WO2019037399A1 - 智能多轿厢电梯系统 - Google Patents

智能多轿厢电梯系统 Download PDF

Info

Publication number
WO2019037399A1
WO2019037399A1 PCT/CN2018/076634 CN2018076634W WO2019037399A1 WO 2019037399 A1 WO2019037399 A1 WO 2019037399A1 CN 2018076634 W CN2018076634 W CN 2018076634W WO 2019037399 A1 WO2019037399 A1 WO 2019037399A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
car
switching
rail
elevator system
Prior art date
Application number
PCT/CN2018/076634
Other languages
English (en)
French (fr)
Inventor
周立波
黄紫薇
Original Assignee
周立波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周立波 filed Critical 周立波
Priority to EP18849034.6A priority Critical patent/EP3670418A4/en
Priority to JP2020529790A priority patent/JP6952244B2/ja
Priority to US16/640,304 priority patent/US20200255261A1/en
Priority to CN201880053712.6A priority patent/CN111108055B/zh
Publication of WO2019037399A1 publication Critical patent/WO2019037399A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/003Kinds or types of lifts in, or associated with, buildings or other structures for lateral transfer of car or frame, e.g. between vertical hoistways or to/from a parking position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2466For elevator systems with multiple shafts and multiple cars per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B17/00Hoistway equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/402Details of the change of control mode by historical, statistical or predicted traffic data, e.g. by learning

Definitions

  • the invention relates to the technical field of vertical elevators, and in particular to an intelligent multi-car elevator system.
  • Conventional elevators are mainly rope wheeled hoistway elevators, each of which has only one car running between at least two columns of rigid rails that are perpendicular or have a tilt angle of less than 15°. Elevators of this structure can meet the requirements of users in low-rise buildings, but for the growing high-rise buildings in modern cities, traditional elevators have problems such as low transportation efficiency and long waiting time. During routine maintenance and fault repair, the entire hoistway Unusable, and security needs to be improved. In high-rise buildings, hoistways and cars are often added to increase the capacity of elevators to meet the needs of users. However, many elevator shafts occupy a large amount of valuable building space, increase construction costs, and do not fundamentally solve elevator transportation efficiency. Low problem.
  • a disadvantage of such a known elevator having a plurality of elevator shafts is that a plurality of cars are located in the same hoistway, having problems such as collision and slow speed. Therefore, the carrying capacity will be limited in the case of a sharp increase in the amount of conveyance.
  • the technical problem to be solved by the present invention is that, in view of the technical problems existing in the prior art, the present invention provides an intelligent multi-car elevator system in which a plurality of independently operated cars can be installed in one hoistway, which greatly increases the transportation. Efficiency, effectively saving building space and construction costs.
  • the technical solution proposed by the present invention is:
  • An intelligent multi-car elevator system includes at least two hoistways, a switching mechanism, a power mechanism and a plurality of cars, wherein the hoistway is provided with a track for the car to walk, and a switching mechanism is arranged between the adjacent hoistways.
  • the car switches position between adjacent hoistways through a switching mechanism; the car drives an up, down, or switching motion in the hoistway or between the hoistways by a power mechanism, and the car is driven by the power mechanism to stop at Pick up or drop off on any floor.
  • the system includes at least two adjacent hoistways, wherein the plurality of cars can simultaneously perform upward or downward movement in the hoistway; each floor is provided with a switching mechanism.
  • At least one of the at least two wells is an up channel, and at least one is a down channel; each floor is provided with an up elevator entrance and a down elevator entrance, respectively, and the up elevator entrance and the down elevator entrance are respectively located on both sides of the well.
  • Each of the hoistways is provided with an operating track, and the car is driven up or down along the running track by the driving of the power mechanism.
  • the switching mechanism includes a switching track, the switching track is hinged in the hoistway, the switching track is provided along the length direction of the hoistway, and the upper and lower adjacent switching tracks are connected end to end, and each floor is provided with a switching track.
  • the switching mechanism further includes a switching drive, the switching tracks are arranged in pairs, each switching track is provided with a switching drive, the middle of the switching track is hinged to the hoistway, and the switching track drives the rotation and the adjacent hoistway by the switching drive The track is connected or disconnected.
  • the switching track is curved.
  • the switching drive is a hydraulic jack, and the hydraulic jack is fixed in the hoistway.
  • the running track and the switching track are both rack rails
  • the rack rail is composed of a steel frame, a fixing groove and a rack
  • a rack is arranged on one side of the steel frame
  • a fixing groove is arranged on the other side
  • the rack is arranged Engaged with the power mechanism, the fixing groove and the power mechanism are engaged.
  • the system further includes a transfer mechanism, the first floor of the floor is provided with a plurality of elevator entrances and exits, the transfer mechanism is disposed on the first floor, and the plurality of the cars are moved between the plurality of elevator entrances and exits by the transfer mechanism.
  • the transfer mechanism includes a transfer carriage and a plurality of transfer rails, each elevator entrance corresponds to a transfer carriage, the hoistway is connected to a side of the plurality of elevator entrances, and the transfer carriage moves on the transfer rail, the sedan The car moves between the elevator entrance and exit and the hoistway by transferring the consignment cart.
  • the system also includes a bottom maintenance mechanism located at a bottom layer below the first floor of the floor, the bottom maintenance mechanism including an annular track and a transfer carrier, the well is located on an endless track, the car along The hoistway descends to an endless track, the car moving over the endless track by a transfer carriage that is parked on the endless track when not in operation.
  • a bottom maintenance mechanism located at a bottom layer below the first floor of the floor, the bottom maintenance mechanism including an annular track and a transfer carrier, the well is located on an endless track, the car along The hoistway descends to an endless track, the car moving over the endless track by a transfer carriage that is parked on the endless track when not in operation.
  • the underlying maintenance mechanism also includes a service track that is in communication with both sides of the toroidal track.
  • the transfer rail, the circular rail and the maintenance rail are rack rails
  • the rack rail is composed of a steel frame, a fixing groove and a rack, a rack is arranged on one side of the steel frame, and a fixing groove is arranged on the other side.
  • the rack and the power mechanism are engaged, and the fixing groove and the power mechanism are engaged.
  • the bottom of the transfer carriage is provided with a universal walking wheel.
  • the power mechanism includes a main power mechanism including a motor, a gear, a creeping bearing, a support plate and a mounting bracket, the support plate is mounted on the mounting bracket, and the motor and the crawling bearing are mounted on the mounting mechanism On the support plate, the gear is driven by a motor, the gear meshes with a rack, and the crawling bearing is engaged with a fixing groove;
  • the switching power mechanism includes a roller guide, a spring and a limiting device, and the mounting bracket is fixed to On the sliding bar of the roller guide rail, the slider of the roller guide rail is fixed on the car, the sliding bar is slidably disposed in the slider; one end of the spring is fixed to the car through a spring fixing plate, and One end is fixedly connected with the limiting device, and the limiting device is connected with the sliding bar, and the limiting device controls the sliding bar to slide or fix.
  • a shock absorber is disposed between the support plate and the mounting bracket.
  • the limiting device comprises a track shearing lock and a pushing block
  • the track shearing lock is mounted on the car
  • the pushing block is fixed on the sliding bar
  • the other end of the spring is fixed to the pushing block Upper
  • the track shear lock is located on a side of the push block that is coupled to the spring
  • the track shear lock restricts the push block movement.
  • the power mechanism is provided with four, respectively installed on opposite sides of the car, two on each side, symmetrically distributed.
  • the system also includes a top rail mechanism located on a top floor of the floor, the top rail mechanism including an elliptical closed top rail and a plurality of top carts that interface with the hoistway The car can be slid over the top track, which switches the position between the hoistways by the top loader.
  • the hoistway is provided with two, one of which is an up channel and the other is a down channel, and the switching mechanism is disposed between two hoistways, and the car is switched between an up channel or a down channel by a switching mechanism.
  • the hoistway is provided with three, including an up channel, a down channel and an auxiliary channel, the auxiliary channel is located between the up channel and the down channel, and a switching mechanism is provided between two adjacent wells, and the car passes The switching mechanism switches between the upstream channel and the auxiliary channel, or switches between the downstream channel and the auxiliary channel.
  • the switching mechanism between the upstream channel and the auxiliary channel and the switching mechanism between the downstream channel and the auxiliary channel are connected end to end.
  • the hoistway is provided with four, which in turn comprises an up channel, an auxiliary up channel, an auxiliary down channel and a down channel, and a switching mechanism is arranged between two adjacent wells, and the car is switched to an uplink channel by a switching mechanism. Between the auxiliary upstream channel, the downstream channel and the auxiliary downstream channel, or the auxiliary upstream channel and the auxiliary downstream channel.
  • the switching mechanisms adjacent to the hoistway are connected end to end.
  • the hoistway is provided with six, which in turn comprises an uplink channel, an auxiliary uplink channel, an uplink fast channel, a downlink fast channel, an auxiliary downlink channel and a downlink channel, and a switching mechanism is provided between two adjacent wells, the sedan The compartment is switched between adjacent hoistways by a switching mechanism.
  • the switching mechanism includes a pulley and a slide assembly, and the slide assembly is composed of at least two sets of slide rails, all of which have a length equal to or greater than a width of an adjacent shaft, and the slide passes the slide rail The drive slides out or retracts relative to the other slide rails, and the pulley slides on the slide rails.
  • the system further includes a main rail mechanism, a sub-track mechanism, a transfer mechanism, and a bottom maintenance mechanism, the switching mechanism engaging a main rail mechanism and a sub-track mechanism, the car passing between the main rail mechanism and the sub-track mechanism through the switching mechanism Switching;
  • the transfer mechanism is disposed on a first floor of the floor on the floor, and the plurality of cars are moved by a transfer mechanism to a plurality of elevator openings of the first floor;
  • the bottom maintenance mechanism is located in a basement below the ground
  • the bottom maintenance mechanism is located at the bottom of the main rail mechanism and the sub-track mechanism, and the bottom maintenance mechanism is connected to each elevator port of the first floor;
  • the car is driven by the power mechanism to perform up-and-down motion or switching motion;
  • the plurality of cars are simultaneously ascending or descending in the main track mechanism, and each of the cars is switched from the main track mechanism to the upper and lower passengers by the switching mechanism.
  • the main track mechanism includes an uplink main track and a downlink main track
  • the sub-track mechanism includes an uplink sub-track and a downlink sub-track
  • the uplink sub-track and the downlink sub-track are located between the uplink main track and the downlink main track
  • the floor enters and exits
  • the channel is located between the uplink sub-track and the downlink sub-track.
  • the switching mechanism includes a plurality of curved switching tracks and switching drives, and the switching tracks are arranged in pairs along the uplink or downlink direction of the car; when used in pairs, one of the switching tracks is located in the middle of the uplink main track or the downlink main track In the middle, another switching track is located in the middle of the uplink sub-track or in the middle of the descending sub-track.
  • Each switching track is provided with a switching drive, and the middle of the switching track is hinged to the hoistway, and the switching track is driven by the switching drive to rotate the main track mechanism and
  • the secondary track mechanism is either remote from the main track mechanism and the secondary track mechanism.
  • the main rail mechanism and the sub-track mechanism are divided into n units according to the number of floors, and the switching mechanism is arranged at the upper end and the lower end of each unit, and the switching rails of the upper end and the lower end are symmetrically arranged.
  • the uplink main track, the descending main track, the uplink sub-track, the descending sub-track, and the switching track are rack rails
  • the rack rail is composed of a steel frame, a fixing groove and a rack
  • the steel frame is provided with teeth on one side thereof.
  • the strip is provided with a fixing groove on the other side, and the rack is engaged with a power mechanism, and the fixing groove and the power mechanism are engaged.
  • the transfer mechanism includes a transfer carriage and a plurality of transfer rails, the first layer is provided with a plurality of elevator openings, and the plurality of elevator openings are arranged in two rows, and each elevator opening is provided with a transfer carriage, the main rail mechanism In the middle of the transfer track, the transfer carriage moves on the transfer track, and each of the transfer carriages is connected to the main track mechanism through a transfer track, and the car is transported to each elevator door by a transfer carriage.
  • the bottom maintenance mechanism includes an annular track and a transfer carriage, the well is located on an endless track, the car descends along the hoistway to the circular track, and the car moves on the circular track by transferring the carriage, the car Park on a circular track when not in operation.
  • the bottom maintenance mechanism further includes a maintenance rail, and the maintenance rail is provided with two, and respectively arranged in a circular orbit.
  • the transfer rail, the circular rail and the maintenance rail are rack rails
  • the rack rail is composed of a steel frame, a fixing groove and a rack, a rack is arranged on one side of the steel frame, and a fixing groove is arranged on the other side.
  • the rack and the power mechanism are engaged, and the fixing groove and the power mechanism are engaged.
  • the bottom of the transfer carriage is provided with a universal walking wheel.
  • the power mechanism includes a main power mechanism including a motor, a gear, a creeping bearing, a support plate and a mounting bracket, the support plate is mounted on the mounting bracket, and the motor and the crawling bearing are mounted on the mounting mechanism On the support plate, the gear is driven by a motor, the gear meshes with a rack, and the crawling bearing is engaged with a fixing groove;
  • the switching power mechanism includes a roller guide, a spring and a limiting device, and the mounting bracket is fixed to On the sliding bar of the roller guide rail, the slider of the roller guide rail is fixed on the car, the sliding bar is slidably disposed in the slider; one end of the spring is fixed to the car through a spring fixing plate, and One end is fixedly connected with the limiting device, and the limiting device is connected with the sliding bar, and the limiting device controls the sliding bar to slide or fix.
  • a shock absorber is disposed between the support plate and the mounting bracket.
  • the limiting device comprises a track shearing lock and a pushing block
  • the track shearing lock is mounted on the car
  • the pushing block is fixed on the sliding bar
  • the other end of the spring is fixed to the pushing block Upper
  • the track shear lock is located on a side of the push block that is coupled to the spring
  • the track shear lock restricts the push block movement.
  • the power mechanism is provided with four, respectively installed on opposite sides of the car, two on each side, symmetrically distributed.
  • the elevator further includes a top rail mechanism including an elliptical closed top rail and a plurality of top carts coupled to the main rail mechanism and the sub rail mechanism, the top cart being slidable On the top rail, the main rail mechanism and the sub-track mechanism are connected by a top loading vehicle.
  • a top rail mechanism including an elliptical closed top rail and a plurality of top carts coupled to the main rail mechanism and the sub rail mechanism, the top cart being slidable On the top rail, the main rail mechanism and the sub-track mechanism are connected by a top loading vehicle.
  • the main rail mechanism and the sub-track mechanism are divided into n units according to the number of floors, and each unit is provided with a switching mechanism.
  • the main track mechanism includes an upper main chain track and a descending main chain track, and a plurality of car lifting platforms are fixed on the upper main chain track and the descending main chain track, and each car corresponds to one car lifting platform; The car moves up and down through the car lifting platform during the main track mechanism.
  • the auxiliary track mechanism is divided into an uplink auxiliary mechanism and a downlink auxiliary mechanism, and the uplink auxiliary mechanism and the downlink auxiliary mechanism are located between the uplink main chain track and the downlink main chain track, and the floor access channel is located between the uplink auxiliary mechanism and the downlink auxiliary mechanism.
  • the sub-track mechanism includes a hoisting device, and each unit is provided with a hoisting device, the hoisting device includes a traction box, a hoisting rope and a hanging box, and the hoisting box is fixed at the top of each unit, One end of the traction rope is arranged around the traction box, and the other end is fixedly connected with the hanging box.
  • the side of the lifting box facing the car lifting platform is provided with an entrance and exit of the car, and the traction box is driven by the traction rope.
  • the hanging box is used for lifting movements.
  • the switching mechanism includes a springboard that is hinged to a side of the hanging box, and the springboard is driven to rotate against the hanging box or engages with the car lifting platform.
  • the secondary track mechanism further includes a weight, the weight and one end of the hoisting rope being fixedly coupled.
  • the car lifting platform is provided with a positioning groove, and the bottom of the car is provided with a positioning protrusion that is matched with the positioning groove.
  • the car lifting platform and the hanging box are respectively provided with hydraulic jacks for pushing the car to move.
  • the main rail mechanism further includes an auxiliary fixed rail
  • the car is provided with a stable support frame, one end of the stable support frame is hinged to the car, and the other end is coupled with the auxiliary fixed rail, and the stable support frame is fixed along the auxiliary The guide rail slides, and the stable support frame is connected to the auxiliary fixed rail by the cylinder driving rotation or away from the auxiliary fixed rail.
  • the uplink main chain track and the descending main chain track are provided with four corners respectively disposed at four corners of the car, and each of the up main chain track or the descending main chain track is correspondingly provided with an auxiliary fixed rail.
  • the transfer mechanism comprises a transfer carriage, a plurality of transfer rails and an auxiliary transfer shaft, the first floor is provided with a plurality of elevator openings, and the plurality of elevator openings are arranged in two rows, and the elevator doors of all the elevator openings are not completely oppositely arranged.
  • the main track mechanism and the auxiliary track mechanism are vertically located between the two rows of elevator doors, and the auxiliary track mechanism is located between the upper main chain track and the descending main chain track;
  • the auxiliary transfer shaft is provided with two, respectively located in the upper main chain An outer side of the track and the descending main chain track;
  • each of the elevator doors is provided with a transfer carriage, and the transfer path is connected between the auxiliary track mechanism and the elevator opening or through the auxiliary transfer shaft and the elevator opening, the transfer The truck moves on a transfer track that is transported to each elevator door by a transfer carrier.
  • the auxiliary transfer hoistway is located at the bottommost floor unit, and the auxiliary transfer hoistway is provided with a traction device and a switching mechanism.
  • the elevator further includes a top rail mechanism including an elliptical closed top rail, two auxiliary lift shafts, and at least one top loader, the top loader being slidably disposed on the top rail, the upstream pair
  • the agency, the downstream auxiliary agency and the auxiliary lifting shaft are connected by a top-level truck.
  • the auxiliary hoistway is provided with two floor units located at the top, the auxiliary hoistway is located outside the main track mechanism, and the auxiliary hoistway is provided with a traction device and a switching mechanism.
  • Each of the layers is provided with a car lifting platform.
  • the system further includes an intelligent control system including a weight detection module, a sensing module, a processing module, and a security module;
  • the weight detecting module is installed on the car, and is used for recording the weight of the car in each time period and each floor, and transmitting the data to the processing module for storing and establishing a database;
  • the sensing module is configured to detect the running speed and temperature of the car, and transmit the detected data to the processing module;
  • the processing module determines the peak flow period and the high frequency floor according to the data analysis of the database to allocate the number of cars to be operated;
  • the processor determines that the system has failed, it sends a signal to the security module, which reduces the number of cars that are released.
  • the invention provides an intelligent multi-car elevator system, which is suitable for an elevator transportation system for carrying passengers, cargo high-rise residential buildings, office buildings, large shopping malls and the like, and has the following advantages compared with the conventional elevators:
  • the intelligent multi-car elevator system of the invention has high transportation efficiency, and one car runs on a plurality of hoistways, and multiple cars can be operated simultaneously in the same hoistway, and each car does not interfere with each other, thereby greatly shortening people. Waiting time for peak traffic. Take a 50-story building as an example. Each unit consists of 4 layers. According to the parameters, if the maximum running speed of the elevator is 4m/s, the emergency braking acceleration is about 5m/s2, and the minimum safety distance of each car is about 4m.
  • the double-shaft parallel elevator can run at least 14 cars at the same time, the traffic is equivalent to 7 times that of the ordinary elevator; the parallel elevator of the three-way can run at least 27 cars at the same time, the traffic is equivalent to 9 times of the ordinary elevator; the parallel elevator of the four-shaft At least 40 cars can be operated at the same time, and the traffic can reach 10 times that of ordinary elevators.
  • the intelligent multi-car elevator system of the present invention is suitable for an elevator transportation mechanism for carrying passengers, cargo high-rise residential buildings, office buildings, large shopping malls and the like, and has high delivery efficiency, and multiple cars can be operated simultaneously in the same well. Each car does not interfere with each other, which greatly shortens the waiting time of peak traffic.
  • the safety distance is set to two levels, then 20 units can be set for the uplink unit and the downlink unit. Two cars can be operated simultaneously in each unit, and 80 units can be operated simultaneously on the sub-track.
  • the car, the main track can run 80 cars at the same time, the maximum number of cars in a set of elevators can reach 160.
  • the intelligent multi-car elevator system of the invention has high safety performance and adopts a gear drive system to prevent the risk of the car falling due to the breakage of the traction rope, the bearing capacity is large, the structure is stable, safe and reliable; the daily warranty and the timely repair are convenient. To ensure safety performance.
  • the intelligent multi-car elevator system of the invention has low cost, occupies less building area, and saves construction area and construction cost.
  • the intelligent multi-car elevator system of the present invention can still operate when congestion, congestion, or elevator failure occurs in a certain well, saving time and high work efficiency.
  • Embodiment 1 is a parallel operation trajectory diagram of a double hoistway according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the parallel overall structure of the double hoistway of the present invention.
  • Fig. 3 is a trajectory diagram of the parallel operation of the three hoistway according to the second embodiment of the present invention.
  • FIG. 4 is a schematic view showing the parallel overall structure of the three hoistway of the present invention.
  • Fig. 5 is a trajectory diagram of parallel operation of a four-well circuit according to Embodiment 3 of the present invention.
  • Figure 6 is a schematic view showing the parallel overall structure of the four wells of the present invention.
  • Figure 7 is a trajectory diagram of the parallel operation of the six wells in the fourth embodiment of the present invention.
  • Figure 8 is a schematic view showing the overall structure of the six wells of the present invention.
  • Fig. 9 is a schematic structural view showing the application of the power mechanism of the present invention.
  • Figure 10 is a side elevational view of the Figure 9 of the present invention.
  • Figure 11 is a schematic view showing the structure of the car of the present invention.
  • Figure 12 is a schematic view showing the structure of the main power mechanism of the present invention.
  • Figure 13 is a plan view showing the structure of the rack rail of the present invention.
  • Figure 14 is a top plan view of Figure 13.
  • Figure 15 is a schematic view showing the structure of a switching track of the present invention.
  • Figure 16 (a) is a schematic view showing the structure of switching the track retraction when the application of the present invention is implemented.
  • Fig. 16 (b) is a schematic structural view of the switching track deployment when the application of the present invention is implemented.
  • Figure 17 (a) is a schematic diagram of the principle before the switching track is deployed when the application of the present invention is implemented.
  • Fig. 17 (b) is a schematic view showing the principle of switching the track to expand the car switching position when the application of the present invention is implemented.
  • Figure 17 (c) is a schematic diagram showing the principle of switching track retraction when the application of the present invention is implemented.
  • Figure 18 is a schematic view showing the structure of the top rail of the present invention.
  • Figure 19 is a schematic view showing the structure of the underlying maintenance mechanism of the present invention.
  • Figure 20 is a schematic view showing the structure of the transfer mechanism of the present invention.
  • Figure 21 is a schematic view showing the process of car switching in Embodiment 5 of the present invention.
  • Figure 22 is a schematic view showing the parallel operation of the double hoistway in the fifth embodiment of the present invention.
  • Fig. 23 (a) is a schematic view showing an application implementation at the time of switching in the fifth embodiment of the present invention.
  • Fig. 23 (b) is a schematic view showing the application of the slide rail elongation in the fifth embodiment of the present invention.
  • Figure 24 is a schematic view showing the structure of Embodiment 6 of the present invention.
  • Figure 25 is a block diagram showing the construction of a sixth embodiment of the present invention.
  • Fig. 26 is a view showing the structure of a transfer mechanism when the application is implemented in the sixth embodiment of the present invention.
  • FIG. 27 is a schematic structural diagram of an underlying maintenance mechanism when the application of the embodiment 6 of the present invention is implemented.
  • Figure 28 is a schematic view showing the structure of a seventh embodiment of the present invention.
  • Figure 29 is a block diagram showing the construction of an embodiment of the seventh embodiment of the present invention.
  • Figure 30 is a schematic view showing the structure of a top layer track when the application is implemented in Embodiment 7 of the present invention.
  • Figure 31 is a block diagram showing the structure of a transfer mechanism when the application is implemented in Embodiment 7 of the present invention.
  • Figure 32 is a schematic view showing the structure of a main rail mechanism in Embodiment 7 of the present invention.
  • Figure 33 is a plan view of Figure 32.
  • 1, 2, 9 to 20 show a first embodiment of the intelligent multi-car elevator system of the present invention, comprising two adjacent hoistways 9, a switching mechanism 4, a power mechanism 7, and a plurality of cars 1.
  • the plurality of cars 1 can simultaneously perform upward or downward movement in the hoistway 9; each floor is provided with a switching mechanism 4, and the car 1 is switched between the two hoistways 9 by the switching mechanism 4; the car 1 passes the power
  • the mechanism 7 is driven to perform an ascending or descending movement or a switching movement, and the car 1 is driven by the power mechanism 7 to stop at any floor or to drop off passengers.
  • all the tracks are arranged in pairs.
  • one of the two hoistways 9 is an up channel 11 and the other is a down channel 12; each floor is provided with an up elevator entrance and a down elevator entrance and exit respectively, and an up elevator entrance and a down elevator entrance and exit are respectively located in the hoistway 9 On both sides.
  • Each of the hoistways 9 is provided with a running track, and the car 1 is driven up or down along the running track by the driving of the power mechanism 7.
  • the switching mechanism 4 includes a switching rail 41 and a switching drive 42, the switching rail 41 is curved, and both ends are beveled.
  • Each switching track 41 is provided with a switching drive 42
  • the switching drive 42 is a hydraulic jack
  • the hydraulic jack is fixed in the hoistway 9.
  • the switching rails 41 are arranged in pairs, wherein the middle of one switching rail 41 is hinged in the hoistway 9 of the upstream passage 11, and the middle of the other switching rail 41 is hinged in the hoistway 9 of the descending passage 12.
  • the switching rails 41 are provided along the longitudinal direction of the hoistway 9, and the upper and lower adjacent switching rails 41 are connected end to end, and each floor is provided with a switching rail 41.
  • the switching rail 41 is rotated by a hydraulic jack.
  • the switching rail 41 connects the corresponding running rails in the two shafts 9, and when the rotation is retracted, the two shafts are disconnected.
  • the connection of the running track within 9.
  • all of the switching tracks 41 are connected to the running track, all of the switching tracks 41 form a continuous "S" type and the end-to-end connection of the adjacent switching tracks 41.
  • the running track and the switching track 41 are rack rails, and the rack rail is composed of a steel frame 23, a fixing groove 24 and a rack 25, the rack 23 is disposed on one side of the steel frame 23, and the fixing groove is arranged on the other side. 24, the rack 25 meshes with the power mechanism 7, and the fixing groove 24 and the power mechanism 7 are engaged.
  • the elevator power supply and signal track are mounted on one side of the fixed slot 24. Two power/signal line tracks are installed for each rack track, which are respectively connected to the power mechanism 7.
  • the power mechanism 7 receives a control signal, and the hydraulic jack acts on the shear track 41.
  • the shearing track 41 is pushed out to connect the upstream channel 11 and the downstream channel 12.
  • the hydraulic jack gradually reduces the thrust applied to the shear track 41, the shear track 41 is retracted, and the up channel 11 and the down channel 12 of the up channel 11 resume normal operation.
  • the system further includes a transfer mechanism 5, the transfer mechanism 5 is disposed on the first layer, and the transfer mechanism 5 includes a transfer carriage 51 and a plurality of transfer rails 52, and the first floor of the floor is provided with
  • Each of the elevator entrances and exits corresponds to one transfer carriage 51, the upward passage 11 and the descending passage 12 are connected to the sides of the plurality of elevator entrances and exits, the transfer carriage 51 moves on the transfer rail 52, and the car 1 passes the transfer carriage 51.
  • the bottom of the transfer carriage 51 is provided with a universal traveling wheel that can move in a plurality of directions.
  • the car 1 When the car is turned, the car 1 does not rotate, and the car 1 maintains translation when it is transferred on the two vertical tracks of the transfer track 52.
  • the transfer carriage 51 When the car 1 is ascending, the transfer carriage 51 is transported from the elevator entrances and exits along the transfer rail 52 to the upward passage 11 for the upward movement.
  • the transfer carriage 51 When the car 1 reaches the first floor along the descending passage 12, the transfer carriage 51 is transported to the elevator entrances and exits. Get off.
  • the system further includes a bottom maintenance mechanism 6, and the bottom maintenance mechanism 6 is located at the bottom layer below the first floor of the floor. If the floor has an underground parking garage, the bottom layer is located below the parking garage.
  • the bottom maintenance mechanism 6 needs to be located at the lowest level of the floor.
  • the bottom maintenance mechanism 6 includes an annular track 61 and a transfer carriage 51.
  • the upstream channel 11 and the down channel 12 are coupled to the annular track 61.
  • the car 1 descends from the down channel 12 to the annular track 61, and then passes through the transfer carriage 51 on the circular track 61. Move on.
  • the car 1 is parked on the endless track 61 when it is not in operation. When the upward movement is required, the car 1 is transported by the transfer carriage 51 along the circular track 61 to the upstream passage 11, and the cars are randomly delivered to the respective upward passages 11.
  • the bottom maintenance mechanism 6 further includes a service rail 62 that communicates with both sides of the annular rail 61.
  • a service rail 62 that communicates with both sides of the annular rail 61.
  • the transfer rail 52, the circular rail 61 and the maintenance rail 62 are rack rails.
  • the rack rail is composed of a steel frame 23, a fixing groove 24 and a rack 25, and a rack 25 is arranged on one side of the steel frame 23, and A fixing groove 24 is disposed on one side, the rack 25 meshes with the power mechanism 7, and the fixing groove 24 and the power mechanism 7 are engaged.
  • the power mechanism 7 includes a main power mechanism and a switching power mechanism.
  • the main power mechanism includes a motor 71, a gear 72, a creeping bearing 73, a support plate 74 and a mounting bracket 75.
  • the mounting bracket 75 is a " ⁇ " type steel plate, and the support plate 74 is mounted on one side of the mounting bracket 75, and the support plate 74 and the mounting bracket 75 A shock absorber 741 is provided between them.
  • the motor 71 and the creeping bearing 73 are mounted on the support plate 74, the gear 72 is driven by the motor 71, the gear 72 meshes with the rack 25, and the creeping bearing 73 is engaged with the fixing groove 24.
  • a stable bearing is mounted on the side of the transmission rod of the gear 72 to ensure a smooth running process.
  • a controller is disposed on the support plate 74 at both ends of the creeping bearing 73 to receive power and signals.
  • the switching mechanism includes a roller guide 76, a spring 77 and a limiting device.
  • the other side of the mounting bracket 75 is fixed to the sliding rod 761 of the roller guide 76.
  • the slider 762 of the roller guide 76 is fixed to the car 1 and slides.
  • the rod 761 is slidably disposed in the slider 762; one end of the spring 77 is fixed to the car 1 through a spring fixing plate 771, and the other end is fixedly connected with the limiting device, the limiting device is connected with the sliding rod 761, and the limiting device controls sliding.
  • the rod 761 is slid or fixed to ensure safe rail change.
  • the limiting device includes a track shear locker 78 and a push block 79.
  • the track shear locker 78 is mounted on the car 1, and the push block 79 is fixed on the slide bar 761, and the other end of the spring 77 Fixed to the push block 79, the track shear lock 78 is located on the side of the push block 79 that is coupled to the spring 77, and the track shear lock 78 limits the movement of the push block 79.
  • the mounting bracket 75 is fixed on the two sliding rods 761, the sliding block 762 is provided with four pieces, and each sliding rod 761 is provided with two pieces, and the mounting frame 75 is located between the two sliding blocks 762.
  • the movement of the slider 761 has a main power mechanism.
  • the track shear locker 78 is triggered to unlock the slide bar 761.
  • the pressure of the shear track 41 on the gear 72 and the creeping bearing 73 pushes the sliding of the entire main power mechanism, and the main power mechanism pushes the spring 77 to compress and switch.
  • the power mechanism completes the contraction on the stroke of the oblique section of the shear track 41.
  • the power mechanism 7 is provided with four, which are respectively mounted on opposite sides of the car 1, two on each side, symmetrically distributed.
  • An acceleration sensor is installed on each main power mechanism to monitor the vibration of the gear 72 in real time, to understand the working conditions of the various components of the elevator, to find the abnormality of the main power mechanism of the track and each car 1 and to locate the fault, which is convenient for timely maintenance and overhaul. Ensure the safety of the elevator.
  • the controller of the No. 1 power mechanism 7 of the four power mechanisms 7 is connected to the power supply positive stage, the controller of the No. 2 power mechanism 7 is connected to the power supply negative stage, and the controller of the No. 3 power mechanism 7 is connected to the positive level of the signal line, the No. 4 power
  • the controller of mechanism 7 is connected to the negative of the signal line.
  • the system further includes a top rail mechanism 8 located on the top floor of the floor, the top rail mechanism 8 including an elliptical closed top rail 81 and a plurality of top carts 82, top rails 81 is engaged with the up channel 11 and the down channel 12, and the top cart 82 is slidable on the top rail 81, and the car 1 is switched between the hoistways 9 by the top cart 82.
  • the ascending car 1 reaches the top floor through the up channel 11, it is transferred from the top cart 82 to the down channel 12 to achieve the cycle operation of the car.
  • the system of the present invention also includes an intelligent control system.
  • the intelligent control system includes a weight detecting module, a sensing module, a processing module and a safety module.
  • the weight detecting module is installed on the car 1 for recording the weight of the car at each time period and each floor, that is, the passenger flow, and transmitting the data.
  • the sensing module is configured to detect the running speed and temperature of the car and transmit the detected data to the processing module.
  • the processing module determines the peak flow period and the high frequency floor according to the data analysis of the database to allocate the number of cars 1 to be operated, and improve the transportation efficiency. When the processor determines that the system has failed, it signals the security module, and the security module reduces the number of cars 1 that are released.
  • the processing module controls the car 1 and each track to perform a self-test at night or in the early morning: the car 1 is unloaded on the track to complete a complete cycle, ensuring that each car 1 runs once on each track, each of the entire system Each part works once.
  • the car 1 includes parallel of the upper and lower rails and the upper and lower passengers entering and leaving the track in parallel, and the parallel between the units and the upper and lower parallel. The car 1 runs in the up/down running track.
  • the car 1 When the passenger presses the call button, the car 1 enters the upper/downward passengers to enter and exit the track to pick up the passengers, and the other cars in the upper/lower running track operate as usual; the car 1 is in a certain When a unit is up and down passengers, it does not affect the operation of the car 1 in other units; the upward running track is independent of the downward running track, and when the cars 1 are up, the operation of the car 1 in the lower running track on the other side is not affected. interference.
  • the safety module reduces the number of cars 1 that are released, the shear track 41 or other alternate shear track 41 near the fault is connected, the standby port is open, the car 1 is sheared to other tracks to avoid the fault, and the elevator system continues to operate.
  • the trajectory is as shown in FIG. 1, and a plurality of cars 1 in the two hoistways 9 are simultaneously operated.
  • the vehicle After all the passengers have been transported, the vehicle enters the top track 81, and the racks and the tops of the top carriage 82 are up. The running rails in the passage 11 are docked and the car 1 is driven into the top loading carriage 82. The top loader 82 travels along the top track 81 and transports the car 1 to the down channel 12.
  • the car 1 After ensuring that the car 1 is empty, the car 1 continues to descend to the bottom maintenance mechanism 6, and the car 1 is transported by the transfer carriage 51 along the circular track 61 to the upward passage 11 at the downstream passage 12, and after reaching the first floor, loading passengers at the elevator entrance and exit , continue to run upwards, complete a cycle of a car 1.
  • the number of cars 1 can be adjusted according to actual requirements, and each car 1 operates independently, without mutual interference, and repeats.
  • the maintenance and maintenance work of the car 1 is carried out in a separate maintenance track 62 to avoid interference with the operation of the overall system.
  • 3 and 4 illustrate a second embodiment of the intelligent multi-car elevator system of the present invention.
  • the difference between this embodiment and the embodiment 1 is that the hoistway 9 is provided with three.
  • the hoistway 9 is provided with three, including an up channel 11, a down channel 12 and an auxiliary channel 13.
  • the auxiliary channel 13 is located between the up channel 11 and the down channel 12, and the adjacent two wells 9 are switched.
  • the car 1 is switched between the upstream channel 11 and the auxiliary channel 13 by the switching mechanism 4, or is switched between the downstream channel 12 and the auxiliary channel 13.
  • all the switching tracks 41 when all the switching tracks 41 are connected to the running track, all the switching tracks 41 form a continuous "S" type and the end-to-end connection of the adjacent switching tracks 41.
  • the car 1 can switch the up or down car 1 to the auxiliary channel 13 through the switching track 41 when the car 1 needs to avoid the jam during the ascending or descending process.
  • FIGS 5 and 6 illustrate a third embodiment of the intelligent multi-car elevator system of the present invention.
  • the difference between this embodiment and the embodiment 1 is that the hoistway 9 is provided with four.
  • the hoistway 9 is provided with four, which in turn includes an up channel 11, an auxiliary up channel 14, an auxiliary down channel 15 and a down channel 12, and a switching mechanism 4 is provided between two adjacent hoistways 9, and the car 1 is provided.
  • the switching mechanism 4 switches between the upstream channel 11 and the auxiliary upstream channel 14, between the downstream channel 12 and the auxiliary downstream channel 15 or between the auxiliary upstream channel 14 and the auxiliary downstream channel 15.
  • the switching mechanisms 4 in the adjacent hoistway 9 are connected end to end.
  • the uplink car 1 when the car 1 is in the ascending process, when it is necessary to avoid the jam, the uplink car 1 can be switched to the auxiliary up channel 14 through the switching track 41.
  • the descending car 1 when it is necessary to avoid the jam, the descending car 1 can be switched to the auxiliary down channel 15 through the switching track 41.
  • the auxiliary up channel 14 and the auxiliary down channel 15 are only connected when the car 1 fails in one of its congested or auxiliary up channel 14 and auxiliary down channel 15 .
  • FIGS 7 and 8 illustrate a fourth embodiment of the intelligent multi-car elevator system of the present invention.
  • the difference between this embodiment and the embodiment 1 is that the hoistway 9 is provided with six.
  • the hoistway 9 is provided with six, which in turn includes an uplink channel 11, an auxiliary uplink channel 14, an uplink fast channel 16, a downlink fast channel 17, an auxiliary downlink channel 15 and a downlink channel 12, and two adjacent wells 9
  • a switching mechanism 4 is provided between the two, and the car 1 is switched between the adjacent hoistways 9 by the switching mechanism 4.
  • the switching mechanisms 4 in the adjacent hoistway 9 are connected end to end.
  • the uplink car 1 when the car 1 is in the ascending process, when it is necessary to avoid the jam, the uplink car 1 can be switched to the auxiliary up channel 14 through the switching track 41.
  • the descending car 1 When the car 1 is in the downward process, when it is necessary to avoid the jam, the descending car 1 can be switched to the auxiliary down channel 15 through the switching track 41. If a passenger goes up from the 1st floor to the top floor or down from the top floor to the 1st floor, the car 1 can be switched to the uplink fast channel 16 or the downlink fast channel 17 directly up or down.
  • the uplink fast channel 16 and the downlink fast channel 17 are only connected when the congestion of the car 1 occurs in one of its congestion or uplink fast channel 16 and downlink fast channel 17 .
  • 21 to 23 show a fifth embodiment of the intelligent multi-car elevator system of the present invention.
  • the difference between this embodiment and the first embodiment is that the structure of the switching mechanism 4 is different.
  • Each car 1 consists of four power units, a retractable slide 44 and a set of pulleys 45.
  • the car 1 is fixed on the slide rail 44 by the pulley 45, and can slide left and right.
  • the slide rail 44 can be contracted to realize switching between different tracks.
  • the four power units are divided into two groups, and one of the two groups is used in the original track. And provide lifting power, during the track switching process, another group of occluded target tracks, the occlusion process is unpowered state, the occlusion is completed, the power is supplied, the power source of the car 1 is taken, the prime mover unit stops providing power, and the original track occlusion is released. , the slide rail 44 is retracted, and the track switching is completed.
  • the intelligent multi-car elevator system of the present embodiment includes a main rail mechanism 2, a sub-track mechanism 3, a switching mechanism 4, a transfer mechanism 5, a bottom maintenance mechanism 6, a power mechanism 7, and a plurality of cars 1.
  • the switching mechanism 4 connects the main rail mechanism 2 and the sub-track mechanism 3, and the car 1 is switched between the main rail mechanism 2 and the sub-track mechanism 3 by the switching mechanism 4;
  • the transfer mechanism 5 is disposed on the first floor of the floor on the floor,
  • the car 1 is moved by a transfer mechanism 5 to a plurality of elevator doors of the first floor;
  • the bottom maintenance mechanism 6 is disposed at a basement below the ground, and the bottom maintenance mechanism 6 is located at the bottom of the main track mechanism 2 and the sub-track mechanism 3, the bottom layer
  • the maintenance mechanism 6 is connected to each elevator port of the first floor;
  • the car 1 is driven to move up and down or switched by the power mechanism 7; during operation, the plurality of cars 1 are simultaneously up or down in the main track mechanism 2, each The car 1 is switched from the main rail mechanism 2 to the upper and lower passengers by the switching mechanism 4, respectively.
  • all the tracks are arranged in pairs.
  • the main track mechanism 2 and the sub-track mechanism 3 are divided into n units according to the number of floors, and the number of floors of each unit depends on the actual application.
  • the upper end and the lower end of each unit are provided with a switching mechanism 4, and the switching tracks 41 of the upper end and the lower end are symmetrically arranged.
  • the main track mechanism 2 includes an uplink main track 21 and a downlink main track 22, and the sub-track mechanism 3 includes an uplink sub-track 31 and a downlink sub-track 32, and the uplink sub-track 31 and the descending sub-track 32 are located on the uplink main track 21 and Between the descending main rails 22, the floor is located between the upper sub-track 31 and the descending sub-track 32.
  • a plurality of cars 1 can run on both the up main track 21 and the down main track 22 at the same time.
  • the switching mechanism 4 includes a plurality of switching tracks 41 and a switching drive 42.
  • the switching rail 41 has an arc shape, and both ends are beveled, and are arranged in pairs in the up or down direction of the car 1 in the upward or downward direction.
  • one of the switching tracks 41 is located in the middle of the upstream main track 21 or the middle of the descending main track 22, and the other switching track 41 is located in the middle of the upstream sub-track 31 or the middle of the descending sub-track 32, and each switching track 41 is set.
  • a switching drive 42, the middle of the switching track 41 is hinged to the hoistway by a hinge.
  • the switching drive 42 employs a hydraulic jack. As shown in Fig.
  • the switching rail 41 is rotated by a hydraulic jack, and the main rail mechanism 2 and the sub-track mechanism 3 are connected when deployed, and are separated from the main rail mechanism 2 and the sub-track mechanism 3 when retracted. It is vertically fixed in the hoistway of the main rail mechanism 2 and the sub-track mechanism 3.
  • the up main track 21, the down main track 22, the up sub-track 31, the descending sub-track 32, and the switching track 41 are rack rails, and the rack rail is composed of a steel frame 23, a fixing groove 24, and a rack 25 A rack 25 is disposed on one side of the steel frame 23, and a fixing groove 24 is disposed on the other side.
  • the rack 25 meshes with the power mechanism 7, and the fixing groove 24 and the power mechanism 7 are engaged.
  • the elevator power supply and signal track are mounted on one side of the fixed slot 24. Two power/signal line tracks are installed for each rack track, which are respectively connected to the power mechanism 7.
  • the transfer mechanism 5 includes a transfer carriage 51 and a plurality of transfer rails 52.
  • the first floor is provided with a plurality of elevator openings, and the plurality of elevator openings are arranged in two rows, and each of the elevator openings is provided with a transfer carriage 51.
  • the main track mechanism 2 is engaged in the middle of the transfer track 52, the transfer carriage 51 moves on the transfer track 52, and each transfer carriage 51 is connected to the main track mechanism 2 via the transfer track 52, and the car 1 is transported by the transfer carriage 51 to Every elevator exit.
  • the bottom of the transfer carriage 51 is provided with a universal walking wheel, which can move in a plurality of directions. When the car is turned, the car 1 does not rotate, and the car 1 maintains translation when it is transferred in two vertical directions.
  • the transfer carriage 51 When the car 1 is ascending, the transfer carriage 51 is transported from the elevator doors along the transfer rail 52 to the upper main rail 21, and the descending car 1 reaches the first floor along the descending main rail 22, and then transported to the elevators by the transfer carriage 51. Unload passengers under the mouth.
  • the bottom maintenance mechanism 6 includes an annular rail 61 and a transfer carriage 51, and the main rail mechanism 2 is connected to the middle of the circular rail 61.
  • the descending car 1 continues down the first floor to the circular track 61 of the basement.
  • the car 1 is transported from the track port by the transfer cart 51 along the endless track 61 to the other side of the circular track 61 and randomly dispatched to each of the ascending channels.
  • the bottom maintenance mechanism 6 further includes a maintenance rail 62.
  • the maintenance rail 62 is provided with two, and is disposed perpendicular to both sides of the circular rail 61, respectively. When the car 1 fails or needs to be inspected and maintained, it is consigned to the maintenance rail 62, and does not cause interference to the operation of the other cars 1.
  • the transfer rail 52, the circular rail 61 and the maintenance rail 62 are rack rails.
  • the rack rail is composed of a steel frame 23, a fixing groove 24 and a rack 25, and a rack 25 is arranged on one side of the steel frame 23, and A fixing groove 24 is disposed on one side, the rack 25 meshes with the power mechanism 7, and the fixing groove 24 and the power mechanism 7 are engaged.
  • the power mechanism 7 includes a main power mechanism and a switching power mechanism.
  • the main power mechanism includes a motor 71, a gear 72, a creeping bearing 73, a support plate 74 and a mounting bracket 75.
  • the mounting bracket 75 is a " ⁇ " type steel plate, and the support plate 74 is mounted on one side of the mounting bracket 75, and the support plate 74 and the mounting bracket 75 A shock absorber 741 is provided between them.
  • the motor 71 and the creeping bearing 73 are mounted on the support plate 74, the gear 72 is driven by the motor 71, the gear 72 meshes with the rack 25, and the creeping bearing 73 is engaged with the fixing groove 24.
  • a stable bearing is mounted on the side of the transmission rod of the gear 72 to ensure a smooth running process.
  • a controller is disposed on the support plate 74 at both ends of the creeping bearing 73 to receive power and signals.
  • the switching mechanism includes a roller guide 76, a spring 77 and a limiting device.
  • the other side of the mounting bracket 75 is fixed to the sliding rod 761 of the roller guide 76.
  • the slider 762 of the roller guide 76 is fixed to the car 1 and slides.
  • the rod 761 is slidably disposed in the slider 762; one end of the spring 77 is fixed to the car 1 through a spring fixing plate 771, and the other end is fixedly connected with the limiting device, the limiting device is connected with the sliding rod 761, and the limiting device controls sliding.
  • the rod 761 is slid or fixed to ensure safe rail change.
  • the limiting device includes a track shear locker 78 and a push block 79.
  • the track shear locker 78 is mounted on the car 1, and the push block 79 is fixed on the slide bar 761, and the other end of the spring 77 Fixed to the push block 79, the track shear lock 78 is located on the side of the push block 79 that is coupled to the spring 77, and the track shear lock 78 limits the movement of the push block 79.
  • the mounting bracket 75 is fixed on the two sliding rods 761, the sliding block 762 is provided with four pieces, and each sliding rod 761 is provided with two pieces, and the mounting frame 75 is located between the two sliding blocks 762.
  • the movement of the slider 761 has a main power mechanism.
  • the track shear locker 78 is triggered to unlock the slide bar 761.
  • the pressure of the shear track 41 on the gear 72 and the creeping bearing 73 pushes the sliding of the entire main power mechanism, and the main power mechanism pushes the spring 77 to compress and switch.
  • the power mechanism completes the contraction on the stroke of the oblique section of the shear track 41.
  • the power mechanism 7 is provided with four, respectively installed on opposite sides of the car 1, two on each side, symmetrically distributed.
  • An acceleration sensor is installed on each main power mechanism to monitor the vibration of the gear 72 in real time, to understand the working conditions of the various components of the elevator, and to find the abnormality of the main power mechanism of the track and each car 1 and to locate the fault.
  • the controller of the No. 1 power mechanism 7 of the four power mechanisms 7 is connected to the power supply positive stage, the controller of the No. 2 power mechanism 7 is connected to the power supply negative stage, and the controller of the No. 3 power mechanism 7 is connected to the positive level of the signal line, the No. 4 power
  • the controller of mechanism 7 is connected to the negative of the signal line.
  • the elevator further includes a top rail mechanism 8 including an elliptical closed top rail 81 and a plurality of top transport carts 82.
  • the top rail 81 is connected to the main rail mechanism 2 and the sub rail mechanism 3, and the top floor is checked.
  • the cart 82 is slidable on the top rail 81, and the main rail mechanism 2 and the sub rail mechanism 3 are engaged by the top cart 82.
  • the upper car 1 reaches the top floor through the upper sub-track 31, it is transferred from the top loading cart 82 to the descending sub-track 32 to realize the elevator cycle.
  • Each unit is provided with 4 layers, and the bottom unit is set from the 2nd floor, and the operation method of the intelligent multi-car elevator of this embodiment is illustrated by taking 1 to 5 layers as an example.
  • the car 1 When there are passengers on the first floor to the 2nd to 5th floors, the car 1 runs to the vicinity of the 7th floor in the upward main track 21, the switching track 41 is deployed, and the uplink main track 21 and the uplink auxiliary track 31 are connected, and the car 1 enters the uplink sub track. 31.
  • the upper and lower passengers are stopped downward from the 5th floor, and the switching track 41 is retracted.
  • the switching track 41 at the 2nd floor is unfolded, and the car 1 returns to the upper main track 21 to continue upward, reaching the upper unit and the lower passenger until the top unit.
  • the car 1 when the car 1 is completed in the upper and lower passengers in the running unit and runs to the shearing track 41 of the n-layer, it enters the upstream sub-track 31 again through the shearing track 41, and the transport reaches the topmost unit. passenger. After all the passengers have been transported, the car 1 is sheared to the upper main track 21 at the n-3 level and goes up to the top track 81. The racks in the top loading cart 82 interface with the upper main rail 21, and the car 1 enters the top loading cart 82 and is transported to the descending sub-track 32. The car 1 descends to the n-1 layer, and enters the shear track 41 to complete the operation in one unit. Continue the downward end of the last unit to reach the 1st floor.
  • the car 1 runs to the descending sub-track 32, and is transferred by the transfer car 51 to the elevator of the first floor to lower passengers. Make sure that the car 1 is empty and the channel along the first floor to the basement continues to descend.
  • the car 1 is transported from the track port by the transfer carriage 51 along the endless track 61 to the track on the other side, and is randomly delivered to each of the passages up to the first floor.
  • the car 1 carries passengers at the elevator exit, is transported along the transfer track 52 to the upper main track 21, and continues to run upwards to complete a cycle.
  • the number of cars 1 can be adjusted according to actual requirements, and each car 1 operates independently, without mutual interference, and repeats. After the car 1 fails, it can be checked to the maintenance track 62, and the operation of the other cars 1 is not disturbed.
  • each car 1 is set to limit 10 people, each unit consists of 4 layers, and each car 1 is docked with two units.
  • the maximum running speed of the elevator is designed to be 4m/s
  • the emergency braking acceleration is about 5m/s 2
  • the minimum safety distance of each car 1 is about 4m.
  • the elevator door time is 2s
  • the time for each person to enter and exit the elevator is 1s.
  • the elevator passenger time is 14s
  • the passenger time is 42s
  • the track switching takes 10s
  • the car 1 is in the main track mechanism. It runs for 80s and runs for 16s in the secondary track mechanism.
  • the main track mechanism 2 and the sub-track mechanism 3 are divided into n units according to the number of floors, and the floors included in each unit can be determined according to actual needs, and each unit is provided with a switching mechanism 4.
  • the main rail mechanism 2 includes an upper main chain rail 26 and a descending main chain rail 27, and a plurality of car lifting platforms 28 are fixed on the upper main chain rail 26 and the descending main chain rail 27, and one layer is disposed on each layer.
  • the car lifts the platform 28.
  • Each car 1 corresponds to a car lifting platform 28, and the car 1 is moved up and down by the car lifting platform 28 at the main track mechanism 2.
  • the car lifting platform 28 is provided with a positioning groove 281, and the bottom of the car 1 is provided with a positioning protrusion which is matched with the positioning groove 281.
  • the main rail mechanism 2 further includes an auxiliary fixed rail 29, and the car 1 is provided with a stable support frame 11 .
  • One end of the stable support frame 11 is hinged to the car 1 , and the other end is coupled with the auxiliary fixed rail 29 for stable support.
  • the frame 11 slides along the auxiliary fixed rail 29, and the stable support frame 11 is coupled to the auxiliary fixed rail 29 by the cylinder drive rotation or away from the auxiliary fixed rail 29.
  • the stable support frame 11 on the car 1 is engaged with the auxiliary fixed rail 29 to ensure the smooth running of the car 1.
  • the stable support frame 11 is rotated upward by 90° to release the auxiliary fixed rail. 29 locks.
  • the upper main chain track 26 and the descending main chain track 27 are provided with four, respectively distributed at the four corners of the car 1, and each of the upper main chain track 26 or the descending main chain track 27 is provided with an auxiliary. Fixed rail 29.
  • the secondary track mechanism 3 is divided into an uplink auxiliary mechanism and a downlink auxiliary mechanism, and the uplink auxiliary mechanism and the downlink auxiliary mechanism are located between the uplink main chain track 26 and the downlink main chain track 27, and the floor is located in the uplink auxiliary mechanism and the downlink auxiliary mechanism.
  • the sub-track mechanism 3 includes a traction device, and each unit is provided with a traction device including a traction box 33, a traction rope 34 and a hanging box 35 fixed to the top of each unit One end of the traction rope 34 is wound around the traction box 33, and the other end is fixedly connected with the hanging box 35.
  • the side of the hanging box 35 facing the car lifting platform 28 is provided with an entrance and exit of the car 1, and the traction box 33 passes.
  • the hoisting rope 34 drives the hanging box 35 for lifting movement.
  • the sub-track mechanism 3 further includes a weight 36, and the weight 36 is fixedly coupled to one end of the hoisting rope 34.
  • the switching mechanism 4 includes a springboard 43.
  • the springboard 43 is hinged to the side of the hanging box 35.
  • the springboard 43 is rotated by the cylinder to be attached to the hanging box 35 or deployed to engage with the car lifting platform 28.
  • the car lifting platform 28 and the hanging box 35 are respectively provided with hydraulic jacks, which can drive the switching of the car 1 in the main rail mechanism 2 and the sub-track mechanism 3.
  • the transfer mechanism 5 includes a transfer carriage 51, a plurality of transfer rails 52, and an auxiliary transfer shaft 53.
  • the first floor is provided with a plurality of elevator openings, and the plurality of elevator openings are arranged in two rows, and the elevator doors of all the elevator doors are arranged.
  • the main track mechanism 2 and the sub-track mechanism 3 are vertically located between the two rows of elevator doors, the sub-track mechanism 3 is located between the upper main chain track 26 and the descending main chain track 27; and the auxiliary transfer shaft 53 is provided with two.
  • each of the elevator openings is provided with a transfer carriage 51, and between the auxiliary track mechanism 3 and the elevator opening or through the auxiliary transfer shaft 53 and the elevator opening The track 52 is engaged, the transfer carriage 51 moves on the transfer track 52, and the car 1 is transported to each elevator door by the transfer carriage 51.
  • the auxiliary transfer hoistway 53 is located at the bottommost floor unit, and the auxiliary transfer hoistway 53 is provided with a hoisting device and a switching mechanism 4.
  • the elevator further includes a top rail mechanism 8 including an elliptical closed top rail 81, two auxiliary lift shafts 83 and at least one top cart 82, and the top cart 82 is slid on the top rail 81.
  • the upper auxiliary mechanism, the descending auxiliary mechanism and the auxiliary lifting shaft 83 are connected by the top loading cart 82.
  • the auxiliary hoistway 83 is provided with two floor units located at the top, the auxiliary hoistway 83 is located outside the main track mechanism 2, and the auxiliary hoistway 83 is provided with a hoisting device and a switching mechanism 4.
  • the car 1 rises at a constant speed in the upward main chain track 26, when there are passengers calling on the nth to n+3 floors or when the passengers in the car 1 reach the nth to n+3 floors.
  • the hanging box 35 in the ascending auxiliary mechanism is accelerated to the same speed as the upward main chain rail 26, the springboard 43 is deployed to communicate with the car lifting platform 28, and the stable support frame 11 is rotated upward to release the locking of the auxiliary fixed rail 29, the car 1 is pushed from the car lifting platform 28 into the hanging box 35, the springboard 43 is retracted, and after the car 1 is lifted to the n+3 floor, the car is sequentially operated downward, upper and lower passengers.
  • the shuttle 35 is accelerated to remain relatively stationary with the upward main chain rail 26, the springboard 43 is deployed, the car 1 is pushed back into the main rail mechanism 2, locked with the auxiliary fixed rail 29, and continues to the other units. .
  • the running method is the same when going down.
  • the car 1 when the car 1 is running to the unit near the top floor, if there is no passenger in the top unit calling the elevator and there is no passenger in the car 1 reaching the top unit, the car 1 enters the ascending auxiliary hoistway 83, which is Lifted into the top rail 81, transported by the top loading cart 82 to the descending auxiliary hoistway 83, and then sheared into the downward main chain rail 27; if there is a passenger in the top unit calling the elevator or the car 1 reaches the top unit The passenger 1 enters the upper auxiliary mechanism to transport the passengers. After the delivery is completed to ensure that the car 1 is empty, the car 1 is lifted to the top rail 81 in the ascending auxiliary mechanism.
  • An eighth embodiment of the intelligent multi-car elevator of the present invention uses a linear motor as the power mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Civil Engineering (AREA)
  • Elevator Control (AREA)
  • Types And Forms Of Lifts (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

一种智能多轿厢电梯系统,包括至少两个井道(9)、切换机构(4)、动力机构(7)以及多个轿厢(1),所述井道(9)内设有轿厢(1)行走的轨道,相邻所述井道(9)之间设有切换机构(4),所述轿厢(1)通过切换机构(4)在相邻井道(9)之间切换位置;所述轿厢(1)通过动力机构(7)驱动在井道(9)内或者井道(9)之间做上行、下行运动或切换运动,所述轿厢(1)通过动力机构(7)驱动停靠于任意楼层上客或者下客。该智能多轿厢电梯系统,在一条井道内设置多个独立运行的轿厢(1),大幅度增加了运送效率,有效的节约了建筑空间和建筑成本。

Description

智能多轿厢电梯系统 技术领域
本发明涉及垂直升降电梯技术领域,尤其涉及一种智能多轿厢电梯系统。
背景技术
传统升降电梯主要为绳轮牵引井道式电梯,每个井道只有一个轿厢,运行在至少两列垂直的或倾斜角小于15°的刚性导轨之间。这种结构的电梯在中低层建筑中尚能满足用户要求,但是对于现代城市日益增长的高层建筑,传统的电梯存在运送效率低、候梯时间长等问题,日常维护和故障维修时,整个井道无法使用,并且安全性也有待提高。在高层建筑中,通常多增设井道和轿厢来增加电梯的运送能力,满足用户需求,但是众多的电梯井道占据了大量宝贵的建筑空间,增加了建筑成本,并未从根本上解决电梯运送效率低的问题。
目前已知有各种用于提供和控制在一个电梯竖井内的一部以上的电梯轿厢、用于设置电梯设备的多个平行的电梯竖井和用于将电梯轿厢从一个电梯竖井转移到另一个电梯竖井的方法。这种具有多个电梯竖井的已知的电梯的缺点在于,多个轿厢位于同一个井道内,有碰撞、速度缓慢等问题。因此在输送量剧增的情况下运载容量将受到限制。
发明内容
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种智能多轿厢电梯系统,在一条井道内能够设置多个独立运行的轿厢,大幅度增加了运送效率,有效的节约了建筑空间和建筑成本。
为解决上述技术问题,本发明提出的技术方案为:
一种智能多轿厢电梯系统,包括至少两个井道、切换机构、动力机构以及多个轿厢,所述井道内设有轿厢行走的轨道,相邻所述井道之间设有切换机构,所述轿厢通过切换机构在相邻井道之间切换位置;所述轿厢通过动力机构驱动在井道内或者井道之间做上行、下行运动或切换运动,所述轿厢通过动力机构驱动停靠于任意楼层上客或者下客。
作为上述技术方案的进一步改进:
所述系统包括至少两个相邻的井道,所述多个轿厢可同时在井道内进行上行或者下行运动;每层楼层均设有切换机构。
所述至少两个井道中,至少一个为上行通道,至少一个为下行通道;每层楼层分别设有上行电梯出入口和下行电梯出入口,所述上行电梯出入口和下行电梯出入口分别位于井道的两侧。
每个所述井道内均设有运行轨道,所述轿厢通过动力机构的驱动沿运行轨道上行或者下行。
所述切换机构包括切换轨道,所述切换轨道铰接于井道内,所述切换轨道沿井道的长度方向设有多个,上下相邻的切换轨道首尾衔接,每个楼层均设置切换轨道。
所述切换机构还包括切换驱动,所述切换轨道成对设置,每个切换轨道设置一个切换驱动,所述切换轨道的中间铰接于井道,所述切换轨道通过切换驱动带动旋转与相邻井道内的轨道连接或者断开。
所述切换轨道为弧形。
所述切换驱动为液压千斤顶,所述液压千斤顶固定于井道内。
所述运行轨道和切换轨道均为齿条轨道,所述齿条轨道由钢架、固定槽和齿条构成,所述钢架一侧布设齿条,另一侧布设固定槽,所述齿条和动力机构啮合,所述固定槽和动力机构咬合。
所述系统还包括转移机构,楼层的第一层设有多个电梯出入口,所述转移机构设于第一层,多个所述轿厢通过转移机构移动于多个电梯出入口之间。
所述转移机构包括转移托运车和多个转移轨道,每个电梯出入口对应一个转移托运车,所述井道衔接于多个电梯出入口的侧面,所述转移托运车在转移轨道上移动,所述轿厢通过转移托运车在电梯出入口和井道之间做移动。
所述系统还包括底层维护机构,所述底层维护机构位于楼层的第一层下方的底层,所述底层维护机构包括环形轨道和转移托运车,所述井道位于环形轨道上,所述轿厢沿井道下行至环形轨道,所述轿厢通过转移托运车在环形轨道上移动,所述轿厢不运行时停放在环形轨道上。
所述底层维护机构还包括维修轨道,所述维修轨道与环形轨道的两侧连通。
所述转移轨道、环形轨道和维修轨道均为齿条轨道,所述齿条轨道由钢架、固定槽和齿条构成,所述钢架一侧布设齿条,另一侧布设固定槽,所述齿条和动力机构啮合,所述固定槽和动力机构咬合。
所述转移托运车的底部设有万向行走轮。
所述动力机构包括主动力机构和切换动力机构,所述主动力机构包括电机、齿轮、爬行轴承、支撑板和安装架,所述支撑板安装于安装架上,所述电机和爬行轴承安装于支撑板上,所述齿轮通过电机驱动,所述齿轮与齿条啮合,所述爬行轴承与固定槽咬合;所述切换动力机构包括滚轴导轨、弹簧和限位装置,所述安装架固定于滚轴导轨的滑杆上,所述滚轴导轨的滑块固定于轿厢上,所述滑杆滑设于滑块中;所述弹簧的一端通过一弹簧固定板固定与轿厢上,另一端与限位装置固定连 接,所述限位装置与滑杆连接,所述限位装置控制滑杆滑动或固定。
所述支撑板与安装架之间设有减震器。
所述限位装置包括轨道切变锁止器和推动块,所述轨道切变锁止器安装于轿厢上,所述推动块固定于滑杆上,所述弹簧的另一端固定于推动块上,所述轨道切变锁止器位于推动块与弹簧连接的一侧,所述轨道切变锁止器限制推动块移动。
所述动力机构设有四个,分别安装于轿厢的相对两边,每边两个,对称分布。
所述系统还包括顶层轨道机构,所述顶层轨道机构位于楼层的顶层,所述顶层轨道机构包括椭圆形闭合的顶层轨道以及多个顶层托运车,所述顶层轨道与井道衔接,所述顶层托运车可滑动于顶层轨道上,所述轿厢通过顶层托运车在各井道之间切换位置。
上述技术方案的一种实施方式为:
所述井道设有两个,其中一个为上行通道,另一个为下行通道,所述切换机构设于两个井道之间,所述轿厢通过切换机构切换于上行通道或者下行通道之间。
上述技术方案的第三种实施方式为:
所述井道设有三个,包括上行通道、下行通道和辅助通道,所述辅助通道位于上行通道和下行通道之间,相邻的两个所述井道之间设有切换机构,所述轿厢通过切换机构切换于上行通道和辅助通道之间,或者切换于下行通道和辅助通道之间。
所述上行通道和辅助通道之间的切换机构与下行通道和辅助通道之间的切换机构首尾衔接。
上述技术方案的第四种实施方式为:
所述井道设有四个,依次包括上行通道、辅助上行通道、辅助下行通道和下行通道,相邻的两个所述井道之间设有切换机构,所述轿厢通过切换机构切换于上行通道和辅助上行通道之间、下行通道和辅助下行通道之间或者辅助上行通道和辅助下行通道之间。
相邻所述井道内的切换机构首尾衔接。
上述技术方案的第五种实施方式为:
所述井道设有六个,依次包括上行通道、辅助上行通道、上行快速通道、下行快速通道、辅助下行通道和下行通道,相邻的两个所述井道之间设有切换机构,所述轿厢通过切换机构切换于相邻的井道之间。
所述切换机构包括滑轮和滑轨组件,所述滑轨组件由至少两件套设地滑轨组成,所有所述滑轨的长度等于或大于相邻井道的宽度,所述滑轨通过滑轨驱动相对其它滑轨滑动伸出或收回,所述滑轮滑设于滑轨上。
上述技术方案的第六种实施方式为:
所述系统还包括主轨道机构、副轨道机构、转移机构、底层维护机构,所述切换机构衔接主轨道机构和副轨道机构,所述轿厢通过切换机构在主轨道机构和副轨道机构之间切换;所述转移机构设于楼层位于地面上的第一层,多个所述轿厢通过转移机构移动于第一层的多个电梯口;所述底层维护机构设于楼层位于地面下的地下室,所述底层维护机构位于主轨道机构和副轨道机构的底部,所述底层维护机构与第一层的每个电梯口连接;所述轿厢通过动力机构驱动做上下运动或切换运动;运行时,所述多个轿厢同时在主轨道机构内上行或下行,每个所述轿厢通过切换机构分别从主轨道机构切换到副轨道机构上、下乘客。
所述主轨道机构包括上行主轨道和下行主轨道,所述副轨道机构包括上行副轨道和下行副轨道,所述上行副轨道和下行副轨道位于上行主轨道和下行主轨道之间,楼层进出通道位于上行副轨道和下行副轨道之间。
所述切换机构包括多个弧形的切换轨道和切换驱动,沿轿厢上行或下行方向所述切换轨道成对间隔设置;成对使用时,其中一个切换轨道位于上行主轨道中间或下行主轨道中间,另一个切换轨道位于上行副轨道中间或下行副轨道中间,每个切换轨道设置一个切换驱动,所述切换轨道的中间铰接于井道,所述切换轨道通过切换驱动带动旋转连接主轨道机构和副轨道机构或者远离主轨道机构和副轨道机构。
所述主轨道机构和副轨道机构按楼层层数分为n个单元,每个单元的上端和下端设置切换机构,上端和下端的切换轨道对称布置。
所述上行主轨道、下行主轨道、上行副轨道、下行副轨道和切换轨道均为齿条轨道,所述齿条轨道由钢架、固定槽和齿条构成,所述钢架一侧布设齿条,另一侧布设固定槽,所述齿条和动力机构啮合,所述固定槽和动力机构咬合。
所述转移机构包括转移托运车和多个转移轨道,第一层设有多个电梯口,多个所述电梯口分两排布置,每个电梯口设置一个转移托运车,所述主轨道机构衔接于转移轨道的中间,所述转移托运车在转移轨道上移动,每个所述转移托运车通过转移轨道与主轨道机构连接,所述轿厢通过转移托运车运送到每个电梯口。
所述底层维护机构包括环形轨道和转移托运车,所述井道位于环形轨道上,所述轿厢沿井道下行至环形轨道,所述轿 厢通过转移托运车在环形轨道上移动,所述轿厢不运行时停放在环形轨道上。
所述底层维护机构还包括维修轨道,所述维修轨道设有两个,且分别环形轨道设置。
所述转移轨道、环形轨道和维修轨道均为齿条轨道,所述齿条轨道由钢架、固定槽和齿条构成,所述钢架一侧布设齿条,另一侧布设固定槽,所述齿条和动力机构啮合,所述固定槽和动力机构咬合。
所述转移托运车的底部设有万向行走轮。
所述动力机构包括主动力机构和切换动力机构,所述主动力机构包括电机、齿轮、爬行轴承、支撑板和安装架,所述支撑板安装于安装架上,所述电机和爬行轴承安装于支撑板上,所述齿轮通过电机驱动,所述齿轮与齿条啮合,所述爬行轴承与固定槽咬合;所述切换动力机构包括滚轴导轨、弹簧和限位装置,所述安装架固定于滚轴导轨的滑杆上,所述滚轴导轨的滑块固定于轿厢上,所述滑杆滑设于滑块中;所述弹簧的一端通过一弹簧固定板固定与轿厢上,另一端与限位装置固定连接,所述限位装置与滑杆连接,所述限位装置控制滑杆滑动或固定。
所述支撑板与安装架之间设有减震器。
所述限位装置包括轨道切变锁止器和推动块,所述轨道切变锁止器安装于轿厢上,所述推动块固定于滑杆上,所述弹簧的另一端固定于推动块上,所述轨道切变锁止器位于推动块与弹簧连接的一侧,所述轨道切变锁止器限制推动块移动。
所述动力机构设有四个,分别安装于轿厢的相对两边,每边两个,对称分布。
所述电梯还包括顶层轨道机构,所述顶层轨道机构包括椭圆形闭合的顶层轨道以及多个顶层托运车,所述顶层轨道与主轨道机构、副轨道机构连接,所述顶层托运车可滑动于顶层轨道上,所述主轨道机构、副轨道机构通过顶层托运车衔接。
所述主轨道机构和副轨道机构按楼层层数分为n个单元,每个单元均设置切换机构。
所述主轨道机构包括上行主链条轨道和下行主链条轨道,所述上行主链条轨道和下行主链条轨道上均固定设有多个轿厢提升平台,每个轿厢对应一个轿厢提升平台;所述轿厢在主轨道机构时通过轿厢提升平台做升降运动。
上述技术方案的第七种实施方式为:
所述副轨道机构分为上行副机构和下行副机构,上行副机构和下行副机构位于上行主链条轨道和下行主链条轨道之间,楼层进出通道位于上行副机构和下行副机构之间,所述副轨道机构包括曳引装置,每个单元设置一个曳引装置,所述曳引装置包括曳引箱、曳引绳和吊箱,所述曳引箱固定于每个单元的顶部,所述曳引绳一端绕设于曳引箱,另一端与吊箱固定连接,所述吊箱面对轿厢提升平台的一侧设有轿厢的进出口,所述曳引箱通过曳引绳带动吊箱做升降运动。
所述切换机构包括跳板,所述跳板铰接于吊箱的侧面,所述跳板通过气缸驱动转动贴紧吊箱或者与轿厢提升平台衔接。
所述副轨道机构还包括配重块,所述配重块和曳引绳的一端固定连接。
所述轿厢提升平台上设有定位凹槽,所述轿厢的底部设有与定位凹槽配合定位的定位凸起。
所述轿厢提升平台和吊箱分别设有推动轿厢移动的液压千斤顶。
所述主轨道机构还包括辅助固定导轨,所述轿厢上设有稳定支撑架,所述稳定支撑架一端与轿厢铰接,另一端与辅助固定导轨配合连接,所述稳定支撑架沿辅助固定导轨滑动,所述稳定支撑架通过气缸驱动转动与辅助固定导轨连接或离开辅助固定导轨。
所述上行主链条轨道和下行主链条轨道设有四个,分别分布于轿厢的四个角,每个所述上行主链条轨道或下行主链条轨道相应配设一个辅助固定导轨。
所述转移机构包括转移托运车、多个转移轨道和辅助转移井道,第一层设有多个电梯口,多个所述电梯口分两排布置,所有电梯口的电梯门不全相对设置,所述主轨道机构和副轨道机构垂直位于两排电梯口之间,所述副轨道机构位于上行主链条轨道和下行主链条轨道之间;所述辅助转移井道设有两个,分别位于上行主链条轨道和下行主链条轨道的外侧;所述每个电梯口设置一个转移托运车,所述副轨道机构和电梯口之间或者通过辅助转移井道和电梯口之间都通过转移轨道衔接,所述转移托运车在转移轨道上移动,所述轿厢通过转移托运车运送到每个电梯口。
所述辅助转移井道位于最底部的楼层单元,所述辅助转移井道内设有曳引装置和切换机构。
所述电梯还包括顶层轨道机构,所述顶层轨道机构包括椭圆形闭合的顶层轨道、两个辅助提升井道和至少一个顶层托运车,所述顶层托运车滑设于顶层轨道上,所述上行副机构、下行副机构和辅助提升井道通过顶层托运车衔接。
所述辅助提升井道设有两个,位于最顶部的楼层单元,所述辅助提升井道位于主轨道机构外侧,所述辅助提升井道内设有曳引装置和切换机构。
所述每一层都设有轿厢提升平台。
所述系统还包括智能控制系统,智能控制系统包括重量检测模块、传感模块、处理模块和安全模块;
重量检测模块安装于轿厢上,用于记录各时间段、各楼层的轿厢重量,并将数据传送给处理模块进行存储建立数据库;
传感模块用于检测轿厢的运行速度、温度,并将检测到的数据传送至处理模块;
处理模块根据数据库的数据分析确定人流高峰期和高频率楼层,来分配待运行的轿厢数量;
当处理器判断系统出现故障时,对安全模块发出信号,安全模块减少放行的轿厢数量。
本发明提供的一种智能多轿厢电梯系统,适用于载运乘客、货物的高层居民楼、写字楼、大型商场等场所的电梯运送系统,和传统电梯相比具有以下优点:
(1)本发明的智能多轿厢电梯系统,运送效率高,一台轿厢运行于多条井道,同一井道内可同时运行多部轿厢,各轿厢之间互不干扰,大大缩短人流量高峰期的候梯时间。以一栋50层的建筑为例,每个单元由4层组成。根据各项参数若设计电梯最高运行速度为4m/s,则紧急制动加速度约为5m/s2,各轿厢的最小安全距离约为4m。双井道并行电梯最少可同时运行14个轿厢,运量相当于普通电梯的7倍;三井道并行电梯最少可同时运行27个轿厢,运量相当于普通电梯的9倍;四井道并行电梯最少可同时运行40个轿厢,运量可达普通电梯的10倍。
(2)本发明的智能多轿厢电梯系统,适用于载运乘客、货物的高层居民楼、写字楼、大型商场等场所的电梯运送机构,送效率高,同一井道内可同时运行多部轿厢,各轿厢之间互不干扰,大大缩短人流量高峰期的候梯时间。以一栋80层的建筑为例,安全距离设定为两层,则上行单元和下行单元均可设置20个,每个单元内可同时运行两个轿厢,副轨道上可同时运行80个轿厢,主轨道可同时运行80个轿厢,一套电梯最大的轿厢数可达160个。
(3)本发明的智能多轿厢电梯系统,安全性能高,采用齿轮驱动系统,杜绝曳引绳断裂导致轿厢坠落的危险,承载能力大,结构稳定,安全可靠;便于日常保修和及时抢修,保证安全性能。
(4)本发明的智能多轿厢电梯系统,成本低廉,占用建筑面积少,节约建筑面积和建筑成本。
(5)本发明的智能多轿厢电梯系统,能够在堵塞、拥堵或者某井道出现电梯故障的时候依旧运行,节约时间,工作效率高。
附图说明
图1是本发明实施例1的双井道并行运行轨迹图。
图2是本发明双井道并行整体结构示意图。
图3是本发明实施例2三井道并行运行轨迹图。
图4是本发明三井道并行整体结构示意图。
图5是本发明实施例3四井道并行运行轨迹图。
图6是本发明四井道并行整体结构示意图。
图7是本发明实施例4六井并行运行轨迹图。
图8是本发明六井并行整体结构示意图。
图9是本发明动力机构应用实施的结构示意图。
图10是本发明图9的侧视结构示意图。
图11是本发明轿厢的结构示意图。
图12是本发明主动力机构的结构示意图。
图13是本发明齿条轨道的结构俯视图。
图14是图13的俯视结构示意图。
图15是本发明切换轨道的结构示意图。
图16(a)是本发明应用实施时切换轨道收回的结构示意图。
图16(b)是本发明应用实施时切换轨道展开的结构示意图。
图17(a)是本发明应用实施时切换轨道展开之前的原理示意图。
图17(b)是本发明应用实施时切换轨道展开轿厢切换位置的原理示意图。
图17(c)是本发明应用实施时切换轨道收回的原理示意图。
图18是本发明顶层轨道的结构示意图。
图19是本发明底层维护机构的结构示意图。
图20是本发明转移机构的结构示意图。
图21是本发明实施例5轿厢切换的过程示意图。
图22是本发明实施例5中双井道并行的运行示意图。
图23(a)是本发明实施例5切换时的应用实施示意图。
图23(b)是本发明实施例5切换时滑轨伸长的应用实施示意图。
图24是本发明实施例6的结构示意图。
图25是本发明实施例6应用实施局部的结构示意图。
图26是本发明实施例6中应用实施时转移机构的结构示意图。
图27是本发明实施例6应用实施时底层维护机构的结构示意图。
图28是本发明实施例7的结构示意图。
图29是本发明实施例7应用实施局部的结构示意图。
图30是本发明实施例7中应用实施时顶层轨道的结构示意图。
图31是本发明实施例7中应用实施时转移机构的结构示意图。
图32是本发明实施例7中主轨道机构的结构示意图。
图33是图32的俯视图。
图中标号说明:
1、轿厢;11、上行通道;12、下行通道;13、辅助通道;14、辅助上行通道;15、辅助下行通道;16、上行快速通道;17、下行快速通道;18、稳定支撑架;2、主轨道机构;21、上行主轨道;22、下行主轨道;23、钢架;24、固定槽;25、齿条;26、上行主链条轨道;27、下行主链条轨道;28、轿厢提升平台;281、定位凹槽;29、辅助固定导轨;3、副轨道机构;31、上行副轨道;32、下行副轨道;33、曳引箱;34、曳引绳;35、吊箱;36、配重块;4、切换机构;41、切换轨道;42、切换驱动;43、跳板;44、滑轨;45、滑轮;5、转移机构;51、转移托运车;52、转移轨道;53、辅助转移井道;6、底层维护机构;61、环形轨道;62、维修轨道;7、动力机构;71、电机;72、齿轮;73、爬行轴承;74、支撑板;741、减震器;75、安装架;76、滚轴导轨;761、滑杆;762、滑块;77、弹簧;771、弹簧固定板;78、轨道切变锁止器;79、推动块;8、顶层轨道机构;81、顶层轨道;82、顶层托运车;83、辅助提升井道;9、井道。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
图1、图2、图9至图20示出了本发明智能多轿厢电梯系统的第一种实施方式,包括两个相邻的井道9、切换机构4、动力机构7以及多个轿厢1,多个轿厢1可同时在井道9内进行上行或者下行运动;每层楼层均设有切换机构4,轿厢1通过切换机构4在两个井道9之间切换;轿厢1通过动力机构7驱动做上行、下行运动或切换运动,轿厢1通过动力机构7驱动停靠于任意楼层上客或者下客。
本实施例中,所有轨道成对布设。
本实施例中,两个井道9中,一个为上行通道11,另一个为下行通道12;每层楼层分别设有上行电梯出入口和下行电梯出入口,上行电梯出入口和下行电梯出入口分别位于井道9的两侧。每个井道9内均设有运行轨道,轿厢1通过动力机构7的驱动沿运行轨道上行或者下行。
如图15至17所示,本实施例中,切换机构4包括切换轨道41和切换驱动42,切换轨道41为弧形,两端为斜角状。每个切换轨道41设置一个切换驱动42,切换驱动42为液压千斤顶,液压千斤顶固定于井道9内。切换轨道41成对设置,其中一个切换轨道41的中间铰接于上行通道11的井道9内,另一个切换轨道41的中间铰接于下行通道12的井道9内。切换轨道41沿井道9的长度方向设有多个,上下相邻的切换轨道41首尾衔接,每个楼层均设置切换轨道41。如图16(a)和图16(b)所示,切换轨道41通过液压千斤顶带动旋转,旋转展开时切换轨道41连接两个井道9内相应的运行轨道,旋转收回时断开与两个井道9内运行轨道的连接。当所有切换轨道41均与运行轨道连接时,所有切换轨道41形成连续地“S”型且相邻切换轨道41的首尾连接。
本实施例中,运行轨道和切换轨道41均为齿条轨道,齿条轨道由钢架23、固定槽24和齿条25构成,钢架23一侧布设齿条25,另一侧布设固定槽24,齿条25和动力机构7啮合,固定槽24和动力机构7咬合。电梯供电、信号轨道安装在固定槽24的一侧。每根齿条轨道安装两条供电/信号线轨道,分别与动力机构7相连。
如图17(a)~图17(c)所示,当轿厢1要从上行通道11切变到下行通道12时,动力机构7接收到控制信号,液压千斤顶作用在切变轨道41的变轨支点上,推动切变轨道41展开,连通上行通道11和下行通道12。轿厢1进入下行通道12后,液压千斤顶逐渐减少施加在切变轨道41上的推力,切变轨道41收回,上行通道11上行通道11和下行通道12恢复正常运行。
如图20所示,本实施例中,系统还包括转移机构5,转移机构5设于第一层,转移机构5包括转移托运车51和多个转移轨道52,楼层的第一层设有多个电梯出入口,每个电梯出入口对应一个转移托运车51,上行通道11和下行通道12衔接于多个电梯出入口的侧面,转移托运车51在转移轨道52上移动,轿厢1通过转移托运车51在电梯出入口和上行通道11或者下行通道12之间做移动。转移托运车51的底部设有万向行走轮,可在多个方向上运动,转弯时轿厢1不转动,轿厢1在转移轨道52的两条垂直方向的轨道上转移时保持平动。轿厢1上行时由转移托运车51从各电梯出入口沿转移轨道52运送至上行通道11上行,下行时轿厢1沿下行通道12到达第一层后,由转移托运车51托运至各电梯出入口下客。
如图19所示,本实施例中,系统还包括底层维护机构6,底层维护机构6位于楼层第一层下方的底层,如果楼层设有地下停车库,则底层是位于停车库下面一层,底层维护机构6需位于楼层的最下面一层。底层维护机构6包括环形轨道61和转移托运车51,上行通道11和下行通道12与环形轨道61衔接,轿厢1从下行通道12下行至环形轨道61,再通过转移 托运车51在环形轨道61上移动。轿厢1不运行时停放在环形轨道61上。需要上行时,轿厢1被转移托运车51沿环形轨道61运送到上行通道11,轿厢随机派送至各上行通道11。
本实施例中,底层维护机构6还包括维修轨道62,维修轨道62与环形轨道61的两侧连通。轿厢1出现故障或需要检修维护时,被托运至维修轨道62,对其它轿厢1的运行不造成干扰。
本实施例中,转移轨道52、环形轨道61和维修轨道62均为齿条轨道,齿条轨道由钢架23、固定槽24和齿条25构成,钢架23一侧布设齿条25,另一侧布设固定槽24,齿条25和动力机构7啮合,固定槽24和动力机构7咬合。
如图9至图12所示,本实施例中,动力机构7包括主动力机构和切换动力机构。主动力机构包括电机71、齿轮72、爬行轴承73、支撑板74和安装架75,安装架75为“∟”型钢板,支撑板74安装于安装架75的一边,支撑板74与安装架75之间设有减震器741。电机71和爬行轴承73安装于支撑板74上,齿轮72通过电机71驱动,齿轮72与齿条25啮合,爬行轴承73与固定槽24咬合。齿轮72的传动杆一侧安装稳定轴承,保证运行过程的平稳。支撑板74上位于爬行轴承73的两端设置控制器,接收电源和信号。
切换动力机构包括滚轴导轨76、弹簧77和限位装置,安装架75的另一边固定于滚轴导轨76的滑杆761上,滚轴导轨76的滑块762固定于轿厢1上,滑杆761滑设于滑块762中;弹簧77的一端通过一弹簧固定板771固定与轿厢1上,另一端与限位装置固定连接,限位装置与滑杆761连接,限位装置控制滑杆761滑动或固定,确保安全变轨。
本实施例中,限位装置包括轨道切变锁止器78和推动块79,轨道切变锁止器78安装于轿厢1上,推动块79固定于滑杆761上,弹簧77的另一端固定于推动块79上,轨道切变锁止器78位于推动块79与弹簧77连接的一侧,轨道切变锁止器78限制推动块79移动。
切换动力机构设有两个,安装架75固定于两个滑杆761上,滑块762设有四件,每个滑杆761上设置两件,安装架75位于两个滑块762之间。滑杆761的移动带主动力机构。变轨时触发轨道切变锁止器78,解除对滑杆761的锁定,切变轨道41对齿轮72和爬行轴承73的压力推动整个主动力机构的滑动,主动力机构推动弹簧77压缩,切换动力机构在切变轨道41斜角段的行程上完成收缩。轿厢1运行到切变轨道41另一端的斜角处时,轨道对切换动力机构的压力逐渐减小,主动力机构推动弹簧77伸长,推动主动力机构恢复到原来位置。
本实施例中,如图11所示,动力机构7设有四个,分别安装于轿厢1的相对两边,每边两个,对称分布。每个主动力机构上安装一个加速度传感器,实时监测齿轮72的震动情况,了解电梯各部件的工作情况,发现轨道和各轿厢1主动力机构的异常以及进行故障定位,便于及时维护和检修,保证电梯的安全。四个动力机构7中①号动力机构7的控制器连接电源正级,②号动力机构7的控制器连接电源负级,③号动力机构7的控制器连接信号线的正级,④号动力机构7的控制器连接信号线的负级。
如图18所示,本实施例中,系统还包括顶层轨道机构8,顶层轨道机构8位于楼层的顶层,顶层轨道机构8包括椭圆形闭合的顶层轨道81以及多个顶层托运车82,顶层轨道81与上行通道11和下行通道12衔接,顶层托运车82可滑动于顶层轨道81上,轿厢1通过顶层托运车82在各井道9之间切换位置。当上行的轿厢1通过上行通道11到达顶层后,由顶层托运车82转移到下行通道12,实现轿厢的循环运行。
本发明的系统还包括智能控制系统。智能控制系统包括重量检测模块、传感模块、处理模块和安全模块,重量检测模块安装于轿厢1上,用于记录各时间段、各楼层的轿厢重量,即客流量,并将数据传送给处理模块进行存储建立数据库。传感模块用于检测轿厢的运行速度、温度,并将检测到的数据传送至处理模块。处理模块根据数据库的数据分析确定人流高峰期和高频率楼层,来分配待运行的轿厢1数量,提高运送效率。当处理器判断系统出现故障时,对安全模块发出信号,安全模块减少放行的轿厢1数量。
处理模块控制轿厢1以及各个轨道在夜间或凌晨进行自检:轿厢1空载在轨道上完成一个完整的循环,保证每个轿厢1在每条轨道上都运行一次,整个系统的每个部分都工作一次。通过传感模块的传感器检测,掌握电梯的运行情况,发现系统的异常部件,排查安全问题。轿厢1并行包括上、下行轨道与上、下行乘客出入轨道的并行,各单元之间的并行以及上下并行。轿厢1在上/下运行轨道运行,当乘客按下呼叫按钮,轿厢1进入上/下行乘客出入轨道接送乘客,上/下运行行轨道内的其他轿厢照常运行;轿厢1在某一单元上、下乘客时,不对其他单元内的轿厢1运行产生影响;上行运行轨道与下行运行轨道独立,各轿厢1上行时,另一侧下行运行轨道内轿厢1的运行不受干扰。
某一处轨道出现故障后,电梯系统进入安全模式。安全模块减少放行的轿厢1数量,故障处附近切变轨道41或其他备用切变轨道41连通,备用出入口开放,轿厢1切变到其他轨道避开故障处,电梯系统持续运行。
双井道多轿厢并行电梯系统,在运行时,轨迹如图1所示,两个井道9内有多个轿厢1同时运行。
上行:当轿厢1在上行通道11内从1层载着乘客往上运行时,前一个轿厢1停在4层处上下乘客,该轿厢1运行至3层附近,切变轨道41展开,连通上行通道11和下行通道12,轿厢1进入下行通道12,3层处的切变轨道41收回,轿厢1在下行通道12内向上运行,6层处的切变轨道41展开,轿厢1沿切变轨道41回到上行通道11内,把乘客送到指定楼层。若途中受到其它轿厢的阻隔,则同样通过切变轨道41变换到下行通道12内避开堵塞轿厢1将所有乘客运送完毕后上行进入顶层轨道81,顶层托运车82内的齿条与上行通道11内的运行轨道对接,轿厢1驶入顶层托运车82。顶层托运车82沿顶层轨道81行驶,将轿厢1运送至下行通道12。
下行时:当轿厢1在下行通道12内从50层载着乘客往下运行时,前一个轿厢1停在46层处上下乘客,该轿厢1运行至47层附近,切变轨道41展开,连通上行通道11和下行通道12,轿厢1进上行通道11,47层处的切变轨道41收回,轿厢1在上行通道11内向下运行,44层处的切变轨道41展开,轿厢1沿切变轨道41回到下行通道12内,把乘客送到指定楼层。若途中受到其它轿厢的阻隔,则同样通过切变轨道41变换到上行通道11内避开堵塞;轿厢1持续下行装载乘客直至到达1层或者达到地下车库。确保轿厢1为空后继续下行至底层维护机构6,轿厢1在下行通道12口被转移托运车51沿环形轨道61运送到上行通道11上,上行抵达1层后,在电梯出入口装载乘客,继续向上运行,完成一个轿厢1的一次循环。轿厢1数量可根据实际要求进行调整,各轿厢1独立运行,互不干扰,周而复始。轿厢1出现故障后,可托运至维修轨道62,轿厢1的维修和维护工作在单独的维修轨道62内进行,避免对整体系统的运行造成干扰。
实施例2
图3和图4示出了本发明智能多轿厢电梯系统的第二种实施方式。本实施例与实施例1的区别在于,井道9设有三个。
本实施例中,井道9设有三个,包括上行通道11、下行通道12和辅助通道13,辅助通道13位于上行通道11和下行通道12之间,相邻的两个井道9之间设有切换机构4,轿厢1通过切换机构4切换于上行通道11和辅助通道13之间,或者切换于下行通道12和辅助通道13之间。
本实施例中,当所有切换轨道41均与运行轨道连接时,所有切换轨道41形成连续地“S”型且相邻切换轨道41的首尾连接。
本实施例中,轿厢1在上行或者下行过程中,当需要避开堵塞时,可以将上行或者下行的轿厢1通过切换轨道41切换到辅助通道13。
实施例3
图5和图6示出了本发明智能多轿厢电梯系统的第三种实施方式。本实施例与实施例1的区别在于,井道9设有四个。
本实施例中,井道9设有四个,依次包括上行通道11、辅助上行通道14、辅助下行通道15和下行通道12,相邻的两个井道9之间设有切换机构4,轿厢1通过切换机构4切换于上行通道11和辅助上行通道14之间、下行通道12和辅助下行通道15之间或者辅助上行通道14和辅助下行通道15之间。
本实施例中,相邻井道9内的切换机构4首尾衔接。
本实施例中,轿厢1在上行过程中,当需要避开堵塞时,可以将上行的轿厢1通过切换轨道41切换到辅助上行通道14。轿厢1在下行过程中,当需要避开堵塞时,可以将下行的轿厢1通过切换轨道41切换到辅助下行通道15。辅助上行通道14和辅助下行通道15之间只有在及其拥堵或者辅助上行通道14、辅助下行通道15其中一个通道出现轿厢1故障时才连通。
实施例4
图7和图8示出了本发明智能多轿厢电梯系统的第四种实施方式。本实施例与实施例1的区别在于,井道9设有六个。
本实施例中,井道9设有六个,依次包括上行通道11、辅助上行通道14、上行快速通道16、下行快速通道17、辅助下行通道15和下行通道12,相邻的两个井道9之间设有切换机构4,轿厢1通过切换机构4切换于相邻的井道9之间。
本实施例中,相邻井道9内的切换机构4首尾衔接。
本实施例中,轿厢1在上行过程中,当需要避开堵塞时,可以将上行的轿厢1通过切换轨道41切换到辅助上行通道14。轿厢1在下行过程中,当需要避开堵塞时,可以将下行的轿厢1通过切换轨道41切换到辅助下行通道15。如果有乘客从1楼上行到顶部楼层附近或者从顶部楼层附近下行到1层,就可以将轿厢1切换至上行快速通道16或下行快速通道17直接上行或者下行。上行快速通道16和下行快速通道17之间只有在及其拥堵或者上行快速通道16、下行快速通道17其中一个通道出现轿厢1故障时才连通。
实施例5
图21至图23示出了本发明智能多轿厢电梯系统的第五种实施方式。本实施例与实施例1的区别在于,切换机构4的结构不同。
每个轿厢1由四个动力单元,一个可申缩的滑轨44和一组滑轮45组成。轿厢1通过滑轮45固定在滑轨44上,并可以左右滑动,滑轨44可以申缩,实现不同轨道之间的切换,四个动力单元分为两组,在原轨道咬合使用其中一组,并提供提升动力,轨道切换过程中,另一组咬合目标轨道,咬合过程为无动力状态,咬合完成合,开始提供动力,承担轿厢1动力源,原动力单元停止提供动力,并释放原轨道咬合,收回滑轨44,完成轨道切换。
实施例6
图24至图27示出了本发明智能多轿厢电梯的第六种实施方式。本实施例的智能多轿厢电梯系统,包括主轨道机构2、副轨道机构3、切换机构4、转移机构5、底层维护机构6、动力机构7以及多个轿厢1。切换机构4衔接主轨道机构2和副轨道机构3,轿厢1通过切换机构4在主轨道机构2和副轨道机构3之间切换;转移机构5设于楼层位于地面上的第一层,多个轿厢1通过转移机构5移动于第一层的多个电梯口;底层维护机构6设于楼层位于地面下的地下室,底层维护机构6位于主轨道机构2和副轨道机构3的底部,底层维护机构6与第一层的每个电梯口连接;轿厢1通过动力机构7驱动做上下运动或切换运动;运行时,多个轿厢1同时在主轨道机构2内上行或下行,每个轿厢1通过切换机构4分别从主轨道机构2切换到副轨道机构3上、下乘客。
本实施例中,所有轨道成对布设。
本实施例中,主轨道机构2和副轨道机构3按楼层层数分为n个单元,每个单元的楼层数根据实际应用情况而定。每个单元的上端和下端设置切换机构4,上端和下端的切换轨道41对称布置。
本实施例中,主轨道机构2包括上行主轨道21和下行主轨道22,副轨道机构3包括上行副轨道31和下行副轨道32,上行副轨道31和下行副轨道32位于上行主轨道21和下行主轨道22之间,楼层位于上行副轨道31和下行副轨道32之间。多个轿厢1可以同时在上行主轨道21和下行主轨道22上运行。
本实施例中,切换机构4包括多个切换轨道41和切换驱动42。切换轨道41呈弧形,两端为斜角状,并沿轿厢1上行或下行方向切换轨道41成对间隔设置。切换轨道41成对使用时,其中一个切换轨道41位于上行主轨道21中间或下行主轨道22中间,另一个切换轨道41位于上行副轨道31中间或下行副轨道32中间,每个切换轨道41设置一个切换驱动42,切换轨道41的中间通过铰链铰接于井道。切换驱动42采用液压千斤顶。如图16(a)和图16(b)所示,切换轨道41通过液压千斤顶带动旋转,展开时连接主轨道机构2和副轨道机构3,旋转收回时远离主轨道机构2和副轨道机构3,竖直固定在主轨道机构2和副轨道机构3的井道内。
本实施例中,上行主轨道21、下行主轨道22、上行副轨道31、下行副轨道32和切换轨道41均为齿条轨道,齿条轨道由钢架23、固定槽24和齿条25构成,钢架23一侧布设齿条25,另一侧布设固定槽24,齿条25和动力机构7啮合,固定槽24和动力机构7咬合。电梯供电、信号轨道安装在固定槽24的一侧。每根齿条轨道安装两条供电/信号线轨道,分别与动力机构7相连。
如图17(a)~图17(c)所示,当轿厢1要从主轨道机构2切变到副轨道机构3时,动力机构7接收到控制信号,液 压千斤顶作用在切变轨道41的变轨支点上,推动切变轨道41展开,连通主轨道机构2和副轨道机构3。轿厢1进入副轨道机构3后,液压千斤顶逐渐减少施加在切变轨道41上的推力,切变轨道41收回,主轨道机构2和副轨道机构3恢复正常运行。
本实施例中,转移机构5包括转移托运车51和多个转移轨道52,第一层设有多个电梯口,多个电梯口分两排布置,每个电梯口设置一个转移托运车51,主轨道机构2衔接于转移轨道52的中间,转移托运车51在转移轨道52上移动,每个转移托运车51通过转移轨道52与主轨道机构2连接,轿厢1通过转移托运车51运送到每个电梯口。转移托运车51的底部设有万向行走轮,可在多个方向上运动,转弯时轿厢1不转动,轿厢1在两条垂直方向的轨道上转移时保持平动。轿厢1上行时由转移托运车51从各电梯口沿转移轨道52运送至上行主轨道21上行,下行轿厢1沿下行主轨道22到达第一层后,由转移托运车51托运至各电梯口下卸乘客。
本实施例中,底层维护机构6包括环形轨道61和转移托运车51,主轨道机构2与环形轨道61的中间连接。下行轿厢1在第一层停靠完毕后沿第一层继续下行到地下室的环形轨道61。到达地下室后,轿厢1从轨道口被转移托运车51沿环形轨道61运送到另一侧的环形轨道61上,并随机派送至各上行通道。
本实施例中,底层维护机构6还包括维修轨道62,维修轨道62设有两个,且分别垂直于环形轨道61的两侧设置。轿厢1出现故障或需要检修维护时,被托运至维修轨道62,对其它轿厢1的运行不造成干扰。
本实施例中,转移轨道52、环形轨道61和维修轨道62均为齿条轨道,齿条轨道由钢架23、固定槽24和齿条25构成,钢架23一侧布设齿条25,另一侧布设固定槽24,齿条25和动力机构7啮合,固定槽24和动力机构7咬合。
本实施例中,动力机构7包括主动力机构和切换动力机构。主动力机构包括电机71、齿轮72、爬行轴承73、支撑板74和安装架75,安装架75为“∟”型钢板,支撑板74安装于安装架75的一边,支撑板74与安装架75之间设有减震器741。电机71和爬行轴承73安装于支撑板74上,齿轮72通过电机71驱动,齿轮72与齿条25啮合,爬行轴承73与固定槽24咬合。齿轮72的传动杆一侧安装稳定轴承,保证运行过程的平稳。支撑板74上位于爬行轴承73的两端设置控制器,接收电源和信号。
切换动力机构包括滚轴导轨76、弹簧77和限位装置,安装架75的另一边固定于滚轴导轨76的滑杆761上,滚轴导轨76的滑块762固定于轿厢1上,滑杆761滑设于滑块762中;弹簧77的一端通过一弹簧固定板771固定与轿厢1上,另一端与限位装置固定连接,限位装置与滑杆761连接,限位装置控制滑杆761滑动或固定,确保安全变轨。
本实施例中,限位装置包括轨道切变锁止器78和推动块79,轨道切变锁止器78安装于轿厢1上,推动块79固定于滑杆761上,弹簧77的另一端固定于推动块79上,轨道切变锁止器78位于推动块79与弹簧77连接的一侧,轨道切变锁止器78限制推动块79移动。
切换动力机构设有两个,安装架75固定于两个滑杆761上,滑块762设有四件,每个滑杆761上设置两件,安装架75位于两个滑块762之间。滑杆761的移动带主动力机构。变轨时触发轨道切变锁止器78,解除对滑杆761的锁定,切变轨道41对齿轮72和爬行轴承73的压力推动整个主动力机构的滑动,主动力机构推动弹簧77压缩,切换动力机构在切变轨道41斜角段的行程上完成收缩。轿厢1运行到切变轨道41另一端的斜角处时,轨道对切换动力机构的压力逐渐减小,主动力机构推动弹簧77伸长,推动主动力机构恢复到原来位置。
本实施例中,动力机构7设有四个,分别安装于轿厢1的相对两边,每边两个,对称分布。每个主动力机构上安装一个加速度传感器,实时监测齿轮72的震动情况,了解电梯各部件的工作情况,发现轨道和各轿厢1主动力机构的异常以及进行故障定位。四个动力机构7中①号动力机构7的控制器连接电源正级,②号动力机构7的控制器连接电源负级,③号动力机构7的控制器连接信号线的正级,④号动力机构7的控制器连接信号线的负级。
本实施例中,电梯还包括顶层轨道机构8,顶层轨道机构8包括椭圆形闭合的顶层轨道81以及多个顶层托运车82,顶层轨道81与主轨道机构2、副轨道机构3连接,顶层托运车82可滑动于顶层轨道81上,主轨道机构2、副轨道机构3通过顶层托运车82衔接。当上行轿厢1通过上行副轨道31到达顶层后,由顶层托运车82转移到下行副轨道32,实现电梯循环。
每个单元设有4层,底部单元从2层开始设置,以1~5层为例来说明本实施例智能多轿厢电梯的运行方法。
当1层有前往2~5层的乘客时,轿厢1在上行主轨道21运行至7层附近,切换轨道41展开,连通上行主轨道21和上行副轨道31,轿厢1进入上行副轨道31,从5层依次向下停靠上、下乘客,切换轨道41收回。停靠完毕后,2层处的切换轨道41展开,轿厢1回到上行主轨道21继续上行,到达下一个单元上、下乘客,直至最顶部一个单元。如图24所示,当轿厢1在运行单元内上、下乘客完毕,运行到n层的切变轨道41处时,再次通过切变轨道41进入上行副轨道31,运送到达最顶部单元的乘客。所有乘客运送完毕后,轿厢1在n-3层处切变到上行主轨道21,上行进入顶层轨道81。顶层托运车82内的齿条与上行主轨道21对接,轿厢1驶入顶层托运车82,被运送至下行副轨道32。轿厢1下行至n-1层,进入切变轨道41完成一个单元内的运行。持续下行结束最后一个单元的行程到达1层。轿厢1运行到下行副轨道32处,由转移托运车51转移到1层电梯口下放乘客。确保轿厢1为空后沿第一层到地下室的通道继续下行。轿厢1从轨道口被转移托运车51沿环形轨道61运送到另一侧的轨道上,随机派送至各上行到第一层的通道。如图所示,抵达第一层后,轿厢1在电梯口装载乘客,沿转移轨道52托运到上行主轨道21,继续向上运行,完成一次循环。轿厢1数量可根据实际要求进行调整,各轿厢1独立运行,互不干扰,周而复始。轿厢1出现故障后,可托运至维修轨道62,其它轿厢1的运行不受干扰。
以一栋80层的建筑为例,设定每个轿厢1限载10人,每个单元由4层组成,每个轿厢1停靠两个单元。根据各项参数,设计电梯最高运行速度为4m/s,则紧急制动加速度约为5m/s 2,各轿厢1的最小安全距离约为4m。一般电梯开关门时间均为2s,每人出入电梯的时间为1s,在满载的情况下,电梯上客时间为14s,下客时间为42s,轨道切换需要10s,轿厢1在主轨道机构2运行80s,在副轨道机构3运行16s,因此一个轿厢1从第第一层运行到最上面两个单元耗时约162s,乘客到达目的楼层平均所需时间为94s,每两秒可安全上行一个轿厢1,则5分钟可运行150个/次,最大运载量可达1500人/次。
实施例7
图28至图33示出了本发明智能多轿厢电梯的第七种实施方式。
本实施例中,主轨道机构2和副轨道机构3按楼层层数分为n个单元,各单元包括的楼层可根据实际需求确定,每个单元均设置切换机构4。
本实施例中,主轨道机构2包括上行主链条轨道26和下行主链条轨道27,上行主链条轨道26和下行主链条轨道27上均固定设有多个轿厢提升平台28,每层设置一个轿厢提升平台28。每个轿厢1对应一个轿厢提升平台28,轿厢1在主轨道机构2时通过轿厢提升平台28做升降运动。轿厢提升平台28上设有定位凹槽281,轿厢1的底部设有与定位凹槽281配合定位的定位凸起。
本实施例中,主轨道机构2还包括辅助固定导轨29,轿厢1上设有稳定支撑架11,稳定支撑架11一端与轿厢1铰接,另一端与辅助固定导轨29配合连接,稳定支撑架11沿辅助固定导轨29滑动,稳定支撑架11通过气缸驱动转动与辅助固定导轨29连接或离开辅助固定导轨29。运行时轿厢1上的稳定支撑架11与辅助固定导轨29咬合,保证轿厢1的平稳运行,轿厢1要离开主轨道机构2时,稳定支撑架11向上旋转90°解除与辅助固定导轨29的锁定。
本实施例中,上行主链条轨道26和下行主链条轨道27设有四个,分别分布于轿厢1的四个角,每个上行主链条轨道26或下行主链条轨道27相应配设一个辅助固定导轨29。
本实施例中,副轨道机构3分为上行副机构和下行副机构,上行副机构和下行副机构位于上行主链条轨道26和下行主链条轨道27之间,楼层位于上行副机构和下行副机构之间,副轨道机构3包括曳引装置,每个单元设置一个曳引装置,曳引装置包括曳引箱33、曳引绳34和吊箱35,曳引箱33固定于每个单元的顶部,曳引绳34一端绕设于曳引箱33,另一端与吊箱35固定连接,吊箱35面对轿厢提升平台28的一侧设有轿厢1的进出口,曳引箱33通过曳引绳34带动吊箱35做升降运动。副轨道机构3还包括配重块36,配重块36和曳引绳34的一端固定连接。
本实施例中,切换机构4包括跳板43,跳板43铰接于吊箱35的侧面,跳板43通过气缸驱动转动贴紧吊箱35或者展开与轿厢提升平台28衔接。
本实施例中,轿厢提升平台28和吊箱35分别设有液压千斤顶,可推动轿厢1在主轨道机构2和副轨道机构3内的切换。
本实施例中,转移机构5包括转移托运车51、多个转移轨道52和辅助转移井道53,第一层设有多个电梯口,多个电梯口分两排布置,所有电梯口的电梯门不全相对设置,主轨道机构2和副轨道机构3垂直位于两排电梯口之间,副轨道机构3位于上行主链条轨道26和下行主链条轨道27之间;辅助转移井道53设有两个,分别位于上行主链条轨道26和下行主链条轨道27的外侧;每个电梯口设置一个转移托运车51,副轨道机构3和电梯口之间或者通过辅助转移井道53和电梯口之间都通过转移轨道52衔接,转移托运车51在转移轨道52上移动,轿厢1通过转移托运车51运送到每个电梯口。
本实施例中,辅助转移井道53位于最底部的楼层单元,辅助转移井道53内设有曳引装置和切换机构4。
本实施例中,电梯还包括顶层轨道机构8,顶层轨道机构8包括椭圆形闭合的顶层轨道81、两个辅助提升井道83和至少一个顶层托运车82,顶层托运车82滑设于顶层轨道81上,上行副机构、下行副机构和辅助提升井道83通过顶层托运车82衔接。
本实施例中,辅助提升井道83设有两个,位于最顶部的楼层单元,辅助提升井道83位于主轨道机构2外侧,辅助提升井道83内设有曳引装置和切换机构4。
如图28和图29所示,轿厢1在上行主链条轨道26内匀速上行,当有n层~n+3层有乘客呼叫或轿厢1内有乘客到达n层~n+3层时,上行副机构内的吊箱35加速到与上行主链条轨道26相同的速度,跳板43展开与轿厢提升平台28连通锁定,稳定支撑架11向上旋转解除与辅助固定导轨29的锁定,轿厢1从轿厢提升平台28被推动到吊箱35内,跳板43收回,轿厢1被提升到n+3层后,依次向下运行,上、下乘客。n层上下乘客完毕后,吊箱35加速到与上行主链条轨道26保持相对静止,跳板43展开,轿厢1被推回主轨道机构2内,与辅助固定导轨29锁定,继续上行到其它单元。下行时运行方法相同。
如图30所示,轿厢1运行到接近顶层的单元时,若顶层单元内没有乘客呼叫电梯且轿厢1内没有到达顶层单元的乘客,则轿厢1进入上行的辅助提升井道83,被提升到顶层轨道81内,由顶层托运车82运送到下行的辅助提升井道83,然后切变到下行主链条轨道27内下行;若顶层单元内有乘客呼叫电梯或轿厢1内有到达顶层单元的乘客,轿厢1进入上行副机构运送乘客,运送完毕确保轿厢1为空后,轿厢1在上行副机构内被提升到顶层轨道81。
如图31所示,轿厢1下行到最下面的单元时,轿厢1内没有到达最下面单元的乘客,则轿厢1进入下行的辅助转移井道53运行到达第一层;若轿厢1内有到达最下面单元的乘客,轿厢1进入下行副机构运送乘客,然后到达第一层。
实施例8
本发明智能多轿厢电梯的第八种实施方式是采用直线电机作为动力机构。
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (57)

  1. 一种智能多轿厢电梯系统,其特征在于,包括至少两个井道(9)、切换机构(4)、动力机构(7)以及多个轿厢(1),所述井道(9)内设有轿厢(1)行走的轨道,相邻所述井道(9)之间设有切换机构(4),所述轿厢(1)通过切换机构(4)在相邻井道(9)之间切换位置;所述轿厢(1)通过动力机构(7)驱动在井道(9)内或者井道(9)之间做上行、下行运动或切换运动,所述轿厢(1)通过动力机构(7)驱动停靠于任意楼层上客或者下客。
  2. 根据权利要求1所述的智能多轿厢电梯系统,其特征在于,所述系统包括至少两个相邻的井道(9),所述多个轿厢(1)可同时在井道(9)内进行上行或者下行运动;每层楼层均设有切换机构(4)。
  3. 根据权利要求2所述的智能多轿厢电梯系统,其特征在于,所述至少两个井道(9)中,至少一个为上行通道(11),至少一个为下行通道(12);每层楼层分别设有上行电梯出入口和下行电梯出入口,所述上行电梯出入口和下行电梯出入口分别位于井道(9)的两侧。
  4. 根据权利要求2所述的智能多轿厢电梯系统,其特征在于,每个所述井道(9)内均设有运行轨道,所述轿厢(1)通过动力机构(7)的驱动沿运行轨道上行或者下行。
  5. 根据权利要求4所述的智能多轿厢电梯系统,其特征在于,所述切换机构(4)包括切换轨道(41),所述切换轨道(41)铰接于井道(9)内,所述切换轨道(41)沿井道(9)的长度方向设有多个,上下相邻的切换轨道(41)首尾衔接,每个楼层均设置切换轨道(41)。
  6. 根据权利要求5所述的智能多轿厢电梯系统,其特征在于,所述切换机构(4)还包括切换驱动(42),所述切换轨道(41)成对设置,每个切换轨道(41)设置一个切换驱动(42),所述切换轨道(41)的中间铰接于井道,所述切换轨道(41)通过切换驱动(42)带动旋转与相邻井道(9)内的轨道连接或者断开。
  7. 根据权利要求6所述的智能多轿厢电梯系统,其特征在于,所述切换轨道(41)为弧形。
  8. 根据权利要求6所述的智能多轿厢电梯系统,其特征在于,所述切换驱动(42)为液压千斤顶,所述液压千斤顶固定于井道(9)内。
  9. 根据权利要求5所述的智能多轿厢电梯系统,其特征在于,所述运行轨道和切换轨道(41)均为齿条轨道,所述齿条轨道由钢架(23)、固定槽(24)和齿条(25)构成,所述钢架(23)一侧布设齿条(25),另一侧布设固定槽(24),所述齿条(25)和动力机构(7)啮合,所述固定槽(24)和动力机构(7)咬合。
  10. 根据权利要求2所述的智能多轿厢电梯系统,其特征在于,所述系统还包括转移机构(5),楼层的第一层设有多个电梯出入口,所述转移机构(5)设于第一层,多个所述轿厢(1)通过转移机构(5)移动于多个电梯出入口之间。
  11. 根据权利要求10所述的智能多轿厢电梯系统,其特征在于,所述转移机构(5)包括转移托运车(51)和多个转移轨道(52),每个电梯出入口对应一个转移托运车(51),所述井道(9)衔接于多个电梯出入口的侧面,所述转移托运车(51)在转移轨道(52)上移动,所述轿厢(1)通过转移托运车(51)在电梯出入口和井道(9)之间做移动。
  12. 根据权利要求10所述的智能多轿厢电梯系统,所述系统还包括底层维护机构(6),所述底层维护机构(6)位于楼层的第一层下方的底层,所述底层维护机构(6)包括环形轨道(61)和转移托运车(51),所述井道(9)位于环形轨道(61)上,所述轿厢(1)沿井道(9)下行至环形轨道(61),所述轿厢(1)通过转移托运车(51)在环形轨道(61)上移动,所述轿厢(1)不运行时停放在环形轨道(61)上。
  13. 根据权利要求12所述的智能多轿厢电梯系统,其特征在于,所述底层维护机构(6)还包括维修轨道(62),所述维修轨道(62)与环形轨道(61)的两侧连通。
  14. 根据权利要求13所述的智能多轿厢电梯系统,其特征在于,所述转移轨道(52)、环形轨道(61)和维修轨道(62)均为齿条轨道,所述齿条轨道由钢架(23)、固定槽(24)和齿条(25)构成,所述钢架(23)一侧布设齿条(25),另一侧布设固定槽(24),所述齿条(25)和动力机构(7)啮合,所述固定槽(24)和动力机构(7)咬合。
  15. 根据权利要求12所述的智能多轿厢电梯系统,其特征在于,所述转移托运车(51)的底部设有万向行走轮。
  16. 根据权利要求9或15所述的智能多轿厢电梯系统,其特征在于,所述动力机构(7)包括主动力机构和切换动力机构,所述主动力机构包括电机(71)、齿轮(72)、爬行轴承(73)、支撑板(74)和安装架(75),所述支撑板(74)安装于安装架(75)上,所述电机(71)和爬行轴承(73)安装于支撑板(74)上,所述齿轮(72)通过电机(71)驱动,所述齿轮(72)与齿条(25)啮合,所述爬行轴承(73)与固定槽(24)咬合;所述切换动力机构包括滚轴导轨(76)、弹簧(77)和限位装置,所述安装架(75)固定于滚轴导轨(76)的滑杆(761)上,所述滚轴导轨(76)的滑块(762)固定于轿厢(1)上,所述滑杆(761)滑设于滑块(762)中;所述弹簧(77)的一端通过一弹簧固定板(771)固定与轿厢(1)上,另一端与限位装置固定连接,所述限位装置与滑杆(761)连接,所述限位装置控制滑杆(761)滑动或固定。
  17. 根据权利要求16所述的智能多轿厢电梯系统,其特征在于,所述支撑板(74)与安装架(75)之间设有减震器(741)。
  18. 根据权利要求16所述的智能多轿厢电梯系统,其特征在于,所述限位装置包括轨道切变锁止器(78)和推动块(79), 所述轨道切变锁止器(78)安装于轿厢(1)上,所述推动块(79)固定于滑杆(761)上,所述弹簧(77)的另一端固定于推动块(79)上,所述轨道切变锁止器(78)位于推动块(79)与弹簧(77)连接的一侧,所述轨道切变锁止器(78)限制推动块(79)移动。
  19. 根据权利要求16所述的智能多轿厢电梯系统,其特征在于,所述动力机构(7)设有四个,分别安装于轿厢(1)的相对两边,每边两个,对称分布。
  20. 根据权利要求2所述的智能多轿厢电梯系统,其特征在于,所述系统还包括顶层轨道机构(8),所述顶层轨道机构(8)位于楼层的顶层,所述顶层轨道机构(8)包括椭圆形闭合的顶层轨道(81)以及多个顶层托运车(82),所述顶层轨道(81)与井道(9)衔接,所述顶层托运车(82)可滑动于顶层轨道(81)上,所述轿厢(1)通过顶层托运车(82)在各井道(9)之间切换位置。
  21. 根据权利要求3所述的智能多轿厢电梯系统,其特征在于,所述井道(9)设有两个,其中一个为上行通道(11),另一个为下行通道(12),所述切换机构(4)设于两个井道(9)之间,所述轿厢(1)通过切换机构(4)切换于上行通道(11)或者下行通道(12)之间。
  22. 根据权利要求3所述的智能多轿厢电梯系统,其特征在于,所述井道(9)设有三个,包括上行通道(11)、下行通道(12)和辅助通道(13),所述辅助通道(13)位于上行通道(11)和下行通道(12)之间,相邻的两个所述井道(9)之间设有切换机构(4),所述轿厢(1)通过切换机构(4)切换于上行通道(11)和辅助通道(13)之间,或者切换于下行通道(12)和辅助通道(13)之间。
  23. 根据权利要求22所述的智能多轿厢电梯系统,其特征在于,所述上行通道(11)和辅助通道(13)之间的切换机构(4)与下行通道(12)和辅助通道(13)之间的切换机构(4)首尾衔接。
  24. 根据权利要求3所述的智能多轿厢电梯系统,其特征在于,所述井道(9)设有四个,依次包括上行通道(11)、辅助上行通道(14)、辅助下行通道(15)和下行通道(12),相邻的两个所述井道(9)之间设有切换机构(4),所述轿厢(1)通过切换机构(4)切换于上行通道(11)和辅助上行通道(14)之间、下行通道(12)和辅助下行通道(15)之间或者辅助上行通道(14)和辅助下行通道(15)之间。
  25. 根据权利要求24所述的智能多轿厢电梯系统,其特征在于,相邻所述井道(9)内的切换机构(4)首尾衔接。
  26. 根据权利要求3所述的智能多轿厢电梯系统,其特征在于,所述井道(9)设有六个,依次包括上行通道(11)、辅助上行通道(14)、上行快速通道(16)、下行快速通道(17)、辅助下行通道(15)和下行通道(12),相邻的两个所述井道(9)之间设有切换机构(4),所述轿厢(1)通过切换机构(4)切换于相邻的井道(9)之间。
  27. 根据权利要求4所述的智能多轿厢电梯系统,其特征在于,所述切换机构(4)包括滑轮(45)和滑轨组件,所述滑轨组件由至少两件套设地滑轨(44)组成,所有所述滑轨(44)的长度等于或大于相邻井道(9)的宽度,所述滑轨(44)通过滑轨驱动相对其它滑轨(44)滑动伸出或收回,所述滑轮(45)滑设于滑轨(44)上。
  28. 根据权利要求1所述的智能多轿厢电梯系统,其特征在于,所述系统还包括主轨道机构(2)、副轨道机构(3)、转移机构(5)、底层维护机构(6),所述切换机构(4)衔接主轨道机构(2)和副轨道机构(3),所述轿厢(1)通过切换机构(4)在主轨道机构(2)和副轨道机构(3)之间切换;所述转移机构(5)设于楼层位于地面上的第一层,多个所述轿厢(1)通过转移机构(5)移动于第一层的多个电梯口;所述底层维护机构(6)设于楼层位于地面下的地下室,所述底层维护机构(6)位于主轨道机构(2)和副轨道机构(3)的底部,所述底层维护机构(6)与第一层的每个电梯口连接;所述轿厢(1)通过动力机构(7)驱动做上下运动或切换运动;运行时,所述多个轿厢(1)同时在主轨道机构(2)内上行或下行,每个所述轿厢(1)通过切换机构(4)分别从主轨道机构(2)切换到副轨道机构(3)上、下乘客。
  29. 根据权利要求28所述的智能多轿厢电梯系统,其特征在于,所述主轨道机构(2)包括上行主轨道(21)和下行主轨道(22),所述副轨道机构(3)包括上行副轨道(31)和下行副轨道(32),所述上行副轨道(31)和下行副轨道(32)位于上行主轨道(21)和下行主轨道(22)之间,楼层进出通道位于上行副轨道(31)和下行副轨道(32)之间。
  30. 根据权利要求29所述的智能多轿厢电梯系统,其特征在于,所述切换机构(4)包括多个弧形的切换轨道(41)和切换驱动(42),沿轿厢(1)上行或下行方向所述切换轨道(41)成对间隔设置;成对使用时,其中一个切换轨道(41)位于上行主轨道(21)中间或下行主轨道(22)中间,另一个切换轨道(41)位于上行副轨道(31)中间或下行副轨道(32)中间,每个切换轨道(41)设置一个切换驱动(42),所述切换轨道(41)的中间铰接于井道,所述切换轨道(41)通过切换驱动(42)带动旋转连接主轨道机构(2)和副轨道机构(3)或者远离主轨道机构(2)和副轨道机构(3)。
  31. 根据权利要求30所述的智能多轿厢电梯系统,其特征在于,所述主轨道机构(2)和副轨道机构(3)按楼层层数分为n个单元,每个单元的上端和下端设置切换机构(4),上端和下端的切换轨道(41)对称布置。
  32. 根据权利要求30所述的智能多轿厢电梯系统,其特征在于,所述上行主轨道(21)、下行主轨道(22)、上行副轨道(31)、下行副轨道(32)和切换轨道(41)均为齿条轨道,所述齿条轨道由钢架(23)、固定槽(24)和齿条(25)构成,所述钢架(23)一侧布设齿条(25),另一侧布设固定槽(24),所述齿条(25)和动力机构(7)啮合,所述固定槽(24)和动力机构(7)咬合。
  33. 根据权利要求28所述的智能多轿厢电梯系统,其特征在于,所述转移机构(5)包括转移托运车(51)和多个转移轨道(52),第一层设有多个电梯口,多个所述电梯口分两排布置,每个电梯口设置一个转移托运车(51),所述主轨道机构(2)衔接于转移轨道(52)的中间,所述转移托运车(51)在转移轨道(52)上移动,每个所述转移托运车(51)通过转移轨道(52)与主轨道机构(2)连接,所述轿厢(1)通过转移托运车(51)运送到每个电梯口。
  34. 根据权利要求33所述的智能多轿厢电梯系统,其特征在于,所述底层维护机构(6)包括环形轨道(61)和转移托运车(51),所述井道(9)位于环形轨道(61)上,所述轿厢(1)沿井道(9)下行至环形轨道(61),所述轿厢(1)通过转移托运车(51)在环形轨道(61)上移动,所述轿厢(1)不运行时停放在环形轨道(61)上。
  35. 根据权利要求34所述的智能多轿厢电梯系统,其特征在于,所述底层维护机构(6)还包括维修轨道(62),所述维修轨道(62)设有两个,且分别环形轨道(61)设置。
  36. 根据权利要求35所述的智能多轿厢电梯系统,其特征在于,所述转移轨道(52)、环形轨道(61)和维修轨道(62)均为齿条轨道,所述齿条轨道由钢架(23)、固定槽(24)和齿条(25)构成,所述钢架(23)一侧布设齿条(25),另一侧布设固定槽(24),所述齿条(25)和动力机构(7)啮合,所述固定槽(24)和动力机构(7)咬合。
  37. 根据权利要求33所述的智能多轿厢电梯系统,其特征在于,所述转移托运车(51)的底部设有万向行走轮。
  38. 根据权利要求32或36所述的智能多轿厢电梯系统,其特征在于,所述动力机构(7)包括主动力机构和切换动力机构,所述主动力机构包括电机(71)、齿轮(72)、爬行轴承(73)、支撑板(74)和安装架(75),所述支撑板(74)安装于安装架(75)上,所述电机(71)和爬行轴承(73)安装于支撑板(74)上,所述齿轮(72)通过电机(71)驱动,所述齿轮(72)与齿条(25)啮合,所述爬行轴承(73)与固定槽(24)咬合;所述切换动力机构包括滚轴导轨(76)、弹簧(77)和限位装置,所述安装架(75)固定于滚轴导轨(76)的滑杆(761)上,所述滚轴导轨(76)的滑块(762)固定于轿厢(1)上,所述滑杆(761)滑设于滑块(762)中;所述弹簧(77)的一端通过一弹簧固定板(771)固定与轿厢(1)上,另一端与限位装置固定连接,所述限位装置与滑杆(761)连接,所述限位装置控制滑杆(761)滑动或固定。
  39. 根据权利要求38所述的智能多轿厢电梯系统,其特征在于,所述支撑板(74)与安装架(75)之间设有减震器(741)。
  40. 根据权利要求38所述的智能多轿厢电梯系统,其特征在于,所述限位装置包括轨道切变锁止器(78)和推动块(79),所述轨道切变锁止器(78)安装于轿厢(1)上,所述推动块(79)固定于滑杆(761)上,所述弹簧(77)的另一端固定于推动块(79)上,所述轨道切变锁止器(78)位于推动块(79)与弹簧(77)连接的一侧,所述轨道切变锁止器(78)限制推动块(79)移动。
  41. 根据权利要求38所述的智能多轿厢电梯系统,其特征在于,所述动力机构(7)设有四个,分别安装于轿厢(1)的相对两边,每边两个,对称分布。
  42. 根据权利要求28所述的智能多轿厢电梯系统,其特征在于,所述电梯还包括顶层轨道机构(8),所述顶层轨道机构(8)包括椭圆形闭合的顶层轨道(81)以及多个顶层托运车(82),所述顶层轨道(81)与主轨道机构(2)、副轨道机构(3)连接,所述顶层托运车(82)可滑动于顶层轨道(81)上,所述主轨道机构(2)、副轨道机构(3)通过顶层托运车(82)衔接。
  43. 根据权利要求28所述的智能多轿厢电梯系统,其特征在于,所述主轨道机构(2)和副轨道机构(3)按楼层层数分为n个单元,每个单元均设置切换机构(4)。
  44. 根据权利要求43所述的智能多轿厢电梯系统,其特征在于,所述主轨道机构(2)包括上行主链条轨道(26)和下行主链条轨道(27),所述上行主链条轨道(26)和下行主链条轨道(27)上均固定设有多个轿厢提升平台(28),每个轿厢(1)对应一个轿厢提升平台(28);所述轿厢(1)在主轨道机构(2)时通过轿厢提升平台(28)做升降运动。
  45. 根据权利要求44所述的智能多轿厢电梯系统,其特征在于,所述副轨道机构(3)分为上行副机构和下行副机构,上行副机构和下行副机构位于上行主链条轨道(26)和下行主链条轨道(27)之间,楼层进出通道位于上行副机构和下行副机构之间,所述副轨道机构(3)包括曳引装置,每个单元设置一个曳引装置,所述曳引装置包括曳引箱(33)、曳引绳(34)和吊箱(35),所述曳引箱(33)固定于每个单元的顶部,所述曳引绳(34)一端绕设于曳引箱(33),另一端与吊箱(35)固定连接,所述吊箱(35)面对轿厢提升平台(28)的一侧设有轿厢(1)的进出口,所述曳引箱(33)通过曳引绳(34)带动吊箱(35)做升降运动。
  46. 根据权利要求45所述的智能多轿厢电梯系统,其特征在于,所述切换机构(4)包括跳板(43),所述跳板(43)铰接于吊箱(35)的侧面,所述跳板(43)通过气缸驱动转动贴紧吊箱(35)或者与轿厢提升平台(28)衔接。
  47. 根据权利要求45所述的智能多轿厢电梯系统,其特征在于,所述副轨道机构(3)还包括配重块(36),所述配重块(36)和曳引绳(34)的一端固定连接。
  48. 根据权利要求45所述的智能多轿厢电梯系统,其特征在于,所述轿厢提升平台(28)上设有定位凹槽(281),所述轿厢(1)的底部设有与定位凹槽(281)配合定位的定位凸起。
  49. 根据权利要求45所述的智能多轿厢电梯系统,其特征在于,所述轿厢提升平台(28)和吊箱(35)分别设有推动轿厢(1)移动的液压千斤顶。
  50. 根据权利要求45所述的智能多轿厢电梯系统,其特征在于,所述主轨道机构(2)还包括辅助固定导轨(29),所述轿厢(1)上设有稳定支撑架(18),所述稳定支撑架(18)一端与轿厢(1)铰接,另一端与辅助固定导轨(29)配合连接,所述稳定支撑架(18)沿辅助固定导轨(29)滑动,所述稳定支撑架(18)通过气缸驱动转动与辅助固定导轨(29)连接或离开辅助固定导轨(29)。
  51. 根据权利要求50所述的智能多轿厢电梯系统,其特征在于,所述上行主链条轨道(26)和下行主链条轨道(27)设有四个,分别分布于轿厢(1)的四个角,每个所述上行主链条轨道(26)或下行主链条轨道(27)相应配设一个辅助固定导轨(29)。
  52. 根据权利要求46所述的智能多轿厢电梯系统,其特征在于,所述转移机构(5)包括转移托运车(51)、多个转移轨道(52)和辅助转移井道(53),第一层设有多个电梯口,多个所述电梯口分两排布置,所有电梯口的电梯门不全相对设置,所述主轨道机构(2)和副轨道机构(3)垂直位于两排电梯口之间,所述副轨道机构(3)位于上行主链条轨道(26)和下行主链条轨道(27)之间;所述辅助转移井道(53)设有两个,分别位于上行主链条轨道(26)和下行主链条轨道(27)的外侧;所述每个电梯口设置一个转移托运车(51),所述副轨道机构(3)和电梯口之间或者通过辅助转移井道(53)和电梯口之间都通过转移轨道(52)衔接,所述转移托运车(51)在转移轨道(52)上移动,所述轿厢(1)通过转移托运车(51)运送到每个电梯口。
  53. 根据权利要求52所述的智能多轿厢电梯系统,其特征在于,所述辅助转移井道(53)位于最底部的楼层单元,所述辅助转移井道(53)内设有曳引装置和切换机构(4)。
  54. 根据权利要求45所述的智能多轿厢电梯系统,其特征在于,所述电梯还包括顶层轨道机构(8),所述顶层轨道机构(8)包括椭圆形闭合的顶层轨道(81)、两个辅助提升井道(83)和至少一个顶层托运车(82),所述顶层托运车(82)滑设于顶层轨道(81)上,所述上行副机构、下行副机构和辅助提升井道(83)通过顶层托运车(82)衔接。
  55. 根据权利要求54所述的智能多轿厢电梯系统,其特征在于,所述辅助提升井道(83)设有两个,位于最顶部的楼层单元,所述辅助提升井道(83)位于主轨道机构(2)外侧,所述辅助提升井道(83)内设有曳引装置和切换机构(4)。
  56. 根据权利要求44~55任一项所述的智能多轿厢电梯系统,其特征在于,所述每一层都设有轿厢提升平台(28)。
  57. [根据细则26改正26.03.2018]
    根据权利要求1所述的智能多轿厢电梯系统,其特征在于,所述系统还包括智能控制系统,智能控制系统包括重量检测模块、传感模块、处理模块和安全模块;
    重量检测模块安装于轿厢(1)上,用于记录各时间段、各楼层的轿厢重量,并将数据传送给处理模块进行存储建立数据库;
    传感模块用于检测轿厢的运行速度、温度,并将检测到的数据传送至处理模块;
    处理模块根据数据库的数据分析确定人流高峰期和高频率楼层,来分配待运行的轿厢(1)数量;
    当处理器判断系统出现故障时,对安全模块发出信号,安全模块减少放行的轿厢(1)数量。
PCT/CN2018/076634 2017-08-19 2018-02-13 智能多轿厢电梯系统 WO2019037399A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18849034.6A EP3670418A4 (en) 2017-08-19 2018-02-13 MULTI-CABIN INTELLIGENT ELEVATOR SYSTEM
JP2020529790A JP6952244B2 (ja) 2017-08-19 2018-02-13 インテリジェントマルチカーエレベータシステム
US16/640,304 US20200255261A1 (en) 2017-08-19 2018-02-13 Smart multi-car elevator system
CN201880053712.6A CN111108055B (zh) 2017-08-19 2018-02-13 智能多轿厢电梯系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710714826 2017-08-19
CN201710714826.8 2017-08-19
CN201711237128.X 2017-11-30
CN201711237128 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019037399A1 true WO2019037399A1 (zh) 2019-02-28

Family

ID=65439784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076634 WO2019037399A1 (zh) 2017-08-19 2018-02-13 智能多轿厢电梯系统

Country Status (5)

Country Link
US (1) US20200255261A1 (zh)
EP (1) EP3670418A4 (zh)
JP (1) JP6952244B2 (zh)
CN (2) CN111108055B (zh)
WO (1) WO2019037399A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200140234A1 (en) * 2018-11-06 2020-05-07 Kone Corporation Method, a multicar elevator system, and an operational entity for controlling movement of two or more elevator cars of a multicar elevator system
US20200255261A1 (en) * 2017-08-19 2020-08-13 Libo Zhou Smart multi-car elevator system
CN113501401A (zh) * 2021-08-16 2021-10-15 联想新视界(江苏)设备服务有限公司 一种电梯铺轨主轨安装装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155826A (zh) * 2019-03-07 2019-08-23 湖南大举信息科技有限公司 用于电梯运行系统的驱动机构及多轿厢电梯运行系统
CN110228741A (zh) * 2019-05-07 2019-09-13 曼彻彼斯高新技术有限公司 竖井双轨升降系统及运行方法
CN112311099B (zh) * 2019-07-31 2023-08-18 湖南大举信息科技有限公司 用于无随行电缆电梯的供电系统及多轿厢电梯系统
CN114787068B (zh) * 2019-12-17 2024-01-30 现代木伟斯株式会社 机器人用循环式垂直搬送系统
CN112141855A (zh) * 2020-08-31 2020-12-29 湖南大举信息科技有限公司 一种智能电梯系统及控制方法
CN114249196A (zh) * 2020-09-24 2022-03-29 湖南大举信息科技有限公司 用于多轿厢智能并行电梯的安全控制系统及安全运行方法
CN115535796B (zh) * 2020-11-09 2024-05-31 湖南大举信息科技有限公司 用于多轿厢智能电梯系统切轨运行的双向切轨设计方法
CN115535784A (zh) * 2020-11-13 2022-12-30 湖南大举信息科技有限公司 用于多轿厢智能电梯系统的自驱动方法
CN115535785B (zh) * 2020-11-21 2024-05-07 湖南大举信息科技有限公司 一种用于自驱式智能多轿厢并行电梯悬架的柔性布置方法
CN112850420B (zh) * 2021-02-26 2023-04-18 湖南大举信息科技有限公司 一种多轿厢并行电梯系统的轨道布置方法
CN112919272B (zh) * 2021-02-26 2023-01-20 湖南大举信息科技有限公司 一种多轿厢并行电梯系统的切轨保护控制方法
CN114314264A (zh) * 2022-01-07 2022-04-12 中国矿业大学 一种可“一井多梯”布置的摩擦爬轨驱动式无绳电梯系统
JP7356651B1 (ja) 2022-03-30 2023-10-05 フジテック株式会社 マルチカーエレベータの運行管理装置
DE102022111441A1 (de) 2022-05-09 2023-11-09 Tk Elevator Innovation And Operations Gmbh Aufzugsanlage mit Aufzugsschacht und Schott zum Unterteilen des Aufzugsschacht

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269193A (ja) * 2003-03-11 2004-09-30 Hitachi Ltd エレベーター装置
JP2005132527A (ja) * 2003-10-29 2005-05-26 Hitachi Ltd マルチカーエレベータ
CN201144130Y (zh) * 2007-11-01 2008-11-05 郭亮 循环式多轿厢电梯
CN101875465A (zh) * 2009-04-28 2010-11-03 河南理工大学 一种无绳循环多轿厢电梯及其循环系统
CN205257721U (zh) * 2015-11-25 2016-05-25 佛山住友富士电梯有限公司 一种多轿厢式电梯
CN106927337A (zh) * 2017-05-09 2017-07-07 绳季清 高层建筑双通道直线蜗轮电梯井道
CN107673162A (zh) * 2017-08-19 2018-02-09 周立波 一种智能多轿厢电梯

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756185B2 (ja) * 1990-11-26 1998-05-25 株式会社竹中工務店 エレベータ装置
JP2708273B2 (ja) * 1990-11-27 1998-02-04 株式会社竹中工務店 エレベータ駆動装置
JP3056885B2 (ja) * 1992-06-25 2000-06-26 株式会社東芝 自走式エレベータ
JPH0616365A (ja) * 1992-06-30 1994-01-25 Hazama Gumi Ltd ケージの昇降システムと昇降装置
JP3017611B2 (ja) * 1992-11-26 2000-03-13 株式会社竹中工務店 エレベータ装置
JP3324179B2 (ja) * 1993-03-10 2002-09-17 三菱電機株式会社 ロープレスエレベーター装置
JPH07208571A (ja) * 1994-01-20 1995-08-11 Teijin Seiki Co Ltd 直線駆動装置
JP2000185885A (ja) * 1998-12-18 2000-07-04 Kawasaki Heavy Ind Ltd 自走式エレベータシステム
ES2249371T3 (es) * 2001-10-15 2006-04-01 Thyssenkrupp Elevator Ag Sistema de ascensores de calbe con dos cabinas de ascensor con secciones de pistas de desplazamiento comunes e independientes.
JP2006027902A (ja) * 2004-07-15 2006-02-02 Inventio Ag 互いに隣接して配置される少なくとも3つの垂直エレベータ昇降路を有するエレベータ設備およびそのようなエレベータ昇降路の動作方法
JP4543868B2 (ja) * 2004-10-15 2010-09-15 株式会社日立製作所 マルチカーエレベータ
JP4552793B2 (ja) * 2005-07-22 2010-09-29 株式会社日立製作所 マルチカーエレベータの安全システム
CN103130069A (zh) * 2011-11-22 2013-06-05 常州市福驰电动车辆科技有限公司 一种多轿厢链式循环电梯-楼梯复合垂直交通系统
CN105246813B (zh) * 2013-03-25 2019-04-09 奥的斯电梯公司 多轿厢自力推进电梯系统
KR101445225B1 (ko) * 2013-04-05 2014-09-29 홍익대학교 산학협력단 경성 레일 코어 이용 다방향, 다중 이송 유닛 및 시스템
US9758347B2 (en) * 2014-12-02 2017-09-12 ThyssenKrupp Elevator AG; ThyssenKrupp AG Arrangement and method to move at least two elevator cars independently in at least one hoistway
CN104671029B (zh) * 2015-01-27 2017-02-01 四川大学 单向循环升降电梯
WO2016126788A1 (en) * 2015-02-04 2016-08-11 Otis Elevator Company Elevator system evaluation device
EP3674246A3 (en) * 2015-06-26 2021-01-06 KONE Corporation Elevator
CN204980742U (zh) * 2015-10-08 2016-01-20 陈国安 单旋链式多轿厢平衡电梯
CN108602643A (zh) * 2015-11-30 2018-09-28 通力股份公司 可调式多轿厢电梯系统
CN205312834U (zh) * 2016-01-20 2016-06-15 彭俊 一种循环轨道式多轿厢电梯
CN107487688B (zh) * 2016-06-13 2021-03-23 奥的斯电梯公司 用于电梯系统的传感器和驱动电机学习运行
CN205892445U (zh) * 2016-08-19 2017-01-18 钟文沁 一种循环式垂直升降电梯轨道系统及具有其的电梯系统
CN111108055B (zh) * 2017-08-19 2021-11-26 湖南大举信息科技有限公司 智能多轿厢电梯系统
DE102018205151A1 (de) * 2018-04-05 2019-10-10 Thyssenkrupp Ag Verfahren zum Betreiben einer Aufzugsanlage
CN115535784A (zh) * 2020-11-13 2022-12-30 湖南大举信息科技有限公司 用于多轿厢智能电梯系统的自驱动方法
CN115535807A (zh) * 2021-06-01 2022-12-30 湖南大举信息科技有限公司 一种多轿厢智能并行电梯的驱动系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269193A (ja) * 2003-03-11 2004-09-30 Hitachi Ltd エレベーター装置
JP2005132527A (ja) * 2003-10-29 2005-05-26 Hitachi Ltd マルチカーエレベータ
CN201144130Y (zh) * 2007-11-01 2008-11-05 郭亮 循环式多轿厢电梯
CN101875465A (zh) * 2009-04-28 2010-11-03 河南理工大学 一种无绳循环多轿厢电梯及其循环系统
CN205257721U (zh) * 2015-11-25 2016-05-25 佛山住友富士电梯有限公司 一种多轿厢式电梯
CN106927337A (zh) * 2017-05-09 2017-07-07 绳季清 高层建筑双通道直线蜗轮电梯井道
CN107673162A (zh) * 2017-08-19 2018-02-09 周立波 一种智能多轿厢电梯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670418A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200255261A1 (en) * 2017-08-19 2020-08-13 Libo Zhou Smart multi-car elevator system
US20200140234A1 (en) * 2018-11-06 2020-05-07 Kone Corporation Method, a multicar elevator system, and an operational entity for controlling movement of two or more elevator cars of a multicar elevator system
CN113501401A (zh) * 2021-08-16 2021-10-15 联想新视界(江苏)设备服务有限公司 一种电梯铺轨主轨安装装置

Also Published As

Publication number Publication date
EP3670418A4 (en) 2021-01-06
CN111108055A (zh) 2020-05-05
CN109422166A (zh) 2019-03-05
CN109422166B (zh) 2020-09-08
US20200255261A1 (en) 2020-08-13
EP3670418A1 (en) 2020-06-24
CN111108055B (zh) 2021-11-26
JP2020530828A (ja) 2020-10-29
JP6952244B2 (ja) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2019037399A1 (zh) 智能多轿厢电梯系统
CN109422161B (zh) 一种智能多轿厢电梯
US5758748A (en) Synchronized off-shaft loading of elevator cabs
US20090081010A1 (en) Inclined Conveyance for Multi-storied Automotive Parking
CN1076313C (zh) 输送乘客的、带有双层隔板电梯的多电梯往复运输系统
CN211254881U (zh) 一种曳引驱动的多轿厢共享多井道循环运行电梯
CN105621171A (zh) 快速高效升降电梯及利用电梯快速输送乘客/货物的方法
CA2189922A1 (en) Emergency elevator cab commandeering shuttle
CN110790111B (zh) 一种曳引驱动的多轿厢共享多井道循环运行电梯
CN111392528A (zh) 一种自动装卸货梯及控制方法
RU2719075C1 (ru) Система перевозки грузов для железнодорожного транзита и платформа для железнодорожного транзита
CN102408053A (zh) 多层升降机
CN211998305U (zh) 一种自动装卸货梯
GB2320013A (en) Elevator shuttle system
CN2713065Y (zh) 巷道平车移动立体车库
CN108996372B (zh) 电梯系统及其工作方法
CN217557853U (zh) 多平台垂直升降停车库
JP4637603B2 (ja) マルチカーエレベータ
CN108190688A (zh) 一种自动外爬式施工平台
CN214610969U (zh) 一种用于多轿厢并行电梯的护脚装置
CN220886636U (zh) 一种电梯用可紧急逃生的电梯门
CN219711136U (zh) 一种多层车库及停车系统
CN218509147U (zh) 垂直升降停车机构
CN112960510B (zh) 一种升降梯
CN117703146A (zh) 停车方法及立体车库

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849034

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020529790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018849034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018849034

Country of ref document: EP

Effective date: 20200319