WO2019027227A1 - VACUUM ADIABATIC BODY AND REFRIGERATOR - Google Patents

VACUUM ADIABATIC BODY AND REFRIGERATOR Download PDF

Info

Publication number
WO2019027227A1
WO2019027227A1 PCT/KR2018/008687 KR2018008687W WO2019027227A1 WO 2019027227 A1 WO2019027227 A1 WO 2019027227A1 KR 2018008687 W KR2018008687 W KR 2018008687W WO 2019027227 A1 WO2019027227 A1 WO 2019027227A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate member
space
sheet
vacuum
adiabatic body
Prior art date
Application number
PCT/KR2018/008687
Other languages
English (en)
French (fr)
Inventor
Sol Han
Minsu RYU
Jaehyun BAE
Original Assignee
Lg Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc. filed Critical Lg Electronics Inc.
Priority to CN201880050501.7A priority Critical patent/CN110998167B/zh
Priority to RU2020108484A priority patent/RU2739948C1/ru
Priority to US16/635,699 priority patent/US11774167B2/en
Priority to AU2018309536A priority patent/AU2018309536B2/en
Priority to EP18840407.3A priority patent/EP3662191B1/en
Publication of WO2019027227A1 publication Critical patent/WO2019027227A1/en
Priority to AU2022201399A priority patent/AU2022201399B2/en
Priority to US18/222,002 priority patent/US20230366613A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/043Treating air flowing to refrigeration compartments by creating a vacuum in a storage compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present disclosure relates to a vacuum adiabatic body and a refrigerator.
  • a vacuum adiabatic body is a product for suppressing heat transfer by vacuumizing the interior of a body thereof.
  • the vacuum adiabatic body may reduce heat transfer by convection and conduction, and hence is applied to heating apparatuses and refrigerating apparatuses.
  • a foam urethane adiabatic wall having a thickness of about 30 cm or more is generally provided. However, the internal volume of the refrigerator is therefore reduced.
  • Korean Patent No. 10-0343719 (Reference Document 1) of the present applicant has been disclosed.
  • Reference Document 1 there is disclosed a method in which a vacuum adiabatic panel is prepared and then built in walls of a refrigerator, and the exterior of the vacuum adiabatic panel is finished with a separate molding as Styrofoam. According to the method, additional foaming is not required, and the adiabatic performance of the refrigerator is improved.
  • fabrication cost is increased, and a fabrication method is complicated.
  • a technique of providing walls using a vacuum adiabatic material and additionally providing adiabatic walls using a foam filling material has been disclosed in Korean Patent Publication No. 10-2015-0012712 (Reference Document 2). According to Reference Document 2, fabrication cost is increased, and a fabrication method is complicated.
  • the present applicant had filed Patent Application No. 10-2011-0113414 (Cited document 4) in consideration of the above-described limitations.
  • the document proposes a refrigerator including a vacuum adiabatic body. Particularly, a space maintenance member for installing a radiation resistance sheet is built.
  • the space maintenance member for maintaining a space has to be separately inserted.
  • a member made of a resin material is used, a weight, cost, and outgassing increase.
  • the space maintenance member having a predetermined thickness has to be installed, there is a limitation in securing an adiabatic thickness of the vacuum adiabatic body.
  • Embodiments provide a vacuum adiabatic body that solves installation inconvenience of a radiation resistance sheet and a refrigerator.
  • Embodiments also provide a vacuum adiabatic body that solves a limitation of an increase in weight, cost, and outgassing due to additional usage of a resin material and a refrigerator.
  • Embodiments also provide a vacuum adiabatic body that is not limited in setting of a adiabatic thickness of the vacuum adiabatic body and a refrigerator.
  • the self-standing type radiation resistance sheet may include a sheet base provided in a direction crossing an inner space and at least one sheet protrusion protruding from the sheet base in at least one direction of the first plate member and the second plate member to maintain an interval of the sheet base.
  • the position and interval of the self-standing radiation resistance sheet may be fixed by a through-hole, through which a bar maintaining an interval between the plate members passes, and the sheet protrusion without applying a separate resin material.
  • the through-hole through which the bar passes may have a small size at an edge of the sheet base and a large size at an inner portion of the sheet base.
  • the through-hole may be defined in an end of the sheet protrusion.
  • the sheet protrusion may be provided on all both surfaces of the sheet base.
  • the self-standing radiation resistance sheet may be used in multilayer.
  • the sheet protrusion may be provided on each of both surfaces of the sheet base.
  • a conduction prevention tool for preventing heat conduction from occurring between the self-standing radiation resistance sheet and the plate member may be provided between the self-standing radiation resistance sheet and the plate member.
  • the plurality of radiation resistance sheets may be set in various methods by providing the sheet base having a two-dimensional planar structure and the sheet protrusion protruding from at least one surface of the sheet base to fix the interval between the sheet base and the plate.
  • the worker may have the advantage that it is not necessary to separately set the space and position of the radiation resistance sheet only by mounting the radiation resistance sheet.
  • the manufacturing cost since the resin material is not used, or the small amount of resin material is used so as to maintain the space of the radiation resistance sheet, the manufacturing cost may be reduced, and also, the outgassing may be reduced.
  • the radiation resistance sheet for reducing radiation heat transfer which is set for each vacuum adiabatic body, may be designed without being limited.
  • Fig. 1 is a perspective view of a refrigerator according to an embodiment.
  • Fig. 2 is a view schematically showing a vacuum adiabatic body used in a main body and a door of the refrigerator.
  • Fig. 3 is a view illustrating various embodiments of an internal configuration of a vacuum space part.
  • Fig. 4 is a diagram illustrating results obtained by examining resins.
  • Fig. 5 illustrates results obtained by performing an experiment on vacuum maintenance performances of resins.
  • Fig. 6 illustrates results obtained by analyzing components of gases discharged from PPS and low outgassing PC.
  • Fig. 7 illustrates results obtained by measuring maximum deformation temperatures at which resins are damaged by atmospheric pressure in high-temperature exhaustion.
  • Fig. 8 is a view showing various embodiments of conductive resistance sheets and peripheral parts thereof.
  • Fig. 9 is a partial perspective view of a supporting unit.
  • Fig. 10 is a partial cross-sectional view of the supporting unit.
  • Figs. 11 to 14 are views illustrating various examples in which radiation heat transfer is blocked by a self-standing type radiation resistance sheet.
  • Fig. 15 is a cross-sectional view of a supporting unit according to a first modified example.
  • Fig. 16 is a cross-sectional view of a supporting unit according to a second modified example.
  • Fig. 17 is a cross-sectional view of a supporting unit according to a third modified example.
  • Fig. 18 is a cross-sectional view of a supporting unit according to a fourth modified example.
  • Fig. 19 is a cross-sectional view of a supporting unit according to a fifth modified example.
  • Fig. 20 is a plan view of the self-standing type radiation resistance sheet applied to a sixth modified example.
  • Fig. 21 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
  • Fig. 22 is a graph illustrating results obtained by observing a time and a pressure in a process of exhausting the inside of the vacuum adiabatic body when a supporting unit is used.
  • Fig. 23 is a graph illustrating results obtained by comparing a vacuum pressure with gas conductivity.
  • the vacuum pressure means any pressure state lower than the atmospheric pressure.
  • the expression that a vacuum degree of A is higher than that of B means that a vacuum pressure of A is lower than that of B.
  • Fig. 1 is a perspective view of a refrigerator according to an embodiment.
  • the refrigerator 1 includes a main body 2 provided with a cavity 9 capable of storing storage goods and a door 3 provided to open/close the main body 2.
  • the door 3 may be rotatably or slidably movably disposed to open/close the cavity 9.
  • the cavity 9 may provide at least one of a refrigerating compartment and a freezing compartment.
  • the parts include a compressor 4 for compressing a refrigerant, a condenser 5 for condensing the compressed refrigerant, an expander 6 for expanding the condensed refrigerant, and an evaporator 7 for evaporating the expanded refrigerant to take heat.
  • a fan may be installed at a position adjacent to the evaporator 7, and a fluid blown from the fan may pass through the evaporator 7 and then be blown into the cavity 9.
  • a freezing load is controlled by adjusting the blowing amount and blowing direction by the fan, adjusting the amount of a circulated refrigerant, or adjusting the compression rate of the compressor, so that it is possible to control a refrigerating space or a freezing space.
  • Fig. 2 is a view schematically showing a vacuum adiabatic body used in the main body and the door of the refrigerator.
  • a main body-side vacuum adiabatic body is illustrated in a state in which top and side walls are removed
  • a door-side vacuum adiabatic body is illustrated in a state in which a portion of a front wall is removed.
  • sections of portions at conductive resistance sheets are provided are schematically illustrated for convenience of understanding.
  • the vacuum adiabatic body includes a first plate member 10 for providing a wall of a low-temperature space, a second plate member 20 for providing a wall of a high-temperature space, a vacuum space part 50 defined as an interval part between the first and second plate members 10 and 20. Also, the vacuum adiabatic body includes the conductive resistance sheets 60 and 63 for preventing heat conduction between the first and second plate members 10 and 20. A sealing part 61 for sealing the first and second plate members 10 and 20 is provided such that the vacuum space part 50 is in a sealing state.
  • the first plate member 10 When the vacuum adiabatic body is applied to a refrigerating or heating cabinet, the first plate member 10 may be referred to as an inner case, and the second plate member 20 may be referred to as an outer case.
  • a machine room 8 in which parts providing a freezing cycle are accommodated is placed at a lower rear side of the main body-side vacuum adiabatic body, and an exhaust port 40 for forming a vacuum state by exhausting air in the vacuum space part 50 is provided at any one side of the vacuum adiabatic body.
  • a pipeline 64 passing through the vacuum space part 50 may be further installed so as to install a defrosting water line and electric lines.
  • the first plate member 10 may define at least one portion of a wall for a first space provided thereto.
  • the second plate member 20 may define at least one portion of a wall for a second space provided thereto.
  • the first space and the second space may be defined as spaces having different temperatures.
  • the wall for each space may serve as not only a wall directly contacting the space but also a wall not contacting the space.
  • the vacuum adiabatic body of the embodiment may also be applied to a product further having a separate wall contacting each space.
  • Factors of heat transfer which cause loss of the adiabatic effect of the vacuum adiabatic body, are heat conduction between the first and second plate members 10 and 20, heat radiation between the first and second plate members 10 and 20, and gas conduction of the vacuum space part 50.
  • a heat resistance unit provided to reduce adiabatic loss related to the factors of the heat transfer will be provided.
  • the vacuum adiabatic body and the refrigerator of the embodiment do not exclude that another adiabatic means is further provided to at least one side of the vacuum adiabatic body. Therefore, an adiabatic means using foaming or the like may be further provided to another side of the vacuum adiabatic body.
  • Fig. 3 is a view illustrating various embodiments of an internal configuration of the vacuum space part.
  • the vacuum space part 50 may be provided in a third space having a pressure different from that of each of the first and second spaces, preferably, a vacuum state, thereby reducing an adiabatic loss.
  • the third space may be provided at a temperature between the temperature of the first space and the temperature of the second space. Since the third space is provided as a space in the vacuum state, the first and second plate members 10 and 20 receive a force contracting in a direction in which they approach each other due to a force corresponding to a pressure difference between the first and second spaces. Therefore, the vacuum space part 50 may be deformed in a direction in which it is reduced.
  • the adiabatic loss may be caused due to an increase in amount of heat radiation, caused by the contraction of the vacuum space part 50, and an increase in amount of heat conduction, caused by contact between the plate members 10 and 20.
  • the supporting unit 30 may be provided to reduce deformation of the vacuum space part 50.
  • the supporting unit 30 includes a bar 31.
  • the bar 31 may extend in a substantially vertical direction with respect to the plate members to support a distance between the first plate member and the second plate member.
  • a support plate 35 may be additionally provided on at least any one end of the bar 31.
  • the support plate 35 may connect at least two or more bars 31 to each other to extend in a horizontal direction with respect to the first and second plate members 10 and 20.
  • the support plate 35 may be provided in a plate shape or may be provided in a lattice shape so that an area of the support plate contacting the first or second plate member 10 or 20 decreases, thereby reducing heat transfer.
  • the bars 31 and the support plate 35 are fixed to each other at at least one portion, to be inserted together between the first and second plate members 10 and 20.
  • the support plate 35 contacts at least one of the first and second plate members 10 and 20, thereby preventing deformation of the first and second plate members 10 and 20.
  • a total sectional area of the support plate 35 is provided to be greater than that of the bars 31, so that heat transferred through the bars 31 may be diffused through the support plate 35.
  • a material of the supporting unit 30 will be described.
  • the supporting unit 30 is to have a high compressive strength so as to endure the vacuum pressure. Also, the supporting unit 30 is to have a low outgassing rate and a low water absorption rate so as to maintain the vacuum state. Also, the supporting unit 30 is to have a low thermal conductivity so as to reduce the heat conduction between the plate members. Also, the supporting unit 30 is to secure the compressive strength at a high temperature so as to endure a high-temperature exhaust process. Also, the supporting unit 30 is to have an excellent machinability so as to be subjected to molding. Also, the supporting unit 30 is to have a low cost for molding. Here, the time required to perform the exhaust process takes about a few days. Hence, the time is reduced, thereby considerably improving fabrication cost and productivity. Therefore, the compressive strength is to be secured at the high temperature because an exhaust speed is increased as a temperature at which the exhaust process is performed becomes higher. The inventor has performed various examinations under the above-described conditions.
  • ceramic or glass has a low outgassing rate and a low water absorption rate, but its machinability is remarkably lowered. Hence, the ceramic and glass may not be used as the material of the supporting unit 30. Therefore, resin may be considered as the material of the supporting unit 30.
  • Fig. 4 is a diagram illustrating results obtained by examining resins.
  • the present inventor has examined various resins, and most of the resins cannot be used because their outgassing rates and water absorption rates are remarkably high. Accordingly, the present inventor has examined resins that approximately satisfy conditions of the outgassing rate and the water absorption rate. As a result, PE is inappropriate to be used due to its high outgassing rate and its low compressive strength. PCTFE is not preferable to be used due to its remarkably high price. PEEK is inappropriate to be used due to its high outgassing rate.
  • a resin selected from the group consisting of polycarbonate (PC), glass fiber PC, low outgassing PC, polyphenylene sulfide (PPS), and liquid crystal polymer (LCP) may be used as the material of the supporting unit.
  • PC polycarbonate
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • the present inventor has found an optimal material by performing various studies on resins expected to be used inside the vacuum space part. Hereinafter, results of the performed studies will be described with reference to the accompanying drawings.
  • Fig. 5 is a view illustrating results obtained by performing an experiment on vacuum maintenance performances of the resins.
  • FIG. 5 there is illustrated a graph showing results obtained by fabricating the supporting unit using the respective resins and then testing vacuum maintenance performances of the resins.
  • a supporting unit fabricated using a selected material was cleaned using ethanol, left at a low pressure for 48 hours, exposed to the air for 2.5 hours, and then subjected to an exhaust process at 90 °C for about 50 hours in a state that the supporting unit was put in the vacuum adiabatic body, thereby measuring a vacuum maintenance performance of the supporting unit.
  • the PPS has vacuum maintenance performance remarkably excellent, and its exhaust performance is also excellent. Therefore, it is most preferably considered that, based on the vacuum maintenance performance, the PPS is used as the material of the supporting unit.
  • Fig. 6 illustrates results obtained by analyzing components of gases discharged from the PPS and the low outgassing PC, in which the horizontal axis represents mass numbers of gases and the vertical axis represents concentrations of gases.
  • Fig. 6a illustrates a result obtained by analyzing a gas discharged from the low outgassing PC. In Fig. 6a, it may be seen that H 2 series (I), H 2 O series (II), N 2 /CO/CO 2 /O 2 series (III), and hydrocarbon series (IV) are equally discharged.
  • Fig. 6b illustrates a result obtained by analyzing a gas discharged from the PPS. In Fig.
  • Fig. 6c is a result obtained by analyzing a gas discharged from stainless steel. In Fig. 6c, it may be seen that a similar gas to the PPS is discharged from the stainless steel. Consequently, it may be seen that the PPS discharges a similar gas to the stainless steel.
  • Fig. 7 illustrates results obtained by measuring maximum deformation temperatures at which resins are damaged by atmospheric pressure in high-temperature exhaustion. At this time, the bars 31 were provided at a diameter of 2 mm at a distance of 30 mm. Referring to Fig. 7, it may be seen that a rupture occurs at 60 °C in the case of the PE, a rupture occurs at 90 °C in the case of the low outgassing PC, and a rupture occurs at 125 °C in the case of the PPS.
  • the PPS is most preferably used as the resin used inside the vacuum space part.
  • the low outgassing PC may be used in terms of fabrication cost.
  • the first and second plate members 10 and 20 may be made of a stainless material capable of preventing corrosion and providing a sufficient strength.
  • the stainless material has a relatively high emissivity of 0.16, and hence a large amount of radiation heat may be transferred.
  • the supporting unit 30 made of the resin has a lower emissivity than the plate members, and is not entirely provided to inner surfaces of the first and second plate members 10 and 20. Hence, the supporting unit 30 does not have great influence on radiation heat.
  • the radiation resistance sheet 32 may be provided in a plate shape over a majority of the area of the vacuum space part 50 so as to concentrate on reduction of radiation heat transferred between the first and second plate members 10 and 20.
  • a product having a low emissivity may be preferably used as the material of the radiation resistance sheet 32.
  • an aluminum foil having an emissivity of 0.02 may be used as the radiation resistance sheet 32.
  • at least two radiation resistance sheets 32 may be provided at a certain distance so as not to contact each other.
  • at least one radiation resistance sheet may be provided in a state in which it contacts the inner surface of the first or second plate member 10 or 20.
  • a porous material 33 may be filled in the vacuum space part 50.
  • the porous material 33 may have a higher emissivity than the stainless material of the first and second plate members 10 and 20. However, since the porous material 33 is filled in the vacuum space part 50, the porous material 33 has a high efficiency for resisting the radiation heat transfer.
  • Fig. 8 is a view showing various embodiments of conductive resistance sheets and peripheral parts thereof. Structures of the conductive resistance sheets are briefly illustrated in Fig. 2, but will be understood in detail with reference to the drawings.
  • a conductive resistance sheet proposed in Fig. 8a may be preferably applied to the main body-side vacuum adiabatic body.
  • the first and second plate members 10 and 20 are to be sealed so as to vacuumize the interior of the vacuum adiabatic body.
  • a conductive resistance sheet 60 is provided to prevent heat conduction between two different kinds of plate members.
  • the conductive resistance sheet 60 may be provided with sealing parts 61 at which both ends of the conductive resistance sheet 60 are sealed to defining at least one portion of the wall for the third space and maintain the vacuum state.
  • the conductive resistance sheet 60 may be provided as a thin foil in unit of micrometer so as to reduce the amount of heat conducted along the wall for the third space.
  • the sealing parts 610 may be provided as welding parts. That is, the conductive resistance sheet 60 and the plate members 10 and 20 may be fused to each other. In order to cause a fusing action between the conductive resistance sheet 60 and the plate members 10 and 20, the conductive resistance sheet 60 and the plate members 10 and 20 may be made of the same material, and a stainless material may be used as the material.
  • the sealing parts 610 are not limited to the welding parts, and may be provided through a process such as cocking.
  • the conductive resistance sheet 60 may be provided in a curved shape. Thus, a heat conduction distance of the conductive resistance sheet 60 is provided longer than the linear distance of each plate member, so that the amount of heat conduction may be further reduced.
  • a shielding part 62 may be provided at the exterior of the conductive resistance sheet 60 such that an adiabatic action occurs.
  • the second plate member 20 has a high temperature and the first plate member 10 has a low temperature.
  • heat conduction from high temperature to low temperature occurs in the conductive resistance sheet 60, and hence the temperature of the conductive resistance sheet 60 is suddenly changed. Therefore, when the conductive resistance sheet 60 is opened to the exterior thereof, heat transfer through the opened place may seriously occur.
  • the shielding part 62 is provided at the exterior of the conductive resistance sheet 60. For example, when the conductive resistance sheet 60 is exposed to any one of the low-temperature space and the high-temperature space, the conductive resistance sheet 60 does not serve as a conductive resistor as well as the exposed portion thereof, which is not preferable.
  • the shielding part 62 may be provided as a porous material contacting an outer surface of the conductive resistance sheet 60.
  • the shielding part 62 may be provided as an adiabatic structure, e.g., a separate gasket, which is placed at the exterior of the conductive resistance sheet 60.
  • the shielding part 62 may be provided as a portion of the vacuum adiabatic body, which is provided at a position facing a corresponding conductive resistance sheet 60 when the main body-side vacuum adiabatic body is closed with respect to the door-side vacuum adiabatic body.
  • the shielding part 62 may be preferably provided as a porous material or a separate adiabatic structure.
  • a conductive resistance sheet proposed in Fig. 8b may be preferably applied to the door-side vacuum adiabatic body.
  • FIG. 8b portions different from those of Fig. 8a are described in detail, and the same description is applied to portions identical to those of Fig. 8a.
  • a side frame 70 is further provided at an outside of the conductive resistance sheet 60.
  • a part for sealing between the door and the main body, an exhaust port necessary for an exhaust process, a getter port for vacuum maintenance, and the like may be placed on the side frame 70. This is because the mounting of parts is convenient in the main body-side vacuum adiabatic body, but the mounting positions of parts are limited in the door-side vacuum adiabatic body.
  • the conductive resistance sheet 60 In the door-side vacuum adiabatic body, it is difficult to place the conductive resistance sheet 60 at a front end portion of the vacuum space part, i.e., a corner side portion of the vacuum space part. This is because, unlike the main body, a corner edge portion of the door is exposed to the exterior. More specifically, if the conductive resistance sheet 60 is placed at the front end portion of the vacuum space part, the corner edge portion of the door is exposed to the exterior, and hence there is a disadvantage in that a separate adiabatic part should be configured so as to heat-insulate the conductive resistance sheet 60.
  • a conductive resistance sheet proposed in Fig. 8c may be preferably installed in the pipeline passing through the vacuum space part.
  • FIG. 8c portions different from those of Figs. 8a and 8b are described in detail, and the same description is applied to portions identical to those of Figs. 8a and 8b.
  • a conductive resistance sheet having the same shape as that of Fig. 8a, preferably, a wrinkled conductive resistance sheet 63 may be provided at a peripheral portion of the pipeline 64. Accordingly, a heat transfer path may be lengthened, and deformation caused by a pressure difference may be prevented.
  • a separate shielding part may be provided to improve the adiabatic performance of the conductive resistance sheet.
  • Heat passing through the vacuum adiabatic body may be divided into surface conduction heat 1 conducted along a surface of the vacuum adiabatic body, more specifically, the conductive resistance sheet 60, supporter conduction heat 2 conducted along the supporting unit 30 provided inside the vacuum adiabatic body, gas conduction heat 3 conducted through an internal gas in the vacuum space part, and radiation transfer heat 4 transferred through the vacuum space part.
  • the transfer heat may be changed depending on various depending on various design dimensions.
  • the supporting unit may be changed such that the first and second plate members 10 and 20 may endure a vacuum pressure without being deformed, the vacuum pressure may be changed, the distance between the plate members may be changed, and the length of the conductive resistance sheet may be changed.
  • the transfer heat may be changed depending on a difference in temperature between the spaces (the first and second spaces) respectively provided by the plate members.
  • a preferred configuration of the vacuum adiabatic body has been found by considering that its total heat transfer amount is smaller than that of a typical adiabatic structure formed by foaming polyurethane.
  • an effective heat transfer coefficient may be proposed as 19.6 mW/mK.
  • a heat transfer amount by the gas conduction heat 3 may become smallest.
  • the heat transfer amount by the gas conduction heat 3 may be controlled to be equal to or smaller than 4% of the total heat transfer amount.
  • a heat transfer amount by solid conduction heat defined as a sum of the surface conduction heat 1 and the supporter conduction heat 2 is largest.
  • the heat transfer amount by the solid conduction heat may reach 75% of the total heat transfer amount.
  • a heat transfer amount by the radiation transfer heat 3 is smaller than the heat transfer amount by the solid conduction heat but larger than the heat transfer amount of the gas conduction heat.
  • the heat transfer amount by the radiation transfer heat 3 may occupy about 20% of the total heat transfer amount.
  • effective heat transfer coefficients (eK: effective K) (W/mK) of the surface conduction heat 1, the supporter conduction heat 2, the gas conduction heat 3, and the radiation transfer heat 4 may have an order of Math Equation 1.
  • the effective heat transfer coefficient (eK) is a value that may be measured using a shape and temperature differences of a target product.
  • the effective heat transfer coefficient (eK) is a value that may be obtained by measuring a total heat transfer amount and a temperature at least one portion at which heat is transferred. For example, a calorific value (W) is measured using a heating source that may be quantitatively measured in the refrigerator, a temperature distribution (K) of the door is measured using heats respectively transferred through a main body and an edge of the door of the refrigerator, and a path through which heat is transferred is calculated as a conversion value (m), thereby evaluating an effective heat transfer coefficient.
  • Q denotes a calorific value (W) and may be obtained using a calorific value of a heater.
  • A denotes a sectional area (m 2 ) of the vacuum adiabatic body, L denotes a thickness (m) of the vacuum adiabatic body, and ⁇ T denotes a temperature difference.
  • a conductive calorific value may be obtained through a temperature difference ( ⁇ T) between an entrance and an exit of the conductive resistance sheet 60 or 63, a sectional area (A) of the conductive resistance sheet, a length (L) of the conductive resistance sheet, and a thermal conductivity (k) of the conductive resistance sheet (the thermal conductivity of the conductive resistance sheet is a material property of a material and may be obtained in advance).
  • a conductive calorific value may be obtained through a temperature difference ( ⁇ T) between an entrance and an exit of the supporting unit 30, a sectional area (A) of the supporting unit, a length (L) of the supporting unit, and a thermal conductivity (k) of the supporting unit.
  • the thermal conductivity of the supporting unit is a material property of a material and may be obtained in advance.
  • the sum of the gas conduction heat 3, and the radiation transfer heat 4 may be obtained by subtracting the surface conduction heat and the supporter conduction heat from the heat transfer amount of the entire vacuum adiabatic body.
  • a ratio of the gas conduction heat 3, and the radiation transfer heat 4 may be obtained by evaluating radiation transfer heat when no gas conduction heat exists by remarkably lowering a vacuum degree of the vacuum space part 50.
  • porous material conduction heat 5 may be a sum of the supporter conduction heat 2 and the radiation transfer heat 4.
  • the porous material conduction heat may be changed depending on various variables including a kind, an amount, and the like of the porous material.
  • a temperature difference ⁇ T 1 between a geometric center formed by adjacent bars 31 and a point at which each of the bars 31 is located may be preferably provided to be less than 0.5 °C.
  • a temperature difference ⁇ T 2 between the geometric center formed by the adjacent bars 31 and an edge portion of the vacuum adiabatic body may be preferably provided to be less than 0.5 °C.
  • a temperature difference between an average temperature of the second plate and a temperature at a point at which a heat transfer path passing through the conductive resistance sheet 60 or 63 meets the second plate may be largest.
  • the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes lowest.
  • the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes highest.
  • the amount of heat transferred through other points except the surface conduction heat passing through the conductive resistance sheet should be controlled, and the entire heat transfer amount satisfying the vacuum adiabatic body may be achieved only when the surface conduction heat occupies the largest heat transfer amount.
  • a temperature variation of the conductive resistance sheet may be controlled to be larger than that of the plate member.
  • the plate members 10 and 20 and the side frame 70 may be preferably made of a material having a sufficient strength with which they are not damaged by even vacuum pressure.
  • the radiation resistance sheet 32 may be preferably made of a material that has a low emissivity and may be easily subjected to thin film processing. Also, the radiation resistance sheet 32 is to ensure a strength enough not to be deformed by an external impact.
  • the supporting unit 30 is provided with a strength enough to support the force by the vacuum pressure and endure an external impact, and is to have machinability.
  • the conductive resistance sheet 60 may be preferably made of a material that has a thin plate shape and may endure the vacuum pressure.
  • the plate member, the side frame, and the conductive resistance sheet may be made of stainless materials having the same strength.
  • the radiation resistance sheet may be made of aluminum having a weaker strength that the stainless materials.
  • the supporting unit may be made of resin having a weaker strength than the aluminum.
  • the stiffness (N/m) is a property that would not be easily deformed. Although the same material is used, its stiffness may be changed depending on its shape.
  • the conductive resistance sheets 60 or 63 may be made of a material having a strength, but the stiffness of the material is preferably low so as to increase heat resistance and minimize radiation heat as the conductive resistance sheet is uniformly spread without any roughness when the vacuum pressure is applied.
  • the radiation resistance sheet 32 requires a stiffness of a certain level so as not to contact another part due to deformation. Particularly, an edge portion of the radiation resistance sheet may generate conduction heat due to drooping caused by the self-load of the radiation resistance sheet. Therefore, a stiffness of a certain level is required.
  • the supporting unit 30 requires a stiffness enough to endure a compressive stress from the plate member and an external impact.
  • the plate member and the side frame may preferably have the highest stiffness so as to prevent deformation caused by the vacuum pressure.
  • the supporting unit, particularly, the bar may preferably have the second highest stiffness.
  • the radiation resistance sheet may preferably have a stiffness that is lower than that of the supporting unit but higher than that of the conductive resistance sheet.
  • the conductive resistance sheet may be preferably made of a material that is easily deformed by the vacuum pressure and has the lowest stiffness.
  • the conductive resistance sheet may preferably have the lowest stiffness, and the plate member and the side frame may preferably have the highest stiffness.
  • the radiation resistance sheet installed in the supporting unit 30 may maintain an installation interval in itself to sufficiently resist with respect to the radiation heat. Also, after the radiation resistance sheet is installed, the radiation resistance sheet may be prevented from being shaken within the vacuum space part.
  • Fig. 9 is a partial perspective view of the supporting unit
  • Fig. 10 is a partial cross-sectional view of the supporting unit.
  • the support plate 35 is placed inside the plate member 20.
  • a bar 31 may be provided on the support plate 35 to maintain an interval of the vacuum space part.
  • the radiation resistance sheet is installed to cross the vacuum space part.
  • the radiation resistance sheet may be made of an aluminum material having low emissivity.
  • the radiation resistance sheet will be described in more detail.
  • the interval through which the radiation heat is transferred is important.
  • the radiation resistance sheet may be maintained at a predetermined position.
  • the interval of the radiation resistance sheet is defined, a distance between the radiation resistance sheets and a distance between all members serving as a medium of the radiation heat transfer are accurately set and maintained.
  • a through-hole 343 through which the bar 31 passes is provided in the radiation resistance sheet.
  • the through-hole 343 may prevent the radiation resistance sheet from being shaken.
  • the through-hole 343 may prevent the radiation resistance sheet from being shaken in a left and right direction or a vertical direction with respect to the ground.
  • the through-hole 343 may be provided with holes each of which has a first size and at least some of which are substantially coincident with or slightly larger than an outer diameter of the bar 31 in the edge portion of the radiation resistance sheet and holes each of which has a second size and in which a plurality of holes inside the radiation resistance sheet are larger than the outer diameter of the bar 31.
  • the holes each of which has the first size may be configured so that the position of the radiation resistance sheet is fixed by the bar, and the holes, each of which has the second size may not contact the bar to reduce the heat transfer due to the conduction.
  • the radiation resistance sheet includes a sheet base 341 provided in a two-dimensional flat plate shape and a sheet protrusion 342 protruding from the sheet base 341.
  • the sheet protrusion 342 may have one side supported by the sheet base 341 and the other side supported by an opposite member, for example, the support plate 35.
  • the sheet protrusion 342 may be manufactured by pressing the sheet base 341, or a separate sheet protrusion may be manufactured and then be coupled to the sheet base 341.
  • the sheet base 341 may perform a function of shielding heat radiation between the plate members 10 and 20.
  • the sheet protrusion 342 may maintain an interval between the sheet base 341 and the support plate 35. That is, even if the sheet base 341 moves in any one direction within the interval of the vacuum space part, the sheet base 341 may not move in the spacing direction by the sheet protrusion 342.
  • the radiation resistance sheet may not move because the radiation resistance sheet is fixed to the interval that is reflected in the design.
  • the radiation resistance sheet since the radiation resistance sheet stand up in itself and thus does not move in the spacing direction, the radiation resistance sheet may be called a self-standing type radiation resistance sheet 340.
  • the self-standing type radiation resistance sheet 340 may be made of a metal having low emissivity.
  • the metal material has high thermal conduction properties.
  • a tip P of the sheet protrusion 342 does not directly contact with the plate members made of the metal material.
  • the sheet protrusion 342 may not directly contact the plate member, but the support plate 35 may be disposed between the sheet protrusion and the plate member.
  • the support plate 35 may be a product made of a resin material and has low thermal conductivity.
  • the tip P of the sheet protrusion 342 may be provided as a structure of a small cusp. Thus, heat conduction on an interface may be reduced.
  • a position contacting the tip P of the sheet protrusion 342 is not limited to the support plate 35. Any member may be applied to the present embodiment as long as the member is disposed between the sheet protrusion 342 and the plate members 10 and 20 so as to block high heat conduction due to the contact.
  • the sheet protrusion 342 may have a hemispherical shape. This shape may have a function of allowing the sheet protrusion 342 to be manufactured through a method such as press processing on the sheet base 341 and a function of preventing the shape of the sheet protrusion 342, particularly, the tip P from being deformed. If the tip P is deformed, the contact area may increase, and thus, the heat conduction may increase.
  • the sheet protrusion 342 may be provided in each of both directions, but in one direction of the sheet base 341. Thus, even though one sheet of self-standing type radiation resistance sheet 340 is inserted into the vacuum space part, the interval of the sheet may be maintained.
  • a lower sheet protrusion 3421 disposed between the second plate member 20 and the self-standing type radiation resistance sheet 340 and an upper sheet protrusion 3422 disposed between the first plate member 10 and the self-standing type radiation resistance sheet 340 are illustrated.
  • a plurality of sheet protrusions that are required for fixing the interval of the self-standing type radiation resistance sheet 340 may be provided.
  • Fig. 11 illustrates a basic shape in which one sheet of self-standing type radiation resistance sheet is installed.
  • the self-standing type radiation resistance sheet 340 include the sheet base 341 and the sheet protrusion 342.
  • the sheet protrusion 342 may be provided on each of upper and lower sides to maintain the vertical interval in which the self-standing type radiation resistance sheet 340 is placed.
  • the sheet protrusion 342 contacts the support plate 35 but does not contact the plate members 10 and 20. Thus, the heat conduction may be reduced.
  • a plurality of through-holes 343 are provided in the self-standing type radiation resistance sheet 340.
  • the bar 31 is inserted into each of the through-holes 343.
  • the self-standing type radiation resistance sheet 340 may be fixed in position by the supporting action of the bar 31 and the through-hole 343. That is to say, the through-hole 343 may prevent the radiation resistance sheet from being shaken in the left and right direction or the vertical direction with respect to the ground.
  • Fig. 12 illustrates a different shape in which one sheet of self-standing type radiation resistance sheet is installed. Other portions may be applied as they are to the description of Fig. 11 except for the installation of the through-hole 343.
  • the through-hole 343 is defined in an end of the sheet protrusion 342.
  • the self-standing type radiation resistance sheet 340 and the bar 31 may be easily aligned.
  • a component on which the bar 31 is installed for example, a constituent supporting the bar 31 is provided on the support plate.
  • a constituent supporting the bar 31 is provided on the support plate.
  • the plate member made of the resin material on the plate members 10 and 20 it is unnecessary to separately consider the position of the tip P of the sheet protrusion for preventing the heat conduction, which is convenient.
  • the through-hole and the sheet protrusion which are illustrated in Figs. 11 and 12, may be provided together in a single self-standing type radiation resistance sheet 340.
  • Fig. 13 illustrates an example in which two sheets of radiation resistance sheets are disposed in the vacuum space part.
  • a first self-standing type radiation resistance sheet 352 and a second self-standing type radiation resistance sheet 351 are vertically provided to overlap each other.
  • three interval parts are provided, and the sheet protrusion 342 is disposed in each of the three interval parts.
  • the interval between the sheet and the plate member may be maintained.
  • reference numerals 3421, 3422, and 3423 may be understood as parts for maintaining the interval.
  • the reference numeral 3423 denotes a single-layer sheet protrusion when the protrusion is provided on only one surface of the sheet base 341 in the self-standing type radiation resistance sheet 351.
  • the sheet protrusion is provided on each of both surfaces.
  • the sheet protrusion is provided on only one surface.
  • the embodiment is not limited thereto.
  • the sheet protrusion may be provided on each of both surfaces.
  • the sheet protrusion may be provided on each of both the surfaces.
  • Fig. 14 illustrates another example in which two sheets of radiation resistance sheets are disposed in the vacuum space part. Other portions may be applied as they are to the description of Fig. 13 except for the installation of the through-hole 343.
  • the through-hole 343 may be provided in the sheet protrusion 342.
  • the advantage of the through-hole 343 of Fig. 13 and the advantage of the sheet protrusion 342 of Fig. 13 may be obtained together.
  • self-standing type radiation resistance sheets 340 Although one or two self-standing type radiation resistance sheets 340 are provided, the embodiment is not limited thereto. For example, three or more self-standing type radiation resistance sheets 340 may be laminated.
  • Fig. 15 is a cross-sectional view of a supporting unit according to a first modified example.
  • the sheet protrusion 342 is provided on only one surface of the self-standing type radiation resistance sheet 340.
  • the other surface of the self-standing type radiation resistance sheet 340 may contact the support plate 35.
  • an interval may be provided between the self-standing type radiation resistance sheet 340 and the plate member to resist to the radiation heat transfer.
  • a boss 355 extending from the support plate 35 i.e., a support protrusion 356 may be supported on the other surface of the self-standing type radiation resistance sheet 340.
  • the boss 355 may constitute a position of the bar 31 and be inserted into the other protrusion extending from the facing support plate 35.
  • An inlet end of the support protrusion 356 may be inclined so that the boss 355 is easily inserted into the other protrusion.
  • an end of the sheet protrusion 342 may not directly contact the plate member but be disposed on a separate member such as the support plate 35 that is resist to the heat conduction.
  • Fig. 16 is a cross-sectional view of a supporting unit according to a second modified example. The same description will be applied to the same constituent as that of the first modified example.
  • the sheet protrusion 342 is provided on only one surface of the self-standing type radiation resistance sheet 340.
  • the other surface of the self-standing type radiation resistance sheet 340 may be maintained in interval by a separate interval maintenance member 365, unlike the first modified example.
  • the interval maintenance member 365 includes an insertion guide 368 that allows the interval maintenance member 365 to be easily inserted into the 31 and a boss 367 maintaining an interval between the sheet base 341 and the plate member 10 and inserted into the bar 31.
  • An inlet of the insertion guide 368 may be inclined to be widened toward an end thereof.
  • An interval frame 366 may be provided so that the insertion guide 368 and the boss 367 are connected to each other to form one body as the whole and thus conveniently handled. That is, the interval maintenance member 364 may be conveniently inserted at once.
  • the sheet protrusion 342 may contact the support plate 35 to support one side of the self-standing type radiation resistance sheet 340.
  • the other side of the self-standing type radiation resistance sheet 340 may be supported by the boss 367.
  • the insertion guide 368 and the boss 367 may be provided as a single structure. That is, since a shape of the insertion guide 368 is provided in an end of the boss 367, an end of the inlet of the boss 367 may be inclined.
  • the bar 31 may directly contact any one side of the plate member 10.
  • the first plate member 10 may provide a wall of an inner surface of the refrigerator, which is not visible through a naked eye of a user.
  • Fig. 17 is a cross-sectional view of a supporting unit according to a third modified example. The same description will be applied to the same part as that of other modified examples.
  • the sheet protrusion 342 is provided on only one surface of the self-standing type radiation resistance sheet 340. Unlike other modified examples, the other surface of the self-standing type radiation resistance sheet 340 may be maintained to be spaced from the plate member 10 by the boss 369.
  • the boss 369 may be inserted and supported by the bar 31. Although not shown, an inlet of the boss 369 may be inclined to be widened toward an end thereof. Thus, the boss 369 may be conveniently inserted.
  • boss 369 It is unnecessary to provide the boss 369 on all the bars 31.
  • the number of bosses 369 that are required for supporting the other surface of the self-standing type radiation resistance sheet 340 may be provided.
  • the bar 31 may directly contact any one side of the plate member 10.
  • the first plate member 10 may provide a wall of an inner surface of the refrigerator, which is not visible through a naked eye of a user.
  • Fig. 18 is a cross-sectional view of a supporting unit according to a fourth modified example.
  • the other embodiment to which the self-standing type radiation resistance sheet 340 is applied may be the same as the modified example.
  • a structure for providing the bar 31 may be characteristically different.
  • the bars 381 and 382 may be called a left bar 381 and a right bar 382 as a concept that is different from the different bar, respectively.
  • Two interval parts may be provided between the support 380 and the plate member.
  • the self-standing type radiation resistance sheet 340 may be fixed in position and interval at at least one of the two interval part.
  • the interval of the self-standing type radiation resistance sheet 340 may be maintained by allowing the sheet base 341 to contact the support 380 and allowing the sheet protrusion 342 to contact a conduction prevention tool 383.
  • the conduction prevention tool may prevent heat from being conducted to the plate member through the sheet protrusion 342.
  • the support plate 35 serves as the conduction prevention tool 383, it is unnecessary to provide the conduction prevention tool 383 to the entire area of the plate member. That is to say, the conduction prevention tool 383 may be provided at only a position at which the end of the sheet protrusion 342 is disposed. For example, it is sufficient that a resin portion of the frame contacts the position of the sheet protrusion 342 in the frame having a coarse mesh shape.
  • the self-standing type radiation resistance sheet 340 may be conveniently inserted into the bar 31.
  • Fig. 19 is a cross-sectional view of a supporting unit according to a fifth modified example. The same description will be applied as it is to the same portion as that of the first modified example.
  • a contact direction of the sheet protrusion 342 in the self-standing type radiation resistance sheet 340 may not be a direction of the plate member but be a side of the support 380, unlike the fourth modified example.
  • Fig. 20 is a plan view of the self-standing type radiation resistance sheet applied to a sixth modified example.
  • the sixth modification is different in that the through-hole 343 has a cross shape and thus is provided as a cross-shaped through-hole 3431.
  • a cusp 3432 provided on an edge of the cross-shaped through-hole 3431 may hole an outer surface of the bar 31.
  • a piece-shaped member 3433 may be bent and deformed in the insertion direction of the bar 31.
  • it is difficult to further insert the self-standing type radiation resistance sheet 340 because the bar 31 increases in thickness in the insertion direction.
  • it is difficult to release the self-standing type radiation resistance sheet 340 because the cusp 3432 presses the bar 31 in the releasing direction. Restoring force of the piece-shaped member 3433 acts, and the cusp 3432 holds and presses the bar 31 in the direction in which the self-standing-type radiation resistance sheet 340 is released.
  • the movement of the self-contained radiation resistance sheet 340 may be more difficult.
  • the sheet base 341 it is necessary to allow the sheet base 341 to contact and be supported by the support 380 or the conduction prevention tool 383. That is to say, due to the action of the cusp 3432 holding the bar and the change in thickness of the bars, the interval of the self-standing-type radiation resistance sheets 340 may be self-fixed with respect to the bar without any support action by other members.
  • the position of the self-contained radiation resistance sheet 340 may be also fixed.
  • a vacuum pressure preferably determined depending on an internal state of the vacuum adiabatic body.
  • a vacuum pressure is to be maintained inside the vacuum adiabatic body so as to reduce heat transfer.
  • the vacuum pressure is preferably maintained as low as possible so as to reduce the heat transfer.
  • Fig. 21 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
  • a heat load in the case of only the main body (Graph 1) or in the case where the main body and the door are joined together (Graph 2) is decreased as compared with that in the case of the typical product formed by foaming polyurethane, thereby improving the adiabatic performance.
  • the degree of improvement of the adiabatic performance is gradually lowered.
  • the gas conductivity (Graph 3) is decreased.
  • the vacuum pressure is decreased, the ratio at which the adiabatic performance and the gas conductivity are improved is gradually lowered.
  • the vacuum pressure is decreased as low as possible. However, it takes long time to obtain excessive vacuum pressure, and much cost is consumed due to excessive use of a getter.
  • an optimal vacuum pressure is proposed from the above-described point of view.
  • Fig. 22 is a graph illustrating results obtained by observing a time and a pressure in a process of exhausting the inside of the vacuum adiabatic body when a supporting unit is used.
  • a gas in the vacuum space part 50 is exhausted by a vacuum pump while evaporating a latent gas remaining in the parts of the vacuum space part 50 through baking.
  • the vacuum pressure reaches a certain level or more, there exists a point at which the level of the vacuum pressure is not increased any more ( ⁇ T 1 ).
  • the getter is activated by disconnecting the vacuum space part 50 from the vacuum pump and applying heat to the vacuum space part 50 ( ⁇ T 2 ). If the getter is activated, the pressure in the vacuum space part 50 is decreased for a certain period of time, but then normalized to maintain a vacuum pressure of a certain level.
  • the vacuum pressure that maintains the certain level after the activation of the getter is approximately 1.8 ⁇ 10 -6 Torr.
  • a point at which the vacuum pressure is not substantially decreased any more even though the gas is exhausted by operating the vacuum pump is set to the lowest limit of the vacuum pressure used in the vacuum adiabatic body, thereby setting the minimum internal pressure of the vacuum space part 50 to 1.8 ⁇ 10 -6 Torr.
  • Fig. 23 is a graph obtained by comparing a vacuum pressure with gas conductivity.
  • gas conductivities with respect to vacuum pressures depending on sizes of a gap in the vacuum space part 50 are represented as graphs of effective heat transfer coefficients (eK).
  • Effective heat transfer coefficients (eK) were measured when the gap in the vacuum space part 50 has three sizes of 2.76 mm, 6.5 mm, and 12.5 mm.
  • the gap in the vacuum space part 50 is defined as follows. When the radiation resistance sheet 32 exists inside vacuum space part 50, the gap is a distance between the radiation resistance sheet 32 and the plate member adjacent thereto. When the radiation resistance sheet 32 does not exist inside vacuum space part 50, the gap is a distance between the first and second plate members.
  • the vacuum pressure is 2.65 ⁇ 10 -1 Torr even when the size of the gap is 2.76 mm.
  • the point at which reduction in adiabatic effect caused by gas conduction heat is saturated even though the vacuum pressure is decreased is a point at which the vacuum pressure is approximately 4.5 ⁇ 10 -3 Torr.
  • the vacuum pressure of 4.5 ⁇ 10 -3 Torr may be defined as the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated.
  • the vacuum pressure is 1.2 ⁇ 10 -2 Torr.
  • the size of the gap ranges from a few micrometers to a few hundreds of micrometers.
  • the amount of radiation heat transfer is small due to the porous material even when the vacuum pressure is relatively high, i.e., when the vacuum degree is low. Therefore, an appropriate vacuum pump is used to adjust the vacuum pressure.
  • the vacuum pressure appropriate to the corresponding vacuum pump is approximately 2.0 ⁇ 10 -4 Torr.
  • the vacuum pressure at the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated is approximately 4.7 ⁇ 10 -2 Torr.
  • the pressure where the reduction in adiabatic effect caused by gas conduction heat reaches the typical effective heat transfer coefficient of 0.0196 W/mK is 730 Torr.
  • a vacuum pressure may be created and used, which is middle between the vacuum pressure when only the supporting unit is used and the vacuum pressure when only the porous material is used.
  • the vacuum adiabatic body may be applied as a main body-side vacuum adiabatic body by properly changing the shape and configuration of a vacuum adiabatic body.
  • the vacuum adiabatic body proposed in the present disclosure may be preferably applied to refrigerators.
  • the application of the vacuum adiabatic body is not limited to the refrigerators, and may be applied in various apparatuses such as cryogenic refrigerating apparatuses, heating apparatuses, and ventilation apparatuses.
  • the vacuum adiabatic body may be industrially applied to various adiabatic apparatuses.
  • the adiabatic effect may be enhanced, so that it is possible to improve energy use efficiency and to increase the effective volume of an apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Refrigerator Housings (AREA)
  • Telescopes (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
PCT/KR2018/008687 2017-08-01 2018-07-31 VACUUM ADIABATIC BODY AND REFRIGERATOR WO2019027227A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880050501.7A CN110998167B (zh) 2017-08-01 2018-07-31 真空绝热体以及冰箱
RU2020108484A RU2739948C1 (ru) 2017-08-01 2018-07-31 Вакуумное адиабатическое тело
US16/635,699 US11774167B2 (en) 2017-08-01 2018-07-31 Vacuum adiabatic body and refrigerator
AU2018309536A AU2018309536B2 (en) 2017-08-01 2018-07-31 Vacuum adiabatic body and refrigerator
EP18840407.3A EP3662191B1 (en) 2017-08-01 2018-07-31 Vacuum adiabatic body and refrigerator
AU2022201399A AU2022201399B2 (en) 2017-08-01 2022-03-01 Vacuum adiabatic body and refrigerator
US18/222,002 US20230366613A1 (en) 2017-08-01 2023-07-14 Vacuum adiabatic body and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170097793A KR102449175B1 (ko) 2017-08-01 2017-08-01 진공단열체 및 냉장고
KR10-2017-0097793 2017-08-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/635,699 A-371-Of-International US11774167B2 (en) 2017-08-01 2018-07-31 Vacuum adiabatic body and refrigerator
US18/222,002 Continuation US20230366613A1 (en) 2017-08-01 2023-07-14 Vacuum adiabatic body and refrigerator

Publications (1)

Publication Number Publication Date
WO2019027227A1 true WO2019027227A1 (en) 2019-02-07

Family

ID=65233422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008687 WO2019027227A1 (en) 2017-08-01 2018-07-31 VACUUM ADIABATIC BODY AND REFRIGERATOR

Country Status (7)

Country Link
US (2) US11774167B2 (ko)
EP (1) EP3662191B1 (ko)
KR (3) KR102449175B1 (ko)
CN (1) CN110998167B (ko)
AU (2) AU2018309536B2 (ko)
RU (1) RU2739948C1 (ko)
WO (1) WO2019027227A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220059342A (ko) * 2020-11-02 2022-05-10 엘지전자 주식회사 진공단열체 및 냉장고
KR20220059344A (ko) * 2020-11-02 2022-05-10 엘지전자 주식회사 진공단열체 및 냉장고
WO2022092955A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body and method for manufacturing the vacuum adiabatic body
KR20220059333A (ko) * 2020-11-02 2022-05-10 엘지전자 주식회사 진공단열체 및 냉장고

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019867A1 (en) 1990-06-12 1991-12-26 Benson David K Improved compact vacuum insulation
JP2004211376A (ja) 2002-12-27 2004-07-29 Haruo Uehara 真空断熱パネル
KR20070037274A (ko) * 2005-09-30 2007-04-04 정홍준 진공판넬
KR20100109653A (ko) * 2009-04-01 2010-10-11 한국과학기술원 진공 단열체
KR20110015327A (ko) * 2009-08-07 2011-02-15 엘지전자 주식회사 진공 단열재의 코어 및 이를 이용한 진공 단열재
KR20110113414A (ko) 2010-04-09 2011-10-17 이초강 로봇을 위한 경험적 상황인식 방법
JP2012207682A (ja) 2011-03-29 2012-10-25 Matsuda Gijutsu Kenkyusho:Kk 真空断熱パネル
WO2017023094A1 (en) * 2015-08-03 2017-02-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1420711A (en) 1921-03-17 1922-06-27 William K Knutson Refrigerator
US1814114A (en) 1925-11-21 1931-07-14 Insulation Corp Refrigeration system and method
US2000882A (en) 1928-09-07 1935-05-07 Stator Refrigeration Inc Insulating housing
US1845353A (en) 1928-12-14 1932-02-16 Virgil K Snell Heat-insulating construction
US2065608A (en) 1932-11-25 1936-12-29 Termisk Isolation Ab Heat insulating cabinet
US2464526A (en) 1945-10-24 1949-03-15 Int Harvester Co Refrigerator construction
US2989156A (en) 1956-11-23 1961-06-20 Whirlpool Co Heat insulating panels
GB890372A (en) 1959-01-27 1962-02-28 Union Carbide Corp Vacuum panel insulation
US3161265A (en) 1959-01-27 1964-12-15 Union Carbide Corp Vacuum panel insulation
US3156975A (en) 1959-02-16 1964-11-17 Evacuated Insulation Res Ltd Method of making heat insulating panels
US3338451A (en) 1964-02-20 1967-08-29 Gen Motors Corp Refrigerating apparatus
ZA728342B (en) 1972-11-24 1974-07-31 Rorand Ltd Improvements in or relating to insulating materials
JPS5517072Y2 (ko) 1976-07-23 1980-04-21
DE3328120C1 (de) 1983-08-04 1984-10-18 Ernst 7500 Karlsruhe Gaus Kuehlbox fuer Kraftfahrzeuge oder aehnliche mobile Einrichtungen,insbesondere fuer Personenkraftwagen
JPS60179344A (ja) 1984-02-27 1985-09-13 Nippon Denso Co Ltd 車両用冷蔵庫
JPS60173879U (ja) 1984-04-25 1985-11-18 日産自動車株式会社 自動車用冷温蔵庫
US4732432A (en) 1986-12-29 1988-03-22 Whirlpool Corporation Breaker strip for a refrigerator cabinet
US4826040A (en) 1987-07-31 1989-05-02 White Consolidated Industries, Inc. Refrigeration cabinet construction
JPH01142379A (ja) 1987-11-30 1989-06-05 Nippon Denso Co Ltd 雰囲気管理装置
US4837388A (en) 1987-12-23 1989-06-06 Nudvuck Enterprises Evacuated insulation and a method of manufacturing same
JPH01179882A (ja) 1988-01-07 1989-07-17 Mitsubishi Electric Corp 冷凍冷蔵庫の制御装置
CN2066123U (zh) 1989-09-19 1990-11-21 万长荣 真空绝热节能冰箱
US5011729A (en) * 1989-11-15 1991-04-30 Mcallister Ian R Vacuum insulated panels with concave surfaces on the surface layers
EP0439046B1 (en) * 1990-01-22 1993-09-22 Atd Corporation Pad including heat sink and thermal insulation areas and laminate having shapability
US5500305A (en) 1990-09-24 1996-03-19 Aladdin Industries, Inc. Vacuum insulated panel and method of making a vacuum insulated panel
JPH059298A (ja) 1991-07-05 1993-01-19 Daicel Chem Ind Ltd ポリカプロラクトンをグラフト化したポリオレフイン共重合体、およびその製造方法
US5214877A (en) 1992-06-23 1993-06-01 Ardco, Inc. Refrigerator door assembly with venting system
RU2073285C1 (ru) 1993-08-26 1997-02-10 Виктор Сергеевич Суганеев Конструкция теплоизолирующего корпуса
JPH0791591A (ja) 1993-09-21 1995-04-04 Kubota Corp 断熱壁の充填材
US5720536A (en) 1995-03-27 1998-02-24 General Electric Company Refrigerator with improved breaker strip assembly
US6634417B1 (en) 1997-04-07 2003-10-21 J. Bruce Kolowich Thermal receptacle with phase change material
TR200000765T2 (tr) 1997-10-16 2000-07-21 Bsh Bosch Und Siemens Hausgerate Gmbh Isı yalıtkan duvar
DE19745825A1 (de) 1997-10-16 1999-04-22 Bosch Siemens Hausgeraete Wärmeisolierende Wandung
DE19745827A1 (de) 1997-10-16 1999-05-06 Bosch Siemens Hausgeraete Wärmeisolierende Wandung
US5860594A (en) 1997-12-19 1999-01-19 Carrier Corporation Method and apparatus for changing operational modes of a transport refrigeration system
US6088966A (en) 1997-12-24 2000-07-18 Emco Enterprises, Inc. Hinge-emulating gap concealing strip for a door
US6637093B2 (en) 1998-03-03 2003-10-28 Anthony, Inc. Method of assembling a display case door
DE19907182A1 (de) 1999-02-19 2000-08-24 Bsh Bosch Siemens Hausgeraete Wärmeisolierende Wand
AU6488100A (en) 1999-07-13 2001-01-30 Arcelik A.S. Automatic quick freezing
KR100343719B1 (ko) 2000-01-14 2002-07-20 엘지전자주식회사 진공 단열재 패널을 구비한 냉장고 도어
JP4620211B2 (ja) 2000-03-31 2011-01-26 大日本印刷株式会社 断熱化粧材及び断熱化粧部材
JP2002071088A (ja) 2000-08-28 2002-03-08 Matsuda Gijutsu Kenkyusho:Kk 断熱パネル
JP3750530B2 (ja) 2001-01-25 2006-03-01 いすゞ自動車株式会社 真空断熱材および断熱パネル
FR2821519B1 (fr) 2001-02-28 2003-05-02 Saint Gobain Element vitre isolant, notamment pour enceinte refrigeree
KR100363646B1 (en) 2001-03-13 2002-12-05 Daewoo Electronics Corp Method for controlling compressor of inverter refrigerator
JP2003042388A (ja) 2001-07-27 2003-02-13 Matsuda Gijutsu Kenkyusho:Kk 断熱パネル及びそれを用いたコンテナ
TW593919B (en) 2002-05-31 2004-06-21 Matsushita Refrigeration Vacuum heat insulating material and method for producing the same, and refrigerator using the vacuum heat insulating material
KR100461868B1 (ko) 2002-06-29 2004-12-14 삼성전자주식회사 김치냉장고
KR200303619Y1 (ko) 2002-11-08 2003-02-11 대우전자주식회사 자동차용 냉장고
KR100505871B1 (ko) 2002-11-15 2005-08-04 현대모비스 주식회사 차량용 냉온장고의 제어 방법
US6769265B1 (en) 2003-03-12 2004-08-03 Maytag Corporation Variable speed refrigeration system
US20040226956A1 (en) 2003-05-14 2004-11-18 Jeff Brooks Cryogenic freezer
US20050053755A1 (en) 2003-09-09 2005-03-10 Kendro Laboratory Products, Lp Vacuum insulation panel and method
JP2005106090A (ja) 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc 真空断熱パネル及びその製造方法
EP1564513A1 (en) 2004-02-12 2005-08-17 Whirlpool Corporation A refrigerator with a variable speed compressor and a method for controlling variable cooling capacity thereof
CN2691933Y (zh) 2004-03-06 2005-04-13 江苏阪神电器股份有限公司 车载移动式冰柜
CN2720362Y (zh) 2004-08-12 2005-08-24 白尚富 冰箱用内设支柱式真空隔温板
JP2006082604A (ja) 2004-09-14 2006-03-30 Denso Corp 車両用冷蔵庫
DE102005057150A1 (de) 2005-11-30 2007-06-06 BSH Bosch und Siemens Hausgeräte GmbH Kühl- bzw. Gefrierschrank mit Verstärkungsrahmen
DE102005059145A1 (de) 2005-12-10 2007-06-28 Rehau Ag + Co Gefrierschranktürbaugruppe sowie Gefrierschrank mit einer derartigen Gefrierschranktürbaugruppe
US8234835B2 (en) 2007-03-16 2012-08-07 Quest Product Development Corporation Integrated multilayer insulation
US7954301B2 (en) 2007-03-16 2011-06-07 Ball Aerospace & Technologies Corp. Integrated multilayer insulation
KR100845153B1 (ko) 2007-04-04 2008-07-09 주식회사 대창 차량용 냉장고
DE102008041014A1 (de) 2008-08-05 2010-02-11 BSH Bosch und Siemens Hausgeräte GmbH Kühlgerät mit Temperierfunktion
US9238398B2 (en) 2008-09-25 2016-01-19 B/E Aerospace, Inc. Refrigeration systems and methods for connection with a vehicle's liquid cooling system
JP4745462B2 (ja) 2008-12-26 2011-08-10 三菱電機株式会社 真空断熱材及び真空断熱材を用いた断熱箱及び冷蔵庫及び冷凍・空調装置及び給湯装置及び機器
WO2010119591A1 (ja) 2009-04-17 2010-10-21 シャープ株式会社 冷凍冷蔵庫及び冷却庫
US8382219B2 (en) 2009-05-11 2013-02-26 Sub-Zero, Inc. Installation system and door positioning device for appliances
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
US7891203B1 (en) 2009-12-14 2011-02-22 Honda Motor Co., Ltd. Method and system for cooling items using vehicle HVAC system
DE102011050472A1 (de) 2010-05-18 2011-11-24 Viktor Schatz Abstandhalteranordnung mit Stützelementen
JP2012021615A (ja) 2010-07-16 2012-02-02 Matsuda Gijutsu Kenkyusho:Kk 真空断熱パネル及びこれを用いた輸送用コンテナ
KR101068459B1 (ko) 2010-07-29 2011-09-28 주식회사엑스엘 진공단열패널
JP5618756B2 (ja) * 2010-10-18 2014-11-05 三菱電機株式会社 真空断熱材およびその製造方法
KR101227516B1 (ko) 2010-10-28 2013-01-31 엘지전자 주식회사 진공공간부를 구비하는 냉장고
KR101898487B1 (ko) 2010-10-28 2018-10-04 엘지전자 주식회사 진공공간부를 구비하는 냉장고
CN102121781B (zh) 2011-02-21 2013-01-30 合肥美的荣事达电冰箱有限公司 填充气囊组件、电冰箱和制冷设备
DE102011006260A1 (de) 2011-03-28 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
DE102011075388A1 (de) 2011-05-06 2012-11-08 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät, insbesondere Haushaltskältegerät
JP5316674B2 (ja) 2011-05-09 2013-10-16 パナソニック株式会社 冷蔵庫
JP5890973B2 (ja) 2011-06-24 2016-03-22 株式会社松田技術研究所 真空断熱パネル
KR20130015183A (ko) 2011-08-02 2013-02-13 삼성전자주식회사 고기능성 진공단열재 및 그 제조방법
WO2013038218A1 (en) 2011-09-12 2013-03-21 Thomson Licensing Method and apparatus for changing the recording of digital content
US9528749B2 (en) 2011-11-02 2016-12-27 Lg Electronics Inc. Refrigerator
KR101861831B1 (ko) 2011-11-02 2018-05-29 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
KR101861832B1 (ko) 2011-11-04 2018-05-29 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
KR101363423B1 (ko) 2012-01-17 2014-02-17 주식회사 경동원 팽창 퍼라이트·실리카 성형 구조체를 갖는 저밀도 무기질 파우더 진공단열재, 이의 제조 방법 및 이의 성형기
JP6083939B2 (ja) 2012-03-12 2017-02-22 株式会社松田技術研究所 真空断熱パネルおよび断熱箱体
JP6108180B2 (ja) 2012-03-23 2017-04-05 パナソニックIpマネジメント株式会社 真空断熱材およびこれを用いた断熱筐体
KR101565420B1 (ko) 2012-12-13 2015-11-05 엘지전자 주식회사 진공공간부를 구비하는 냉장고
KR102183719B1 (ko) 2013-04-08 2020-11-27 삼성전자주식회사 냉장고 및 그 제조 방법
KR101456376B1 (ko) 2013-04-24 2014-10-31 한국과학기술원 조립식 왕복 지지체를 가지는 진공 단열체의 구조
KR102163292B1 (ko) 2013-07-26 2020-10-08 삼성전자주식회사 진공단열재 및 이를 포함하는 냉장고
JP6071796B2 (ja) 2013-08-06 2017-02-01 三菱電機株式会社 冷蔵庫の扉及びこれを備えた冷蔵庫
KR101609438B1 (ko) 2014-02-11 2016-04-05 엘지전자 주식회사 냉장고
KR101627662B1 (ko) 2014-03-20 2016-06-07 삼성중공업 주식회사 반잠수식 해양 구조물의 밸러스트 시스템
JP6511626B2 (ja) 2014-04-18 2019-05-15 株式会社安川電機 シーム溶接システム、シーム溶接方法および被溶接物の生産方法
DE102014211095A1 (de) 2014-06-11 2015-12-17 BSH Hausgeräte GmbH Kältegerät
CN204141054U (zh) 2014-09-30 2015-02-04 烟台中集来福士海洋工程有限公司 保温支撑装置
CN104296490B (zh) 2014-10-09 2017-01-11 合肥美的电冰箱有限公司 冰箱的控制方法、系统及冰箱
KR102366410B1 (ko) 2014-10-16 2022-02-23 삼성전자주식회사 냉장고 및 이에 구비되는 진공 단열재
KR102222572B1 (ko) 2014-10-16 2021-03-05 삼성전자주식회사 냉장고
KR102273285B1 (ko) 2014-12-26 2021-07-06 삼성전자주식회사 냉장고 및 이에 구비되는 진공 단열재
US20160258671A1 (en) 2015-03-02 2016-09-08 Whirlpool Corporation Gas barrier for vacuum insulation
CN104913571B (zh) 2015-06-25 2017-09-19 合肥美的电冰箱有限公司 变频冰箱及变频冰箱的控制方法
KR102447245B1 (ko) 2015-08-03 2022-09-27 엘지전자 주식회사 진공단열체 및 냉장고
KR102529852B1 (ko) 2015-08-03 2023-05-08 엘지전자 주식회사 진공단열체 및 냉장고
KR102405802B1 (ko) * 2015-08-03 2022-06-08 엘지전자 주식회사 진공단열체 및 냉장고
KR102456642B1 (ko) 2015-08-03 2022-10-19 엘지전자 주식회사 진공단열체 및 냉장고
KR102529853B1 (ko) 2015-08-03 2023-05-08 엘지전자 주식회사 진공단열체, 진공단열체의 제조방법, 다공성물질패키지, 및 냉장고
KR102525551B1 (ko) 2015-08-03 2023-04-25 엘지전자 주식회사 진공단열체 및 냉장고
KR20170016188A (ko) 2015-08-03 2017-02-13 엘지전자 주식회사 진공단열체 및 냉장고
KR102497139B1 (ko) 2015-08-03 2023-02-07 엘지전자 주식회사 진공단열체
KR102498210B1 (ko) 2015-08-03 2023-02-09 엘지전자 주식회사 진공단열체 및 냉장고
KR102502160B1 (ko) 2015-08-03 2023-02-21 엘지전자 주식회사 진공단열체 및 냉장고
KR102525550B1 (ko) 2015-08-03 2023-04-25 엘지전자 주식회사 진공단열체 및 냉장고
KR102442973B1 (ko) 2015-08-03 2022-09-14 엘지전자 주식회사 진공단열체 및 냉장고
KR102466469B1 (ko) 2015-08-03 2022-11-11 엘지전자 주식회사 진공단열체 및 냉장고
KR102466470B1 (ko) 2015-08-04 2022-11-11 엘지전자 주식회사 진공단열체 및 냉장고
KR101738787B1 (ko) 2015-12-15 2017-06-08 엘지전자 주식회사 진공단열체, 저장고, 차량용 저장고, 및 차량
KR101772581B1 (ko) 2015-12-15 2017-08-31 주식회사 경동원 독립형 액화가스 저장탱크의 교차적층 된 진공단열패널의 연결 구조
CN205350719U (zh) 2015-12-31 2016-06-29 深圳市纳能科技有限公司 保温隔热套及隔热箱
EP3452766B1 (en) 2016-05-03 2023-04-19 Whirlpool Corporation Refrigerator appliance with a vacuum insulation and a hinge support
EP3460310B1 (en) 2016-06-13 2020-12-23 Nippon Steel Corporation Vacuum insulation panel manufacturing methods, and vacuum insulation panels
CN106016957B (zh) 2016-06-29 2019-02-01 合肥美的电冰箱有限公司 冰箱控制方法及装置
CN205784134U (zh) 2016-07-15 2016-12-07 合肥美菱股份有限公司 一种超节能薄壁冰箱
KR20170000187U (ko) 2016-07-21 2017-01-12 주식회사 경동원 이음맞춤 구조를 갖는 진공단열재
US10913232B2 (en) 2016-08-30 2021-02-09 Quest Thermal Group LLC Cellular load-responsive multilayer insulation
CN106500428B (zh) 2016-12-21 2019-02-15 合肥华凌股份有限公司 冰箱
CN108253709A (zh) 2016-12-29 2018-07-06 博西华电器(江苏)有限公司 冰箱
CN106766594A (zh) 2016-12-30 2017-05-31 青岛海尔股份有限公司 冰箱门体及具有该冰箱门体的冰箱
KR102658455B1 (ko) 2017-02-17 2024-04-17 엘지전자 주식회사 냉온장고, 및 진공단열체
KR102449177B1 (ko) 2017-08-01 2022-09-29 엘지전자 주식회사 진공단열체 및 냉장고
KR102459784B1 (ko) 2017-08-01 2022-10-28 엘지전자 주식회사 진공단열체 및 냉장고
CN109393688A (zh) 2017-08-16 2019-03-01 张跃 一种箱包结构
CN208281706U (zh) 2018-04-16 2018-12-25 江苏首创新能源科技有限公司 水箱真空保温板
CN208472996U (zh) 2018-05-31 2019-02-05 金乡蒜通天下仓储有限公司 一种冷库保温层

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019867A1 (en) 1990-06-12 1991-12-26 Benson David K Improved compact vacuum insulation
JP2004211376A (ja) 2002-12-27 2004-07-29 Haruo Uehara 真空断熱パネル
KR20070037274A (ko) * 2005-09-30 2007-04-04 정홍준 진공판넬
KR20100109653A (ko) * 2009-04-01 2010-10-11 한국과학기술원 진공 단열체
KR20110015327A (ko) * 2009-08-07 2011-02-15 엘지전자 주식회사 진공 단열재의 코어 및 이를 이용한 진공 단열재
KR20110113414A (ko) 2010-04-09 2011-10-17 이초강 로봇을 위한 경험적 상황인식 방법
JP2012207682A (ja) 2011-03-29 2012-10-25 Matsuda Gijutsu Kenkyusho:Kk 真空断熱パネル
WO2017023094A1 (en) * 2015-08-03 2017-02-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator

Also Published As

Publication number Publication date
CN110998167A (zh) 2020-04-10
EP3662191A1 (en) 2020-06-10
AU2022201399A1 (en) 2022-03-24
EP3662191A4 (en) 2021-04-21
KR20220133168A (ko) 2022-10-04
US11774167B2 (en) 2023-10-03
US20210123660A1 (en) 2021-04-29
RU2739948C1 (ru) 2020-12-30
KR102653488B1 (ko) 2024-04-02
KR102449175B1 (ko) 2022-09-29
AU2018309536B2 (en) 2021-12-02
AU2018309536A1 (en) 2020-03-19
RU2020142423A (ru) 2021-01-26
EP3662191B1 (en) 2024-04-24
US20230366613A1 (en) 2023-11-16
RU2020142423A3 (ko) 2022-03-09
CN110998167B (zh) 2022-09-27
KR20240045194A (ko) 2024-04-05
KR20190013333A (ko) 2019-02-11
AU2022201399B2 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
AU2018309540B2 (en) Vacuum adiabatic body and refrigerator
AU2018309538B2 (en) Vacuum adiabatic body and refrigerator
AU2018309536B2 (en) Vacuum adiabatic body and refrigerator
WO2017023095A1 (en) Vacuum adiabatic body and refrigerator
WO2017023094A1 (en) Vacuum adiabatic body and refrigerator
AU2018318604B2 (en) Vacuum adiabatic body and refrigerator
WO2017023087A1 (en) Vacuum adiabatic body and refrigerator
WO2017023088A1 (en) Vacuum adiabatic body and refrigerator
WO2017023077A1 (en) Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
WO2017023089A1 (en) Vacuum adiabatic body and refrigerator
WO2017023072A1 (en) Vacuum adiabatic body and refrigerator
WO2018143691A1 (en) Vacuum adiabatic body and refrigerator
WO2017023090A1 (en) Vacuum adiabatic body and refrigerator
AU2019292295B2 (en) Vacuum adiabatic body and refrigerator
WO2020004956A1 (en) Vacuum adiabatic body and refrigerator
WO2020004951A1 (en) Vacuum adiabatic body and refrigerator
AU2019292215B2 (en) Vacuum adiabatic body and refrigerator
WO2020004949A1 (en) Vacuum adiabatic body and refrigerator
AU2019292383B2 (en) Vacuum adiabatic body and refrigerator
WO2020004948A1 (en) Vacuum adiabatic body and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018840407

Country of ref document: EP

Effective date: 20200302

ENP Entry into the national phase

Ref document number: 2018309536

Country of ref document: AU

Date of ref document: 20180731

Kind code of ref document: A