were evaluated.
  • the coin-type battery was of CR2032 type (20 mm in diameter, 3.2 mm in thickness), and was manufactured using the positive electrode and the negative electrode manufactured above.
  • ⁇ Negative electrode 2> The negative electrode active material containing carbon graphite as a negative electrode material was coated on both sides of the prepared metal foil to prepare a negative electrode (negative electrode 2).
  • a slurry is prepared by adding and dispersing 70 parts by mass of ground SiO (or Si) and 30 parts by mass of a binder (Nippon Zeon Co., Ltd. BM-400B) as an active material for a negative electrode to water. did.
  • the prepared slurry is coated on both sides of the produced metal foil by a die coater to a total thickness of 200 ⁇ m, dried at 120 ° C. for 30 minutes, and an active material layer is formed on the surface of the metal foil.
  • a negative electrode was produced.
  • a positive electrode (positive electrode 2) was produced using a composite material of sulfur and carbon as a positive electrode active material.
  • a sulfur-carbon composite material in which sulfur and carbon fine particles were mixed at 1: 1 and fired was used.
  • the conductive auxiliary agent acetylene black and CMC (carboxymethyl cellulose) were added to what was grind
  • the ratio of sulfur-carbon composite, acetylene black, CMC was 90: 5: 5.
  • the prepared slurry is coated on both sides of the produced metal foil by a die coater to a total thickness of 200 ⁇ m, dried at 120 ° C. for 30 minutes, and an active material layer is formed on the surface of the metal foil.
  • the positive electrode was produced.
  • Example 4 Using the SUS foil A subjected to the surface roughening step and the through hole forming step 1 as a positive electrode current collector, the above positive electrode 2 was produced. Moreover, said negative electrode 2 was produced by making the electrolytic copper foil which formed the through-hole as mentioned above into a current collector for negative electrodes.
  • Example 5 A positive electrode 2 and a negative electrode 2 were produced in the same manner as in Example 1 except that the SUS foil B subjected to the surface roughening step and the through hole forming step was used as the current collector for the positive electrode.
  • Example 6 A positive electrode 2 and a negative electrode 2 were produced in the same manner as in Example 1 except that the SUS foil C subjected to the surface roughening step and the through hole forming step was used as the current collector for the positive electrode.
  • Example 7 After the (c) resin layer removing step, a negative electrode current collector was produced in the same manner as in Example 4 except that the following (d) residue removing step was carried out, and a negative electrode 2 was produced.
  • the positive electrode 2 was the same as in Example 4.
  • ⁇ (D) Residue removal process The metal foil was dipped in 1% hydrochloric acid for 10 seconds, then washed by spraying and dried to prepare a metal foil having through holes. Before and after the residue removal step, halogen was detected by XRF analysis and the reaction residue was measured. The detected amount of chlorine atoms before the residue removal step was 0.44 mass%, while the residue removal step was The weight of 0.0035% by mass of
  • Comparative Example 2 A positive electrode 2 and a negative electrode 2 were produced in the same manner as in Example 1 except that an untreated aluminum foil not subjected to the surface roughening step and the through hole forming step was used as the current collector for the positive electrode.
  • Example 4 The negative electrode current collectors of Example 4 and Example 7 were left in an atmosphere with a temperature of 60 ° C. and a relative humidity of 70% for one week, and then the presence or absence of corrosion was visually confirmed. As a result, corrosion was confirmed on the surface of the negative electrode current collector used in Example 4, and no corrosion was generated on the surface of the negative electrode current collector used in Example 7. The results are shown in Table 2.
  • the examples using the metal foil of the present invention as a current collector show high cycle characteristics during charge and discharge and good adhesion.
  • the comparative example using a metal foil having a small surface area ratio ⁇ S as a current collector has low cycle characteristics and low adhesion.
  • the surface area ratio ⁇ S is preferably 5% or more. Further, from the comparison between Example 1 and Example 3 and the comparison between Example 4 and Example 6, it is understood that it is preferable to have a through hole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

薄く、かつ、高強度で、活物質との密着性の高い金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極を提供することを課題とする。厚みが5μm以上100μm未満であり、銅箔、銀箔、金箔、白金箔、ステンレス箔、チタン箔、タンタル箔、モリブデン箔、ニオブ箔、ジルコニウム箔、タングステン箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、錫箔、亜鉛箔、鉄箔、ニッケル箔、パーマロイ箔、ニクロム箔、42アロイ箔、コバール箔、モネル箔、インコネル箔、および、ハステロイ箔からなる群から選択される箔であり、または、この群から選択される箔と、選択された箔とは異なる種類の金属とが積層されてなる金属箔であって、表面積比ΔSが2%以上である。

Description

金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
 本発明は、金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極に関する。
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器や、ハイブリッド自動車、電気自動車等の開発に伴い、その電源としての蓄電デバイス、特に、リチウムイオンキャパシタ、リチウムイオン二次電池、電気二重層キャパシタが知られており、特にリチウムイオン二次電池の需要が増大している。
 このような蓄電デバイスにおいては、金属箔からなる電極用集電体(以下、単に「集電体」という)の表面に、活性炭などの活物質を塗布されたものが、正極または負極の電極として用いられることが知られている。このような集電体としては、アルミニウム箔や銅箔などの金属箔が用いられる。
 例えば、特許文献1には、複数の貫通孔を有する金属箔と金属箔の片面または両面に被覆された活物質層を有する電極が記載されている([請求項1])。
特開2013-077734号公報
 ところで、リチウムイオン二次電池等の蓄電デバイスは、更に小型軽量化すること、および、エネルギー密度をより高くすることが求められている。蓄電デバイスにおいて、小型軽量化および高エネルギー密度化するための方策として、集電体の厚みをより薄くすることが考えられる。集電体の厚みを薄くすることで小型軽量化することができ、あるいは、活物質の厚みを増やして高エネルギー密度化することもできる。
 また、小型軽量化および高エネルギー密度化するための他の方策として、活物質の材料が検討されている。具体的には、負極材として、シリコン(Si)、スズ(Sn)、および、これらの酸化物等を用いることが検討されている。また、正極材として、硫黄または、硫黄を含む化合物を用いることが検討されている。
 これらの材料は、二次電池の充放電時の体積の膨張収縮が大きい。そのため、従来の負極用集電体では強度不足で、充放電時の体積の膨張収縮により破損するという問題があった。特に、集電体の厚みを薄くすると強度不足による破損の問題が顕著になる。
 また、充放電時の活物質の体積の膨張収縮が大きいと、膨張収縮により活物質と集電体とが剥離してしまうおそれがある。そのため、活物質と集電体との密着性を高くする必要がある。活物質と集電体との密着性を高くする方法として集電体の表面を粗面化することが考えられる。しかしながら、集電体の厚みが薄いと、粗面化する際に破損し易くなるため粗面化することが難しいという問題があった。
 そこで、本発明は、薄く、かつ、高強度で、活物質との密着性の高い金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極を提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、厚みが5μm以上100μm未満であり、銅箔、銀箔、金箔、白金箔、ステンレス箔、チタン箔、タンタル箔、モリブデン箔、ニオブ箔、ジルコニウム箔、タングステン箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、錫箔、亜鉛箔、鉄箔、ニッケル箔、パーマロイ箔、ニクロム箔、42アロイ箔、コバール箔、モネル箔、インコネル箔、および、ハステロイ箔からなる群から選択される箔であり、または、この群から選択される箔と、選択された箔とは異なる種類の金属とが積層されてなる金属箔であって、原子間力顕微鏡を用いて、金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、ΔS=(Sx-S0)/S0×100(%)により求められる表面積比ΔSが2%以上であることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を解決することができることを見出した。
 [1] 厚みが5μm以上100μm未満であり、
 銅箔、銀箔、金箔、白金箔、ステンレス箔、チタン箔、タンタル箔、モリブデン箔、ニオブ箔、ジルコニウム箔、タングステン箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、錫箔、亜鉛箔、鉄箔、ニッケル箔、パーマロイ箔、ニクロム箔、42アロイ箔、コバール箔、モネル箔、インコネル箔、および、ハステロイ箔からなる群から選択される箔であり、または、この群から選択される箔と、選択された箔とは異なる種類の金属とが積層されてなる金属箔であって、
 原子間力顕微鏡を用いて、金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる表面積比ΔSが2%以上である金属箔。
   ΔS=(Sx-S0)/S0×100(%)・・・(i)
 [2] 金属箔の厚み方向に貫通する複数の貫通孔を有し、
 貫通孔の平均開口径が1~100μmであり、かつ、貫通孔による平均開口率が0.5~30%である[1]に記載の金属箔。
 [3] 金属箔が、ステンレス箔である[1]または[2]に記載の金属箔。
 [4]ステンレス箔の構成元素の質量比がCr+3.3×Mo≧16(wt%)を満たす[3]に記載の金属箔。
 [5] 金属箔が銅箔である[1]または[2]に記載の金属箔。
 [6] 銅箔が、XRF解析によるハロゲンの検出量が0.4質量%以下である[5]に記載の金属箔。
 [7] [1]~[6]のいずれかに記載の金属箔からなる負極集電体と、
 負極集電体の表面に形成される、負極活物質を含む活物質層とを有し、
 負極活物質が、シリコン、錫、および、これらの酸化物の少なくとも1つである二次電池用負極。
 [8] [1]~[6]のいずれかに記載の金属箔からなる正極集電体と、
 正極集電体の表面に形成される、正極活物質を含む活物質層とを有し、
 正極活物質が、硫黄または、硫黄を含む化合物の少なくとも1つである二次電池用正極。
 [9] [1]~[6]のいずれかに記載の金属箔の製造方法であって、
 金属箔の表面を粗面化する粗面化工程を有し、
 粗面化工程によって、原子間力顕微鏡を用いて、金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる表面積比ΔSが2%以上である金属箔を作製する金属箔の製造方法。
   ΔS=(Sx-S0)/S0×100(%)・・・(i)
 [10]
 金属箔が銅箔であり、
 銅箔に貫通孔を形成する貫通孔形成工程と、
 貫通孔を形成した後に、塩酸、アンモニア水、チオ硫酸ナトリウム、および、エタノールからなる群から選択される少なくとも1種で洗浄する残渣除去工程と、を有する[9]に記載の金属箔の製造方法。
 以下に説明するように、本発明によれば、薄く、かつ、高強度で、活物質との密着性の高い金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極を提供することができる。
本発明の金属箔の一例を模式的に表す平面図である。 図1のB-B線断面図である。 本発明の金属箔を製造する方法の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の他の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の他の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の他の一例を説明するための模式的断面図である。 本発明の金属箔を製造する方法の他の一例を説明するための模式的断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[金属箔]
 本発明の金属箔は、
 厚みが5μm以上100μm未満であり、
 銅箔、銀箔、金箔、白金箔、ステンレス箔、チタン箔、タンタル箔、モリブデン箔、ニオブ箔、ジルコニウム箔、タングステン箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、錫箔、亜鉛箔、鉄箔、ニッケル箔、パーマロイ箔、ニクロム箔、42アロイ箔、コバール箔、モネル箔、インコネル箔、および、ハステロイ箔からなる群から選択される箔であり、または、この群から選択される箔と、選択された箔とは異なる種類の金属とが積層されてなる金属箔であって、
 原子間力顕微鏡を用いて、金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる表面積比ΔSが2%以上である金属箔である。
   ΔS=(Sx-S0)/S0×100(%)・・・(i)
 また、好ましい態様として、本発明の金属箔は、
 厚み方向に貫通する複数の貫通孔を有し、
 貫通孔の平均開口径が1~100μmであり、かつ、貫通孔による平均開口率が0.5~30%である金属箔である。
 図1は、本発明の金属箔を模式的に表す平面図であり、図2は、図1のB-B線断面図である。
 図1および図2に示す金属箔10は、厚み方向に複数の貫通孔6を有する。また、金属箔の厚みは5μm以上100μm未満である。また、金属箔の表面は粗面化されており、表面積比ΔSが2%以上である。
 本発明においては、厚みを5μm以上100μm未満とし、金属箔として、上記の群から選択される箔、または、上記群から選択される箔と選択された箔とは異なる種類の金属とが積層されてなる箔を用い、表面積比ΔSを2%以上とする。厚みが5μm以上100μm未満と薄いため、この金属箔を集電体として用いることで、蓄電デバイスを小型軽量化することができ、あるいは、活物質の厚みを増やして高エネルギー密度化することができる。また、上記種類の金属箔は高い強度を有するため、二次電池の負極材や正極材として充放電時の体積の膨張収縮が大きい材料を用いた場合でも、充放電時の体積の膨張収縮による破損を防止できる。また、金属箔の表面の表面積比ΔSが2%以上であるため、活物質(負極材または正極材)との接触面積が多くなる。そのため、二次電池の負極材や正極材として充放電時の体積の膨張収縮が大きい材料を用いた場合でも、充放電時の体積の膨張収縮による活物質と集電体との密着性を高くすることができ、剥離を抑制することができる。また、接触面積が大きくなることで出力特性、サイクル特性、レート特性等が良好となる。
 また、本発明においては、後述する方法によって金属箔を粗面化するため、厚みが5μm以上100μm未満の薄い金属箔であっても破損することなく粗面化することができる。
 〔表面積比〕
 ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値である。
  ΔS=(Sx-S0)/S0×100(%)・・・(i)
 また、本発明においては、表面積比ΔSを求めるために、原子間力顕微鏡(Atomic Force Microscope:AFM)により表面形状を測定し、3次元データを求める。測定は、例えば、以下の条件で行うことができる。
 すなわち、金属箔を1cm角の大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際、試料の表面形状(波構造)をZ方向のピエゾの変位でとらえる。ピエゾスキャナーは、XY方向について150μm、Z方向について10μm、走査可能なものを使用する。カンチレバーは共振周波数120~150kHz、バネ定数12~20N/mのもの(SI-DF20、NANOPROBE社製)を用い、DFMモード(Dynamic Force Mode)で測定する。また、求めた3次元データを最小二乗近似することにより試料のわずかな傾きを補正し基準面を求める。計測の際は、表面の50μm×50μmの範囲を512×512点測定する。XY方向の分解能は1.9μm、Z方向の分解能は1nm、スキャン速度は60μm/secとする。
 上記で求められた3次元データ(f(x,y))を用い、隣り合う3点を抽出し、その3点で形成される微小三角形の面積の総和を求め、実面積Sxとする。表面積比ΔSは、得られた実面積Sxと幾何学的測定面積S0とから、上記式(i)により求められる。
 活物質と集電体との密着性を高くする観点から、表面積比ΔSは、2%以上100%以下が好ましく、5%以上60%以下がより好ましい。
 〔貫通孔〕
 また、本発明の金属箔は厚み方向に貫通する複数の貫通孔を有し、貫通孔の平均開口径は1~100μmであり、かつ、貫通孔による平均開口率は0.5~30%であるのが好ましい。
 蓄電デバイスにおいて、負極にリチウムを過剰に添加することで、エネルギー密度を大きくする技術として、Liプレドープという方法が知られている。これはリチウムイオンキャパシタや、次世代のリチウムイオン二次電池に必要な技術である。集電体となる金属箔が多数の微細な貫通孔を有することで、Liプレドープを効率よく行なうことができる。
 ここで、金属箔が複数の貫通孔を有すると、強度が低くなってしまうため、充放電時の体積の膨張収縮により破損するおそれがある。特に、厚み5μm以上100μm未満の薄い金属箔では強度不足による破損のおそれが高くなる。
 これに対して、本発明の金属箔は、上記の群から選択される箔、または、上記群から選択される箔と選択された箔とは異なる種類の金属とが積層されてなる、高い強度の箔を用いるため、金属箔が複数の貫通孔を有する場合でも、充放電時の体積の膨張収縮による破損を防止できる。
 <平均開口率>
 プレドープ特性の観点からは、貫通孔の平均開口率は高い方が好ましい。また、隣接する貫通孔同士の孔間距離が大きいと、貫通孔間の領域ではリチウムイオンが到達しにくくなるため、プレドープの完了までの時間が長くなり、プレドープを効率よく行うことができない。すなわち、貫通孔の数密度が大きいほど孔間距離が短くなるため、リチウムイオンの拡散性を高めてプレドープ特性を向上することができる。しかしながら、平均開口率が一定の場合を考えると、貫通孔の数密度が大きすぎると、1つ1つの貫通孔の開口径が小さくなりすぎて、貫通孔内に負極材が浸入しにくくなるためプレドープ特性が低下するおそれがある。したがって、貫通孔の平均開口径および平均開口率は適切な範囲であることが好ましい。
 一方、強度の観点からは、貫通孔の平均開口率は低い方が好ましい。また、平均開口率が一定の場合には、大きな貫通孔を少数空けるよりも、小さな貫通孔を多数空けた方が好ましいが、過度に多いと孔と孔が連結してかえって強度を低下させる懸念があるため、適切な範囲が存在する。
 以上、プレドープ特性および強度の観点から、貫通孔の平均開口率は0.5~30%とするのが好ましく、1~10%であるのがより好ましく、2~8%であるのがさらに好ましい。
 ここで、貫通孔による平均開口率は、金属箔の一方の面側に平行光光学ユニットを設置し、平行光を透過させて、金属箔の他方の面から、光学顕微鏡を用いて金属箔の表面を倍率100倍で撮影し、写真を取得する。得られた写真の10cm×10cmの範囲における1mm×1mmの視野(5箇所)について、透過した平行光によって投影される貫通孔の開口面積の合計と視野の面積(幾何学的面積)とから、比率(開口面積/幾何学的面積)を算出し、各視野(5箇所)における平均値を平均開口率として算出する。
 貫通孔の数密度は、以下の方法で測定する。
 まず、金属箔の一方の面側に平行光光学ユニットを設置し、平行光を透過させて、金属箔の他方の面から、光学顕微鏡を用いて金属箔の表面を倍率100倍で撮影し、写真を取得する。得られた写真の10cm×10cmの範囲における1mm×1mmの視野(5箇所)について、透過した平行光によって投影される貫通孔の数と視野の面積(幾何学的面積)とから、数密度(貫通孔の数/幾何学的面積)を算出し、各視野(5箇所)における平均値を数密度として算出する。
 <平均開口径>
 また、貫通孔の平均開口径が小さすぎると、貫通孔内に活物質が浸入しにくくなるためプレドープ特性が低下するおそれがある。一方、貫通孔の平均開口径が大きすぎると、金属箔の強度が低下してしまう。従って、プレドープ特性および強度をより向上できる観点から、貫通孔の平均開口径は、1μm以上100μm以下が好ましく、1μm以上80μm以下がより好ましく、1μm以上40μm以下がさらに好ましく、1μm以上30μm以下が特に好ましい。
 貫通孔の平均開口径は、高分解能走査型電子顕微鏡(Scanning Electron Microscope(SEM))を用いて金属箔の表面を真上から倍率100~10000倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その直径を読み取って開口径とし、これらの平均値を平均開口径として算出する。
 なお、倍率は、貫通孔を20個以上抽出できるSEM写真が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、貫通孔部分の端部間の距離の最大値を測定した。すなわち、貫通孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、貫通孔部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の貫通孔が一体化したような形状の貫通孔の場合にも、これを1つの貫通孔とみなし、貫通孔部分の端部間の距離の最大値を開口径とする。
 〔箔種類〕
 また、本発明の金属箔においては、下記の金属箔を用いる。
 具体的には、金属箔として、銅箔、銀箔、金箔、白金箔、ステンレス箔(SUS(Steel Use Stainless)箔)、チタン箔、タンタル箔、モリブデン箔、ニオブ箔、ジルコニウム箔、タングステン箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、錫箔、亜鉛箔、鉄箔、ニッケル箔、パーマロイ箔、ニクロム箔、42アロイ箔、コバール箔、モネル箔、インコネル箔、および、ハステロイ箔からなる群から選択される箔が挙げられる。
 また、金属箔は上記種類の金属を含む異なる2種以上の金属が積層されたものであってもよい。
 金属箔の積層手法は特に限定されないが、メッキまたはクラッド材であることが好ましい。メッキに用いる金属は特に限定はないが、後述する製造方法で貫通孔を形成する場合には、貫通孔の形成に用いるエッチャントに対して溶解する金属原子を含む金属であればよい。メッキ種としては、例えば、ニッケル、クロム、コバルト、鉄、亜鉛、錫、銅、銀、金、白金、パラジウム、アルミニウム、などが挙げられる。
 メッキの手法は特に問わず、無電解メッキ、電解メッキ、溶融メッキ、化成処理、などがいずれも用いられる。
 また、上記金属箔に対してクラッド材を形成するのに用いる金属も特に限定はされず、エッチャントに対して溶解する金属原子を含む金属であることが好ましい。金属種としては、例えば、上記金属箔に用いられる金属が挙げられる。
 強度、粗面化が容易である点、および、貫通孔の形成が容易である等の観点から、金属箔としては、ステンレス箔、または、ニッケルメッキ鋼箔を用いるのが好ましく、ステンレス箔を用いることがより好ましい。
 ステンレス箔は、その構成元素により耐食性が変化することが知られており、特にクロム(Cr)、モリブデン(Mo)の含有量と相関する。本発明においては、表面形状および孔形成性の観点から、ステンレス箔の構成元素における、Cr+3.3×Moの質量比が16wt%以上であることが好ましく、18wt%以上20wt%以下であることがより好ましい。
 また、金属箔として銅箔を用いる場合には、銅箔は、XRF(X-ray Fluorescence)解析によるハロゲンの検出量が0.4質量%以下であることが好ましい。XRF解析は、例えば、RIGAKU社製ZSX PrimusIIで行うことができ、ハロゲン検出量を測定することができる。
 後述する金属箔の貫通孔形成処理において、エッチャントと金属箔との組み合わせによっては反応残渣が発生することがある。反応残渣が存在すると経時にて腐食が発生する可能性がある。反応残渣の量はXRF解析によるハロゲンの検出量によって判断することができ、ハロゲンの検出量が0.4質量%以下であると経時による腐食の可能性が低減でき好ましい。
 また、貫通孔を形成されていない状態の金属箔の破断強度としては、340N/mm2以上であることが好ましく、600N/mm2以上であるのことがより好ましく、800N/mm2以上であることがさらに好ましい。
 貫通孔を形成されていない状態の金属箔の破断強度を340N/mm2以上とすることで、貫通孔を形成した状態の金属箔の破断強度も高くすることができる。
 なお、金属箔の破断強度の測定は、JIS Z2241の金属材料引張試験方法に基づいて行う。引張試験機は(株)島津製作所製 AUTOGRAPH AGS-X 5kNを使用し、試料は5号試験片を用い、N=3で測定し、平均値を破断強度として測定する。
 〔厚み〕
 金属箔の厚みは、5μm以上100μm未満であり、ハンドリング性の観点から5μm~50μmであることが好ましく、8μm~30μmであることがより好ましい。
 ここで、金属箔の平均厚みは、接触式膜厚測定計(デジタル電子マイクロメータ)を用いて、任意の5点を測定した厚みの平均値をいう。
[金属箔の製造方法]
 次に、本発明の金属箔を製造する方法について説明する。
 金属箔の製造方法は、
 金属箔の表面を粗面化する粗面化工程を有する。
 また、金属箔の製造方法は、好適な態様として、厚み方向に貫通する複数の貫通孔を形成する貫通孔形成工程を有する。
 貫通孔形成工程は粗面化工程の前に行なってもよいし、後に行なってもよい。あるいは、貫通孔形成処理と粗面化処理を同時に行なってもよい。
 〔粗面化工程〕
 5μm以上100μm未満の薄い金属箔を粗面化する方法としては、金属箔をエッチャントに接触させて、金属箔中の金属間化合物(析出物あるいは晶出物)や金属結晶の欠陥部分などを局所的に溶解させて表面を粗面化する方法がある。この方法の場合、金属箔の材質ごとに金属間化合物の存在状況や固溶金属種が異なるため、材質ごとに事前に条件出しを行い、エッチャントの条件、エッチングの時間等の条件を調整すればよい。
 粗面化工程によって、原子間力顕微鏡を用いて、金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる表面積比ΔSが2%以上である金属箔を作製することができる。
   ΔS=(Sx-S0)/S0×100(%)・・・(i)
 〔貫通孔形成工程〕
 次に、貫通孔形成工程について説明する。
 貫通孔形成工程の一例(以下、「貫通孔形成工程1」ともいう)としては、金属箔をエッチャントに接触させて、金属箔中の金属間化合物(析出物あるいは晶出物)を起点に局所的に溶解を生じさせて貫通孔を形成する方法がある。この方法の場合、金属箔の材質ごとに金属間化合物の存在状況は異なるため、材質ごとに事前に条件出しを行い、エッチャントの条件、エッチングの時間等の条件を調整すればよい。
 上記貫通孔形成工程1で貫通孔を形成する場合には、上記粗面化工程と同時に行ってもよい。その場合は、材質ごとに事前に条件出しを行い、金属箔の表面が粗面化され、かつ、貫通孔が形成されるように、エッチャントの条件、エッチングの時間等の条件を調整すればよい。
 次に、貫通孔を形成する方法の他の一例(以下、「貫通孔形成工程2」という)について説明する。
 貫通孔形成工程2は、金属箔の一方の主面に、複数の金属粒子および重合体成分を含有する組成物を用いて、金属粒子の各々の一部が埋設された樹脂層を形成する樹脂層形成工程を有する。
 また、貫通孔形成工程2は、樹脂層形成工程の後に、樹脂層を有する金属箔をエッチャントに接触させて金属粒子および金属箔の一部を溶解し、金属箔に貫通孔を形成する溶解工程を有する。
 また、貫通孔形成工程2は、溶解工程の後に、樹脂層を除去する樹脂層除去工程を有する。
 更に、貫通孔形成工程2は、溶解工程の前に、金属箔の、樹脂層が形成される面とは反対側の主面に、重合体成分を含有する組成物を用いて保護層を形成する保護層形成工程を有していることが好ましい。
 貫通孔形成工程2においては、樹脂層形成工程を経た後に、金属粒子および金属箔の一部を溶解して貫通孔を形成する溶解工程を行い、その後に樹脂層を除去することにより、複数の微細な貫通孔を有する金属箔を簡便に作製できる。
 すなわち、樹脂層形成工程および溶解工程を有することにより、後述する図3~図5にも示す通り、金属粒子とともに、金属粒子が埋設していた部分に対応する位置で金属箔が厚み方向に溶解し、貫通孔が形成されるため、簡便に作製できると考えられる。
 次に、貫通孔形成工程2における各工程の概要について図3~図6を用いて説明した後に、貫通孔形成工程2が有する各処理工程について詳述する。
 貫通孔形成工程2は、複数の金属粒子および重合体成分を含有する組成物を用いた樹脂層形成工程により、図3に示すように、貫通孔形成前の金属箔1の一方の主面に、複数の金属粒子2の各々の一部が埋設された樹脂層3が形成される。
 また、貫通孔形成工程2は、重合体成分を含有する組成物を用いた任意の保護層形成工程により、図4に示すように、貫通孔形成前の金属箔1の、樹脂層3が形成される面とは反対側の主面に、保護層4を形成することが好ましい。
 また、貫通孔形成工程2は、樹脂層を有する金属箔をエッチャントに接触させて金属粒子および金属箔の一部を溶解する溶解工程により、図5に示すように、樹脂層3および金属箔(貫通孔形成後の金属箔7)に貫通孔5が形成される。
 また、貫通孔形成工程2は、樹脂層を除去する樹脂層除去工程により、図6に示すように、複数の貫通孔6を有する貫通孔形成後の金属箔7が形成される。なお、保護層形成工程を有している場合、図6に示すように、樹脂層除去工程により、樹脂層および保護層が除去されることにより、複数の貫通孔6を有する貫通孔形成後の金属箔7が形成される。
 <樹脂層形成工程>
 貫通孔形成工程2が有する樹脂層形成工程は、貫通孔形成前の金属箔の一方の主面に、複数の金属粒子および重合体成分を含有する組成物を用いて、金属粒子の各々の少なくとも一部が埋設された樹脂層を形成する工程である。
 (組成物)
 樹脂層形成工程で用いる組成物は、少なくとも複数の金属粒子および重合体成分を含有する組成物である。
 -金属粒子-
 上記組成物に含まれる金属粒子は、後述する溶解工程で用いるエッチャントに対して溶解する金属原子を含む粒子であれば特に限定されないが、金属および/または金属化合物から構成される粒子であることが好ましく、金属から構成される粒子がより好ましい。
 金属粒子を構成する金属としては、具体的には、例えば、アルミニウム、ニッケル、鉄、銅、ステンレス、チタン、タンタル、モリブデン、ニオブ、ジルコニウム、タングステン、ベリリウム、および、これらの合金などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、アルミニウム、ニッケル、および、銅であることが好ましく、アルミニウム、および、銅であることがより好ましい。
 金属粒子を構成する金属化合物としては、例えば、酸化物、複合酸化物、水酸化物、炭酸塩、硫酸塩、ケイ酸塩、リン酸塩、窒化物、炭化物、硫化物、および、これらの少なくとも2種以上の複合化物などが挙げられる。具体的には、酸化銅、酸化アルミニウム、窒化アルミニウム、および、硼酸アルミニウム等が挙げられる。
 後述する溶解工程で用いるエッチャントを回収し、溶解した金属のリサイクルなどを図る観点から、金属粒子と上述した金属箔(貫通孔形成前の金属箔)とが同一の金属原子を含有していることが好ましい。
 金属粒子の形状は特に限定されないが、球状であることが好ましく、真球状に近いほどより好ましい。
 また、金属粒子の平均粒子径は、組成物における分散性などの観点から、1~10μmであることが好ましく、2μm超6μm以下であることがより好ましい。
 ここで、金属粒子の平均粒子径は、レーザー回折・散乱式粒子径測定装置(日機装(株)製マイクロトラックMT3000)で測定される粒度分布の累積50%径をいう。
 また、金属粒子の含有量は、組成物に含まれる全固形分に対して、0.05~95質量%であることが好ましく、1~50質量%であることがより好ましく、3~25質量%であることが更に好ましい。
 -重合体成分-
 上記組成物に含まれる重合体成分は特に限定されず、従来公知の重合体成分を用いることができる。
 重合体成分としては、具体的には、例えば、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、ウレタンアクリレート系樹脂、シリコーンアクリレート系樹脂、エポキシアクリレート系樹脂、エステルアクリレート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、および、フェノール系樹脂などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、耐酸性に優れ、後述する溶解工程で用いるエッチャントとして酸性溶液を用いた場合にも、所望の貫通孔が得られやすくなる理由から、重合体成分が、フェノール系樹脂、アクリル系樹脂およびポリイミド系樹脂からなる群から選択される樹脂材料であることが好ましい。
 本発明においては、後述する樹脂層除去工程における除去が容易となる観点から、組成物に含まれる重合体成分が、水不溶性、且つ、アルカリ水可溶性の高分子(以下、「アルカリ水可溶性高分子」とも略す。)、即ち、高分子中の主鎖もしくは側鎖に酸性基を含有する単独重合体、これらの共重合体またはこれらの混合物であることが好ましい。
 アルカリ水可溶性高分子としては、酸性基を高分子の主鎖および/または側鎖中に有するものが、後述する樹脂層除去工程における除去が更に容易となる観点で好ましい。
 酸性基の具体例としては、フェノール基(-Ar-OH)、スルホンアミド基(-SO2NH-R)、置換スルホンアミド系酸基(以下、「活性イミド基」という。)〔-SO2NHCOR、-SO2NHSO2R、-CONHSO2R〕、カルボキシル基(-CO2H)、スルホ基(-SO3H)、ホスホン基(-OPO32)が挙げられる。
 なお、Arは置換基を有していてもよい2価のアリール連結基を表し、Rは、置換基を有していてもよい炭化水素基を表す。
 上記酸性基を有するアルカリ水可溶性高分子の中でも、フェノール基、カルボキシル基、スルホンアミド基および活性イミド基を有するアルカリ水可溶性高分子が好ましく、特に、フェノール基またはカルボキシル基を有するアルカリ水可溶性高分子が、形成される樹脂層の強度と、後述する樹脂層除去工程における除去性とのバランスの観点から最も好ましい。
 上記酸性基を有するアルカリ水可溶性高分子としては、例えば、以下のものを挙げることができる。
 フェノール基を有するアルカリ水可溶性高分子としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレノール等のフェノール類の1種又は2種以上と、ホルムアルデヒド、パラホルムアルデヒド等のアルデヒド類から製造されるノボラック樹脂、およびピロガロールとアセトンとの縮重合体を挙げることができる。さらに、フェノール基を有する化合物を共重合させた共重合体を挙げることもできる。フェノール基を有する化合物としては、フェノール基を有するアクリルアミド、メタクリルアミド、アクリル酸エステル、メタクリル酸エステル、またはヒドロキシスチレン等が挙げられる。
 具体的には、N-(2-ヒドロキシフェニル)アクリルアミド、N-(3-ヒドロキシフェニル)アクリルアミド、N-(4-ヒドロキシフェニル)アクリルアミド、N-(2-ヒドロキシフェニル)メタクリルアミド、N-(3-ヒドロキシフェニル)メタクリルアミド、N-(4-ヒドロキシフェニル)メタクリルアミド、o-ヒドロキシフェニルアクリレート、m-ヒドロキシフェニルアクリレート、p-ヒドロキシフェニルアクリレート、o-ヒドロキシフェニルメタクリレート、m-ヒドロキシフェニルメタクリレート、p-ヒドロキシフェニルメタクリレート、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、2-(2-ヒドロキシフェニル)エチルアクリレート、2-(3-ヒドロキシフェニル)エチルアクリレート、2-(4-ヒドロキシフェニル)エチルアクリレート、2-(2-ヒドロキシフェニル)エチルメタクリレート、2-(3-ヒドロキシフェニル)エチルメタクリレート、2-(4-ヒドロキシフェニル)エチルメタクリレート等が挙げられる。
 これらの中でも、ノボラック樹脂またはヒドロキシスチレンの共重合体が好ましい。ヒドロキシスチレンの共重合体の市販品としては、丸善化学工業株式会社製、マルカリンカーM H-2、マルカリンカーM S-4、マルカリンカーM S-2、マルカリンカーM S-1、日本曹達株式会社製、VP-8000、VP-15000などを挙げることができる。
 スルホンアミド基を有するアルカリ水可溶性高分子としては、例えば、スルホンアミド基を有する化合物に由来する最小構成単位を主要構成成分として構成される重合体を挙げることができる。上記のような化合物としては、窒素原子に少なくとも一つの水素原子が結合したスルホンアミド基と、重合可能な不飽和基と、を分子内にそれぞれ1以上有する化合物が挙げられる。中でも、アクリロイル基、アリル基、またはビニロキシ基と、置換あるいはモノ置換アミノスルホニル基または置換スルホニルイミノ基と、を分子内に有する低分子化合物が好ましい。
 特に、m-アミノスルホニルフェニルメタクリレート、N-(p-アミノスルホニルフェニル)メタクリルアミド、N-(p-アミノスルホニルフェニル)アクリルアミド等を好適に使用することができる。
 活性イミド基を有するアルカリ水可溶性高分子としては、例えば、活性イミド基を有する化合物に由来する最小構成単位を主要構成成分として構成される重合体を挙げることができる。上記のような化合物としては、下記構造式で表される活性イミド基と、重合可能な不飽和基と、を分子内にそれぞれ1以上有する化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 具体的には、N-(p-トルエンスルホニル)メタクリルアミド、N-(p-トルエンスルホニル)アクリルアミド等を好適に使用することができる。
 カルボキシル基を有するアルカリ水可溶性高分子としては、例えば、カルボキシル基と、重合可能な不飽和基と、を分子内にそれぞれ1以上有する化合物に由来する最小構成単位を主要構成成分とする重合体を挙げることができる。具体的には、アクリル酸、メタクリル酸、無水マレイン酸、イタコン酸等の不飽和カルボン酸化合物を用いた重合体が挙げられる。
 スルホ基を有するアルカリ可溶性高分子としては、例えば、スルホ基と、重合可能な不飽和基と、を分子内にそれぞれ1以上有する化合物に由来する最小構成単位を主要構成単位とする重合体を挙げることができる。
 ホスホン基を有するアルカリ水可溶性高分子としては、例えば、ホスホン基と、重合可能な不飽和基と、を分子内にそれぞれ1以上有する化合物に由来する最小構成単位を主要構成成分とする重合体を挙げることができる。
 アルカリ水可溶性高分子を構成する、酸性基を有する最小構成単位は、特に1種類のみである必要はなく、同一の酸性基を有する最小構成単位を2種以上、または異なる酸性基を有する最小構成単位を2種以上共重合させたものを用いることもできる。
 共重合の方法としては、従来知られている、グラフト共重合法、ブロック共重合法、ランダム共重合法等を用いることができる。
 上記共重合体は、共重合させる酸性基を有する化合物が共重合体中に10モル%以上含まれているものが好ましく、20モル%以上含まれているものがより好ましい。
 本発明では、化合物を共重合して共重合体を形成する場合、その化合物として、酸性基を含まない他の化合物を用いることもできる。酸性基を含まない他の化合物の例としては、下記(m1)~(m11)に挙げる化合物を挙げることができる。
 (m1)2-ヒドロキシエチルアクリレートまたは2-ヒドロキシエチルメタクリレート等の脂肪族水酸基を有するアクリル酸エステル類、およびメタクリル酸エステル類。
 (m2)アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸アミル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ベンジル、アクリル酸-2-クロロエチル、グリシジルアクリレート、N-ジメチルアミノエチルアクリレート等のアルキルアクリレート。
 (m3)メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸-2-クロロエチル、グリシジルメタクリレート、N-ジメチルアミノエチルメタクリレート等のアルキルメタクリレート。
 (m4)アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-エチルアクリルアミド、N-ヘキシルメタクリルアミド、N-シクロヘキシルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-ニトロフェニルアクリルアミド、N-エチル-N-フェニルアクリルアミド等のアクリルアミドもしくはメタクリルアミド。
 (m5)エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、オクチルビニルエーテル、フェニルビニルエーテル等のビニルエーテル類。
 (m6)ビニルアセテート、ビニルクロロアセテート、ビニルブチレート、安息香酸ビニル等のビニルエステル類。
 (m7)スチレン、α-メチルスチレン、メチルスチレン、クロロメチルスチレン等のスチレン類。
 (m8)メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトン等のビニルケトン類。
 (m9)エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン等のオレフィン類。
 (m10)N-ビニルピロリドン、N-ビニルカルバゾール、4-ビニルピリジン、アクリロニトリル、メタクリロニトリル等。
 (m11)マレイミド、N-アクリロイルアクリルアミド、N-アセチルメタクリルアミド、N-プロピオニルメタクリルアミド、N-(p-クロロベンゾイル)メタクリルアミド等の不飽和イミド。
 重合体成分としては、単独重合体、共重合体に係わらず、重量平均分子量が1.0×103~2.0×105で、数平均分子量が5.0×102~1.0×105の範囲にあるものが好ましく。また、多分散度(重量平均分子量/数平均分子量)が1.1~10のものが好ましい。
 重合体成分として共重合体を用いる場合、その主鎖および/または側鎖を構成する、酸性基を有する化合物に由来する最小構成単位と、主鎖の一部および/または側鎖を構成する、酸性基を含まない他の最小構成単位と、の配合重量比は、50:50~5:95の範囲にあるものが好ましく、40:60~10:90の範囲にあるものがより好ましい。
 上記重合体成分は、それぞれ1種類のみを使用してもよいし、2種類以上を組み合わせて使用してもよく、組成物に含まれる全固形分に対して、30~99質量%の範囲で用いるのが好ましく、40~95質量%の範囲で用いるのがより好ましいが、更には50~90質量%の範囲で用いることが特に好ましい。
 本発明においては、後述する溶解工程において貫通孔の形成が容易となる理由から、上述した金属粒子および重合体成分に関して、金属粒子の比重が重合体成分の比重よりも大きいことが好ましい。具体的には、金属粒子の比重が1.5以上であり、重合体成分の比重が0.9以上1.5未満であることがより好ましい。
 -界面活性剤-
 上記組成物は、塗布性の観点から、特開昭62-251740号や特開平3-208514号に記載されているような非イオン界面活性剤、特開昭59-121044号、特開平4-13149号に記載されているような両性界面活性剤を添加することができる。
 非イオン界面活性剤の具体例としては、ソルビタントリステアレート、ソルビタンモノパルミテート、ソルビタントリオレート、ステアリン酸モノグリセリド、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。
 両性界面活性剤の具体例としては、アルキルジ(アミノエチル)グリシン、アルキルポリアミノエチルグリシン塩酸塩、2-アルキル-N-カルボキシエチル-N-ヒドロキシエチルイミダゾリニウムベタイン、N-テトラデシル-N,N-ベタイン型(例えば、商品名アモーゲンK、第一工業(株)製)等が挙げられる。
 上記界面活性剤を含有する場合の含有量は、組成物に含まれる全固形分に対して、0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましい。
 -溶媒-
 上記組成物は、樹脂層を形成する際の作業性の観点から、溶媒を添加することができる。
 溶媒としては、具体的には、例えば、エチレンジクロライド、シクロヘキサノン、メチルエチルケトン、メタノール、エタノール、プロパノール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、2-メトキシエチルアセテート、1-メトキシ-2-プロピルアセテート、ジメトキシエタン、乳酸メチル、乳酸エチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、テトラメチルウレア、N-メチルピロリドン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、トルエン、水等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 -形成方法-
 上述した組成物を用いた樹脂層の形成方法は特に限定されないが、貫通孔形成前の金属箔上に組成物を塗布して樹脂層を形成する方法が好ましい。
 貫通孔形成前の金属箔上への塗布方法は特に限定されず、例えば、バーコート法、スリットコート法、インクジェット法、スプレー法、ロールコート法、回転塗布法、流延塗布法、スリットアンドスピン法、転写法等の方法を用いることができる。
 本発明においては、後述する溶解工程において貫通孔の形成が容易となる理由から、下記式(1)を満たすように樹脂層を形成することが好ましい。
 n<r ・・・(1)
 ここで、式(1)中、nは、形成される樹脂層の厚みを表し、rは、組成物に含まれる粒子の平均粒子径を表し、nおよびrの単位はいずれもμmを表す。
 また、本発明においては、後述する溶解工程で用いるエッチャントに対する耐性や、後述する樹脂層除去工程における作業性の観点などから、樹脂層形成工程により形成される樹脂層の厚みが0.5~4μmであることが好ましく、1μm以上2μm以下であることが好ましい。
 ここで、樹脂層の平均厚みは、ミクロトームを用いて切削し、断面を電子顕微鏡で観察した際に測定された任意の5点の厚みの平均値をいう。
 <保護層形成工程>
 更に、貫通孔形成工程2は、後述する溶解工程における作業性の観点から、溶解工程の前に、貫通孔形成前の金属箔の、樹脂層が形成される面とは反対側の主面に、重合体成分を含有する組成物を用いて保護層を形成する保護層形成工程を有していることが好ましい。
 ここで、重合体成分としては、上述した樹脂層形成工程で用いる組成物に含まれる重合体成分と同一のものが挙げられる。すなわち、任意の保護層形成工程で形成される保護層は、上述した金属粒子が埋設されていない以外は、上述した樹脂層と同様の層であり、保護層の形成方法についても、上述した金属粒子を用いない以外は、上述した樹脂層と同様の方法で形成することができる。
 なお、保護層形成工程を有する場合、溶解工程の前の工程であれば、特に順序は限定されず、上述した樹脂層形成工程の前後または同時に行う工程であってもよい。
 <溶解工程>
 貫通孔形成工程2が有する溶解工程は、上述した樹脂層形成工程の後に、樹脂層を有する貫通孔形成前の金属箔をエッチャントに接触させて、金属粒子および貫通孔形成前の金属箔の一部を溶解し、金属箔に貫通孔を形成する工程であり、いわゆる化学エッチング処理により金属箔に貫通孔を形成する工程である。
 (エッチャント)
 エッチャントとしては、金属粒子および金属箔の金属種に適したエッチャントであれば、酸またはアルカリの化学溶液などを適宜用いることが可能である。
 酸の例としては、塩酸、硫酸、硝酸、フッ酸、過酸化水素、酢酸などが挙げられる。
 また、アルカリの例としては、カセイソーダ、カセイカリなどが挙げられる。
 また、アルカリ金属塩としては、例えば、タケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。
 また、塩化鉄(III)、塩化銅(II)などの無機塩も用いることができる。
 また、これらは1種類でも、2種類以上混合して使用してもよい。
 (処理方法)
 貫通孔を形成する処理は、樹脂層を有する貫通孔形成前の金属箔を上述したエッチャントに接触させることにより行う。
 接触させる方法は特に限定されず、例えば、浸せき法、スプレー法が挙げられる。
 浸せき処理の時間は、15秒~10分であることが好ましく、30秒~6分であることがより好ましい。
 また、浸漬させる際のエッチャントの液温は、25~70℃であることが好ましく、30~60℃であることがより好ましい。
 <樹脂層除去工程>
 貫通孔形成工程2が有する樹脂層除去工程は、上述した溶解工程の後に、樹脂層を除去する工程である。
 樹脂層を除去する方法は特に限定されないが、重合体成分として上述したアルカリ水可溶性高分子を用いる場合には、アルカリ性水溶液を用いて樹脂層を溶解して除去する方法が好ましい。
 (アルカリ性水溶液)
 アルカリ性水溶液としては、具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類;エチルアミン、n-プロピルアミン等の第一アミン類;ジエチルアミン、ジ-n-ブチルアミン等の第二アミン類;トリエチルアミン、メチルジエチルアミン等の第三アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩;ピロール、ピヘリジン等の環状アミン類;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なお、上記アルカリ性水溶液に、アルコール類、界面活性剤を適当量添加して使用することもできる。
 (処理方法)
 樹脂層を除去する処理は、例えば、溶解工程後の樹脂層を有する金属箔を上述したアルカリ性水溶液に接触させることにより行う。
 接触させる方法は特に限定されず、例えば、浸せき法、スプレー法が挙げられる。
 浸せき処理の時間は、5秒~5分であることが好ましく、10秒~2分であることがより好ましい。
 また、浸漬させる際のアルカリ性水溶液は、25~60℃であることが好ましく、30~50℃であることがより好ましい。
 金属箔における貫通孔の平均開口径、平均開口率および数密度は、例えば、上述した溶解工程におけるエッチャントへの浸漬時間、および、上述した樹脂層形成工程で用いる組成物中の金属粒子の含有量などで調整することができる。
 <防食処理>
 貫通孔形成工程2は、防食処理を施す工程を有していることが好ましい。
 また、防食処理を施すタイミングは特に限定されず、例えば、樹脂層形成工程で用いる金属箔に対して施す処理であってもよく、樹脂層除去工程においてアルカリ性水溶液に対して後述するトリアゾール類などを添加する処理であってもよく、樹脂層除去工程後に施す処理であってもよい。
 防食処理としては、例えば、少なくともトリアゾール類を溶媒に溶解したpH5~8.5の溶液に金属箔を浸漬させ、有機誘電体皮膜を形成する処理が挙げられる。
 トリアゾール類としては、例えば、ベンゾトリアゾール(BTA)、トリルトリアゾール(TTA)などが好適に挙げられる。
 また、トリアゾール類とともに、各種の有機防錆材、チアゾール類、イミダゾール類、メルカプタン類、トルエタノールアミンなども使用することができる。
 防食処理に用いる溶媒としては、水または有機溶媒(特にアルコール類)を適宜用いることができるが、形成される有機誘電体皮膜の均一性と量産時における厚み制御が行いやすく、また簡便であり、更には環境への影響などのことを考えると、脱イオン水を主体とする水であることが好ましい。
 トリアゾール類の溶解濃度は、形成する有機誘電体皮膜の厚みや処理可能時間との関係で適宜に決められるが、通常、0.005~1重量%程度であればよい。
 また、溶液の温度は室温であればよいが、必要に応じては加温して使用してもよい。
 溶液への金属箔の浸漬時間は、トリアゾール類の溶解濃度や形成する有機誘電体皮膜の厚みとの関係で適宜に決められるが、通常、0.5~30秒程度であればよい。
 防食処理の他の具体例としては、三酸化クロム,クロム酸塩,重クロム酸塩の群から選ばれる少なくとも1種を水に溶解して成る水溶液に金属箔を浸漬することにより、クロムの水和酸化物を主体とする無機誘電体皮膜を形成する方法が挙げられる。
 ここで、クロム酸塩としては例えばクロム酸カリウムやクロム酸ナトリウムを好適とし、また重クロム酸塩としては例えば重クロム酸カリウムや重クロム酸ナトリウムを好適とする。そして、その溶解濃度は、通常、0.1~10質量%に設定され、また液温は室温~60℃程度でよい。水溶液のpH値は、酸性領域からアルカリ性領域まで格別限定されるものではないが、通常、1~12に設定される。
 また、金属箔の浸漬時間は、形成する無機誘電体皮膜の厚みなどにより適宜に選定される。
 本発明においては、上述した各処理の工程終了後には水洗を行うのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
 〔ロール・ツー・ロールによる処理〕
 貫通孔形成工程2においては、カットシート状の金属箔を用いて、いわゆる枚葉式で各工程の処理を施すものであってもよいし、長尺な金属箔を、所定の搬送経路で長手方向に搬送しつつ各工程の処理を施す、いわゆるロール・ツー・ロール(Roll to Roll)(以下、「RtoR」ともいう。)による処理を行うものであってもよい。
 本発明におけるRtoRとは、長尺な金属箔を巻回してなるロールから金属箔を送り出して、長手方向に搬送しつつ、搬送経路上に配置された各処理装置によって、上述した樹脂層形成工程、溶解工程などの処理を連続的に順次、行い、処理済の金属箔(すなわち、貫通孔形成後の金属箔)を、再度、ロール状に巻回する製造方法である。
 貫通孔形成工程2は、上述した通り、溶解工程により金属粒子および貫通孔形成前の金属箔の一部を溶解させて貫通孔を形成する。そのため、工程を複雑にすることなく連続的に行うことができるため、各工程をRtoRで容易に行うことができる。
 貫通孔形成工程2をRtoRで行うことで生産性をより向上できる。
 前述のとおり、貫通孔形成工程は、粗面化工程の前に行なってもよいし、後に行なってもよい。従って、図6および図7に示すように、上記貫通孔形成工程2の後に、上述した粗面化工程を行うことで、本発明の金属箔を作製することができる。あるいは、粗面化処理を施した金属箔に上記貫通孔形成工程2を行なって、本発明の金属箔を作製してもよい。
 また、粗面化工程および貫通孔形成工程2の各工程をRtoRにより連続的に順次行なうようにしてもよい。
 次に、貫通孔を形成する方法の他の一例(以下、「貫通孔形成工程3」という)について説明する。
 貫通孔形成工程2では、樹脂層形成工程の後、溶解工程を行なうことで、金属粒子および金属箔の一部をエッチャントに接触させて溶解し、金属箔に貫通孔を形成し、その後、樹脂層を除去する構成としたが、貫通孔形成工程3は、図8~図11に示すように、樹脂層形成工程(図8)の後、溶解工程の前に粒子を除去する粒子除去工程(図8および図9)を経て、溶解工程(図9および図10)を行なって金属箔に貫通孔を形成し、その後、樹脂層除去工程(図10および図11)を行う構成である。なお、貫通孔形成工程3の各工程は、粒子除去工程以外は貫通孔形成工程2の各工程と同様である。
 粒子除去工程を経る場合には、樹脂層に含有される粒子としては、金属粒子に限定はされず、無機フィラー、無機-有機複合フィラー等を用いることができる。
 このように、樹脂層形成工程および粒子除去工程を経ることにより、粒子が埋設していた部分に凹部が形成された樹脂層が得られ、その後の溶解工程において、樹脂層の凹部を起点に貫通孔が形成される。樹脂層の凹部を起点に貫通孔が形成される理由に関して、凹部の最深部においては、極めて薄い樹脂層が残存しているか、または、金属箔が露出している部分があるため、他の部位よりも優先的に凹部からエッチャントが浸入し、金属箔に貫通孔が形成されると考えられる。
 無機フィラーとしては、金属および金属化合物が挙げられ、金属化合物としては、例えば、酸化物、複合酸化物、水酸化物、炭酸塩、硫酸塩、ケイ酸塩、リン酸塩、窒化物、炭化物、硫化物、および、これらの少なくとも2種以上の複合化物などが挙げられる。
 具体的には、ガラス、酸化亜鉛、シリカ、アルミナ、酸化ジルコン、酸化錫、チタン酸カリウム、チタン酸ストロンチウム、硼酸アルミニウム、酸化マグネシウム、硼酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化チタン、塩基性硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、リン酸カルシウム、窒化珪素、窒化チタン、窒化アルミ、炭化珪素、炭化チタン、硫化亜鉛、および、これらの少なくとも2種以上の複合化物等が挙げられる。
 これらのうち、ガラス、シリカ、アルミナ、チタン酸カリウム、チタン酸ストロンチウム、硼酸アルミニウム、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、リン酸カルシウム、および、硫酸カルシウムであることが好ましい。
 有機-有機複合フィラーとしては、例えば、合成樹脂粒子、天然高分子粒子などの粒子表面を上述した無機フィラーで被覆した複合化物が挙げられる。
 合成樹脂粒子としては、具体的には、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンイミン、ポリスチレン、ポリウレタン、ポリウレア、ポリエステル、ポリアミド、ポリイミド、カルボキシメチルセルロールス、ゼラチン、デンプン、キチン、および、キトサンなどの樹脂粒子が挙げられる。
 これらのうち、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレンの樹脂粒子であることが好ましい。
 粒子除去工程において、粒子を除去する方法は特に限定されず、例えば、図8に示すように、粒子の各々の一部が埋設された状態の樹脂層であれば、粒子の樹脂層に埋設されていない部分に、スポンジやブラシ等を用いて外力を加えることにより、粒子を除去することができる。
 本発明においては、樹脂層の形状を変えることなく、かつ、速やかに除去可能であるという理由から、粒子を除去する方法は、粒子の各々の少なくとも一部が埋設された樹脂層の表面を溶媒に浸漬させた状態で擦ることにより粒子を除去する方法が好ましい。
 ここで、「粒子の各々の少なくとも一部が埋設された樹脂層の表面」とは、図8に示ように各粒子の一部が樹脂層に埋設されている場合には、各粒子および樹脂層の表面をいい、各粒子の全部が樹脂層に埋設されている場合には、樹脂層の表面をいう。
 上記溶媒としては、樹脂層を溶解させる溶媒であれば特に限定されず、例えば、上述した樹脂層形成工程で用いる組成物の任意成分として記載した溶媒と同様の溶媒を用いることができる。
 また、樹脂層の表面を擦る方法は特に限定されず、例えば、スポンジやブラシ(例えば、ワイヤーブラシ、ナイロンブラシロール)などを用いて擦る方法が挙げられる。
 <残渣除去工程>
 本発明においては、貫通孔を形成した後に、反応残渣を除去する残渣除去工程を有していてもよい。
 前述のとおり、貫通孔形成処理において、金属箔を溶解する工程におけるエッチャントと金属箔との組み合わせによっては反応残渣が発生することがある。反応残渣が存在すると経時にて腐食が発生する可能性がある。そのため、貫通孔形成工程の後に、反応残渣を除去するために処理液で洗浄する工程を有していてもよい。
 例えば、金属箔として銅箔を用い、エッチャントとして塩化鉄(III)水溶液を用いた場合には、処理液として、塩酸、アンモニア水、チオ硫酸ナトリウム、および、エタノールからなる群から選択される少なくとも1種で洗浄する残渣除去工程を施すことによって、反応残渣を除去することができる。洗浄は、液中に浸漬する方法や、スプレーなどで液をかける方法が使用できる。
 残渣除去工程は、金属箔を溶解して貫通孔を形成した後であれば、樹脂層除去工程の前に行なっても後に行なってもよい。
[集電体]
 本発明の金属箔は、蓄電デバイス用集電体(以下、「集電体」ともいう)として利用可能である。
 集電体は、金属箔の厚みが5μm以上100μm未満であることにより、蓄電デバイスを小型軽量化することができ、あるいは、活物質の厚みを増やして高エネルギー密度化することができる。
 集電体は、金属箔の表面の表面積比ΔSが2%以上であることにより、活物質層や活性炭との密着性が良好となり活物質層の剥離を抑制できる。また、サイクル特性や出力特性、塗布適性等の生産性に優れる蓄電デバイスを作製することができる。
 特に、本発明の金属箔を用いる集電体は、厚みが薄いにも関わらず、表面積比ΔSが2%以上であるので、二次電池の負極材および正極材として充放電時の体積の膨張収縮が大きい材料を用いた場合でも、充放電時の体積の膨張収縮により負極材および正極材が集電体から剥離することを防止できる。
 また、集電体は、金属箔が高い強度を有するので、二次電池の負極材および正極材として充放電時の体積の膨張収縮が大きい材料を用いた場合でも、充放電時の体積の膨張収縮により破損することを防止できる。
 また、金属箔が厚み方向に複数の貫通孔を有していることにより、例えば、リチウムイオンキャパシタに用いた場合においては短時間でのリチウムのプレドープが可能となり、リチウムをより均一に分散させることが可能となる。
 特に、本発明の金属箔を用いる集電体は、複数の貫通孔を有するにも関わらず、高い強度を有するので、二次電池の負極材および正極材として充放電時の体積の膨張収縮が大きい材料を用いた場合でも、充放電時の体積の膨張収縮により破損することを防止できる。
 〔活物質層〕
 活物質層としては特に限定はなく、従来の蓄電デバイスにおいて用いられる公知の活物質層が利用可能である。
 具体的には、金属箔を正極(二次電池用正極)の集電体として用いる場合の、活物質および活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 中でも、正極の活物質として、硫黄または硫黄を含む化合物を用いる場合に、充放電時の体積の膨張収縮が大きくなる。そのため、このような活物質を用いる場合に、正極の集電体として、充放電時の体積の膨張収縮による剥離および破損を抑制できる本発明の金属箔が好適に用いられる。
 また、金属箔を負極(二次電池用負極)の集電体として用いる場合の、活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 中でも、負極の活物質として、SnおよびSiなどのリチウムと合金形成可能な金属を含む材料、例えば、酸化錫、酸化ケイ素、アモルファススズ酸化物、スズ珪素酸化物等を用いる場合に、充放電時の体積の膨張収縮が大きくなる。そのため、このような活物質を用いる場合に、負極の集電体として、充放電時の体積の膨張収縮による剥離および破損を抑制できる本発明の金属箔が好適に用いられる。
[蓄電デバイス]
 本発明の金属箔を集電体として利用する電極は、蓄電デバイスの正極あるいは負極として用いることができる。
 ここで、蓄電デバイス(特に、二次電池)の具体的な構成や適用される用途については、特開2012-216513号公報の[0090]~[0123]段落に記載された材料や用途を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 〔正極〕
 本発明の金属箔を集電体として用いた正極は、金属箔を正極に用いた正極集電体と、正極集電体の表面に形成される正極活物質を含む層(正極活物質層)とを有する正極(二次電池用正極)である。
 ここで、上記正極活物質や、上記正極活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 〔負極〕
 本発明の金属箔を集電体として用いた負極は、金属箔を負極に用いた負極集電体と、負極集電体の表面に形成される負極活物質を含む層とを有する負極(二次電池用負極)である。
 ここで、上記負極活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[その他の用途]
 本発明の金属箔は、蓄電デバイス用の集電体の他、耐熱フィルター、耐熱微粒子フィルター、防音材、オイル回収フィルター、静電フィルター、抗菌フィルター、液体改質フィルター、水電解フィルター、排ガス浄化フィルター、食品濾過フィルター、海洋生物濾過フィルター、ダストフィルター、DNA(deoxyribonucleic acid)フィルター、微粉分級フィルター、固液分離フィルター、脱臭フィルター、光触媒担持体、水素発生触媒担体、酵素電極、貴金属吸収材の担体、抗菌用担体、吸着剤、吸収剤、光学フィルター、遠赤外線カットフィルター、防音・吸音材、電磁波シールド、直接型燃料電池のガス拡散層・セパレータ、微生物保管容器酸素供給口用ネット、建築用材料、照明用途、金属調装飾用途等にも用いることができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 金属箔として以下の箔のいずれかを用いた。
・SUS箔A:新日鉄住金マテリアルズ(株)製 NSSCFW2 厚さ10μm
・SUS箔B:新日鉄住金マテリアルズ(株)製 SUS304 厚さ10μm
・SUS箔C:新日鉄住金マテリアルズ(株)製 NSSCFW1 厚さ10μm
・アルミニウム箔:(株)UACJ製 1085材 厚さ20μm
・電解銅箔:福田金属箔粉工業(株)製 電解銅箔 SV 厚さ10μm
 SUS箔A~Cに対して、以下の方法で粗面化および貫通孔の形成を行なった。
 なお、各SUS箔の構成元素のCr+3.3×Moの質量比は、SUS箔Aが19wt%であり、SUS箔Bが21wt%であり、SUS箔Cは15wt%である。
 <粗面化工程および貫通孔形成工程1>
 金属箔を脱脂した後、35℃に保温したエッチャント〔塩化鉄(III)濃度:30質量%、塩酸濃度:3.65質量%〕に40秒間浸漬させることで、貫通孔の形成および粗面化を行なった。
 この処理により、SUS箔AおよびSUS箔Bは粗面化されると共に、多数の微細な貫通孔が形成された。SUS箔Cは粗面化されるのみで貫通孔は形成されなかった。
 アルミニウム箔および電解銅箔に対しては、以下の方法で貫通孔の形成を行なった。
 <(a-1)樹脂層形成工程>
 金属箔上の片面に、下記組成に調製した樹脂層形成用組成物1を塗布し、乾燥させ、厚みが約1μmの樹脂層A1を形成した。
 また、金属箔の逆側の面には、銅粒子を除いた以外は下記樹脂層形成用組成物1と同様の比率で調製した組成物を塗布し、乾燥させ、厚みが約1μmの保護層B1を形成した。
―――――――――――――――――――――――――――――――――
樹脂層形成用組成物1
―――――――――――――――――――――――――――――――――
・m,p-クレゾールノボラック
 (m/p比=6/4、重量平均分子量4100)      1.2g
・HXR-Cu(銅粒子、平均粒子径:5.0μm、
 日本アトマイズ加工(株)製)              0.4g
・メガファックF-780-F(界面活性剤、DIC(株)製)0.1g
・メチルエチルケトン                   1.0g
・1-メトキシ-2-プロパノール             5.0g
―――――――――――――――――――――――――――――――――
 <(b-1)溶解工程>
 次いで、40℃に保温したエッチャント〔塩化鉄(III)濃度:30質量%、塩酸濃度:3.65質量%〕に、樹脂層A1および保護層B1を有する金属箔を3分間浸漬し、その後、スプレーによる水洗を行い、乾燥させることにより、貫通孔を形成した。
 <(c)樹脂層除去工程>
 次いで、貫通孔形成後の金属箔を、液温50℃のアルカリ性水溶液(水酸化ナトリウム濃度:0.4質量%)中に120秒間浸漬させることにより、樹脂層A1および保護層B1を溶解し、除去した。
 その後、スプレーによる水洗を行い、乾燥させることにより、貫通孔を有する金属箔を作製した。
 作製した各金属箔について、上述した方法により、貫通孔の平均開口率および平均開口径、ならびに、表面積比ΔSを測定した。測定結果は表1に示した。
 <負極1>
 Siを負極材として含む負極用活物質を作製した金属箔の両面に塗布し、負極電極(負極1)を作製した。
 負極用活物質として、粉砕したSi、70質量部と、バインダー(日本ゼオン(株)製BM-400B)、30質量部とを、水に添加して分散することにより、スラリーを調製した。
 次に、調製したスラリーを、作製した金属箔の両面に、ダイコーターによって合計200μmの厚みになるように塗工し、120℃で30分間乾燥し、金属箔の表面に活物質層を形成し負極電極を作製した。
 <正極1>
 LiCoO2を正極材として含む正極用活物質を作製した金属箔の両面に塗布し、正極電極(正極1)を作製した。
 正極用活物質として、LiCoO2の粉末90質量部と、バインダー((株)クレハ製 KFポリマー)10質量部とを、水に添加して分散することにより、スラリーを調製した。
 次に、調製したスラリーを、作製した金属箔の両面に、ダイコーターによって合計200μmの厚みになるように塗工し、120℃で30分間乾燥し、金属箔の表面に活物質層を形成し正極電極を作製した。
 〔実施例1〕
 上記粗面化工程および貫通孔形成工程1を行ったSUS箔Aを負極用集電体として、上記の負極1を作製した。また、上記のようにして貫通孔を形成したアルミニウム箔を正極用集電体として、上記の正極1を作製した。
 〔実施例2〕
 負極用集電体として、粗面化工程および貫通孔形成工程を行ったSUS箔Bを用いた以外は実施例1と同様にして負極1および正極1を作製した。
 〔実施例3〕
 負極用集電体として、粗面化工程および貫通孔形成工程を行ったSUS箔Cを用いた以外は実施例1と同様にして負極1および正極1を作製した。
 〔比較例1〕
 負極用集電体として、粗面化工程および貫通孔形成工程を行っていない、未処理のSUS箔Aを用いた以外は実施例1と同様にして負極1および正極1を作製した。
 〔評価〕
 実施例1~3および比較例1で作製した負極1および正極1を用いてコイン型電池を作製し、充放電サイクルおよび密着性の評価を行った。
 具体的には、コイン型電池は、CR2032型(直径20mm 厚さ3.2mm)とし、上記で作製した正極電極及び負極電極を用いて作製した。
 <充放電サイクル>
 作製したコイン型電池を用いて充放電サイクル試験を行なった。
 充放電サイクル試験は、25℃下で充放電条件0.5Cで20サイクル行い、初期状態の容量に対する、試験後の容量の比率を求め、以下の基準で評価した。
 容量は、東洋システム(株)製 TOSCAT-3000を用いて測定した。A、B評価が合格である。
 A:容量80%以上
 B:容量70%以上80%未満
 C:容量70%未満
 <密着性>
 充放電サイクル試験後に、コイン型電池を解体し、負極電極の外観を観察し、剥離やクラックの程度について目視で確認し、以下の基準で評価を行った。A~C評価が合格である。
 A:異常なし
 B:電極材一部表面にクラック発生
 C:電極材一部剥離
 D:電極材全面剥離
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 <負極2>
 カーボングラファイトを負極材として含む負極用活物質を作製した金属箔の両面に塗布し、負極電極(負極2)を作製した。
 負極用活物質として、粉砕したSiO(またはSi)70質量部と、バインダー(日本ゼオン(株)製BM-400B)30質量部と、を、水に添加して分散することにより、スラリーを調整した。
 次に、調製したスラリーを、作製した金属箔の両面に、ダイコーターによって合計200μmの厚みになるように塗工し、120℃で30分間乾燥し、金属箔の表面に活物質層を形成し負極電極を作製した。
 <正極2>
 正極活物質として、硫黄とカーボンの複合材を用いた正極電極(正極2)を作製した。
 正極用活物質として、硫黄とカーボン微粒子を1:1で混合し焼成した硫黄-カーボン複合材を用いた。これを粉砕したものに、導電助剤アセチレンブラックと、CMC(カルボキシメチルセルロース)を加え、正極用スラリーを調製した。硫黄-カーボン複合材、アセチレンブラック、CMCの比率は、90:5:5とした。
 次に、調製したスラリーを、作製した金属箔の両面に、ダイコーターによって合計200μmの厚みになるように塗工し、120℃で30分間乾燥し、金属箔の表面に活物質層を形成し正極電極を作製した。
 〔実施例4〕
 上記粗面化工程および貫通孔形成工程1を行ったSUS箔Aを正極用集電体として、上記の正極2を作製した。また、上記のようにして貫通孔を形成した電解銅箔を負極用集電体として、上記の負極2を作製した。
 〔実施例5〕
 正極用集電体として、粗面化工程および貫通孔形成工程を行ったSUS箔Bを用いた以外は実施例1と同様にして正極2および負極2を作製した。
 〔実施例6〕
 正極用集電体として、粗面化工程および貫通孔形成工程を行ったSUS箔Cを用いた以外は実施例1と同様にして正極2および負極2を作製した。
 〔実施例7〕
 上記(c)樹脂層除去工程の後に、下記(d)残渣除去工程を行なった以外は実施例4と同様にして負極用集電体を作製し、負極2を作製した。正極2は実施例4と同様とした。
 <(d)残渣除去工程>
 1%塩酸に10秒浸漬し、その後、スプレーによる水洗を行い、乾燥させることによって、貫通孔を有する金属箔を作製した。残渣除去工程の前後でXRF解析によるハロゲンの検出を行なって反応残渣を測定したところ、残渣除去工程の前の塩素原子の検出量は0.44質量%であったのに対して、残渣除去工程の後は0.0095質量%であった。
 〔比較例2〕
 正極用集電体として、粗面化工程および貫通孔形成工程を行っていない、未処理のアルミニウム箔を用いた以外は実施例1と同様にして正極2および負極2を作製した。
 〔評価〕
 実施例4~7および比較例2で作製した正極2および負極2を用いて上記と同様にしてコイン型電池を作製し、充放電サイクルおよび密着性の評価を行った。
 <腐食試験>
 実施例4および実施例7の負極用集電体について、温度60℃、相対湿度70%の雰囲気に1週間放置した後、腐食の有無を目視で確認した。
 その結果、実施例4で使用した負極集電体は表面に腐食が確認され、実施例7で使用した負極集電体では表面に腐食が発生していなかった。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表1および表2からわかるように、本発明の金属箔を集電体として用いた実施例は、充放電時のサイクル特性が高く、また、密着性が良好であることがわかる。
 一方、表面積比ΔSが小さい金属箔を集電体として用いた比較例は、サイクル特性が低く、また、密着性が低いことがわかる。
 また、実施例1と実施例2との対比、ならびに、実施例4と実施例5との対比から、表面積比ΔSは5%以上であるのが好ましいことがわかる。
 また、実施例1と実施例3との対比、ならびに、実施例4と実施例6との対比から、貫通孔を有するのが好ましいことがわかる。
 以上の結果から本発明の効果は明らかである。
 1 貫通孔形成前の金属箔
 2 金属粒子
 3 樹脂層
 4 保護層
 5、6 貫通孔
 10 金属箔

Claims (10)

  1.  厚みが5μm以上100μm未満であり、
     銅箔、銀箔、金箔、白金箔、ステンレス箔、チタン箔、タンタル箔、モリブデン箔、ニオブ箔、ジルコニウム箔、タングステン箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、錫箔、亜鉛箔、鉄箔、ニッケル箔、パーマロイ箔、ニクロム箔、42アロイ箔、コバール箔、モネル箔、インコネル箔、および、ハステロイ箔からなる群から選択される箔であり、または、前記群から選択される箔と、選択された箔とは異なる種類の金属とが積層されてなる金属箔であって、
     原子間力顕微鏡を用いて、前記金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる表面積比ΔSが2%以上である金属箔。
       ΔS=(Sx-S0)/S0×100(%)・・・(i)
  2.  前記金属箔の厚み方向に貫通する複数の貫通孔を有し、
     前記貫通孔の平均開口径が1~100μmであり、かつ、前記貫通孔による平均開口率が0.5~30%である請求項1に記載の金属箔。
  3.  前記金属箔が、ステンレス箔である請求項1または2に記載の金属箔。
  4.  前記ステンレス箔の構成元素の質量比がCr+3.3×Mo≧16(wt%)を満たす請求項3に記載の金属箔。
  5.  前記金属箔が銅箔である請求項1または2に記載の金属箔。
  6.  前記銅箔が、XRF解析によるハロゲンの検出量が0.4質量%以下である請求項5に記載の金属箔。
  7.  請求項1~6のいずれか一項に記載の金属箔からなる負極集電体と、
     前記負極集電体の表面に形成される、負極活物質を含む活物質層とを有し、
     前記負極活物質が、シリコン、錫、および、これらの酸化物の少なくとも1つである二次電池用負極。
  8.  請求項1~6のいずれか一項に記載の金属箔からなる正極集電体と、
     前記正極集電体の表面に形成される、正極活物質を含む活物質層とを有し、
     前記正極活物質が、硫黄または、硫黄を含む化合物の少なくとも1つである二次電池用正極。
  9.  請求項1~6のいずれか一項に記載の金属箔の製造方法であって、
     前記金属箔の表面を粗面化する粗面化工程を有し、
     前記粗面化工程によって、原子間力顕微鏡を用いて、前記金属箔の表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる表面積比ΔSが2%以上である金属箔を作製する金属箔の製造方法。
       ΔS=(Sx-S0)/S0×100(%)・・・(i)
  10.  前記金属箔が銅箔であり、
     前記銅箔に貫通孔を形成する貫通孔形成工程と、
     前記貫通孔を形成した後に、塩酸、アンモニア水、チオ硫酸ナトリウム、および、エタノールからなる群から選択される少なくとも1種で洗浄する残渣除去工程と、を有する請求項9に記載の金属箔の製造方法。
PCT/JP2018/030135 2017-08-23 2018-08-10 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極 WO2019039332A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18848329.1A EP3675257A4 (en) 2017-08-23 2018-08-10 METAL SHEET, METAL SHEET PRODUCTION PROCESS, NEGATIVE ACCUMULATOR ELECTRODE, AND POSITIVE ACCUMULATOR ELECTRODE
CN201880054629.0A CN111033837A (zh) 2017-08-23 2018-08-10 金属箔、金属箔的制造方法、二次电池用负极及二次电池用正极
KR1020207003275A KR20200024915A (ko) 2017-08-23 2018-08-10 금속박, 금속박의 제조 방법, 이차 전지용 부극 및 이차 전지용 정극
JP2019538082A JP6858868B2 (ja) 2017-08-23 2018-08-10 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
US16/797,026 US20200194779A1 (en) 2017-08-23 2020-02-21 Metal foil, method for manufacturing metal foil, negative electrode for secondary battery, and positive electrode for secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-160488 2017-08-23
JP2017160488 2017-08-23
JP2017247649 2017-12-25
JP2017-247649 2017-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/797,026 Continuation US20200194779A1 (en) 2017-08-23 2020-02-21 Metal foil, method for manufacturing metal foil, negative electrode for secondary battery, and positive electrode for secondary battery

Publications (1)

Publication Number Publication Date
WO2019039332A1 true WO2019039332A1 (ja) 2019-02-28

Family

ID=65439481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030135 WO2019039332A1 (ja) 2017-08-23 2018-08-10 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極

Country Status (6)

Country Link
US (1) US20200194779A1 (ja)
EP (1) EP3675257A4 (ja)
JP (1) JP6858868B2 (ja)
KR (1) KR20200024915A (ja)
CN (1) CN111033837A (ja)
WO (1) WO2019039332A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200140482A (ko) * 2019-06-07 2020-12-16 에스케이이노베이션 주식회사 이차전지용 전극의 제조방법 및 상기 전극을 포함하는 이차전지
WO2020250784A1 (ja) * 2019-06-11 2020-12-17 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
WO2022131188A1 (ja) * 2020-12-15 2022-06-23 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化ステンレス鋼の製造方法
WO2022131187A1 (ja) * 2020-12-15 2022-06-23 三菱瓦斯化学株式会社 ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物
WO2022131189A1 (ja) * 2020-12-15 2022-06-23 Jfeスチール株式会社 非水電解質二次電池の集電体用のクロム含有鋼板
US20220285694A1 (en) * 2020-05-14 2022-09-08 Lg Energy Solution, Ltd. Electrode Assembly Having Enhanced Safety and Lithium Secondary Battery Comprising Same
WO2024204382A1 (ja) * 2023-03-30 2024-10-03 日鉄ケミカル&マテリアル株式会社 集電体用金属箔、電極、及び、電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271303B (zh) * 2020-10-19 2021-07-27 成都新柯力化工科技有限公司 一种均匀分布微孔的燃料电池气体扩散毡及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121044A (ja) 1982-12-27 1984-07-12 Fuji Photo Film Co Ltd 光可溶化組成物
JPS62251740A (ja) 1986-04-24 1987-11-02 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH03208514A (ja) 1990-01-04 1991-09-11 Nippon Steel Corp 塗装鋼板の切断方法
JPH0413149A (ja) 1990-05-02 1992-01-17 Fuji Photo Film Co Ltd 感光性組成物
JPH10303532A (ja) * 1997-04-25 1998-11-13 Sharp Corp プリント配線板の製造方法
JP2010033768A (ja) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd バイポーラ型リチウムイオン二次電池
JP2012216513A (ja) 2011-03-29 2012-11-08 Fujifilm Corp 集電体用アルミニウム基材、集電体、正極、負極および二次電池
JP2013077734A (ja) 2011-09-30 2013-04-25 Asahi Kasei Corp 電極およびその製造方法
WO2015186752A1 (ja) * 2014-06-06 2015-12-10 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
WO2016159058A1 (ja) * 2015-03-30 2016-10-06 日立化成株式会社 リチウムイオン二次電池及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080719B2 (ja) * 2004-06-10 2012-11-21 三井金属鉱業株式会社 キャリア箔付金属箔及びそのキャリア箔付金属箔の製造方法並びにそのキャリア箔付金属箔を用いた非水電解液二次電池の集電体
SG182300A1 (en) * 2010-01-25 2012-08-30 Jx Nippon Mining & Metals Corp Copper foil for negative electrode current collector of secondary battery
JP6818268B2 (ja) * 2014-01-29 2021-01-20 Kmバイオロジクス株式会社 抗トランスサイレチンヒト化抗体
JP6199416B2 (ja) * 2014-01-31 2017-09-20 富士フイルム株式会社 アルミニウム板の製造方法、アルミニウム板、蓄電デバイス用集電体、蓄電デバイス、防音・吸音材、電磁波シールドおよび建築用材料
JPWO2018168786A1 (ja) * 2017-03-13 2020-01-16 富士フイルム株式会社 電磁波シールド部材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121044A (ja) 1982-12-27 1984-07-12 Fuji Photo Film Co Ltd 光可溶化組成物
JPS62251740A (ja) 1986-04-24 1987-11-02 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH03208514A (ja) 1990-01-04 1991-09-11 Nippon Steel Corp 塗装鋼板の切断方法
JPH0413149A (ja) 1990-05-02 1992-01-17 Fuji Photo Film Co Ltd 感光性組成物
JPH10303532A (ja) * 1997-04-25 1998-11-13 Sharp Corp プリント配線板の製造方法
JP2010033768A (ja) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd バイポーラ型リチウムイオン二次電池
JP2012216513A (ja) 2011-03-29 2012-11-08 Fujifilm Corp 集電体用アルミニウム基材、集電体、正極、負極および二次電池
JP2013077734A (ja) 2011-09-30 2013-04-25 Asahi Kasei Corp 電極およびその製造方法
WO2015186752A1 (ja) * 2014-06-06 2015-12-10 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
WO2016159058A1 (ja) * 2015-03-30 2016-10-06 日立化成株式会社 リチウムイオン二次電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675257A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200140482A (ko) * 2019-06-07 2020-12-16 에스케이이노베이션 주식회사 이차전지용 전극의 제조방법 및 상기 전극을 포함하는 이차전지
US11575132B2 (en) 2019-06-07 2023-02-07 Sk On Co., Ltd. Method of preparing electrode for secondary battery, and secondary battery including the electrode
KR102527050B1 (ko) * 2019-06-07 2023-04-28 에스케이온 주식회사 이차전지용 전극의 제조방법 및 상기 전극을 포함하는 이차전지
WO2020250784A1 (ja) * 2019-06-11 2020-12-17 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
JPWO2020250784A1 (ja) * 2019-06-11 2021-09-13 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
US11926904B2 (en) 2019-06-11 2024-03-12 Mitsubishi Gas Chemical Company, Inc. Aqueous composition, method for roughening stainless steel surface in which same is used, roughened stainless steel, and method for manufacturing same
US20220285694A1 (en) * 2020-05-14 2022-09-08 Lg Energy Solution, Ltd. Electrode Assembly Having Enhanced Safety and Lithium Secondary Battery Comprising Same
WO2022131188A1 (ja) * 2020-12-15 2022-06-23 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化ステンレス鋼の製造方法
WO2022131187A1 (ja) * 2020-12-15 2022-06-23 三菱瓦斯化学株式会社 ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物
WO2022131189A1 (ja) * 2020-12-15 2022-06-23 Jfeスチール株式会社 非水電解質二次電池の集電体用のクロム含有鋼板
JP7103551B1 (ja) * 2020-12-15 2022-07-20 Jfeスチール株式会社 非水電解質二次電池の集電体用のクロム含有鋼板
WO2024204382A1 (ja) * 2023-03-30 2024-10-03 日鉄ケミカル&マテリアル株式会社 集電体用金属箔、電極、及び、電池

Also Published As

Publication number Publication date
KR20200024915A (ko) 2020-03-09
US20200194779A1 (en) 2020-06-18
EP3675257A4 (en) 2020-08-12
JP6858868B2 (ja) 2021-04-14
EP3675257A1 (en) 2020-07-01
JPWO2019039332A1 (ja) 2020-07-27
CN111033837A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2019039332A1 (ja) 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
KR102212884B1 (ko) 구멍이 뚫린 금속박의 제조 방법
WO2018168786A1 (ja) 電磁波シールド部材
US20200082998A1 (en) Perforated metal foil, method for manufacturing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
JP6936864B2 (ja) アルミニウム箔および電極用アルミニウム部材
JP6866480B2 (ja) 加飾フィルム
WO2008044763A1 (en) Tab lead material and process for producing the same
WO2019107065A1 (ja) セキュリティ素子およびセキュリティシステム
CN116940717A (zh) 集电体用铝基材、电容器、二次电池及集电体用铝基材的制造方法
JP2018053276A (ja) 孔あき金属基板の製造方法
US20200316914A1 (en) Laminate, composite, and method for producing composite
WO2020066597A1 (ja) 積層体
WO2016104629A1 (ja) アルミニウム製導電部材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538082

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207003275

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018848329

Country of ref document: EP

Effective date: 20200323