WO2023232027A1 - 电动泵 - Google Patents

电动泵 Download PDF

Info

Publication number
WO2023232027A1
WO2023232027A1 PCT/CN2023/097109 CN2023097109W WO2023232027A1 WO 2023232027 A1 WO2023232027 A1 WO 2023232027A1 CN 2023097109 W CN2023097109 W CN 2023097109W WO 2023232027 A1 WO2023232027 A1 WO 2023232027A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric pump
cavity
housing
control board
board assembly
Prior art date
Application number
PCT/CN2023/097109
Other languages
English (en)
French (fr)
Inventor
鲍俊峰
张峻
张莹
陈海强
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210610432.9A external-priority patent/CN117189683A/zh
Priority claimed from CN202210612432.2A external-priority patent/CN117189684A/zh
Priority claimed from CN202210610415.5A external-priority patent/CN117189682A/zh
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Publication of WO2023232027A1 publication Critical patent/WO2023232027A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a fluid pump, in particular to an electric pump.
  • the electric pump includes a control board component.
  • heat will be generated. If the heat accumulates to a certain extent and cannot be dissipated in time, it will affect the performance of the control board component, thereby reducing the service life of the electric pump. Therefore, how to effectively control the Board assembly heat dissipation is a technical issue.
  • the purpose of this application is to provide an electric pump that is beneficial to heat dissipation of the control board assembly.
  • an electric pump including a rotor assembly and a control board assembly.
  • the electric pump includes a first chamber and a second chamber, and the first chamber and the second chamber are not connected.
  • the rotor assembly is located in the first cavity
  • the control board assembly includes electronic components
  • the wall corresponding to the second cavity includes at least part of the outer wall of the electronic components
  • the electric pump includes heat-conducting liquid, at least part of the heat-conducting liquid is located in the second cavity, and at least part of the electronic components Components and Thermal Conductivity Liquid contact.
  • the rotor assembly is located in the first cavity
  • the control board assembly includes electronic components
  • the wall corresponding to the second cavity includes at least part of the outer wall of the electronic components
  • the electric pump includes heat-conducting liquid, at least part of the heat-conducting liquid Located in the second cavity, at least some of the electronic components are in contact with the thermally conductive liquid. This will help dissipate heat from the control board components, thereby extending the service life of the electric pump.
  • Figure 1 is a schematic three-dimensional structural diagram from one perspective of an embodiment of the electric pump of the present application
  • Figure 2 is a schematic cross-sectional structural diagram of the electric pump in Figure 1 in one direction;
  • Figure 3 is a schematic cross-sectional structural diagram in one direction of another embodiment of the electric pump in this application.
  • Figure 4 is a schematic cross-sectional structural diagram in one direction of the third embodiment of the electric pump in this application;
  • Figure 5 is a schematic cross-sectional structural diagram in one direction of the fourth embodiment of the electric pump in this application.
  • Figure 6 is a schematic three-dimensional structural diagram of the control board assembly in Figures 2, 3, 4, 5 and 11 from one perspective;
  • Figure 7 is a schematic three-dimensional structural diagram of the isolation sleeve in Figures 2, 3, 4, 5 and 11 from one viewing angle;
  • Figure 8 is a schematic cross-sectional structural diagram of the isolation sleeve in Figure 2, Figure 3, Figure 4, Figure 5 and Figure 11 in one direction;
  • Figure 9 is a schematic three-dimensional structural diagram of the electric pump in the embodiment shown in Figures 2, 3, 4, 5 and 11 from one perspective;
  • Figure 10 is a perspective view of the electric pump in Figure 9 when the second and fourth parts are not installed;
  • Figure 11 is a schematic cross-sectional structural diagram of the fifth embodiment of the electric pump in this application in one direction;
  • Figure 12 is a schematic cross-sectional structural diagram in one direction of the sixth embodiment of the electric pump in this application.
  • Figure 13 is a schematic cross-sectional structural diagram of the seventh embodiment of the electric pump in this application in one direction;
  • Figure 14 is a schematic cross-sectional structural view of the bottom cover in one direction in Figure 13;
  • 100 electric pump; 11: pump housing; 111: first housing; 1111: inlet; 1112: outlet, 1113: first connection part; 112: second housing; 1121: Second connection part; 1122: first inner groove; 113: bottom cover; 121: rotor assembly; 122: impeller assembly; 13: stator assembly; 131: stator; 1311: stator core; 1312: winding; 14: pump Shaft; 15: Control board assembly; 151: Base plate; 1511: Front; 1512: Back; 152: Electronic components; 1521: Welding part; 1522: Insulation part; 1523: Protection part; 1524: Components; 16: Isolation sleeve ; 161: top; 1611: flange; 162: bottom; 1621: upper surface; 1622: lower surface; 163: side; 1631: inner surface; 1632: outer surface; 164: pump shaft limiter; 18: The second connecting part; 19: Connecting port; 20: Thermal transfer liquid; 22: Oil
  • the electric pump in the following embodiment can provide flow power for the working medium of the automobile thermal management system.
  • the working medium includes a 50% ethylene glycol aqueous solution or clean water.
  • the electric pump 100 includes a pump housing 11, a rotor assembly 121, The stator assembly 13, the pump shaft 14, the control board assembly 15, the isolation part 24 and the impeller assembly 122.
  • the pump housing 11 includes a first housing 111, a second housing 112 and a bottom cover 113, along the height direction of the electric pump 100 , the second housing 112 is located between the first housing 111 and the bottom cover 113.
  • the electric pump 100 includes a first chamber 27 and a second chamber 281.
  • the first chamber 27 can have working medium flowing through it, and the second chamber 281 There is no working medium flowing through, at least part of the pump shaft 14 is disposed in the first cavity 27, the rotor assembly 121 is set on the outside of the pump shaft 14, the rotor assembly 121 is fixedly connected to the impeller assembly 122, and the control board assembly 15 is disposed in the pump housing 11 , the stator assembly 13 includes a stator 131 and pins.
  • the stator 131 includes a stator core 1311 and windings 1312. The windings 1312 of the stator 131 are electrically connected to the control board assembly 15 through the pins.
  • the first housing 111 is an injection molded part with an inlet 1111 and an outlet 1112.
  • the working medium enters the first cavity 27 through the inlet 1111 and then works.
  • the medium leaves the first chamber 27 through the outlet 1112.
  • a connector (not shown in the figure) is inserted into the connector 19 of the electric pump 100, so that the control circuit on the control board assembly 15 is connected to the external
  • the power supply is connected, and the control circuit controls the current passing through the stator assembly 13 to change according to certain rules, thereby controlling the stator assembly 13 to generate a changing magnetic field.
  • the rotor assembly 121 rotates around the pump shaft 14 or rotates with the pump shaft 14 under the action of the magnetic field.
  • the working medium entering the first cavity 27 rotates along with the rotor assembly 121, and the working medium leaves the first cavity 27 due to centrifugal force to generate flow power.
  • the first cavity 27 and the second cavity 281 are not connected, the rotor assembly 121 is located in the first cavity 27, and the control board assembly 15 includes a substrate 151 and electronic components 152.
  • the electronic component 152 is fixedly connected to the substrate 151.
  • the wall corresponding to the second cavity 281 includes at least part of the outer wall of the electronic component 152.
  • the electric pump 100 includes a thermally conductive liquid 20, and at least part of the thermally conductive liquid 20 is located in the second cavity 281, at least partially.
  • the electronic components 152 are in contact with the thermally conductive liquid 20 . In this way, the heat dissipation of the control board assembly 15 is facilitated, thereby increasing the service life of the electric pump 100 .
  • the heat transfer liquid 20 is an insulating heat transfer liquid.
  • the insulating heat transfer liquid has insulation properties and heat conduction properties. Specifically, At the same temperature, the thermal conductivity of insulating heat transfer liquid is greater than that of air.
  • the resistivity of the insulating heat transfer liquid at normal temperature is greater than or equal to 10 10 ⁇ .m.
  • the thermal conductivity of air ⁇ (W/mK), the thermal conductivity of air increases as the temperature increases. At 0°C, the thermal conductivity ⁇ of air is 0.024, and at 100°C the thermal conductivity ⁇ of air is 0.031.
  • the insulating heat transfer liquid includes insulating heat transfer oil.
  • the protective portion 1523 for reducing the corrosion of the electronic component 152 by the heat transfer liquid 20 can only be provided on the surface of the electronic component 152.
  • the electronic component 152 includes The welding part 1521 and the component 1524, the component 1524 is electrically connected to the substrate 151 through the welding part 1521, and the protective part 1523 is provided on at least the surface of the component 1524 and the surface of the welding part 1521.
  • the manufacturing process of the control board assembly 15 can be effectively simplified, the production cycle of the electric pump 100 can be shortened, and the production cost of the electric pump 100 can be reduced. Since the thermal conductivity of the insulating heat transfer liquid 20 is greater than the thermal conductivity of air, the heat dissipation efficiency can be effectively improved compared to the original method of conducting heat through air.
  • the thermal conductive liquid 20 may only have thermal conductive properties and may insulate the electronic components 152 of the control board assembly 15.
  • the electric pump 100 also includes insulation.
  • the insulation part 1522 is used to isolate the electronic component 152 from the thermal conductive liquid 20 .
  • the electronic component 152 includes a welding part 1521, an insulating part 1522 and a component 1524.
  • the component 1524 is electrically connected to the substrate 151 through the welding part 1521.
  • the insulating portion 1522 is provided on at least the outer wall surface of the component 1524 and the surface of the welding portion 1521 . The insulating portion 1522 will not affect the heat transfer between the electronic component 152 and the heat transfer liquid 20 .
  • the electronic component includes an insulating part 1522, a welding part 1521, a protective part 1523 and a component 1524.
  • the component 1524 is connected to the substrate 151 through the welding part 1521
  • the insulating part 1522 is provided at least on the outer wall surface of the component 1524 and the surface of the welding part 1521
  • the protective part 1523 is provided on at least the surface of the insulating part 1522 . In this way, the service life of the electronic component 152 is improved.
  • the isolation part 24 includes an injection molded body 165
  • the electric pump 100 includes a pump housing 11.
  • the injection molded body 165 and the pump housing 11 are integrally formed by injection molding.
  • the stator assembly 13 can be used as an insert or a stator assembly. 13 and the pump shaft 14 are formed by injection molding as inserts. Of course, there may be no insert and the injection molded body 165 and the pump housing 11 are formed by injection molding.
  • the isolation part 24 includes an isolation sleeve 16.
  • the isolation sleeve 16 is a separate component.
  • the electric pump 100 includes a pump housing 11.
  • the housing 11 includes a second housing 112 and a bottom cover 113.
  • the isolation sleeve 16 is located in the second housing 112.
  • the isolation sleeve 16 includes a bottom 162 and a side 163.
  • the inner cavity surrounded by the bottom 162 and the side 163 includes a first Cavity 27, the bottom cover 113 and the second housing 112 are fixedly and sealedly connected, or the bottom cover 113 and the second housing 112 are integral structural parts.
  • the cavity surrounded by the second housing 112, the isolation sleeve 16, and the bottom cover 113 includes a third Second cavity 281.
  • manufacturing the isolation sleeve 16 separately is conducive to simplifying the mold structure used in the manufacturing process of the isolation sleeve 16, which is beneficial to reducing the production cost of the electric pump 100.
  • the isolation sleeve 16, the stator assembly 13, and the control board assembly 15 are arranged along the height direction of the electric pump 100. It needs to be explained: the height of the electric pump 100 The direction is the direction in which the axis of the pump shaft 14 of the electric pump 100 extends.
  • the electric pump 100 also includes a third cavity 282 . Along the height direction of the electric pump 100 , the third cavity 282 is located between the control panel assembly 15 and the isolation sleeve 16 .
  • the second cavity 281 is located between the bottom cover 113 and the control panel assembly 15 .
  • the third cavity 282 is located between the bottom cover 113 and the control board assembly 15, and the second cavity 281 is located between the control board assembly 15 and the isolation sleeve 16.
  • the second cavity 281 can be filled with an appropriate amount of thermal conductivity. liquid 20 , so that at least part of the electronic component 152 is in contact with the thermally conductive liquid 20 .
  • the second cavity 281 is located between the control board assembly 15 and the isolation sleeve 16.
  • the base plate 151 includes a front side 1511 and a back side 1512.
  • the front side 1511 is closer to the lower surface 1622 of the isolation sleeve 16 than the back side 1512, at least part of the electronic components 152 are provided on the front side 1511, the second cavity 281 and the third cavity 282 are not connected, and only the second cavity 281 can be filled.
  • the hot liquid 20 is in contact with the lower surface 1622 of the bottom 162 of the isolation sleeve 16.
  • the heat generated by the electronic component 152 exchanges heat with the heat transfer liquid 20, and the heat transfer liquid 20 transfers at least part of the heat to the isolation sleeve.
  • the working medium in 16 is transported to the outside of the electric pump 100 through the flow of the working medium. In this way, it is beneficial to reduce the filling amount of the heat transfer liquid 20 and to achieve a lightweight design of the electric pump 100 .
  • the second cavity 281 and the third cavity 282 can also be connected to each other.
  • the second cavity 281 and the third cavity 282 are filled with an appropriate amount of thermally conductive liquid. In this way, electronic components 152 can be placed on both the front 1511 and the back 1512 of the substrate 151.
  • the electronic components 152 are in contact with the thermally conductive liquid 20. When the electronic components are While 152 dissipates heat, it can increase the layout space of the electronic components 152, which is conducive to reducing the radial size of the substrate 151, which is conducive to miniaturization of the substrate 151, and is conducive to the miniaturization design of the electric pump 100.
  • the second cavity 281 and the third cavity 282 can also be connected. Please refer to Figures 2 and 6.
  • the third cavity 282 is located between the control board assembly 15 and the isolation sleeve 16.
  • 281 is located between the bottom cover 113 and the control board assembly 15.
  • At least part of the electronic components 152 are provided on the reverse side 1512 of the base plate 151.
  • the electric pump 100 also includes a first communication part 51.
  • the first communication part 51 includes a communication hole.
  • the communication hole may be provided on the substrate 151, and the communication hole penetrates the substrate 151 along the thickness direction of the substrate 151.
  • a first gap may be preset between the side wall of the base plate 151 and the inner wall of the second housing 112 , and the first communication part 51 may include the first gap.
  • the thermally conductive liquid 20 can enter the third cavity 282 through the first connecting portion 51. Since there is the thermally conductive liquid 20 in both the second cavity 281 and the third cavity 282, the electronic components When 152 is arranged, the electronic components 152 can be arranged on both the front side 1511 and the back side 1512 of the substrate 151.
  • the front side 1511 of the substrate 151 is close to the isolation sleeve 16, and the back side 1512 of the substrate 151 is far away from the isolation sleeve 16. In this way, the layout space of the electronic components 152 can be increased. , which is conducive to reducing the size of the base plate 151 in the radial direction, which is conducive to miniaturization of the base plate 151, and is conducive to the miniaturization design of the electric pump 100.
  • the material of the isolation sleeve 16 can be a plastic material.
  • the isolation sleeve 16 is at least partially made of a thermally conductive plastic material. Need to explain one Under the same temperature, the thermal conductivity of the thermally conductive plastic materials here and below is greater than or equal to the thermal conductivity of metal materials.
  • the metal materials here include but are not limited to aluminum, copper, aluminum alloy, stainless steel and other materials.
  • part of the material of the isolation sleeve 16 can be a metal material.
  • the isolation sleeve 16 can be formed by injection molding with metal parts as inserts.
  • At least part of the bottom of the isolation sleeve 16 is made of metal material, and the lower surface of the bottom Including some metal materials, at least the bottom of the isolation sleeve 16 is located in the heat transfer liquid 20 .
  • the bottom and side parts of the isolation sleeve 16 are made of metal material.
  • the material of the isolation sleeve 16 is a metal material
  • the stator assembly 13 is sleeved on the outer periphery of the side portion 163
  • the rotor assembly 121 is located inside the side portion 163.
  • the side portion 163 includes an inner surface 1631 and an outer surface 1632.
  • the inner surface 1631 is closer to the central axis of the isolation sleeve 16 than the outer surface 1632.
  • the inner surface 1631 and the outer surface 1632 of the side portion 163 are both made of light.
  • the inner surface 1631 and the outer surface 1632 of the side part 163 are not provided with other structures.
  • the inner surface 1631 and the outer surface 1632 of the side part 163 can also be provided with other structures;
  • the bottom 162 includes an upper surface 1621 and a lower surface 1622, and the upper surface 1621 is smaller than the lower surface 1621.
  • the surface 1622 is closer to the opening side of the isolation sleeve 16.
  • the upper surface 1621 and the lower surface 1622 of the bottom 162 are both smooth surfaces, that is, neither the upper surface 1621 nor the lower surface 1622 is provided with other structures.
  • the upper surface 1621 and the lower surface 1622 of the bottom 162 are smooth surfaces.
  • the surface 1621 and the lower surface 1622 can also be provided with other structures; in this embodiment, the thickness of the side portion 163 is less than or equal to the thickness of the bottom 162, where the “thickness of the side portion” refers to the difference between the inner surface 1631 and the outer surface 1632 of the side portion 163.
  • the “thickness of the bottom” here refers to the vertical distance between the upper surface 1621 and the lower surface 1622 of the bottom 162; the thickness of the side portion 163 is less than or equal to the thickness of the bottom 162.
  • the thin side portion 163 is more conducive to heat conduction between the working medium, the side portion of the isolation sleeve 16, the stator assembly 13 and the heat transfer liquid 20, thereby benefiting the stator assembly 13.
  • the thickness of the side portion 163 is less than or equal to 1.5mm;
  • the material of the isolation sleeve 16 is stainless steel.
  • the material of the isolation sleeve 16 is austenitic stainless steel.
  • the isolation sleeve 16 is formed by stamping and stretching a metal plate.
  • the isolation sleeve 16 is provided with a pump shaft limiting portion 164.
  • the pump shaft limiting portion 164 is formed on the bottom 162. As shown in FIG. 2.
  • the pump shaft limiting portion 164 protrudes toward the third cavity 282. This can increase the contact area between the bottom 162 and the heat transfer liquid 20, which is beneficial to improving the heat dissipation efficiency of the electric pump 100.
  • the bottom 162 of the isolation sleeve 16 includes an upper surface 1621 and a lower surface 1622.
  • the lower surface 1622 is smaller than the upper surface. 1621 is closer to the control board assembly 15 and at least part of the lower surface 1622 is in contact with the heat transfer liquid 20 .
  • the direction in which the axis of the pump shaft 14 of the electric pump 100 extends is defined as the axial direction 101 of the electric pump, the direction from the bottom cover 113 to the first housing 111 is the positive axial direction of the electric pump 100, and the direction opposite to the positive direction is defined as The direction is the negative direction of the electric pump 100 axis.
  • the isolation sleeve 16, the stator assembly 13, and the control board assembly 15 are arranged in sequence. This is beneficial to miniaturization of the electric pump 100 in the radial direction. It should be noted that the radial direction of the electric pump 100 is a direction perpendicular to the axial direction 101 of the electric pump shaft 14 .
  • the heat transfer liquid 20 contacts the isolation sleeve 16 and transfers heat to the isolation sleeve 16. Through the flow of the working medium, such as water or aqueous solution, inside the isolation sleeve 16, the heat generated by the electronic component 152 is carried to the outside of the electric pump 100.
  • the control board assembly 15 includes a substrate 151 and electronic components 152.
  • the electronic components 152 and the substrate 151 are fixedly connected.
  • the electronic components 152 include heating electronic components (not shown in the figure), and the heating electronic components include diodes, MOS tubes, Inductors, resistors, capacitors and other common electronic components that are prone to heat.
  • the heating electronic components include diodes, MOS tubes, Inductors, resistors, capacitors and other common electronic components that are prone to heat.
  • switching tubes diodes, MOS tubes
  • the switching tube is usually placed on the lower surface 1622 close to the bottom 162 of the isolation sleeve 16.
  • the arrangement of the electronic components 152 on the control board assembly 15 is no longer affected by the area of the lower surface 1622 of the bottom 162 of the isolation sleeve 16, and the arrangement space of the electronic components 152 is increased, so that it can be as much as possible Making full use of the limited area of the substrate 151 is conducive to miniaturization of the substrate 151, thereby making the design of the electric pump 100 more compact, thereby realizing a miniaturized design of the electric pump 100;
  • the electronic components on the control board assembly 15 The arrangement of the device 152 is no longer affected by the lower surface of the bottom 162 of the isolation sleeve 16 1622 area, the layout space of the electronic components 152 increases, which is more conducive to optimizing the internal control circuit of the control board assembly 15 and lays a certain foundation for reducing the production cost of the electric pump 100;
  • the electronic components 152 can be integrally When immersed in the thermally conductive liquid 20, the electronic component 152 can fully exchange heat with the thermally
  • the space for selecting electronic components 152 increases, which is beneficial to reducing the production cost of electronic components 152.
  • MOS tubes with larger internal resistance can be selected, thereby reducing the production cost of the electric pump 100. cost.
  • the electric pump 100 also includes a fourth cavity 29 .
  • the stator assembly 13 includes a stator core 1311 and a winding 1312 .
  • the winding 1312 is wound around the stator core 1311 .
  • the fourth cavity 29 is located in the fourth cavity 29 .
  • the corresponding wall surface includes at least part of the outer surface of the winding 1312.
  • the electric pump 100 also includes a second communication part 18.
  • the fourth cavity 29 communicates with the second cavity 281 or the third cavity 282 through the second communication part 18, and at least part of the heat transfer liquid 20 is located in the fourth cavity 29, and at least part of the winding 1312 is in contact with the heat transfer liquid 20.
  • FIG. 11 As an implementation manner, please refer to FIG. 11 .
  • the second cavity 281 is located between the isolation sleeve 16 and the control board assembly 15 .
  • the fourth cavity 29 is connected with the second cavity 281 through the second communication part 18 .
  • the fourth cavity 29 and the second cavity 281 may not be connected to each other.
  • the third cavity 282 is located between the isolation sleeve 16 and the control board assembly 15.
  • the fourth cavity 29 is connected with the third cavity 282 through the second communication part 18.
  • the cavity 282 communicates with the second cavity 281 through the first communication part 51 .
  • the electric pump 100 includes a partition 30.
  • the partition 30 and the second housing 112 can be provided integrally.
  • the partition 30 and the second housing 112 can also be fixedly connected.
  • the fourth chamber 29 is located on one side of the partition 30.
  • the third cavity 282 is located on the other side of the partition 30. Specifically, the fourth cavity 29 is located on the upper side of the partition 30, the third cavity 282 is located on the lower side of the partition 30, and the second communication part 18 is a hole-like structure. Along the thickness direction of the partition plate 30 , the second communication portion 18 penetrates the upper and lower surfaces of the partition plate 30 .
  • the heat transfer liquid 20 can enter the third cavity 282 through the first communication part 51, and enter the fourth cavity 29 through the second communication part 18, so that the stator 131 of the stator assembly 13
  • the winding 1312 can be in contact with the heat transfer liquid 20, and the heat generated by the stator assembly 13 can be transferred to the side 163 of the isolation sleeve 16 through the heat transfer liquid 20.
  • the inside of the isolation sleeve 16 that is to say, the first cavity 27 will There is a working medium, so that the heat received by the isolation sleeve 16 can be transferred to the working medium inside the isolation sleeve 16, At least part of the heat can be brought to the outside of the electric pump 100 by the flow of the working medium in the first chamber 27 .
  • the stator assembly 13 and the control board assembly 15 can be dissipated simultaneously, and the heat dissipation efficiency is faster.
  • rapid heat dissipation is more conducive to extending the service life of the electric pump 100.
  • the provision of the second communication part 18 can simplify the structure of the electric pump 100.
  • the partition 30 may not be provided inside the second housing 112, the second chamber 281 and the fourth chamber 29 may be directly connected, and the control board assembly 15 is fixedly installed. on the stator assembly 13 and electrically connected to the stator assembly 13 . In this way, the structural design of the electric pump 100 is more compact, which not only dissipates heat from the electric pump 100, but also facilitates the miniaturization design of the electric pump 100.
  • the isolation sleeve 16 includes a top 161, a bottom 162 and a side 163. 163 is located between the top 161 and the bottom 162.
  • the top 161 includes a flange portion 1611 extending radially outward of the side portion 163.
  • the first cavity 27 is located inside the side portion 163.
  • the stator assembly 13 is disposed on the side portion. 163 outside, specifically, the stator 131 is matched with the side portion 163 of the isolation sleeve 16. It should be noted that the matching settings here include interference fit, transition fit or clearance fit.
  • the first housing 111 includes a first connecting part 1113
  • the second housing 112 includes a second connecting part 1121
  • the flange part 1611 is located between the first connecting part 1113 and the second connecting part 1121
  • the second connecting part 1121 includes a An inner groove 1122.
  • the first inner groove 1122 is concave in the upper surface of the second connecting part 1121.
  • the electric pump 100 also includes a first sealing ring 25.
  • the first sealing ring 25 is located in the first inner groove 1122 and has a convex shape.
  • the lower surface of the edge portion 1611 contacts the first sealing ring 25 and exerts a certain force in a direction perpendicular to the upper surface of the flange portion 1611.
  • the electric pump 100 further includes a second sealing ring 26.
  • the second sealing ring 26 is disposed between the first housing 111 and the upper surface of the flange portion 1611.
  • the first housing 111 and the partition are The isolation sleeve 16 and the second housing 112 are sealed and fixedly connected through a fastening structure.
  • first housing 111, the isolation sleeve 16 and the second housing 112 are sealed and fixedly connected through bolts.
  • the first housing 111 and the second housing 112 are both made of plastic materials.
  • the first housing 111 and the second housing 112 are fixedly sealed and connected by welding.
  • the structure of the second sealing ring 26 can be formed
  • the second line of defense fully ensures that external media will not penetrate the outside of the side portion 163 of the isolation sleeve 16. At the same time, it can also effectively prevent the heat transfer liquid in the fourth chamber, the third chamber and the second chamber from leaking to the outside of the electric pump. Please refer to FIG. 4 .
  • the second housing 112 includes a third connection part 1123
  • the bottom cover 113 includes a fourth connection part 1133
  • the third connection part 1123 or the fourth connection part 1133 is provided with a second groove 40 .
  • the second groove 40 is recessed in the lower surface of the third connecting part 1123
  • a third sealing ring 50 is provided inside the second groove 40.
  • the third connecting part 1123 and the fourth connecting part 1133 pass through the third sealing ring 50.
  • Three sealing rings 50 realize a sealed and fixed connection.
  • a bonding portion can be provided around the gap between the third connecting portion 1123 and the fourth connecting portion 1133 .
  • the bonding portion is used to prevent leakage in the second chamber 281 .
  • the heat transfer liquid 20 leaks out of the electric pump through the gap connecting the third connecting part 1123 and the fourth connecting part 1133 .
  • the material of the bottom cover 113 can be a metal material or a plastic material. In the above embodiment, the material of the bottom cover 113 can be a plastic material.
  • the electric pump 100 includes Pump housing 11.
  • the pump housing 11 includes a bottom cover 113 and a second housing 112.
  • the bottom cover 113 and the second housing 112 are sealed and fixedly connected.
  • the cavity enclosed by the bottom cover 113 and the second housing 112 includes a second
  • the materials of the cavity 281 and the bottom cover 113 are plastic materials. In this way, when using the low-power electric pump 100, it is beneficial to achieve lightweight design.
  • the material of the bottom cover 113 can also be a metal material, so that the heat dissipation efficiency is higher and is more conducive to high-power electric pumps. 100's of designs.
  • the material of the bottom cover 113 is at least partially a thermally conductive plastic material. In this way, while efficiently dissipating heat to the electric pump, the lightweight design of the electric pump 100 can be facilitated.
  • the electric pump 100 also includes an oil inlet part 22.
  • the oil inlet part 22 includes a first part 221 and a second part 222.
  • the first part 221 is a hole. -like structure
  • the second part 222 is a columnar structure
  • the first part 221 serves as the filling inlet when the heat transfer liquid 20 is filled into the electric pump 100, and one end of the first part 221 is connected with the second cavity 281.
  • the other end of the first part 221 is connected to the outside of the electric pump 100.
  • At least part of the second part 222 is located in the first part 221.
  • the first part 221 and the second part 222 are sealed and fixedly connected. In this way, it is helpful to simplify the structure of the oil inlet part, thereby simplifying the structure of the electric pump.
  • the electric pump also includes an air outlet part 23.
  • the air outlet part 23 includes a third part 231 and a fourth part 232.
  • the third part 231 is a hole-like structure, and the fourth part 232 is a columnar structure, and the heat conductor is filled into the electric pump.
  • the fourth part 232 is not installed to the third part 231, and the third part 231 can serve as an outlet for the air inside the electric pump 100.
  • the other end of the third part 231 is connected to the outside of the electric pump 100.
  • At least part of the fourth part 232 is located in the third part 231.
  • the third part 231 and the fourth part 232 are sealed and fixedly connected.
  • the oil inlet part 22 and the air outlet part 23 are provided on the bottom cover 113 .
  • the second part 222 When filling the heat transfer liquid, the second part 222 is unsealed and fixedly connected to the first part 221, and the fourth part 232 is unsealed and fixedly connected to the third part 231.
  • the insulating heat transfer liquid After the insulating heat transfer liquid is filled, connect the first part 221 and the third part 231.
  • the second part 222 is sealed and fixedly connected, and the third part 231 and the fourth part 232 are sealed and fixedly connected.
  • the bottom cover 113, the second part 222 and the fourth part 232 are all plastic parts.
  • the first part 221 and the second part 222 can be sealed and fixedly connected by welding.
  • the third part 231 and the fourth part 232 The connection can be sealed and fixed by welding.
  • anti-leakage glue may be provided in a circumferential circle at the gap connecting the first part 221 and the second part 222, and between the third part 231 and the fourth part An anti-leakage glue is provided around the gap connecting the parts 232 to prevent the heat transfer liquid from penetrating to the outside of the electric pump through the gap.
  • the electric pump 100 includes a pump housing 11 , a rotor assembly 121 , a stator assembly 13 , a pump shaft 14 , a control board assembly 15 , an isolation portion 24 and an impeller assembly 122 .
  • the pump housing 11 includes a first The housing 111, the second housing 112 and the bottom cover 113 are arranged along the height direction of the electric pump 100.
  • the second housing 112 is located between the first housing 111 and the bottom cover 113. Of course, only part of the second housing 112 can be provided.
  • the housing 112 is located between the first housing 111 and the bottom cover 113; see Figures 1 and 2, the first housing 111, the second housing 112 and the bottom cover 113 are relatively fixed and sealed, and the electric pump 100 includes a first chamber. 27 and the fourth chamber 29, the first chamber 27 can have working medium flowing through it, and the fourth chamber 29 has no working medium flowing through it. At least part of the pump shaft 14 is arranged in the first chamber 27, and the rotor assembly 121 is sleeved on the outside of the pump shaft 14.
  • the rotor assembly 121 is fixedly connected to the impeller assembly 122
  • the stator assembly 13 includes a stator 131 and pins
  • the stator 131 includes a stator core and windings
  • the windings are wound around the stator core
  • the windings of the stator 131 are electrically connected to the control board assembly 15 through pins.
  • the first cavity 27 and the fourth cavity 29 are not connected, the rotor assembly 121 is located in the first cavity 27, the stator assembly 13 includes a stator 131, and the stator 131 includes a stator core 1311 and a winding 1312. , the winding 1312 is wound around the stator core 1311, the wall corresponding to the fourth cavity 29 includes at least part of the outer surface of the winding 1312, the electric pump 100 also includes a heat transfer liquid 20, at least part of the heat transfer liquid 20 is located in the fourth cavity 29, at least part of Winding 1312 is in contact with thermally conductive liquid 20 . In this way, the heat dissipation of the stator assembly 13 is facilitated, thereby increasing the service life of the electric pump 100 .
  • the thermally conductive liquid 20 includes an insulating thermally conductive liquid.
  • the insulating thermally conductive liquid has insulation properties and thermal conductivity properties. Specifically, the thermal conductivity of the insulating thermally conductive liquid at the same temperature is Greater than the thermal conductivity of air.
  • the resistivity of the insulating heat transfer liquid at normal temperature is greater than or equal to 10 10 ⁇ .m.
  • the thermal conductivity of air ⁇ (W/m ⁇ K), the thermal conductivity of air increases as the temperature increases. At 0°C, the thermal conductivity ⁇ of air is 0.024, and at 100°C, the thermal conductivity ⁇ of air is 0.031.
  • the insulating heat transfer liquid includes insulating heat transfer oil.
  • insulating heat transfer oil is not limited to insulating and heat-conducting oil, and can also be other liquids with insulating and heat-conducting properties.
  • the first protection part for reducing the corrosion of the stator 131 by the insulating heat transfer liquid 20 can be provided only on the surface of the stator 131 of the stator assembly 13.
  • the winding 1312 also includes the first protection part 29 , at least the outer surface of the winding 1312 of the stator 131 is covered with the first protection part 29 .
  • the first protection part 29 may not be provided, and the windings of the stator 131 of the stator assembly 13 may be in direct contact with the insulating heat-conducting liquid.
  • the manufacturing process of the stator assembly 13 is effectively simplified, the production cycle of the electric pump 100 is shortened, and the production cost of the electric pump 100 is further reduced. Since the thermal conductivity of the insulating heat transfer liquid 20 is greater than the thermal conductivity of air, the heat dissipation efficiency can be effectively improved compared to the original method of conducting heat through air.
  • the thermal conductive liquid 20 may only have thermal conductive properties and may insulate the windings of the stator 131 of the stator assembly 13.
  • the windings may also include a first insulating part. 30 and the enameled wire, the first insulating part 30 is at least provided on the outer surface of the enameled wire, and the first insulating part 30 is used to isolate the winding from the heat-conducting liquid 20 . Since the heat transfer liquid 20 only has heat conduction properties, the space for selecting the heat transfer liquid 20 increases, which lays a certain foundation for reducing the production cost of the electric pump 100 .
  • the heat transfer liquid can be in contact with the pump housing.
  • the heat generated by the stator assembly is conducted to the outside of the electric pump through the pump housing.
  • it can also be in contact with the isolation part through the heat transfer liquid, and through the working medium in the isolation part. The flow transports the heat generated by the stator assembly to the outside of the electric pump.
  • the isolation sleeve 16 includes a bottom 162 and a side 163 .
  • the side 163 protrudes from the bottom 162 .
  • the stator assembly 13 and the side 163 are positioned in a limited position, at least partially.
  • Thermal transfer liquid 20 is in contact with side 163 . It needs to be explained: the limit settings mentioned here include interference fit and transition fit.
  • the heat generated by the stator assembly 13 is transferred to the working medium flowing in the isolation sleeve 16 through the heat transfer liquid 20 , and at least part of the heat generated by the stator assembly 13 is output through the flow of the working medium 20 to the outside of the electric pump 100, which is beneficial to the heat dissipation of the stator assembly 13, and is beneficial to increasing the service life of the electric pump 100.
  • the electric pump also includes a control board assembly 15.
  • the stator assembly 13 is electrically connected to the control board assembly 15.
  • the electric pump 100 includes a second cavity 281.
  • the control board assembly 15 includes The wall corresponding to the electronic component 152 and the second cavity 281 includes at least part of the outer wall of the electronic component 152 .
  • At least part of the thermally conductive liquid 20 is located in the second cavity 281 , and at least part of the electronic component 152 is in contact with the thermally conductive liquid 20 .
  • the stator assembly 13 and the control board assembly 15 can be dissipated at the same time, and the heat dissipation efficiency is faster. For high-power electric pumps, rapid heat dissipation is more conducive to extending the service life of the electric pump.
  • the stator assembly 13 , the isolation sleeve 16 , and the control board assembly 15 are arranged along the height direction of the electric pump.
  • the electric pump 100 includes a third chamber 282 . Located between the control board assembly 15 and the isolation sleeve 16, the second cavity 281 is located between the bottom cover 113 and the control board assembly 15; or the third cavity 282 is located between the bottom cover 113 and the control board assembly 15, and the second cavity 281 is located between the bottom cover 113 and the control board assembly 15. between the control panel assembly 15 and the isolation sleeve 16. In this way, it is beneficial to realize the miniaturization design of the electric pump 100 in the radial direction.
  • the height direction of the electric pump 100 is the direction in which the pump shaft of the electric pump extends. Electric pump radial direction The direction is perpendicular to the height of the electric pump.
  • the second cavity 281 and the third cavity 282 are not connected, and the second cavity 281 is located between the control board assembly 15 and the isolation sleeve 16.
  • the substrate 151 includes a front side 1511 and a back side 1512. The front side 1511 is closer to the isolation sleeve 16 than the back side 1512.
  • At least part of the electronic components 152 are arranged on the front side 1511. Only the second cavity 281 can be filled with an appropriate amount of thermal conductive liquid 20, at least some of the electronic components. The component 152 is in contact with the heat transfer liquid 20, which is beneficial to the lightweight design of the electric pump.
  • the electric pump 100 includes a pump housing 11 , a rotor assembly 121 , a stator assembly 13 , a pump shaft 14 , a control board assembly 15 , an isolation portion and an impeller assembly 122 .
  • the pump housing 11 includes a first shell. body 111, second housing 112 and bottom cover 113. Along the height direction of the electric pump 100, the second housing 112 is located between the first housing 111 and the bottom cover 113.
  • the body 112 is located between the first housing 111 and the bottom cover 113; see Figures 1 and 2, the first housing 111, the second housing 112 and the bottom cover 113 are relatively fixed and sealed, and the electric pump 100 has a first cavity 27 and the second chamber 281.
  • the first chamber 27 can have working medium flowing through it, and the second chamber 281 has no working medium flowing through it.
  • At least part of the pump shaft 14 is arranged in the first chamber 27, and the rotor assembly 121 is sleeved on the outside of the pump shaft 14.
  • the rotor assembly 121 is fixedly connected to the impeller assembly 122.
  • the stator assembly 13 includes a stator 131 and pins.
  • the stator 131 is electrically connected to the control board assembly 15 through the pins.
  • the electric pump 100 includes a second cavity 281
  • the control board assembly 15 includes electronic components 152
  • the side wall corresponding to the second cavity 281 Including at least part of the outer wall surface of the electronic component 152 and at least part of the inner wall surface of the pump housing 11 , the electric pump 100 includes a heat transfer liquid 20 , at least a part of the heat transfer liquid 20 is located in the second cavity 281 , and at least a part of the electronic component 152 and the heat transfer liquid 20 Contact
  • the material of the pump housing 11 is at least partially a thermally conductive material
  • the thermally conductive material part is defined as a contact part
  • at least part of the contact part is in contact with the thermally conductive liquid 20 .
  • heating electronic components include diodes, MOS tubes, inductors, resistors, capacitors and other common electronic components that are prone to heat.
  • switching tubes diodes, MOS tubes
  • the switching tube is usually placed on the first wall 1131 close to the bottom cover 113. Since the bottom cover 113 The surface area of the first wall 1131 of the cover 113 is limited. Other heat-generating electronic components, such as inductors, resistors and capacitors, will be away from the first wall 1131 of the bottom cover 113. Other heat-generating electronic components can only Heat is dissipated by conducting heat through the air, and the heat dissipation efficiency is relatively slow, which is likely to reduce the service life of other heating electronic components.
  • the arrangement of the heating electronic components on the control board assembly 15 is no longer affected by the area of the first wall 1131 of the bottom cover 113, and the arrangement space of the heating electronic components 152 is increased, so that it can be Possibly utilizing the limited area of the substrate 151 is conducive to miniaturization of the substrate 151, thereby achieving a miniaturized design of the electric pump 100; on the other hand, the arrangement of the heating electronic components on the control board assembly 15 is no longer restricted by the bottom cover.
  • the layout space of heating electronic components is increased, which is more conducive to optimizing the internal control circuit of the control board assembly 15, laying a certain foundation for reducing the production cost of the electric pump 100; thirdly, the heating The electronic components can be completely immersed in the heat-conducting liquid 20 , and the electronic components 152 can fully exchange heat with the heat-conducting liquid 20 , effectively improving the heat dissipation efficiency of the electronic components 152 . Fourthly, due to reasonable heat dissipation, the space for selecting electronic components 152 increases. For example, MOS tubes with larger internal resistance can be selected, which is beneficial to reducing the production cost of heating electronic components 152 and thereby reducing the cost of the electric pump 100 Cost of production.
  • the thermally conductive material includes thermally conductive plastic or metal material. At the same temperature, the thermal conductivity of the thermally conductive plastic is greater than or equal to the thermal conductivity of metal.
  • the metal materials here include but are not limited to aluminum, copper, aluminum alloy, stainless steel and other materials.
  • the pump housing 11 includes a bottom cover 113 and a second housing 112. The bottom cover 113 and the second housing 112 are along the height of the electric pump 100. direction, the bottom cover 113 and the second housing 112 are fixedly connected. In this way, it is conducive to the miniaturization design of the electric pump 100 in the radial direction.
  • the axis of the pump shaft of the electric pump 100 extends in the direction of the electric pump 100
  • the axial direction 101 is perpendicular to the axial direction of the electric pump 100
  • the direction 101 is the radial direction of the electric pump 100 .
  • the direction from the bottom cover 113 to the second housing 112 is the positive axial direction of the electric pump 100
  • the direction opposite to the positive direction is the negative axial direction of the electric pump 100 .
  • the control board assembly 15 is located in the inner cavity surrounded by the bottom cover 113 and the second housing 112.
  • the cavity between the control board assembly 15 and the bottom cover 113 includes the second cavity 281.
  • the electronic components 152 include heat-generating electronic components, which at least generate heat.
  • the electronic components are located in the second cavity 281 , and at least the electronic components 152 are in contact with the thermally conductive liquid 20 , and the contact portion is located on the bottom cover 113 or includes the bottom cover 113 .
  • the bottom cover 113 is made of metal material.
  • part of the bottom cover 113 is made of metal material, and the contact portion is located on the bottom cover 113; as another implementation manner, the bottom cover 113 is entirely made of metal material, and the contact portion includes the bottom cover 113.
  • thermally conductive liquid 20 can be filled into the second cavity 281 , so that at least part of the heat-generating electronic components in the second cavity 281 come into contact with the thermally conductive liquid 20 and perform at least partial heat exchange.
  • the thermally conductive liquid 20 In contact with the bottom cover 113, the heat generated by the heating electronic components is transferred to the outside of the electric pump 100 through the bottom cover 113, which is beneficial to the lightweight design of the electric pump 100.
  • the bottom cover 113 includes a first wall 1131 and a second wall 1132.
  • the first wall 1131 is located in the second cavity 281. At least part of the outer surface of the second wall 1132 is exposed and constitutes an electric pump.
  • the electric pump 100 further includes heat dissipation fins 21 , and the heat dissipation fins 21 are disposed on the second wall surface 1132 .
  • the heat dissipation fins 21 include a plurality of heat dissipation portions 211 that protrude from the second wall surface 1132 and extend along the negative axial direction of the electric pump 100 . In this way, the heat dissipation efficiency of the control board assembly 15 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种电动泵(100),包括转子组件(121)和控制板组件(15),还包括不连通的第一腔(27)和第二腔(281),转子组件(121)位于第一腔(27),控制板组件(15)包括电子元器件(152),第二腔(281)所对应的壁面包括至少部分电子元器件(152)的外侧壁面,电动泵(100)包括导热液体(20),至少部分导热液体(20)位于第二腔(281),至少部分电子元器件(152)与导热液体(20)接触。该电动泵有利于控制板组件的散热。

Description

电动泵
本申请要求下述三项中国专利申请的优先权,其全部内容通过引用结合在本申请中:
1、于2022年05月31日提交中国专利局、申请号为202210610415.5、发明名称为“电动泵”的中国专利申请;
2、于2022年05月31日提交中国专利局、申请号为202210610432.9、发明名称为“电动泵”的中国专利申请;
3、于2022年05月31日提交中国专利局、申请号为202210612432.2、发明名称为“电动泵”的中国专利申请;
【技术领域】
本发明涉及一种流体泵,具体涉及一种电动泵。
【背景技术】
电动泵包括控制板组件,在控制板组件工作时,会产生热量,热量累计到一定程度无法及时散出将会影响控制板组件的性能,从而降低电动泵的使用寿命,因此,如何有效对控制板组件散热是一个技术问题。
【发明内容】
本申请的目的在于提供一种电动泵,有利于控制板组件的散热。
为实现上述目的,本申请一种实施方式采用如下技术方案:一种电动泵,包括转子组件和控制板组件,电动泵包括第一腔和第二腔,第一腔和第二腔不连通,转子组件位于第一腔,控制板组件包括电子元器件,第二腔所对应的壁面包括至少部分电子元器件的外侧壁面,电动泵包括导热液体,至少部分导热液体位于第二腔,至少部分电子元器件与导热 液体接触。
本申请提供的技术方案中,转子组件位于第一腔,控制板组件包括电子元器件,第二腔所对应的壁面包括至少部分电子元器件的外侧壁面,电动泵包括导热液体,至少部分导热液体位于第二腔,至少部分电子元器件与导热液体接触。这样有利于控制板组件散热,进而有利于提高电动泵的使用寿命。
【附图说明】
图1是本申请电动泵的一种实施方式在一个视角上的立体结构示意图;
图2是图1中电动泵在一个方向上剖面结构示意图;
图3是本申请中电动泵另一种实施方式在一个方向上剖面结构示意图;
图4是本申请中电动泵第三种实施方式在一个方向上剖面结构示意图;
图5是本申请中电动泵第四种实施方式在一个方向上剖面结构示意图;
图6是图2、图3、图4、图5和图11中控制板组件在一个视角上立体结构示意图;
图7是图2、图3、图4、图5和图11中隔离套在一个视角上立体结构示意图;
图8是图2、图3、图4、图5和图11中隔离套在一个方向上剖面结构示意图;
图9是图2、图3、图4、图5和图11中实施方式中电动泵在一个视角上立体结构示意图;
图10为图9中未安装第二部和第四部时电动泵在一个视角上立体示意图;
图11本申请中电动泵第五种实施方式在一个方向上剖面结构示意图;
图12本申请中电动泵第六种实施方式在一个方向上剖面结构示意图;
图13本申请中电动泵第七种实施方式在一个方向上剖面结构示意图;
图14是图13中底盖在一个方向上的剖面结构示意图;
附图中:100:电动泵;11:泵壳体;111:第一壳体;1111:进流口;1112:出流口,1113:第一连接部;112:第二壳体;1121:第二连接部;1122:第一内凹槽;113:底盖;121:转子组件;122:叶轮组件;13:定子组件;131:定子;1311:定子铁芯;1312:绕组;14:泵轴;15:控制板组件;151:基板;1511:正面;1512:反面;152:电子元器件;1521:焊接部;1522:绝缘部;1523:防护部;1524:元器件;16:隔离套;161:顶部;1611:凸缘部;162:底部;1621:上表面;1622:下表面;163:侧部;1631:内表面;1632:外表面;164:泵轴限位部;18:第二连通部;19:接插口;20:导热液体;22:进油部;221:第一部;222:第二部;23:出气部;231:第三部;232:第四部;25:第一密封圈;26:第二密封圈;27:第一腔;281:第二腔;282:第三腔;29:第四腔;30:隔板;101:电动泵轴向方向;1123:第三连接部;1133:第四连接部;40:第二内凹槽;50:第三密封圈;51:第一连通部;24:隔离部,165:注塑体;29:第一防护部。
【具体实施方式】
下面结合附图和具体实施例对本发明作进一步的说明:
以下结合附图对本申请的具体实施方式进一步详细说明。首先,需要说明是,在本发明说明书中提到或可能提到的上、下、左、右、前、后、内侧、外侧、顶部、底部等方位用语是相对于对应附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应该当将这些或者其他的方位用语解释为限制性用语。
以下实施例中的电动泵能够为汽车热管理系统的工作介质提供流动动力,工作介质为包括50%乙二醇水溶液或者清水。
参见图1至图3所示,电动泵100包括泵壳体11、转子组件121、 定子组件13、泵轴14、控制板组件15、隔离部24以及叶轮组件122,泵壳体11包括第一壳体111、第二壳体112和底盖113,沿着电动泵100的高度方向,第二壳体112位于第一壳体111和底盖113之间,当然,也可以只有部分的第二壳体112位于第一壳体111和底盖113之间;参见图1和图2,第一壳体111、第二壳体112和底盖113相对固定密封连接,电动泵100包括第一腔27和第二腔281,第一腔27能够有工作介质流过,第二腔281无工作介质流过,至少部分泵轴14设置于第一腔27,转子组件121套装于泵轴14的外侧,转子组件121与叶轮组件122固定连接,控制板组件15设置于泵壳体11内,定子组件13包括定子131和插针,定子131包括定子铁芯1311和绕组1312,定子131的绕组1312通过插针与控制板组件15电连接。
参见图1和图2,第一壳体111为注塑件,注塑成形有进流口1111和出流口1112,电动泵100工作时,工作介质通过进流口1111进入第一腔27,然后工作介质通过出流口1112离开第一腔27,电动泵100工作时,通过将接插件(图上未示出)插入电动泵100的接插口19内,使得控制板组件15上的控制电路与外部电源连接,控制电路控制通过定子组件13的电流按照一定的规律变化,从而控制定子组件13产生变化的磁场,转子组件121在磁场的作用下围绕泵轴14转动或是随泵轴14一起转动,从而使得进入第一腔27内的工作介质随着转子组件121做旋转运动,工作介质由于离心力离开第一腔27产生流动的动力。
作为一种实现方式,请参考图2和图6所示,第一腔27和第二腔281不连通,转子组件121位于第一腔27,控制板组件15包括基板151和电子元器件152,电子元器件152与基板151固定连接,第二腔281所对应的壁面包括至少部分电子元器件152的外侧壁面,电动泵100包括导热液体20,至少部分导热液体20位于第二腔281,至少部分的电子元器件152与导热液体20接触。通过这样的方式,有利控制板组件15散热,进而提高电动泵100的使用寿命。
进一步地,作为一种实现方式,请参考图2和图6所示,导热液体20为绝缘导热液体,绝缘导热液体具有绝缘特性和导热特性,具体的, 在相同温度下绝缘导热液体的导热系数大于空气的导热系数。在常温下绝缘导热液体的电阻率大于等于1010Ω.m。空气的导热系数λ(W/m.K),空气的导热系数随温度升高而增大。在0℃时,空气的导热系数λ为0.024,在100℃时空气的导热系数λ为0.031。更具体的,绝缘导热液体包括绝缘导热油。当然并不局限于绝缘导热油,还可以为其它具有绝缘和导热特性的液体。如此,对控制板组件15的电子元器件152表面处理时,可以仅在电子元器件152的表面设置用于减少电子元器件152受到导热液体20腐蚀的防护部1523具体的,电子元器件152包括焊接部1521和元器件1524,元器件1524通过焊接部1521与基板151电连接,防护部1523设置在至少元器件1524的表面、焊接部1521的表面。这样,可以有效简化控制板组件15的制造工艺过程,缩短电动泵100的生产周期,进而降低电动泵100的生产成本。由于绝缘导热液体20的导热系数大于空气的导热系数,相较于原来通过空气进行传导热量的方式,可以有效提高散热效率。
当然,作为其他的实现方式,请再参考图2和图6所示,导热液体20可以仅具有导热的特性,可以对控制板组件15的电子元器件152进行绝缘处理,电动泵100还包括绝缘部1522,绝缘部1522用于隔离电子元器件152与导热液体20。具体的,电子元器件152包括焊接部1521、绝缘部1522和元器件1524,元器件1524通过焊接部1521与基板151电连接。绝缘部1522至少设置在元器件1524的外侧壁面和焊接部1521的表面。绝缘部1522不会影响电子元器件152与导热液体20之间的热传递。由于导热液体20仅具有导热的特性,增加导热液体20可选择的空间,为降低电动泵100的生产成本奠定一定的基础。更进一步地,为了防止绝缘导热液体对绝缘部腐蚀,作为一种实现方式,电子元器件包括绝缘部1522、焊接部1521、防护部1523以及元器件1524,元器件1524通过焊接部1521与基板151电连接,绝缘部1522至少设置在元器件1524的外侧壁面、焊接部1521的表面,防护部1523至少设置在绝缘部1522的表面。通过这样的方式,有利于提高电子元器件152的使用寿命。
作为一种实现方式,隔离部24包括注塑体165,电动泵100包括泵壳体11,注塑体165与泵壳体11一体注塑形成,具体的,可以通过定子组件13作为嵌件或是定子组件13和泵轴14作为嵌件注塑形成,当然也可以没有嵌件,通过注塑形成注塑体165和泵壳体11。
作为一种实现方式,请参考图1、图2和图8所示,隔离部24包括隔离套16,具体的,隔离套16为一个单独的零部件,电动泵100包括泵壳体11,泵壳体11包括第二壳体112和底盖113,隔离套16位于第二壳体112内,隔离套16包括底部162和侧部163,底部162和侧部163围成的内腔包括第一腔27,底盖113与第二壳体112固定密封连接或者底盖113与第二壳体112为一体式结构件,第二壳体112、隔离套16、底盖113围成的腔包括第二腔281。通过这样的方式,单独制造隔离套16,有利于简化隔离套16制造过程中使用的模具结构,进而有利于降低电动泵100的生产成本。
进一步的,作为一种实现方式,请参考图2和图6所示,沿着电动泵100的高度方向设置隔离套16、定子组件13、控制板组件15,需要说明一下:电动泵100的高度方向为电动泵100的泵轴14轴线延伸的方向。电动泵100还包括第三腔282,沿着电动泵100的高度方向,第三腔282位于控制板组件15与隔离套16之间,第二腔281位于底盖113与控制板组件15之间,或者,第三腔282位于底盖113和控制板组件15之间,第二腔281位于控制板组件15和隔离套16之间,通过这样的方式,可以仅对第二腔281填充适量导热液体20,使得至少部分的电子元器件152与导热液体20接触。这样有利于实现电动泵100轻量化设计。具体的,作为一种实现方式,请参考图5、图6、和图7和图8所示,第二腔281位于控制板组件15和隔离套16之间,基板151包括正面1511和反面1512,正面1511比反面1512更靠近隔离套16的下表面1622,至少部分的电子元器件152设置在正面1511,第二腔281和第三腔282未连通设置,可以仅对第二腔281进行填充适量的导热液体20,隔离套16包括底部162,底部162包括上表面1621和下表面1622,下表面1622比上表面1621更靠近控制板组件15,至少部分导 热液体20与隔离套16的底部162的下表面1622接触,电动泵100动作时,电子元器件152产生的热量和导热液体20进行热量交换,导热液体20将上述至少部分的热量传递至隔离套16内的工作介质,通过工作介质的流动输送至电动泵100的外部。通过这样的方式,有利于减少导热液体20的填充量,有利于实现电动泵100的轻量化设计。当然,上述的实现方式,第二腔281和第三腔282也可以连通设置。第二腔281和第三腔282填充有适量的导热液体,如此,在基板151的正面1511和反面1512均可以设置电子元器件152,电子元器件152和导热液体20接触,在对电子元器件152进行散热的同时,可以增加电子元器件152布置空间,有利于减少基板151径向方向的尺寸,进而有利于实现基板151的小型化,进而有利于电动泵100小型化设计。
作为另一种实现方式,第二腔281和第三腔282也可以连通设置,请参考图2和图6所示,第三腔282位于控制板组件15与隔离套16之间,第二腔281位于底盖113与控制板组件15之间,至少部分的电子元器件152设置在基板151的反面1512,电动泵100还包括第一连通部51,具体的,第一连通部51包括连通孔,连通孔可以设置在基板151上,沿着基板151厚度的方向,连通孔贯穿基板151。当然,基板151的侧壁和第二壳体112的内壁之间还可以预设第一间隙,第一连通部51可以包括第一间隙。当然,还可以有其它的实现方式,在这里不做具体的限定。对第二腔281进行填充导热液体20时,导热液体20可以通过第一连通部51进入至第三腔282,由于第二腔281和第三腔282内均会有导热液体20,电子元器件152布置时,基板151的正面1511和反面1512均可以布置电子元器件152,基板151的正面1511靠近隔离套16,基板151的反面1512远离隔离套16,如此,可以增加电子元器件152布置空间,有利于减少基板151径向方向的尺寸,进而有利于实现基板151的小型化,进而有利于电动泵100小型化设计。
下面将对隔离套的结构和材料进行介绍:
请参考图2、图7和图8所示,隔离套16的材料可以为塑料材料,作为一种实现方式,隔离套16至少部分为导热塑料材料。需要说明一 下,在相同温度下这里以及下述的导热塑料材料的导热系数大于等于金属材料的导热系数,这里的金属材料包括但不限于铝、铜、铝合金、不锈钢等材料。当然隔离套16的材料可以部分为金属材料,具体的,隔离套16可以以金属件为嵌件注塑形成,作为一种实现方式,隔离套16至少部分底部的材料为金属材料,底部的下表面包括部分金属材料,至少隔离套16的底部位于导热液体20内,如此,在提高隔离套16传导热量效率的同时,更有利于电动泵100轻量化设计。当然,作为其它的实施方式,隔离套16的底部和侧部的材料均为金属材料。
请再参考图2、图7、图8所示,作为一种实现方式,隔离套16的材料为金属材料,定子组件13套设于侧部163的外周,转子组件121位于侧部163的内周,侧部163包括内表面1631和外表面1632,内表面1631比外表面1632更靠近隔离套16的中心轴设置,本实施例中,侧部163的内表面1631和外表面1632均为光面,即内表面1631和外表面1632均未设置其他结构,当然侧部163的内表面1631和外表面1632也可以设置其他结构;底部162包括上表面1621和下表面1622,上表面1621比下表面1622更靠近隔离套16的开口侧,本实施例中,底部162的上表面1621和下表面1622均为光面,即上表面1621和下表面1622均未设置其他结构,当然底部162的上表面1621和下表面1622也可以设置其他结构;本实施例中,侧部163的厚度小于等于底部162的厚度,这里“侧部的厚度”是指侧部163的内表面1631与外表面1632之间的垂直距离,这里“底部的厚度”是指底部162的上表面1621与下表面1622之间的垂直距离;侧部163的厚度小于等于底部162的厚度,这样设置一方面可以保证隔离套16底部的强度,请再参考图3所示,薄的侧部163更有利于工作介质、隔离套16的侧部、定子组件13以及导热液体20四者之间的热传导,从而有利于定子组件13的散热,本实施例中,侧部163的厚度小于等于1.5mm;隔离套16的材料为不锈钢材料,具体地,请再参考图7所示,隔离套16的材料为奥氏体不锈钢材料,隔离套16通过冲压拉伸金属板成形,隔离套16设置有泵轴限位部164,所述泵轴限位部164成形于底部162,结合图 2,泵轴限位部164凸向第三腔282,如此,可以增加底部162与导热液体20之间的接触面积,有利于提高电动泵100的散热效率。
进一步地,请再参考图1、图2、图6、图7和图8所示,作为一种实现方式,隔离套16的底部162包括上表面1621和下表面1622,下表面1622比上表面1621更靠近控制板组件15,至少部分下表面1622与导热液体20接触。更具体地,定义电动泵100泵轴14轴线延伸的方向为电动泵的轴向方向101,从底盖113至第一壳体111的方向为电动泵100轴向正方向,与正方向相反的方向为电动泵100轴向负方向。沿着电动泵100轴向负方向,隔离套16、定子组件13、控制板组件15依次设置。这样,有利于电动泵100径向方向的小型化,需要说明一下,电动泵100径向方向为垂直于电动泵轴14轴向方向101的方向。导热液体20和隔离套16接触,将热量传递至隔离套16,通过隔离套16内侧工作介质,例如水或是水溶液的流动,将电子元器件152所产生的热量带着电动泵100的外部,控制板组件15包括基板151和电子元器件152,电子元器件152和基板151固定连接,电子元器件152包括发热电子元器件(图中未示出),发热电子元器件包括二极管、MOS管、电感、电阻、电容等常见的易发热的电子元器件。在这些发热电子元器件中开关管(二极管、MOS管)对热量更为敏感,所以为了对开关管进行快速的散热,通常会将开关管设置在靠近隔离套16的底部162的下表面1622,由于隔离套16的底部162的下表面1622的面积有限,其它的发热电子元器件,比如,电感、电阻和电容,则会远离隔离套16的底部162的下表面1622,其它的发热电子元器件则只能通过空气传导热量进行散热,散热效率比较慢,这样,很可能会降低其它发热电子元器件的使用寿命。通过上述的设置,一是,控制板组件15上的电子元器件152的布置不再受到隔离套16的底部162下表面1622面积的影响,电子元器件152的布置空间增大,如此可以尽可能地利用有限的基板151的面积,有利于实现基板151的小型化,进而使得电动泵100的设计更为紧凑,进而实现电动泵100的小型化设计;二是,控制板组件15上的电子元器件152的布置不再受到隔离套16的底部162下表面 1622面积的影响,电子元器件152的布置空间增大,更利于优化控制板组件15的内部的控制电路,为降低电动泵100的生产成本奠定一定基础;三是,电子元器件152可以整体的浸在导热液体20中,电子元器件152可以充分地和导热液体20进行热量交换,有效提高电子元器件152的散热效率。四是,由于合理的进行散热,电子元器件152可选择的空间增大,有利于降低电子元器件152的生产成本,例如,可选择内阻较大的MOS管,进而降低电动泵100的生产成本。
作为一种实现方式,请参考图3所示,电动泵100还包括第四腔29,定子组件13包括定子铁芯1311和绕组1312,绕组1312缠绕于定子铁芯1311上,第四腔29所对应的壁面包括至少部分绕组1312的外表面,电动泵100还包括第二连通部18,第四腔29通过第二连通部18与第二腔281连通或第三腔282连通,至少部分导热液体20位于第四腔29,至少部分的绕组1312与导热液体20接触。作为一种实现方式,请参考图11所示,第二腔281位于隔离套16和控制板组件15之间,第四腔29通过第二连通部18与第二腔281连通。第四腔29和第二腔281也可以不连通。作为另一种实现方式,请再参考图3所示,第三腔282位于隔离套16和控制板组件15之间,第四腔29通过第二连通部18与第三腔282连通,第三腔282通过第一连通部51与第二腔281连通。具体的,电动泵100包括隔板30,隔板30和第二壳体112可以一体设置,隔板30与第二壳体112还可以固定连接,第四腔29位于隔板30的一侧,第三腔282位于隔板30的另一侧,具体的,第四腔29位于隔板30的上侧,第三腔282位于隔板30的下侧,第二连通部18为孔状结构,沿着隔板30的厚度方向,第二连通部18贯穿隔板30的上、下表面。对第二腔281充入导热液体20时,导热液体20可以通过第一连通部51进入至第三腔282,通过第二连通部18进入至第四腔29,使得定子组件13的定子131的绕组1312可以与导热液体20接触,定子组件13产生的热量可以通过导热液体20传递至隔离套16的侧部163,电动泵100工作时,隔离套16的内侧,也就是说第一腔27会有工作介质,这样隔离套16接收的热量能够传递至隔离套16内侧的工作介质, 至少部分的热量可以通过第一腔27内工作介质的流动将热量带至电动泵100的外部。通过这样的方式,可以对定子组件13和控制板组件15同时进行散热,且散热的效率更快,对于大功率的电动泵100,快速的散热,更有利于提高电动泵100的使用寿命。第二连通部18的设置,可以简化电动泵100的结构,为了给第二腔281和第四腔29填充导热液体20,可以仅设置一个进液口即可。有利于简化电动泵100的结构,作为另一种实现方式,第二壳体112内部还可以不设置隔板30,第二腔281和第四腔29可以直接的连通,控制板组件15固定安装在定子组件13上,并与定子组件13电连接。通过这种方式,电动泵100的结构设计更加的紧凑,在对电动泵100散热的同时,还有利于实现电动泵100的小型化设计。
为实现第一腔与第二腔不连通,作为一种实现方式,请参考图3、图4、图7和图8所示,隔离套16包括顶部161、底部162和侧部163,侧部163位于顶部161和底部162之间,顶部161包括凸缘部1611,凸缘部1611向侧部163的径向外侧延伸,第一腔27位于侧部163的内侧,定子组件13设置在侧部163的外侧,具体的,定子131与隔离套16的侧部163配合设置,需要说明的是,这里配合设置包括过盈配合、过渡配合或是间隙配合。第一壳体111包括第一连接部1113,第二壳体112包括第二连接部1121,凸缘部1611位于第一连接部1113和第二连接部1121之间,第二连接部1121包括第一内凹槽1122,第一内凹槽1122内凹于第二连接部1121的上表面,电动泵100还包括第一密封圈25,第一密封圈25位于第一内凹槽1122内,凸缘部1611的下表面与第一密封圈25接触,在垂直于凸缘部1611上表面的方向施加一定的作用力,例如,可以施加一定的向下的作用力,凸缘部1611的下表面和第二连接部1121通过第一密封圈25实现密封连接,使得第一腔27和第二腔281实现密封不连通。通过设置第一密封圈25的结构可以阻止工作介质从第二连接部1121和凸缘部1611的下表面之间的缝隙渗出至侧部163的外侧。更具体地,电动泵100还包括第二密封圈26,第二密封圈26设置在第一壳体111和凸缘部1611上表面之间,第一壳体111、隔 离套16和第二壳体112通过紧固结构实现密封固定连接,具体地,第一壳体111、隔离套16和第二壳体112通过螺栓实现密封固定连接,当然还可以有其它地实现方式,例如,第一壳体111和第二壳体112均为塑料材料,第一壳体111和第二壳体112通过焊接方式实现固定密封连接,设置的第二密封圈26的结构可以形成二道防御,充分保证外界介质不会渗入隔离套16的侧部163的外侧,同时,还可以有效防止第四腔、第三腔和第二腔内的导热液体渗出至电动泵的外部。请参考图4所示,第二壳体112包括第三连接部1123,底盖113包括第四连接部1133,第三连接部1123或是第四连接部1133设有第二凹槽40,本实施例中,第二凹槽40内凹于第三连接部1123的下表面,在第二凹槽40的内部设有第三密封圈50,第三连接部1123与第四连接部1133通过第三密封圈50实现密封固定连接。为加强第二腔281的密封性,可以在第三连接部1123与第四连接部1133相连接的缝隙处的周向一圈设置粘结部,粘结部用于防止第二腔281内的导热液体20通过第三连接部1123和第四连接部1133相连接的缝隙处渗出至电动泵的外部。
底盖113的材料可以为金属材料,也可以为塑料材料,在上述的实施方式中,底盖113的材料可以为塑料材料,具体的,请参考图1和图2所示,电动泵100包括泵壳体11,泵壳体11包括底盖113和第二壳体112,底盖113和第二壳体112密封固定连接,底盖113和第二壳体112围成的腔体包括第二腔281,底盖113的材料为塑料材料。这样,在小功率电动泵100时,有利于实现轻量化设计,当然在上述的实施方式中,底盖113的材料也可以为金属材料,这样散热的效率更高,更有利于大功率电动泵100的设计。作为一种实现方式,底盖113的材料至少部分为导热塑料材料。通过这样的方式,在高效率对电动泵进行散热的同时,可以有利于电动泵100轻量设计。
作为一种实现方式,请参考图2、图9和图10所示,电动泵100还包括进油部22,进油部22包括第一部221和第二部222,第一部221为孔状结构,第二部222为柱状结构,第一部221作为导热液体20对电动泵100填充时的填充入口,第一部221的一端与第二腔281连通, 第一部221的另一端与电动泵100的外部连通,至少部分第二部222位于第一部221内,第一部221与第二部222密封固定连接。如此,有利于简化进油部的结构,进而简化电动泵的结构。
进一步地,该电动泵还包括出气部23,出气部23包括第三部231和第四部232,第三部231为孔状结构,第四部232为柱状结构体,填充导热体至电动泵100时,第四部232未安装至第三部231,第三部231可以作为电动泵100内部空气的出口。第三部231的另一端与电动泵100的外部连通,至少部分第四部232位于第三部231内,第三部231与第四部232密封固定连接。具体的,进油部22和出气部23设置在底盖113上。填充导热液体的时候,第二部222未密封固定连接在第一部221上,第四部232未密封固定连接在第三部231上,待绝缘导热液体填充完毕,将第一部221与第二部222密封固定连接,第三部231与第四部232密封固定连接。本实施例中,底盖113、第二部222和第四部232均为塑料件,第一部221和第二部222可以通过焊接的方式密封固定连接,第三部231和第四部232可以通过焊接的方式密封固定连接。进一步地,为了加强第一部221和第二部222的密封性,可以在第一部221和第二部222连接的缝隙处周向一圈设置防漏胶,在第三部231和第四部232连接的缝隙处周向一圈设置防漏胶,用于防止导热液体通过上述缝隙渗透至电动泵的外部。
参见图1和图12所示,电动泵100包括泵壳体11、转子组件121、定子组件13、泵轴14、控制板组件15、隔离部24以及叶轮组件122,泵壳体11包括第一壳体111、第二壳体112和底盖113,沿着电动泵100的高度方向,第二壳体112位于第一壳体111和底盖113之间,当然,也可以只有部分的第二壳体112位于第一壳体111和底盖113之间;参见图1和图2,第一壳体111、第二壳体112和底盖113相对固定密封连接,电动泵100包括第一腔27和第四腔29,第一腔27能够有工作介质流过,第四腔29无工作介质流过,至少部分泵轴14设置于第一腔27,转子组件121套装于泵轴14的外侧,转子组件121与叶轮组件122固定连接,定子组件13包括定子131和插针,定子131包括定子铁芯 和绕组,绕组缠绕于定子铁芯上,定子131的绕组通过插针与控制板组件15电连接。
参见图12所示,作为一种实现方式,第一腔27和第四腔29不连通,转子组件121位于第一腔27,定子组件13包括定子131,定子131包括定子铁芯1311和绕组1312,绕组1312缠绕于定子铁芯1311上,第四腔29所对应的壁面包括至少部分绕组1312的外表面,电动泵100还包括导热液体20,至少部分导热液体20位于第四腔29,至少部分绕组1312与导热液体20接触。通过这样的方式,有利于对定子组件13进行散热,进而提高电动泵100的使用寿命。
进一步地,作为一种实现方式,如图6和图12所示,导热液体20包括绝缘导热液体,绝缘导热液体具有绝缘特性和导热的特性,具体的,在相同温度下绝缘导热液体的导热系数大于空气的导热系数。在常温下绝缘导热液体的电阻率大于等于1010Ω.m。空气的导热系数λ(W/m·K),空气的导热系数随温度升高而增大。在0℃时,空气的导热系数λ为0.024,在100℃时,空气的导热系数λ为0.031。更具体的,绝缘导热液体包括绝缘导热油。当然并不局限有绝缘导热油,还可以为其它具有绝缘和导热特性的液体。如此,对定子组件13进行处理时,可以仅在定子组件13的定子131表面设置用于减少定子131受到绝缘导热液体20腐蚀的第一防护部,具体的,绕组1312还包括第一防护部29,至少定子131的绕组1312的外表面覆有第一防护部29。当然也可以不设置第一防护部29,定子组件13的定子131的绕组可以直接的和绝缘导热液体接触。这样,有效简化定子组件13的制造工艺过程,缩短电动泵100的生产周期,进而降低电动泵100的生产成本。由于绝缘导热液体20的导热系数大于空气的导热系数,相较于原来通过空气进行传导热量的方式,可以有效提高散热效率。
当然,作为其他的实现方式,请再参考图6和图12所示,导热液体20可以仅具有导热的特性,可以对定子组件13的定子131的绕组进行绝缘处理,绕组还包括第一绝缘部30和漆包线,第一绝缘部30至少设置在漆包线的外表面,第一绝缘部30用于隔离绕组与导热液体20。 由于导热液体20仅具有导热的特性,导热液体20可选择的空间增大,为降低电动泵100的生产成本奠定一定的基础。
对于电动泵传导的路径,可以通过导热液体与泵壳体接触,定子组件产生的热量通过泵壳体传导至电动泵的外部,当然还可以通过导热液体和隔离部接触,通过隔离部内的工作介质的流动将定子组件产生的热量输送至电动泵的外部。
进一步地,请参考图7、图8和图12所示,隔离套16包括底部162和侧部163,侧部163凸出于底部162设置,定子组件13与侧部163限位设置,至少部分导热液体20与侧部163接触。需要说明一下:这里提及的限位设置包括过盈配合、过渡配合。通过这样的方式,在电动泵100工作时,定子组件13产生的热量通过导热液体20传递至隔离套16内流动的工作介质,通过工作介质20的流动将定子组件13产生的至少部分的热量输出至电动泵100的外部,进而有利于定子组件13的散热,进而有利于提高电动泵100的使用寿命。
作为一种实现方式,请参考图3和图6所示,电动泵还包括控制板组件15,定子组件13与控制板组件15电连接,电动泵100包括第二腔281,控制板组件15包括电子元器件152,第二腔281所对应的壁面包括至少部分电子元器件152的外侧壁面,至少部分的导热液体20位于第二腔281,至少部分的电子元器件152与导热液体20接触。通过这样的方式,可以同时对定子组件13和控制板组件15进行散热,且散热的效率更快,对于大功率的电动泵,快速的散热,更有利于提高电动泵的使用寿命。
进一步地,作为一种实现方式,请参考图3所示,沿着电动泵的高度方向设置定子组件13、隔离套16、控制板组件15,电动泵100包括第三腔282,第三腔282位于控制板组件15和隔离套16之间,第二腔281位于底盖113和控制板组件15之间;或者第三腔282位于底盖113和控制板组件15之间,第二腔281位于控制板组件15和隔离套16之间。如此,有利于实现电动泵100径向方向小型化设计。需要说明一下,电动泵100的高度方向为电动泵的泵轴的延伸的方向。电动泵径向方向 为垂直与电动泵的高度的方向。通过这样的设置可以仅对第二腔281填充适量的导热液体20,这样有利于实现电动泵100轻量化设计。具体的,作为一种实现方式,请参考图5、图7和图8所示,第二腔281和第三腔282不连通,第二腔281位于控制板组件15和隔离套16之间,基板151包括正面1511和反面1512,正面1511比反面1512更靠近隔离套16,至少部分的电子元器件152设置在正面1511,可以仅对第二腔281进行填充适量的导热液体20,至少部分电子元器件152与导热液体20接触,这样有利于电动泵轻量化设计。
参见图1和图13所示,电动泵100包括泵壳体11、转子组件121、定子组件13、泵轴14、控制板组件15、隔离部以及叶轮组件122,泵壳体11包括第一壳体111、第二壳体112和底盖113,沿着电动泵100的高度方向,第二壳体112位于第一壳体111和底盖113之间,当然,也可以只有部分的第二壳体112位于第一壳体111和底盖113之间;参见图1和图2,第一壳体111、第二壳体112和底盖113相对固定密封连接,电动泵100具有第一腔27和第二腔281,第一腔27能够有工作介质流过,第二腔281无工作介质流过,至少部分泵轴14设置于第一腔27,转子组件121套装于泵轴14的外侧,转子组件121与叶轮组件122固定连接,定子组件13包括定子131和插针,定子131通过插针与控制板组件15电连接。
作为一种实现方式,请参考图1、图6、图13和图14所示,电动泵100包括第二腔281,控制板组件15包括电子元器件152,第二腔281所对应的侧壁包括至少部分电子元器件152的外侧壁面以及至少部分泵壳体11的内侧壁面,电动泵100包括导热液体20,至少部分导热液体20位于第二腔281,至少部分电子元器件152与导热液体20接触,泵壳体11的材料至少部分为导热材料,定义导热材料部分为接触部,至少部分接触部与导热液体20接触。通过这样的方式,一是,至少部分发热电子元器件产生的热量与导热液体20进行热交换,由于导热液体20和接触部接触,通过接触部将至少部分发热电子元器件152产生的热量传递至电动泵100的外部,这种方式有利于控制板组件15的散 热,进而提高电动泵100的使用寿命。二是,发热电子元器件包括二极管、MOS管、电感、电阻、电容等常见的易发热的电子元器件。在这些发热电子元器件中开关管(二极管、MOS管)对热量更为敏感,所以为了对开关管进行快速的散热,通常会将开关管设置在靠近底盖113的第一壁面1131,由于底盖113的第一壁面1131的表面的面积有限,其它的发热电子元器件,比如,电感、电阻和电容,则会远离的底盖113的第一壁面1131,其它的发热电子元器件则只能通过空气传导热量进行散热,散热效率比较慢,这样,很可能会降低其它发热电子元器件的使用寿命。通过上述的设置,一方面,控制板组件15上的发热电子元器件的布置不再受到底盖113的第一壁面1131的面积的影响,发热电子元器件152的布置空间增大,如此可以尽可能地利用有限的基板151的面积,有利于实现基板151的小型化,进而实现电动泵100的小型化设计;另一方面,控制板组件15上的发热电子元器件的布置不再受到底盖113的第一壁面1131面积的影响,发热电子元器件的布置空间增大,更利于优化控制板组件15的内部的控制电路,为降低电动泵100的生产成本奠定一定基础;第三方面,发热电子元器件可以整体的浸在导热液体20中,电子元器件152可以充分地和导热液体20进行热量交换,有效提高电子元器件152的散热效率。第四方面,由于合理的进行散热,电子元器件152可选择的空间增大,例如,可选择内阻较大MOS管,有利于降低发热电子元器件152的生产成本,进而降低电动泵100的生产成本。
进一步地,作为一种实现方式,导热材料包括导热塑料或是金属材料,在相同温度下导热塑料的导热系数大于或等于金属的导热系数。需要说明一下,这里的金属材料包括但不限于铝、铜、铝合金、不锈钢等材料。作为一种实现方式,请参考图1、图6和图13所示,泵壳体11包括底盖113和第二壳体112,底盖113和第二壳体112沿着电动泵100的高度方向设置,底盖113和第二壳体112固定连接,如此,有利于电动泵100径向方向小型化设计,需要说明的是,电动泵100的泵轴的轴线延伸的方向为电动泵100的轴向方向101,垂在于电动泵100的轴向 的方向101为电动泵100的径向方向。从底盖113至第二壳体112的方向为电动泵100轴向正方向,与正方向相反的方向为电动泵100轴向负方向。控制板组件15位于底盖113和第二壳体112围成的内腔,控制板组件15和底盖113之间的腔包括第二腔281,电子元器件152包括发热电子元器件,至少发热电子元器件位于第二腔281,至少电子元器件152与导热液体20接触,接触部位于底盖113或接触部包括底盖113。具体的,至少部分底盖113的材料为金属材料。作为一种实现方式,部分底盖113的材料为金属材料,接触部位于底盖113;作为另一种实现方式,底盖113的材料全为金属材料,接触部包括底盖113。通过这样的方式,可以仅对第二腔281填充适量的导热液体20,使得第二腔281内的至少部分发热电子元器件与导热液体20接触,并进行至少部分的热量交换,同时导热液体20和底盖113接触,通过底盖113将发热电子元器件产生的热量传递至电动泵100的外部,如此,有利于电动泵100轻量化设计。
进一步地,请参考图9和图14所示,底盖113包括第一壁面1131和第二壁面1132,第一壁面1131位于第二腔281,第二壁面1132至少部分外表面裸露并构成电动泵100的部分外表面,电动泵100还包括散热翅21,散热翅21设置在第二壁面1132上。具体的,散热翅21包括多个散热部211,散热部211凸出于第二壁面1132,并沿着电动泵100的轴向负方向延伸。通过这样的方式,可以提高控制板组件15的散热效率。
需要说明的是:以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,尽管本说明书参照上述实施例对本申请已进行详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求的范围内。

Claims (15)

  1. 一种电动泵(100),包括转子组件(121)和控制板组件(15),所述电动泵(100)包括第一腔(27)和第二腔(281),其特征在于:所述第一腔(27)和所述第二腔(281)不连通,所述转子组件(121)位于所述第一腔(27),所述控制板组件(15)包括电子元器件(152),所述第二腔(281)所对应的壁面包括至少部分所述电子元器件(152)的外侧壁面,所述电动泵(100)包括导热液体(20),至少部分所述导热液体(20)位于所述第二腔(281),至少部分所述电子元器件(152)与所述导热液体(20)接触。
  2. 根据权利要求1所述的电动泵,其特征在于:所述导热液体(20)为绝缘导热液体,在相同温度下所述绝缘导热液体的导热系数大于空气的导热系数。
  3. 根据权利要求1或2所述的电动泵(100),其特征在于:所述控制板组件(15)包括基板(151),所述电子元器件(152)包括焊接部(1521)、绝缘部(1522)和元器件(1524),所述元器件(1524)通过所述焊接部(1521)与所述基板(151)电连接,所述绝缘部(1522)至少设置在所述元器件(1524)的外侧壁面和所述焊接部(1521)的表面,所述绝缘部(1522)隔离所述电子元器件(152)与所述导热液体(20)。
  4. 根据权利要求1-3任一项所述的电动泵,其特征在于:所述电动泵包括隔离部(24),
    所述隔离部(24)包括注塑体(164),所述电动泵(100)包括泵壳体(11),所述注塑体(164)与所述泵壳体(11)一体注塑形成,
    或者所述隔离部(24)包括隔离套(16),所述电动泵(100)包括泵壳体(11),所述泵壳体(11)包括第二壳体(112)和底盖(113),所述隔离套(16)位于所述第二壳体(112)内,所述隔离套(16)包括底部(162)和侧部(163),所述底部(162)和所述侧部(163)围 成的内腔包括所述第一腔(27),所述底盖(113)与所述第二壳体(112)固定密封连接或者所述底盖(113)与所述第二壳体(112)为一体式结构件,所述第二壳体(112)、所述隔离套(16)、所述底盖(113)围成的腔包括所述第二腔(281)。
  5. 根据权利要求4所述的电动泵,其特征在于:所述电动泵包括定子组件(13),所述隔离套(16)、所述定子组件(13)、所述控制板组件(15)沿着所述电动泵(100)的高度方向设置,所述电动泵(100)包括第三腔(282),沿着所述电动泵(100)的高度方向,所述第三腔(282)位于所述控制板组件(15)与所述隔离套(16)之间,所述第二腔(281)位于所述底盖(113)和所述控制板组件(15)之间,
    或者,所述第三腔(282)位于所述底盖(113)和所述控制板组件(15)之间,所述第二腔(281)位于所述控制板组件(15)和所述隔离套(16)之间。
  6. 根据权利要求5所述的电动泵,其特征在于:所述电动泵(100)包括第一连通部(51),所述第二腔(281)和所述第三腔(282)通过所述第一连通部(51)连通。
  7. 根据权利要求4-6任一项所述的电动泵,其特征在于:所述隔离套(16)的材料至少部分为金属材料。
  8. 根据权利要求7所述的电动泵,其特征在于:至少部分所述底部(162)的材料为金属材料。
  9. 根据权利要求4-8任一项所述的电动泵,其特征在于:所述底部(162)包括上表面(1621)和下表面(1622),所述下表面(1622)比所述上表面(1621)更靠近所述控制板组件(15),至少部分所述下表面(1622)与所述导热液体(20)接触。
  10. 根据权利要求4-9任一项所述的电动泵,其特征在于:所述底盖(113)的材料为塑料材料。
  11. 根据权利要求4-9任一项所述的电动泵,其特征在于:所述底盖 (113)的材料至少部分为金属材料。
  12. 根据权利要求1-11任一项所述的电动泵,其特征在于:所述电动泵(100)还包括进油部(22),所述进油部(22)包括第一部(221)和第二部(222),所述第一部(221)为孔状结构,所述第二部(222)为柱状结构,所述第一部(221)一端与所述第二腔(281)连通,所述第一部(221)的另一端与所述电动泵(100)的外部连通,至少部分所述第二部(222)位于所述第一部(221),所述第一部(221)与所述第二部(222)密封固定连接。
  13. 根据权利要求12所述的电动泵,其特征在于:所述电动泵还包括出气部(23),所述出气部(23)包括第三部(231)和第四部(232),所述第三部(231)为孔状结构,所述第四部(232)为柱状结构,所述第三部(231)的一端与所述第二腔(281)连通,所述第三部(231)的另一端与所述电动泵(100)的外部连通,至少部分所述第四部(232)位于所述第三部(231),所述第三部(231)与所述第四部(232)密封固定连接。
  14. 根据权利要求1-13任一项所述的电动泵,其特征在于:在常温下所述绝缘导热液体的电阻率大于等于1010Ω.m。
  15. 根据权利要求5-14任一项所述的电动泵,其特征在于:所述电动泵(100)还包括第四腔(29),所述定子组件(13)包括绕组(1312),所述第四腔(29)所对应的壁面包括至少部分所述绕组(1312)的外表面,所述电动泵(100)包括第二连通部(18),所述第四腔(29)通过所述第二连通部(18)与所述第二腔(281)或是第三腔(282)连通,至少部分所述导热液体(20)位于所述第四腔(29),至少部分绕组与所述导热液体(20)接触。
PCT/CN2023/097109 2022-05-31 2023-05-30 电动泵 WO2023232027A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210610432.9A CN117189683A (zh) 2022-05-31 2022-05-31 电动泵
CN202210612432.2 2022-05-31
CN202210610415.5 2022-05-31
CN202210612432.2A CN117189684A (zh) 2022-05-31 2022-05-31 电动泵
CN202210610432.9 2022-05-31
CN202210610415.5A CN117189682A (zh) 2022-05-31 2022-05-31 电动泵

Publications (1)

Publication Number Publication Date
WO2023232027A1 true WO2023232027A1 (zh) 2023-12-07

Family

ID=89026947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097109 WO2023232027A1 (zh) 2022-05-31 2023-05-30 电动泵

Country Status (1)

Country Link
WO (1) WO2023232027A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257912A (ja) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd ポンプ装置
WO2011092091A1 (de) * 2010-01-26 2011-08-04 Robert Bosch Gmbh Kreiselpumpe
CN106151054A (zh) * 2015-03-26 2016-11-23 杭州三花研究院有限公司 电驱动泵
CN109424551A (zh) * 2017-08-23 2019-03-05 杭州三花研究院有限公司 电动泵
CN216599305U (zh) * 2021-10-29 2022-05-24 广东汉宇汽车配件有限公司 一种具可连通泵送冷却液结构的电机及电动水泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257912A (ja) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd ポンプ装置
WO2011092091A1 (de) * 2010-01-26 2011-08-04 Robert Bosch Gmbh Kreiselpumpe
CN106151054A (zh) * 2015-03-26 2016-11-23 杭州三花研究院有限公司 电驱动泵
CN109424551A (zh) * 2017-08-23 2019-03-05 杭州三花研究院有限公司 电动泵
CN216599305U (zh) * 2021-10-29 2022-05-24 广东汉宇汽车配件有限公司 一种具可连通泵送冷却液结构的电机及电动水泵

Similar Documents

Publication Publication Date Title
JP7476095B2 (ja) 電動ポンプ
WO2019001585A9 (zh) 电加热器
CN111425409B (zh) 一种内部液冷隔离式盘式无刷电子水泵
WO2023232027A1 (zh) 电动泵
WO2024113661A1 (zh) 一种基于形变热管的电机散热结构及其制造方法
CN213185703U (zh) 一种耐高温电隔离冷却泵
CN218526196U (zh) 一种复合式相变热控器件及基于其的磁轴直线电机
TWI714437B (zh) 液冷式散熱系統及其泵浦
CN117189683A (zh) 电动泵
CN117189682A (zh) 电动泵
CN117189684A (zh) 电动泵
CN111082572B (zh) 一种电机定子及电机
US11293456B2 (en) Electric pump
CN220830616U (zh) 散热装置
CN217270865U (zh) 电动泵
CN212563821U (zh) 一种水泵
CN217506485U (zh) 一种基于液冷系统的计算机电源
CN218387074U (zh) 马达的液冷散热结构
CN115706483A (zh) 马达的液冷散热结构
CN220797897U (zh) 力矩电机
CN218603847U (zh) 一种可水冷dc插头端子以及充电枪
CN220505416U (zh) 具有散热功能的端盖及应用其的水泵
CN211019434U (zh) 一种组合式耐热型硬质电路板
CN117680295A (zh) 一种离心机结构及其离心机离心腔室冷却结构
TWM624627U (zh) 馬達之液冷散熱結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815206

Country of ref document: EP

Kind code of ref document: A1