WO2019037531A1 - 电动泵 - Google Patents

电动泵 Download PDF

Info

Publication number
WO2019037531A1
WO2019037531A1 PCT/CN2018/092349 CN2018092349W WO2019037531A1 WO 2019037531 A1 WO2019037531 A1 WO 2019037531A1 CN 2018092349 W CN2018092349 W CN 2018092349W WO 2019037531 A1 WO2019037531 A1 WO 2019037531A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation plate
disposed
pump
heat
Prior art date
Application number
PCT/CN2018/092349
Other languages
English (en)
French (fr)
Inventor
鲍俊峰
宁强
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to KR1020207007659A priority Critical patent/KR102322609B1/ko
Priority to EP18848831.6A priority patent/EP3674562B1/en
Priority to JP2020511209A priority patent/JP7476095B2/ja
Priority to US16/640,701 priority patent/US11384776B2/en
Publication of WO2019037531A1 publication Critical patent/WO2019037531A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0626Details of the can
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0686Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/5893Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds

Definitions

  • the present invention relates to a fluid pump, and in particular to an electric pump.
  • the electric pump includes an electronic control unit, and the electronic control unit includes an electric control board.
  • the electronic control unit For a high-power pump, the electronic control unit generates heat during operation, and the accumulated heat to a certain extent cannot be timely released, which will affect the performance of the electronic control board. Thereby reducing the service life of the electric pump.
  • the object of the present invention is to provide an electric pump, which is beneficial to heat dissipation of the electric control board, thereby facilitating the improvement of the service life of the electric pump.
  • an embodiment of the present invention adopts the following technical solutions:
  • An electric pump includes a pump housing, a rotor assembly, a stator assembly, and an electric control panel, the pump housing being capable of forming a pump lumen, the pump lumen including a first chamber and a second chamber, the rotor assembly being disposed In the first cavity, the stator assembly and the electric control board are disposed in the second cavity; the electric pump includes a spacer sleeve, at least a portion of the isolation sleeve is disposed between the rotor assembly and the stator assembly One side of the isolation sleeve is a first cavity, and the other side of the isolation sleeve is a second cavity, the electric pump further includes a heat dissipation plate, the isolation sleeve includes a bottom portion, and at least part of the heat dissipation plate is disposed at Between the electronic control board and the bottom portion, at least a portion of the bottom portion is in direct contact with at least a portion of the heat dissipation plate, or at least a portion of the
  • An electric pump includes a pump housing, a rotor assembly, a stator assembly, and an electric control panel, the pump housing being capable of forming a pump lumen, the pump lumen including a first chamber and a second chamber, the rotor assembly being disposed In the first cavity, the stator assembly and the electric control board are disposed in the second cavity; the electric pump includes a spacer sleeve, at least part of the isolation sleeve is disposed on the rotor assembly and the stator assembly; The electric pump further includes a heat dissipation plate, and the heat dissipation plate and the isolation sleeve form part of the first cavity, and at least a portion of the heat dissipation plate is located between the isolation sleeve and the electrical control board; This arrangement is beneficial to the heat dissipation of the electronic control board, thereby contributing to the improvement of the service life of the electric pump.
  • FIG. 1 is a schematic cross-sectional structural view of a first embodiment of an electric pump according to the present invention
  • FIG. 2 is a cross-sectional structural view showing a second embodiment of the electric pump of the present invention.
  • FIG. 3 is a schematic perspective view of a heat dissipation plate of FIG. 1 or FIG. 2;
  • FIG. 4 is a schematic cross-sectional structural view of the heat dissipation plate of FIG. 3;
  • Figure 5 is a perspective view showing the first housing of Figure 1 or Figure 2;
  • Figure 6 is a perspective view showing a three-dimensional structure of the electric control board and the bottom cover of Figure 1 or Figure 2;
  • Figure 7 is a perspective view showing the structure of the electric control board of Figure 1 or Figure 2;
  • Figure 8 is a cross-sectional structural view of the electronic control board of Figure 7;
  • Figure 9 is a cross-sectional structural view showing a third embodiment of the electric pump of the present invention.
  • Figure 10 is a cross-sectional structural view showing a fourth embodiment of the electric pump of the present invention.
  • FIG. 11 is a perspective structural view of the electronic control board of FIG. 9 or FIG. 10;
  • Figure 12 is a cross-sectional structural view of the electronic control board of Figure 11;
  • Figure 13 is a schematic view showing the structure of the first embodiment of the spacer of Figures 1, 2, 9, and 10;
  • Figure 14 is a cross-sectional structural view of the spacer of Figure 13;
  • Figure 15 is a perspective view showing a three-dimensional structure of the pump shaft of Figures 1, 2, 9, and 10;
  • Figure 16 is a perspective view showing a second embodiment of the spacer of Figures 1, 2, 9, and 10;
  • Figure 17 is a cross-sectional structural view of the spacer of Figure 16.
  • Figure 18 is a cross-sectional structural view showing a fifth embodiment of the electric pump of the present invention.
  • Figure 19 is a cross-sectional structural view showing a sixth embodiment of the electric pump of the present invention.
  • Figure 20 is a perspective view showing a three-dimensional structure of the spacer of Figure 19;
  • Figure 21 is a cross-sectional structural view of the spacer of Figure 20.
  • the electric pump in the following embodiments is capable of providing flow power to the working medium of the automotive thermal management system, including a 50% aqueous solution of ethylene glycol or clean water.
  • FIG. 1 is a schematic structural view of a first embodiment of an electric pump.
  • the electric pump 100 includes a pump housing, a rotor assembly 3, a stator assembly 4, a pump shaft 5, and an electric control board 9.
  • the pump housing includes a first housing.
  • the first housing 1, the second housing 2 and the bottom cover 6 are relatively fixedly connected.
  • the connecting portion is provided with a first annular sealing ring 10, and the first annular sealing ring 10 is arranged to prevent the working medium from seeping out at the joint, and at the same time prevent the external medium from infiltrating into the pump cavity; the pump casing can form the pump cavity
  • the pumping chamber is divided into a first chamber and a second chamber.
  • the electric pump 100 further includes a spacer sleeve 7.
  • One side of the spacer sleeve 7 is a first chamber 30, and the other side of the spacer sleeve 7
  • the side is a second chamber 40
  • the first chamber 30 can have a working medium flowing therethrough
  • the second chamber 40 has no working medium flowing through
  • the rotor assembly 3 is disposed in the first chamber 30, and the rotor assembly 3 includes a rotor 31 and an impeller 32, and the impeller 32
  • the stator assembly 4 and the electronic control board 9 are disposed in the second cavity 40, and the stator assembly 4 is electrically connected to the electronic control board 9.
  • a second annular sealing ring 20 is further disposed between the isolating sleeve 7 and the pump casing, and the structure of the second annular sealing ring 20 can form a two-way defense to ensure that the external medium does not penetrate into the first Two chambers 40.
  • the first housing 1 is an injection molded part, and an injection port 11 and an outflow port 12 are injection-molded.
  • the electric pump 100 When the electric pump 100 is in operation, the working medium enters the first cavity 30 through the inlet port 11, and then the working medium passes through. The flow port exits the first cavity 30.
  • the connector (not shown) is inserted into the socket 80 of the electronic pump 100, so that the control circuit on the electronic control board 9 is connected to the external power source, and is controlled.
  • the circuit controls the current through the stator assembly 4 to change according to a certain law, thereby controlling the stator assembly 4 to generate a varying magnetic field, and the rotor 31 of the rotor assembly 3 rotates around the pump shaft 5 under the action of the magnetic field, thereby entering the first cavity 30.
  • the working medium rotates with the rotor 31, and the working medium leaves the first chamber 30 due to centrifugal force to generate flow of power.
  • FIG. 1 is a schematic structural view of a first embodiment of an electric pump according to the present invention
  • the electric pump 100 further includes a heat dissipation plate 8, which is disposed separately from the pump casing, and the "separate setting" herein refers to
  • the heat sink and the pump casing are two different components formed by independent processing.
  • the pump casing may be fixedly connected by two or more components, and the heat dissipation plate 8 is fixedly connected with the pump casing;
  • the spacer sleeve 7 includes a bottom portion 71.
  • the bottom portion 71 is closer to the electronic control board 9 than the top portion 77.
  • the bottom portion 71 includes an upper surface 711 and a lower surface 712.
  • the lower surface 712 is closer to the electronic control board 9 than the upper surface 711.
  • a portion of the upper surface 711 is capable of contacting the working medium in the first chamber 30, at least a portion of the lower surface 712 is exposed to the second chamber;
  • at least a portion of the heat sink 8 is disposed between the electrical control panel 9 and the bottom portion 71, at least a portion of the bottom portion 71 and at least Part of the heat dissipation plate 8 is in direct contact;
  • at least part of the electronic control board 9 is in direct contact with at least part of the heat dissipation plate 8, or at least part of the electronic control board 9 and at least part of the heat dissipation plate 8 are filled with thermal grease or thermal silica gel, or at least partially electrically Control board 9 and at least part of heat sink 8
  • at least a part of the electronic control board 9 and at least part of the heat dissipation board 8 are filled with thermal grease or thermal silica gel, of course, at least part of the electronic control board 9 and at least
  • the stator assembly 4 is electrically connected to the electric control board 9.
  • the stator assembly 4 includes a stator 41 and a pin 42.
  • the heat dissipation plate 8 is located between the stator 41 and the electric control board 9, specifically, the stator 41 is adjacent to the second housing.
  • One end of the one side is an upper end, and one end of the side of the bottom cover 6 is a lower end, and the heat dissipation plate 8 is disposed near a lower end of the stator 41.
  • the arrangement is such that the heat dissipation plate 8 is disposed closer to the electric control board 9, thereby facilitating the electric control board 9.
  • Heat dissipation; in this embodiment, 7 is isolated lumen sheath 30 into a first chamber and a second chamber 40, in particular, a side spacer sleeve 7 is a first chamber 30, the other side of the spacer sleeve 7 of the second chamber 40.
  • FIG. 2 is a cross-sectional structural view showing a second embodiment of the electric pump.
  • at least a portion of the lower surface 712 of the bottom portion 71 of the isolation sleeve 7 of the electric pump 100a is at least A portion of the heat dissipation plate 8 is filled with a thermal grease or a thermal conductive silicone 90.
  • at least a portion of the lower surface 712 of the bottom portion 71 of the spacer sleeve 7 and at least a portion of the heat dissipation plate 8 may also be provided with a heat-conductive patch.
  • the sheet is a paste which can be directly bonded after the curing of the hot silicone gel, and in particular, in the embodiment, the lower surface 712 of the bottom 71 of the spacer 7 is coated with a thermal grease or a thermal silica gel 90. Or a portion of the heat dissipation plate 8 corresponding to the lower surface 712 of the bottom portion 71 of the spacer sleeve 7 is coated with a thermal grease or a thermal conductive silicone 90, so as to prevent the heat dissipation plate 8 from being isolated when the lower surface 712 is unevenly processed.
  • the contact area between the sleeves 7 is reduced to affect the heat conduction between the spacer sleeve 7, the heat dissipation plate 8 and the electric control board 9, thereby reducing the heat dissipation efficiency of the electric control board 9; in this embodiment, other characteristics of the electric pump With electric
  • the first embodiment of the pump is the same and will not be described here.
  • the center of the heat dissipation plate 8 is provided with a central hole 81 and a plurality of relief holes 82.
  • the relief hole 82 is disposed corresponding to the partial pins 42 and the partial stator 41, so as to prevent structural interference during assembly of the heat dissipation plate;
  • the material of the plate 8 is made of a metal material, specifically made of copper or aluminum; referring to FIG. 6, the heat dissipation plate 8 is fixedly connected to the pump casing.
  • the heat dissipation plate 8 includes a plurality of through holes 83, and the through holes 83 are circumferential.
  • the array is distributed or evenly distributed, and the pump casing comprises a plurality of columns 21, the columns 21 are distributed or evenly distributed in a circumferential array, the columns 21 are integrally formed or fixedly connected with the pump casing, and the columns 21 are arranged correspondingly to the through holes 83, and the columns are passed through the rivets 21, the heat sink 8 is fixedly connected to the pump casing; in this embodiment, the heat sink 8 is fixedly connected to the second casing 2, the pillar 21 is disposed on the second casing 2, and the pillar 21 and the second casing 2 are integrally formed or The fixed connection, the through hole 83 is correspondingly disposed with the column 21, and after the through hole 83 is disposed corresponding to the column 21, a part of the column 21 is still exposed, and the heat sink 8 is fixedly connected to the second casing 2 by staking the column 21, so that the arrangement is such that The heat sink 8 is connected to the second housing 2 More reliable, of course, through other connection methods, such as the pump housing is formed with a plurality of threade
  • FIG. 7 and FIG. 8 are schematic structural diagrams of the electronic control board of FIG. 1 and FIG. 2 .
  • the electronic control board 9 includes a substrate 91 and an electronic component 92 .
  • the substrate 91 includes a front surface 911 and a reverse surface 912 .
  • the front surface 911 and the reverse surface 912 are disposed substantially in parallel.
  • substantially means that the front surface is the reference surface, and the parallelism of the reverse surface is less than or equal to 1 mm; in combination with FIG. 1 or FIG. 2, the front surface 911 of the substrate 91 is opposite to the reverse side.
  • the 912 is closer to the lower surface 712, and a gap is formed between the front surface 911 of the substrate 91 and the heat dissipation plate 8. At least a portion of the electronic component 92 is disposed between the front surface 911 and the heat dissipation plate 8; specifically, the electronic component 92 includes heat-generating electrons. Components (not shown), at least part of the heat-generating electronic components are disposed on the front surface 911 of the substrate 91.
  • the heat-generating electronic components include common diodes, MOS transistors, inductors, resistors, capacitors, etc. In combination with FIG. 1 or FIG.
  • At least a portion of the heat dissipation plate 8 and at least a portion of the heat-generating electronic component are filled with a thermal grease or a thermal conductive silicone 90, or at least a portion of the heat dissipation plate 8 and at least Partial heating electronic device
  • a thermal conductive patch is disposed between (not shown).
  • At least the upper surface of the heat-generating electronic component is coated with a thermal grease or a thermal conductive silicone 90 or a thermal conductive patch, where the upper surface is ” refers to the non-connecting surface of the heating electronic component and the electronic control board 9 , of course, it is also possible to apply thermal grease or thermal conductive silicone 90 or thermal conductive patch on the heat dissipation plate 8 corresponding to the heating electronic component 92 , so that the setting can be
  • the heat generated by the heating electronic components is transmitted to the heat dissipation plate 8 through the thermal grease or the thermal conductive silicone or the heat conductive patch, which is beneficial to the heat dissipation of the electronic control board 9, thereby facilitating the improvement of the service life of the electric pump; in combination with FIG. 1 or FIG.
  • the coating height of the thermal grease or thermal conductive silicone 90 or the thermal conductive patch is equal to the distance between the electronic control board 9 in FIG. 1 or FIG. 2 and the heat dissipation plate 8 in FIG. 1 or FIG. 2, so that the thermal grease or The thermal conductive silicone 90 or the thermal conductive patch is in full contact with the electronic control board 9 and the heat dissipation plate 8, which is beneficial to the heat dissipation of the electronic control board 9, thereby facilitating the improvement of the service life of the electric pump; of course, at least part of the heat dissipation plate 8 and at least part of it Between heating electronic components
  • the heat dissipation plate 8 can be processed into other shapes having different thicknesses according to the height of the heat-generating electronic component, so that the heat dissipation plate 8 is directly in contact with the heat-generating electronic component without applying thermal grease or thermal silica gel. In this way, the heat dissipation of the electronic control board 9 can also be achieved.
  • the “thermal conductive patch” in this embodiment
  • the material of the heat dissipation plate 8 is a metal material.
  • the material of the heat dissipation plate 8 is copper or aluminum, and the thickness of the heat dissipation plate 8 is greater than or equal to 0.2 mm.
  • heat dissipation The thickness of the plate 8 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm. This arrangement can reduce the total weight of the electric pump while ensuring the strength of the heat dissipation plate 8, and can ensure that the heat dissipation plate 8 and the heat-generating electronic components can be reserved.
  • the heat sink 8 includes a first face 85, where "first face" refers to a contact surface that is in direct contact with the electronic control board 9 of FIG. 1 or FIG.
  • the first surface 85 is in direct contact with at least a portion of the heat-generating electronic component of FIG. 7, or in combination with FIG. 2, at least a portion of the first surface 85 of the heat dissipation plate 8 and at least A portion of the heat-generating electronic component is filled with a thermal grease or a thermal conductive silicone 90, or at least a portion of the first surface 85 of the heat dissipation plate 8 and at least a portion of the heat-generating electronic component are disposed with a heat-conductive patch, and the first surface of the heat dissipation plate 8 is defined.
  • the area of 85 is the first area.
  • the area where the heat-generating electronic component disposed on the front surface 911 of the substrate 91 covers the substrate 91 is the first area, and the area of the first area is the second area.
  • the first area is greater than or equal to the second area; such an arrangement can sufficiently ensure a large contact area between the heat-generating electronic component disposed on the front surface 911 of the substrate 91 and the heat dissipation plate 8, thereby facilitating heat dissipation.
  • FIG. 9 is a cross-sectional structural view showing a third embodiment of the electric pump of the present invention
  • FIG. 10 is a cross-sectional structural view showing a fourth embodiment of the electric pump according to the present invention
  • the electronic control board 9' includes a substrate 91' and an electronic component 92'.
  • the substrate 91' includes a front surface 911' and a reverse surface 912'.
  • the front surface 911' and the reverse surface 912' are disposed substantially in parallel.
  • substantially means that the front side is the reference surface, the parallelism of the reverse side is less than or equal to 1 mm, the electronic component 92' is disposed on the reverse side 912' of the substrate 91', and the front surface 911' of the substrate 91' is closer to the isolation sleeve than the reverse side 912'.
  • the bottom surface 71 of the bottom portion 71 of the substrate 71 is made of a metal material. In combination with FIGS. 9 and 12, at least a portion of the heat dissipation plate 8 is in direct contact with the front surface 911' of the substrate 91', or in combination with FIGS.
  • the heat dissipation plate 8 and the front surface 911' of the substrate 91' are filled with a thermal grease or a thermal conductive silicone 90, or at least a portion of the heat dissipation plate 8 and the front surface 911' of the substrate 91' are provided with a thermal conductive patch, as defined in FIG.
  • the area of the first surface 85 of the heat sink 8 is the first
  • the area in which the electronic component 92' of FIG. 11 covers the substrate 91' is a first area, the area of the first area is a second area, and the first area is greater than or equal to the second area, and the first implementation of the electric pump
  • the electronic components are mounted on the electronic control board at different positions.
  • the electronic component 92 ′ is disposed on the reverse surface 912 ′ of the substrate 91 ′.
  • This arrangement makes the axial size of the electric pump more compact, and the third embodiment of the electric pump and the other features of the fourth embodiment are the same as those of the first embodiment of the electric pump, and will not be described herein.
  • FIG. 13 and FIG. 14 are schematic structural views of a first embodiment of the spacer sleeve; the material of the spacer sleeve 7 is a metal material having low magnetic permeability or non-magnetic permeability, and the "low guide"
  • the magnetic permeability means that the relative magnetic permeability ⁇ r is less than 20.
  • the material of the isolation sleeve 7 is an austenitic stainless steel material, such as 316L, 304, 310s and other austenitic stainless steel materials; the isolation sleeve 7 includes a side.
  • the wall 70 and the bottom 71 are combined with FIG. 1 or FIG. 2 or FIG. 9 or 10.
  • the side wall 70 is used to isolate the stator assembly 4 and the rotor assembly 3. Specifically, in this embodiment, the stator assembly 4 is sleeved on the side wall 70. The outer circumference, the rotor 31 is sleeved on the inner circumference of the side wall 70, and the side wall 70 includes an inner surface 701 and an outer surface 702. The inner surface 701 is disposed closer to the central axis of the spacer sleeve 7 than the outer surface 702. In this embodiment, the side wall The inner surface 701 and the outer surface 702 of the 70 are both glossy, that is, the inner surface 701 and the outer surface 702 are not provided with other structures.
  • the inner surface 701 and the outer surface 702 of the side wall 70 may also be provided with other structures; the bottom portion 71 includes Surface 711 and lower surface 712, upper surface 711 is closer to partition than lower surface 712
  • the upper surface 711 and the lower surface 712 of the bottom portion 71 are both smooth surfaces, that is, the upper surface 711 and the lower surface 712 are not provided with other structures, and of course, the upper surface 711 and the lower surface of the bottom portion 71.
  • 712 may also be provided with other structures; the minimum distance defining the main body portion of the upper surface 711 and the main body portion of the lower surface 712 is the first distance, where "the main body portion of the upper surface 711" refers to the characteristic of the main portion in the upper surface 711.
  • the characteristic of the main portion means that the area of the feature occupies the upper surface 711 is 50% or more; here, the “body portion of the lower surface 712” refers to the characteristic of the main portion in the lower surface 712, where “the main portion”
  • the feature of the feature is that the area of the lower surface 712 is 50% or more; in this embodiment, the upper surface 711 and the lower surface 712 are both smooth surfaces, that is, the upper surface 711 and the lower surface 712 are not provided with other structures;
  • the thickness t1 of the wall 70 is less than or equal to the thickness of the bottom portion 71, where "the thickness of the side wall 70" means the minimum distance between the inner surface 701 of the side wall 70 and the outer surface 702, where "the thickness of the bottom portion 71" is the first Distance, set this way
  • the strength of the bottom portion 71 of the spacer sleeve can be ensured.
  • the thin sidewall 70 is more advantageous for heat conduction between the working medium, the side wall 70 of the spacer sleeve 7 and the stator assembly 4, thereby facilitating the stator assembly.
  • the heat dissipation in the embodiment, the thickness of the side wall 70 is less than or equal to 1.5mm;
  • the material of the isolation sleeve 7 is stainless steel material, specifically, the material of the isolation sleeve 7 is austenitic stainless steel material, and the isolation sleeve 7 is stretched by pressing The metal plate is formed, the spacer sleeve 7 is provided with a pump shaft limiting portion 72, and the pump shaft limiting portion 72 is formed on the bottom portion 71.
  • the pump shaft limiting portion 72 is convexly disposed to the second cavity 40.
  • the heat dissipation plate 8 is provided with a through hole corresponding to the pump shaft limiting portion 72.
  • the pump shaft limiting portion 72 passes through the through hole and is positioned with the heat dissipation plate 8.
  • the heat dissipation plate 8 corresponds to the pump shaft limiting portion 72.
  • the through hole is the central hole 81 of the heat dissipation plate 8.
  • the lower surface 712 of the bottom portion 71 is disposed in contact with the heat dissipation plate 8, or the pump shaft limit is removed.
  • the lower surface 712 of the bottom portion 71 and the heat dissipation plate 8 are filled with thermal grease or thermal silica gel, or the pump shaft is removed.
  • a heat conductive patch is disposed between the lower surface 712 of the bottom portion 71 and the heat dissipation plate; such that the contact portion 7 has a sufficient contact area between the bottom portion 71 and the heat dissipation plate 8 or the bottom portion 71 and the heat dissipation plate 8 are secured. It is filled with as much thermal grease or thermal silica as possible to facilitate heat conduction between the isolation sleeve 7, the heat dissipation plate 8 and the electronic control board 9, thereby facilitating heat dissipation of the electronic control board 9.
  • the bottom portion 71 and the side wall 70 are integrally formed.
  • the bottom portion 71 and the side wall 70 may also be separately disposed.
  • the bottom portion 71 and the side wall 70 may be fixedly connected by welding or the like.
  • the pump shaft limiting portion 72 is convexly disposed away from the opening side of the spacer sleeve 7.
  • the pump shaft limiting portion 72 and the spacer sleeve 7 are integrally press-drawn and formed, and the pump shaft limiting portion 72 further includes
  • the first limiting portion 721 ie, the side wall of the pump shaft limiting portion 72
  • the pump shaft 5 includes a second limiting portion 51
  • the first limiting portion 721 is correspondingly disposed with the second limiting portion 51
  • the pump shaft is limited.
  • the portion 72 is fixedly coupled to the pump shaft 5 as a lower support of the pump shaft 5, such that the circumferential rotation of the pump shaft 5 can be prevented;
  • the spacer sleeve 7 further includes a first step portion 75 and a second step portion 74, first
  • the step portion 75 includes a first sub-portion 752 and a first sub-portion 751.
  • the first sub-portion 752 is connected to the first sub-portion 751.
  • the first sub-portion 752 is closer to the impeller 32 in FIG. 1 than the first sub-portion 751.
  • the second step portion 74 includes a second sub-portion 742 and a second sub-portion 741 with the open side of the isolation sleeve 7 as above, and the second step portion 74 disposed above the first step portion 75, the diameter of the first sub-portion 751 Less than the second sub-portion 742, such that the impeller 32 in FIG. 1 is partially located in the second sub-portion 742, on the one hand, it is advantageous to reduce the overall height of the electric pump 100, and on the other hand The impurity particles are not easily entered into the flow area between the outer wall of the rotor 31 and the inner wall of the isolation sleeve 7 in FIG.
  • the minimum distance L between the second sub-portion 742 and the outer circumferential surface of the impeller 32 in FIG. 1 is less than or equal to 2 mm, so that the impurity particles in the working medium can be prevented from flowing into the flow region between the outer wall of the rotor 31 and the inner wall of the spacer sleeve 7, thereby It is advantageous to prevent the foreign particles from accumulating in the flow area between the outer wall of the rotor 31 in FIG. 1 and the inner wall of the spacer sleeve 7 in FIG. 1, which is advantageous for preventing the rotor 31 in FIG. 1 from being caught by the foreign particles, thereby causing the stalling, thereby Helps to increase the service life of electric pumps.
  • the spacer sleeve 7 further includes a third step portion 73.
  • the third step portion 73 includes a third sub-portion 731 and a third sub-portion 732.
  • a first ring is disposed between the pump casing and the spacer sleeve 7.
  • the sealing ring 10, at least a portion of the first annular sealing ring 10 is in contact with at least a portion of the spacer sleeve 7.
  • the first annular sealing ring 10 is sleeved on the third sub-portion 731, and at least a portion of the third sub-portion 732 And at least a portion of the third sub-portion 731 is in contact with at least a portion of the first annular seal ring 10 such that the first annular seal ring 10 is capable of achieving a preliminary positioning on the spacer sleeve 7 to facilitate installation of the first annular seal ring 10 easy and convenient.
  • the third sub-portion 731 of the third step portion 73 and the second sub-portion 741 of the second step portion 74 form a fourth step portion.
  • the pump casing includes a step portion 13, fourth.
  • the step portion is disposed corresponding to the step portion 13 .
  • the step portion 13 is disposed in the first housing 1
  • the fourth step portion is disposed corresponding to the step portion 13 of the first housing 1 in FIG. 1 , which is advantageous for The positioning of the first housing 1 at the time of installation prevents the lateral movement of the first housing 1 from occurring when it is mounted. Referring to FIG.
  • a second annular seal ring 20 is disposed between the third sub-portion 731 of the third step portion 73 and the second sub-portion 742 of the second step portion 74, and at least a portion of the second sub-section of the second step portion 74
  • the 741 is in contact with a portion of the second annular sealing ring 20, such that the two-way defense can be formed to ensure that the external medium and the working medium do not penetrate into the second chamber 40 of FIG. 1, thereby preventing the external medium and the working medium from entering the stator assembly and the circuit.
  • the diameter of the pump shaft limiting portion 72 is defined as a first diameter ⁇ 1, and the distance between the bottom surface of the positioning pump shaft limiting portion 72 and the lower surface 712 of the bottom portion 71 is a first distance H1, and the first distance H1 is smaller than It is equal to the first diameter ⁇ 1, which is advantageous for stretch forming.
  • FIG. 16 and FIG. 17 are schematic structural views of a second embodiment of the isolation sleeve; the isolation sleeve 7' is provided with a pump shaft limiting portion 72', and the pump shaft limiting portion 72'
  • the two chambers 40 are convexly disposed, and the lower surface 712' of the bottom portion 71' is formed with an annular concave ring 73'.
  • the annular concave ring 73' is closer to the side wall 70' than the pump shaft limiting portion 72'; in conjunction with FIG.
  • the pump shaft 5 Attached to the pump shaft limiting portion 72', except for the annular concave ring 73', the lower surface 712' of the bottom portion 71' is disposed in contact with the heat sink 8, or in addition to the annular concave ring 73', the lower surface 712' of the bottom portion 71' Between the heat sink 8 is filled with thermal grease or thermal silica gel, or in addition to the annular recess 73', a heat conductive patch is disposed between the lower surface 712' of the bottom 71' and the heat sink 8, compared to the spacer
  • the embodiment can save the central hole 81 of the heat dissipation plate 8 in FIG. 3, thereby saving processing cost and improving the processing efficiency of the heat dissipation plate 8 and the electronic control board 9.
  • the first cavity 30 is filled with the working medium.
  • the isolation sleeve 7 is in direct contact with the heat dissipation plate 8, or as shown in FIG. 2, the bottom 71 of the spacer sleeve 7 and at least part of the heat dissipation plate 8 are filled with thermal grease or thermal silica gel.
  • the electronic control board 9' is in direct contact with the heat dissipation plate 8, or as shown in FIG.
  • the thermal control board 9' and the heat dissipation board 8 are filled with a thermal grease or a thermal conductive silicone 90, so that the isolation sleeve 7, the heat dissipation plate 8 and the electric control board are directly or indirectly contacted with each other, thereby causing the working medium to be indirectly taken away.
  • a part of the heat of the electric control board 9 makes the heat dissipation of the electric control board 9 more efficient.
  • FIG. 18 is a schematic cross-sectional structural view of a fifth embodiment of an electric pump according to the present invention
  • the electric pump 100d includes an electric control board 9 and a heat dissipation board 8
  • the electric control board 9 includes a substrate 91 and an electronic component 92.
  • the substrate 91 is connected to the electronic component 92, and the thermal conductive silicone or thermal grease 90 is filled between the substrate 91 and the heat dissipation plate 8, or a thermal conductive patch is disposed between the substrate 91 and the heat dissipation plate 92.
  • the pump casing includes a bottom cover 6
  • the thermal conductive silicone or thermal grease 90 is filled between the bottom cover 6 and the substrate 91, or a thermal conductive patch is disposed between the bottom cover 6 and the substrate 91.
  • a thermal conductive patch is filled with the bottom cover 6 and the substrate 91.
  • the bottom cover 6 and the substrate 91 are filled with a thermal conductive silicone or thermal grease 90, of course, a thermal conductive patch, a bottom cover 6 and a substrate may be disposed between the substrate 91 and the heat sink 92.
  • the thermal conductive patch can also be disposed between the 91s.
  • the arrangement is advantageous for increasing the area of the thermal conductive silicone or the thermal grease or the thermal conductive patch, thereby facilitating the improvement of the electronic control panel.
  • 9 heat dissipation efficiency on the other hand between the bottom cover 6 and the substrate 91
  • the thermal grease or the thermal conductive silicone or the thermal conductive patch can dissipate part of the heat of the electronic control board 9 through the bottom cover 6, thereby facilitating heat dissipation of the electronic control board 9.
  • the electronic component 92 is disposed on the substrate. Between the 91 and the heat sink 8, of course, the electronic component may be disposed between the bottom cover 6 and the substrate 91.
  • Other features of the present embodiment are the same as those of the first embodiment of the electric pump, and will not be described here. .
  • FIG. 19 is a schematic cross-sectional structural view of a sixth embodiment of the electric pump according to the present invention
  • FIG. 20 to FIG. 21 are schematic structural views of the isolation sleeve of FIG. 18.
  • the electric pump 100e The utility model comprises an isolation sleeve 7", at least part of the isolation sleeve 7" is disposed on the outer circumference of the rotor assembly 3, and the electric pump 100e further comprises a heat dissipation plate 8", at least part of the heat dissipation plate 8" is located between the isolation sleeve 7" and the electric control board 9, and
  • the first cavity 30 ′′ includes a cavity formed by a portion of the heat dissipation plate 8 ′′ and the isolation sleeve 7 ′′.
  • the isolation sleeve 7 ′′ is cylindrical, and The support portion of the pump shaft is not disposed on the isolation sleeve 7", but is disposed on the heat dissipation plate 8".
  • the electric pump 100e is provided with the sealing portion 50, which can be used to prevent the leakage of the working medium.
  • the sealing portion 50 is disposed on the outer circumference of the spacer sleeve 7", of course, the sealing portion 50 can also be disposed on other portions.
  • the spacer sleeve 7" is provided with a step portion 76.
  • the spacer sleeve 7" may not include the step portion 76, and the sealing portion 50 may be disposed at other portions.
  • the processing method of the isolating sleeve in the embodiment is relatively simple, thereby facilitating the reduction of the processing cost, and on the other hand, the working medium can be in contact with the partial heat dissipating plate, so that It is beneficial to improve the heat dissipation efficiency of the electric control board; other features of the embodiment are the same as those of the electric pump and the isolation sleeve, and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

一种电动泵(100),包括泵壳体、转子组件(3)、定子组件(4)、隔离套(7)、散热板(8)以及电控板(9),泵壳体形成泵内腔,泵内腔被隔离套(7)分隔为第一腔(30)和第二腔(40),转子组件(3)设置于第一腔(30),定子组件(4)和电控板(9)设置于第二腔(40),隔离套(7)包括底部(71),至少部分散热板(8)设置于电控板(9)和底部(71)之间,至少部分底部(71)与至少部分散热板(8)直接接触,或之间填充有导热硅脂或导热硅胶,或之间设置有导热贴片;或者第一腔(30)包括部分散热板(8)与隔离套(7)固定形成的腔。该结构有利于电控板的散热,提高电动泵的使用寿命。

Description

电动泵
本申请要求于2017年08月23日提交中国专利局、申请号为201710731154.1、发明名称为“电动泵”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种流体泵,具体涉及一种电动泵。
背景技术
汽车行业迅猛发展,随着汽车性能向着更安全、更可靠、更稳定、全自动智能化和环保节能方向发展,电动泵被大量运用于车用热管理系统中,并能很好的满足市场的要求。
电动泵包括电控单元,电控单元包括电控板,对于大功率泵来说,电控单元在工作时会产生热量,热量累计到一定程度无法及时散出将会影响电控板的性能,从而降低电动泵的使用寿命。
发明内容
本发明的目的在于提供一种电动泵,有利于电控板的散热,从而有利于提高电动泵的使用寿命。
为实现上述目的,本发明的一种实施方式采用如下技术方案:
一种电动泵,包括泵壳体、转子组件、定子组件以及电控板,所述泵壳体能够形成泵内腔,所述泵内腔包括第一腔和第二腔,所述转子组件设置于所述第一腔,所述定子组件和所述电控板设置于所述第二腔;所述电动泵包括隔离套,至少部分所述隔离套设置于所述转子组件和定子组件之间,所述隔离套的一侧为第一腔,所述隔离套的另一侧为第二腔,所述电动泵还包括散热板,所述隔离套包括底部,至少部分所述散热板设置于所述电控板和所述底部之间,至少部分所述底部与至少部分所述散热板直接接触,或至少部分所述底部与至少部分所述散热板之间填充有导热硅脂或 导热硅胶,或至少部分所述底部与至少部分所述散热板之间设置有导热贴片;这样设置有利于电控板的散热,从而有利于提高电动泵的使用寿命。
一种电动泵,包括泵壳体、转子组件、定子组件以及电控板,所述泵壳体能够形成泵内腔,所述泵内腔包括第一腔和第二腔,所述转子组件设置于所述第一腔,所述定子组件和所述电控板设置于所述第二腔;所述电动泵包括隔离套,至少部分所述隔离套设置于所述转子组件和所述定子组件之间,所述电动泵还包括散热板,部分所述散热板与所述隔离套形成部分所述第一腔,至少部分所述散热板位于所述隔离套与所述电控板之间;这样设置有利于电控板的散热,从而有利于提高电动泵的使用寿命。
附图说明
图1是本发明电动泵的第一种实施方式的一种剖面结构示意图;
图2是本发明电动泵的第二种实施方式的一种剖面结构示意图;
图3是图1或图2中散热板的一种立体结构示意图;
图4是图3中散热板的一种剖面结构示意图;
图5是图1或图2中第一壳体的一种立体结构示意图;
图6是未装配图1或图2中电控板和底盖的一种立体结构示意图;
图7是图1或图2中电控板的一种立体结构示意图;
图8是图7中电控板的一种剖面结构示意图;
图9是本发明电动泵的第三种实施方式的一种剖面结构示意图;
图10是本发明电动泵的第四种实施方式一种剖面结构示意图;
图11是图9或图10中的电控板的一种立体结构示意图;
图12是图11中电控板的一种剖面结构示意图;
图13是图1、图2、图9、图10中隔离套的第一种实施方式的一种结构示意图;
图14是图13中隔离套的一种剖面结构示意图;
图15是图1、图2、图9、图10中泵轴的一种立体结构示意图;
图16是图1、图2、图9、图10中隔离套的第二种实施方式的一种立体结构示意图;
图17是图16中隔离套的一种剖面结构示意图;
图18是本发明电动泵的第五种实施方式一种剖面结构示意图;
图19是本发明电动泵的第六种实施方式一种剖面结构示意图;
图20是图19中隔离套的一种立体结构示意图;
图21是图20中隔离套的一种剖面结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明:
以下实施例中的电动泵能够为汽车热管理系统的工作介质提供流动动力,工作介质为包括50%乙二醇水溶液或者清水。
参见图1,图1为电动泵第一种实施方式的结构示意图;电动泵100包括泵壳体、转子组件3、定子组件4、泵轴5以及电控板9,泵壳体包括第一壳体1、第二壳体2和底盖6,第一壳体1、第二壳体2和底盖6相对固定连接,本实施例中,第一壳体1和第二壳体2之间的连接部分设置有第一环形密封圈10,设置的第一环形密封圈10的结构可以阻止工作介质在连接处渗出,同时可以阻止外界介质渗入泵内腔;泵壳体能够形成泵内腔,泵内腔被分隔为第一腔和第二腔,具体地,本实施例中,电动泵100还包括隔离套7,隔离套7的一侧为第一腔30,隔离套7的另一侧为第二腔40,第一腔30能够有工作介质流过,第二腔40无工作介质流过,转子组件3设置于第一腔30,转子组件3包括转子31和叶轮32,叶轮32部分位于隔离套7内,定子组件4和电控板9设置于第二腔40,定子组件4与电控板9电连接;本实施例中,隔离套7与泵壳体之间还设置有第二环形密封圈20,设置的第二环形密封圈20的结构可以形成二道防御,充分保证外界介质不会渗入第二腔40。
参见图1,第一壳体1为注塑件,注塑成形有进流口11和出流口12,电动泵100工作时,工作介质通过进流口11进入第一腔30,然后工作介质通过出流口离开第一腔30,电子泵100工作时,通过将接插件(图上未示出)插入电子泵100的接插口80内,使得电控板9上的控制电路与外部电源连接,控制电路控制通过定子组件4的电流按照一定的规律变化,从 而控制定子组件4产生变化的磁场,转子组件3的转子31在磁场的作用下围绕泵轴5转动,从而使得进入第一腔30内的工作介质随着转子31做旋转运动,工作介质由于离心力离开第一腔30产生流动的动力。
参见图1,图1为本发明电动泵的第一种实施方式的结构示意图;电动泵100还包括散热板8,散热板8与泵壳体分体设置,这里的“分体设置”是指散热板与泵壳体是独立加工而形成的两个不同的零部件,当然泵壳体可以是由2个或2个以上的零部件固定连接而成,散热板8与泵壳体固定连接;隔离套7包括底部71,底部71比顶部77更靠近电控板9,本实施例中,底部71包括上表面711和下表面712,下表面712比上表面711更靠近电控板9,至少部分上表面711能够与第一腔30内的工作介质接触,至少部分下表面712暴露于第二腔;至少部分散热板8设置于电控板9和底部71之间,至少部分底部71与至少部分散热板8直接接触;至少部分电控板9与至少部分散热板8直接接触,或至少部分电控板9与至少部分散热板8之间填充有导热硅脂或导热硅胶,或至少部分电控板9与至少部分散热板8之间设置有导热贴片,具体地,本实施例中,至少部分电控板9与至少部分散热板8之间填充有导热硅脂或导热硅胶,当然至少部分电控板9与至少部分散热板8也可以直接接触,或至少部分电控板9与至少部分散热板8之间也可以设置导热贴片,这样设置可以使隔离套7、散热板8和电控板9三者之间更好地实现热传导,有利于电控板9的散热,从而有利于提高电动泵的使用寿命;本实施例中的“导热贴片”是指导热硅胶固化后形成的具有一定粘度的可以直接粘接的贴片,定子组件4与电控板9电连接,定子组件4包括定子41和插针42,散热板8位于定子41和电控板9之间,具体地,以定子41靠近第二壳体1侧的一端为上端,靠近底盖6侧的一端为下端,散热板8靠近定子41的下端设置,这样设置可以使得散热板8更靠近电控板9设置,从而有利于电控板9的散热;本实施例中,泵内腔被隔离套7分隔成第一腔30和第二腔40,具体地,隔离套7的一侧为第一腔30,隔离套7的另一侧为第二腔40。
参见图2,图2为电动泵的第二种实施方式的剖面结构示意图,与电动泵的第一种实施方式相比,电动泵100a中至少部分隔离套7的底部71的下表面712与至少部分散热板8之间填充有导热硅脂或导热硅胶90,当 然,至少部分隔离套7的底部71的下表面712与至少部分散热板8之间也可以设置导热贴片,这里的“导热贴片”是指导热硅胶固化后形成的具有一定粘度的可以直接粘接的贴片,具体地,本实施例中,隔离套7的底部71的下表面712涂覆有导热硅脂或导热硅胶90,或者在与隔离套7的底部71的下表面712相对应的部分散热板8上涂覆导热硅脂或导热硅胶90,这样设置可以防止当下表面712加工不平整时,导致散热板8与隔离套7之间的接触面积减小从而影响隔离套7、散热板8和电控板9三者之间的热传导,从而降低电控板9的散热效率;本实施例中,电动泵的其他特征与电动泵的第一种实施方式相同,在此就不一一赘述了。
参见图3至图6,散热板8中心设置有中心孔81和多个避让孔82,避让孔82与部分插针42以及部分定子41对应设置,这样可以防止散热板装配时造成结构干涉;散热板8的材料为金属材料,具体地由铜或铝加工而成;参见图6,散热板8与泵壳体固定连接,具体地,散热板8包括多个通孔83,通孔83呈圆周阵列分布或均匀分布,泵壳体包括多个立柱21,立柱21呈圆周阵列分布或均匀分布,立柱21与泵壳体一体成型或固定连接,立柱21与通孔83对应设置,通过铆压立柱21使得散热板8与泵壳体固定连接;本实施例中,散热板8与第二壳体2固定连接,立柱21设置于第二壳体2,立柱21与第二壳体2一体成型或固定连接,通孔83与立柱21对应设置,通孔83与立柱21对应设置后,仍有部分立柱21露出,通过铆压立柱21使得散热板8与第二壳体2固定连接,这样设置使散热板8与第二壳体2连接更加可靠,当然也可以通过其他的连接方式,譬如泵壳体成形有多个螺纹孔,螺纹孔呈圆周阵列分布或均匀分布,散热板的通孔83与泵壳体的螺纹孔对应设置,散热板8与泵壳体通过螺钉或螺栓固定连接,当然也可以通过焊接的连接方式。
参见图7和图8,图7和图8为图1、图2中电控板的一种结构示意图;电控板9包括基板91、电子元器件92,基板91包括正面911和反面912,本实施例中,正面911和反面912大致呈平行设置,这里的“大致”是指以正面为基准面,反面的平行度小于等于1mm;结合图1或图2,基板91的正面911比反面912更靠近下表面712,且基板91的正面911与散热板8之间形成有间隙,至少部分电子元器件92设置于正面911和散热板8之 间;具体地,电子元器件92包括发热电子元器件(图中未示出),至少部分发热电子元器件设置于基板91的正面911,本实施例中,发热电子元器件包括二极管、MOS管、电感、电阻、电容等常见的易发热的电子元器件;结合图1或图2,至少部分散热板8与至少部分发热电子元器件(图中未示出)之间填充有导热硅脂或导热硅胶90,或至少部分散热板8与至少部分发热电子元器件(图中未示出)之间设置有导热贴片,具体地,参见图7,至少发热电子元器件的上表面涂覆有导热硅脂或导热硅胶90或导热贴片,这里的“上表面”是指发热电子元器件与电控板9的非连接面,当然也可以在发热电子元器件92对应的散热板8上涂覆导热硅脂或导热硅胶90或导热贴片,这样设置可以将发热电子元器件产生的热量通过导热硅脂或导热硅胶或导热贴片传导给散热板8,有利于电控板9的散热,从而有利于提高电动泵的使用寿命;结合图1或图2,导热硅脂或导热硅胶90或导热贴片的涂覆高度等于图1或图2中的电控板9与图1或图2中散热板8之间的距离,这样可以充分保证导热硅脂或导热硅胶90或导热贴片与电控板9、散热板8均充分接触,有利于电控板9的散热,从而有利于提高电动泵使用寿命;当然,也可以至少部分散热板8与至少部分发热电子元器件之间直接接触,具体地,散热板8可以根据发热电子元器件的高度加工成厚度不一的其他形状,从而使散热板8与发热电子元器件直接接触而不需涂覆导热硅脂或导热硅胶,这样同样也可以实现电控板9的散热的目的;本实施例中的“导热贴片”是指导热硅胶固化后形成的具有一定粘度的可以直接粘接的贴片。
参见图3和图4,散热板8的材料为金属材料,本实施例中,散热板8的材料为铜或铝,散热板8的厚度大于等于0.2mm,具体地,本实施例中,散热板8的厚度大于等于0.2mm小于等于1.5mm,这样设置可以在保证散热板8强度的同时,既可以减轻电动泵的总重量,又可以保证散热板8与发热电子元器件之间能够预留一定的空间填充导热硅脂或导热硅胶或导热贴片,从而对电控板9起到良好的散热效果,当然散热板8的厚度也可以大于1.5mm,此情况下,散热板8可以根据发热电子元器件的高度加工成厚度不一的其他形状,散热板8与发热电子元器件之间直接接触而不需涂覆导热硅脂或导热硅胶。散热板8包括第一面85,这里的“第一面”是指 与图1或图2中的电控板9直接接触的接触面或与电控板9之间涂覆的导热硅脂或导热硅胶或导热贴片的抵接面,结合图1,第一面85与图7中的至少部分发热电子元器件直接接触,或结合图2,至少部分散热板8的第一面85与至少部分发热电子元器件之间填充有导热硅脂或导热硅胶90,或至少部分散热板8的第一面85与至少部分发热电子元器件之间设置导热贴片,定义散热板8的第一面85的面积为第一面积,参见图7和图8,定义设置于基板91的正面911的发热电子元器件覆盖在基板91上的区域为第一区域,第一区域的面积为第二面积,第一面积大于等于第二面积;这样设置可以充分保证设置在基板91的正面911上的发热电子元器件与散热板8之间有较大的接触面积,从而有利于散热。
参见图9和图10,图9为本发明电动泵的第三种实施方式的一种剖面结构示意图,图10为本发明电动泵的第四种实施方式的一种剖面结构示意图;参见图9至图12,电控板9’包括基板91’和电子元器件92’,基板91’包括正面911’和反面912’,本实施例中,正面911’和反面912’大致呈平行设置,这里的“大致”是指以正面为基准面,反面的平行度小于等于1mm,电子元器件92’设置于基板91’的反面912’,基板91’的正面911’比反面912’更靠近隔离套7的底部71的下表面712,散热板8的材料为金属材料,结合图9和图12,至少部分散热板8与基板91’的正面911’直接接触,或结合图10和图12,至少部分散热板8与基板91’的正面911’之间填充有导热硅脂或导热硅胶90,或至少部分散热板8与基板91’的正面911’之间设置有导热贴片,定义图3中散热板8的第一面85的面积为第一面积,图11中电子元器件92’覆盖在基板91’上的区域为第一区域,第一区域的面积为第二面积,第一面积大于等于第二面积,与电动泵的第一种实施方式相比,电动泵的第三种实施方式和第四种实施方式中,电子元器件安装在电控板的位置不同,具体地,电子元器件92’设置于基板91’的反面912’,这样设置使电动泵的轴向尺寸更紧凑,电动泵的第三种实施方式和第四种实施方式的其他特征与电动泵的第一种实施方式相同,在此就不一一赘述了。
参见图13和图14,图13和图14为隔离套的第一种实施方式的一种结构示意图;隔离套7的材料为具有低导磁性或无导磁性的金属材料,这里的“低导磁性”是指相对导磁率μr小于20,具体地,本实施例中,隔 离套7的材料为奥氏体不锈钢材料,譬如316L、304、310s等其他奥氏体不锈钢材料;隔离套7包括侧壁70和底部71,结合图1或图2或图9或10,侧壁70用来隔离定子组件4和转子组件3,具体地,本实施例中,定子组件4套设于侧壁70的外周,转子31套设于侧壁70的内周,侧壁70包括内表面701和外表面702,内表面701比外表面702更靠近隔离套7的中心轴设置,本实施例中,侧壁70的内表面701和外表面702均为光面,即内表面701和外表面702均未设置其他结构,当然侧壁70的内表面701和外表面702也可以设置其他结构;底部71包括上表面711和下表面712,上表面711比下表面712更靠近隔离套7的开口侧,本实施例中,底部71的上表面711和下表面712均为光面,即上表面711和下表面712均未设置其他结构,当然底部71的上表面711和下表面712也可以设置其他结构;定义上表面711的主体部与下表面712的主体部的最小距离为第一距离,这里“上表面711的主体部”是指在上表面711中占主要部分的特征,这里“占主要部分的特征”是指该特征占上表面711的面积为50%以上;这里“下表面712的主体部”是指在下表面712中占主要部分的特征,这里“占主要部分的特征”是指该特征占下表面712的面积为50%以上;本实施例中,上表面711和下表面712均为光面,即上表面711和下表面712均未设置其他结构;侧壁70的厚度t1小于等于底部71的厚度,这里“侧壁70的厚度”是指侧壁70的内表面701与外表面702之间的最小距离,这里“底部71的厚度”即为第一距离,这样设置一方面可以保证隔离套底部71的强度,另一方面结合图1,薄的侧壁70更有利于工作介质、隔离套7侧壁70和定子组件4三者之间的热传导,从而有利于定子组件4的散热,本实施例中,侧壁70的厚度小于等于1.5mm;隔离套7的材料为不锈钢材料,具体地,隔离套7的材料为奥氏体不锈钢材料,隔离套7通过冲压拉伸金属板成形,隔离套7设置有泵轴限位部72,所述泵轴限位部72成形于底部71,结合图1或图2,泵轴限位部72向第二腔40凸出设置,散热板8对应泵轴限位部72设置有通孔,泵轴限位部72穿过通孔并与散热板8定位,具体地,结合图3,散热板8对应泵轴限位部72设置的通孔即为散热板8的中心孔81,结合图1或图2,除泵轴限位部72外,底部71的下表面712均与散热板8接触设置,或除泵轴限位部72外,底部71 的下表面712与散热板8之间填充有导热硅脂或导热硅胶,或除泵轴限位部72外,底部71的下表面712与散热板之间设置导热贴片;这样设置使得隔离套7底部71与散热板8之间有足够的接触面积或保证底部71与散热板8之间填充有尽量多的导热硅脂或导热硅胶,有利于隔离套7、散热板8和电控板9三者之间的热传导,从而有利于电控板9的散热。本实施例中,底部71与侧壁70一体成型,当然底部71与侧壁70也可以分体设置,具体地,底部71与侧壁70可通过焊接等其他方式固定连接。
参见图14和图15,泵轴限位部72向远离隔离套7的开口侧方向凸出设置,泵轴限位部72与隔离套7一体冲压拉伸成型,泵轴限位部72还包括第一限位部721(即泵轴限位部72的侧壁),泵轴5包括第二限位部51,第一限位部721与第二限位部51对应设置,泵轴限位部72与泵轴5过盈配合固定连接作为泵轴5的下支撑,这样设置能够防止泵轴5的周向转动;隔离套7还包括第一台阶部75和第二台阶部74,第一台阶部75包括第一分部752和第一子部751,第一分部752和第一子部751连接设置,第一分部752比第一子部751更靠近图1中的叶轮32,第二台阶部74包括第二子部742和第二分部741,以隔离套7的开口侧为上,第二台阶部74设置于第一台阶部75的上方,第一子部751的直径小于第二子部742,这样设置使图1中的叶轮32部分位于第二子部742内,一方面有利于降低电动泵100的整体高度,另一方面能够使杂质颗粒不易进入图1中转子31外壁与隔离套7内壁之间的流通区域内,从而避免杂质颗粒在电动泵内堆积,有利于提高电动泵的使用寿命;具体地,结合图1与图14,第二子部742与图1中叶轮32外周面的最小距离L小于等于2mm,这样设置能够防止工作介质中的杂质颗粒流入转子31外壁与隔离套7内壁之间的流通区域,从而有利于防止杂质颗粒在图1中的转子31外壁与图1中的隔离套7内壁之间的流通区域内堆积,有利于防止图1中的转子31被杂质颗粒卡住,造成堵转,从而有利于提高电动泵的使用寿命。
参见图14,隔离套7还包括第三台阶部73,第三台阶部73包括第三子部731和第三分部732,结合图1,泵外壳与隔离套7之间设置有第一环形密封圈10,至少部分第一环形密封圈10与至少部分隔离套7接触,具体地,本实施例中,第一环形密封圈10套设于第三子部731,至少部分第 三分部732和至少部分第三子部731与至少部分第一环形密封圈10接触,这样设置使第一环形密封圈10能够在隔离套7上实现初步定位,使第一环形密封圈10的安装变得更加简单方便。参见图3和图4,第三台阶部73的第三子部731与第二台阶部74的第二分部741形成第四台阶部,结合图1,泵外壳包括一台阶部13,第四台阶部与台阶部13对应设置,本实施例中,台阶部13设置于第一壳体1内,第四台阶部与图1中的第一壳体1的台阶部13对应设置,这样有利于第一壳体1安装时的定位,从而防止第一壳体1安装时不会发生横向移动。结合图1,第三台阶部73的第三子部731与第二台阶部74的第二子部742之间设置有第二环形密封圈20,第二台阶部74的至少部分第二分部741与部分第二环形密封圈20接触,这样设置可以形成二道防御,充分保证外界介质和工作介质不会渗入图1中的第二腔40,从而防止外界介质和工作介质进入定子组件和电路板内,有利于防止外界介质和工作介质对定子组件和电路板造成损坏。
参见图14,定义泵轴限位部72的直径为第一直径Φ1,定位泵轴限位部72的底面到底部71的下表面712之间的距离为第一距离H1,第一距离H1小于等于第一直径Φ1,这样有利于拉伸成形。
参见图16和图17,图16和图17为隔离套的第二种实施方式的一种结构示意图;隔离套7’设置有泵轴限位部72’,泵轴限位部72’向第二腔40凸出设置,底部71’的下表面712’成形有环形凹环73’,环形凹环73’比泵轴限位部72’更靠近侧壁70’;结合图1,泵轴5与泵轴限位部72’固定连接,除环形凹环73’,底部71’的下表面712’均与散热板8接触设置,或除环形凹环73’,底部71’的下表面712’与散热板8之间填充有导热硅脂或导热硅胶,或除环形凹环73’,底部71’的下表面712’与散热板8之间设置有导热贴片,相较于隔离套的第一种实施方式,本实施方式能够省却图3中散热板8的中心孔81,从而节省加工成本,提高散热板8和电控板9的加工效率。
结合参见图1、图2、图9和图10,当电动泵工作时,第一腔30内会充满工作介质,一方面,如图1,隔离套7与散热板8直接接触,或如图2,隔离套7的底部71与至少部分散热板8之间填充有导热硅脂或导热硅胶,另一方面,如图9,电控板9’与散热板8直接接触,或如图10,电控板9’ 与散热板8之间填充有导热硅脂或导热硅胶90,从而使得隔离套7、散热板8和电控板之间相互依次直接或间接接触,从而使得工作介质间接地带走了一部分电控板9的热量,使得电控板9的散热变得更高效。
参见图18,图18为本发明电动泵的第五种实施方式的一种剖面结构示意图;电动泵100d包括电控板9和散热板8,电控板9包括基板91和电子元器件92,基板91与电子元器件92连接设置,基板91与散热板8之间填充有导热硅胶或导热硅脂90,或基板91与散热板92之间设置有导热贴片;泵壳体包括底盖6,底盖6与基板91之间填充有导热硅胶或导热硅脂90,或底盖6与基板91之间设置有导热贴片;具体地,本实施例中,基板91与散热板8之间填充有导热硅胶或导热硅脂90,底盖6与基板91之间填充有导热硅胶或导热硅脂90,当然,基板91与散热板92之间也可以设置导热贴片,底盖6与基板91之间也可以设置导热贴片,与电动泵的第一种实施方式相比,这样设置一方面有利于增大导热硅胶或导热硅脂或导热贴片的面积,从而有利于提高电控板9的散热效率,另一方面底盖6与基板91之间设置的导热硅脂或导热硅胶或导热贴片能够使得电控板9的部分热量通过底盖6散出,从而有利于电控板9的散热,本实施例中,电子元器件92设置于基板91和散热板8之间,当然电子元器件也可以设置在底盖6和基板91之间,本实施方式的其他特征与电动泵的第一种实施方式相同,在此就不一一赘述了。
参见图19至图21,图19为本发明电动泵的第六种实施方式的一种剖面结构示意图;图20至图21为图18中隔离套的结构示意图,本实施例中,电动泵100e包括隔离套7”,至少部分隔离套7”设置于转子组件3的外周,电动泵100e还包括散热板8”,至少部分散热板8”位于隔离套7”与电控板9之间,与电动泵的其他实施方式相比,本实施方式中,第一腔30”包括部分散热板8”与隔离套7”固定形成的腔,本实施方式中,隔离套7”为圆筒状,且泵轴的支撑部未设置在隔离套7”上,而是设置在散热板8”上,电动泵100e在工作时,部分工作介质能够直接与部分散热板接触,为了配合本实施例中隔离套的结构,电动泵100e设置了密封部50,这样能够有利于防止工作介质的泄露,本实施例中,密封部50设置在隔离套7”的外周,当然密封部50也可以设置在其它部位上以起到密封的效果,本实施例 中,为了便于安装密封部50,隔离套7”设置了台阶部76,当然隔离套7”也可以不包括台阶部76,此时密封部50可以设置在其它部位上,相较于电动泵和隔离套的其他实施方式,一方面本实施方式中的隔离套加工工艺相对更简单,从而有利于降低加工成本,另一方面部分工作介质能够与部分散热板之间接触,这样有利于提高电控板的散热效率;本实施方式的其他特征与电动泵和隔离套的其他实施方式相同,在此就不一一赘述了。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (15)

  1. 一种电动泵,包括泵壳体、转子组件、定子组件以及电控板,所述泵壳体能够形成泵内腔,所述泵内腔包括第一腔和第二腔,所述转子组件设置于所述第一腔,所述定子组件和所述电控板设置于所述第二腔;其特征在于:所述电动泵包括隔离套,至少部分所述隔离套设置于所述转子组件和定子组件之间,所述隔离套的一侧为第一腔,所述隔离套的另一侧为第二腔,所述电动泵还包括散热板,所述隔离套包括底部,至少部分所述散热板设置于所述电控板和所述底部之间,至少部分所述底部与至少部分所述散热板直接接触,或至少部分所述底部与至少部分所述散热板之间填充有导热硅脂或导热硅胶,或至少部分所述底部与至少部分所述散热板之间设置有导热贴片。
  2. 一种电动泵,包括泵壳体、转子组件、定子组件以及电控板,所述泵壳体能够形成泵内腔,所述泵内腔包括第一腔和第二腔,所述转子组件设置于所述第一腔,所述定子组件和所述电控板设置于所述第二腔;其特征在于:所述电动泵包括隔离套,至少部分所述隔离套设置于所述转子组件和所述定子组件之间,所述电动泵还包括散热板,部分所述散热板与所述隔离套形成部分所述第一腔,至少部分所述散热板位于所述隔离套与所述电控板之间。
  3. 根据权利要求1或2所述电动泵,其特征在于:所述电控板包括基板和电子元器件,所述基板包括正面和反面,所述正面与所述反面大致呈平行设置,所述正面比所述反面更靠近所述隔离套,至少部分所述电子元器件设置于所述基板的所述反面;所述散热板的材料为金属材料;至少部分所述散热板与所述正面直接接触,或至少部分所述散热板与所述正面之间填充有导热硅脂或导热硅胶,或至少部分所述散热板与所述正面之间设置有导热贴片。
  4. 根据权利要求3所述电动泵,其特征在于:所述散热板包括第一面,至少部分所述第一面与所述正面直接接触,或至少所述第一面与至少部分所述正面之间填充有导热硅脂或导热硅胶,或至少部分所述第一面与至少部分所述正面之间设置有导热贴片;定义所述第一面的面积为第一面积, 所述电子元器件覆盖在所述基板上的区域为第一区域,所述第一区域的面积为第二面积,所述第一面积大于等于所述第二面积。
  5. 根据权利要求1或2所述电动泵,其特征在于:所述电控板包括基板和电子元器件,所述基板包括正面和反面,所述正面与所述反面大致呈平行设置,所述正面比所述反面更靠近所述隔离套设置,所述正面与所述散热板相对设置,所述正面与所述散热板之间形成有间隙,至少部分所述电子元器件设置于所述正面,至少部分所述电子元器件位于所述间隙。
  6. 根据权利要求5所述电动泵,其特征在于:所述电子元器件包括发热电子元器件,至少部分所述发热电子元器件设置于所述基板的所述正面;所述散热板的材料为金属材料;至少部分所述散热板与至少部分所述发热电子元器件直接接触,或至少部分所述散热板与至少部分所述发热电子元器件之间填充有导热硅脂或导热硅胶,或至少部分所述散热板与至少部分所述发热电子元器件之间设置有导热贴片。
  7. 根据权利要求6所述电动泵,其特征在于:所述散热板包括第一面,至少部分所述第一面与至少部分所述发热电子元器件直接接触,或至少部分所述散热板的所述第一面与至少部分所述发热电子元器件之间填充有导热硅脂或导热硅胶;所述第一面的面积为第一面积,定义所述发热电子元器件覆盖在所述基板上的区域为第一区域,所述第一区域的面积为第二面积,所述第一面积大于等于所述第二面积。
  8. 根据权利要求1至7任一项所述电动泵,其特征在于:所述散热板与所述泵壳体分体设置,所述散热板包括多个通孔,所述通孔呈圆周阵列分布或均匀分布,所述泵壳体包括多个立柱,所述立柱呈圆周阵列分布或均匀分布,所述立柱与所述泵壳体一体成型或固定连接,所述通孔与所述立柱对应设置,通过铆压所述立柱使得所述散热板与所述泵壳体固定连接。
  9. 根据权利要求1至7任一项所述电动泵,其特征在于:所述散热板与所述泵壳体分体设置,所述散热板包括多个通孔,所述通孔呈圆周阵列分布或均匀分布,所述泵壳体成形有多个螺纹孔,所述螺纹孔成圆周阵列分布或均匀分布,所述通孔与所述螺纹孔对应设置,所述电动泵包括螺钉或螺栓,所述螺钉或螺栓穿过通孔与形成螺纹孔的泵壳体螺纹连接。
  10. 根据权利要求1至9任一项所述电动泵,其特征在于:所述隔离 套还包括侧壁,所述侧壁用来隔离所述定子组件与所述转子组件,所述侧壁的材料为具有低导磁性或无导磁性的金属材料。
  11. 根据权利要求10所述电动泵,其特征在于:所述隔离套材料为奥氏体不锈钢材料,所述隔离套通过冲压拉伸金属板成形,所述侧壁的厚度小于等于1.5mm。
  12. 根据权利要求1所述电动泵,其特征在于:所述隔离套还包括侧壁,所述侧壁用来隔离所述定子组件与所述转子组件,所述侧壁的厚度小于等于所述底部的厚度,所述隔离套材料为奥氏体不锈钢材料,所述隔离套通过冲压拉伸金属板成形,所述侧壁的厚度小于等于1.5mm。
  13. 根据权利要求12所述电动泵,其特征在于:所述隔离套设置有泵轴限位部,所述泵轴限位部成形于所述底部,所述泵轴限位部向所述第二腔凸出设置,所述散热板对应所述泵轴限位部设置有通孔,所述泵轴限位部穿过所述通孔并与所述散热板定位,除所述泵轴限位部,所述底部的所述下表面均与所述散热板接触设置,或除所述泵轴限位部,所述底部的所述下表面与所述散热板之间填充有导热硅脂或导热硅胶,或除所述泵轴限位部,所述底部的所述下表面与所述散热板之间设置有导热贴片。
  14. 根据权利要求12所述电动泵,其特征在于:所述隔离套设置有泵轴限位部,所述泵轴限位部向所述第二腔内凸出设置,所述底部成形有环形凹环,所述环形凹环比所述泵轴限位部更靠近所述侧壁;除所述环形凹环,所述底部的所述下表面与所述散热板接触设置,或除所述环形凹环,所述底部的所述下表面与所述散热板之间填充有导热硅脂或导热硅胶,或除所述环形凹环,所述底部的所述下表面与所述散热板之间设置有导热贴片。
  15. 根据权利要求1至14任一项所述电动泵,其特征在于:所述电控板包括基板和电子元器件,所述基板与所述电子元器件连接设置,所述基板与所述散热板之间填充有导热硅胶或导热硅脂,或所述基板与所述散热板之间设置有导热贴片;所述泵壳体包括底盖,所述底盖与所述基板之间填充有导热硅胶或导热硅脂,或所述底盖与所述基板之间设置有导热贴片。
PCT/CN2018/092349 2017-08-23 2018-06-22 电动泵 WO2019037531A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207007659A KR102322609B1 (ko) 2017-08-23 2018-06-22 전기 펌프
EP18848831.6A EP3674562B1 (en) 2017-08-23 2018-06-22 Electric pump
JP2020511209A JP7476095B2 (ja) 2017-08-23 2018-06-22 電動ポンプ
US16/640,701 US11384776B2 (en) 2017-08-23 2018-06-22 Electric pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710731154.1A CN109424551A (zh) 2017-08-23 2017-08-23 电动泵
CN201710731154.1 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019037531A1 true WO2019037531A1 (zh) 2019-02-28

Family

ID=65438422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092349 WO2019037531A1 (zh) 2017-08-23 2018-06-22 电动泵

Country Status (6)

Country Link
US (1) US11384776B2 (zh)
EP (1) EP3674562B1 (zh)
JP (1) JP7476095B2 (zh)
KR (1) KR102322609B1 (zh)
CN (8) CN113202776B (zh)
WO (1) WO2019037531A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738327B (zh) * 2020-05-11 2021-09-01 日益電機股份有限公司 具後蓋護罩防漏強化的罐裝磁力泵
WO2021170327A1 (de) * 2020-02-28 2021-09-02 Nidec Gpm Gmbh Thermisch optimierte kühlmittelpumpe
CN113544453A (zh) * 2020-02-20 2021-10-22 京东方科技集团股份有限公司 散热驱动装置、散热驱动系统、背光模组及显示装置
CN118391277A (zh) * 2024-06-27 2024-07-26 胜利油田新海兴达实业集团有限责任公司 一种耐高温型屏蔽电泵

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888961B (zh) * 2019-03-13 2020-01-31 佛山市顺德区伊默特电机有限公司 紧凑型低噪声塑封电机
CN111425409B (zh) * 2020-04-29 2021-07-06 西安交通大学 一种内部液冷隔离式盘式无刷电子水泵
WO2023232027A1 (zh) * 2022-05-31 2023-12-07 浙江三花汽车零部件有限公司 电动泵
WO2024134291A1 (en) * 2022-12-22 2024-06-27 Industrie Saleri Italo S.P.A. Pump group
WO2024134290A1 (en) * 2022-12-22 2024-06-27 Industrie Saleri Italo S.P.A. Pump group
WO2024134289A1 (en) * 2022-12-22 2024-06-27 Industrie Saleri Italo S.P.A. Pump group
CN118368855A (zh) * 2023-01-18 2024-07-19 浙江三花汽车零部件有限公司 流体控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099021A (ja) * 2011-10-28 2013-05-20 Mitsubishi Electric Corp ポンプ及びヒートポンプ装置
CN104362799A (zh) * 2014-12-09 2015-02-18 程夏林 泵用调速电机
CN204493214U (zh) * 2015-02-12 2015-07-22 常州市凯程精密汽车部件有限公司 一种电子水泵
JP2015151985A (ja) * 2014-02-19 2015-08-24 日立オートモティブシステムズ株式会社 電動流体ポンプ
CN206054322U (zh) * 2016-08-31 2017-03-29 长沙多浦乐泵业科技有限公司 一种新型防水结构的微型泵

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES291075Y (es) * 1985-12-17 1988-04-16 Braun Espanola,S.A. Dispositivo puente escobillas para utilizacion en motores electricos de colector
JPH0842482A (ja) * 1994-07-29 1996-02-13 Japan Servo Co Ltd キャンドモータポンプ
JP4034077B2 (ja) * 2002-01-30 2008-01-16 カルソニックカンセイ株式会社 キャンドポンプ
JP2003339539A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Ind Co Ltd 電気湯沸かし器
US6798109B2 (en) * 2002-10-31 2004-09-28 Black & Decker Inc. Electric motor brush assembly
JP4234635B2 (ja) * 2004-04-28 2009-03-04 株式会社東芝 電子機器
JP2006257912A (ja) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd ポンプ装置
DE102007016255B4 (de) * 2006-04-28 2012-11-29 Bühler Motor GmbH Kreiselpumpe
JP2008128076A (ja) * 2006-11-20 2008-06-05 Aisan Ind Co Ltd 流体ポンプ
JP5096812B2 (ja) * 2007-06-28 2012-12-12 株式会社三井ハイテック 複合リードフレームを用いた半導体装置
JP5153298B2 (ja) * 2007-11-05 2013-02-27 日本電産サーボ株式会社 遠心ファンモータの自己冷却構造
DE102008064159B3 (de) * 2008-12-19 2010-01-28 Bühler Motor GmbH Elektronisch kommutierter Gleichstrommotor für eine Flüssigkeitspumpe
JP5584513B2 (ja) * 2010-04-16 2014-09-03 株式会社山田製作所 電動ウォーターポンプ
EP2476914B1 (de) * 2011-01-13 2017-08-02 Pierburg Pump Technology GmbH Elektrische Kfz-Kühlmittelpumpe
JP6176516B2 (ja) * 2011-07-04 2017-08-09 住友電気工業株式会社 リアクトル、コンバータ、及び電力変換装置
JP6345112B2 (ja) * 2012-03-27 2018-06-20 株式会社サンメディカル技術研究所 補助人工心臓ポンプ
JP6047023B2 (ja) * 2012-06-22 2016-12-21 アスモ株式会社 電動ポンプ
US9360015B2 (en) * 2012-07-16 2016-06-07 Magna Powertrain Of America, Inc. Submerged rotor electric water pump with structural wetsleeve
JP6432235B2 (ja) * 2013-12-20 2018-12-05 株式会社デンソー 電動ポンプ
EP2947324B1 (de) * 2014-05-22 2019-07-24 Pierburg Pump Technology GmbH Elektrisches Kfz-Nebenaggregat
CN204003495U (zh) * 2014-06-17 2014-12-10 艾美特电器(深圳)有限公司 一种水泵
JP6552166B2 (ja) * 2014-07-15 2019-07-31 日本電産トーソク株式会社 電動オイルポンプ用モータ
CN105715559A (zh) * 2014-12-05 2016-06-29 杭州三花研究院有限公司 电子泵
KR20160109071A (ko) * 2015-03-09 2016-09-21 현대자동차주식회사 회로기판을 갖는 전동식 펌프
CN106151054B (zh) * 2015-03-26 2019-12-13 浙江三花汽车零部件有限公司 电驱动泵
CN106341007B (zh) * 2015-07-06 2019-08-23 浙江三花汽车零部件有限公司 电驱动泵的制造方法
CN106337818A (zh) * 2015-07-07 2017-01-18 杭州三花研究院有限公司 电驱动泵
CN106640674B (zh) * 2015-10-30 2019-08-02 浙江三花汽车零部件有限公司 电驱动泵的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099021A (ja) * 2011-10-28 2013-05-20 Mitsubishi Electric Corp ポンプ及びヒートポンプ装置
JP2015151985A (ja) * 2014-02-19 2015-08-24 日立オートモティブシステムズ株式会社 電動流体ポンプ
CN104362799A (zh) * 2014-12-09 2015-02-18 程夏林 泵用调速电机
CN204493214U (zh) * 2015-02-12 2015-07-22 常州市凯程精密汽车部件有限公司 一种电子水泵
CN206054322U (zh) * 2016-08-31 2017-03-29 长沙多浦乐泵业科技有限公司 一种新型防水结构的微型泵

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544453A (zh) * 2020-02-20 2021-10-22 京东方科技集团股份有限公司 散热驱动装置、散热驱动系统、背光模组及显示装置
CN113544453B (zh) * 2020-02-20 2023-11-24 京东方科技集团股份有限公司 散热驱动装置、散热驱动系统、背光模组及显示装置
WO2021170327A1 (de) * 2020-02-28 2021-09-02 Nidec Gpm Gmbh Thermisch optimierte kühlmittelpumpe
TWI738327B (zh) * 2020-05-11 2021-09-01 日益電機股份有限公司 具後蓋護罩防漏強化的罐裝磁力泵
CN118391277A (zh) * 2024-06-27 2024-07-26 胜利油田新海兴达实业集团有限责任公司 一种耐高温型屏蔽电泵

Also Published As

Publication number Publication date
CN113202778B (zh) 2023-06-06
KR20200041952A (ko) 2020-04-22
KR102322609B1 (ko) 2021-11-05
CN109424551A (zh) 2019-03-05
CN113202778A (zh) 2021-08-03
US11384776B2 (en) 2022-07-12
CN113202777B (zh) 2023-07-28
CN113202773A (zh) 2021-08-03
CN113202776B (zh) 2023-09-15
EP3674562A4 (en) 2021-04-28
US20200355187A1 (en) 2020-11-12
CN113202775A (zh) 2021-08-03
CN113202775B (zh) 2023-09-15
CN113202774B (zh) 2023-09-15
EP3674562A1 (en) 2020-07-01
CN113236576B (zh) 2023-10-31
CN113202776A (zh) 2021-08-03
EP3674562B1 (en) 2022-09-28
CN113236576A (zh) 2021-08-10
CN113202777A (zh) 2021-08-03
JP7476095B2 (ja) 2024-04-30
JP2020537726A (ja) 2020-12-24
CN113202774A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2019037531A1 (zh) 电动泵
WO2018032919A1 (zh) 热水循环泵
CN109139491A (zh) 电子水泵及具有该电子水泵的新能源汽车
CN111835153A (zh) 一种具有pcb板定子的电机
CN210628291U (zh) Igbt模块
CN210610111U (zh) 汽车控制器散热系统
CN109283987B (zh) 高效型水冷式散热器
CN217270865U (zh) 电动泵
CN114483598A (zh) 一种具有冷却液内循环的离心式屏蔽电机型屏蔽电泵
CN206077922U (zh) 一种纯电动汽车用电机控制器水冷散热结构
CN219876483U (zh) 一种电机控制器用功率模块组件及电机控制器
WO2023232027A1 (zh) 电动泵
CN214101129U (zh) 一种直流无刷永磁体同步电机的液冷散热装置
CN216626492U (zh) 驱动器的散热结构
CN220915063U (zh) 一种耐高温的电机壳体
CN221423482U (zh) 电子水泵的驱动电路板安装结构及应用其的电子水泵
CN218888926U (zh) 一种低压大功率空调压缩机控制器
CN217508443U (zh) 浸油液动泵用电动机
CN117189683A (zh) 电动泵
CN206850099U (zh) 一种新结构的多媒体综合兼容接口
CN218415482U (zh) 一种可自动散热的配电柜
CN117189684A (zh) 电动泵
CN117189682A (zh) 电动泵
CN209266393U (zh) 一种mos管散热安装装置
CN110225692B (zh) 一种控制器散热结构及电子水泵散热方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007659

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018848831

Country of ref document: EP

Effective date: 20200323