WO2019035194A1 - 熱交換換気装置 - Google Patents

熱交換換気装置 Download PDF

Info

Publication number
WO2019035194A1
WO2019035194A1 PCT/JP2017/029511 JP2017029511W WO2019035194A1 WO 2019035194 A1 WO2019035194 A1 WO 2019035194A1 JP 2017029511 W JP2017029511 W JP 2017029511W WO 2019035194 A1 WO2019035194 A1 WO 2019035194A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchange
ventilation operation
indoor
outdoor
Prior art date
Application number
PCT/JP2017/029511
Other languages
English (en)
French (fr)
Inventor
有伺 笹重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/029511 priority Critical patent/WO2019035194A1/ja
Priority to JP2019536389A priority patent/JP6861824B2/ja
Priority to EP17921840.9A priority patent/EP3671055B1/en
Publication of WO2019035194A1 publication Critical patent/WO2019035194A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat exchange ventilator.
  • the heat exchange ventilator has a heat exchanger inside the housing, and performs heat exchange between the outdoor air supplied into the room and the indoor air exhausted from the room to perform ventilation.
  • the heat exchange ventilator switches between heat exchange ventilation operation and normal ventilation operation.
  • the heat exchange ventilation operation is an operation in which the outdoor air is heat-exchanged with the indoor air to supply the air into the room. By exchanging heat and supplying air, the temperature difference and humidity difference between the outdoor air and the indoor air are reduced to ventilate the room.
  • the normal ventilation operation is an operation in which the outdoor air is supplied to the room without heat exchange with the room air. By supplying air without heat exchange, the indoor temperature is brought close to the set temperature of the room and the room is ventilated.
  • the normal ventilation operation has an air conditioning effect of cooling or heating the room with the outdoor air.
  • the air is blown with an air volume larger than the air volume blown in the heat exchange ventilation operation.
  • the air conditioning load of the room in which the heat exchange ventilator is installed varies depending on the volume of the room and conditions such as whether or not the air conditioner is used. Therefore, depending on the air conditioning load in the room, the air conditioning effect may be small even if the normal ventilation operation is continued.
  • the conventional heat exchange ventilator since the normal ventilation operation and the heat exchange ventilation operation are switched based on the comparison result of the instantaneous value of the outdoor temperature and the instantaneous value of the indoor temperature, the air conditioning effect is obtained even if the ordinary ventilation operation is performed. Operation was continued despite the small size.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a heat exchange ventilator that can suppress unnecessary consumption of energy for driving a fan or an air conditioner.
  • the control unit of the heat exchange ventilator according to the first aspect of the invention is configured such that the time change amount of the state of the indoor air detected while operating in the normal ventilation operation is smaller than the set threshold.
  • the air volume is made smaller than the air volume while operating in the normal ventilation operation.
  • the control unit of the heat exchange ventilator according to the second aspect of the invention performs the normal ventilation when the amount of time change of the state of the room air detected while operating in the normal ventilation operation is smaller than the set threshold. Switch from operation to heat exchange ventilation operation.
  • the heat exchange ventilator when the amount of change with time of the state of the room air is smaller than the set threshold, the air volume of the blower is reduced. It can control that the energy which drives a fan is consumed as needed.
  • the heat exchange ventilator since the normal ventilation operation is switched to the heat exchange ventilation mode when the time change amount of the state of the room air is smaller than the set threshold, the change of the room temperature is When it is small, it is possible to suppress the consumption of energy for driving other air conditioners unnecessarily.
  • the perspective view which shows a part of heat exchanger of Embodiment 1 Block diagram showing the configuration of the processing apparatus of the first embodiment Configuration diagram showing a schematic configuration in heat exchange ventilation operation of the first embodiment Configuration diagram showing a schematic configuration in the normal ventilation operation of the first embodiment Flow chart showing processing executed by the processing apparatus of the first embodiment
  • the block diagram which shows schematic structure in the heat exchange ventilation operation of the modification of Embodiment 1 The block diagram which shows the schematic structure in the ordinary ventilation operation of the modification of Embodiment 1
  • FIG. 1 is a configuration diagram showing a schematic configuration of a heat exchange ventilator 100 according to Embodiment 1 of the present invention.
  • the heat exchange ventilator 100 includes a housing 1, an air supply blower 30, an exhaust blower 31, a heat exchanger 32, an outdoor temperature sensor 35, an indoor temperature sensor 36, a switching unit 37, and a processing device 40.
  • the housing 1 is formed of a box-shaped substantially rectangular parallelepiped, and an indoor suction port 10 and an indoor blowout port 11 are formed on one side surface.
  • the outdoor suction port 12 and the outdoor blower outlet 13 are formed in the side surface which exists in the position facing the said one side surface. Further, an air supply passage 50 connecting the outdoor suction port 12 and the indoor outlet 11 and an exhaust air passage 51 connecting the indoor inlet 10 and the outdoor outlet 13 are formed inside the housing 1.
  • the ducts to which the heat exchange ventilator 100 is attached include the indoor suction duct 20 and the indoor blow-out duct 21 which connect the heat exchange ventilator 100 and the room, and the outdoor suction duct 22 and the outdoor blow duct which connect the heat exchange ventilator 100 and the outdoor There are 23
  • the indoor suction duct 20 is connected to the indoor suction port 10
  • the indoor blowing duct 21 is connected to the indoor blowing port 11.
  • the outdoor suction duct 22 is connected to the outdoor suction port 12, and the outdoor blowing duct 23 is connected to the outdoor blowing port 13.
  • the air supply fan 30 is provided in the air supply path 50.
  • the exhaust blower 31 is provided in the exhaust air passage 51.
  • the indoor temperature sensor 36 is provided between the indoor suction port 10 and the heat exchanger 32.
  • the outdoor temperature sensor 35 is provided between the outdoor suction port 12 and the heat exchanger 32.
  • the switching means 37 includes a switching plate 38 and a drive unit 39.
  • the switching means 37 is provided in the exhaust air passage 51, and is configured by connecting a switching plate 38 to a drive unit 39 such as a motor.
  • the switching plate 38 is attached so that the installation position can be switched by the rotation of the drive unit 39.
  • the switching plate 38 is provided at a position in contact with one side surface of the housing 1 or in a position in contact with the air passage forming member 14 provided in the housing 1.
  • the heat exchanger 32 is detachably attached to the housing 1.
  • the processing device 40 is, for example, configured by hardware such as a substrate or an integrated circuit and is provided inside the heat exchange ventilator 100.
  • the processing device 40 is connected to the air supply fan 30, the exhaust air fan 31, the outdoor temperature sensor 35 and the indoor temperature sensor 36.
  • FIG. 2 is a perspective view showing a part of the heat exchanger 32. As shown in FIG. The hatched arrows in FIG. 2 indicate the flow of the outdoor air to be supplied, and the white arrows indicate the flow of the indoor air to be exhausted.
  • the heat exchanger 32 includes a partition member 33 and a spacing member 34, and the partition member 33 and the spacing member 34 are stacked on one another.
  • the spacing member 34 is formed of a corrugated sheet that is formed in a wave shape by repeating mountain folding and valley folding.
  • the spacing member 34 is stacked via the partition member 33 so that the folds of the corrugated sheet are orthogonal to each other.
  • a space formed by the two partition members 33 and one spacing member 34 is formed as an air supply path 50 or an exhaust air path 51.
  • the supply air passage 50 and the exhaust air passage 51 are alternately formed in the stacking direction. Further, since the folds of the corrugated sheet are alternately and orthogonally stacked, the supply air passage 50 and the exhaust air passage 51 are formed orthogonal to each other.
  • the partition member 33 is formed of a material having heat conductivity and moisture permeability.
  • FIG. 3 is a block diagram showing the configuration of the processing apparatus 40 according to the first embodiment.
  • the processing device 40 includes an outdoor temperature detection unit 41, an indoor temperature detection unit 42, a timer 43, a storage unit 44, a blower drive unit 45, a switching drive unit 46, and a control unit 47.
  • the outdoor temperature detection unit 41 is connected to the outdoor temperature sensor 35.
  • the indoor temperature detection unit 42 is connected to the indoor temperature sensor 36.
  • the blower driving unit 45 is connected to the air supply blower 30 and the exhaust blower 31.
  • the switching drive unit 46 is connected to the switching unit 37.
  • the control unit 47 includes a central processing unit (CPU) or a digital signal processor (DSP), and software or the like executed by the CPU or the DSP.
  • CPU central processing unit
  • DSP digital signal processor
  • the air supply fan 30 blows the outdoor air into the room.
  • the exhaust blower 31 blows indoor air to the outside. By changing the rotational speed of the air supply fan 30 and the exhaust air fan 31, the amount of air blown is changed.
  • the indoor temperature sensor 36 detects the indoor temperature from the indoor air before passing through the heat exchanger 32.
  • the outdoor temperature sensor 35 detects the outdoor temperature from the outdoor air before passing through the heat exchanger 32. The detected indoor temperature and outdoor temperature are transmitted to the processing device 40.
  • the switching unit 37 switches between the heat exchange ventilation operation and the normal ventilation operation by switching the position of the switching plate 38.
  • the heat exchanger 32 exchanges heat between the outdoor air blown into the supply air passage 50 and the indoor air blown into the exhaust air passage 51. Since the partition member 33 is a material having heat conductivity and moisture permeability, heat and moisture are exchanged between the indoor air passing through the exhaust air passage 51 and the outdoor air passing through the air supply passage 50. Thus, the temperature and humidity of the outdoor air can be supplied close to the temperature and humidity of the indoor air.
  • the processing device 40 operates the heat exchange ventilator 100 based on the operation signal transmitted from the remote controller or the like.
  • the outdoor temperature detection unit 41 detects the outdoor temperature To. Further, the indoor temperature detection unit 42 detects an indoor temperature Tr as a state of indoor air.
  • the timer 43 counts elapsed time.
  • the storage unit 44 stores the detected outdoor temperature and the indoor temperature, the time interval ⁇ t set for the indoor temperature detection unit 42 to detect the temperature, and the threshold value.
  • the indoor temperature detection unit 42 detects the indoor temperature T2 when the time interval ⁇ t elapses after detecting the indoor temperature T1.
  • the temperature difference of the indoor temperature detected at this time interval ⁇ t is compared with the reference temperature difference T set as the threshold.
  • the reference temperature difference T is stored as a positive value.
  • the control unit 47 determines the operation of the heat exchange ventilator 100 based on the result of comparing the outdoor temperature To with the indoor temperature Tr or the result of comparing the amount of change in the indoor temperature Tr with the reference temperature difference T. Further, the control unit 47 gives an instruction to the fan drive unit 45 and the switching drive unit 46 based on the determined operation.
  • the blower drive unit 45 controls the amount of air to drive, stop, and output the supply blower 30 and the exhaust blower 31 based on the operation determined by the control unit 47.
  • the switching drive unit 46 controls the switching unit 37 based on the operation determined by the control unit 47.
  • FIG. 4 is a block diagram showing a schematic configuration of the heat exchange ventilator 100 in the heat exchange ventilation operation
  • FIG. 5 is a block diagram showing a schematic configuration of the heat exchange ventilator 100 in the normal ventilation operation.
  • the heat exchange ventilation operation is an operation in which the outdoor air is heat-exchanged with the indoor air to supply the air into the room.
  • the switching plate 38 is provided in contact with the side surface of the housing 1. That is, the switching plate 38 is provided at a position where the air sucked from the indoor suction port 10 blocks the bypass air passage 54 around which the heat exchanger 32 is bypassed.
  • the exhaust air passage 51 is formed as a heat exchange exhaust air passage 52 that passes from the indoor suction port 10 through the heat exchanger 32 to the outdoor outlet 13. That is, in the heat exchange ventilation operation, the heat exchanger 32 is included in the air supply passage 50 and the exhaust passage 51.
  • the heat exchange ventilation operation is performed when the room is cooled by the air conditioner 4 and the outdoor temperature is higher than the indoor temperature and the indoor temperature is higher than the set temperature of the air conditioner.
  • the process is performed when the outdoor temperature is lower than the indoor temperature and the indoor temperature is lower than the set temperature of the air conditioner.
  • the outdoor air is heat-exchanged to reduce the temperature difference between the indoor air and supply the air, thereby suppressing an increase in the air conditioning load in the room.
  • the air supply fan 30 and the exhaust air fan 31 blow air with a set air volume smaller than the maximum air volume.
  • the set air volume may be an air volume set by the manufacturer, or may be an air volume set by the user from a remote control or the like.
  • the ordinary ventilation operation is an operation in which the outdoor air is supplied to the room without heat exchange with the room air.
  • the switching plate 38 is provided in contact with the air passage forming member 14. That is, the switching plate 38 is provided at a position at which the bypass air passage 54 is opened.
  • the exhaust air passage 51 is formed as a normal exhaust air passage 53 that bypasses the heat exchanger 32 from the outdoor suction port 12 and connects to the indoor outlet 11.
  • the ordinary ventilation operation is performed when it is desired to cool the room, and the outdoor temperature is lower than the room temperature, and the set temperature of the air conditioner 4 is lower than the room temperature. Moreover, when heating the room, it is executed when the outdoor temperature is higher than the indoor temperature and the set temperature of the air conditioner 4 is higher than the indoor temperature. Since the outdoor air is supplied without heat exchange, the indoor air is cooled or heated by the outdoor air. In normal ventilation operation, the capacity to cool or heat the room is enhanced by operating with the air volume blown by the blower being maximized. Further, since the air conditioning load of the room is reduced by cooling or heating the room with the outdoor air, it is possible to suppress the consumption of the power for driving the air conditioners other than the heat exchange ventilator 100.
  • FIG. 6 is a flowchart showing processing executed by the processing device 40 according to the first embodiment.
  • the indoor temperature is lower than the outdoor temperature, such as in the case of ventilating during the cooling operation.
  • step S1 the control unit 47 instructs the switching driving unit 46 to drive the switching unit 37.
  • the drive unit 39 of the switching unit 37 is driven to arrange the switching plate 38 at a position where the heat exchange exhaust air passage 52 is formed.
  • the control unit 47 sets the exhaust air passage 51 to the heat exchange exhaust air passage 52.
  • step S1 When the heat exchange exhaust air passage 52 is set in step S1, the process proceeds to step S2.
  • the control unit 47 instructs the blower drive unit 45 to blow the air supply blower 30 and the exhaust blower 31 at the set air volume.
  • the supply air blower 30 and the exhaust blower 31 start blowing air.
  • the control unit 47 blows the air supply fan 30 and the exhaust air fan 31 with an air volume smaller than the maximum air volume.
  • the heat exchange ventilation operation is started by the above-described operations of step S1 and step S2.
  • the outdoor air is supplied from the outdoor suction port 12, passes through the heat exchanger 32, and is exhausted into the room from the indoor air outlet 11. Further, indoor air is supplied from the indoor suction port 10, passes through the heat exchanger 32, and is exhausted from the outdoor outlet 13 to the outside.
  • the outdoor air is cooled to a temperature close to the room temperature Tr by exchanging heat with the room air, and is supplied into the room.
  • step S3 the outdoor temperature detection unit 41 detects the outdoor temperature To from the outdoor temperature sensor 35. Further, the indoor temperature detection unit 42 detects the indoor temperature Tr from the indoor temperature sensor 36.
  • step S3 When the outdoor temperature To and the indoor temperature Tr are detected in step S3, the process proceeds to step S4.
  • Control unit 47 determines whether outdoor temperature To is lower than indoor temperature Tr. When the outdoor temperature To is lower than the indoor temperature Tr (step S4: Yes), the process proceeds to step S5, and the control unit 47 gives the switching driving unit 46 an instruction to drive the switching unit 37.
  • the switching means 37 When receiving an instruction from the control unit 47, the switching means 37 is disposed at a position where the exhaust air passage 51 forms the normal exhaust air passage 53. As a result, the control unit 47 sets the exhaust air passage 51 from the heat exchange exhaust air passage 52 to the normal exhaust air passage 53.
  • step S4 When the outdoor temperature To is higher than the indoor temperature Tr in step S4 (step S4: No), steps S1 to S4 are repeated, and the heat exchange ventilation operation is continued.
  • step S5 When the normal exhaust air path 53 is set in step S5, the process proceeds to step S6, where the control unit 47 instructs the fan drive unit 45 to blow the air supply fan 30 and the exhaust air fan 31 with the maximum air volume.
  • the maximum air volume is an air volume larger than the set air volume in the heat exchange ventilation operation.
  • the heat exchange ventilation operation is switched to the normal ventilation operation by the operations of step S5 and step S6 described above.
  • the outdoor air is exhausted into the room through the heat exchanger 32.
  • indoor air bypasses the heat exchanger 32 and is exhausted to the outside. Since the outdoor air is supplied into the room without heat exchange with the indoor air, the outdoor air at a temperature lower than the indoor temperature Tr is supplied.
  • step S7 After switching to the normal ventilation operation in steps S5 and S6, the process proceeds to step S7 and the timer 43 starts counting the elapsed time.
  • the process proceeds to step S8, and the indoor temperature Tr1 is detected as a first indoor temperature and stored in the storage unit 44.
  • step S9 the control unit 47 determines whether the time interval ⁇ t at which the timer 43 is set has elapsed.
  • step S9: Yes the process proceeds to step S10, the indoor temperature Tr2 is detected as a second indoor temperature, and is stored in the storage unit 44.
  • step S9 If the time interval ⁇ t set in step S9 has not elapsed (step S9: No), step S9 is repeated.
  • step S11 the control unit 47 determines whether the temperature difference Tr1-Tr2 obtained by subtracting the room temperature Tr2 from the detected room temperature Tr1 is smaller than the reference temperature difference T.
  • step S11: Yes the change in the room temperature is small and the effect of cooling the room is small even when operating in the normal ventilation operation. Therefore, the process returns to step S1, and the control unit 47 switches the exhaust air passage 51 from the normal exhaust air passage 53 to the heat exchange exhaust air passage 52.
  • step S2 the air supply blower 30 and the exhaust air blower 31 are blown with the set air volume.
  • step S11 If it is determined in step S11 that the temperature difference Tr1-Tr2 is equal to or greater than the reference temperature difference T (step S11: No), the room temperature can be decreased by the normal ventilation operation, so the process returns to step S5 to continue the normal ventilation operation.
  • the heat exchange ventilator 100 when the temperature difference Tr1-Tr2 of the indoor temperature detected while blowing in the normal ventilation operation is smaller than the reference temperature difference T. Switch from normal ventilation operation to heat exchange ventilation operation. For this reason, when the air conditioning effect to reduce the room temperature is small despite the normal ventilation operation, the continuation of the normal ventilation operation is suppressed. In order to reduce the air volume of the blower, the power output to the blower is reduced to reduce the rotational speed. That is, as the air volume is smaller, the consumption of energy for operating the fan can be suppressed. In the heat exchange ventilation operation, since the air is blown with a flow rate smaller than the maximum flow rate blown by the normal ventilation operation, it is possible to suppress the consumption of energy for operating the supply air blower 30 and the exhaust air blower 31.
  • the heat exchanger 32 since the heat exchanger 32 is formed of a material having heat conductivity and moisture permeability, the heat exchanger 32 exchanges heat and moisture between the indoor air and the outdoor air in the heat exchange ventilation operation. Therefore, it is possible to reduce the temperature difference between the outdoor air and the indoor temperature, adjust the indoor humidity, and supply the outdoor air into the room. Thus, in heat exchange ventilation operation, it can ventilate, suppressing that a room air conditioning load becomes large. When the air conditioning load is suppressed, it is possible to suppress the operation of an air conditioner such as an air conditioner, a dehumidifier, or a humidifier, or increase in the output of the air conditioner. Therefore, it is possible to suppress the consumption of energy for operating the air conditioners 4 other than the heat exchange ventilator 100 by switching to the heat exchange ventilation operation when the air conditioning effect is small despite the normal ventilation operation.
  • an air conditioner such as an air conditioner, a dehumidifier, or a humidifier
  • the normal ventilation operation is continued, so that the air conditioning load of the room can be reduced by bringing the room temperature close to the outside temperature.
  • the air supply fan 30 and the exhaust air blower 31 are ventilated with the maximum air volume.
  • the air flow rate is not limited to this and any air volume larger than the air volume blown in the heat exchange ventilation operation may be used.
  • step S11 In the case where the process proceeds from step S11 to step S1 and the normal exhaust air passage 53 is switched to the heat exchange exhaust air passage 52, air is blown with the set air volume in step S2, but the air volume smaller than the air volume blown in the normal ventilation operation
  • the air flow rate may be different from the air flow rate set in step S2.
  • the reference temperature difference T is stored as a positive value, it may be stored as a negative value. If the reference temperature difference T is a negative value, it is determined in step S11 whether the temperature difference Tr2-Tr1 is larger than the reference temperature difference T.
  • the storage unit 44 stores the time interval ⁇ t, the time may be stored as long as the indoor temperature detection unit 42 can specify the timing at which the temperature is detected.
  • the indoor temperature sensor 36 and the outdoor temperature sensor 35 are configured to be provided inside the housing 1, they may be provided outside the housing 1.
  • FIG. 7 is a block diagram showing a schematic configuration of the heat exchange ventilator 100 in the heat exchange ventilation operation
  • FIG. 8 is a block diagram showing a schematic configuration of the heat exchange ventilator 100 in the normal ventilation operation.
  • the switching means 37 is movable up and down. In the case of the heat exchange ventilation operation shown in FIG. 7, the switching means 37 is provided on the lower side of the housing 1 than in the case of the normal ventilation operation. That is, it is provided at a position where the bypass air passage 54 is closed. On the other hand, in the case of the normal ventilation operation shown in FIG. 8, the switching means 37 is provided on the upper side of the housing 1. That is, they are provided at positions where the bypass air passage 54 is opened.
  • FIG. 9 is a block diagram showing a schematic configuration of the heat exchange ventilator 100 when the switching means 37 switches the air supply passage 50.
  • the air supply passage 50 is formed as a heat exchange air supply passage connecting the outdoor suction port 12 through the heat exchanger 32 to the indoor air outlet 11.
  • the switching plate 38 is provided at a position where the bypass air path 54 is opened, the air supply air path 50 is formed as a normal air supply air path that bypasses the heat exchanger 32 from the indoor suction port 10 and connects to the outdoor outlet 13. .
  • the air supply fan 30 and the exhaust air blower 31 blow air with the same air volume
  • the set air volumes of the air supply fan 30 and the exhaust air blower 31 may be set to different air volumes.
  • the temperature difference Tr1-Tr2 is smaller than the reference temperature difference T, the consumption of energy for operating the blower can be suppressed by reducing the air volume of at least one blower.
  • the temperature difference Tr1-Tr2 is used as the time change amount of the state of the indoor air, the present invention is not limited to this, and a temperature change rate may also be used.
  • the temperature change rate is a value obtained by dividing the temperature difference Tr1-Tr2 by the time from detection of the indoor temperature Tr1 to detection of the indoor temperature Tr2.
  • the storage unit 44 stores the reference temperature change rate as a threshold.
  • FIG. 10 is a flowchart showing processing executed by the processing device 40 according to the second embodiment.
  • differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • step S11 If the temperature difference Tr1-Tr2 is smaller than the reference temperature difference T in step S11 (step S11: Yes), the process proceeds to step S2. In step S2, the control unit 47 blows the supply air blower 30 and the exhaust blower 31 at the set air volume. Thereafter, steps S3 to S11 are repeated.
  • the air supply fan 30 and the exhaust air fan 31 blow air at the set air volume.
  • the normal exhaust air passage 53 in order to reduce the air volume, it is possible to suppress the consumption of energy for operating the air supply blower 30 and the exhaust air blower 31 while supplying outdoor air to the room.
  • the number of times of operating the switching means 37 is small, so that deterioration of parts can be suppressed.
  • the consumption of energy for driving the switching means 37 can be suppressed.
  • FIG. 11 is a flowchart showing processing executed by the processing device 40 according to the third embodiment.
  • differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • step S1 When the heat exchange exhaust air passage 52 is set in step S1, the process proceeds to step S12, and the air supply blower 30 and the exhaust air blower 31 are blown with the set air volume. From this, the heat exchange ventilation operation is started. Thereafter, when the outdoor temperature To is lower than the indoor temperature Tr in step S4 (step S4: Yes), the exhaust air passage 51 is set to the normal exhaust air passage 53. The air volume blown in the normal ventilation operation is the same as the air volume blown in the heat exchange ventilation operation. By the above operation, the heat exchange ventilation operation is switched to the normal ventilation operation.
  • the air volume blown in the normal ventilation operation is the same as the air volume blown in the heat exchange ventilation operation. Therefore, in the heat exchange ventilation operation as in the first embodiment, the ventilation amount is not smaller than in the normal ventilation operation. For this reason, when performing heat exchange ventilation operation, it can control that an air-conditioning load becomes large, without a ventilation capacity falling.
  • the air supply blower 30 and the exhaust blower 31 are driven while the heat exchange ventilator 100 is operated.
  • the temperature difference Tr1-Tr2 is lower than the reference temperature difference T.
  • the supply air blower 30 and the exhaust blower 31 are stopped.
  • the operation of the processing device 40 of the heat exchange ventilator 100 according to the fourth embodiment will be described based on FIG.
  • FIG. 12 is a flowchart showing processing executed by the processing device 40 according to the fourth embodiment.
  • differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the heat exchange ventilator 100 has a night mode in which the normal ventilation operation is automatically started or stopped while the person is not present in the room at night, or when the number of people in the room is small.
  • the nighttime mode when the outdoor temperature To is lower than the indoor temperature Tr, the normal ventilation operation is performed to suppress the indoor temperature from becoming higher than the outdoor temperature. Therefore, when the outdoor temperature To is equal to or higher than the indoor temperature Tr, the air supply blower 30 and the exhaust air blower 31 are stopped, and the normal ventilation operation and the heat exchange ventilation operation are not performed. Since the room can be air conditioned by operating in the night mode, it is not necessary to operate the air conditioner other than the heat exchange ventilator 100.
  • the normal ventilation operation is continued if the temperature difference Tr1-Tr2 detected while blowing air in the normal ventilation operation is equal to or more than the reference temperature difference T. On the other hand, when the temperature difference Tr1-Tr2 is smaller than the reference temperature difference T, the normal ventilation operation is stopped.
  • step S11: Yes When the temperature difference Tr1-Tr2 is smaller than the reference temperature difference T in step S11 (step S11: Yes), the process proceeds to step S14, and the control unit 47 stops the supply air blower 30 and the exhaust blower 31.
  • the timer 43 starts counting the elapsed time, and the process proceeds to step S17, where the control unit 47 determines whether the set time has elapsed. If the set time has elapsed (step S17: Yes), the process returns to step S3 and repeats steps S3 to S17.
  • step S14 Since the air supply fan 30 and the exhaust air fan 31 are stopped in step S14, the normal ventilation operation is stopped.
  • the heat exchange ventilator 100 detects the outdoor temperature To and the indoor temperature Tr at predetermined time intervals ⁇ t even while the normal ventilation operation is stopped. Therefore, when the outdoor temperature To is lower than the indoor temperature Tr in step S4 (step S4: Yes), the normal ventilation operation is started again.
  • the heat exchange ventilator 100 when the temperature difference Tr1-Tr2 is lower than the reference temperature difference T, the air supply blower 30 and the exhaust air blower 31 are stopped. Since the continuation of the ventilation operation is suppressed when the air conditioning effect to lower the room temperature is small despite the normal ventilation operation, consumption of energy for operating the air supply blower 30 and the exhaust blower 31 Can be suppressed.
  • the temperature difference Tr1-Tr2 is equal to or greater than the reference temperature difference T, or when the outdoor temperature To is smaller than the indoor temperature Tr, the normal ventilation operation is performed. In order to perform normal ventilation operation, it is suppressed that room temperature becomes higher than outdoor temperature.
  • Embodiment 5 In the first embodiment, the operation of the heat exchange ventilator 100 in the case where it is desired to make the indoor temperature lower than the outdoor temperature, such as in the case of ventilating during the cooling operation, has been described.
  • the operation of the processing apparatus 40 of the heat exchange ventilator 100 according to the fifth embodiment will be described based on FIG.
  • FIG. 13 is a flowchart showing processing executed by the processing device 40 according to the fifth embodiment.
  • differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the heat exchange ventilation operation is performed when the outdoor temperature To is lower than or equal to the indoor temperature Tr.
  • the outdoor air is heated to a temperature close to the temperature of the room air by heat exchange, and is supplied into the room.
  • the normal ventilation operation is performed when the outdoor temperature To is higher than the indoor temperature Tr. Since the outdoor air is supplied into the room without heat exchange, the outdoor air having a temperature higher than the indoor temperature Tr is supplied.
  • step S15 it is determined whether the outdoor temperature To is larger than the indoor temperature Tr.
  • step S15: Yes the process proceeds to step S5, where the control unit 47 sets the exhaust air passage 51 to the normal exhaust air passage 53.
  • step S15 When the outdoor temperature To is lower than the indoor temperature Tr in step S15 (step S15: No), steps S1 to S15 are repeated, and the heat exchange ventilation operation is continued.
  • step S5 When the normal exhaust air passage 53 is set in step S5, the process proceeds to step S6, where the control unit 47 blows the air supply blower 30 and the exhaust air blower 31 with the maximum air volume. Thereby, the heat exchange ventilator 100 switches from the heat exchange ventilation operation to the normal ventilation operation.
  • step S16 the control unit 47 determines whether the temperature difference Tr2-Tr1 is smaller than the reference temperature difference T.
  • the control unit 47 determines whether the temperature difference Tr2-Tr1 is smaller than the reference temperature difference T.
  • the control unit 47 causes the air supply blower 30 and the exhaust air blower 31 to blow at a set air volume smaller than the maximum air volume. Therefore, when the temperature difference Tr2-Tr1 is smaller than the reference temperature difference T, the normal ventilation operation is switched to the heat exchange ventilation operation.
  • step S16 If it is determined in step S16 that the temperature difference Tr2-Tr1 is equal to or greater than the reference temperature difference T (step S16: No), the room temperature can be raised by the normal ventilation operation, so the process returns to step S5 to continue the normal ventilation operation.
  • the heat exchange ventilator 100 when the temperature difference Tr2-Tr1 of the indoor temperature detected while blowing in the normal ventilation operation is smaller than the reference temperature difference T. Switch from normal ventilation operation to heat exchange ventilation operation. For this reason, when the effect of heating the room is small despite the normal ventilation operation, it is possible to suppress the continuation of the normal ventilation operation.
  • the reference temperature difference T may be stored as a negative value.
  • step S4 and step S11 of the second to fourth embodiments may be switched to step S15 and step S16 of the fifth embodiment, respectively.
  • the operations of the second to fourth embodiments can be applied to the case where the ventilation is performed during the heating operation.
  • the sixth embodiment operates based on the outdoor enthalpy Ho and the indoor enthalpy Hr.
  • differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the heat exchange ventilator 100 includes an indoor temperature and humidity sensor 60 instead of the indoor temperature sensor 36, and includes an outdoor temperature and humidity sensor 61 instead of the outdoor temperature sensor 35.
  • the room temperature and humidity sensor 60 detects room temperature and room humidity from room air before passing through the heat exchanger 32.
  • the outdoor temperature and humidity sensor 61 detects the outdoor temperature and the outdoor humidity from the outdoor air before passing through the heat exchanger 32.
  • FIG. 14 is a block diagram showing the configuration of a processing apparatus 70 according to the sixth embodiment.
  • the processing device 70 includes an outdoor humidity detection unit 71, an indoor humidity detection unit 72, and a calculation unit 73.
  • the outdoor humidity detection unit 71 is connected to the outdoor temperature and humidity sensor 61, and detects outdoor humidity.
  • the indoor humidity detection unit 72 is connected to the indoor temperature and humidity sensor 60 to detect indoor humidity.
  • the computing unit 73 computes the enthalpy from the detected temperature and humidity. Specifically, the outdoor enthalpy Ho is calculated from the outdoor temperature To and the outdoor humidity Mo. Further, the room enthalpy Hr is calculated from the room temperature Tr and the room humidity Mr as the state of the room air.
  • the storage unit 44 stores the calculated indoor enthalpy Hr, the outdoor enthalpy Ho, and the set threshold.
  • the reference enthalpy H is stored as the threshold.
  • the enthalpy difference of the room enthalpy Hr detected at the time interval ⁇ t is compared with the reference enthalpy H.
  • the control unit 47 determines the operation of the heat exchange ventilator 100 based on the result of comparing the outdoor enthalpy Ho with the indoor enthalpy Hr, or based on the result of comparing the amount of change of the indoor enthalpy Hr with the reference enthalpy H.
  • FIG. 15 is a flowchart showing processing executed by the processing device 70 according to the sixth embodiment.
  • step S1 When the heat exchange ventilation operation is started in step S1 and step S2, the process proceeds to step S21, and the control unit 47 detects the indoor temperature Tr and the indoor humidity Mr. In step S22, the outdoor temperature To and the outdoor humidity Mo are detected.
  • step S23 If temperature and humidity are detected, it will progress to step S23.
  • the calculation unit 73 calculates the indoor enthalpy Hr and the outdoor enthalpy Ho.
  • step S24 the control unit 47 determines whether the outdoor enthalpy Ho is smaller than the indoor enthalpy Hr. When the outdoor enthalpy Ho is smaller than the indoor enthalpy Hr in step S24 (step S24: Yes), the process proceeds to step S5, where the control unit 47 sets the exhaust air passage 51 to the normal exhaust air passage 53.
  • step S24 No If the outdoor enthalpy Ho is equal to or higher than the indoor enthalpy Hr in step S24 (step S24: No), the process returns to step S1 to continue the heat exchange ventilation operation.
  • step S5 When the normal exhaust air path 53 is set in step S5, the process proceeds to step S25 through steps S6 and S7.
  • step S ⁇ b> 25 the room temperature Tr ⁇ b> 1 is detected as a first room temperature and stored in the storage unit 44. Further, the indoor humidity Mr1 is detected as a first indoor humidity and stored in the storage unit 44.
  • step S9 If the set time interval ⁇ t has elapsed since the detection of the indoor temperature Tr1 and the indoor humidity Mr1 (step S9: Yes), the process proceeds to step S26, and the indoor temperature Tr2 is detected as the second indoor temperature. Is stored in In addition, the indoor humidity Mr2 is detected as a second indoor humidity and stored in the storage unit 44.
  • step S27 the calculation unit 73 calculates a first indoor enthalpy Hr1 from the indoor temperature Tr1 and the indoor humidity Mr1. Further, the second indoor enthalpy Hr2 is calculated from the indoor temperature Tr2 and the indoor humidity Mr2.
  • step S27 the control unit 47 calculates an enthalpy difference Hr1-Hr2 obtained by subtracting the room enthalpy Hr2 from the room enthalpy Hr1 as the amount of time change of the room enthalpy Hr.
  • step S28 it is determined whether the calculated enthalpy difference Hr1-Hr2 is smaller than the reference enthalpy H or not. If the enthalpy difference Hr1-Hr2 is smaller than the reference enthalpy H (step S28: Yes), the process returns to step S1, and the exhaust air passage 51 is switched from the normal exhaust air passage 53 to the heat exchange exhaust air passage 52.
  • step S2 the air supply blower 30 and the exhaust air blower 31 are blown at a set air volume smaller than the maximum air volume.
  • step S28 If the enthalpy difference Hr1-Hr2 is equal to or greater than the reference enthalpy H (step S28: No), the process returns to step S5 to continue normal ventilation operation.
  • the heat exchange ventilator 100 operates based on the outdoor enthalpy Ho and the indoor enthalpy Hr. Specifically, when the outdoor enthalpy Ho is smaller than the indoor enthalpy Hr, the heat exchange ventilation operation is switched to the normal ventilation operation. Since the enthalpy is a value calculated from the detected temperature and humidity, the temperature and humidity can be compared to determine the operation of the heat exchange ventilator 100. Therefore, it is possible to suppress the continuation of the normal ventilation operation when the air conditioning effect is small although the normal ventilation operation is performed, or when the humidity adjustment effect is small.
  • the outdoor temperature / humidity sensor 61 and the indoor temperature / humidity sensor 60 are used as means for detecting the temperature and humidity, the temperature sensor and the humidity sensor may be separately provided as long as they can detect the temperature and humidity.
  • the calculation unit 73 calculates the enthalpy from the temperature and the humidity stored in the storage unit 44, the enthalpy may be calculated and stored in the storage unit 44 when the temperature and the humidity are detected.
  • the reference enthalpy H is stored as a positive value, it may be stored as a negative value. When the reference enthalpy H is a negative value, it is determined in step S28 whether the enthalpy difference Hr2-Hr1 is larger than the reference enthalpy H or not.
  • the outdoor temperature To and the indoor temperature Tr are detected as soon as the heat exchange ventilation operation or the normal ventilation operation is started.
  • a predetermined time after the heat exchange ventilation operation is started After the lapse of time, the indoor temperature Tr or the indoor humidity Mr may be detected. Since the operation does not switch for a predetermined time, it is possible to suppress the immediate switching to the normal ventilation operation when the effect of changing the state of the room air by the normal ventilation operation is small.
  • the heat exchange ventilator 100 according to the present invention can be widely used as a heat exchange ventilator for home use, business use and the like.
  • Reference Signs List 1 case, 2 ceiling, 3 floor, 4 air conditioner, 10 indoor suction port, 11 indoor air outlet, 12 outdoor air inlet, 13 outdoor air outlet, 14 air path forming member, 20 indoor air suction duct, 21 indoor air outlet Duct, 22 outdoor suction duct, 23 outdoor blowout duct, 30 air supply blower, 31 exhaust air blower, 32 heat exchanger, 33 partition members, 34 interval holding members, 35 outdoor temperature sensors, 36 indoor temperature sensors, 37 switching means, 38 Switching plate, 39 driving unit, 40, 70 processing unit, 41 outdoor temperature detecting unit, 42 indoor temperature detecting unit, 43 timer, 44 storage unit, 45 blower driving unit, 46 switching driving unit, 47 control unit, 50 supply air path , 51 exhaust air path, 52 heat exchange exhaust air path, 53 normal exhaust air path, 54 bypass air path, 60 room temperature and humidity sensor , 61 outdoor temperature and humidity sensor, 71 outdoor humidity sensor, 72 indoor humidity detecting unit, 73 computing unit, 100 heat exchange ventilator

Abstract

従来の熱交換換気装置では、室外温度の瞬時値と室内温度の瞬時値との比較結果に基づいて熱交換換気運転と普通換気運転が切り替えられるため、普通換気運転による空調効果が小さい場合にも運転を続けることになり、無駄なエネルギーを消費してしまうという問題があった。本発明は、普通換気運転で運転している間に検出された室内空気の状態の時間経過に伴う変化量が設定された閾値よりも小さい場合に、送風機の風量を当該普通換気運転で運転している間の風量よりも少なくする、または普通換気運転から熱交換換気運転へ切り替えるものである。本発明の熱交換換気装置によれば、空調効果が小さい場合に普通換気運転を続けることが無く、無駄なエネルギーを消費することを抑制できる。

Description

熱交換換気装置
 この発明は、熱交換換気装置に関する。
 熱交換換気装置は、筐体の内部に熱交換器を備え、室内へ給気する室外空気と室内から排気する室内空気との間で熱交換させて換気を行うものである。熱交換換気装置は、熱交換換気運転と普通換気運転を切り替えて運転する。
 熱交換換気運転は、室外空気を室内空気と熱交換させて室内へ給気する運転である。熱交換させて給気することで、室外空気と室内空気の温度差と湿度差を小さくして室内を換気する。
 普通換気運転は、室外空気を室内空気と熱交換させずに室内へ給気する運転である。熱交換させずに給気することで、室内温度を室内の設定温度に近づけるとともに室内を換気する。このため普通換気運転は、室外空気により室内を冷房または暖房する空調効果がある。普通換気運転では、換気能力及び空調能力を高めるために、熱交換換気運転で送風する風量よりも大きい風量で送風する。
 特許文献1に記載された従来の熱交換換気装置では、室外温度の瞬時値と室内温度の瞬時値との比較結果に基づいて熱交換換気運転と普通換気運転を切り替えていた。
特開2001-304645号公報
 熱交換換気装置が設置される室内の空調負荷は、室内の容積や、空気調和機を使用しているか否か等の条件により異なる。このため、室内の空調負荷によっては、普通換気運転を継続しても空調効果が小さい場合がある。しかしながら、従来の熱交換換気装置では、室外温度の瞬時値と室内温度の瞬時値との比較結果に基づいて普通換気運転と熱交換換気運転を切り替えるため、普通換気運転をしても空調効果が小さいにも関わらず運転が継続されていた。普通換気運転では、熱交換換気運転で送風する風量よりも大きい風量で送風するため、普通換気運転を継続することで不必要に送風機を駆動するエネルギーを消費していた。
 また、普通換気運転では室外空気と室内空気の湿度を調節することができない。このため、普通換気運転が継続される間に湿度を調節する空気調和機を運転させることで、不必要に空気調和機を駆動するエネルギーを消費していた。
 本発明は、上記の課題を解決するためになされたもので、不必要に送風機又は空気調和機を駆動するエネルギーが消費されることを抑制できる熱交換換気装置を得ることを目的とする。
 第1の発明に係る熱交換換気装置の制御部は、普通換気運転で運転している間に検出された室内空気の状態の時間変化量が、設定された閾値よりも小さい場合に、送風機の風量を前記普通換気運転で運転している間の風量よりも少なくする。
 第2の発明に係る熱交換換気装置の制御部は、普通換気運転で運転している間に検出された室内空気の状態の時間変化量が、設定された閾値よりも小さい場合に、普通換気運転から熱交換換気運転へ切り替える。
 第1の発明に係る熱交換換気装置によれば、室内空気の状態の時間変化量が、設定された閾値よりも小さい場合に送風機の風量を少なくするため、室内温度の変化が小さい場合に不必要に送風機を駆動するエネルギーが消費されることを抑制できる。
 第2の発明に係る熱交換換気装置によれば、室内空気の状態の時間変化量が、設定された閾値よりも小さい場合に普通換気運転から熱交換換気運に切り替えるため、室内温度の変化が小さい場合に不必要に他の空気調和機を駆動するエネルギーを消費することを抑制できる。
実施の形態1の熱交換換気装置の概略構成を示す構成図 実施の形態1の熱交換器の一部を示す斜視図 実施の形態1の処理装置の構成を示すブロック図 実施の形態1の熱交換換気運転における概略構成を示す構成図 実施の形態1の普通換気運転における概略構成を示す構成図 実施の形態1の処理装置で実行する処理を示すフローチャート 実施の形態1の変形例の熱交換換気運転における概略構成を示す構成図 実施の形態1の変形例の普通換気運転における概略構成を示す構成図 実施の形態1の熱交換換気装置の概略構成を示す構成図 実施の形態2の処理装置で実行する処理を示すフローチャート 実施の形態3の処理装置で実行する処理を示すフローチャート 実施の形態4の処理装置で実行する処理を示すフローチャート 実施の形態5の処理装置で実行する処理を示すフローチャート 実施の形態6の処理装置の構成を示すブロック図 実施の形態6の処理装置で実行する処理を示すフローチャート
実施の形態1.
 以下、本発明の熱交換換気装置について説明する。本実施の形態における熱交換換気装置100は、室内の天井2等に設けられて室内と室外を連結するダクトに接続されるものである。熱交換換気装置100は、室内の空気調和機4を運転している場合に室内の空調負荷が大きくなることを抑制して換気を行うことができる。室内の天井2側を上方、床面3側を下方とする。図1は本発明の実施の形態1に係る熱交換換気装置100の概略構成を示す構成図である。熱交換換気装置100は、筐体1、給気送風機30、排気送風機31、熱交換器32、室外温度センサ35、室内温度センサ36、切替手段37及び処理装置40を備える。
 筐体1は箱形の略直方体で形成され、1つの側面には、室内吸込口10と室内吹出口11が形成される。当該1つの側面と対向する位置にある側面には、室外吸込口12、及び室外吹出口13が形成される。また、筐体1の内部には室外吸込口12と室内吹出口11とを結ぶ給気風路50及び、室内吸込口10と室外吹出口13とを結ぶ排気風路51が形成される。
 熱交換換気装置100を取付けるダクトには、熱交換換気装置100と室内を連結する室内吸込ダクト20及び室内吹出ダクト21、並びに熱交換換気装置100と室外を連結する室外吸込ダクト22及び室外吹出ダクト23がある。
 室内吸込ダクト20は室内吸込口10と接続され、室内吹出ダクト21は室内吹出口11と接続される。また、室外吸込ダクト22は室外吸込口12と接続され、室外吹出ダクト23は室外吹出口13と接続される。
 給気送風機30は、給気風路50に設けられる。排気送風機31は、排気風路51に設けられる。
 室内温度センサ36は、室内吸込口10と熱交換器32の間に設けられる。
 室外温度センサ35は、室外吸込口12と熱交換器32の間に設けられる。
 切替手段37は、切替板38及び駆動部39を備える。切替手段37は排気風路51に設けられ、モーター等の駆動部39に切替板38が接続されて構成される。切替板38は駆動部39の回転により設置位置が切替可能に取り付けられている。切替板38は、筐体1の1つの側面と接する位置または、筐体1に設けられた風路形成部材14と接する位置に設けられる。
 熱交換器32は、筐体1と着脱可能に取り付けられる。
 処理装置40は、例えば基板等のハードウェア又は集積回路で構成されて熱交換換気装置100の内部に設けられる。処理装置40は、給気送風機30、排気送風機31、室外温度センサ35及び室内温度センサ36に接続される。
 次に、図2に基づいて熱交換器32の詳細な構成を説明する。図2は熱交換器32の一部を示す斜視図である。図2の斜線付きの矢印は給気する室外空気の流れを示し、白い矢印は排気する室内空気の流れを示す。熱交換器32は、仕切り部材33及び間隔保持部材34を備え、仕切り部材33と間隔保持部材34とが互いに積層されて構成される。
 間隔保持部材34は、山折りと谷折りを繰り返して波状に形成されたコルゲートシートで構成される。間隔保持部材34は、仕切り部材33を介してコルゲートシートの折り目が互いに直交するように積層される。
 2つの仕切り部材33と1つの間隔保持部材34で形成される空間は、給気風路50または排気風路51として形成される。給気風路50と排気風路51は積層方向に交互に形成される。また、コルゲートシートの折り目が交互に直交して積層されるため、給気風路50と排気風路51は直交して形成される。
 また、仕切り部材33は伝熱性及び透湿性を有する素材で形成される。
 次に、図3に基づいて処理装置40の詳細な構成を説明する。図3は実施の形態1における処理装置40の構成を示すブロック図である。処理装置40は、室外温度検出部41、室内温度検出部42、タイマー43、記憶部44、送風機駆動部45、切替駆動部46、及び制御部47を備える。
 室外温度検出部41は、室外温度センサ35に接続される。
 室内温度検出部42は、室内温度センサ36に接続される。
 送風機駆動部45は、給気送風機30と排気送風機31に接続される。
 切替駆動部46は、切替手段37に接続される。
 制御部47は、CPU(Central Processing Unit)またはDSP(Digital Signal Processor)と、CPUまたはDSPで実行されるソフトウェア等で構成される。
 次に、熱交換換気装置100の動作を説明する。
 給気送風機30は、室外空気を室内へ送風する。排気送風機31は、室内空気を室外へ送風する。この給気送風機30と排気送風機31は回転数を変更することにより送風する風量が変更される。
 室内温度センサ36は、熱交換器32を通る前の室内空気から室内温度を検出する。
 室外温度センサ35は、熱交換器32を通る前の室外空気から室外温度を検出する。検出された室内温度及び室外温度は、処理装置40に送信される。
 切替手段37は、切替板38の位置が切替わることで、熱交換換気運転と普通換気運転とを切り替える。
 熱交換器32は、給気風路50へ送風された室外空気と排気風路51へ送風された室内空気との間で熱交換する。仕切り部材33が伝熱性及び透湿性を有する素材であるため、排気風路51を通る室内空気と給気風路50を通る室外空気との間で熱量及び水分が交換される。これにより、室外空気の温度及び湿度を室内空気の温度及び湿度に近づけて給気することができる。
 次に、処理装置40の動作を説明する。
 処理装置40は、リモコン等から送信された操作信号に基づいて熱交換換気装置100を動作させる。
 室外温度検出部41は、室外温度Toを検出する。また、室内温度検出部42は、室内空気の状態として室内温度Trを検出する。
 タイマー43は、経過時間をカウントする。
 記憶部44は、検出された室外温度及び室内温度、室内温度検出部42が温度を検出するために設定された時間間隔Δt、並びに閾値を記憶する。室内温度検出部42は、室内温度T1を検出してから時間間隔Δtが経過すると室内温度T2を検出する。この時間間隔Δtで検出された室内温度の温度差が、閾値として設定された基準温度差Tと比較される。基準温度差Tは、正の値として記憶される。
 制御部47は、室外温度Toと室内温度Trを比較した結果、または、室内温度Trの変化量と基準温度差Tを比較した結果に基づいて、熱交換換気装置100の動作を決定する。また、制御部47は、決定した動作に基づいて送風機駆動部45と切替駆動部46に指示を与える。
 送風機駆動部45は、制御部47が決定した動作に基づいて給気送風機30と排気送風機31の駆動、停止及び出力する風量を制御する。
 切替駆動部46は、制御部47が決定した動作に基づいて切替手段37を制御する。
 次に、図4及び図5に基づいて熱交換換気運転及び普通換気運転について説明する。図4は熱交換換気運転における熱交換換気装置100の概略構成を示す構成図、図5は普通換気運転における熱交換換気装置100の概略構成を示す構成図である。
 まず、図4に基づいて熱交換換気運転を説明する。熱交換換気運転とは、室外空気を室内空気と熱交換させて室内へ給気する運転である。切替板38は、筐体1の側面に接して設けられる。つまり切替板38は、室内吸込口10から吸込まれた空気が熱交換器32を迂回するバイパス風路54を塞ぐ位置に設けられる。これにより、排気風路51が室内吸込口10から熱交換器32を通り室外吹出口13までを結ぶ熱交換排気風路52として形成される。つまり熱交換換気運転では、給気風路50及び排気風路51に熱交換器32が含まれる。
 熱交換換気運転は、空気調和機4により室内を冷房している場合で、室外温度が室内温度よりも高く、かつ室内温度が空気調和機の設定温度よりも高い場合に実行される。また、室内を暖房している場合で、室外温度が室内温度よりも低く、かつ室内温度が空気調和機の設定温度よりも低い場合に実行される。室外空気は熱交換されて室内空気の温度差を小さくして給気されるため、室内の空調負荷が増大することを抑制する。熱交換換気運転では、給気送風機30及び排気送風機31が最大風量よりも少ない設定風量で送風する。この設定風量は、製造者により設定された風量でも良いし、使用者がリモコン等から設定した風量でも良い。
 次に、図5に基づいて普通換気運転を説明する。普通換気運転とは、室外空気を室内空気と熱交換させずに室内へ給気する運転である。切替板38は、風路形成部材14に接して設けられる。つまり切替板38は、バイパス風路54を開放する位置に設けられる。これにより、排気風路51が室外吸込口12から熱交換器32を迂回して室内吹出口11までを結ぶ普通排気風路53として形成される。
 普通換気運転は、室内を冷房したい場合で、室外温度が室内温度よりも低く、かつ空気調和機4の設定温度が室内温度よりも低い場合に実行される。また、室内を暖房したい場合で、室外温度が室内温度よりも高く、かつ空気調和機4の設定温度が室内温度よりも高い場合に実行される。室外空気は熱交換されずに給気されるため、室外空気によって室内を冷房又は暖房する。普通換気運転では、送風機が送風する風量を最大にして運転することで、室内を冷房又は暖房する能力を高める。また、室外空気によって室内を冷房又は暖房することで室内の空調負荷を小さくするため、熱交換換気装置100以外の空気調和機を駆動する電力の消費を抑制できる。
 次に、図6に基づいて処理装置40の動作を説明する。図6は実施の形態1に係る処理装置40で実行する処理を示すフローチャートである。本実施の形態では、冷房運転中に換気を行う場合等の、室内温度を室外温度よりも低くする場合について説明する。
 使用者がリモコン等から処理装置40に熱交換換気装置100を駆動させる指示を与えると、熱交換換気装置100は熱交換換気運転を開始する(スタート)。ステップS1で制御部47は、切替駆動部46に対して切替手段37を駆動させる指示を与える。制御部47からの指示を受けると、切替手段37の駆動部39が駆動して切替板38は熱交換排気風路52を形成する位置に配置さる。この結果、制御部47は排気風路51を熱交換排気風路52に設定する。
 ステップS1で熱交換排気風路52に設定されると、ステップS2に進む。制御部47は、送風機駆動部45に対して、給気送風機30と排気送風機31を設定風量で送風させる指示を与える。制御部47からの指示を受けると、給気送風機30と排気送風機31は送風を開始する。この結果、制御部47は給気送風機30と排気送風機31を最大風量よりも少ない風量で送風させる。
 以上のステップS1とステップS2の動作により、熱交換換気運転が開始される。熱交換換気運転では、室外空気は室外吸込口12から給気され、熱交換器32を通って室内吹出口11から室内へ排気される。また、室内空気は室内吸込口10から給気され、熱交換器32を通って室外吹出口13から室外へ排気される。室外空気は室内空気と熱交換されることで室内温度Trに近い温度まで冷却され、室内へ給気される。
 熱交換換気運転を開始すると、ステップS3に進み、室外温度検出部41は室外温度センサ35から室外温度Toを検出する。また、室内温度検出部42は室内温度センサ36から室内温度Trを検出する。
 ステップS3で室外温度Toと室内温度Trを検出すると、ステップS4に進む。制御部47は、室外温度Toが室内温度Trよりも低いか否かを判断する。室外温度Toが室内温度Trよりも低い場合(ステップS4:Yes)ステップS5に進み、制御部47は、切替駆動部46に切替手段37を駆動させる指示を与える。制御部47からの指示を受けると、切替手段37は排気風路51が普通排気風路53を形成する位置に配置される。この結果、制御部47は排気風路51を熱交換排気風路52から普通排気風路53に設定する。
 ステップS4で室外温度Toが室内温度Tr以上の場合(ステップS4:No)、ステップS1からステップS4を繰り返し、熱交換換気運転を継続する。
 ステップS5で普通排気風路53に設定されると、ステップS6に進み、制御部47は、送風機駆動部45に対して、給気送風機30及び排気送風機31を最大風量で送風させる指示を与える。最大風量は、熱交換換気運転における設定風量よりも多い風量である。制御部47からの指示を受けると、給気送風機30と排気送風機31は送風を最大風量に切替える。この結果、制御部47は給気送風機30と排気送風機31を最大風量で送風させる。
 以上のステップS5とステップS6の動作により、熱交換換気運転は普通換気運転に切り替わる。普通換気運転では、室外空気は熱交換器32を通って室内へ排気される。一方、室内空気は熱交換器32を迂回して室外へ排気される。室外空気は室内空気と熱交換されずに室内に給気されるため、室内温度Trよりも低い温度の室外空気が給気される。
 ステップS5及びステップS6で普通換気運転に切り替わると、ステップS7に進みタイマー43が経過時間のカウントを開始する。カウントが開始されるとステップS8に進み、室内温度Tr1が第1の室内温度として検出され、記憶部44に記憶される。
 ステップS8で室内温度Tr1が検出されると、ステップS9に進み、制御部47は、タイマー43のカウントが設定された時間間隔Δtを経過したか否かを判断する。ステップS9で設定された時間間隔Δtを経過した場合(ステップS9:Yes)、ステップS10に進み、室内温度Tr2が第2の室内温度として検出され、記憶部44に記憶される。
 ステップS9で設定された時間間隔Δtを経過していない場合(ステップS9:No)、ステップS9を繰り返す。
 ステップS8からステップS10で室内温度Tr1及びTr2が検出されると、室内温度の時間変化量として温度差T1-T2が算出される。ステップS11に進み、制御部47は検出された室内温度Tr1から室内温度Tr2を引いた温度差Tr1-Tr2が基準温度差Tよりも小さいか否かを判断する。温度差Tr1-Tr2が基準温度差Tよりも小さい場合(ステップS11:Yes)、普通換気運転で運転しても室内温度の変化が小さく室内を冷房する効果が小さい。そのため、ステップS1に戻り、制御部47は、排気風路51を普通排気風路53から熱交換排気風路52に切替える。そして、ステップS2に進み、給気送風機30及び排気送風機31を設定風量で送風させる。以上の動作により、温度差Tr1-Tr2が基準温度差Tよりも小さい場合、普通換気運転から熱交換換気運転に切替える。
 ステップS11で温度差Tr1-Tr2が基準温度差T以上の場合(ステップS11:No)、普通換気運転により室内温度を低下させることができるため、ステップS5に戻り普通換気運転を継続する。
 以上のような実施の形態1に係る熱交換換気装置100によれば、普通換気運転で送風している間に検出された室内温度の温度差Tr1-Tr2が基準温度差Tよりも小さい場合に、普通換気運転から熱交換換気運転へ切り替える。このため、普通換気運転をしているにも関わらず室内温度を低下させる空調効果が小さい場合に、普通換気運転が継続されることが抑制される。
 送風機の風量を少なくするためには、送風機へ出力する電力を減らして回転数を低くする。つまり、風量が少ない程送風機を運転するエネルギーの消費を抑制することができる。熱交換換気運転では普通換気運転で送風する最大風量よりも少ない風量で送風するため、給気送風機30及び排気送風機31を運転するエネルギーの消費を抑制することができる。
 また、熱交換器32は仕切り部材33が伝熱性及び透湿性を有する素材で形成されるため、熱交換換気運転では室内空気と室外空気との間で熱量及び水分が交換される。このため、室外空気と室内温度の温度差を小さくし、かつ室内湿度を調節して、室外空気を室内へ給気することができる。このように熱交換換気運転では、室内の空調負荷が大きくなることを抑制して換気することができる。空調負荷が抑制されると、エアコン、除湿機または加湿器等の空気調和機を運転させたり、これら空気調和機の出力を大きくすることを抑制できる。したがって、普通換気運転をしているにも関わらず空調効果が小さい場合に熱交換換気運転へ切り替えることで、熱交換換気装置100以外の空気調和機4を運転するエネルギーの消費を抑制できる。
 また、温度差Tr1-Tr2が基準温度差T以上の場合には普通換気運転を継続させるため、室内温度を室外温度に近づけることで室内の空調負荷を小さくすることができる。
 なお、普通換気運転では給気送風機30及び排気送風機31を最大風量で送風するとしたが、これに限らず、熱交換換気運転で送風される風量よりも多い風量であれば良い。
 また、ステップS11からステップS1へ進み普通排気風路53から熱交換排気風路52に切り替わった場合に、ステップS2における設定風量で送風するとしたが、普通換気運転で送風される風量よりも小さい風量であれば良く、ステップS2における設定風量とは異なる風量で送風しても良い。
 また、基準温度差Tは、正の値として記憶されるとしたが、負の値として記憶させても良い。基準温度差Tを負の値とする場合、ステップS11では温度差Tr2-Tr1が基準温度差Tより大きいか否かを判断する。
 また、記憶部44は時間間隔Δtを記憶するものとしたが、室内温度検出部42が温度を検出するタイミングを特定できれば良く、時刻を記憶しても良い。
 また、室内温度センサ36及び室外温度センサ35は、筐体1の内部に設けられる構成を示したが、筐体1の外部に設けても良い。
 また、切替手段37は、切替板38が駆動部により回転するものを示したが、熱交換排気風路52と普通排気風路53を切り替えるものであれば良く、構成は限定されない。図7及び図8に実施の形態1の変形例を示す。図7は熱交換換気運転における熱交換換気装置100の概略構成を示す構成図、図8は普通換気運転における熱交換換気装置100の概略構成を示す構成図である。変形例では、切替手段37が上下に移動可能な構成である。図7に示す熱交換換気運転の場合、切替手段37は、普通換気運転の場合よりも筐体1の下方側に設けられる。つまり、バイパス風路54を塞ぐ位置に設けられる。一方、図8に示すの普通換気運転の場合、切替手段37は、筐体1の上方側に設けられる。つまり、バイパス風路54を開放する位置に設けられる。
 また、普通換気運転では排気風路51を熱交換排気風路52又は普通排気風路53へ切り替えるものとしたが、給気風路50及び排気風路51の少なくとも一方が熱交換器32を迂回すればよく、図9に記載するように給気風路50を切り替えてもよい。図9は切替手段37が給気風路50を切り替える場合における熱交換換気装置100の概略構成を示す構成図である。切替板38がバイパス風路54を塞ぐ位置に設けられる場合、給気風路50が室外吸込口12から熱交換器32を通り室内吹出口11までを結ぶ熱交換給気風路として形成される。切替板38がバイパス風路54を開放する位置に設けられる場合、給気風路50は室内吸込口10から熱交換器32を迂回して室外吹出口13までを結ぶ普通給気風路として形成される。
 また、給気送風機30と排気送風機31が同じ風量で送風するものとしたが、給気送風機30と排気送風機31の設定風量を異なる風量に設定しても良い。温度差Tr1-Tr2が基準温度差Tより小さい場合に、少なくとも1つの送風機の風量を少なくすれば、送風機を運転するエネルギーの消費を抑制することができる。
 また、室内空気の状態の時間変化量として、温度差Tr1-Tr2を用いるものとしたが、これに限らず、温度変化率も用いてもよい。温度変化率は、温度差Tr1-Tr2を、室内温度Tr1を検出してから室内温度Tr2を検出するまでの時間で割った値である。この場合、記憶部44は閾値として基準温度変化率が記憶される。
実施の形態2.
 実施の形態1では、温度差Tr1-Tr2が基準温度差Tよりも小さい場合に、普通排気風路53から熱交換排気風路52へ切り替えるものであったが、実施の形態2では、排気風路51は切り替えず、送風機の風量を少なくするものである。図10に基づいて実施の形態2に係る熱交換換気装置100の処理装置40の動作を説明する。図10は実施の形態2に係る処理装置40で実行する処理を示すフローチャートである。実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には同一符号を付して説明を省略するものとする。
 ステップS11で温度差Tr1-Tr2が基準温度差Tよりも小さい場合(ステップS11:Yes)、ステップS2に進む。ステップS2では、制御部47は給気送風機30及び排気送風機31を設定風量で送風させる。その後、ステップS3からステップS11を繰り返す。
 以上のような実施の形態2に係る熱交換換気装置100によれば、温度差Tr1-Tr2が基準温度差Tよりも小さい場合に、給気送風機30及び排気送風機31は設定風量で送風する。普通排気風路53が形成された状態で、風量を少なくするため、室外空気を室内に給気しながら、給気送風機30及び排気送風機31を運転するエネルギーの消費を抑制できる。
 また、実施の形態1のように普通排気風路53から熱交換排気風路52に切り替える場合に比べて、切替手段37を動作させる回数が少ないため、部品が劣化することを抑制できる。また、切替手段37を駆動するエネルギーの消費を抑制できる。
実施の形態3.
 実施の形態1では、給気送風機30及び排気送風機31は、熱交換換気運転と普通換気運転とで異なる風量で送風するものであったが、実施の形態3では、同じ風量で送風するものである。図11に基づいて実施の形態3に係る熱交換換気装置100の処理装置40の動作を説明する。図11は実施の形態3に係る処理装置40で実行する処理を示すフローチャートである。実施の形態3では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には同一符号を付して説明を省略するものとする。
 ステップS1で熱交換排気風路52に設定されると、ステップS12に進み、給気送風機30と排気送風機31を設定風量で送風させる。これより、熱交換換気運転が開始される。
 その後、ステップS4で室外温度Toが室内温度Trよりも低い場合(ステップS4:Yes)、排気風路51は普通排気風路53に設定される。普通換気運転で送風される風量は熱交換換気運転で送風される風量と同じ設定風量である。以上の動作により熱交換換気運転から普通換気運転に切り替わる。
 以上のような実施の形態3に係る熱交換換気装置100によれば、普通換気運転で送風される風量は熱交換換気運転で送風される風量と同じである。そのため、実施の形態1のように熱交換換気運転では普通換気運転よりも換気量を少なくすることがない。このため、熱交換換気運転する場合に、換気能力が低下することなく空調負荷が大きくなることを抑制できる。
実施の形態4.
 実施の形態1では、熱交換換気装置100を運転している間は給気送風機30及び排気送風機31を駆動させていたが、実施の形態4では、温度差Tr1-Tr2が基準温度差Tよりも小さい場合に、給気送風機30及び排気送風機31を停止させるものである。図12に基づいて実施の形態4に係る熱交換換気装置100の処理装置40の動作を説明する。図12は実施の形態4に係る処理装置40で実行する処理を示すフローチャートである。実施の形態4では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には同一符号を付して説明を省略するものとする。
 熱交換換気装置100には、夜間等の室内に人が在席していない間や在席人数が少ない場合に、自動で普通換気運転を開始または停止する夜間モードがある。夜間モードは、室外温度Toが室内温度Trよりも低い場合に普通換気運転を行うことで、室内温度が室外温度よりも高くなることを抑制するものである。そのため、室外温度Toが室内温度Tr以上の場合には給気送風機30及び排気送風機31を停止させて、普通換気運転及び熱交換換気運転は行わない。夜間モードで運転することで室内を空調することができるため、熱交換換気装置100以外の空気調和機を運転する必要がない。
 熱交換換気装置100における夜間モードでは、普通換気運転で送風している間に検出された温度差Tr1-Tr2が基準温度差T以上の場合には普通換気運転を継続する。一方、温度差Tr1-Tr2が基準温度差Tよりも小さい場合には、普通換気運転を停止する。
 ステップS11で温度差Tr1-Tr2が基準温度差Tよりも小さい場合(ステップS11:Yes)、ステップS14に進み、制御部47は給気送風機30及び排気送風機31を停止させる。給気送風機30及び排気送風機31を停止させるとタイマー43が経過時間のカウントを開始してステップS17に進み、制御部47は設定時間が経過したか否かを判断する。設定時間が経過した場合(ステップS17:Yes)ステップS3に戻り、ステップS3からステップS17を繰り返す。
 ステップS14で給気送風機30及び排気送風機31が停止するため、普通換気運転が停止する。熱交換換気装置100は、普通換気運転が停止している間でも所定の時間間隔Δtで室外温度Toと室内温度Trを検出する。そのため、ステップS4で室外温度Toが室内温度Trよりも低い場合(ステップS4:Yes)、再び普通換気運転を開始する。
 以上のような実施の形態4に係る熱交換換気装置100によれば、温度差Tr1-Tr2が基準温度差Tよりも低い場合に、給気送風機30及び排気送風機31を停止する。普通換気運転をしているにも関わらず室内温度を低下させる空調効果が小さい場合に、換気運転が継続されることが抑制されるため、給気送風機30及び排気送風機31を運転するエネルギーの消費を抑制できる。
 また、温度差Tr1-Tr2が基準温度差T以上の場合、または室外温度Toが室内温度Trよりも小さい場合に、普通換気運転を行う。普通換気運転を行うため、室内温度が室外温度よりも高くなることが抑制される。室内温度が高くなることが抑制されると、夜間モード終了後に空気調和機4を運転させたり、空気調和機4の出力を大きくすることを抑制できる。したがって、熱交換換気装置100以外の空気調和機4を運転するエネルギーの消費を抑制できる。
実施の形態5.
 実施の形態1では、冷房運転中に換気を行う場合等の、室内温度を室外温度よりも低くしたい場合における熱交換換気装置100の動作について説明したが、実施の形態5では、暖房運転中に換気を行う場合等の、室内温度を室外温度よりも高くしたい場合における熱交換換気装置100の動作について説明する。図13に基づいて実施の形態5に係る熱交換換気装置100の処理装置40の動作を説明する。図13は実施の形態5に係る処理装置40で実行する処理を示すフローチャートである。実施の形態5では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には同一符号を付して説明を省略するものとする。
 熱交換換気運転は、室外温度Toが室内温度Tr以下の場合に行われる。室外空気は熱交換されることで室内空気の温度に近い温度まで暖房され、室内へ給気される。
 普通換気運転は、室外温度Toが室内温度Trよりも高い場合に行われる。室外空気は熱交換されずに室内に給気されるため、室内温度Trよりも高い温度の室外空気が給気される。
 熱交換換気運転が開始されて、ステップS3で室外温度Toと室内温度Trが検出されると、ステップS15に進む。ステップS15では、室外温度Toが室内温度Trよりも大きいか否かを判断する。ステップS15で室外温度Toが室内温度Trよりも大きい場合(ステップS15:Yes)、ステップS5に進み、制御部47は排気風路51を普通排気風路53に設定する。
 ステップS15で室外温度Toが室内温度Tr以下の場合(ステップS15:No)、ステップS1からステップS15を繰り返し、熱交換換気運転を継続する。
 ステップS5で普通排気風路53に設定されると、ステップS6に進み、制御部47は給気送風機30と排気送風機31を最大風量で送風させる。これにより、熱交換換気装置100は熱交換換気運転から普通換気運転に切り替わる。
 普通換気運転に切り替わり、ステップS7からステップS10で室内温度Tr1及び室内温度Tr2を検出すると、ステップS16に進む。ステップS16では、制御部47が温度差Tr2-Tr1が基準温度差Tよりも小さいか否かを判断する。温度差Tr2-Tr1が基準温度差Tよりも小さい場合(ステップS16:Yes)、普通換気運転をおこなっても室内温度の変化が小さく室内を暖房する効果が小さい。そのため、ステップS1に戻り、排気風路51を普通排気風路53から熱交換排気風路52に設定する。また、ステップS2に進み、制御部47は給気送風機30及び排気送風機31を最大風量よりも少ない設定風量で送風させる。したがって、温度差Tr2-Tr1が基準温度差Tよりも小さい場合、普通換気運転から熱交換換気運転に切替える。
 ステップS16で温度差Tr2-Tr1が基準温度差T以上の場合(ステップS16:No)、普通換気運転により室内温度を上昇させることができるため、ステップS5に戻り普通換気運転を継続する。
 以上のような実施の形態5に係る熱交換換気装置100によれば、普通換気運転で送風している間に検出された室内温度の温度差Tr2-Tr1が基準温度差Tよりも小さい場合に、普通換気運転から熱交換換気運転に切り替える。このため、普通換気運転をしているにも関わらず室内を暖房する効果が小さい場合に、普通換気運転が継続されることを抑制できる。
 熱交換換気運転では普通換気運転で送風する最大風量よりも少ない風量で送風するため、給気送風機30及び排気送風機31を運転するエネルギーの消費を抑制できる。
 なお、基準温度差Tは、負の値として記憶させても良い。基準温度差Tを負の値とする場合、ステップS16では温度差Tr1-Tr2が基準温度差Tより大きいか否かを判断する。
 また、実施の形態5の動作と実施の形態2から4に示す動作を組み合わせてもよい。具体的には、実施の形態2から4のステップS4及びステップS11をそれぞれ実施の形態5のステップS15及びステップS16に切替えてもよい。これにより、実施の形態2から4の動作を、暖房運転中に換気を行う場合に適用することができる。
実施の形態6.
 実施の形態1では、室外温度To及び室内温度Trに基づいて動作するものであったが、実施の形態6では、室外エンタルピーHo及び室内エンタルピーHrに基づいて動作するものである。実施の形態6では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には同一符号を付して説明を省略するものとする。
 熱交換換気装置100は、室内温度センサ36の代わりに室内温湿度センサ60を備え、室外温度センサ35の代わりに室外温湿度センサ61を備える。
 室内温湿度センサ60は、熱交換器32を通る前の室内空気から室内温度及び室内湿度を検知する。
 室外温湿度センサ61は、熱交換器32を通る前の室外空気から室外温度及び室外湿度を検知する。
 次に、図14に基づいて処理装置70の構成を説明する。図14は実施の形態6に係る処理装置70の構成を示すブロック図である。処理装置70は、室外湿度検出部71、室内湿度検出部72、及び演算部73を備える。
 室外湿度検出部71は、室外温湿度センサ61に接続されており、室外湿度を検出する。室内湿度検出部72は、室内温湿度センサ60に接続されており、室内湿度を検出する。
 演算部73は、検出された温度と湿度からエンタルピーを演算する。具体的には、室外温度To及び室外湿度Moから室外エンタルピーHoを演算する。また、室内温度Tr及び室内湿度Mrから室内空気の状態として室内エンタルピーHrを演算する。
 記憶部44は、演算された室内エンタルピーHr、室外エンタルピーHo、及び設定された閾値を記憶する。閾値としては基準エンタルピーHが記憶される。時間間隔Δtで検出された室内エンタルピーHrのエンタルピー差が、基準エンタルピーHと比較される。
 制御部47は、室外エンタルピーHoと室内エンタルピーHrを比較した結果、または、室内エンタルピーHrの変化量と基準エンタルピーHを比較した結果に基づいて、熱交換換気装置100の動作を決定する。
 次に、図15に基づいて処理装置70の動作を説明する。図15は実施の形態6に係る処理装置70で実行する処理を示すフローチャートである。
 ステップS1及びステップS2で熱交換換気運転が開始されると、ステップS21に進み、制御部47は室内温度Tr及び室内湿度Mrを検出する。また、ステップS22に進み、室外温度Toと室外湿度Moを検出する。
 温度及び湿度を検出するとステップS23に進む。演算部73は室内エンタルピーHrと室外エンタルピーHoを演算する。ステップS24に進み、制御部47は、室外エンタルピーHoが室内エンタルピーHrよりも小さいか否かを判断する。ステップS24で室外エンタルピーHoが室内エンタルピーHrよりも小さい場合(ステップS24:Yes)、ステップS5に進み、制御部47は排気風路51を普通排気風路53に設定する。
 ステップS24で室外エンタルピーHoが室内エンタルピーHr以上の場合(ステップS24:No)、ステップS1へ戻り熱交換換気運転を継続する。
 ステップS5で普通排気風路53に設定されると、ステップS6及びステップS7を経て、ステップS25に進む。ステップS25では、室内温度Tr1が第1の室内温度として検出され、記憶部44に記憶される。また、室内湿度Mr1が第1の室内湿度として検出され、記憶部44に記憶される。
 室内温度Tr1及び室内湿度Mr1が検出されてから設定された時間間隔Δtを経過した場合(ステップS9:Yes)、ステップS26に進み、室内温度Tr2が第2の室内温度として検出され、記憶部44に記憶される。また、室内湿度Mr2が第2の室内湿度として検出され、記憶部44に記憶される。
 温度及び湿度を検出すると、ステップS27に進み、演算部73は室内温度Tr1及び室内湿度Mr1から第1の室内エンタルピーHr1を演算する。また、室内温度Tr2及び室内湿度Mr2から第2の室内エンタルピーHr2を演算する。
 ステップS27でエンタルピーが演算されると、制御部47は室内エンタルピーHrの時間変化量として、室内エンタルピーHr1から室内エンタルピーHr2を引いたエンタルピー差Hr1-Hr2を算出する。ステップS28に進み、算出されたエンタルピー差Hr1-Hr2が基準エンタルピーHよりも小さいか否かを判断する。エンタルピー差Hr1-Hr2が基準エンタルピーHよりも小さい場合(ステップS28:Yes)、ステップS1に戻り、排気風路51を普通排気風路53から熱交換排気風路52に切替える。また、ステップS2に進み、給気送風機30及び排気送風機31を最大風量よりも少ない設定風量で送風させる。以上の動作により、エンタルピー差Hr1-Hr2が基準エンタルピーHよりも小さい場合、普通換気運転から熱交換換気運転に切替える。
 エンタルピー差Hr1-Hr2が基準エンタルピーH以上の場合(ステップS28:No)、ステップS5に戻り普通換気運転を継続する。
 以上のような実施の形態6に係る熱交換換気装置100によれば、室外エンタルピーHo及び室内エンタルピーHrに基づいて動作する。具体的には、室外エンタルピーHoが室内エンタルピーHrよりも小さい場合、熱交換換気運転から普通換気運転に切り替える。エンタルピーは、検出された温度及び湿度から演算される値であるため、温度及び湿度を比較して熱交換換気装置100の動作を決定することができる。そのため、普通換気運転をしているにも関わらず空調効果が小さい場合、または湿度を調節する効果が小さい場合に、普通換気運転が継続されることを抑制することができる。
 なお、温度及び湿度を検知する手段として、室外温湿度センサ61及び室内温湿度センサ60を用いるものとしたが、温度及び湿度を検知できればよく、温度センサと湿度センサを別々に設けてもよい。
 また、演算部73は、記憶部44に記憶された温度及び湿度からエンタルピーを演算するとしたが、温度及び湿度を検出した場合にエンタルピーを演算して記憶部44に記憶してもよい。
 また、基準エンタルピーHは、正の値として記憶されるとしたが、負の値として記憶させても良い。基準エンタルピーHを負の値とする場合、ステップS28ではエンタルピー差Hr2-Hr1が基準エンタルピーHより大きいか否かを判断する。
 また、実施の形態1から6では熱交換換気運転又は普通換気運転が開始されるとすぐに室外温度Toと室内温度Trを検出するものとしたが、熱交換換気運転が開始されてから所定時間の経過後に室内温度Tr又は室内湿度Mrを検出してもよい。所定時間の間は運転が切り替わることがないため、普通換気運転により室内空気の状態を変化させる効果が小さい場合に、すぐに普通換気運転に切り替わることを抑制できる。
 本発明に係る熱交換換気装置100は、家庭用、業務用等の熱交換換気装置として広く利用することができる。
1 筐体、2 天井、3 床面、4 空気調和機、10 室内吸込口、11 室内吹出口、12 室外吸込口、13 室外吹出口、14 風路形成部材、20 室内吸込ダクト、21 室内吹出ダクト、22 室外吸込ダクト、23 室外吹出ダクト、30 給気送風機、31 排気送風機、32 熱交換器、33 仕切り部材、34 間隔保持部材、35 室外温度センサ、36 室内温度センサ、37 切替手段、38 切替板、39 駆動部、40、70 処理装置、41 室外温度検出部、42 室内温度検出部、43 タイマー、44 記憶部、45 送風機駆動部、46 切替駆動部、47 制御部、50 給気風路、51 排気風路、52 熱交換排気風路、53 普通排気風路、54 バイパス風路、60 室内温湿度センサ、61 室外温湿度センサ、71 室外湿度検出部、72 室内湿度検出部、73 演算部、100 熱交換換気装置

Claims (10)

  1.  室外吸込口と室内吹出口とを結ぶ給気風路と、室内吸込口と室外吹出口とを結ぶ排気風路とが形成される筐体と、
    室外空気を室内へ送風する給気送風機と、
    室内空気を室外へ送風する排気送風機と、
    前記室内へ送風される前記室外空気と前記室外へ送風される前記室内空気との間で熱交換する熱交換器と、
    前記給気風路及び前記排気風路に前記熱交換器が含まれる熱交換換気運転と、前記給気風路及び前記排気風路の少なくとも一方が前記熱交換器を迂回する普通換気運転とを切り替える切替手段と、
    前記普通換気運転で運転している間に検出された室内空気の状態の時間変化量が、設定された閾値よりも小さい場合に、前記給気送風機又は前記排気送風機の風量を前記普通換気運転で運転している間の風量よりも少なくする制御部と
    を備える熱交換換気装置。
  2.  室外吸込口と室内吹出口とを結ぶ給気風路と、室内吸込口と室外吹出口とを結ぶ排気風路とが形成される筐体と、
    室外空気を室内へ送風する給気送風機と、
    室内空気を室外へ送風する排気送風機と、
    前記室内へ送風される前記室外空気と前記室外へ送風される前記室内空気との間で熱交換する熱交換器と、
    前記給気風路及び前記排気風路に前記熱交換器が含まれる熱交換換気運転と、前記給気風路及び前記排気風路の少なくとも一方が前記熱交換器を迂回する普通換気運転とを切り替える切替手段と、
    前記普通換気運転で運転している間に検出された室内空気の状態の時間変化量が、設定された閾値よりも小さい場合に、前記切替手段により前記普通換気運転から前記熱交換換気運転に切り替える制御部と
    を備える熱交換換気装置。
  3.  前記制御部は、前記室内空気の状態の時間変化量が設定された前記閾値よりも小さい場合に、前記給気送風機又は前記排気送風機を停止させることを特徴とする請求項1または2に記載の熱交換換気装置。
  4.  前記制御部は、前記時間変化量が、第1の室内温度と、前記第1の室内温度を検出してから設定された時間が経過した後に検出した第2の室内温度との温度差として検出され、前記閾値が基準温度差として設定されることを特徴とする請求項1から3のいずれか1項に記載の熱交換換気装置。
  5.  前記制御部は、前記時間変化量が、第1の室内温度と、前記第1の室内温度を検出してから設定された時間が経過した後に検出した第2の室内温度との温度変化率として検出され、前記閾値が基準温度変化率として設定されることを特徴とする請求項1から3のいずれか1項に記載の熱交換換気装置。
  6.  前記制御部は、室外温度が室内温度よりも小さい場合に、前記切替手段により前記熱交換換気運転から前記普通換気運転に切り替えることを特徴とする請求項4または5に記載の熱交換換気装置。
  7.  前記制御部は、室外温度が室内温度より大きい場合に、前記切替手段により前記熱交換換気運転から前記普通換気運転に切り替えることを特徴とする請求項1または5に記載の熱交換換気装置。
  8.  前記制御部は、前記時間変化量が、室内温度及び室内湿度から演算された室内エンタルピーとして検出され、前記閾値が基準エンタルピーとして設定されることを特徴とする請求項1から3のいずれか1項に記載の熱交換換気装置。
  9.  前記制御部は、室外温度及び室外湿度から演算された室外エンタルピーが前記室内エンタルピーよりも小さい場合に、前記切替手段により前記熱交換換気運転から前記普通換気運転に切り替えることを特徴とする請求項8に記載の熱交換換気装置。
  10.  前記制御部は、室外温度及び室外湿度から演算された室外エンタルピーが前記室内エンタルピーよりも大きい場合に、前記切替手段により前記熱交換換気運転から前記普通換気運転に切り替えることを特徴とする請求項8に記載の熱交換換気装置。
PCT/JP2017/029511 2017-08-17 2017-08-17 熱交換換気装置 WO2019035194A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/029511 WO2019035194A1 (ja) 2017-08-17 2017-08-17 熱交換換気装置
JP2019536389A JP6861824B2 (ja) 2017-08-17 2017-08-17 熱交換換気装置
EP17921840.9A EP3671055B1 (en) 2017-08-17 2017-08-17 Heat exchanging ventilation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029511 WO2019035194A1 (ja) 2017-08-17 2017-08-17 熱交換換気装置

Publications (1)

Publication Number Publication Date
WO2019035194A1 true WO2019035194A1 (ja) 2019-02-21

Family

ID=65362578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029511 WO2019035194A1 (ja) 2017-08-17 2017-08-17 熱交換換気装置

Country Status (3)

Country Link
EP (1) EP3671055B1 (ja)
JP (1) JP6861824B2 (ja)
WO (1) WO2019035194A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608500A (zh) * 2019-10-18 2019-12-24 珠海格力电器股份有限公司 可调式新风机及其控制方法
CN111928413A (zh) * 2020-07-16 2020-11-13 青岛海尔空调电子有限公司 空调组件及其联合控制方法、控制装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124847A (en) * 1980-03-07 1981-09-30 Toshiba Corp Controlling method for preheating and precooling device
JPS62123236A (ja) * 1985-11-21 1987-06-04 Matsushita Electric Ind Co Ltd 換気装置の制御方法
JPS6341750A (ja) * 1986-08-06 1988-02-23 Matsushita Seiko Co Ltd 換気扇
JPH03144238A (ja) * 1989-10-30 1991-06-19 Matsushita Seiko Co Ltd レンジフードの自動運転装置
JPH05311956A (ja) * 1991-05-21 1993-11-22 Seiki Suyama 室内換気システム
JPH06123473A (ja) * 1992-10-09 1994-05-06 Daikin Ind Ltd 空気調和装置
JPH09178242A (ja) * 1997-01-13 1997-07-11 Daikin Ind Ltd 換気装置の運転制御装置
JP2001304645A (ja) 2000-04-19 2001-10-31 Daikin Ind Ltd 空気調和装置
JP2002071184A (ja) * 2000-08-29 2002-03-08 Mitsubishi Electric Corp 換気空調方法及び換気空調システム
JP2004293869A (ja) * 2003-03-26 2004-10-21 Osaka Gas Co Ltd 熱回収型換気システム
JP2007271128A (ja) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd 空調設備
JP2012042129A (ja) * 2010-08-19 2012-03-01 Yamatake Corp 空調システムの総合効率演算装置および方法
JP2014044011A (ja) * 2012-08-28 2014-03-13 Panasonic Corp 全熱交換型換気装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309381A (ja) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp 熱交換換気装置
JP2014070827A (ja) * 2012-09-28 2014-04-21 Daikin Ind Ltd 換気装置のコントローラ
DE102013216306A1 (de) * 2013-08-16 2015-02-19 Blumartin Gmbh Raumkühlende Steuerung für Raumlüftungsvorrichtung mit Wärmerückgewinnung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124847A (en) * 1980-03-07 1981-09-30 Toshiba Corp Controlling method for preheating and precooling device
JPS62123236A (ja) * 1985-11-21 1987-06-04 Matsushita Electric Ind Co Ltd 換気装置の制御方法
JPS6341750A (ja) * 1986-08-06 1988-02-23 Matsushita Seiko Co Ltd 換気扇
JPH03144238A (ja) * 1989-10-30 1991-06-19 Matsushita Seiko Co Ltd レンジフードの自動運転装置
JPH05311956A (ja) * 1991-05-21 1993-11-22 Seiki Suyama 室内換気システム
JPH06123473A (ja) * 1992-10-09 1994-05-06 Daikin Ind Ltd 空気調和装置
JPH09178242A (ja) * 1997-01-13 1997-07-11 Daikin Ind Ltd 換気装置の運転制御装置
JP2001304645A (ja) 2000-04-19 2001-10-31 Daikin Ind Ltd 空気調和装置
JP2002071184A (ja) * 2000-08-29 2002-03-08 Mitsubishi Electric Corp 換気空調方法及び換気空調システム
JP2004293869A (ja) * 2003-03-26 2004-10-21 Osaka Gas Co Ltd 熱回収型換気システム
JP2007271128A (ja) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd 空調設備
JP2012042129A (ja) * 2010-08-19 2012-03-01 Yamatake Corp 空調システムの総合効率演算装置および方法
JP2014044011A (ja) * 2012-08-28 2014-03-13 Panasonic Corp 全熱交換型換気装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608500A (zh) * 2019-10-18 2019-12-24 珠海格力电器股份有限公司 可调式新风机及其控制方法
CN110608500B (zh) * 2019-10-18 2023-08-29 珠海格力电器股份有限公司 可调式新风机及其控制方法
CN111928413A (zh) * 2020-07-16 2020-11-13 青岛海尔空调电子有限公司 空调组件及其联合控制方法、控制装置
CN111928413B (zh) * 2020-07-16 2023-03-28 青岛海尔空调电子有限公司 空调组件及其联合控制方法、控制装置

Also Published As

Publication number Publication date
JP6861824B2 (ja) 2021-04-21
EP3671055B1 (en) 2023-10-18
JPWO2019035194A1 (ja) 2019-11-07
EP3671055A4 (en) 2020-07-22
EP3671055A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP3551124B2 (ja) 空気調和装置
JP6300921B2 (ja) 空調換気装置
JP5312055B2 (ja) 空気調和システム
JP4483995B2 (ja) 換気装置
WO2014050227A1 (ja) 換気装置のコントローラ
WO2010116824A1 (ja) 熱交換換気装置
JP6253459B2 (ja) 空調用換気装置
JP5984964B2 (ja) 空気調和システム
JP4579810B2 (ja) 空調制御システム
JP2838941B2 (ja) ダクト式空気調和機
JP2504315B2 (ja) 空気調和機
JP2012098009A (ja) 空気調和機
JP6861824B2 (ja) 熱交換換気装置
JP3622754B2 (ja) 空気調和システム
JP6156245B2 (ja) 換気装置及び換気空調システム
JP2013137189A (ja) 空気調和システム
JP6259997B2 (ja) 給排型換気装置
JPH08210690A (ja) 換気空調装置
JP2004003866A (ja) 換気空調装置
JP7336630B2 (ja) 換気システム
JP7386388B2 (ja) 換気システム
JP2658597B2 (ja) 空気調和装置
JPH08200782A (ja) 換気空調装置
JP4425695B2 (ja) 換気空調装置
JP2008157503A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017921840

Country of ref document: EP

Effective date: 20200317