WO2022131187A1 - ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物 - Google Patents

ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物 Download PDF

Info

Publication number
WO2022131187A1
WO2022131187A1 PCT/JP2021/045737 JP2021045737W WO2022131187A1 WO 2022131187 A1 WO2022131187 A1 WO 2022131187A1 JP 2021045737 W JP2021045737 W JP 2021045737W WO 2022131187 A1 WO2022131187 A1 WO 2022131187A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous composition
stainless steel
mass
roughening treatment
post
Prior art date
Application number
PCT/JP2021/045737
Other languages
English (en)
French (fr)
Inventor
和彦 池田
智子 藤井
裕嗣 松永
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180083201.0A priority Critical patent/CN116583614A/zh
Priority to KR1020237018289A priority patent/KR20230121044A/ko
Priority to EP21906549.7A priority patent/EP4265822A1/en
Priority to US18/266,624 priority patent/US20240044014A1/en
Priority to JP2022569968A priority patent/JPWO2022131187A1/ja
Publication of WO2022131187A1 publication Critical patent/WO2022131187A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones

Definitions

  • the present invention relates to an aqueous composition used in a method for roughening the surface of stainless steel, a method for producing roughened stainless steel including the roughening treatment method, a method for roughening the surface of stainless steel, and the like.
  • stainless steel has been considered for expansion into various fields in recent years due to its excellent durability and weather resistance.
  • stainless steel is being increasingly used in housings for electronic parts, battery current collector foils, and automobile parts.
  • the surface of the stainless steel is roughened for the purpose of adhering a dielectric substance or an organic substance.
  • the surface of the stainless steel is roughened for the purpose of promoting heat dissipation.
  • the roughening level is not always sufficient, and the treatment time and cost are increased because a complicated process is required.
  • the surface quality of stainless steel after the roughening treatment can also be a problem.
  • the appearance of the surface of the stainless steel obtained by the roughening treatment is not uniform, which may hinder commercialization. That is, in the present invention, it is possible to efficiently apply sufficient roughening treatment to the surface of stainless steel in a simple process, and stably roughen the roughened stainless steel having good surface quality such as appearance. The issue was the realization of the method of obtaining.
  • the present inventors can efficiently roughen the surface of stainless steel with sufficient and few steps by using an aqueous composition having a specific composition. At the same time, they have found that the surface quality such as the appearance of the stainless steel surface can be improved, and have completed the present invention.
  • a roughening treatment method for roughening the surface of stainless steel which comprises a roughening treatment step using a first aqueous composition and a post-treatment step using a second aqueous composition.
  • the roughening treatment step is a step of contacting the surface of stainless steel containing copper or a metal having a higher ionization tendency than copper with the first aqueous composition for roughening treatment.
  • the first aqueous composition is Hydrogen peroxide is contained in an amount of 0.1 to 20% by mass based on the total amount of the first aqueous composition. It contains 0.25 to 40% by mass of copper ions based on the total amount of the first aqueous composition.
  • the post-treatment step is a step of bringing the second aqueous composition into contact with the surface of the roughened stainless steel in the roughening treatment step under acidic conditions to perform post-treatment.
  • the second aqueous composition is Contains at least peroxide, Roughening treatment method.
  • the precipitate is derived from copper or a metal having a higher ionization tendency than copper contained in the stainless steel to be roughened and the copper ion contained in the first aqueous composition.
  • the second aqueous composition is The roughening treatment method according to any one of the above [1] to [3], wherein the peroxide is contained in an amount of 0.2 to 20% by mass based on the total amount of the second aqueous composition.
  • Any of the above [1] to [4], wherein the peroxide contained in the second aqueous composition contains at least one selected from the group consisting of hydrogen peroxide, persulfuric acid and salts thereof.
  • the roughening treatment method described in 1. [6] The above-mentioned [1] to [5], wherein the second aqueous composition further contains 0.5 to 15% by mass of an acid based on the total amount of the second aqueous composition. Roughening treatment method. [7] The roughening treatment according to any one of [1] to [6] above, wherein the acid contained in the second aqueous composition contains at least one selected from the group consisting of sulfuric acid and sodium hydrogensulfate. Method. [8] The second aqueous composition according to any one of the above [1] to [7], further containing 0.1 to 5% by mass of the alcohol based on the total amount of the second aqueous composition. The roughening treatment method described.
  • the maximum height (Sz) specified by ISO 25178 of the surface of the stainless steel that has been roughened in the roughening treatment step and the post-treatment in the post-treatment step is 10.0 ⁇ m or more.
  • the maximum height (Sz) specified by ISO 25178 of the surface of the stainless steel that has been roughened in the roughening treatment step and the post-treatment in the post-treatment step is 20.0 ⁇ m or less.
  • the value of the maximum height (Sz) specified by ISO 25178 on the surface of the stainless steel that has been roughened in the roughening treatment step and the post-treatment in the post-treatment step is untreated.
  • the arithmetic mean height (Sa) specified by ISO 25178 on the surface of the roughened stainless steel surface subjected to the roughening treatment in the roughening treatment step and the post-treatment in the post-treatment step is 0.4 ⁇ m.
  • the arithmetic mean height (Sa) specified by ISO 25178 on the surface of the roughened stainless steel surface subjected to the roughening treatment in the roughening treatment step and the post-treatment in the post-treatment step is 1.0 ⁇ m.
  • the arithmetic mean height (Sa) specified by ISO 25178 on the surface of the roughened stainless steel surface that has been roughened in the roughening treatment step and the post-treatment in the post-treatment step is untreated.
  • the roughening treatment method according to any one of [1] to [20] above which is 0.1 ⁇ m or more larger than the arithmetic mean height (Sa) of a flat surface of stainless steel.
  • a method for producing roughened stainless steel which comprises the roughening treatment method according to any one of the above [1] to [22].
  • a catalyst carrier, an electromagnetic wave shielding member, or a heat radiating member A second aqueous composition used for post-treatment of the surface of stainless steel that has been roughened with the first aqueous composition.
  • the first aqueous composition is Hydrogen peroxide is contained in an amount of 0.1 to 20% by mass based on the total amount of the first aqueous composition. It contains 0.25 to 40% by mass of copper ions based on the total amount of the first aqueous composition.
  • Halide ion is contained in an amount of 1 to 30% by mass based on the total amount of the first aqueous composition.
  • the second aqueous composition is Peroxide is contained in an amount of 0.2 to 20% by mass based on the total amount of the second aqueous composition.
  • Aqueous composition [26] The aqueous composition according to the above [25], wherein the peroxide contained in the second aqueous composition contains at least one selected from the group consisting of hydrogen peroxide, persulfuric acid and salts thereof. [27] The aqueous composition according to [25] or [26] above, wherein the second aqueous composition further contains an acid in an amount of 0.5 to 15% by mass based on the total amount of the second aqueous composition. Composition. [28] The aqueous composition according to the above [27], wherein the acid contained in the second aqueous composition contains at least one selected from the group consisting of sulfuric acid and sodium sulfate.
  • the second aqueous composition further contains alcohol in an amount of 0.1 to 5% by mass based on the total amount of the second aqueous composition.
  • the aqueous composition of the description. [30] The aqueous composition according to the above [29], wherein the alcohol is an alcohol having 1 to 3 carbon atoms.
  • the surface of stainless steel can be sufficiently roughened by an efficient method with a small number of steps, and roughened stainless steel having good surface quality such as appearance can be stably obtained. Is.
  • FIG. 1 It is a figure which shows the metal microscope image of the surface of the stainless steel after post-treatment in Example 1.
  • FIG. It is a figure which shows the metal microscope image of the surface of the stainless steel after post-treatment in the comparative example 1.
  • FIG. It is a figure which shows the metal microscope image of the surface of the stainless steel after post-treatment in the comparative example 2.
  • FIG. 1 It is a figure which shows the metal microscope image of the surface of the stainless steel after post-treatment in Example 1.
  • the roughening treatment method for roughening the surface of stainless steel of the present invention (also referred to as a roughening treatment method for stainless steel in the present specification), a roughening treatment step and a post-treatment step are performed. That is, the roughening treatment method of the present invention comprises a roughening treatment step of roughening the surface of stainless steel using the first aqueous composition described in detail later, and a second aqueous composition described in detail later. It includes a post-treatment step of post-treating the surface of stainless steel after roughening using it.
  • performing roughening treatment and post-treatment of the stainless steel surface using the aqueous composition means bringing the aqueous composition used for each treatment into contact with the stainless steel surface.
  • the roughening treatment method for stainless steel of the present invention includes at least a step of bringing the first aqueous composition and the second aqueous composition into contact with the surface of the stainless steel.
  • the roughening treatment step is a step of bringing the first aqueous composition, which will be described in detail later, into contact with the stainless steel to be roughened.
  • the temperature of the roughening treatment is preferably 20 to 60 ° C, more preferably 25 to 55 ° C, and particularly preferably 30 to 50 ° C.
  • the method for roughening stainless steel of the present invention is excellent in that the surface of stainless steel is roughened even at room temperature of 25 ° C. even if the temperature is not so high.
  • the temperature of the roughening treatment refers to the temperature at which the first aqueous composition and the surface of the stainless steel are brought into contact with each other, particularly the liquid temperature of the first aqueous composition which is brought into contact with the surface of the stainless steel.
  • the roughening treatment time is preferably 30 seconds to 120 seconds, more preferably 40 seconds to 100 seconds, and particularly preferably 50 seconds to 90 seconds. ..
  • the method for roughening stainless steel of the present invention is excellent in that the roughening of stainless steel progresses even if it does not take a very long time.
  • the roughening treatment time refers to the time for contacting the surface of the stainless steel with the first aqueous composition. For example, from the time when the stainless steel is immersed in the first aqueous composition, from the time when the first aqueous composition is sprayed on the surface of the stainless steel, to the time when the first aqueous composition is removed by water or the like. It's time.
  • the method of contacting the first aqueous composition with the surface of the stainless steel is not particularly limited, and for example, a method of bringing the first aqueous composition into contact with the stainless steel by a form such as dropping or spraying (spraying). Alternatively, a method of immersing the stainless steel in the first aqueous composition can be adopted. In the present invention, any method may be adopted. For example, a method of spraying a first aqueous composition onto stainless steel processed into a specific shape to obtain a roughened stainless steel, a method of dropping a first aqueous composition between stainless steel foil rolls, and spraying.
  • An device or dipping device is installed to allow the untreated stainless steel foil to pass in the vicinity of the device while being unrolled and moved from the roll around which the untreated stainless steel foil was wound by a roll-to-roll method to create an aqueous composition.
  • Examples thereof include a method of supplying an article and winding a roughened stainless steel foil to obtain a roll.
  • the post-treatment step is mainly performed in order to maintain good surface quality of the roughened stainless steel in the above-mentioned roughening treatment step.
  • the stainless steel to be roughened contains a relatively large amount of base metal, it is considered to be caused by the substitution reaction between the copper ion contained in the first aqueous composition described in detail later and the base metal. Maintaining surface quality is important because deposits can form on the surface of stainless steel. For example, depending on the composition of the stainless steel, precipitates that can be visually confirmed after the roughening treatment may be observed, which may hinder the appearance and performance of the product.
  • the above-mentioned base metal examples include copper and a metal having a higher ionization tendency than copper, as will be described in detail later. That is, the precipitate is a precipitate derived from copper or a metal having a higher ionization tendency than copper contained in the stainless steel to be roughened and copper ions contained in the first aqueous composition. Is preferable. Examples of such precipitates are compounds mainly containing copper, and examples thereof include metallic copper, copper-containing oxides, and hydroxides. According to the post-treatment step, the above-mentioned precipitates generated on the surface of the stainless steel by the roughening treatment can be efficiently removed by etching.
  • the post-treatment step is a step of further treating the roughened stainless steel in the roughening treatment step.
  • a post-treatment is performed in which the surface of the roughened stainless steel is brought into contact with a second aqueous composition, which will be described in detail later, under acidic conditions.
  • the post-treatment is preferably performed at a temperature of 20 to 60 ° C, more preferably 25 to 55 ° C, and particularly preferably 30 to 50 ° C.
  • the roughening treatment method for stainless steel of the present invention is excellent in that the surface of stainless steel can be post-treated even at room temperature of 25 ° C. even if the temperature is not so high.
  • the temperature of the post-treatment is the temperature at which the second aqueous composition and the surface of the stainless steel are brought into contact with each other, as in the case of the roughening treatment, particularly the second aqueous solution which is brought into contact with the surface of the stainless steel.
  • the liquid temperature of the composition is the temperature at which the second aqueous composition and the surface of the stainless steel are brought into contact with each other, as in the case of the roughening treatment, particularly the second aqueous solution which is brought into contact with the surface of the stainless steel.
  • the post-treatment time is preferably 10 seconds to 120 seconds, more preferably 15 seconds to 100 seconds, and particularly preferably 20 seconds to 90 seconds.
  • the roughening treatment method for stainless steel of the present invention is excellent in that the post-treatment of stainless steel can be performed without a very long time.
  • the post-treatment time refers to the time for contacting the surface of the stainless steel with the second aqueous composition. For example, from the time when the stainless steel is immersed in the second aqueous composition, from the time when the second aqueous composition is sprayed on the surface of the stainless steel, to the time when the second aqueous composition is removed by water or the like. It's time.
  • the method of bringing the second aqueous composition into contact with the stainless steel surface is the same as the case where the first aqueous composition and the stainless steel surface are brought into contact in the above-mentioned roughening treatment step.
  • the stainless steel roughened in the roughening treatment step may be subjected to a treatment such as washing with water.
  • the stainless steel post-treated in the post-treatment step may be subjected to a treatment such as washing with water.
  • roughened stainless steel also referred to as roughened stainless steel in the present specification, and stainless steel foil (film or sheet) is also included in stainless steel.
  • the maximum height (Sz) of the surface of the steel can be 5.0 ⁇ m or more, for example, 7.0 ⁇ m or more, 10.0 ⁇ m or more, or 12.0 ⁇ m or more.
  • the post-treatment step can mainly maintain a good appearance of the stainless steel surface, while the surface roughness can be maintained to be substantially the same as that of the roughened stainless steel.
  • a precipitate may be formed on the surface of the stainless steel, and the surface roughness immediately after the roughening treatment step is the target for this precipitate.
  • the precipitate is removed by the post-treatment step, and the desired surface roughness can be achieved.
  • the surface roughness obtained by the roughening treatment step can be maintained to the same level even after the post-treatment step. Therefore, in the method for roughening stainless steel of the present invention, all the treatments have been completed for the stainless steel immediately after either the roughening treatment step or the post-treatment step, and finally obtained.
  • the maximum height (Sz) of the surface can be 5.0 ⁇ m or more, for example, 7.0 ⁇ m or more, 10.0 ⁇ m or more, or 12.0 ⁇ m or more.
  • the point that the targeted roughening level is achieved immediately after the roughening treatment step and the post-treatment step and on the surface of the stainless steel of the final product is the following surface roughness (height) parameters ( The same applies to (including Sa).
  • the maximum height (Sz) of the surface of the roughened stainless steel is 5.0 ⁇ m or more, 7 after both the roughening treatment step and the post-treatment step. It is preferably 0.0 ⁇ m or more, 7.5 ⁇ m or more, more preferably 10.0 ⁇ m or more, further preferably 11.0 ⁇ m or more, further preferably 11.5 ⁇ m or more, and even more preferably 12.5 ⁇ m or more. More preferably, it is more preferably 13.0 ⁇ m or more, and particularly preferably 13.5 ⁇ m or more.
  • the upper limit of the maximum height (Sz) of the roughened stainless steel surface and the post-treated stainless steel surface is not particularly limited, but is, for example, 20.0 ⁇ m or less. It may be 17.0 ⁇ m or less.
  • the height (Sz) is not particularly limited, but is, for example, 0.2 to 3.0 ⁇ m, and is about 1.0 to 2.5 ⁇ m.
  • the maximum height (Sz) of the roughened stainless steel surface is the untreated stainless steel surface both after the roughening treatment step and after the post-treatment step. It is possible to make the value 2.0 ⁇ m or more larger than the value of the maximum height (Sz) of, and it is preferable to make the value 5.0 ⁇ m or more larger than that of untreated stainless steel. Further, it is more preferable to set the value to be 7.0 ⁇ m or more larger than that of the untreated stainless steel, and further to set the value to be 9.0 ⁇ m or more larger than that of the untreated stainless steel both after the roughening treatment step and after the post-treatment step.
  • the value may be 10.0 ⁇ m or more or 11.0 ⁇ m or more.
  • the increased width of the maximum height (Sz) as compared with the untreated stainless steel surface is within the above range only after either the roughening treatment step or the post-treatment step. You may.
  • the arithmetic mean height (Sa) of the surface of the roughened stainless steel is 0.4 ⁇ m or more after both the roughening treatment step and the post-treatment step. It is possible to.
  • the arithmetic mean height (Sa) of the surface of the roughened stainless steel is 0.45 ⁇ m or more after both the roughening treatment step and the post-treatment step. It is preferably possible, more preferably 0.50 ⁇ m or more, further preferably 0.55 ⁇ m or more, and it may be possible to make 0.60 ⁇ m or more, 0.70 ⁇ m or more, 0.80 ⁇ m or more, or 1.0 ⁇ m or more.
  • the upper limit of the arithmetic mean height (Sa) of the surface of the roughened stainless steel is not particularly limited, but may be, for example, 1.0 ⁇ m or less, and may be 0.9 ⁇ m or less.
  • the arithmetic mean height (Sa) of the untreated stainless steel is not particularly limited, but is, for example, 0.05 to 0.5 ⁇ m or 0.1 to 0.3 ⁇ m.
  • the arithmetic average height (Sa) of the surface of the roughened stainless steel is untreated stainless steel both after the roughening treatment step and after the post-treatment step. It is possible to make the value 0.1 ⁇ m or more larger than the arithmetic average height (Sa) of the flat surface of the steel, preferably 0.2 ⁇ m or more larger than the untreated stainless steel, and 0.3 ⁇ m or more. A large value is more preferable, a value larger than 0.4 ⁇ m is more preferable, and a value larger than 0.5 ⁇ m, 0.6 ⁇ m or more, or 0.7 ⁇ m or more may be used. Further, the increased width of the arithmetic mean height (Sa) when compared with the untreated stainless steel surface only after either the roughening treatment step or the post-treatment step is within the above range. There may be.
  • the above-mentioned maximum height (Sz) and arithmetic mean height (Sa) are calculated according to ISO 25178.
  • the device used for the measurement is not particularly limited, but for example, a laser microscope can be used.
  • the maximum height (Sz) after the roughening treatment step after the precipitates are removed from the surface of the roughened stainless steel in which the precipitates are generated after the roughening treatment by physical means such as an adhesive tape.
  • the value of the arithmetic mean height (Sa) can be measured.
  • such physical means are not always practical as part of the manufacturing process.
  • the etching rate of the stainless steel in the roughening treatment step is not particularly limited, but is, for example, 0.5 ⁇ m / min or more, preferably 0.7 ⁇ m / min or more, and more preferably 1.0 ⁇ m / min. Minutes or more, more preferably 1.2 ⁇ m / min or more, and particularly preferably 1.4 ⁇ m / min or more.
  • a substantially one-step treatment that is, a roughening treatment in which the aqueous composition of the present invention is brought into contact with the surface of the stainless steel to be treated. It is possible to obtain stainless steel with enlarged surface irregularities only by further performing appropriate cleaning (for example, water cleaning) according to the above. Further, even if the above-mentioned precipitates are formed on the surface of the roughened stainless steel, the precipitates can be removed by the post-treatment step, and the roughened stainless steel having good surface quality such as appearance can be obtained. can. Further, as described above, since the treatment conditions in the roughening treatment and the post-treatment are mild and the required time is short, the roughening treatment of stainless steel can be efficiently performed according to the present invention.
  • Examples of the stainless steel to be roughened and post-treated by the aqueous composition of the present invention include copper or one containing a metal having a higher ionization tendency than copper. Specific examples of such stainless steel include those containing at least aluminum. In stainless steel having a secondary metal component such as aluminum, precipitates are likely to be formed on the surface of the stainless steel by the roughening treatment, but the precipitates can be efficiently removed by the post-treatment step. As the stainless steel to be the target of the roughening treatment method using the aqueous composition of the present invention, copper containing 5% by mass or more or a metal having a higher ionization tendency than copper is suitable, and 7% by mass or more of copper.
  • those containing a metal having a higher ionizing tendency than copper are more suitable, and those containing 10% by mass or more of copper or a metal having a higher ionizing tendency than copper are particularly suitable.
  • the upper limit of the content of copper or a metal having a higher ionization tendency than copper is not particularly limited, but is, for example, 20% by mass or 30% by mass. May be the upper limit.
  • Copper or a metal having a higher ionization tendency than copper includes Zn (zinc), Cd (cadmium), Co (cobalt), Sn (tin), Pb (lead), etc., in addition to the above-mentioned Al (aluminum). Can be mentioned.
  • those other than steel that is, Copper, aluminum, lead, zinc, tin, tungsten, indium, molybdenum, germanium, tantalum, magnesium, cobalt, cadmium, titanium, zirconium, vanadium, gallium, antimony, manganese, berylium, hafnium, niobium, bismuth, renium, tarium, etc. Can also be included.
  • the aqueous composition of the present invention copper or stainless steel containing aluminum as a metal having a higher ionization tendency than copper is preferable. This is because, in stainless steel containing aluminum, precipitates are likely to be formed on the surface of the stainless steel by the roughening treatment, but the precipitates can be efficiently removed by the post-treatment step.
  • the lower limit of the aluminum content in stainless steel containing aluminum as a metal having a higher ionization tendency than copper or copper is not particularly limited, but is preferably 3% by mass or more, more preferably 5% by mass or more. Yes, more preferably 7% by mass or more, and may be 10% by mass or more.
  • the upper limit of the aluminum content is not particularly limited, but may be, for example, 20% by mass or 30% by mass.
  • the size, thickness, and shape of the stainless steel to be roughened and post-treated are not particularly limited, and for example, it can be applied to stainless steel foil.
  • the thickness of the stainless steel foil to be roughened and post-treated is not particularly limited, but is, for example, 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the maximum height (Sz) on the surface of the roughened stainless steel after the roughening treatment and the post-treatment is, for example, 5.0 ⁇ m or more, 7.0 ⁇ m or more, and 10.0 ⁇ m or more. It is preferably 11.0 ⁇ m or more, more preferably 11.5 ⁇ m or more, further preferably 12.0 ⁇ m or more or 12.5 ⁇ m or more, and further preferably 13.0 ⁇ m or more. It is preferably 13.5 ⁇ m or more, and particularly preferably 13.5 ⁇ m or more.
  • the upper limit of the maximum height (Sz) of the roughened stainless steel surface after the roughening treatment and the post-treatment is not particularly limited, but is, for example, 20.0 ⁇ m or less and 17.0 ⁇ m or less. May be.
  • the arithmetic mean height (Sa) of the surface of the roughened stainless steel after the roughening treatment and the post-treatment is, for example, 0.40 ⁇ m or more, preferably 0.45 ⁇ m or more, and preferably 0.50 ⁇ m or more. More preferably, it is more preferably 0.55 ⁇ m or more, and it may be 0.60 ⁇ m or more and 0.70 ⁇ m or more, 0.80 ⁇ m or more, or 1.0 ⁇ m or more.
  • the upper limit of the arithmetic mean height (Sa) of the surface of the roughened stainless steel after the roughening treatment and the post-treatment is not particularly limited, but is, for example, 1.0 ⁇ m or less, and 0. It may be 9 ⁇ m or less.
  • the method for producing roughened stainless steel of the present invention includes at least the above-mentioned roughening treatment method.
  • the surface of the stainless steel is rougher than that before the roughening treatment step, that is, the surface of the stainless steel has a surface in which the unevenness is enlarged more than the surface before the treatment. Roughened stainless steel with excellent quality can be manufactured.
  • the stainless steel that is the target of the method for producing roughened stainless steel of the present invention is described in the above [2. Stainless steel] as described in the column.
  • the maximum height (Sz) and arithmetic mean height (Sa) of the surface of the roughened stainless steel obtained by the method for producing the roughened stainless steel of the present invention are described in the above [2. Stainless steel] as described in the column.
  • the roughened stainless steel obtained by the method for producing roughened stainless steel of the present invention is, for example, a collector foil for batteries such as solid-state batteries and lithium-ion batteries, a solar cell base material, a flexible substrate for electronic devices, and a substrate for power storage devices. It can be used as a carrier such as an exhaust gas purification catalyst, an electromagnetic wave shielding member, and a heat radiating member.
  • the roughened stainless steel foil obtained by the method for producing roughened stainless steel of the present invention is suitably used as, for example, a current collector foil for a battery.
  • the aqueous composition used in the roughening treatment method for stainless steel of the present invention includes a first aqueous composition used in the roughening treatment step and a second aqueous composition used in the post-treatment step. Is done.
  • Preferred examples of the roughening treatment and post-treatment of the aqueous composition of the present invention include the above-mentioned stainless steel.
  • the first aqueous composition is suitably used for roughening the surface of stainless steel, that is, for roughening the surface of stainless steel and expanding unevenness.
  • the first aqueous composition is 0.1 to 20% by mass of hydrogen hydrogen, 0.25 to 40% by mass of copper ion, and 0.25 to 40% by mass of copper ions, based on the total amount (total mass) of the first aqueous composition. Contains 1-30% by mass of halide ions.
  • the aqueous composition comprises water, in particular ion-exchanged water or ultrapure water.
  • each component of the first aqueous composition will be described.
  • the hydrogen peroxide contained in the first aqueous composition is usually mixed with other components as an aqueous solution having an appropriate concentration.
  • concentration of hydrogen peroxide in the aqueous hydrogen peroxide solution used for producing the aqueous composition is not particularly limited, and may be, for example, 10 to 90%, and 35% to 60% according to industrial standards. Is preferable.
  • hydrogen peroxide may contain a stabilizer up to about 0.01% by mass, and examples of an acceptable stabilizer include sulfuric acid and phosphoric acid.
  • the production process and acquisition route of hydrogen peroxide are not limited, and for example, those produced by the anthraquinone method and the like are used.
  • the concentration of hydrogen hydrogen contained in the first aqueous composition is 0.1 to 20% by mass, preferably 0.12 to 20% by mass, based on the total amount (total mass) of the first aqueous composition. It is 15% by mass, more preferably 0.15 to 10% by mass, and particularly preferably 0.18 to 8% by mass. Further, the lower limit of the concentration of hydrogen peroxide contained in the first aqueous composition is, for example, 0.001% by mass and 0.01% by mass based on the total amount (total mass) of the first aqueous composition.
  • the upper limit of the concentration of hydrogen peroxide contained in the first aqueous composition is, for example, 40% by mass based on the total amount (total mass) of the first aqueous composition. , 35% by mass, 30% by mass, 25% by mass, 18% by mass, 15% by mass, 12% by mass, 10% by mass, 8% by mass, 7% by mass, 5% by mass, 3% by mass, 2% by mass, etc. There may be.
  • the range of the concentration of hydrogen peroxide is a range in which the above-mentioned lower limit value and upper limit value are appropriately combined, for example, 0.001 to 40% by mass, 0.01 to 30% by mass, 0.05 to 20% by mass, and 0. .1 to 5.0% by mass, 0.1 to 3.0% by mass, 0.1 to 2.0% by mass, 0.2 to 20% by mass, 0.2 to 5.0% by mass, 0.2 It can be appropriately selected from ⁇ 3.0% by mass, 0.2 to 2.0% by mass and the like. By setting the concentration of hydrogen peroxide in these ranges, the action and effect of the present invention tend to be more preferably achieved.
  • the copper ions contained in the first aqueous composition can be generated by mixing a copper compound as a copper ion source with other components.
  • the type of copper ion source is not particularly limited as long as it is a copper compound capable of supplying copper ions in the aqueous composition.
  • Examples of such copper compounds include copper sulfate such as cupric sulfate, copper chloride such as cupric chloride, and copper tetrafluoroborate, which may be anhydrous or pentahydrate. , Copper bromide, cupric oxide, copper phosphate, copper acetate, copper formic acid, copper nitrate and the like.
  • copper sulfate or copper chloride is preferable, and cupric sulfate or cupric chloride is more preferable, from the viewpoints of more effective and reliable effect of the present invention, ease of handling, and economy. Copper sulfate is more preferred. These may be used alone or in combination of two or more.
  • the copper ions contained in the first aqueous composition cause a substitution reaction with nickel and chromium, which are components of stainless steel, in the roughening treatment, and then the substitution reaction product derived from the copper ions is removed. It is presumed that a roughened shape can be obtained.
  • the concentration of copper ions contained in the first aqueous composition is 0.25 to 40% by mass, preferably 0.25 to 30%, based on the total amount (total mass) of the first aqueous composition. It is mass% or 1.0 to 30% by mass, more preferably 0.5 to 25% by mass or 3.0 to 25% by mass, and particularly preferably 1.5 to 20% by mass or 5.0. It is about 20% by mass. Further, the lower limit of the concentration of copper ions contained in the first aqueous composition is, for example, 0.01% by mass, 0.1% by mass, based on the total amount (total mass) of the first aqueous composition.
  • the upper limit of the concentration of copper ions contained in the first aqueous composition is based on the total amount of the first aqueous composition, for example, 45% by mass, 40% by mass, 35% by mass, 30% by mass, 25. It may be mass%, 20 mass%, 18 mass%, 15 mass%, 10 mass%, 9 mass%, 7 mass%, 5 mass%, 3 mass% and the like.
  • the range of the concentration of copper ions is a range in which the above-mentioned lower limit value and upper limit value are appropriately combined, for example, 0.01 to 45% by mass, 0.1 to 40% by mass, 0.2 to 35% by mass, 0. It can be appropriately selected from 4 to 25% by mass, 1.0 to 9% by mass, 1.0 to 10% by mass, 1.5 to 9% by mass, 1.5 to 10% by mass and the like. By setting the concentration of copper ions in these ranges, the effects of the present invention tend to be more preferably achieved.
  • the type of the halide ion contained in the first aqueous composition is not particularly limited, and may be, for example, a fluoride ion, a chloride ion, a bromide ion, or an iodide ion, but the chloride ion is easy to handle. It is more preferable from the viewpoint of sex and economy.
  • the halogen compound that gives the halide ion is not particularly limited, and is, for example, a halide of an alkali metal such as sodium halide and potassium halide, a halide of an alkaline earth metal such as calcium halide, and a halogen.
  • Examples include ammonium oxide, copper halide, and hydrogen halide.
  • a halide of an alkali metal or a hydrogen halide is preferable, and hydrochloric acid or sodium chloride is more preferable, from the viewpoint of more effectively and surely exerting the action and effect of the present invention.
  • the halogen compound is used alone or in combination of two or more.
  • the halogen compound may overlap with the above-mentioned copper compound.
  • the copper halide also corresponds to the copper compound as the copper ion source described above.
  • the halogenated copper copper chloride is preferable.
  • Halogen compounds (halide ions) cause pitting corrosion on the passivation film in the roughening treatment of the stainless steel surface.
  • the concentration of the halide ion contained in the first aqueous composition is 1 to 30% by mass, preferably 2.0 to 25% by mass, based on the total amount (total mass) of the first aqueous composition. %, More preferably 3.0 to 20% by mass, particularly preferably 5.0 to 15% by mass, still more preferably 8 to 15% by mass. Further, as the range of the concentration of the halide ion contained in the first aqueous composition, 0.01% by mass, 0.1% by mass, and 0.
  • any of 5% by mass, 1.0% by mass, 2.0% by mass, 3.0% by mass, 5.0% by mass and 8% by mass as the lower limit value, based on the total amount of the first aqueous composition Any of 40% by mass, 35% by mass, 30% by mass, 25% by mass, 20% by mass, 15% by mass, 12% by mass, and 10% by mass may be set as the upper limit.
  • the range of the halide ion concentration is a range in which the above-mentioned lower limit value and upper limit value are appropriately combined, for example, 0.01 to 40% by mass, 0.1 to 40% by mass, 0.05 to 35% by mass, 1.
  • the first aqueous composition of the present invention may contain water, preferably water.
  • the water is not particularly limited, but is preferably water from which metal ions, organic impurities, particles, etc. have been removed by distillation, ion exchange treatment, filter treatment, various adsorption treatments, etc., more preferably pure water, and ultrapure water. Especially preferable.
  • the content of water in the first aqueous composition of the present invention is the balance of each of the above-mentioned components and the additives described in detail later, and is not particularly limited, but is the total amount (total mass) of the first aqueous composition.
  • it is preferably 10 to 98.6% by mass, more preferably 50 to 98% by mass, still more preferably 65 to 95% by mass, and particularly preferably 75 to 90% by mass.
  • the first aqueous composition of the present invention is preferably a solution, and preferably does not contain a component insoluble in the composition which is the solution, for example, solid particles such as abrasive particles.
  • the first aqueous composition containing each of the above-mentioned components functions as follows in the roughening treatment of the surface of stainless steel.
  • Halide ions are responsible for pitting the oxide film normally formed on the surface of stainless steel.
  • the copper ion has an action of causing a substitution reaction with nickel and chromium, which are components of the stainless steel, and then the substitution reaction product derived from the copper ion is removed, and Sz is formed on the surface of the stainless steel. It is considered that large unevenness, that is, a roughened shape is formed.
  • hydrogen peroxide serves to remove the substitution reaction product derived from the copper ion after the above-mentioned substitution reaction.
  • the first aqueous composition is prepared by adding the above-mentioned hydrogen peroxide-containing component, copper ion supply component, halide ion supply component and water, and other components as necessary, and stirring until uniform. Will be done.
  • the properties of the first aqueous composition are not particularly limited, but the pH value is preferably ⁇ 1.0 to 4.0, more preferably ⁇ 0.5 to 3.0, and further. It is preferably ⁇ 0.25 to 2.5, and particularly preferably 0.0 to 2.0.
  • the pH value can be measured, for example, by the method described in Examples.
  • the second aqueous composition is mainly used in the above-mentioned post-treatment step for the purpose of removing the precipitates deposited on the surface of the stainless steel by the roughening treatment using the first aqueous composition. Due to the second aqueous composition, the precipitates considered to be caused by the substitution reaction between the copper ions contained in the first aqueous composition and the copper in stainless steel or the above-mentioned metal having a higher ionization tendency than copper are produced. Efficiently etched and removed from the stainless steel surface.
  • the second aqueous composition comprises a peroxide (oxidizing agent).
  • the second aqueous composition preferably contains 0.2 to 20% by weight of a peroxide (oxidizing agent) based on the total amount (total mass) of the second aqueous composition.
  • the second aqueous composition is based on the total amount (total mass) of the second aqueous composition, preferably further containing 0.5 to 15% by mass of an acid, and more preferably further 0.1 to 100% by mass. Contains 5.0% by weight alcohol.
  • the second aqueous composition comprises water, particularly preferably ion-exchanged water or ultrapure water.
  • each component of the second aqueous composition will be described.
  • the peroxide contained in the second aqueous composition is not particularly limited, but is preferably selected from the group consisting of hydrogen peroxide, persulfuric acid, and a salt of persulfuric acid. These may be used alone or as a mixture of a plurality of types.
  • As the salt of persulfate for example, sodium persulfate, potassium persulfate, ammonium persulfate and the like are used.
  • hydrogen peroxide, persulfuric acid, and sodium persulfate are preferable from the viewpoint of more effectively and surely exerting the action and effect of the present invention.
  • an oxidizing agent other than the peroxide may be used. Oxidizing agents other than peroxides can be used in place of or with peroxides.
  • the concentration of the peroxide contained in the second aqueous composition is preferably 0.2 to 20% by mass based on the total amount (total mass) of the second aqueous composition, but more preferably 0. It is .5 to 10% by mass, more preferably 0.7 to 6% by mass, particularly preferably 1.0 to 4% by mass, and even more preferably 1.5 to 3% by mass. .. Further, the lower limit of the concentration of the peroxide contained in the second aqueous composition is, for example, 0.01% by mass and 0.05% by mass based on the total amount (total mass) of the second aqueous composition.
  • the concentration of the peroxide contained in the second aqueous composition is, for example, 30 based on the total amount (total mass) of the second aqueous composition.
  • Mass% 25% by mass, 20% by mass, 15% by mass, 12% by mass, 10% by mass, 9% by mass, 7% by mass, 5% by mass, 4.5% by mass, 3.5% by mass, etc. May be good.
  • the range of the concentration of peroxide is a range in which the above-mentioned lower limit value and upper limit value are appropriately combined, for example, 0.01 to 30% by mass, 0.05 to 25% by mass, 0.1 to 20% by mass, and 0. .1 to 15% by mass, 0.25 to 12% by mass, 0.3 to 9% by mass, 0.6 to 7% by mass, 1.2 to 5.0% by mass, 1.8 to 4.5% by mass , 2.0 to 3.5% by mass and the like can be appropriately selected.
  • concentration of the peroxide in these ranges, the action and effect of the present invention tend to be more preferably achieved.
  • the total amount may satisfy the above range.
  • the range of the concentration of hydrogen hydrogen is preferably 0.3 to 0.3 based on the total amount (total mass) of the second aqueous composition. It is 18% by mass, more preferably 0.5 to 15% by mass, still more preferably 1.0 to 12% by mass, and particularly preferably 1.2 to 10% by mass. It may be 5 to 8.0% by mass.
  • the content of hydrogen peroxide in the second aqueous composition may be in the range described in the preceding paragraph.
  • the total content of the persulfate and the salt of persulfate is the same as that of hydrogen peroxide when hydrogen peroxide is used. It is preferable to increase the content slightly more than the content.
  • the total content of persulfate and the salt of persulfate is preferably 5.0 to 20% by mass, more preferably 5. It is 5 to 18% by mass, more preferably 6.0 to 16% by mass, particularly preferably 7.0 to 14% by mass, and may be 8.0 to 12% by mass.
  • the total content of persulfuric acid and the salt of persulfuric acid in the second aqueous composition may be in the range described in the preceding paragraph.
  • the second aqueous composition preferably contains an acid.
  • an acid As the acid contained in the second aqueous composition, a protonic acid (breasted acid), a salt of the protonic acid, a Lewis acid and the like can be used without any special limitation, but the protonic acid, for example, nitric acid is preferable. , Hydrochloric acid, nitric acid, etc. are used.
  • the acid here also includes an acid salt, and salts such as sodium hydrogensulfate, potassium hydrogensulfate, and calcium sulfate may be used. These may be used alone or as a mixture of a plurality of types. Among these, sulfuric acid or sodium hydrogensulfate is preferable, and sulfuric acid is more preferable, from the viewpoint of more effectively and surely exerting the action and effect of the present invention.
  • the concentration of the acid contained in the second aqueous composition is preferably 0.5 to 15% by mass, more preferably 2.0, based on the total amount (total mass) of the second aqueous composition. It is -10% by mass, more preferably 3.0 to 8.0% by mass, particularly preferably 3.5 to 6.0% by mass, and 4.0 to 5.0% by mass. You may. Further, the lower limit of the concentration of the acid contained in the second aqueous composition is, for example, 0.05% by mass, 0.1% by mass, 0 based on the total amount (total mass) of the second aqueous composition.
  • the upper limit of the concentration of the acid contained in the second aqueous composition is, for example, 40% by mass, 30% by mass, and 25% by mass based on the total amount (total mass) of the second aqueous composition. , 20% by mass, 18% by mass, 15% by mass, 12% by mass, 9.0% by mass, 7.0% by mass, 6.5% by mass and the like.
  • the range of the acid concentration is a range in which the above-mentioned lower limit value and upper limit value are appropriately combined, for example, 0.05 to 40% by mass, 0.1 to 30% by mass, 0.2 to 25% by mass, 0.3.
  • the second aqueous composition preferably contains an alcohol, particularly a water-soluble alcohol.
  • the alcohol preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and is, for example, methanol, ethanol, n-propanol or the like. As the alcohol, only one of them may be used, or a mixture of a plurality of types may be used.
  • the concentration of the alcohol contained in the second aqueous composition is preferably 0.1 to 5.0% by mass based on the total amount (total mass) of the second aqueous composition, but more preferably. It is 0.2 to 4.0% by mass, more preferably 0.3 to 3.5% by mass, and particularly preferably 0.5 to 2.5% by mass, and 0.7 to 2. It may be 0% by mass. Further, the lower limit of the concentration of alcohol contained in the second aqueous composition is, for example, 0.005% by mass, 0.01% by mass, 0 based on the total amount (total mass) of the second aqueous composition.
  • the range of the concentration of alcohol is a range in which the above-mentioned lower limit value and upper limit value are appropriately combined, for example, 0.005 to 20% by mass, 0.01 to 15% by mass, 0.1 to 10% by mass, 0.25. ⁇ 9.0% by mass, 0.35 to 8.0% by mass, 0.4 to 6.0% by mass, 0.6 to 5.5% by mass, 0.8 to 4.5% by mass, 0.8 It can be appropriately selected from ⁇ 3.0% by mass and the like. By setting the concentration of alcohol in these ranges, the action and effect of the present invention tend to be more preferably achieved.
  • the second aqueous composition of the present invention may contain water, preferably water.
  • the water is not particularly limited, but is preferably water from which metal ions, organic impurities, particles, etc. have been removed by distillation, ion exchange treatment, filter treatment, various adsorption treatments, etc., more preferably pure water, and ultrapure water. Especially preferable.
  • the content of water in the second aqueous composition of the present invention is the balance of each of the above-mentioned components and the additives described in detail later, and is not particularly limited, but is the total amount (total mass) of the second aqueous composition. By reference, it is preferably 50 to 99.8% by mass, more preferably 60 to 99% by mass, still more preferably 70 to 97% by mass, and particularly preferably 80 to 95% by mass.
  • the second aqueous composition of the present invention is preferably a solution, and preferably does not contain a component insoluble in the composition which is the solution, for example, solid particles such as abrasive particles.
  • the second aqueous composition containing each of the above-mentioned components functions as follows in the post-treatment step of the stainless steel surface. It is considered that peroxides, oxidizing agents, and acids react only with precipitates derived from copper ions and the like deposited on the surface of stainless steel to change them into water-soluble compounds, and the roughness of the surface of stainless steel is considered. Does not affect, or does not affect the surface roughness to a large extent. Further, the alcohol functions as a solvent, and is considered to contribute to the removal of the precipitate by facilitating the dispersion of the decomposition product of the precipitate in the aqueous composition or the washing water.
  • the properties of the second aqueous composition are not particularly limited, but the pH value is less than 7, for example, the pH value is preferably 0 to 6.5, and more preferably 0 to 6. It is more preferably 0 to 5, particularly preferably 0 to 4, and particularly preferably 0 to 3.
  • the pH value can be measured by the method described in Examples.
  • the lower limit of the pH of the second aqueous composition may be, for example, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2.
  • the upper limit of the pH of the second aqueous composition is, for example, 6.5, 5.5, 4.5, 3.5, 3.0, 2.8, 2.5, 2.0 and the like. May be good.
  • the pH range of the second aqueous composition may be a range in which the above-mentioned lower limit value and upper limit value are appropriately combined.
  • the first aqueous composition may contain an additive as a component other than the above-mentioned hydrogen peroxide, copper ion, and halide ion as long as the effect of the present invention is exhibited.
  • the same applies to the second aqueous composition which may contain additives other than the peroxide (oxidizing agent) and the acid.
  • additives include heterocyclic nitrogen compounds (azole compounds), organic solvents and the like. These may be used alone or in combination of two or more.
  • examples of the additive include a surfactant, a pH adjuster and the like, but these should not be included in the aqueous composition of the present invention.
  • the concentration of the additive that may be contained in each aqueous composition is preferably 10% by mass or less, more preferably 5.0% by mass or less, and more preferably 2.0% by mass. It is less than or equal to, and particularly preferably 1.0% by mass or less.
  • Example 1 A stainless steel (foil) having a thickness of 40 ⁇ m, a length and a width of 30 mm ⁇ 30 mm, and a material of JFE20-5USR (manufactured by JFE Steel Corporation) was prepared.
  • the stainless steel (foil) of JFE20-5USR contained 5.5% by mass of aluminum as a metal having a higher ionization tendency than copper.
  • the Sz of the stainless steel foil that is, the stainless steel foil in the untreated state, measured according to the above-mentioned "Measurement of Surface Roughness of Stainless Steel Foil" was 2.2 ⁇ m and Sa was 0.1 ⁇ m.
  • the surface roughness values of the untreated stainless steel foil are shown in Table 1 below as a reference example.
  • hydrogen peroxide is finally added to 0.3% by mass (1 g of 60 wt% hydrogen peroxide aqueous solution)
  • copper sulfate pentahydrate is added to 6% by mass (12 g)
  • hydrochloric acid is added.
  • An aqueous composition A1 (corresponding to the first aqueous composition) was prepared by adding 35% by mass (69 g) of a 35 wt% aqueous solution.
  • the concentration of copper ion (Cu 2+ ) derived from copper sulfate in this composition A1 is 1.5% by mass based on the total amount of the aqueous composition
  • the concentration of halide ion (Cl ⁇ ) derived from hydrochloric acid is the aqueous composition. It was 12% by mass based on the total amount of the substance.
  • an amount of hydrogen peroxide that finally becomes 2% by mass 7 g of 60 wt% hydrogen peroxide aqueous solution
  • an amount of sulfuric acid that finally becomes 4.5% by mass (46 wt%) 20 g) of sulfuric acid aqueous solution and 1% by mass (2 g) of n-propanol were added to prepare an aqueous composition B1 (corresponding to a second aqueous composition).
  • Step 1 Roughening process
  • the stainless steel foil was first immersed in the aqueous composition A1 at a liquid temperature of 35 ° C. for 60 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water to develop a roughened shape on the surface of the stainless steel foil. On the surface of the stainless steel foil thus roughened, a precipitate (Cu precipitate) considered to be derived from copper ions or the like of the aqueous composition A1 was observed. That is, Cu precipitates similar to the precipitates that were not finally removed in Comparative Examples 1 and 2 described later were confirmed.
  • Step 2 Post-treatment step
  • the stainless steel foil that had undergone the roughening treatment in step 1 was immersed in the aqueous composition B1 at a liquid temperature of 30 ° C. for 30 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water and then sufficiently dried to obtain a surface-treated foil. With respect to the obtained surface-treated foil, it was confirmed whether or not Cu precipitates remained on the surface of the stainless steel after the post-treatment according to the description in the column of "Evaluation of residual copper amount on the surface of alloy (stainless steel)". Since no residual Cu precipitate was found in the metallurgical microscope image, it was judged to be ⁇ (good). The metallurgical microscope image at this time is shown in FIG. FIG.
  • Example 2 A stainless steel (foil) having a thickness of 40 ⁇ m, a length and a width of 30 mm ⁇ 30 mm, and a material of JFE20-5USR (manufactured by JFE Steel Corporation) was prepared.
  • the stainless steel (foil) of JFE20-5USR contained 5.5% by mass of aluminum as a metal having a higher ionization tendency than copper.
  • hydrogen peroxide is finally added to 0.3% by mass (1 g of 60 wt% hydrogen peroxide aqueous solution), copper sulfate pentahydrate is added to 6% by mass (12 g), and hydrochloric acid is added.
  • An aqueous composition A1 (corresponding to the first aqueous composition) was prepared by adding 35% by mass (69 g) of a 35 wt% aqueous solution.
  • the concentration of copper ion (Cu 2+ ) derived from copper sulfate in this composition A1 is 1.5% by mass based on the total amount of the aqueous composition, and the concentration of halide ion (Cl ⁇ ) derived from hydrochloric acid is the aqueous composition. It was 12% by mass based on the total amount of the substance.
  • Aqueous composition B2 (corresponding to the second aqueous composition) was prepared by adding 20 g of the sulfuric acid aqueous solution of the above.
  • Step 1 Roughening process
  • the stainless steel foil was first immersed in the aqueous composition A1 at a liquid temperature of 35 ° C. for 60 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water to develop a roughened shape on the surface of the stainless steel foil. Precipitates (Cu precipitates) were observed on the surface of the stainless steel foil thus roughened.
  • Step 2 Post-treatment step
  • the stainless steel foil that had undergone the roughening treatment in step 1 was immersed in the aqueous composition B2 at a liquid temperature of 30 ° C. for 30 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water and then sufficiently dried to obtain a surface-treated foil.
  • Example 3 A stainless steel (foil) having a thickness of 40 ⁇ m, a length and a width of 30 mm ⁇ 30 mm, and a material of JFE20-5USR (manufactured by JFE Steel Corporation) was prepared.
  • the stainless steel (foil) of JFE20-5USR contained 5.5% by mass of aluminum as a metal having a higher ionization tendency than copper.
  • hydrogen peroxide is finally added to 0.3% by mass (1 g of 60 wt% hydrogen peroxide aqueous solution), copper sulfate pentahydrate is added to 6% by mass (12 g), and hydrochloric acid is added.
  • An aqueous composition A1 (corresponding to the first aqueous composition) was prepared by adding 35% by mass (69 g) of a 35 wt% aqueous solution.
  • the concentration of copper ion (Cu 2+ ) derived from copper sulfate in this composition A1 is 1.5% by mass based on the total amount of the aqueous composition, and the concentration of halide ion (Cl ⁇ ) derived from hydrochloric acid is the aqueous composition. It was 12% by mass based on the total amount of the substance.
  • aqueous composition B3 (second) in which sodium persulfate was finally added in an amount (18 g) of 9.0 mass% and n-propanol was added in an amount of 1 mass% (2 g) to 180 ml of ultrapure water. (Corresponding to an aqueous composition) was prepared.
  • Step 1 Roughening process
  • the stainless steel foil was first immersed in the aqueous composition A1 at a liquid temperature of 35 ° C. for 60 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water to develop a roughened shape on the surface of the stainless steel foil. Precipitates (Cu precipitates) were observed on the surface of the stainless steel foil thus roughened.
  • Step 2 Post-treatment step
  • the stainless steel foil that had undergone the roughening treatment in step 1 was immersed in the aqueous composition B3 at a liquid temperature of 30 ° C. for 30 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water and then sufficiently dried to obtain a surface-treated foil.
  • Example 4 to 8 in addition to using an aqueous composition different from that in Example 1, a roughening treatment step and a post-treatment step were carried out in the same manner as in Example 1.
  • the composition of the aqueous composition used in Step 1 (roughening treatment step) and Step 2 (post-treatment step) of Examples 4 to 8 and the treatment results are shown in Table 1 below.
  • a stainless steel (foil) having a thickness of 40 ⁇ m, a length and a width of 30 mm ⁇ 30 mm, and a material of JFE20-5USR (manufactured by JFE Steel Corporation) was prepared.
  • the stainless steel (foil) of JFE20-5USR contained 5.5% by mass of aluminum as a metal having a higher ionization tendency than copper.
  • hydrogen peroxide is finally added to 0.3% by mass (1 g of 60 wt% hydrogen peroxide aqueous solution), copper sulfate pentahydrate is added to 6% by mass (12 g), and hydrochloric acid is added.
  • An aqueous composition A1 was prepared by adding 35% by mass (69 g) of a 35 wt% aqueous solution.
  • the concentration of copper ion (Cu 2+ ) derived from copper sulfate in this composition A1 is 1.5% by mass based on the total amount of the aqueous composition, and the concentration of halide ion (Cl ⁇ ) derived from hydrochloric acid is the aqueous composition. It was 12% by mass based on the total amount of the substance.
  • an aqueous composition B4 was prepared by adding 4.5% by mass (20 g of a 46 wt% sulfuric acid aqueous solution) and 1% by mass (2 g) of n-propanol to 178 ml of ultrapure water.
  • Step 1 Roughening process
  • the stainless steel foil was first immersed in the aqueous composition A1 at a liquid temperature of 35 ° C. for 60 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water to develop a roughened shape on the surface of the stainless steel foil.
  • Step 2 Post-treatment step
  • the stainless steel foil that had undergone the roughening treatment in step 1 was immersed in the aqueous composition B4 at a liquid temperature of 30 ° C. for 30 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water and then sufficiently dried to obtain a surface-treated foil.
  • a stainless steel (foil) having a thickness of 40 ⁇ m, a length and a width of 30 mm ⁇ 30 mm, and a material of JFE20-5USR (manufactured by JFE Steel Corporation) was prepared.
  • the stainless steel (foil) of JFE20-5USR contained 5.5% by mass of aluminum as a metal having a higher ionization tendency than copper.
  • hydrogen peroxide is finally added to 0.3% by mass (1 g of 60 wt% hydrogen peroxide aqueous solution), and copper sulfate pentahydrate is added to 6% by mass (12.0 g).
  • An aqueous composition A1 was prepared by adding 35% by mass (69 g) of a 35 wt% aqueous solution of hydrochloric acid.
  • the concentration of copper ion (Cu 2+ ) derived from copper sulfate in this composition A1 is 1.5% by mass based on the total amount of the aqueous composition, and the concentration of halide ion (Cl ⁇ ) derived from hydrochloric acid is the aqueous composition. It was 12% by mass based on the total amount of the substance.
  • an aqueous composition in which hydrogen peroxide is finally added to 191 ml of ultrapure water in an amount of 2% by mass (7 g of a 60 wt% hydrogen peroxide aqueous solution) and 1% by mass (2 g) of n-propanol.
  • aqueous composition in which hydrogen peroxide is finally added to 191 ml of ultrapure water in an amount of 2% by mass (7 g of a 60 wt% hydrogen peroxide aqueous solution) and 1% by mass (2 g) of n-propanol.
  • Step 1 Roughening process
  • the stainless steel foil was first immersed in the aqueous composition A1 at a liquid temperature of 35 ° C. for 60 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water to develop a roughened shape on the surface of the stainless steel foil.
  • Step 2 Post-treatment step
  • the stainless steel foil that had undergone the roughening treatment in step 1 was immersed in the aqueous composition B5 at a liquid temperature of 30 ° C. for 30 seconds. Then, the stainless steel foil after immersion was thoroughly washed with ultrapure water and then sufficiently dried to obtain a surface-treated foil.
  • Example 3 In Example 3, an aqueous composition different from that of Comparative Example 1 was used in step 1 (roughening treatment step), and step 2 (post-treatment step) was further carried out.
  • the composition of the aqueous composition used in each step of Comparative Example 3 and the results of the treatment are shown in Table 1 below.
  • the surface of stainless steel can be sufficiently and efficiently roughened in a short time with a sufficient number of steps. Furthermore, it is possible to maintain good surface quality of stainless steel. Then, if stainless steel having a rough surface while maintaining a good appearance is used for a battery current collector foil, an automobile component housing, or the like, a dielectric substance or an organic substance can be effectively adhered or retained. can. Further, as a member for dissipating heat, stainless steel having a roughened surface can be preferably used. Therefore, the present invention has industrial applicability in the field of surface roughening treatment of material members, for example, stainless steel used in the above products.

Abstract

ステンレス鋼の表面を、十分に、かつ少ない工程で効率的に粗化させるとともに、処理後のステンレス鋼の表面品質を良好に保つ粗化処理方法等を提供する。 上述の課題は、第1の水性組成物を用いる粗化処理工程と、第2の水性組成物を用いる後処理工程とを有するステンレス鋼の粗化処理方法により解決された。 すなわち、 粗化処理工程が、銅または銅よりもイオン化傾向の大きい金属を含有するステンレス鋼の表面に、第1の水性組成物を接触させて粗化処理する工程であり、 第1の水性組成物が、 過酸化水素を、第1の水性組成物の全量基準で、0.1~20質量%含み、 銅イオンを、第1の水性組成物の全量基準で、0.25~40質量%含み、 ハロゲン化物イオンを、第1の水性組成物の全量基準で、1~30質量%含み、 後処理工程が、粗化処理工程において処理されたステンレス鋼の表面に第2の水性組成物を酸性条件下で接触させて後処理を行う工程であり、 第2の水性組成物が、 少なくとも過酸化物を含む、粗化処理方法である。

Description

ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物
 本発明は、ステンレス鋼の表面の粗化処理方法、当該粗化処理方法を含む粗化ステンレス鋼の製造方法、及び、ステンレス鋼表面の粗化処理方法等に用いられる水性組成物に関する。
 ステンレス鋼は、耐久性や耐候性に優れる特性から、近年、様々な分野への展開が検討されている。例えば、電子部品や電池集電箔、自動車部品の筐体において、ステンレス鋼の採用が進んでいる。具体的には、電池集電箔や自動車部品筐体にステンレス鋼が使用される場合には、誘電物質や有機物を付着させる目的でステンレス鋼の表面が粗化される。また、放熱用途としてステンレス鋼が使用される場合には、放熱を促進させる目的で、ステンレス鋼表面が粗化される。
 このような用途でステンレス鋼が各製品にて使用される場合に、表面積を増大させる要望がある。そこで、ステンレス鋼の表面を、例えば塩化鉄を含む処理液で処理する方法等が知られている(例えば、特許文献1)。しかしながら、この処理方法によれば、処理後のステンレス鋼の表面にも平坦な面が多く存在するため、上記の用途に用いるためには必ずしも十分に粗化されているとはいえない。
 また、ステンレス鋼の表面を粗化する方法として、ウェットピーニングと薬液による粗化処理を組み合わせたものが見出されているが(例えば、特許文献2)、これらの方法によれば、粗化処理に先立って表面を特定の方法で処理する工程が必要とされる。このため、粗化処理の効率化に関して改善の余地が認められる。
特開2011-168017号公報 特開2015-183239号公報
 上述のように、従来のステンレス鋼表面の粗化処理においては、粗化レベルが必ずしも十分ではなく、また、複雑な工程を要するために処理時間やコストが増大していた。
 また、粗化処理後のステンレス鋼の表面品質も問題となり得る。例えば、本発明者らの検討の過程において、粗化処理で得られたステンレス鋼の表面の外観が均一でないことから、製品化に支障をきたすことがあることがわかってきた。
 すなわち、本発明では、ステンレス鋼の表面に対して十分な粗化処理を簡素な工程で効率的に施すことを可能にするとともに、外観等の表面品質が良好な粗化ステンレス鋼を安定的に得る方法の実現などを課題とした。
 本発明者らは、上記課題を達成すべく鋭意研究を重ねた結果、特定の組成の水性組成物を用いることにより、ステンレス鋼の表面を、十分に、かつ少ない工程で効率的に粗化できるとともに、ステンレス鋼表面の外観等の表面品質を良好な状態にできることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
[1]ステンレス鋼の表面を粗化する粗化処理方法であって、第1の水性組成物を用いる粗化処理工程と、第2の水性組成物を用いる後処理工程とを有し、
 前記粗化処理工程が、銅または銅よりもイオン化傾向の大きい金属を含有するステンレス鋼の表面に、前記第1の水性組成物を接触させて粗化処理する工程であり、
 前記第1の水性組成物が、
 過酸化水素を、前記第1の水性組成物の全量基準で、0.1~20質量%含み、
 銅イオンを、前記第1の水性組成物の全量基準で、0.25~40質量%含み、
 ハロゲン化物イオンを、前記第1の水性組成物の全量基準で、1~30質量%含み、
 前記後処理工程が、前記粗化処理工程において粗化処理されたステンレス鋼の表面に前記第2の水性組成物を酸性条件下で接触させて後処理を行う工程であり、
 前記第2の水性組成物が、
 少なくとも過酸化物を含む、
粗化処理方法。
[2]前記後処理工程において、前記粗化処理工程において粗化処理されたステンレス鋼の表面における析出物をエッチングする、上記[1]に記載の粗化処理方法。
[3]前記析出物が、前記粗化処理の対象であるステンレス鋼に含まれる銅または銅よりもイオン化傾向の大きい金属と、前記第1の水性組成物に含まれる前記銅イオンとに由来する析出物である、上記[2]に記載の粗化処理方法。
[4]前記第2の水性組成物が、
 過酸化物を、前記第2の水性組成物の全量基準で、0.2~20質量%含む、上記[1]~[3]のいずれかに記載の粗化処理方法。
[5]前記第2の水性組成物に含まれる過酸化物が、過酸化水素、過硫酸及びその塩からなる群より選ばれる1種以上を含む、上記[1]~[4]のいずれかに記載の粗化処理方法。
[6]前記第2の水性組成物が、前記第2の水性組成物の全量基準で、0.5~15質量%の酸をさらに含む、上記[1]~[5]のいずれかに記載の粗化処理方法。
[7]前記第2の水性組成物に含まれる酸が、硫酸及び硫酸水素ナトリウムからなる群より選ばれる1種以上を含む、上記[1]~[6]のいずれかに記載の粗化処理方法。
[8]前記第2の水性組成物が、前記第2の水性組成物の全量基準で、0.1~5質量%の前記アルコールをさらに含む、上記[1]~[7]のいずれかに記載の粗化処理方法。
[9]前記アルコールが、炭素数1~3のアルコールである、上記[8]に記載の粗化処理方法。
[10]前記粗化処理の対象であるステンレス鋼が、銅または銅よりもイオン化傾向の大きい金属として、少なくとも、アルミニウムを含有する、上記[1]~[9]のいずれかに記載の粗化処理方法。
[11]前記粗化処理の対象であるステンレス鋼が、5質量%以上の銅または銅よりもイオン化傾向の大きい金属を含有する、上記[1]~[10]のいずれかに記載の粗化処理方法。
[12]前記第1の水性組成物が、前記銅イオンを供給する化合物として、硫酸銅または塩化銅の少なくとも1種を含む、上記[1]~[11]のいずれかに記載の粗化処理方法。
[13]前記第1の水性組成物が、前記ハロゲン化物イオンを供給する化合物として、塩酸、塩化ナトリウム、及び塩化銅からなる群より選ばれる1種以上を含む、上記[1]~[12]のいずれかに記載の粗化処理方法。
[14]前記後処理の温度が、20~60℃である、上記[1]~[13]のいずれかに記載の粗化処理方法。
[15]前記後処理の時間が、10秒間~120秒間である、上記[1]~[14]のいずれかに記載の粗化処理方法。
[16]前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される最大高さ(Sz)が、いずれも10.0μm以上である、上記[1]~[15]のいずれかに記載の粗化処理方法。
[17]前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される最大高さ(Sz)が、いずれも20.0μm以下である、上記[1]~[16]のいずれかに記載の粗化処理方法。
[18]前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される最大高さ(Sz)の値が、いずれも未処理のステンレス鋼の表面の最大高さ(Sz)の値よりも5.0μm以上大きい、上記[1]~[17]のいずれかに記載の粗化処理方法。
[19]前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される算術平均高さ(Sa)が、いずれも0.4μm以上である、上記[1]~[18]のいずれかに記載の粗化処理方法。
[20]前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される算術平均高さ(Sa)が、いずれも1.0μm以下である、上記[1]~[19]のいずれかに記載の粗化処理方法。
[21]前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される算術平均高さ(Sa)が、いずれも未処理のステンレス鋼の平面の算術平均高さ(Sa)よりも0.1μm以上大きい、上記[1]~[20]のいずれかに記載の粗化処理方法。
[22]前記ステンレス鋼が、ステンレス鋼箔である、上記[1]~[21]のいずれかに記載の粗化処理方法。
[23]上記[1]~[22]のいずれかに記載の粗化処理方法を含む、粗化ステンレス鋼の製造方法。
[24]上記[23]に記載の粗化ステンレス鋼の製造方法で製造された粗化ステンレス鋼を含む、電池用集電箔、太陽電池基材、電子デバイス用フレキシブル基板、蓄電デバイス用基板、触媒担体、電磁波シールド部材、又は放熱部材。
[25]第1の水性組成物による粗化処理が施されたステンレス鋼の表面の後処理用に用いられる第2の水性組成物であって、
 前記第1の水性組成物が、
 過酸化水素を、前記第1の水性組成物の全量基準で、0.1~20質量%含み、
 銅イオンを、前記第1の水性組成物の全量基準で、0.25~40質量%含み、
 ハロゲン化物イオンを、前記第1の水性組成物の全量基準で、1~30質量%含み、
 前記第2の水性組成物が、
 過酸化物を、前記第2の水性組成物の全量基準で、0.2~20質量%含む、
水性組成物。
[26]前記第2の水性組成物に含まれる過酸化物が、過酸化水素、過硫酸及びその塩からなる群より選ばれる1種以上を含む、上記[25]に記載の水性組成物。
[27]前記第2の水性組成物が、さらに、酸を、前記第2の水性組成物の全量基準で、0.5~15質量%含む、上記[25]又は[26]に記載の水性組成物。
[28]前記第2の水性組成物に含まれる酸が、硫酸及び硫酸ナトリウムからなる群より選ばれる1種以上を含む、上記[27]に記載の水性組成物。
[29]前記第2の水性組成物が、さらに、アルコールを、前記第2の水性組成物の全量基準で、0.1~5質量%含む、上記[25]~[28]のいずれかに記載の水性組成物。
[30]前記アルコールが、炭素数1~3のアルコールである、上記[29]に記載の水性組成物。
 本発明によれば、工程数の少ない効率的な方法により、ステンレス鋼の表面を十分に粗化させることができ、外観等の表面品質が良好な粗化ステンレス鋼を安定的に得ることが可能である。
実施例1における、後処理後のステンレス鋼の表面の金属顕微鏡画像を示す図である。 比較例1における、後処理後のステンレス鋼の表面の金属顕微鏡画像を示す図である。 比較例2における、後処理後のステンレス鋼の表面の金属顕微鏡画像を示す図である。
 以下、本発明について詳細に説明するが、本発明は下記に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 [1.ステンレス鋼の粗化処理方法]
 本発明のステンレス鋼の表面を粗化する粗化処理方法(本明細書においては、ステンレス鋼の粗化処理方法、ともいう)においては、粗化処理工程と、後処理工程とが行われる。すなわち、本発明の粗化処理方法は、詳細を後述する第1の水性組成物を用いてステンレス鋼表面の粗化処理を行う粗化処理工程と、詳細を後述する第2の水性組成物を用いて粗化処理後のステンレス鋼表面の後処理を行う後処理工程とを含む。ここで、水性組成物を用いてステンレス鋼表面の粗化処理、後処理を行うとは、それぞれの処理に用いる水性組成物とステンレス鋼表面とを接触させることをいう。このことからも明らかであるように、本発明のステンレス鋼の粗化処理方法は、少なくとも、第1の水性組成物及び第2の水性組成物とステンレス鋼表面とを接触させる工程を含む。
(1-1.粗化処理工程)
 粗化処理工程は、粗化処理の対象となるステンレス鋼に、詳細を後述する第1の水性組成物を接触させる粗化処理が行う工程である。
 粗化処理工程においては、粗化処理の温度が、20~60℃であることが好ましく、25~55℃であることがさらに好ましく、30~50℃であることが特に好ましい。このように、さほど高温でなくとも、例えば、25℃の室温下でもステンレス鋼表面の粗化が進行する点で、本発明のステンレス鋼の粗化処理方法は優れている。ここで、粗化処理の温度とは、第1の水性組成物とステンレス鋼表面とを接触させるときの温度、特に、ステンレス鋼の表面に接触させる第1の水性組成物の液温をいう。
 また、粗化処理工程においては、粗化処理の時間が、30秒間~120秒間であることが好ましく、40秒間~100秒間であることがさらに好ましく、50秒間~90秒間であることが特に好ましい。このように、さほど長時間でなくともステンレス鋼の粗化が進行する点で、本発明のステンレス鋼の粗化処理方法は優れている。ここで、粗化処理の時間とは、第1の水性組成物とステンレス鋼表面とを接触させる時間のことをいう。例えば、ステンレス鋼を第1の水性組成物に浸漬させている時間や、ステンレス鋼の表面に第1の水性組成物を噴霧したときから、水等により第1の水性組成物を除去するときまでの時間である。
 第1の水性組成物とステンレス鋼表面とを接触させる方法は、特に限定されず、例えば、第1の水性組成物を、滴下またはスプレー(噴霧処理)などの形式により、ステンレス鋼に接触させる方法、あるいは、ステンレス鋼を第1の水性組成物に浸漬させる方法などを採用することができる。本発明においては、いずれの方法を採用してもよい。例えば、特定形状に加工されたステンレス鋼に第1の水性組成物を噴霧して粗化処理されたステンレス鋼を得る方法や、ステンレス鋼箔ロール間に第1の水性組成物の滴下装置、噴霧装置または浸漬装置を設置して、ロールtoロールの手法により、未処理のステンレス鋼箔が巻き付けられていたロールからステンレス鋼箔を広げて移動させる間に、上記装置の付近を通過させて水性組成物を供給し、粗化処理されたステンレス鋼箔を巻き取ってロールを得る方法などが挙げられる。
(1-2.後処理工程)
 後処理工程は、主として、上述した粗化処理工程において粗化処理されたステンレス鋼の表面品質を良好に維持するために行われる。特に、粗化処理の対象となるステンレス鋼に比較的多量の卑金属が含まれる場合、詳細を後述する第1の水性組成物に含まれる銅イオンと、当該卑金属との置換反応に起因すると考えられる析出物がステンレス鋼の表面に生じ得るため、表面品質の維持が重要となる。例えば、ステンレス鋼の組成によっては、粗化処理後に目視で確認できる析出物が認められ、製品外観や製品性能に支障をきたす場合がある。
 上述の卑金属としては、詳細を後述するように、銅、または銅よりもイオン化傾向の大きい金属が挙げられる。すなわち、析出物は、粗化処理の対象であるステンレス鋼に含まれる銅または銅よりもイオン化傾向の大きい金属と、第1の水性組成物に含まれる銅イオンとに由来する析出物であることが好ましい。このような析出物としては、主として銅を含む化合物であり、例えば、金属銅、銅を含む酸化物、水酸化物等が挙げられる。
 後処理工程によれば、粗化処理によってステンレス鋼の表面に生じた上述の析出物をエッチングして効率的に取り除くことができる。
 後処理工程は、粗化処理工程において粗化処理されたステンレス鋼をさらに処理する工程である。後処理工程においては、粗化処理後のステンレス鋼の表面に、詳細を後述する第2の水性組成物を、酸性条件下で接触させる後処理が行われる。
 後処理は、20~60℃の温度下で行うことが好ましく、25~55℃の温度下で行うことがさらに好ましく、30~50℃の温度下で行うことが特に好ましい。このように、さほど高温でなくとも、例えば、25℃の室温下でもステンレス鋼表面の後処理を施せる点で、本発明のステンレス鋼の粗化処理方法は優れている。ここで、後処理の温度とは、粗化処理の場合と同様に、第2の水性組成物とステンレス鋼表面とを接触させるときの温度、特に、ステンレス鋼の表面に接触させる第2の水性組成物の液温をいう。
 後処理工程においては、後処理の時間が、10秒間~120秒間であることが好ましく、15秒間~100秒間であることがさらに好ましく、20秒間~90秒間であることが特に好ましい。このように、さほど長時間でなくともステンレス鋼の後処理を行える点で、本発明のステンレス鋼の粗化処理方法は優れている。ここで、後処理の時間とは、第2の水性組成物とステンレス鋼表面とを接触させる時間のことをいう。例えば、ステンレス鋼を第2の水性組成物に浸漬させている時間や、ステンレス鋼の表面に第2の水性組成物を噴霧したときから、水等により第2の水性組成物を除去するときまでの時間である。
 後処理工程において、第2の水性組成物とステンレス鋼表面とを接触させる方法は、上述の粗化処理工程における第1の水性組成物とステンレス鋼表面とを接触させる場合と同様である。
 なお、詳細を後述するように、粗化処理工程で粗化処理されたステンレス鋼に水洗などの処理を施してもよい。また、後処理工程で後処理されたステンレス鋼に水洗などの処理を施してもよい。
(1-3.各処理後のステンレスの表面粗さ)
 本発明のステンレス鋼の粗化処理方法によれば、粗化処理されたステンレス鋼(本明細書においては、粗化ステンレス鋼ともいい、ステンレス鋼箔(フィルムあるいはシート)もステンレス鋼に含まれる)の表面の最大高さ(Sz)を5.0μm以上、例えば、7.0μm以上、10.0μm以上あるいは12.0μm以上とすることが可能である。
 さらに、後処理工程によって、ステンレス鋼表面の主として外観を良好に維持できる一方、表面の粗度は、粗化処理されたステンレス鋼と概ね同等程度に保つことが可能である。
 すなわち、粗化処理の対象であるステンレス鋼に含まれる成分などによっては、ステンレス鋼の表面に析出物が生じることがあり、この析出物のために粗化処理工程の直後の表面粗さが目標とされていたレベルと異なる可能性があるものの、後処理工程によって当該析出物が除去され、所望の表面粗さが実現できる。このように、粗化処理工程によってで得られた表面粗さを、後処理工程の後でも同等程度に維持することが可能である。
 従って、本発明のステンレス鋼の粗化処理方法においては、粗化処理工程と後処理工程のいずれの工程の直後のステンレス鋼においても、また、全ての処理が終了し、最終的に得られた粗化ステンレス鋼の表面においても、表面の最大高さ(Sz)を5.0μm以上、例えば、7.0μm以上、10.0μm以上あるいは12.0μm以上とすることが可能である。
 このように、粗化処理工程および後処理工程の直後や最終製品のステンレス鋼の表面において目標とされていた粗化レベルが実現される点は、以下の表面粗さ(高さ)のパラメータ(Saを含む)についても同様である。
 本発明のステンレス鋼の粗化処理方法においては、粗化ステンレス鋼表面の最大高さ(Sz)は、粗化処理工程後、及び、後処理工程後のいずれにおいても、5.0μm以上、7.0μm以上あるいは7.5μm以上にできることが好ましく、10.0μm以上にできることがより好ましく、11.0μm以上にできることがさらに好ましく、11.5μm以上にできることがことさら好ましく、12.5μm以上にできることがより一段と好ましく、13.0μm以上であることがさらに好ましく、13.5μm以上であることが特に好ましい。
 また、粗化処理されたステンレス鋼表面、及び、後処理されたステンレス鋼表面の最大高さ(Sz)の上限値は、特に限定されるものではないが、例えば、20.0μm以下であり、17.0μm以下であってもよい。
 なお、粗化処理が施されていない状態(従って、粗化処理後の後処理も施されていない状態)のステンレス鋼(本明細書では、未処理のステンレス鋼、ともいう)の表面の最大高さ(Sz)は、特に限定されるものではないが、例えば、0.2~3.0μm等であり、1.0~2.5μmほどである。
 本発明のステンレス鋼の粗化処理方法においては、粗化ステンレス鋼表面の最大高さ(Sz)は、粗化処理工程後、及び、後処理工程後のいずれにおいても、未処理のステンレス鋼表面の最大高さ(Sz)の値よりも2.0μm以上大きい値とすることが可能であり、未処理のステンレス鋼よりも5.0μm以上大きい値とすることが好ましい。また、粗化処理工程後、及び、後処理工程後のいずれにおいても、未処理のステンレス鋼よりも7.0μm以上大きい値とすることがより好ましく、9.0μm以上大きい値とすることがさらに好ましく、10.0μm以上あるいは11.0μm以上大きい値とすることであってもよい。
 また、粗化処理工程後、及び、後処理工程後のいずれか一方のみにおいて、未処理のステンレス鋼表面と比べたときの最大高さ(Sz)の増加した幅が、上述の範囲内であってもよい。
 本発明のステンレス鋼の粗化処理方法においては、粗化ステンレス鋼の表面の算術平均高さ(Sa)は、粗化処理工程後、及び、後処理工程後のいずれにおいても、0.4μm以上とすることが可能である。本発明のステンレス鋼の粗化処理方法において、粗化ステンレス鋼の表面の算術平均高さ(Sa)は、粗化処理工程後、及び、後処理工程後のいずれにおいても、0.45μm以上にできることが好ましく、0.50μm以上にできることがより好ましく、0.55μm以上にできることがさらに好ましく、0.60μm以上、0.70μm以上、0.80μm以上あるいは1.0μm以上にできることであってもよい。
 また、粗化ステンレス鋼の表面の算術平均高さ(Sa)の上限値は、特に限定されるものではないが、例えば、1.0μm以下であり、0.9μm以下であってもよい。
 なお、未処理のステンレス鋼の算術平均高さ(Sa)は、特に限定されるものではないが、例えば、0.05~0.5μm、あるいは0.1~0.3μmである。
 本発明のステンレス鋼の粗化処理方法においては、粗化ステンレス鋼の表面の算術平均高さ(Sa)は、粗化処理工程後、及び、後処理工程後のいずれにおいても、未処理のステンレス鋼の平面の算術平均高さ(Sa)よりも0.1μm以上大きい値とすることが可能であり、未処理のステンレス鋼よりも0.2μm以上大きい値とすることが好ましく、0.3μm以上大きい値とすることがよりに好ましく、0.4μm以上大きい値とすることがさらに好ましく、0.5μm以上、0.6μm以上あるいは0.7μm以上、大きい値とすることであってもよい。
 また、粗化処理工程後、及び、後処理工程後のいずれか一方のみにおいて、未処理のステンレス鋼表面と比べたときの算術平均高さ(Sa)の増加した幅が、上述の範囲内であってもよい。
 上述した最大高さ(Sz)及び算術平均高さ(Sa)は、ISO 25178に準じて算出される。測定に用いる装置は、特に限定されるものではないが、例えば、レーザー顕微鏡を用いることができる。
 なお、粗化処理後に析出物が生じた粗化ステンレス鋼の表面から、析出物を粘着性のあるテープなどの物理的な手段によって除去した後に、粗化処理工程後の最大高さ(Sz)及び算術平均高さ(Sa)の値を測定することができる。ただし、このような物理的な手段は、製造工程の一環として必ずしも実用的ではない。
 粗化処理工程におけるステンレス鋼のエッチングレートは、特に限定されるものではないが、例えば0.5μm/分以上であり、好ましくは0.7μm/分以上であり、より好ましくは、1.0μm/分以上であり、さらに好ましくは、1.2μm/分以上であり、特に好ましくは1.4μm/分以上である。
 上述したステンレス鋼の粗化処理方法によれば、実質的に一段階の処理、すなわち、本発明の水性組成物を処理対象となるステンレス鋼の表面と接触させる粗化処理のみにより、あるいは、必要に応じて適度な洗浄(例えば、水洗浄)をさらに行うだけで、表面の凹凸が拡大されたステンレス鋼を得ることができる。
 さらに、粗化処理されたステンレス鋼の表面に上述の析出物が生じても、後処理工程によって析出物を除去することができ、外観等の表面品質が良好な粗化ステンレス鋼を得ることができる。
 また、上述のように、粗化処理及び後処理における処理条件は穏やかであり、所要時間も短いため、本発明によれば、ステンレス鋼の粗化処理を効率的に行うことができる。
 [2.ステンレス鋼]
 本発明の水性組成物による粗化処理及び後処理の対象となるステンレス鋼として、銅または銅よりもイオン化傾向の大きい金属を含むものが挙げられる。このようなステンレス鋼の具体例として、少なくとも、アルミニウムを含有するものが挙げられる。アルミニウムのような二次的な金属成分を有するステンレス鋼においては、粗化処理によってステンレス鋼表面に析出物が生じ易いものの、後処理工程によって析出物を効率的に除くことができる。
 本発明の水性組成物による粗化処理方法の対象であるステンレス鋼としては、5質量%以上の銅または銅よりもイオン化傾向の大きい金属を含有するものが適しており、7質量%以上の銅または銅よりもイオン化傾向の大きい金属を含有するものがより適しており、10質量%以上の銅または銅よりもイオン化傾向の大きい金属を含有するものが特に適している。また、粗化処理方法の対象とされるステンレス鋼にて、銅または銅よりもイオン化傾向の大きい金属の含有量の上限値は、特に限定されないが、例えば、20質量%、あるいは、30質量%が上限値であってよい。
 銅または銅よりもイオン化傾向の大きい金属としては、上述のAl(アルミニウム)の他にも、Zn(亜鉛)・Cd(カドミウム)・Co(コバルト)・Sn(スズ)・Pb(鉛)等が挙げられる。
 また、銅または銅よりもイオン化傾向の大きい金属として、統計品目番号(国際貿易商品の名称・分類を世界的に統一した6桁の品目番号)に準拠した卑金属のうち鉄鋼以外のもの、すなわち、銅、アルミニウム、鉛、亜鉛、錫、タングステン、インジウム、モリブデン、ゲルマニウム、タンタル、マグネシウム、コバルト、カドミウム、チタン、ジルコニウム、バナジウム、ガリウム、アンチモン、マンガン、ベリリウム、ハフニウム、ニオブ、ビスマス、レニウム、タリウム等も含まれ得る。
 本発明の水性組成物による粗化処理及び後処理の対象となるステンレス鋼としては、上述したなかでも、銅または銅よりもイオン化傾向の大きい金属としてアルミニウムを含むステンレス鋼が好ましい。アルミニウムを含むステンレス鋼においては、粗化処理によってステンレス鋼表面に析出物が生じ易いものの、後処理工程によって析出物を効率的に除くことができるためである。
 銅または銅よりもイオン化傾向の大きい金属としてアルミニウムを含むステンレス鋼中のアルミニウム含有量の下限値は、特に限定されるものではないが、3質量%以上が好ましく、より好ましくは5質量%以上であり、さらに好ましくは7質量%以上であり、10質量%以上であってもよい。アルミニウム含有量の上限値は、特に限定されないが、例えば、20質量%、あるいは、30質量%が上限値であってよい。
 また、粗化処理及び後処理の対象となるステンレス鋼のサイズ、厚さ、形状は特に限定されず、例えば、ステンレス鋼箔に対して行うこともできる。粗化処理及び後処理の対象となるステンレス鋼箔の厚さは、特に限定されるものではないが、例えば、1μm以上500μm以下であり、好ましくは、10μm以上100μm以下である。
 そして上述のように、粗化処理後及び後処理後の粗化ステンレス鋼表面における最大高さ(Sz)は、例えば5.0μm以上あるいは7.0μm以上であり、10.0μm以上であることが好ましく、11.0μm以上であることがより好ましく、11.5μm以上であることがさらに好ましく、12.0μm以上あるいは12.5μm以上であることがことさら好ましく、13.0μm以上であることがより一段と好ましく、13.5μm以上であることが特に好ましい。
 また、粗化処理後及び後処理後の粗化ステンレス鋼表面の最大高さ(Sz)の上限値は、特に限定されるものではないが、例えば、20.0μm以下であり、17.0μm以下であってもよい。
 粗化処理後及び後処理後の粗化ステンレス鋼の表面の算術平均高さ(Sa)は、例えば、0.40μm以上であり、0.45μm以上であることが好ましく、0.50μm以上であることがより好ましく、0.55μm以上であることがさらに好ましく、0.60μm以上0.70μm以上、0.80μm以上あるいは1.0μm以上、であってもよい。
 また、粗化処理後及び後処理後の粗化ステンレス鋼の表面の算術平均高さ(Sa)の上限値は、特に限定されるものではないが、例えば、1.0μm以下であり、0.9μm以下であってもよい。
 [3.ステンレス鋼の製造方法]
 本発明の粗化ステンレス鋼の製造方法は、少なくとも、上述の粗化処理方法を含む。本発明の粗化ステンレス鋼の製造方法によれば、粗化処理工程を行う前よりも表面が粗い、すなわち、凹凸が処理前の表面よりも拡大された表面を有するステンレス鋼であって、表面品質が優れた粗化ステンレス鋼が製造できる。
 本発明の粗化ステンレス鋼の製造方法の対象となるステンレス鋼は、上記[2.ステンレス鋼]の欄で述べたとおりである。
 本発明の粗化ステンレス鋼の製造方法によって得られる粗化ステンレス鋼表面の最大高さ(Sz)及び算術平均高さ(Sa)は、上記[2.ステンレス鋼]の欄で述べたとおりである。
 本発明の粗化ステンレス鋼の製造方法によって得られる粗化ステンレス鋼は、例えば、固体電池やリチウムイオン電池などの電池用集電箔、太陽電池基材、電子デバイス用フレキシブル基板、蓄電デバイス用基板、排気ガス浄化触媒等の担体、電磁波シールド部材、及び放熱部材などの用途に用いることができる。本発明の粗化ステンレス鋼の製造方法によって得られる粗化ステンレス鋼箔は、例えば、電池用集電箔として好適に用いられる。
 [4.水性組成物]
 本発明のステンレス鋼の粗化処理方法において用いられる水性組成物には、粗化処理工程にて用いられる第1の水性組成物、及び、後処理工程で用いられる第2の水性組成物が含まれる。本発明の水性組成物で粗化処理及び後処理を行う好ましい対象としては、上述したステンレス鋼が挙げられる。
(4-1.第1の水性組成物(粗化処理工程用の組成物))
 第1の水性組成物は、ステンレス鋼表面の粗化処理、すなわち、ステンレス鋼表面を粗くして凹凸を拡大するための処理に好適に用いられる。
 第1の水性組成物は、いずれも第1の水性組成物の全量(全体の質量)基準で、0.1~20質量%の過酸化水素、0.25~40質量%の銅イオン、および、1~30質量%のハロゲン化物イオンを含む。これらの成分以外にも、水性組成物は、水、特に、イオン交換水または超純水を含む。
 以下に、第1の水性組成物の各成分について説明する。
 4-1-1.過酸化水素
 第1の水性組成物に含まれる過酸化水素は、通常、適度な濃度の水溶液として他の成分と混合される。水性組成物の製造に用いられる過酸化水素水溶液における過酸化水素の濃度は、特に限定されるものではなく、例えば、10~90%であってよく、工業用規格に沿った35%~60%であることが好ましい。
 また、過酸化水素には、0.01質量%程度までの安定剤が含まれていてもよく、許容され得る安定剤として、硫酸、リン酸等が挙げられる。過酸化水素の製造工程、入手の経路に限定はなく、例えば、アントラキノン法により製造されたもの等が用いられる。
 第1の水性組成物に含まれる過酸化水素の濃度は、第1の水性組成物の全量(全体の質量)基準で、0.1~20質量%であるが、好ましくは、0.12~15質量%であり、より好ましくは、0.15~10質量%であり、特に好ましくは、0.18~8質量%である。また、第1の水性組成物に含まれる過酸化水素の濃度の下限値は、第1の水性組成物の全量(全体の質量)基準で、例えば、0.001質量%、0.01質量%、0.05質量%、0.15質量%、0.1質量%、0.2質量%、0.3質量%、0.5質量%、1.0質量%、1.5質量%、2.0質量%であってもよく、第1の水性組成物に含まれる過酸化水素の濃度の上限値は、例えば、第1の水性組成物の全量(全体の質量)基準で、40質量%、35質量%、30質量%、25質量%、18質量%、15質量%、12質量%、10質量%、8質量%、7質量%、5質量%、3質量%、2質量%等であってもよい。過酸化水素の濃度の範囲は、上述の下限値と上限値を適宜、組み合わせた範囲、例えば、0.001~40質量%、0.01~30質量%、0.05~20質量%、0.1~5.0質量%、0.1~3.0質量%、0.1~2.0質量%、0.2~20質量%、0.2~5.0質量%、0.2~3.0質量%、0.2~2.0質量%などから、適宜選択することができる。過酸化水素の濃度を、これらの範囲とすることで、本発明の作用効果がより好適に達成できる傾向にある。
 4-1-2.銅イオン
 第1の水性組成物に含まれる銅イオンは、銅イオン源としての銅化合物を他の成分と混合させることにより生じさせることができる。銅イオン源の種類については、水性組成物において銅イオンを供給できる銅化合物であれば、特に限定されるものではない。
 そのような銅化合物としては、例えば、無水物であってもよく五水和物であってもよい、硫酸第二銅等の硫酸銅、塩化第二銅等の塩化銅、テトラフルオロホウ酸銅、臭化第二銅、酸化第二銅、リン酸銅、酢酸銅、蟻酸銅、硝酸銅等が挙げられる。これらの中で、本発明の作用効果をより有効かつ確実に奏する点、取扱い容易性、経済性の観点から、硫酸銅または塩化銅が好ましく、硫酸第二銅または塩化第二銅がより好ましく、硫酸第二銅がさらに好ましい。これらは、1種を単独で、又は、2種以上を組み合わせて用いられる。
 第1の水性組成物に含まれる銅イオンにより、粗化処理において、ステンレス鋼の成分であるニッケルとクロムに対して置換反応が起こり、その後、銅イオン由来の置換反応生成物を除去することで粗化形状が得られるものと推測される。
 第1の水性組成物に含まれる銅イオンの濃度は、第1の水性組成物の全量(全体の質量)基準で、0.25~40質量%であるが、好ましくは、0.25~30質量%あるいは1.0~30質量%であり、より好ましくは、0.5~25質量%あるいは3.0~25質量%であり、特に好ましくは、1.5~20質量%あるいは5.0~20質量%である。また、第1の水性組成物に含まれる銅イオンの濃度の下限値は、第1の水性組成物の全量(全体の質量)基準で、例えば、0.01質量%、0.1質量%、0.2質量%、0.4質量%、0.6質量%、0.8質量%、1.0質量%、1.5質量%、2.0質量%、2.5質量%であってもよく、上述の値のうち1.0質量%、1.5質量%等であってもよい。また、第1の水性組成物に含まれる銅イオンの濃度の上限値は、第1の水性組成物の全量基準で、例えば、45質量%、40質量%、35質量%、30質量%、25質量%、20質量%、18質量%、15質量%、10質量%、9質量%、7質量%、5質量%、3質量%等であってもよい。銅イオンの濃度の範囲は、上述の下限値と上限値を適宜、組み合わせた範囲、例えば、0.01~45質量%、0.1~40質量%、0.2~35質量%、0.4~25質量、1.0~9質量%、1.0~10質量%、1.5~9質量%、1.5~10質量%などから、適宜選択することができる。銅イオンの濃度を、これらの範囲とすることで、本発明の作用効果がより好適に達成できる傾向にある。
 4-1-3.ハロゲン化物イオン(ハロゲンイオン)
 第1の水性組成物に含まれるハロゲン化物イオンの種類は、特に限定されず、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンであってよいが、塩化物イオンが、取扱い容易性、経済性の観点から、より好ましい。
 ハロゲン化物イオンを与えるハロゲン化合物としては、特に限定されるものではないが、例えば、ハロゲン化ナトリウム及びハロゲン化カリウム等のアルカリ金属のハロゲン化物、ハロゲン化カルシウム等のアルカリ土類金属のハロゲン化物、ハロゲン化アンモニウム、ハロゲン化銅、ハロゲン化水素が挙げられる。これらの中で、本発明の作用効果をより有効かつ確実に奏する観点から、アルカリ金属のハロゲン化物またはハロゲン化水素が好ましく、塩酸または塩化ナトリウムがより好ましい。
 ハロゲン化合物は、1種を単独で、又は、2種以上を組み合わせて用いられる。なお、ハロゲン化合物は、上記の銅化合物と重複してもよい。例えば、ハロゲン化物イオンの供給源としてハロゲン化銅を用いる場合、そのハロゲン化銅は上記の銅イオン源としての銅化合物にも該当する。ハロゲン化銅としては、塩化銅が好ましい。ハロゲン化合物(ハロゲン化物イオン)は、ステンレス鋼表面の粗化処理において、不働態皮膜に対する孔食作用を引き起こす。
 第1の水性組成物に含まれるハロゲン化物イオンの濃度は、第1の水性組成物の全量(全体の質量)基準で、1~30質量%であるが、好ましくは、2.0~25質量%であり、より好ましくは、3.0~20質量%であり、特に好ましくは、5.0~15質量%であり、さらに好ましくは8~15質量%である。また、第1の水性組成物に含まれるハロゲン化物イオンの濃度の範囲として、第1の水性組成物の全量(全体の質量)基準で、0.01質量%、0.1質量%、0.5質量%、1.0質量%、2.0質量%、3.0質量%、5.0質量%及び8質量%のいずれかを下限値とし、第1の水性組成物の全量基準で、40質量%、35質量%、30質量%、25質量%、20質量%、15質量%、12質量%、及び10質量%のいずれかを上限値としてもよい。ハロゲン化物イオン濃度の範囲は、上述の下限値と上限値を適宜、組み合わせた範囲、例えば、0.01~40質量%、0.1~40質量%、0.05~35質量%、1.0~35質量%、1.5~30質量%、2.0~20質量%、3.0~15質量%、5.0~12質量%、8.0~10質量%などから、適宜選択することができる。ハロゲン化物イオンの濃度を、これらの範囲とすることで、本発明の作用効果がより好適に達成できる傾向にある。
 4-1-4.水
 本発明の第1の水性組成物は、水を含んでいてもよく、水を含むことが好ましい。水としては、特に限定されないが、蒸留、イオン交換処理、フイルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーテイクルなどが除去されたものが好ましく、純水がより好ましく、超純水が特に好ましい。
 本発明の第1の水性組成物における水の含有量は、上述した各成分及び詳細を後述する添加剤の残部であり、特に限定されないが、第1の水性組成物の全量(全体の質量)基準で、10~98.6質量%が好ましく、より好ましくは50~98質量%、さらに好ましくは65~95質量%、特に好ましくは75~90質量%である。
 なお、本発明の第1の水性組成物は溶解液であることが好ましく、溶解液である組成物に対する非溶解性の成分、例えば、研磨粒子等の固形粒子は含有しないことが好ましい。
 4-1-5.第1の水性組成物の機能および性状
 上述の各成分を含む第1の水性組成物は、ステンレス鋼表面の粗化処理において、以下のように機能するものと考えられる。
 ハロゲン化物イオンは、ステンレス鋼の表面に通常、形成されている酸化膜を孔食する役割を担う。銅イオンは、上述のように、ステンレス鋼の成分であるニッケルとクロムに対する置換反応を生じさせる作用があり、その後、銅イオン由来の置換反応生成物が除去されて、ステンレス鋼の表面にSzの大きな凹凸、すなわち、粗化形状が形成されると考えられる。
 また、過酸化水素は、上述の置換反応後の銅イオン由来の置換反応生成物を除去する役目を果たす。
 第1の水性組成物は、上述した、過酸化水素含有成分、銅イオン供給成分、ハロゲン化物イオン供給成分および水と、必要に応じてその他の成分を加えて均一になるまで攪拌することで調整される。
 第1の水性組成物の性状については、特に限定されないが、pH値は、-1.0~4.0であることが好ましく、より好ましくは、-0.5~3.0であり、さらに好ましくは、-0.25~2.5であり、特に好ましくは、0.0~2.0である。pH値は、例えば、実施例に記載の方法で測定することができる。
(4-2.第2の水性組成物(後処理工程用の水性組成物))
 第2の水性組成物は、主として、第1の水性組成物を用いた粗化処理によってステンレス鋼表面に析出した析出物を除去する目的で、上述した後処理工程において用いられる。
第2の水性組成物により、第1の水性組成物中に含まれる銅イオンと、ステンレス鋼中の銅または銅よりもイオン化傾向の大きい上述の金属との置換反応に起因すると考えられる析出物が、効率的にエッチングされ、ステンレス鋼表面から除去される。
 第2の水性組成物は、過酸化物(酸化剤)を含む。第2の水性組成物は、好ましくは、第2の水性組成物の全量(全体の質量)基準で、0.2~20質量%の過酸化物(酸化剤)を含む。第2の水性組成物は、いずれも第2の水性組成物の全量(全体の質量)基準で、好ましくはさらに0.5~15質量%の酸を含み、より好ましくはさらに、0.1~5.0質量%のアルコールを含む。これらの成分以外にも、第2の水性組成物は、水、特に、好ましくはイオン交換水または超純水を含む。
 以下に、第2の水性組成物の各成分について説明する。
 4-2-1.過酸化物(酸化剤)
 第2の水性組成物に含まれる過酸化物としては、特に限定されないが、過酸化水素、過硫酸、及び過硫酸の塩からなる群より選ばれるものが好ましい。これらは、いずれかのみを用いても、複数の種類の混合物であってもよい。過硫酸の塩としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどが用いられる。これらの中で、本発明の作用効果をより有効かつ確実に奏する観点から、過酸化水素、過硫酸、過硫酸ナトリウムが好ましい。
 また、過酸化物以外の酸化剤を用いてもよい。過酸化物以外の酸化剤は、過酸化物の代わりに、あるいは、過酸化物とともに用いることができる。
 第2の水性組成物に含まれる過酸化物の濃度は、第2の水性組成物の全量(全体の質量)基準で、好ましくは0.2~20質量%であるが、より好ましくは、0.5~10質量%であり、さらに好ましくは、0.7~6質量%であり、特に好ましくは、1.0~4質量%であり、より一段と好ましくは1.5~3質量%である。また、第2の水性組成物に含まれる過酸化物の濃度の下限値は、第2の水性組成物の全量(全体の質量)基準で、例えば、0.01質量%、0.05質量%、0.1質量%、0.25質量%、0.3質量%、0.6質量%、1.0質量%、1.2質量%、1.8質量%、2.0質量%、2.5質量%であってもよいのであり、第2の水性組成物に含まれる過酸化物の濃度の上限値は、例えば、第2の水性組成物の全量(全体の質量)基準で、30質量%、25質量%、20質量%、15質量%、12質量%、10質量%、9質量%、7質量%、5質量%、4.5質量%、3.5質量%等であってもよい。過酸化物の濃度の範囲は、上述の下限値と上限値を適宜、組み合わせた範囲、例えば、0.01~30質量%、0.05~25質量%、0.1~20質量%、0.1~15質量%、0.25~12質量%、0.3~9質量%、0.6~7質量%、1.2~5.0質量%、1.8~4.5質量%、2.0~3.5質量%などから、適宜選択することができる。過酸化物の濃度を、これらの範囲とすることで、本発明の作用効果がより好適に達成できる傾向にある。2種以上の過酸化物を組合せて用いる場合は、その合計量が上記範囲を満たしていればよい。
 第2の水性組成物における過酸化物として、過酸化水素を用いる場合、過酸化水素の濃度の範囲は、第2の水性組成物の全量(全体の質量)基準で、好ましくは0.3~18質量%であり、より好ましくは、0.5~15質量%であり、さらに好ましくは、1.0~12質量%であり、特に好ましくは、1.2~10質量%であり、1.5~8.0質量%であってもよい。なお、第2の水性組成物における過酸化水素の含有量は、前段落に記載の範囲であってもよい。
 また、第2の水性組成物における過酸化物として、過硫酸又は過硫酸の塩を用いる場合、過硫酸及び過硫酸の塩の合計の含有量は、過酸化水素を用いる場合における過酸化水素の含有量よりも若干、多くすることが好ましい。例えば、過硫酸及び過硫酸の塩の合計の含有量は、第2の水性組成物の全量(全体の質量)基準で、好ましくは5.0~20質量%であり、より好ましくは、5.5~18質量%であり、さらに好ましくは、6.0~16質量%であり、特に好ましくは、7.0~14質量%であり、8.0~12質量%であってもよい。
 ただし、第2の水性組成物における過硫酸及び過硫酸の塩の合計含有量は、前段落に記載の範囲であってもよい。
 4-2-2.酸
 後処理工程は、酸性条件下で行われるので、第2の水性組成物は、酸を含むことが好ましい。第2の水性組成物に含まれる酸としては、プロトン酸(ブレンステッド酸)、プロトン酸の塩、ルイス酸等が特別な制限なしに用いることができるが、好ましくは、プロトン酸、例えば、硫酸、塩酸、硝酸等が用いられる。また、ここでの酸には、酸の塩も含まれるのであって、硫酸水素ナトリウム、硫酸水素カリウム、硫酸カルシウムなどの塩を用いてもよい。これらは、いずれかのみを用いても、複数の種類の混合物であってもよい。
これらの中で、本発明の作用効果をより有効かつ確実に奏する観点から、硫酸または硫酸水素ナトリウムが好ましく、硫酸がより好ましい。
 第2の水性組成物に含まれる酸の濃度は、第2の水性組成物の全量(全体の質量)基準で、好ましくは0.5~15質量%であるが、より好ましくは、2.0~10質量%であり、さらに好ましくは、3.0~8.0質量%であり、特に好ましくは、3.5~6.0質量%であり、4.0~5.0質量%であってもよい。また、第2の水性組成物に含まれる酸の濃度の下限値は、第2の水性組成物の全量(全体の質量)基準で、例えば、0.05質量%、0.1質量%、0.2質量%、0.3質量%、0.7質量%、1.0質量%、1.5質量%、1.8質量%、2.5質量%、3.5質量%であってもよいのであり、第2の水性組成物に含まれる酸の濃度の上限値は、例えば、第2の水性組成物の全量(全体の質量)基準で、40質量%、30質量%、25質量%、20質量%、18質量%、15質量%、12質量%、9.0質量%、7.0質量%、6.5質量%等であってもよい。酸の濃度の範囲は、上述の下限値と上限値を適宜、組み合わせた範囲、例えば、0.05~40質量%、0.1~30質量%、0.2~25質量%、0.3~20質量%、0.7~18質量%、1.0~15質量%、1.5~12質量%、1.8~9.0質量%、2.5~7.0質量%、3.5~6.5質量%などから、適宜選択することができる。酸の濃度を、これらの範囲とすることで、本発明の作用効果がより好適に達成できる傾向にある。
 4-2-3.アルコール
 第2の水性組成物には、アルコール、特に、水溶性のアルコールが含まれることが好ましい。アルコールとしては、炭素数が1~5のものが好ましく、より好ましくは炭素数が1~3のものが好ましく、例えば、メタノール、エタノール、n-プロパノール等である。アルコールとして、いずれかのみを用いても、複数の種類の混合物であってもよい。
 第2の水性組成物に含まれるアルコールの濃度は、第2の水性組成物の全量(全体の質量)基準で、0.1~5.0質量%であることが好ましいが、より好ましくは、0.2~4.0質量%であり、さらに好ましくは、0.3~3.5質量%であり、特に好ましくは、0.5~2.5質量%であり、0.7~2.0質量%であってもよい。また、第2の水性組成物に含まれるアルコールの濃度の下限値は、第2の水性組成物の全量(全体の質量)基準で、例えば、0.005質量%、0.01質量%、0.05質量%、0.1質量%、0.25質量%、0.35質量%、0.4質量%、0.6質量%、0.8質量%、1.0質量%、1.5質量%、1.8質量%であってもよいのであり、第2の水性組成物に含まれるアルコールの濃度の上限値は、例えば、第2の水性組成物の全量(全体の質量)基準で、20質量%、15質量%、10質量%、9.0質量%、8.0質量%、6.0質量%、5.5質量%、5.0質量%、4.5質量%、3.0質量%、2.8質量%等であってもよい。アルコールの濃度の範囲は、上述の下限値と上限値を適宜、組み合わせた範囲、例えば、0.005~20質量%、0.01~15質量%、0.1~10質量%、0.25~9.0質量%、0.35~8.0質量%、0.4~6.0質量%、0.6~5.5質量%、0.8~4.5質量%、0.8~3.0質量%などから、適宜選択することができる。アルコールの濃度を、これらの範囲とすることで、本発明の作用効果がより好適に達成できる傾向にある。
 4-2-4.水
 本発明の第2の水性組成物は、水を含んでいてもよく、水を含むことが好ましい。水としては、特に限定されないが、蒸留、イオン交換処理、フイルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーテイクルなどが除去されたものが好ましく、純水がより好ましく、超純水が特に好ましい。
 本発明の第2の水性組成物における水の含有量は、上述した各成分及び詳細を後述する添加剤の残部であり、特に限定されないが、第2の水性組成物の全量(全体の質量)基準で、50~99.8質量%が好ましく、より好ましくは60~99質量%、さらに好ましくは70~97質量%、特に好ましくは80~95質量%である。
 なお、本発明の第2の水性組成物は溶解液であることが好ましく、溶解液である組成物に対する非溶解性の成分、例えば、研磨粒子等の固形粒子は含有しないことが好ましい。
 4-2-5.第2の水性組成物の機能および性状
 上述の各成分を含む第2の水性組成物は、ステンレス鋼表面の後処理工程において、以下のように機能するものと考えられる。
 過酸化物あるいは酸化剤、及び、酸は、ステンレス鋼の表面に析出した銅イオン等に由来の析出物のみと反応し、水溶性の化合物に変化させるものと考えられ、ステンレス鋼表面の粗度には影響を及ぼさないか、表面の粗度を大きく変化させるほどの影響を及ぼさない。また、アルコールは、溶剤として機能するものであり、析出物の分解物を水性組成物や洗浄水中に分散させ易くし、析出物の除去に貢献するものと考えられる。
 第2の水性組成物の性状については、特に限定されないが、pH値が7未満であり、例えば、pH値が、0~6.5であることが好ましく、より好ましくは、0~6であり、さらに好ましくは、0~5であり、ことさら好ましくは0~4であり、特に好ましくは、0~3である。pH値は、実施例に記載の方法で測定することができる。
 また、第2の水性組成物pHの下限値は、例えば、0.1、0.2、0.4、0.6、0.8、1.0、1.2であってもよいのであり、第2の水性組成物pHの上限値は、例えば、6.5、5.5、4.5、3.5、3.0、2.8、2.5、2.0等であってもよい。第2の水性組成物pHの範囲は、上述の下限値と上限値を適宜、組み合わせた範囲であってもよい。
(4-3.水性組成物に含まれる添加剤)
 第1の水性組成物は、本発明の効果を発揮する範囲で、上述の過酸化水素、銅イオン、及びハロゲン化物イオン以外の成分として、添加剤を含んでいてもよい。また、第2の水性組成物についても同様であり、過酸化物(酸化剤)と酸以外の添加剤を含んでいてもよい。
 これらの添加剤としては、例えば、複素環窒素化合物(アゾール系化合物)、有機溶剤等が挙げられる。これらは1種を単独で、又は、2種以上を組み合わせて用いられる。また、添加剤として界面活性剤、pH調整剤等も挙げられるが、これらは本発明の水性組成物に含まれない方がよい。
 各水性組成物に含まれていてもよい添加剤の濃度は、それぞれ、10質量%以下であることが好ましく、より好ましくは5.0質量%以下であり、より好ましくは、2.0質量%以下であり、特に好ましくは、1.0質量%以下である。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(合金(ステンレス鋼)表面の銅残存量評価)
 実施例および比較例の粗化処理および後処理によって得られた表面処理箔(板状の表面処理合金)について、金属顕微鏡(オリンパス株式会社製、製品名「MX-63L」)を用いて、倍率200倍における視野領域でステンレス鋼箔(板)上に存在する銅(Cu析出物)の有無を目視にて評価した。表面に銅の残存が無い場合には○(良好)、銅の残存が見られる場合には×(不良)と定めた。
(pH値の測定)
 実施例および比較例における水性組成物のpH値は、25℃にて、pHメーター(株式会社 堀場製作所製のpHメーターF-52)を使用して測定した。
(ステンレス鋼箔の表面粗さの測定)
 原材料として用いられた未処理のステンレス鋼箔、ならびに、以下の実施例および比較例で得られた表面処理済みのステンレス鋼箔について、レーザー顕微鏡(株式会社キーエンス製、製品名「VK-X250」)を用いて、ISO 25178に準じた最大高さ(Sz)及び算術平均高さ(Sa)を測定した。
[実施例1]
 厚さが40μm、縦と横の長さが30mm×30mmであり、材質がJFE20-5USR(JFEスチール株式会社製)であるステンレス鋼(箔)を準備した。JFE20-5USRのステンレス鋼(箔)は、銅よりもイオン化傾向の大きい金属として、5.5質量%のアルミニウムを含んでいた。上記「ステンレス鋼箔の表面粗さの測定」に従って測定した、当該ステンレス鋼箔、すなわち、未処理の状態におけるステンレス鋼箔のSzは2.2μm、Saは0.1μmであった。未処理のステンレス鋼箔の表面粗さの値を下記表1に参考例として示す。
 118mlの超純水に、過酸化水素を最終的に0.3質量%となる量(60wt%の過酸化水素水溶液を1g)、硫酸銅五水和物を6質量%(12g)、塩酸の35wt%水溶液を35質量%(69g)、それぞれ添加した水性組成物A1(第1の水性組成物に相当する)を準備した。この組成物A1中の硫酸銅に由来する銅イオン(Cu2+)の濃度は、水性組成物全量基準で1.5質量%、塩酸に由来するハロゲン化物イオン(Cl)の濃度は、水性組成物の全量基準で12質量%であった。
 また、171mlの超純水に、過酸化水素を最終的に2質量%となる量(60wt%の過酸化水素水溶液を7g)、硫酸を最終的に4.5質量%となる量(46wt%の硫酸水溶液を20g)、n-プロパノールを1質量%(2g)、それぞれ添加した水性組成物B1(第2の水性組成物に相当する)を準備した。
(工程1:粗化処理工程)
 上記ステンレス鋼箔を、まず、液温35℃の上記水性組成物A1に60秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗し、ステンレス鋼箔の表面に粗化形状を発現させた。このように粗化処理されたステンレス鋼箔の表面には、上記水性組成物A1の銅イオン等に由来すると考えられる析出物(Cu析出物)が認められた。すなわち、後述する比較例1、2において最終的に除去されなかった析出物と同様のCu析出物が確認された。
(工程2:後処理工程)
 工程1の粗化処理を経たステンレス鋼箔を、液温30℃の上記水性組成物B1に30秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗した後、十分に乾燥させて、表面処理箔を得た。得られた表面処理箔について、上記「合金(ステンレス鋼)表面の銅残存量評価」の欄の記載に従って、後処理後のステンレス鋼表面に、Cu析出物が残存していないか、確認した。金属顕微鏡画像においてCu析出物の残存が見られなかったため、○(良好)と判断した。この時の金属顕微鏡画像を図1に示す。金属光沢を帯びた表面が示されている図1により、Cu析出物が除去されたことが確認された。また、得られた表面処理箔の表面の最大高さ(Sz)と算術平均高さ(Sa)の各値を、上記「ステンレス鋼箔の表面粗さの測定」に従って測定したところ、Szの値が13.8μm、Saの値が0.6μmであった。上述の実施例1の結果を、下記表1に示す。
[実施例2]
 厚さが40μm、縦と横の長さが30mm×30mmであり、材質がJFE20-5USR(JFEスチール株式会社製)であるステンレス鋼(箔)を準備した。JFE20-5USRのステンレス鋼(箔)は、銅よりもイオン化傾向の大きい金属として、5.5質量%のアルミニウムを含んでいた。
 118mlの超純水に、過酸化水素を最終的に0.3質量%となる量(60wt%の過酸化水素水溶液を1g)、硫酸銅五水和物を6質量%(12g)、塩酸の35wt%水溶液を35質量%(69g)、それぞれ添加した水性組成物A1(第1の水性組成物に相当する)を準備した。この組成物A1中の硫酸銅に由来する銅イオン(Cu2+)の濃度は、水性組成物全量基準で1.5質量%、塩酸に由来するハロゲン化物イオン(Cl)の濃度は、水性組成物全量基準で12質量%であった。
 また、173mlの超純水に、過酸化水素を最終的に2質量%となる量(60wt%の過酸化水素水溶液を7g)、硫酸を最終的に4.5質量%となる量(46wt%の硫酸水溶液を20g)それぞれ添加した水性組成物B2(第2の水性組成物に相当する)を準備した。
(工程1:粗化処理工程)
 上記ステンレス鋼箔を、まず、液温35℃の上記水性組成物A1に60秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗し、ステンレス鋼箔の表面に粗化形状を発現させた。このように粗化処理されたステンレス鋼箔の表面には、析出物(Cu析出物)が認められた。
(工程2:後処理工程)
 工程1の粗化処理を経たステンレス鋼箔を、液温30℃の上記水性組成物B2に30秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗した後、十分に乾燥させて、表面処理箔を得た。得られた表面処理箔について、上記「合金(ステンレス鋼)表面の銅残存量評価」の欄の記載に従って、後処理後のステンレス鋼表面に、Cu析出物が残存していないか、確認した。金属顕微鏡画像においてCu析出物の残存が見られなかったため、○(良好)と判断した。また、得られた表面処理箔の表面の最大高さ(Sz)と算術平均高さ(Sa)の各値を、上記「ステンレス鋼箔の表面粗さの測定」に従って測定したところ、Szの値が13.5μm、Saの値が0.6μmであった。これらの結果を、下記表1に示す。
[実施例3]
 厚さが40μm、縦と横の長さが30mm×30mmであり、材質がJFE20-5USR(JFEスチール株式会社製)であるステンレス鋼(箔)を準備した。JFE20-5USRのステンレス鋼(箔)は、銅よりもイオン化傾向の大きい金属として、5.5質量%のアルミニウムを含んでいた。
 118mlの超純水に、過酸化水素を最終的に0.3質量%となる量(60wt%の過酸化水素水溶液を1g)、硫酸銅五水和物を6質量%(12g)、塩酸の35wt%水溶液を35質量%(69g)、それぞれ添加した水性組成物A1(第1の水性組成物に相当する)を準備した。この組成物A1中の硫酸銅に由来する銅イオン(Cu2+)の濃度は、水性組成物全量基準で1.5質量%、塩酸に由来するハロゲン化物イオン(Cl)の濃度は、水性組成物全量基準で12質量%であった。
 また、180mlの超純水に、過硫酸ナトリウムを最終的に9.0質量%となる量(18g)、n-プロパノールを1質量%(2g)、それぞれ添加した水性組成物B3(第2の水性組成物に相当する)を準備した。
(工程1:粗化処理工程)
 上記ステンレス鋼箔を、まず、液温35℃の上記水性組成物A1に60秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗し、ステンレス鋼箔の表面に粗化形状を発現させた。このように粗化処理されたステンレス鋼箔の表面には、析出物(Cu析出物)が認められた。
(工程2:後処理工程)
 工程1の粗化処理を経たステンレス鋼箔を、液温30℃の上記水性組成物B3に30秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗した後、十分に乾燥させて、表面処理箔を得た。得られた表面処理箔について、上記「合金(ステンレス鋼)表面の銅残存量評価」の欄の記載に従って、後処理後のステンレス鋼表面に、Cu析出物が残存していないか、確認した。金属顕微鏡画像においてCu析出物の残存が見られなかったため、○(良好)と判断した。また、得られた表面処理箔の表面の最大高さ(Sz)と算術平均高さ(Sa)の各値を、上記「ステンレス鋼箔の表面粗さの測定」に従って測定したところ、Szの値が13.0μm、Saの値が0.6μmであった。これらの結果を、下記表1に示す。
[実施例4~8]
 実施例4~8では、実施例1とは異なる水性組成物を用いた他、実施例1と同様に粗化処理工程及び後処理工程を実施した。実施例4~8の工程1(粗化処理工程)及び工程2(後処理工程)において、用いた水性組成物の組成と処理の結果とを下記表1に示す。
[比較例1]
 厚さが40μm、縦と横の長さが30mm×30mmであり、材質がJFE20-5USR(JFEスチール株式会社製)であるステンレス鋼(箔)を準備した。JFE20-5USRのステンレス鋼(箔)は、銅よりもイオン化傾向の大きい金属として、5.5質量%のアルミニウムを含んでいた。
 118mlの超純水に、過酸化水素を最終的に0.3質量%となる量(60wt%の過酸化水素水溶液を1g)、硫酸銅五水和物を6質量%(12g)、塩酸の35wt%水溶液を35質量%(69g)、それぞれ添加した水性組成物A1を準備した。この組成物A1中の硫酸銅に由来する銅イオン(Cu2+)の濃度は、水性組成物全量基準で1.5質量%、塩酸に由来するハロゲン化物イオン(Cl)の濃度は、水性組成物全量基準で12質量%であった。
 また、178mlの超純水に、硫酸を4.5質量%(46wt%の硫酸水溶液を20g)、n-プロパノールを1質量%(2g)、それぞれ添加した水性組成物B4を準備した。
(工程1:粗化処理工程)
 上記ステンレス鋼箔を、まず、液温35℃の上記水性組成物A1に60秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗し、ステンレス鋼箔の表面に粗化形状を発現させた。
(工程2:後処理工程)
 工程1の粗化処理を経たステンレス鋼箔を、液温30℃の上記水性組成物B4に30秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗した後、十分に乾燥させて、表面処理箔を得た。得られた表面処理箔について、上記「合金(ステンレス鋼)表面の銅残存量評価」の欄の記載に従って、後処理後のステンレス鋼表面に、Cu析出物が残存していないか、確認した。金属顕微鏡画像においてほぼ一面にCu析出物が残存していたため、×(不良)と判断した。この時の金属顕微鏡画像を図2に示す。図2において、カラー画像では赤みを帯びているように示される銅に由来する析出物の領域が、白黒画像では必ずしも判別が容易ではないものの、図1よりも暗い領域として示されており、全般的に暗い領域が認められた。一方、図2では、図1で示されていた金属光沢に由来の白味を帯びた明るい領域が、ごく一部の領域でのみ、確認された。処理表面に銅が残存していて、正確な表面粗さを図ることができなかったため、上記「ステンレス鋼箔の表面粗さの測定」は実施しなかった。
[比較例2]
 厚さが40μm、縦と横の長さが30mm×30mmであり、材質がJFE20-5USR(JFEスチール株式会社製)であるステンレス鋼(箔)を準備した。JFE20-5USRのステンレス鋼(箔)は、銅よりもイオン化傾向の大きい金属として、5.5質量%のアルミニウムを含んでいた。
 118mlの超純水に、過酸化水素を最終的に0.3質量%となる量(60wt%の過酸化水素水溶液を1g)、硫酸銅五水和物を6質量%(12.0g)、塩酸の35wt%水溶液を35質量%(69g)、それぞれ添加した水性組成物A1を準備した。この組成物A1中の硫酸銅に由来する銅イオン(Cu2+)の濃度は、水性組成物全量基準で1.5質量%、塩酸に由来するハロゲン化物イオン(Cl)の濃度は、水性組成物全量基準で12質量%であった。
 また、191mlの超純水に、過酸化水素を最終的に2質量%となる量(60wt%の過酸化水素水溶液を7g)、n-プロパノールを1質量%(2g)、それぞれ添加した水性組成物B5を準備した。
(工程1:粗化処理工程)
 上記ステンレス鋼箔を、まず、液温35℃の上記水性組成物A1に60秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗し、ステンレス鋼箔の表面に粗化形状を発現させた。
(工程2:後処理工程)
 工程1の粗化処理を経たステンレス鋼箔を、液温30℃の上記水性組成物B5に30秒間、浸漬した。次いで、浸漬後のステンレス鋼箔を超純水で十分に水洗した後、十分に乾燥させて、表面処理箔を得た。得られた表面処理箔について、上記「合金(ステンレス鋼)表面の銅残存量評価」の欄の記載に従って、後処理後のステンレス鋼表面に、Cu析出物が残存していないか、確認した。金属顕微鏡画像においてほぼ一面にCu析出物が残存していたため、×(不良)と判断した。この時の金属顕微鏡画像を図3に示す。図3においても、図2と同様に、カラー画像では赤みを帯びているように示され、白黒画像では暗く示される析出物の領域が、ステンレス鋼箔の表面の大半を占めることが確認された。処理表面に銅が残存していて、正確な表面粗さを図ることができなかったため、上記「ステンレス鋼箔の表面粗さの測定」は実施しなかった。
[比較例3]
 実施例3では、工程1(粗化処理工程)にて比較例1とは異なる水性組成物を用い、さらに工程2(後処理工程)を実施した。比較例3の各工程にて用いた水性組成物の組成と処理の結果とを下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
産業上の利用可能性
 本発明によれば、特定の組成の水性組成物を用いることにより、ステンレス鋼の表面を、十分に、かつ少ない工程と短い時間で効率的に粗化させることができ、さらにステンレス鋼の表面品質を良好に維持することが可能である。そして、このように、外観の良好なままで表面を粗くしたステンレス鋼を、電池集電箔、自動車部品筐体等に用いれば、誘電物質や有機物を効果的に付着、又は、保持させることができる。また放熱させるための部材においても、表面が粗化されたステンレス鋼が好適に用いられ得る。
 よって本発明は、材料の部材、例えば上記製品にて用いられるステンレス鋼の表面の粗化処理の分野において、産業上の利用可能性がある。
 

Claims (30)

  1.  ステンレス鋼の表面を粗化する粗化処理方法であって、第1の水性組成物を用いる粗化処理工程と、第2の水性組成物を用いる後処理工程とを有し、
     前記粗化処理工程が、銅または銅よりもイオン化傾向の大きい金属を含有するステンレス鋼の表面に、前記第1の水性組成物を接触させて粗化処理する工程であり、
     前記第1の水性組成物が、
     過酸化水素を、前記第1の水性組成物の全量基準で、0.1~20質量%含み、
     銅イオンを、前記第1の水性組成物の全量基準で、0.25~40質量%含み、
     ハロゲン化物イオンを、前記第1の水性組成物の全量基準で、1~30質量%含み、
     前記後処理工程が、前記粗化処理工程において粗化処理されたステンレス鋼の表面に前記第2の水性組成物を酸性条件下で接触させて後処理を行う工程であり、
     前記第2の水性組成物が、
     少なくとも過酸化物を含む、
    粗化処理方法。
  2.  前記後処理工程において、前記粗化処理工程において粗化処理されたステンレス鋼の表面における析出物をエッチングする、請求項1に記載の粗化処理方法。
  3.  前記析出物が、前記粗化処理の対象であるステンレス鋼に含まれる銅または銅よりもイオン化傾向の大きい金属と、前記第1の水性組成物に含まれる前記銅イオンとに由来する析出物である、請求項2に記載の粗化処理方法。
  4.  前記第2の水性組成物が、
     過酸化物を、前記第2の水性組成物の全量基準で、0.2~20質量%含む、請求項1~3のいずれかに記載の粗化処理方法。
  5.  前記第2の水性組成物に含まれる過酸化物が、過酸化水素、過硫酸及びその塩からなる群より選ばれる1種以上を含む、請求項1~4のいずれかに記載の粗化処理方法。
  6.  前記第2の水性組成物が、前記第2の水性組成物の全量基準で、0.5~15質量%の酸をさらに含む、請求項1~5のいずれかに記載の粗化処理方法。
  7.  前記第2の水性組成物に含まれる酸が、硫酸及び硫酸水素ナトリウムからなる群より選ばれる1種以上を含む、請求項6に記載の粗化処理方法。
  8.  前記第2の水性組成物が、前記第2の水性組成物の全量基準で、0.1~5質量%のアルコールをさらに含む、請求項1~7のいずれかに記載の粗化処理方法。
  9.  前記アルコールが、炭素数1~3のアルコールである、請求項8に記載の粗化処理方法。
  10.  前記粗化処理の対象であるステンレス鋼が、銅または銅よりもイオン化傾向の大きい金属として、少なくともアルミニウムを含有する、請求項1~9のいずれかに記載の粗化処理方法。
  11.  前記粗化処理の対象であるステンレス鋼が、5質量%以上の銅または銅よりもイオン化傾向の大きい金属を含有する、請求項1~10のいずれかに記載の粗化処理方法。
  12.  前記第1の水性組成物が、前記銅イオンを供給する化合物として、硫酸銅または塩化銅の少なくとも1種を含む、請求項1~11のいずれかに記載の粗化処理方法。
  13.  前記第1の水性組成物が、前記ハロゲン化物イオンを供給する化合物として、塩酸、塩化ナトリウム、及び塩化銅からなる群より選ばれる1種以上を含む、請求項1~12のいずれかに記載の粗化処理方法。
  14.  前記後処理の温度が、20~60℃である、請求項1~13のいずれかに記載の粗化処理方法。
  15.  前記後処理の時間が、10秒間~120秒間である、請求項1~14のいずれかに記載の粗化処理方法。
  16.  前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される最大高さ(Sz)が、いずれも10.0μm以上である、請求項1~15のいずれかに記載の粗化処理方法。
  17.  前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される最大高さ(Sz)が、いずれも20.0μm以下である、請求項1~16のいずれかに記載の粗化処理方法。
  18.  前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される最大高さ(Sz)の値が、いずれも未処理のステンレス鋼の表面の最大高さ(Sz)の値よりも5.0μm以上大きい、請求項1~17のいずれかに記載の粗化処理方法。
  19.  前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される算術平均高さ(Sa)が、いずれも0.4μm以上である、請求項1~18のいずれかに記載の粗化処理方法。
  20.  前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される算術平均高さ(Sa)が、いずれも1.0μm以下である、請求項1~19のいずれかに記載の粗化処理方法。
  21.  前記粗化処理工程における粗化処理、及び、前記後処理工程における後処理をされたステンレス鋼の表面のISO 25178で規定される算術平均高さ(Sa)が、いずれも未処理のステンレス鋼の平面の算術平均高さ(Sa)よりも0.1μm以上大きい、請求項1~20のいずれかに記載の粗化処理方法。
  22.  前記ステンレス鋼が、ステンレス鋼箔である、請求項1~21のいずれかに記載の粗化処理方法。
  23.  請求項1~22のいずれかに記載の粗化処理方法を含む、粗化ステンレス鋼の製造方法。
  24.  請求項23に記載の粗化ステンレス鋼の製造方法で製造された粗化ステンレス鋼を含む、電池用集電箔、太陽電池基材、電子デバイス用フレキシブル基板、蓄電デバイス用基板、触媒担体、電磁波シールド部材、又は放熱部材。
  25.  第1の水性組成物による粗化処理が施されたステンレス鋼の表面の後処理用に用いられる第2の水性組成物であって、
     前記第1の水性組成物が、
     過酸化水素を、前記第1の水性組成物の全量基準で、0.1~20質量%含み、
     銅イオンを、前記第1の水性組成物の全量基準で、0.25~40質量%含み、
     ハロゲン化物イオンを、前記第1の水性組成物の全量基準で、1~30質量%含み、
     前記第2の水性組成物が、
     過酸化物を、前記第2の水性組成物の全量基準で、0.2~20質量%含む、
    水性組成物。
  26.  前記第2の水性組成物に含まれる過酸化物が、過酸化水素、過硫酸及びその塩からなる群より選ばれる1種以上を含む、請求項25に記載の水性組成物。
  27.  前記第2の水性組成物が、さらに、酸を、前記第2の水性組成物の全量基準で、0.5~15質量%含む、請求項25又は26に記載の水性組成物。
  28.  前記第2の水性組成物に含まれる酸が、硫酸及び硫酸水素ナトリウムからなる群より選ばれる1種以上を含む、請求項27に記載の水性組成物。
  29.  前記第2の水性組成物が、さらに、アルコールを、前記第2の水性組成物の全量基準で、0.1~5質量%含む、請求項25~28のいずれかに記載の水性組成物。
  30.  前記アルコールが、炭素数1~3のアルコールである、請求項29に記載の水性組成物。
     
PCT/JP2021/045737 2020-12-15 2021-12-13 ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物 WO2022131187A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180083201.0A CN116583614A (zh) 2020-12-15 2021-12-13 不锈钢表面的粗糙化处理方法、粗糙化不锈钢制造方法、及这些方法中使用的水性组合物
KR1020237018289A KR20230121044A (ko) 2020-12-15 2021-12-13 스테인리스강 표면의 조화처리방법, 조화 스테인리스강 제조방법, 및, 이들의 방법에서 이용되는 수성 조성물
EP21906549.7A EP4265822A1 (en) 2020-12-15 2021-12-13 Roughening treatment method for stainless steel surface, method for manufacturing roughened stainless steel, and aqueous composition used in said methods
US18/266,624 US20240044014A1 (en) 2020-12-15 2021-12-13 Roughening treatment method for stainless steel surface, method for manufacturing roughened stainless steel, and aqueous composition used in said methods
JP2022569968A JPWO2022131187A1 (ja) 2020-12-15 2021-12-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-207186 2020-12-15
JP2020207186 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131187A1 true WO2022131187A1 (ja) 2022-06-23

Family

ID=82057746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045737 WO2022131187A1 (ja) 2020-12-15 2021-12-13 ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物

Country Status (7)

Country Link
US (1) US20240044014A1 (ja)
EP (1) EP4265822A1 (ja)
JP (1) JPWO2022131187A1 (ja)
KR (1) KR20230121044A (ja)
CN (1) CN116583614A (ja)
TW (1) TW202235684A (ja)
WO (1) WO2022131187A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193372A (ja) * 1983-04-25 1983-11-11 Nitto Electric Ind Co Ltd スズ−ニツケル合金のエツチング液
JP2011168017A (ja) 2010-02-22 2011-09-01 Nisshin Steel Co Ltd ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体、およびその製造方法
JP2015183239A (ja) 2014-03-25 2015-10-22 株式会社日立製作所 ステンレス鋼の表面加工方法とそれを用いた熱交換器
WO2019039332A1 (ja) * 2017-08-23 2019-02-28 富士フイルム株式会社 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
CN111421747A (zh) * 2020-03-04 2020-07-17 博罗县东明化工有限公司 不锈钢基材表面处理方法及不锈钢纳米注塑方法
WO2020250784A1 (ja) * 2019-06-11 2020-12-17 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
WO2021020253A1 (ja) * 2019-07-30 2021-02-04 三菱瓦斯化学株式会社 組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193372A (ja) * 1983-04-25 1983-11-11 Nitto Electric Ind Co Ltd スズ−ニツケル合金のエツチング液
JP2011168017A (ja) 2010-02-22 2011-09-01 Nisshin Steel Co Ltd ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体、およびその製造方法
JP2015183239A (ja) 2014-03-25 2015-10-22 株式会社日立製作所 ステンレス鋼の表面加工方法とそれを用いた熱交換器
WO2019039332A1 (ja) * 2017-08-23 2019-02-28 富士フイルム株式会社 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
WO2020250784A1 (ja) * 2019-06-11 2020-12-17 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
WO2021020253A1 (ja) * 2019-07-30 2021-02-04 三菱瓦斯化学株式会社 組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
CN111421747A (zh) * 2020-03-04 2020-07-17 博罗县东明化工有限公司 不锈钢基材表面处理方法及不锈钢纳米注塑方法

Also Published As

Publication number Publication date
EP4265822A1 (en) 2023-10-25
KR20230121044A (ko) 2023-08-17
CN116583614A (zh) 2023-08-11
US20240044014A1 (en) 2024-02-08
TW202235684A (zh) 2022-09-16
JPWO2022131187A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020250784A1 (ja) 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
EP1690961B1 (en) Alkali cleaning fluid for aluminum or aluminum alloys and method of cleaning
WO2022131188A1 (ja) 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化ステンレス鋼の製造方法
JPH0480117B2 (ja)
CN102234513A (zh) 含钛膜层的退镀液及其使用方法
WO2021020253A1 (ja) 組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化処理されたステンレス鋼およびその製造方法
WO2022131187A1 (ja) ステンレス鋼表面の粗化処理方法、粗化ステンレス鋼製造方法、及び、これらの方法で用いられる水性組成物
JP3307882B2 (ja) マグネシウム含有金属の低電気抵抗性皮膜処理物及びその表面処理方法
JP2011026661A (ja) 金属表面処理液および金属材料の表面処理方法
US20040242449A1 (en) Nitric acid and chromic acid-free compositions and process for cleaning aluminum and aluminum alloy surfaces
JP2003171776A (ja) リチウム系マグネシウム合金材の表面処理方法
JP6255209B2 (ja) 銅箔の防錆方法、防錆液、及び銅箔
CN114807918A (zh) 金属置换处理液、铝或铝合金的表面处理方法
JP5114834B2 (ja) 冷延鋼板およびその製造方法
JPS5922789B2 (ja) アルミニウムまたはアルミニウム合金の化成処理液
JPH044397B2 (ja)
WO2018016250A1 (ja) 電解処理用金属表面処理剤
US3562039A (en) Method of improving the solderability of conductor plates
JP4065110B2 (ja) 銅または銅合金の表面処理法およびプリント配線板の製造法
WO2024058249A1 (ja) ステンレス鋼の製造方法、軽量化処理方法、ステンレス鋼及び水性組成物
WO2024058250A1 (ja) 水性組成物、これを用いたステンレス鋼の製造方法ならびに薄膜化処理方法
JP2005097669A (ja) メッキ表面の後処理液、及び後処理方法
WO2017138530A1 (ja) 化成処理浴への補給方法
JPH06173024A (ja) ぶりき材表面処理液及び表面処理方法
JP2023184437A (ja) エッチング処理液、アルミニウム又はアルミニウム合金の表面処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569968

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180083201.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18266624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906549

Country of ref document: EP

Effective date: 20230717