WO2019017482A1 - スチレン系樹脂及びスチレン系樹脂の製造方法 - Google Patents

スチレン系樹脂及びスチレン系樹脂の製造方法 Download PDF

Info

Publication number
WO2019017482A1
WO2019017482A1 PCT/JP2018/027314 JP2018027314W WO2019017482A1 WO 2019017482 A1 WO2019017482 A1 WO 2019017482A1 JP 2018027314 W JP2018027314 W JP 2018027314W WO 2019017482 A1 WO2019017482 A1 WO 2019017482A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
weight
addition
resin
styrenic resin
Prior art date
Application number
PCT/JP2018/027314
Other languages
English (en)
French (fr)
Inventor
健二 原口
準平 後藤
Original Assignee
株式会社ジェイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017142147A external-priority patent/JP6886883B2/ja
Priority claimed from JP2017142151A external-priority patent/JP6858661B2/ja
Application filed by 株式会社ジェイエスピー filed Critical 株式会社ジェイエスピー
Priority to CN201880048037.8A priority Critical patent/CN110945043B/zh
Priority to US16/631,415 priority patent/US11254774B2/en
Publication of WO2019017482A1 publication Critical patent/WO2019017482A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene

Definitions

  • the present invention relates to a styrenic resin and a method of producing a styrenic resin.
  • Styrene resins are used as raw materials for various molded articles because they are excellent in dimensional stability, molding stability, etc., have high rigidity, and are inexpensive.
  • the melt tension of the resin can be increased, but as the molecular weight is higher, the flowability of the resin is reduced, and the moldability and productivity are easily reduced.
  • Various attempts have been made to solve such problems.
  • a styrenic resin composition comprising linear polystyrene and hyperbranched polystyrene, which has a weight average molecular weight of 250,000 to 750,000 as determined by the GPC-MALS method
  • the styrenic resin composition having a slope of 0.35 to 0.45 in a logarithmic graph, wherein the weight average molecular weight is taken along the abscissa and the resin composition obtained by the GPC-MALS method is taken along the ordinate.
  • the molecular chain of the styrenic resin branched as a method of increasing the melt tension of the styrenic resin.
  • multifunctional monomers which are essential for branching molecular chains, may cause gelation during resin synthesis.
  • the following method is disclosed. That is, 50 ppm to 5000 ppm by weight of a solvent-soluble polyfunctional vinyl compound copolymer having a branched structure and having two or more vinyl groups per molecule on average is added to a vinyl monomer essentially containing styrene.
  • a polystyrene-based resin composition for foaming which can reduce the weight of the foamed molded article and improve the productivity at the time of molding is disclosed. That is, it contains a component derived from a polyfunctional vinyl-based aromatic compound and a styrene-based monomer as a substrate resin, and the polyfunctional vinyl-based aromatic compound has a molecular weight of 100 or more and less than 1000, and the substrate resin Is obtained by polymerizing a monomer mixture containing 50 to 500 ppm of a polyfunctional vinyl aromatic compound in the styrenic monomer, The melt flow rate (MFR: g / 10 min) and the melt tension value (MT: cN) at which the base resin satisfies (1) measurement conditions at 200 ° C.
  • MFR melt flow rate
  • MT melt tension value
  • a polystyrene resin composition for extrusion foaming which can improve the productivity at the time of molding while reducing the elution of styrene and its oligomers into the foam molded article. That is, (1) top peak molecular weight (Mp) in the molecular weight distribution is 140,000 to 220,000; (2) the ratio of molecular weight of Mp or less is 40 to 55% of the whole; (3) z + 1 average molecular weight is 800,000 to 3.5 million There is disclosed a polystyrene resin composition for extrusion foaming having physical properties of (4) 2000 ppm or less of an oligomer consisting of styrene dimer and styrene trimmer; and (5) styrene of 1000 ppm or less (for example, , Patent Document 4).
  • styrenic resins disclosed in any of Patent Documents 1 to 4 have a low degree of long-chain branching, and the weight average molecular weight determined by the GPC-MALS method is less than one million, which is several hundred thousand. Therefore, the melt tension of the styrenic resin is insufficient, and there is room for improvement in molecular orientation of the resin during molding. Further, as in Patent Documents 3 and 4, when a branched styrenic resin having a high degree of long-chain branching is to be produced using a polyfunctional monomer, the flowability is lowered, so that the molding processability is not excellent. The In addition, when the degree of polymerization is increased to further increase the degree of long-chain branching, there is a problem that gelation occurs, and the obtained styrenic resin contains a large amount of gel.
  • the present invention is as follows. ⁇ 1>
  • the weight average molecular weight Mw ′ determined by the GPC-MALS method is not less than 1,000,000 and not more than 5,000,000, and the degree of long chain branching per 1000 styrene units is not less than 0.2, and the tetrahydrofuran insoluble matter is 0.1
  • styrene resin according to ⁇ 1> wherein the degree of long chain branching per 1000 styrene units is 0.3 or more.
  • ⁇ 4> The styrene system according to any one of ⁇ 1> to ⁇ 3>, wherein the ratio Mz ′ / Mn ′ of Z average molecular weight Mz ′ to number average molecular weight Mn ′ determined by GPC-MALS method is 7 or more It is a resin.
  • ⁇ 5> The styrene resin according to any one of ⁇ 1> to ⁇ 4>, wherein a total content of a styrene dimer and a styrene trimer is 0.1% by weight or less.
  • melt viscosity at 200 ° C. and shear rate 100 sec ⁇ 1 is 2100 Pa ⁇ s or less, and the melt tension at 200 ° C. is 350 mN or more, and the ratio of the melt tension to the melt viscosity (melt tension / melt viscosity [ mN / (Pa ⁇ s)]) is a styrene resin described in any one of ⁇ 1> to ⁇ 5>, which is 0.20 or more.
  • An impregnating step of impregnating a mer A step of initiating the polymerization of the styrene monomer by raising the temperature of the aqueous medium;
  • the addition amount of the styrene monomer in the impregnation step is 10 to 200 parts by weight with respect to 100 parts by weight of the core particles,
  • the addition amount of the styrene monomer in the additional impregnation polymerization step is 50 to 700 parts by weight with respect to 100 parts by weight of the core particle, and the content of the styrene monomer in the core particle in the additional impregnation polymerization step It is a manufacturing method of sty
  • the ⁇ 9> above-mentioned aqueous medium is a manufacturing method of styrenic resin as described in ⁇ 7> or ⁇ 8> whose oxygen concentration in 30 ° C is 4 mg / L or more.
  • the 10 hour half-life temperature T 1/2 of the organic peroxide is 85 to 120 ° C.
  • the temperature of the aqueous medium in the impregnation step is 70 ° C. or more (T 1/2 -15) ° C. or less
  • the temperature of the aqueous medium in the additional impregnation polymerization step is any one of ⁇ 7> to ⁇ 10>, wherein the temperature is (T 1/2 -10) ° C. or more and (T 1/2 +20) ° C. or less. It is a manufacturing method of styrene resin.
  • styrene monomer is polymerized in the presence of the chain transfer agent in the additional impregnation polymerization step, and the ratio of the total addition amount of the chain transfer agent to the total addition amount of the polymerization initiator is 0.1 to 0.6 It is a process for producing a styrenic resin according to any one of ⁇ 7> to ⁇ 11>.
  • the styrenic resin according to the above ⁇ 1> to ⁇ 6> is referred to as the first embodiment of the present invention, and the method for producing the styrenic resin according to the above ⁇ 7> to ⁇ 14> is referred to It is called a second embodiment.
  • a styrenic resin which is excellent in molding processability. Further, according to the present invention, it is possible to provide a method for producing a styrenic resin capable of producing a styrenic resin having a branched structure, which has high fluidity and high melt tension.
  • FIG. 7 is a graph of simulation results in Examples 1 and 5.
  • FIG. 7 is a graph of simulation results in Example 2.
  • 15 is a graph of simulation results in Example 3.
  • 15 is a graph of simulation results in Example 4.
  • 21 is a graph of simulation results in Example 6. It is a graph of the simulation result in Example 7 and 12.
  • 21 is a graph of simulation results in Example 8.
  • 21 is a graph of simulation results in Example 9.
  • 21 is a graph of simulation results in Example 10.
  • 21 is a graph of simulation results in Example 11.
  • 21 is a graph of simulation results in Example 13.
  • 21 is a graph of simulation results in Example 14.
  • 21 is a graph of simulation results in Example 15.
  • 21 is a graph of simulation results in Example 16. It is a graph of the simulation result in the comparative example 1.
  • FIG. It is a graph of the simulation result in the comparative example 2.
  • the styrene-based resin according to the first embodiment of the present invention (hereinafter, also referred to as “the styrene-based resin of the present invention”) has a weight average molecular weight Mw ′ of 1,000,000 to 5,000,000 as determined by It is a styrenic resin having a long chain branching degree of 0.2 or more per 1000 units of styrene. Furthermore, the ratio of the insoluble matter in tetrahydrofuran in the styrenic resin of the present invention is 0.1% by weight or less (including 0).
  • the styrenic resin of this invention does not contain the component derived from a polyfunctional monomer in a molecular chain. That is, the content of the component derived from the polyfunctional monomer in the molecular chain of the styrene resin is 0% by weight.
  • the GPC-MALS method is a method in which gel permeation chromatography (hereinafter sometimes referred to as "GPC") is combined with multi-angle light scattering (MALS). The absolute molecular weight and molecular size of the styrenic resin are measured by the GPC-MALS method, and the degree of long chain branching of the styrenic resin is determined from the measurement results.
  • higher molecular weight resin is useful as a means to improve the melt tension and strength of styrenic resin, but when the molecular weight is simply increased, the fluidity of the resin decreases and the molding processability Was aggravated by It is useful to introduce a branched structure into the molecular chain as a means to improve the strength while maintaining the fluidity of the resin.
  • the resin having a branched structure has a high degree of melt tension because the degree of entanglement of molecular chains is increased, and it becomes difficult to break at the time of stretching.
  • a method of incorporating a branched structure into the molecular chain of a styrenic resin there is a method of polymerizing a styrene monomer in the presence of a polyfunctional monomer such as divinylbenzene as a branching agent.
  • the styrenic resin having the conventional branched structure has a problem that the branch point is concentrated on the portion where the polyfunctional monomer is polymerized, and the microgel is easily generated.
  • gelation occurs during polymerization because the polyfunctional monomers are close to each other in the reaction system. Since it becomes easy, the addition amount of the polyfunctional monomer is limited, and it has been difficult to raise the melt tension above a certain level while maintaining the fluidity of the resin.
  • the styrenic resin of the present invention has a structure in which the number of branch points is large (high degree of branching) and the branch points are separated despite high molecular weight, high melt tension and excellent fluidity It is thought that it combines with the sex.
  • the weight-average molecular weight Mw 'determined by GPC-MALS method is 1,000,000 or more and 5,000,000 or less, and the degree of long chain branching per 1000 units of styrene is 0.2 or more.
  • a styrenic resin solution divided according to molecular size in GPC measurement is irradiated with laser light, and the scattered light intensity generated from the styrenic resin solution is measured by Rayleigh scattering. From the obtained measured values, a weight average molecular weight Mw 'and a root mean square radius of gyration ⁇ R g 2 > are calculated using the following equation (1) and the Debye plot shown in FIG.
  • K * optical parameter (4 ⁇ 2 n 0 2 (dn / dc) 2 / [ ⁇ 0 4 N A ])
  • n 0 refractive index of solvent
  • dn / dc density increment of refractive index
  • ⁇ 0 wavelength of incident light in vacuum
  • N A Avogadro's number
  • c sample concentration (g / mL)
  • Mw ' weight average molecular weight (g / mole)
  • P ( ⁇ ): interference factor P ( ⁇ ) (1-2 ⁇ (4 ⁇ / ⁇ ) sin ( ⁇ / 2) ⁇ 2 ⁇ R g 2 > / 3! +)
  • wavelength ⁇ 0 / n 0 in the measurement system
  • a 2 second virial coefficient
  • styrene resin solutions having different resin concentrations are measured by GPC-MALS method, the vertical axis (Y axis) is “K * c / R ( ⁇ )” and the horizontal axis (X axis) is “sin 2 is an example of a Debye plot plotted as 2 ( ⁇ / 2). From the regression line obtained by Debye plot and the intercept (Y-axis intercept) from the ordinate, weight-average molecular weight Mw 'of styrenic resin divided according to molecular size by GPC measurement, initial slope of regression line, styrenic resin The root mean square radius of gyration ⁇ R g 2 > of is calculated respectively.
  • analysis is performed by Wyatt's analysis software ASTRA using Prominence LC-20AD (2HGE) / WS system made by Shimadzu Corporation, and multi-angle light scattering detector DAWN HELEOS II made by Wyatt Technology. From the weight average molecular weight Mw 'and the root mean square radius of gyration ⁇ R g 2 > of the molecular size styrenic resin, the number average molecular weight (Mn'), weight average molecular weight (Mw '), Z average molecular weight (Mz') of styrenic resin And the degree of long chain branching per 1000 styrene units.
  • the number average molecular weight Mn ′ obtained by this analysis is “the number average molecular weight Mn ′ determined by the GPC-MALS method” in the present invention, and the weight average molecular weight Mw ′ is determined by the “GPC-MALS method” in the present invention
  • the Z average molecular weight Mz ' is the "Z average molecular weight Mz' determined by the GPC-MALS method” in the present invention.
  • the measurement conditions are preferably as follows. Eluent: tetrahydrofuran (THF), Flow rate: 1.0 ml / min, Column: Toso TSKgel HHR-H ⁇ 1 and TSKgel GMHHR ⁇ 2 are connected in series.
  • the number average molecular weight Mn ′, the weight average molecular weight Mw ′, and the Z average molecular weight Mz ′ determined by the GPC-MALS method are absolute molecular weights of the styrene resin.
  • a number average molecular weight Mn, a weight average molecular weight Mw, and a Z average molecular weight Mz obtained by GPC method using linear polystyrene as a standard substance are relative molecular weights of the styrene resin.
  • the shrinkage factor g of the styrene resin a value obtained as follows is used.
  • the ratio of the root mean square radius of gyration ⁇ R g 2 > B of the styrenic resin of the present invention to the root mean square radius of gyration ⁇ R g 2 > L of the linear styrenic resin is the shrinkage factor
  • the contraction factor g can be determined on the basis of (8).
  • the degree of long-chain branching B m can be obtained from the contraction factor g.
  • the degree of long chain branching is determined on the assumption that the styrenic resin has a three-chain branched structure.
  • Shrinkage factor g w, 1 degree of long chain branching B m per molecule, w, degree of long chain branching B m, 1000 per styrene 1000 units is obtained by the following formula (4) to (8).
  • g i is a contraction factor in interval i
  • B m, i is the degree of long-chain branching in interval i
  • c i is the sample concentration in interval i.
  • the tetrahydrofuran (THF insoluble matter) insoluble content of the styrenic resin of the present invention is 0.1% by weight or less (including 0).
  • the styrenic resin of the present invention has a high molecular weight and does not contain a component derived from a polyfunctional monomer in the molecular chain even if it has many long chain branches. Therefore, the range of the above THF insolubles can be achieved.
  • the proportion of the THF insoluble matter in the styrene resin is preferably 0.05% by weight or less, and more preferably 0.01% by weight or less.
  • the weight average molecular weight Mw 'of the styrene resin of the present invention is 1,000,000 or more and 5,000,000 or less.
  • the weight average molecular weight Mw ′ is preferably equal to or greater than 1.2 million, more preferably equal to or greater than 1.55 million, and still more preferably equal to or greater than 1.8 million.
  • the weight average molecular weight Mw ′ is preferably 3,000,000 or less, and more preferably 2,500,000 or less.
  • the number average molecular weight Mn ′ of the styrene resin of the present invention is preferably 300,000 or more, more preferably 500,000 or more, and still more preferably 700,000 or more, from the viewpoint of melt tension. It is particularly preferable that it is 10,000 or more, and further preferably 1,000,000 or more. Further, from the viewpoint of fluidity at the time of melting, the number average molecular weight Mn ′ is preferably 3,000,000 or less, more preferably 1,000,000 or less, and still more preferably 900,000 or less.
  • the Z average molecular weight Mz 'of the styrene resin of the present invention is preferably 3,000,000 or more, more preferably 3.5,000,000 or more, still more preferably 5,000,000 or more, and 8,000,000 or more. Particularly preferred. Further, from the viewpoint of fluidity at the time of melting, the Z average molecular weight Mz ′ is preferably 15,000,000 or less, and more preferably 12,000,000 or less.
  • ratio (Mz '/ Mn') of Z average molecular weight Mz 'and number average molecular weight Mn' of the styrene resin of this invention is 4 or more.
  • Mz '/ Mn' is more preferably 7 or more, still more preferably 8 or more, and more preferably 10 or more, from the viewpoint of achieving both high fluidity at the time of melting and high melt tension at a high level. Is particularly preferred.
  • the upper limit of Mz '/ Mn' is preferably 25, and more preferably 20.
  • the ratio (Mw ′ / Mn ′) of the weight average molecular weight Mw ′ to the number average molecular weight Mn ′ of the styrene resin of the present invention is preferably 1.5 to 2.0.
  • the ratio of Z average molecular weight Mz 'to weight average molecular weight Mw' Mz '/ Mw' is preferably 2.0 to 3.5.
  • the shrinkage factor g w of the styrene resin of the present invention is preferably 0.80 or less, more preferably 0.75 or less, still more preferably 0.70 or less, and 0.67 or less. It is particularly preferred that there be.
  • the lower limit is preferably about 0.4.
  • the long chain branching degree B m, w per molecule of the styrene resin of the present invention is preferably 4 to 20, and more preferably 5 to 18.
  • the long chain branching degree B m, 1000 per 1000 styrene units of the styrene resin of the present invention is 0.2 or more, preferably 0.3 or more, more preferably 0.32 or more, still more preferably 0.35 or more And particularly preferably 0.4 or more.
  • the upper limit is approximately two.
  • the styrenic resin of the present invention has a ratio (Mw / Mw ′) of weight average molecular weight Mw to weight average molecular weight Mw ′ determined by GPC method using linear polystyrene as a standard substance is 0.5 or less Is preferred.
  • the styrene resin of the present invention is a homopolymer of a styrene monomer if the weight average molecular weight Mw 'is 1,000,000 or more and 5,000,000 or less and the long chain branching degree B m, 1000 is 0.2 or more. Alternatively, it may be a styrene copolymer of a styrene monomer and another monomer.
  • the styrenic resin is a copolymer
  • the proportion of structural units derived from styrenic monomers contained in the copolymer is at least 50% by weight or more, preferably 60% by weight or more, and more preferably 80% by weight or more It is.
  • styrene-based resins include polystyrene, rubber-modified polystyrene (high impact polystyrene), styrene-acrylonitrile copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methyl methacrylate Examples thereof include copolymers, styrene-maleic anhydride copolymers and the like.
  • the total content of styrene dimer and styrene trimer in the styrene resin of the present invention is preferably 0.1% by weight or less.
  • Styrene dimers and styrene trimers (hereinafter sometimes referred to as "styrene oligomers") are produced in the process of producing styrenic resins, and these are not incorporated into the molecular chains of styrenic resins and remain as such in styrenic resins There is something to do.
  • the styrene oligomer may be extracted from the foam-molded article, so the total content of styrene dimer and styrene trimer is preferably 0.1% by weight or less.
  • the melt viscosity of the styrenic resin of the present invention at 200 ° C. and a shear rate of 100 sec ⁇ 1 is preferably 2100 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less, and still more preferably 1900 Pa ⁇ s or less .
  • the lower limit of the melt viscosity is not particularly limited, but is preferably 1000 Pa ⁇ s or more.
  • the melt tension of the styrenic resin of the present invention at 200 ° C. is preferably 350 mN or more, more preferably 400 mN or more, still more preferably 500 mN or more, and particularly preferably 600 mN or more.
  • the styrenic resin of the present invention has a high molecular weight of 1,000,000 to 5,000,000 and a weight average molecular weight Mw ′, but a long chain branching degree per 1,000 units of styrene is 0.2 or more Thus, more long-chain branches are present in the molecular chain than conventional branched styrenic resins. Therefore, the melt viscosity at 200 ° C. and a shear rate of 100 sec ⁇ 1 can be easily set to 2100 Pa ⁇ s or less, and the melt tension at 200 ° C. can be easily set to 350 mN or more.
  • the ratio of the melt tension to the melt viscosity is preferably 0.20 or more, more preferably 0.30 or more, and 0. More preferably, it is 40 or more.
  • the method for producing the styrenic resin of the present invention is a method wherein a weight average molecular weight Mw 'determined by GPC-MALS method is 1,000,000 or more and 5,000,000 or less, long chain per 1000 units of styrene without using a polyfunctional monomer.
  • the production method is not particularly limited as long as it can be produced so that the degree of branching is 0.2 or more, and the tetrahydrofuran insoluble fraction is 0.1% by weight or less (including 0), and various methods may be used.
  • the addition amount of the polyfunctional monomer when the addition amount of the polyfunctional monomer is increased in order to produce a highly branched styrenic resin, the polyfunctional monomers are adjacent to each other in the reaction system, during polymerization. Gelation is likely to occur. Therefore, the addition amount of the polyfunctional monomer is limited, and it is difficult to produce a styrenic resin having high melt tension while maintaining fluidity.
  • the method for producing a styrenic resin according to the first embodiment of the present invention comprises the steps of: dispersing core particles containing styrenic resin in an aqueous medium; A polymerization initiator containing an organic peroxide and a styrene monomer are added to the aqueous medium, and the polymerization initiator and the styrene monomer are added to the core particles at a temperature at which the polymerization of the styrene monomer does not substantially proceed.
  • An impregnating step of impregnating a mer A step of initiating the polymerization of the styrene monomer by raising the temperature of the aqueous medium;
  • An additional impregnation polymerization step of additionally adding a styrene monomer to the aqueous medium, impregnating the core particle with the styrene monomer, and graft polymerizing the styrene monomer to the styrene resin;
  • the addition amount of the styrene monomer in the impregnation step is 3 to 25 parts by weight with respect to a total of 100 parts by weight of the total addition amount of the core particle and the styrene monomer,
  • the addition amount of the styrene monomer in the additional impregnation polymerization step is 50 to 90 parts by weight with respect to the total 100 parts by weight of the total addition amount of the core particle and the styrene monomer, and It is preferable to
  • the above manufacturing method mainly includes a dispersion step of dispersing core particles in an aqueous medium, an impregnation step of impregnating the core particles with a polymerization initiator and a styrene monomer, and a polymerization start to initiate polymerization of a styrene monomer. It has a process, and the additional impregnation polymerization process which graft-polymerizes a styrene monomer to a styrene-type resin by making a core particle impregnate by adding a styrene monomer in an aqueous medium additionally.
  • the GPC-MALS method is carried out without using a polyfunctional monomer by maintaining the concentration of styrene monomer in the core particle which is the reaction site of polymerization at a specific concentration in the additional impregnation polymerization step.
  • a styrene resin having a weight average molecular weight Mw ′ determined by the above formula of 1,000,000 or more and a long chain branching degree per 1,000 units of styrene of 0.2 or more can be obtained.
  • the method of dispersing core particles in an aqueous medium is not particularly limited, and, for example, together with core particles, a suspending agent and, if necessary, a surfactant may be added to and mixed with the aqueous medium.
  • the styrene resin which concerns on 1st embodiment of this invention can also be manufactured by the manufacturing method of styrene resin which concerns on 2nd embodiment mentioned later.
  • a method of producing a styrenic resin according to a second embodiment of the present invention comprises dispersing core particles containing styrenic resin in an aqueous medium
  • a polymerization initiator containing an organic peroxide and a styrene monomer are added to the aqueous medium, and the polymerization initiator and the styrene monomer are added to the core particles at a temperature at which the polymerization of the styrene monomer does not substantially proceed.
  • An impregnating step of impregnating a mer A step of initiating the polymerization of the styrene monomer by raising the temperature of the aqueous medium;
  • the addition amount of the styrene monomer in the impregnation step is 10 to 200 parts by weight with respect to 100 parts by weight of the core particles,
  • the addition amount of the styrene monomer in the additional impregnation polymerization step is 50 to 700 parts by weight with respect to 100 parts by weight of the core particle, and the content of the styrene monomer in the core particle in the additional impregnation polymerization step Maintain the amount below 10% by weight.
  • Increasing the molecular weight of the resin is useful as a means to improve the melt tension of the styrenic resin.
  • the molecular weight is simply increased, there is a problem that the flowability of the resin decreases and the moldability deteriorates.
  • the resin having a branched structure has a high degree of melt tension because the degree of entanglement of molecular chains is increased, and it becomes difficult to break at the time of stretching.
  • a method of incorporating a branched structure into the molecular chain of a styrenic resin there is a method of polymerizing a styrene monomer in the presence of a polyfunctional monomer such as divinylbenzene as a branching agent.
  • a polyfunctional monomer such as divinylbenzene
  • the branch point is concentrated on the portion where the polyfunctional monomer is polymerized, and a microgel is easily generated.
  • gelation occurs during polymerization because the polyfunctional monomers are close to each other in the reaction system. Is more likely to occur.
  • the amount of the branching agent added is limited, and it has been difficult to produce a styrenic resin having high melt tension while maintaining fluidity during melting.
  • the reason why the styrenic resin having high melt tension and excellent fluidity can be produced by the production method of the present invention having the above-mentioned configuration is not clear, but it is due to the following reason. It is guessed.
  • the production method of the present invention mainly comprises a dispersion step of dispersing core particles in an aqueous medium, an impregnation step of impregnating the core particles with a polymerization initiator and a styrene monomer, and polymerization to start polymerization of styrene monomer. It has an initiation step, and an additional impregnation polymerization step of additionally adding a styrene monomer in an aqueous medium to impregnate into core particles and graft polymerizing a styrene monomer to a styrene resin.
  • the number of branch points of the styrenic resin is increased by maintaining the concentration of the styrene monomer in the core particle serving as a reaction site for polymerization at a specific concentration in the additional impregnation polymerization step. It is considered that (high branching degree), high molecular weight can be obtained, and further, branch points can be separated.
  • a polymerization initiator and many styrene monomers are present, and initiator radicals generated from the polymerization initiators and growing terminal radicals of polymer chains are preferred to vinyl groups of styrene monomers. It is believed that a linear styrenic resin is likely to be formed.
  • concentration of the styrene monomer in the reaction site is low, not only the polymerization reaction of the initiator radical or the growing terminal radical of the polymer chain with the styrene monomer but also the hydrogen abstraction reaction of the polymer chain by the initiator radical occurs It is considered to be easier.
  • the styrene monomer is graft-polymerized to the radical on the polymer chain generated by the hydrogen abstraction reaction, or the growing terminal radical of the polymer chain is recombined to form a branched chain in the polymer chain. It is thought that. Furthermore, since the position where the branched chain is formed in the polymer chain is in a steric crowded state, it is considered that further branched chains are unlikely to occur near the generated branch point. That is, it is considered that the hydrogen abstraction reaction occurs again on the polymer chain away from the branch point to the extent that steric hindrance does not occur, and a branched chain is formed.
  • a styrenic resin having many branched chains can be obtained without generating gelation because branched chains are generated while the branching points are separated appropriately.
  • the melt tension is high and the fluidity at the time of melting is It is believed that the maintained styrenic resin can be produced.
  • each process of a manufacturing method is demonstrated in detail.
  • core particles containing a styrenic resin are dispersed in an aqueous medium.
  • the method of dispersing core particles in an aqueous medium is not particularly limited, and, for example, together with core particles, a suspending agent and, if necessary, a surfactant may be added to and mixed with the aqueous medium.
  • the core particles contain a styrenic resin.
  • a styrene resin the polymer of a styrene monomer, the copolymer of a styrene monomer and another monomer, and the mixture of 2 or more types of these are mentioned.
  • the structural unit derived from the styrene monomer contained in the copolymer is 50% by weight or more, preferably 60% by weight or more, and more preferably 80% by weight or more.
  • styrene-based resins include polystyrene, rubber-modified polystyrene (high impact polystyrene), styrene-acrylonitrile copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methyl methacrylate Examples thereof include copolymers, styrene-maleic anhydride copolymers and the like.
  • the styrenic resin may be used alone or in combination of two or more.
  • the styrene resin is preferably polystyrene, from the viewpoint that a hydrogen abstraction reaction easily occurs and a branched chain is easily produced.
  • the core particle may contain a resin other than a styrene resin, but preferably contains 70% by weight or more, more preferably 85% by weight or more, and is made of a styrene resin. Is more preferred.
  • the average particle size of the core particles is preferably 0.3 to 1.2 mm.
  • the average particle diameter of the core particles is 0.3 mm or more, the generation amount of fine particles which may be generated at the time of production of the branched styrenic resin can be reduced.
  • the average particle size is 1.2 mm or less, the specific surface area of the core particle is increased, and the impregnation of the styrene monomer into the core particle is improved.
  • the upper limit of the average particle size of the core particles is more preferably 1.0 mm, still more preferably 0.5 mm.
  • the average particle size of the core particles means 63% volume average particle size.
  • aqueous medium water such as deionized water is usually used, but the aqueous medium may contain a water-soluble organic solvent such as alcohol as long as the core particles do not dissolve.
  • Surfactants include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • the surfactant is preferably at least one selected from the group consisting of an anionic surfactant, a cationic surfactant, and a nonionic surfactant.
  • alkyl sulfonates for example, sodium dodecyl sulfonate
  • alkyl benzene sulfonates for example, sodium dodecyl benzene sulfonate
  • polyoxyalkyl ether phosphate alkyldimethylethyl ammonium Ethyl sulfate
  • higher alcohol glycerin fatty acid ester
  • sorbitan fatty acid ester polyoxyethylene alkyl ether
  • polyoxyethylene alkyl ether fatty acid salt and the like
  • the surfactant may be used alone or in combination of two or more.
  • an electrolyte such as lithium chloride, potassium chloride, sodium chloride, sodium sulfate, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium bicarbonate, sodium acetate, sodium succinate and the like may be used.
  • suspending agent for example, hydrophilic polymers such as polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone and the like; tertiary calcium phosphate, magnesium nitrate, magnesium pyrophosphate, hydroxyapatite, aluminum oxide, talc, kaolin, bentonite, etc. Salt etc. are mentioned.
  • the suspending agents may be used alone or in combination of two or more. Either or both of a hydrophilic polymer and a poorly water-soluble inorganic salt may be used.
  • an anionic surfactant such as sodium alkyl sulfonate or sodium alkyl benzene sulfonate in combination.
  • the addition amount of the suspending agent is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight in total of the total addition amount of the core particles and the styrene monomer.
  • the suspending agent is 0.05 for a total of 100 parts by weight of the total addition amount of the core particle and the styrene monomer. It is preferable to use 3 to 3 parts by weight and 0.0001 to 0.5 parts by weight of an anionic surfactant.
  • a polymerization initiator containing an organic peroxide and a styrene monomer are added to an aqueous medium in which the core particles are dispersed, and the core particles are at a temperature at which the polymerization of the styrene monomer does not substantially proceed.
  • a polymerization initiator and a styrene monomer are impregnated with a polymerization initiator and a styrene monomer.
  • the temperature at which the polymerization of the styrene monomer does not proceed substantially is a temperature at which the organic peroxide does not substantially decompose.
  • the temperature of the aqueous medium in the impregnation step is (T 1/2 -15) ° C. or less
  • the temperature is preferably set to (T 1/2 -18) ° C. or less.
  • the temperature of the aqueous medium in the impregnation step is preferably 70 ° C. or higher, and more preferably 75 ° C. or higher, from the viewpoint of the impregnation of the styrene particles into the core particles.
  • the temperature of the aqueous medium in the impregnation step may be constant within the above range, or may be changed such as being gradually raised.
  • the time for the impregnation step is preferably about 0.5 to 2.0 hours, from the viewpoint of sufficiently impregnating the styrene monomer and the polymerization initiator into the core particles, and is preferably 1.0 to 2.0. More preferably it is time.
  • the core particles can be sufficiently plasticized, and it becomes easy to sufficiently impregnate the core particles with the polymerization initiator, and styrene outside the core particles It can suppress that a monomer superposes
  • the addition amount of the styrene monomer in the impregnation step is 10 to 200 parts by weight, preferably 20 to 200 parts by weight, with respect to 100 parts by weight of the core particles, It is more preferable that it is part by weight, and more preferably 40 to 160 parts by weight.
  • the impregnation step if the amount of addition of the styrene monomer is too small, the core particles can not be sufficiently plasticized, and the polymerization initiator can not be sufficiently impregnated into the core particles.
  • the addition amount of the styrene monomer is too large, the styrene monomer is polymerized outside the core particle, and fine particles are easily generated.
  • the addition amount of the styrene monomer in the impregnation step is 3 to 25 with respect to a total of 100 parts by weight of the total addition amount of the core particles and the styrene monomer. It is preferably part by weight, more preferably 5 to 20 parts by weight.
  • the polymerization initiator comprises an organic peroxide.
  • organic peroxides include benzoyl peroxide, dilauroyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, and t-hexylperoxy-2-ethylhexano.
  • the polymerization initiator it is preferable to use an organic peroxide having a 10-hour half-life temperature T 1/2 of 85 to 120 ° C., and more preferable to use one having a T 1/2 of 90 to 110 ° C.
  • T 1/2 the 10-hour half-life temperature of the organic peroxide having the lowest 10-hour half-life temperature
  • organic peroxides that satisfy these temperature ranges and have high hydrogen extraction ability, for example, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t- It is more preferable to use an organic peroxide that generates a t-butoxy radical such as butylperoxybenzoate, or an organic peroxide that generates a cumyloxy radical such as dicumyl peroxide.
  • t-butylperoxyisopropyl monocarbonate t-butylperoxy-2-ethylhexyl monocarbonate
  • t-butoxy radical such as butylperoxybenzoate
  • a cumyloxy radical such as dicumyl peroxide
  • the polymerization initiator may contain a polymerization initiator other than the organic peroxide, but from the viewpoint of facilitating the hydrogen abstraction reaction, the polymerization initiator preferably contains 70% by weight or more of the organic peroxide. It is more preferable to contain 85% by weight or more, and it is further preferable to be made of an organic peroxide.
  • the addition amount of the polymerization initiator is preferably 0.1 to 2.0 parts by weight with respect to 100 parts by weight in total of the total addition amount of the core particles and the styrene monomer. Within this range, the productivity is not excessively lowered, and the hydrogen abstraction reaction is likely to occur.
  • the addition amount of the polymerization initiator is more preferably 0.2 to 1.5 parts by weight with respect to 100 parts by weight in total of the total addition amount of the core particles and the styrene monomer.
  • Oxygen concentration in aqueous medium It is preferable to use an aqueous medium having an oxygen concentration of 4 mg / L or more at 30 ° C. as the aqueous medium.
  • the oxygen of the aqueous medium functions as a polymerization inhibitor in the aqueous medium and inhibits the generation of fine particles. Therefore, as the oxygen concentration in the aqueous medium is higher, the yield of styrenic resin is improved.
  • the oxygen concentration at 30 ° C. is more preferably 5 mg / L or more.
  • the generation of fine particles can also be suppressed by adding 30 to 200 ppm of a water-soluble polymerization inhibitor such as sodium nitrite to an aqueous medium.
  • the temperature of the aqueous medium in which the core particles impregnated with the polymerization initiator and the styrene monomer are dispersed, and the styrene monomer is Start the polymerization of Specifically, it is preferable to start the polymerization of the styrene monomer by setting the temperature of the aqueous medium to a temperature at which the organic peroxide substantially decomposes. From the viewpoint of productivity, the temperature of the aqueous medium is preferably set to a temperature of (T 1/2 -10) ° C.
  • the temperature rising time to the above temperature is not particularly limited, the polymerization of the styrene monomer in the core particle is advanced during the temperature rising of the aqueous medium, and the styrene in the core particle is added in the additional impregnation polymerization step described later. From the viewpoint of easily controlling the content of monomers to 10% by weight or less, the time is preferably 3 hours or more, and more preferably 5 hours or more. On the other hand, it is preferable that the temperature rising time to the said temperature is less than 10 hours from a viewpoint of productivity.
  • Additional impregnation polymerization step In the additional impregnation polymerization step in the production method of the present invention, a single amount of styrene is added in an aqueous medium, ie, an aqueous medium containing core particles in which polymerization of styrene monomer has started in core particles through the polymerization initiation step. Additional body is added and the core particles are impregnated with styrene monomer and polymerized. At this time, the addition amount of the styrene monomer is 50 to 700 parts by weight with respect to 100 parts by weight of the core particles in the additional impregnation polymerization step.
  • the styrene monomer is intermittently or continuously added to the aqueous medium so as to maintain the content (concentration) of the styrene monomer in the core particles in the additional impregnation polymerization step at 10% by weight or less.
  • the addition amount of the styrene monomer is 50 to 50 parts based on the total 100 parts by weight of the total addition amount of the core particles and the styrene monomer in the additional impregnation polymerization step. It is preferably 90 parts by weight, more preferably 55 to 85 parts by weight.
  • the styrene monomer is intermittently or continuously added to the aqueous medium so as to maintain the content (concentration) of the styrene monomer in the core particles in the additional impregnation polymerization step to 10% by weight or less. preferable.
  • the styrene monomer starts polymerization with the inside of the core particle as the reaction site.
  • the additional impregnation polymerization step by maintaining the content of the styrene monomer in the core particle at 10% by weight or less, not only the polymerization between the styrene monomers but also the amount of styrene unit to styrene resin.
  • the graft polymerization of the body tends to occur, and the branched polymerization is generated by the graft polymerization.
  • content of the styrene monomer in the core particle in an additional impregnation polymerization process can exceed 10 weight%.
  • the time during which the content of the styrene monomer in the core particle exceeds 10% by weight is preferably 20% or less of the time of the additional impregnation polymerization step, more preferably 10% or less, and the additional impregnation polymerization It is most preferable that the content of the styrene monomer in the core particles be 10% by weight or less in all the steps.
  • the time of the additional impregnation polymerization step is preferably 150 minutes or more, more preferably 180 minutes or more, from the viewpoint of generating a branched chain highly.
  • the upper limit of the time of the additional impregnation polymerization step is preferably about 600 minutes.
  • the content of the styrene monomer in the core particles in the additional impregnation polymerization step is preferably 8% by weight or less, and more preferably 6% by weight or less.
  • the content of styrene monomer in core particles in the additional impregnation polymerization step can be calculated based on the chemical characteristics of the polymerization initiator used for polymerization, the polymerization rate of styrene determined from the polymerization temperature, etc. It is. Based on the calculated value, the core particles in the additional impregnation polymerization step are adjusted by adjusting the addition timing and addition rate (addition ratio) of the styrene monomer so as to obtain the desired styrene monomer content. The content of styrene monomer can be adjusted. In addition, core particles during polymerization can be removed from the reaction system, and the actual content of styrene monomer in the core particles can be determined by the method described later.
  • the degree of branching of the styrene resin is improved.
  • the ratio of the styrene monomer to the core particle is high, the absolute molecular weight and the degree of branching of the styrene resin are easily improved.
  • the average particle diameter of the core particle is 1.2 mm or less, the specific surface area of the core particle is increased, the impregnation of the styrene monomer is improved, and the branch is easily generated. Conceivable.
  • the temperature condition of the additional impregnation polymerization step is not particularly limited, but the temperature of the aqueous medium in the additional impregnation polymerization step is (T 1/2 -10) ° C to (T 1/2 +20) from the viewpoint of facilitating the hydrogen abstraction reaction. C.), preferably (T 1/2 -5) C. to (T 1/2 +10) C.
  • the temperature of the aqueous medium in the additional impregnation polymerization step may be constant within the above range, or may be gradually raised.
  • the amount of the styrene monomer added is 50 to 700 parts by weight with respect to 100 parts by weight of the core particles in the additional impregnation polymerization step. If the amount of addition of the styrene monomer is too small in the additional impregnation polymerization step, it is difficult to sufficiently generate branched chains. In addition, when the addition amount of the styrene monomer is too large, the styrene monomers are easily polymerized outside the core particle, and the yield of the styrene resin may be deteriorated.
  • the addition amount of the styrene monomer is more preferably 100 to 600 parts by weight, further preferably 200 to 550 parts by weight with respect to 100 parts by weight of the core particles in the additional impregnation polymerization step.
  • the chain transfer agent is a molecule that causes chain transfer reaction of radically reactive molecules such as a growing terminal radical of a polymer chain, a radical on a polymer chain, a styrene monomer radical, and an initiator radical in a reaction site during polymerization.
  • chain transfer agent for example, ⁇ -methylstyrene dimer, n-octyl mercaptan, t-nonyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, phenylthiol, cyclohexanethiol, 4,4′-thiobisbenzenethiol, tri Methylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), 4-methylbenzenethiol, isooctyl 3-mercaptopropionate, 1,8-dimercapto-3,6-dioxaoctane Bromotrichloromethane, carbon tetrachloride, 1,4-naphthoquinone, 2,4-diphenyl-4-methyl-1-pentene, pentaphenyle
  • a polymerization initiator and a large number of styrene monomers are present in a reaction site during polymerization of styrene monomers, and growth terminals of initiator radicals and polymer chains generated from the polymerization initiators It is considered that a linear styrenic resin is easily formed since the radical reacts preferentially with the vinyl group of the styrene monomer.
  • radicals are generated on the polymer chain by hydrogen abstraction reaction, and a styrene monomer is graft-polymerized onto the radicals on the polymer chain, or the growing terminal radical of the polymer chain is recombined, It is believed that branched chains are formed in the polymer chain.
  • a chain transfer agent is used to adjust the molecular weight of polymer chains to a low level, and is not usually used to synthesize polymer chains of high molecular weight.
  • the present inventors do not cause a molecular weight reduction, and conversely, the degree of branching is high and high. It was found that a styrenic resin of molecular weight was produced.
  • the ratio of the total addition amount of the chain transfer agent to the total addition amount of the polymerization initiator is adjusted within a predetermined range within the specific range of the concentration of styrene monomer in the core particle.
  • the hydrogen of the polymer chain is suppressed while a side reaction such as the cleavage reaction of the polymer chain is suppressed by a part of the highly reactive radical such as the initiator radical being replaced by a radical having a moderately low reactivity by the chain transfer reaction. It is considered that the drawing reaction produces a styrene resin having a high degree of branching and a high molecular weight.
  • the chain transfer agent inherently generates a low molecular weight polymer, it is considered that a styrenic resin having a small molecular weight is also generated by a part of the chain transfer agent which did not participate in the formation of branched chains.
  • a high degree of branching and a high molecular weight styrenic resin generated by hydrogen abstraction reaction and a low molecular weight styrenic resin generated by a chain transfer reaction are simultaneously generated, so the molecular weight distribution of the styrenic resin is broadened and the height is high. It is believed that styrenic resins having branched chains, which have both melt tension and high fluidity, can be produced.
  • the chain transfer agent may be present along with the styrene monomer in the additional impregnation polymerization step.
  • the ratio of the total addition amount Mt of the chain transfer agent to the total addition amount Mi of the polymerization initiator (that is, Mt / Mi) is 0.1 to 0.6. It is preferable to The lower limit of Mt / Mi is more preferably 0.12, and still more preferably 0.15. On the other hand, the upper limit of Mt / Mi is preferably 0.5, and more preferably 0.4.
  • the addition method of the chain transfer agent is not limited, but examples of the addition method include the following (I) to (IV).
  • the chain transfer agent is added by at least one method of (I) to (IV).
  • a chain transfer agent can be contained in the core particle before the core particle is added to the aqueous medium. Specifically, a styrenic resin and a chain transfer agent are blended, and core particles are produced by granulation. This gives core particles containing the chain transfer agent.
  • the core particles can be impregnated with a chain transfer agent in the impregnation step.
  • the chain transfer agent can be impregnated into the core particles by adding it to the aqueous medium in the impregnation step.
  • the chain transfer agent may be added to the aqueous medium at the same timing as the styrene monomer and the polymerization initiator, or may be added at different timings. It is preferable to add a chain transfer agent to the aqueous medium together with the styrene monomer and the polymerization initiator. In this case, in the impregnation step, the chain transfer agent is sufficiently dispersed in the core particles together with the styrene monomer and the polymerization initiator.
  • the core particles can be impregnated with a chain transfer agent in the polymerization initiation step.
  • the timing of adding the chain transfer agent to the aqueous medium may be after the temperature rise of the aqueous medium.
  • the core particles can be impregnated with a chain transfer agent in the additional impregnation polymerization step.
  • a chain transfer agent is added to the core particle while the content of the styrene monomer in the core particle is 10% by weight or less while additionally adding the styrene monomer to the aqueous medium after the polymerization initiation step. It can be impregnated.
  • the timing at which the chain transfer agent is added to the aqueous medium is not particularly limited as long as the purpose of the present invention does not impair the effect, for example, the chain transfer agent may be added collectively at the beginning of the additional impregnation polymerization step.
  • the addition rate may be changed, for example, to be gradually reduced.
  • the chain transfer agent is added to the aqueous medium in the additional impregnation polymerization step, for example, it is preferable to mix and add a styrene monomer and the chain transfer agent.
  • the production method of the present invention is a method capable of obtaining a highly branched styrenic resin without using a polyfunctional monomer (branching agent), but as far as gelation does not occur during polymerization.
  • multifunctional monomers may be added to the aqueous medium.
  • the addition amount of the polyfunctional monomer in the aqueous medium is preferably 0.2 parts by weight or less with respect to a total of 100 parts by weight of the core particles and the styrenic monomer, 0.1 parts by weight
  • the content is more preferably the following, more preferably 0.005 parts by mass, and particularly preferably 0 parts by mass. That is, it is particularly preferable not to use a polyfunctional monomer. By not using a polyfunctional monomer, a styrene resin having a higher degree of branching can be obtained.
  • the above-mentioned production method further comprises a residual polymerization step of polymerizing the styrene monomer remaining in the styrene resin particles after the additional impregnation polymerization step, and the suspension attached to the obtained styrene resin
  • the temperature in the autoclave reached 90 ° C.
  • the temperature was raised to 100 ° C. over 5 hours.
  • the temperature in the autoclave reached 100 ° C.
  • the temperature was raised to 115 ° C. over 1 hour and 30 minutes.
  • the temperature in the autoclave was maintained at 115 ° C. for 2 hours and 40 minutes, and then cooled to 40 ° C. over 2 hours.
  • the particles After cooling the inside of the autoclave, after dissolving the tribasic calcium phosphate adhering to the surface of the styrenic resin particles taken out from the inside of the autoclave with nitric acid, the particles are washed with water, dewatered by a centrifuge, and further by a flash dryer.
  • the water adhering to the surface of the particles was removed to obtain styrenic resin particles.
  • the obtained styrenic resin particles were sieved to take out particles having a diameter of 0.5 to 1.3 mm (average particle diameter of 0.8 mm) and used as core particles 1.
  • the average particle diameter d63 of the styrene resin particles was measured by a particle size distribution measuring apparatus “Millitrac JPA” manufactured by Nikkiso Co., Ltd.
  • the temperature in the autoclave reached 90 ° C.
  • the temperature was raised to 120 ° C. over 6 hours, held at 120 ° C. for 3 hours, and cooled to 40 ° C. for 3 hours.
  • the particles After cooling the inside of the autoclave, after dissolving the tribasic calcium phosphate adhering to the surface of the styrenic resin particles taken out from the inside of the autoclave with nitric acid, the particles are washed with water, dewatered by a centrifuge, and further by a flash dryer. The water adhering to the surface of the particles was removed to obtain styrenic resin particles.
  • the obtained styrenic resin particles were sieved, and particles (average particle diameter 0.4 mm) having a diameter of 0.3 to 0.5 mm were taken out and used as core particles 2.
  • Example 1 [Production of styrenic resin]
  • Example 1 [Dispersion process] 421 kg of deionized water, 2.63 kg of sodium pyrophosphate and 6.56 kg of magnesium nitrate are supplied to an autoclave with an internal volume of 1.5 m 3 equipped with a stirrer, and salt exchange is carried out to use pyrophosphate as a suspending agent in the autoclave. Magnesium was synthesized.
  • the aqueous medium in the autoclave was then heated to 80 ° C. while being stirred at 50 rpm. After the temperature of the aqueous medium in the autoclave reached 80 ° C., the emulsion described later was supplied into the autoclave. Thereafter, the inside of the autoclave was pressurized with nitrogen to 0.1 MPa (G) and maintained at 80 ° C. for 1 hour.
  • Emulsion 84 kg of deionized water, 0.171 kg of sodium alkyl sulfonate (manufactured by Kao, Latem PS, 40% aqueous solution), 80 kg of styrene (styrene monomer), t-butylperoxy-2-ethylhexyl monocarbonate ( It was obtained by preparing a mixture of 1.58 kg of a mixture of Trigonox 117 manufactured by Kayaku Akzo Co., Ltd .; described as “BE” in the table, and having a 10-hour half-life temperature T 1/2 99.0 ° C.) by a homogenizer.
  • styrene was additionally added to the autoclave such that the styrene content in the core particles during addition of styrene was 10% by weight or less.
  • styrene content in core particles during addition of styrene monomer in addition impregnation polymerization step When the styrene content in the styrenic resin particles was measured by the measurement method "), the styrene content in each of the core particles was 6% by weight.
  • the horizontal axis represents elapsed time (Time (hr))
  • the left vertical axis represents the content of styrene monomer in core particles in the additional impregnation polymerization step (Amount of Styrene monomer in a core particle (wt.%)
  • the polymerization temperature (° C.) was taken on the right vertical axis.
  • the change in styrene content in the core particles with respect to the elapsed time is indicated by a solid line
  • the change in polymerization temperature with respect to the elapsed time is indicated by a broken line.
  • the styrenic resin particles taken out of the autoclave were washed with dilute nitric acid to dissolve and remove the suspending agent adhering to the surface of the resin particles, followed by water washing and further dewatering with a centrifuge. After coating with 0.01 part by weight of polyoxyethylene lauryl ether (value relative to 100 parts by weight of styrenic resin) as an antistatic agent, the water on the surface of the resin particles was removed by fluid drying (room temperature air, 10 minutes).
  • Example 2 The following points were changed from Example 1. Specifically, the core particle was changed from the core particle 1 to 66.9 kg of the styrene resin particle (core particle 2) obtained in Production Example 2. Also, in the additional impregnation polymerization step, the holding time at a temperature of 105 ° C. in the autoclave is changed to 6 hours and 10 minutes, the amount of additionally added styrene is changed to 299 kg, and styrene is 0.8 kg over 6 hours and 10 minutes. It was continuously added into the autoclave at a rate of 1 / min.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition of the styrene monomer, the passage of 2.5 hours from the start of the addition, and the end of the addition, The styrene content was 10% by weight at the start of the addition, and 6% by weight at 2.5 hours after the start of the addition and at the end of the addition.
  • Example 3 After the impregnation step, the temperature in the autoclave was raised to 100 ° C. over 2 hours from 80 ° C., and the temperature of the additional impregnation polymerization step was changed to 100 ° C. Made.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition of the styrene monomer, the passage of 2.5 hours from the start of the addition, and the end of the addition, The styrene content was 10% by weight at the start of the addition, 9% by weight after 2.5 hours from the start of the addition, and 8% by weight at the end of the addition.
  • Example 4 The following points were changed from Example 1. Specifically, in the dispersion step, the supply amount of core particles (core particles 1) was changed to 183 kg. Also, in the additional impregnation polymerization step, the holding time at a temperature of 105 ° C. in the autoclave is changed to 3 hours, the amount of additionally added styrene is changed to 103 kg, and the ratio of styrene is 0.8 kg / min over 3 hours. Was continuously added into the autoclave.
  • Example 5 The following points were changed from Example 1.
  • the pressure in the autoclave is pressurized to 0.5 MPa (G) with nitrogen, and the gas in the autoclave is pressurized until the pressure in the autoclave becomes atmospheric pressure.
  • the releasing operation was repeated three times.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition of the styrene monomer, the passage of 2.5 hours from the start of the addition, and the end of the addition, The styrene content was 6% by weight in each case.
  • Example 6 The following points were changed from Example 1. Specifically, the supply amount of core particles (core particles 1) was changed to 67 kg. In addition, in the additional impregnation polymerization step, the holding time at a temperature of 105 ° C. in the autoclave is changed to 6 hours and 30 minutes, the amount of additionally added styrene is changed to 299 kg, and styrene is 0.8 kg over 6 hours and 10 minutes. It was added continuously into the autoclave at a rate of 1 / min.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition of the styrene monomer, the passage of 2.5 hours from the start of the addition, and the end of the addition, The styrene content was 10% by weight at the start of the addition, and 6% by weight at 2.5 hours after the start of the addition and at the end of the addition.
  • Example 7 [Dispersion process] 410 kg of deionized water, 2.56 kg of sodium pyrophosphate and 6.39 kg of magnesium nitrate are supplied to an autoclave with an internal volume of 1.5 m 3 equipped with a stirring device, and pyrophosphate as a suspending agent in the autoclave by salt exchange. Magnesium was synthesized. Supply 0.128 kg of sodium alkyl sulfonate (Kao Co., Ltd., Latem PS, 40% aqueous solution) as surfactant and 78.2 kg of styrenic resin particles (core particle 1) obtained in Production Example 1 as core particles to an autoclave After that, the gas phase in the autoclave was replaced with nitrogen. Specifically, the pressure in the autoclave was pressurized to 0.3 MPa (G) with nitrogen, and then the gas in the autoclave was released until the pressure in the autoclave became atmospheric pressure.
  • G 0.3 MPa
  • the aqueous medium in the autoclave was then heated to 80 ° C. while being stirred at 50 rpm. After the temperature in the autoclave reached 80 ° C., the stirring rotational speed of the aqueous medium in the autoclave was changed to 100 rpm, and the emulsion described later was supplied into the autoclave. Thereafter, the inside of the autoclave was pressurized with nitrogen to 0.1 MPa (G) and maintained at 80 ° C. for 15 minutes.
  • G 0.1 MPa
  • Emulsion 82 kg of deionized water, 0.166 kg of sodium alkylsulfonate (Laeomul PS, 40% aqueous solution, manufactured by Kao Corporation), 27.6 kg of styrene (styrene monomer), t-butyl peroxy- as a polymerization initiator 1.54 kg of 2-ethylhexyl monocarbonate (manufactured by NOF Corporation, Perbutyl E; BE, 10 hour half-life temperature T 1/2 99.0 ° C.), ⁇ -methylstyrene dimer as a chain transfer agent (manufactured by NOF Corporation, NOFMER MSD) It was obtained by preparing 0.22 kg of a mixture by means of a homogenizer, described in the table as “ ⁇ -MSD”.
  • Styrene was additionally added to the autoclave so that the styrene content of Sr.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition.
  • the amount was 5% by weight at the start of the addition, 7% by weight after 3 hours from the start of the addition, and 6% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 6.3% by weight.
  • Example 8 A styrenic resin was produced in the same manner as in Example 7 except that the amount of polymerization initiator was changed from 1.54 kg to 2.43 kg and the amount of chain transfer agent from 0.22 kg to 0.88 kg.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition. The amount was 3% by weight at the start of the addition, 6% by weight at 3 hours after the start of the addition, and 5% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 4.5% by weight.
  • Example 9 A styrenic resin was produced in the same manner as in Example 7 except that the amount of polymerization initiator was changed from 1.54 kg to 3.06 kg and the amount of chain transfer agent from 0.22 kg to 1.15 kg.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition. The amount was 2% by weight at the start of the addition, 5% by weight at 3 hours after the start of the addition, and 4% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 3.9% by weight.
  • Example 10 Polymerization initiator: t-hexylperoxybenzoate (manufactured by NOF Corporation, Perhexyl Z; described in the table as “HZ”, 10 hours half-life temperature T 1/2 : 99.4 ° C.) 1.62 kg, chain transfer agent A styrenic resin was produced in the same manner as in Example 7 except that the amount of C was changed from 0.22 kg to 0.88 kg.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition.
  • the amount was 5% by weight at the start of the addition, 7% by weight after 3 hours from the start of the addition, and 6% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 6.2% by weight.
  • Example 11 Polymerization initiator: t-hexylperoxybenzoate (manufactured by NOF Corporation, Perbutyl Z; described as “TBPB” in the table, 10 hours half-life temperature T 1/2 : 104.3 ° C.) 1.62 kg, chain transfer agent A styrenic resin was produced in the same manner as in Example 7 except that the amount of 0.22 kg to 0.88 kg and the temperature in the autoclave in the additional impregnation polymerization step was changed from 105 ° C. to 110 ° C.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition.
  • the amount was 5% by weight at the start of the addition, 6% by weight after 3 hours from the start of the addition, and 5% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 5.1% by weight.
  • Example 12 Styrene as in Example 7 except that in the impregnation step, 11 g of divinylbenzene (described as “DVB” in the table) was mixed with the styrene monomer and the polymerization initiator as a branching agent (polyfunctional monomer) Based resin was produced.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition. The amount was 5% by weight at the start of the addition, 7% by weight after 3 hours from the start of the addition, and 6% by weight at the end of the addition.
  • Example 12 is an example of only the manufacturing method of the second embodiment of the present invention.
  • Example 13 78.2 kg to 55.2 kg of the amount of core particles (core particles 1), 27.6 kg to 22.1 kg of the amount of styrene monomer in the impregnating step, 354, the amount of styrene monomer in the additional impregnating polymerization step.
  • a styrene resin was produced in the same manner as in Example 7 except that the amount was changed from 3 kg to 382.8 kg.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition.
  • the amount was 4% by weight at the start of the addition, 8% by weight after 3 hours from the start of the addition, and 6% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 6.0% by weight.
  • Example 14 78.2 kg to 105.8 kg of the amount of core particles (core particles 1), 27.6 kg to 41.4 kg of the amount of styrene monomer in the impregnation step, 354.
  • a styrene resin was produced in the same manner as in Example 7 except that the amount was changed from 3 kg to 312.9 kg.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition.
  • the amount was 8% by weight at the start of the addition, and 6% by weight after 3 hours from the start of the addition and at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 6.7% by weight.
  • Example 15 Similar to Example 9 except that the type of chain transfer agent was changed from ⁇ -methylstyrene dimer to n-octylmercaptan (manufactured by Kao Corporation, Thiocarcol 08; in the table, "n-OM”) Made.
  • the styrene content in the styrene resin particles was measured by the method described later at each of the start of the addition addition of the styrene monomer, the lapse of 3 hours from the start of the addition, and the end of the addition addition. The amount was 5% by weight at the start of the addition, 7% by weight after 3 hours from the start of the addition, and 6% by weight at the end of the addition.
  • the arithmetic mean of the styrene content in the core particles at the start of the addition of the styrene monomer, 3 hours after the start of the addition, and the end of the addition was determined to be 6.3% by weight.
  • Example 16 The following points were changed from Example 1. Specifically, in the dispersion step, the supply amount of core particles (core particles 1) was changed to 55.6 kg. In the impregnation step, the amount of styrene was changed to 26.8 kg, and the polymerization initiator was t-hexylperoxybenzoate (NOF Co., Perhexyl Z; HZ, 10 hour half-life temperature T 1/2 99.4 ° C.) It was changed to 6.3 kg. In the additional impregnation polymerization step, the holding time at 105 ° C. in the autoclave was changed to 8 hours 12 minutes, and the amount of additionally added styrene was changed to 366 kg.
  • core particles 1 core particles 1
  • the amount of styrene was changed to 26.8 kg
  • the polymerization initiator was t-hexylperoxybenzoate (NOF Co., Perhexyl Z; HZ, 10 hour half-life temperature T 1/2 99.4 °
  • Example 17 A styrenic resin was produced in the same manner as in Example 16 except that the amount of the polymerization initiator was changed from 6.3 kg to 4.75 kg.
  • Example 2 The following points were changed from Example 1. Specifically, in the dispersion step, the supply amount of core particles (core particles 1) was changed to 105 kg. The temperature in the autoclave in the impregnation step was changed to 75 ° C.
  • the amount of styrene was changed to 53 kg, and the polymerization initiator was benzoyl peroxide (Nipher BW manufactured by NOF Corporation, water-diluted powder product; in the table "BPO" , 10-hour half-life temperature 73.6 ° C.) 1.79 kg, and t-butylperoxy-2-ethylhexyl monocarbonate (Modifier Akzo Co., Trigonox 117, 10-hour half-life temperature 99.0 ° C.) 0. The weight was changed to 18 kg, and 11 g of divinylbenzene was added as a branching agent (polyfunctional monomer).
  • the temperature in the autoclave was maintained at 75 ° C. for 2 hours. After maintaining the temperature in the autoclave at 75 ° C. for 2 hours, the temperature was kept constant and a mixture of 321 kg of styrene and 89 g of divinylbenzene was continuously added into the autoclave at a rate of 2.1 kg / min over 2 hours and 30 minutes. .
  • the styrene content in the styrene resin particles was measured by the method described later at the start of the addition of the styrene monomer, 1.5 hours after the start of the addition, and at the end of the addition, respectively.
  • the styrene content was 8% by weight at the start of the addition, 58% by weight after 1.5 hours from the start of the addition, and 66% by weight at the end of the addition. Then, the temperature in the autoclave was raised to 108 ° C. over 2 hours, raised to 112 ° C. over 20 minutes, and raised to 125 ° C. over 2 hours. Thereafter, the temperature in the autoclave was maintained at 125 ° C. for 1 hour and 30 minutes, and cooled to 35 ° C. over 6 hours.
  • melt flow rate measurement of styrenic resin Based on JIS K 7210-1: 2014, the melt flow rate (MFR) of the styrene resin was measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • melt viscosity The melt viscosity of the styrenic resin at 200 ° C. and a shear rate of 100 sec ⁇ 1 was measured using Capirograph 1D manufactured by Toyo Seiki Co., Ltd. An orifice having an inner diameter of 1 mm and a length of 10 mm was used for the measurement. The melt viscosity was measured on five measurement samples randomly collected from the obtained styrenic resin, and the arithmetic mean value of the measured values was defined as the melt viscosity of the styrenic resin.
  • melt tension (MT; Melt Tension)
  • the melt tension of the styrenic resin at 200 ° C. was measured using Capirograph 1D manufactured by Toyo Seiki Co., Ltd. An orifice having an inner diameter of 2.095 mm and a length of 8 mm was used for the measurement.
  • the molten resin extruded in the form of a strand from the orifice at a piston lowering speed of 10 mm / min was pulled through a load measuring unit at a pulling speed of 5 m / min to measure the load.
  • it carried out using the Toyo Seiki Co., Ltd.
  • melt tension of the styrene resin is too high to measure the melt tension by itself, it is kneaded with the obtained styrene resin at a ratio of 75% by weight and 50% by weight of polystyrene “680” made by PS Japan, respectively.
  • the melt tensions of the styrenic resin compositions were measured using the samples for measurement, and extrapolated to determine the melt tension when the compounding amount of "680" is 0% by weight, and the value was used as a styrenic resin.
  • a styrene resin was dissolved in tetrahydrofuran (THF), and the molecular weight was measured by GPC measurement. Then, the measured values were calibrated with standard polystyrene (straight chain), and the number average molecular weight Mn, weight average molecular weight Mw, and Z average molecular weight Mz of the styrene resin were determined.
  • Tosoh TSKgel HHR-H ⁇ 1 column and TSKgel GMHHR ⁇ 2 column were connected in series and used.
  • the analysis of the measurement was performed by analysis software ASTRA of Wyatt, and the number average molecular weight Mn ′, weight average molecular weight Mw ′, and Z average molecular weight Mz ′ of the styrene resin were determined.
  • the analysis was performed using a value of 0.185 ml / g for the concentration increment dn / dc of the refractive index.
  • shrinkage factor and degree of long chain branching Based on the aforementioned equation (4) to (8), shrinkage factor g w, 1 per molecule degree of long chain branching B m, w, the degree of long chain branching B m, 1000 per styrene 1000 units was determined. In this analysis, the degree of long-chain branching was determined on the assumption that the styrenic resin is triple-chain branched. As linear polystyrene, data of the styrenic resin obtained in Production Example 1 was used.
  • the measurement conditions for gas chromatography are as follows. Equipment used: Shimadzu gas chromatograph GC-9A Column packing: [Liquid phase name] PEG-20M [Liquid phase impregnation rate] 25% by weight [Carrier particle size] 60/80 mesh [Carrier treatment method] AW-DMCS (water washing, baking, acid treatment, silane treatment) Column material: Glass column carrier gas: ID 3 mm, length 3000 mm: N 2 Detector: FID (hydrogen flame ionization detector) Quantitative: Internal standard method
  • the styrenic resins of Examples 1 to 17 all have melt viscosity of 2100 Pa ⁇ s or less, are excellent in fluidity, and have high melt tension of 350 mN or more.
  • a mixed butane foaming agent of 65% by weight of isobutane and 35% by weight of normal butane is injected into the molten resin composition to further knead To give a foamable molten resin composition.
  • the amount of the foaming agent added was 2.7 parts by weight with respect to 100 parts by weight of the polystyrene resin.
  • the foamable molten resin composition is cooled by the second extruder to adjust the resin temperature to 165 ° C. (measured between the second extruder and the die), and the foamable molten resin composition At a discharge rate of 105 kg / hr, and extruded into a cylindrical shape through an annular slit having a diameter of 68 mm and a gap of 0.67 mm for foaming.
  • the inner surface of the cylindrical foam is along the side surface of the cylindrical cooling device (mandrel) with a diameter of 270 mm.
  • the apparent density is 91 kg / m 3 , thickness 2.2 mm, width 850 mm by cutting the cylindrical foam in the extrusion direction with a cutter attached to the rear of the mandrel while pulling at a speed of 8.2 m / min.
  • Foam sheet was obtained.
  • the air volume of the cooling air blown to the inner surface side of the cylindrical foam was 0.6 m 3 / min, and the air volume of the cooling air sprayed to the outer surface side was 1.6 m 3 / min.
  • the apparent density of the foam sheet was determined by dividing the weight of the foam sheet by the apparent volume of the foam sheet.
  • the apparent volume of the foam sheet was determined by submerging the foam sheet in water and raising its water level.
  • the obtained foam sheet is aged for 3 weeks in an atmosphere of 23 ° C., and then an impact-resistant polystyrene (HIPS) resin layer having a basis weight of 120 g / m 2 is laminated and adhered on one side of the foam sheet by extrusion lamination method.
  • HIPS impact-resistant polystyrene
  • Example 2 The following points were changed with extrusion 1 to obtain a laminated foam sheet. Specifically, 35 parts by weight of polystyrene "HP 780AN” manufactured by DIC Corp. used in Comparative Example 3 and 65 parts by weight of polystyrene "G0002" manufactured by PS Japan Co., Ltd. used in Comparative Example 4 Changed to a mixture.
  • Example 3 The following points were changed with extrusion 1 to obtain a laminated foam sheet. Specifically, the polystyrene resin used was changed to 100 parts by weight of polystyrene “G0002” manufactured by PS Japan Co., Ltd. used in Comparative Example 4.
  • thermoformability Heat the laminated foam sheet so that the HIPS resin layer side of the laminated foam sheet is on the outer surface side of the molded body by match mold vacuum molding using a molding machine made by Asano Research Institute, Inc., part number: FKS-0631-10 It was molded to obtain a rod-shaped molded product (opening diameter 140 mm, depth 75 mm).
  • the heater temperature of the heating furnace for heating the laminated foam sheet is 310 ° C. for the HIPS resin layer laminated surface side and 260 ° C. for the HIPS resin layer non-laminated surface side, and the heating time is Thermoforming of the laminated foam sheet was carried out while changing to 11 seconds, 13 seconds, 15 seconds, 17 seconds, and 19 seconds.
  • Thermoformability was evaluated as follows. The evaluation results are shown in Table 5. A: A molding defect such as tearing of the surface, unevenness in elongation, etc. is not observed in the molded body, and the moldability is good. B: Slight molding defects such as surface tear and elongation unevenness are slightly observed in the molded body. C: Many molding defects such as surface tear and elongation unevenness are observed in the molded body.
  • thermoformability evaluation "A” the laminated foam sheet by extrusion 1 manufactured using the styrenic resin of the example has three conditions (heating time) of thermoformability evaluation "A", and the thermoformable range is wide. I understand that.
  • the uniaxial elongation viscosity was investigated using the mixed resin which mixed the styrenic resin of the Example with commercially available impact-resistant polystyrene (HIPS).
  • HIPS impact-resistant polystyrene
  • a twin screw extruder screw rotation number 50 rpm
  • the mixed resin pellet was pressed by a heat press at 200 ° C. to form a plate having a thickness of 0.8 mm, and a sample for measurement of uniaxial elongational viscosity was produced.
  • PHYSICA MCR 301 manufactured by dynamic viscoelasticity measuring apparatus Anton Paar and jig SER for uniaxial elongation viscosity measurement as measuring devices, 160 ° C., 0.5 s ⁇ 1 , 300 measurement points (from 0.01 s to 26 s as “logarithm” Measurement of the uniaxial elongation viscosity under the conditions of “a)”, and the inclination (a1) of the linear approximation of the nonlinear area to the inclination (a2) of the linear approximation of the linear area in the time-uniaxial elongation viscosity curve (double logarithmic plot) The ratio (a1 / a2) was determined. The results are shown in Table 6.
  • the ratio (a1 / a2) the larger the strain hardening of the resin, which means that the resin is excellent in moldability in molding processing such as blow molding and vacuum molding. Moreover, the melt viscosity of the mixed resin pellet was measured by the said method. As can be seen from Table 6, by adding each styrenic resin of Examples 7 to 11 to the impact-resistant polystyrene, the ratio (a 1) is obtained as compared with the comparative example without impairing the flowability of the impact-resistant polystyrene. / A2) is larger.
  • the styrenic resin of the present invention has high flowability and high melt tension, so it can be used for extrusion molding, foam molding, blow molding or the like, or mixed with a commercially available styrenic resin as a processing aid at the time of molding.
  • a styrenic resin having a branched structure having high fluidity and high melt tension can be produced. By using it for molding, blow molding or the like, or as a processing aid at the time of molding, it is possible to make the resin less likely to break during drawing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

このスチレン系樹脂は、GPC-MALS法により求められる重量平均分子量Mw'が100万以上であると共に、スチレン1000単位当たりの長鎖分岐度が0.2以上であり、テトラヒドロフラン不溶分が0.1重量%以下(0を含む)であり、分子鎖中に多官能性単量体由来の成分を含まないスチレン系樹脂である。このスチレン系樹脂の製造方法は、水性媒体中に、重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し20~200重量部であり、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50~700重量部であるとともに、前記核粒子中のスチレン単量体の含有量を10重量%以下に維持する製造方法である。

Description

スチレン系樹脂及びスチレン系樹脂の製造方法
 本発明は、スチレン系樹脂及びスチレン系樹脂の製造方法に関する。
 スチレン系樹脂は、寸法安定性、成形安定性などに優れ、剛性が高く、安価なことから、種々の成形品の原料として用いられている。一般に、スチレン系樹脂の分子量を高めることで、樹脂の溶融張力を高めることができるが、高分子量であるほど、樹脂の流動性が低下し、成形加工性及び生産性が低下し易かった。
 かかる問題を解消するために、種々の試みが行われている。
 例えば、線状ポリスチレンと多分岐状ポリスチレンとを含有してなるスチレン系樹脂組成物であって、(1)そのGPC-MALS法により求められる重量平均分子量が25万~75万であり、(2)該重量平均分子量を横軸とし、又GPC-MALS法により求められる該樹脂組成物の慣性半径を縦軸とした対数グラフに於ける傾きが0.35~0.45となるスチレン系樹脂組成物が開示されている(例えば、特許文献1参照)。
 スチレン系樹脂の高分子量化以外に、スチレン系樹脂の溶融張力を高める方法として、スチレン系樹脂の分子鎖を分岐状にすることが知られている。しかし、分子鎖を分岐状にするために欠かせない多官能性単量体は、樹脂の合成時にゲル化を招くおそれがある。かかる問題を解消するために、例えば、次の方法が開示されている。すなわち、スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、重量基準で50ppm~5000ppm添加し、水中で懸濁重合を行うことにより、該溶剤可溶性多官能ビニル化合物共重合体と該ビニル系モノマーが重合して生じる高分岐型超高分子量共重合体と該ビニル系モノマーが重合して生じる線状重合体とを含むスチレン系樹脂組成物を製造する方法が開示されている(例えば、特許文献2参照)。
 また、発泡成形品の軽量化と、成形時の生産性を向上し得る発泡用ポリスチレン系樹脂組成物が開示されている。すなわち、多官能ビニル系芳香族化合物とスチレン系単量体由来の成分を基材樹脂として含み、前記多官能ビニル系芳香族化合物が、100以上、1000未満の分子量を有し、前記基材樹脂が、前記スチレン系単量体中に多官能ビニル系芳香族化合物を50~500ppm含む単量体混合物を重合させることにより得られ、
 前記基材樹脂が、(1)測定条件200℃において、以下の関係式を満たすメルトフローレート(MFR:g/10分)と溶融張力値(MT:cN)
MT≧-3×ln(MFR)+12
(2)以下の関係式を満たす0.01rad/sと100rad/sの角周波数ωでの損失正接tanδの比
4≦tanδ(ω=0.01(rad/s))/tanδ(ω=100(rad/s))≦20
を有する発泡用ポリスチレン系樹脂組成物が開示されている(例えば、特許文献3参照)。
 さらに、発泡成形品へのスチレン及びそのオリゴマーの溶出を低減させつつ、成形時の生産性を向上し得る押出発泡用ポリスチレン系樹脂組成物が開示されている。すなわち、(1)分子量分布におけるトップピーク分子量(Mp)が14万~22万;(2)Mp以下の分子量の割合が全体の40~55%;(3)z+1平均分子量が80万~350万;(4)スチレンダイマーとスチレントリマーとからなるオリゴマーの含有量が2000ppm以下;及び(5)スチレンの含有量が1000ppm以下の物性を有する押出発泡用ポリスチレン系樹脂組成物が開示されている(例えば、特許文献4参照)。
特開2005-281405号公報 特開2014-189767号公報 特開2015-193761号公報 特開2015-193764号公報
 しかし、特許文献1~4のいずれに開示されているスチレン系樹脂も、長鎖分岐度が低く、GPC-MALS法により求められる重量平均分子量も数十万と、100万に満たない。そのため、スチレン系樹脂の溶融張力が不十分であると共に、成形加工時の樹脂の分子配向性にも改善の余地があった。また、特許文献3及び4のように、多官能性単量体を用いて長鎖分岐度の高い分岐状スチレン系樹脂を製造しようとすると、流動性が低下するため、成形加工性に優れなかった。また、長鎖分岐度をさらに高めようと重合度を高めると、ゲル化してしまい、得られたスチレン系樹脂が多くのゲル分を含んでしまうという問題点があった。
 本発明は、成形加工性に優れる分岐状スチレン系樹脂を提供することを目的とする。
 また、本発明は、流動性が高く、かつ、溶融張力が高い、分岐構造を有するスチレン系樹脂を製造することができる分岐状スチレン系樹脂の製造方法を提供することを目的とする。
 すなわち、本発明は次のとおりである。
<1> GPC-MALS法により求められる重量平均分子量Mw’が100万以上500万以下であると共に、スチレン1000単位当たりの長鎖分岐度が0.2以上であり、テトラヒドロフラン不溶分が0.1重量%以下(0を含む)であり、分子鎖中に多官能性単量体由来の成分を含まないスチレン系樹脂である。
<2> スチレン1000単位当たりの長鎖分岐度が0.3以上である<1>に記載のスチレン系樹脂である。
<3> GPC-MALS法により求められるZ平均分子量Mz’が300万以上である<1>又は<2>に記載のスチレン系樹脂である。
<4> GPC-MALS法により求められる数平均分子量Mn’に対するZ平均分子量Mz’の比Mz’/Mn’が7以上である<1>~<3>のいずれか1つに記載のスチレン系樹脂である。
<5> スチレンダイマー及びスチレントリマーの合計含有量が0.1重量%以下である<1>~<4>のいずれか1つに記載のスチレン系樹脂である。
<6> 200℃、剪断速度100sec-1における溶融粘度が2100Pa・s以下であると共に、200℃における溶融張力が350mN以上であり、前記溶融粘度に対する前記溶融張力の比(溶融張力/溶融粘度〔mN/(Pa・s)〕)は、0.20以上である<1>~<5>のいずれか1つに記載のスチレン系樹脂である。
<7> スチレン系樹脂を含む核粒子を水性媒体中に分散させる分散工程と、
 前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
 前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
 前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させつつ、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
を含み、
 前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し10~200重量部であり、
 前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50~700重量部であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持するスチレン系樹脂の製造方法である。
<8> 前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し20~200重量部である<7>に記載のスチレン系樹脂の製造方法である。
<9> 前記水性媒体は、30℃における酸素濃度が4mg/L以上である<7>又は<8>に記載のスチレン系樹脂の製造方法である。
<10> 前記分散工程における前記核粒子の平均粒子径が0.3~1.2mmである<7>~<9>のいずれか1つに記載のスチレン系樹脂の製造方法である。
<11> 前記有機過酸化物の10時間半減期温度T1/2が85~120℃であり、前記含浸工程における前記水性媒体の温度が70℃以上(T1/2-15)℃以下であり、前記追加含浸重合工程における前記水性媒体の温度が(T1/2-10)℃以上(T1/2+20)℃以下である<7>~<10>のいずれか1つに記載のスチレン系樹脂の製造方法である。
<12> 前記追加含浸重合工程においてスチレン単量体を連鎖移動剤の存在下で重合させ、重合開始剤の総添加量に対する連鎖移動剤の総添加量の比が0.1~0.6である<7>~<11>のいずれか1つに記載のスチレン系樹脂の製造方法である。
<13> 前記含浸工程において前記核粒子に前記連鎖移動剤を含浸させる<12>に記載のスチレン系樹脂の製造方法である。
<14> 前記連鎖移動剤がα-メチルスチレンダイマーである<12>又は<13>に記載のスチレン系樹脂の製造方法である。
 本明細書において、上記<1>~<6>に係るスチレン系樹脂を本発明の第一の実施形態といい、上記<7>~<14>に係るスチレン系樹脂の製造方法を本発明の第二の実施形態という。
 本発明によれば、成形加工性に優れるスチレン系樹脂を提供することができる。
 また、本発明によれば、流動性が高く、かつ、溶融張力が高い、分岐構造を有するスチレン系樹脂を製造することができるスチレン系樹脂の製造方法を提供することができる。
スチレン系樹脂をGPC-MALS法により測定したときに得られるDebyeプロットの一例である。 実施例1及び5におけるシミュレーション結果のグラフである。 実施例2におけるシミュレーション結果のグラフである。 実施例3におけるシミュレーション結果のグラフである。 実施例4におけるシミュレーション結果のグラフである。 実施例6におけるシミュレーション結果のグラフである。 実施例7及び12におけるシミュレーション結果のグラフである。 実施例8におけるシミュレーション結果のグラフである。 実施例9におけるシミュレーション結果のグラフである。 実施例10におけるシミュレーション結果のグラフである。 実施例11におけるシミュレーション結果のグラフである。 実施例13におけるシミュレーション結果のグラフである。 実施例14におけるシミュレーション結果のグラフである。 実施例15におけるシミュレーション結果のグラフである。 実施例16におけるシミュレーション結果のグラフである。 比較例1におけるシミュレーション結果のグラフである。 比較例2におけるシミュレーション結果のグラフである。
[第一の実施形態]
<スチレン系樹脂>
 本発明の第一の実施形態に係るスチレン系樹脂(以下、「本発明のスチレン系樹脂」とも称する。)は、GPC-MALS法により求められる重量平均分子量Mw’が100万以上500万以下であると共に、スチレン1000単位当たりの長鎖分岐度が0.2以上であるスチレン系樹脂である。さらに、本発明のスチレン系樹脂中のテトラヒドロフラン不溶分の割合は0.1重量%以下(0を含む)である。そして、本発明のスチレン系樹脂は、分子鎖中に多官能性単量体由来の成分を含まない。すなわち、スチレン系樹脂の分子鎖中の多官能性単量体由来の成分の含有量は0重量%である。
 ここで、GPC-MALS法は、ゲルパーミエーションクロマトグラフィ(以下、「GPC」と称することがある)と多角度光散乱検出器(Multi Angle Light Scattering:MALS)とを組み合わせた手法である。GPC-MALS法により、スチレン系樹脂の絶対分子量と分子サイズが測定され、測定結果から、スチレン系樹脂の長鎖分岐度が求められる。
 一般的に、スチレン系樹脂の溶融張力を向上させ、強度を向上させる手段として、樹脂の高分子量化が有用であるが、単純に高分子量化すると、樹脂の流動性が低下し、成形加工性が悪化するという問題があった。樹脂の流動性を維持したまま強度を向上させる手段として、分子鎖に分岐構造を導入することが有用である。分岐構造を有する樹脂は、分子鎖同士の絡み合いの程度が大きくなるため溶融張力が高くなり、延伸加工時に破断しにくくなる。スチレン系樹脂の分子鎖に分岐構造を取り入れる方法として、分岐剤としてジビニルベンゼン等の多官能性単量体の存在下でスチレン単量体の重合を行なう方法がある。
 しかし、従来の分岐構造を有するスチレン系樹脂は、多官能性単量体が重合した部分に分岐点が集中し、ミクロゲルが生成しやすいという問題があった。スチレン系樹脂の分岐構造を増やすために、多官能性単量体の添加量を増加させると、反応系内にて多官能性単量体同士が近接することで、重合中にゲル化が起きやすくなるので、多官能性単量体の添加量が制限されてしまい、樹脂の流動性を維持しながら、溶融張力を一定レベル以上に高めることは困難であった。
 これに対し、本発明のスチレン系樹脂は、高分子量でありながらも、分岐点の数が多く(高分岐度)分岐点間が離れている構造を有することから、高い溶融張力と優れた流動性とを兼ね備えると考えられる。
 本発明のスチレン系樹脂について、GPC-MALS法により分子解析をすると、GPC-MALS法により求められる重量平均分子量Mw’は100万以上500万以下であり、スチレン1000単位当たりの長鎖分岐度は0.2以上である。
 まず、GPC-MALS法の基本原理について説明する。
〔GPC-MALS法の基本原理〕
 スチレン系樹脂を、テトラヒドロフラン等の溶媒に溶解してスチレン系樹脂溶液を調製し、GPC測定にかけると、分子サイズが大きいポリマーほど先に溶出することから、スチレン系樹脂溶液を分子サイズにより分けることができる。引き続き、分けられたスチレン系樹脂溶液をMALS測定にかけることにより、分子サイズにより分けられたスチレン系樹脂の重量平均分子量(Mw’)及び分子サイズに相当する二乗平均回転半径<R >が算出される。
 具体的には、GPC測定で分子サイズにより分けられたスチレン系樹脂溶液に、レーザー光を照射し、レイリー散乱によってスチレン系樹脂溶液から生じた散乱光強度を計測する。得られた測定値から、以下の式(1)及び図1に示すDebyeプロットを用いて重量平均分子量Mw’及び二乗平均回転半径<R >を算出する。
Figure JPOXMLDOC01-appb-M000001
:光学パラメーター(4π (dn/dc)/[λ ])
:溶媒の屈折率
dn/dc:屈折率の濃度増分
λ:真空中での入射光の波長
:アボガドロ数
c:サンプル濃度(g/mL)
R(θ):過剰散乱のレイリー比
Mw’:重量平均分子量(g/mole)
P(θ):干渉因子
P(θ)=(1-2{(4π/λ)sin(θ/2)}<R >/3!+・・・)
λ:測定系における波長 λ/n
<R >:二乗平均回転半径
:第二ビリアル係数
 図1は、樹脂濃度の異なるスチレン系樹脂溶液について、GPC-MALS法で測定をし、縦軸(Y軸)を「Kc/R(θ)」、横軸(X軸)を「sin(θ/2)」としてプロットしたDebyeプロットの一例である。
 Debyeプロットにより得られる回帰直線と縦軸との切片(Y軸切片)から、GPC測定で分子サイズにより分けられたスチレン系樹脂の重量平均分子量Mw’、回帰直線の初期勾配から、該スチレン系樹脂の二乗平均回転半径<R >がそれぞれ求められる。
 GPC測定において、各溶出時間におけるサンプル濃度は非常に希薄であるため、2Acの項を0として解析すると、GPC測定で分子サイズにより分けられたスチレン系樹脂の重量平均分子量Mw’と二乗平均回転半径<R >は、それぞれ、下記式(2)、(3)により求められる。
Figure JPOXMLDOC01-appb-M000002
*c/R:角度θ=0°におけるK*c/R(θ)
dy/dx:回帰直線の初期勾配
 本発明においては、島津製作所社製Prominence LC-20AD(2HGE)/WSシステム、Wyatt Technology社製の多角度光散乱検出器 DAWN HELEOS IIを用いて、Wyatt社の解析ソフト ASTRAにより解析を行い、各分子サイズのスチレン系樹脂の重量平均分子量Mw’及び二乗平均回転半径<R >から、スチレン系樹脂の数平均分子量(Mn’)、重量平均分子量(Mw’)、Z平均分子量(Mz’)、スチレン1000単位あたりの長鎖分岐度が求められる。
 この解析により得られる、数平均分子量Mn’が、本発明における「GPC-MALS法により求められる数平均分子量Mn’」であり、重量平均分子量Mw’が、本発明における「GPC-MALS法により求められる重量平均分子量Mw’」であり、Z平均分子量Mz’が、本発明における「GPC-MALS法により求められるZ平均分子量Mz’」である。
 測定条件は、以下のとおりとすることが好ましい。
溶離液:テトラヒドロフラン(THF)、
流量:1.0ml/min、
カラム:東ソー社製TSKgel HHR-H×1本と、TSKgel GMHHR×2本と、を直列に接続する。
 GPC-MALS法により求められる数平均分子量Mn’、重量平均分子量Mw’、Z平均分子量Mz’は、スチレン系樹脂の絶対分子量である。
 一方、直鎖ポリスチレンを標準物質として、GPC法により求められる数平均分子量Mn、重量平均分子量Mw、Z平均分子量Mzは、スチレン系樹脂の相対分子量である。
 また、本発明において、スチレン系樹脂の収縮因子gは、次のようにして求める値を用いる。
 本発明の分岐構造を有するスチレン系樹脂の二乗平均回転半径<R と直鎖スチレン系樹脂の二乗平均回転半径<R の比を収縮因子gとして、下記式(4)~(8)に基づき、収縮因子gを求めることができる。そして、収縮因子gから、長鎖分岐度Bが求められる。本発明においては、スチレン系樹脂が3本鎖分岐の構造であると仮定して長鎖分岐度を求める。
 収縮因子g、1分子あたりの長鎖分岐度Bm,w、スチレン1000単位あたりの長鎖分岐度Bm,1000は、下記式(4)~(8)で求められる。
Figure JPOXMLDOC01-appb-M000003
 上記式において、gは区間iにおける収縮因子;Bm,iは区間iにおける長鎖分岐度;cは区間iにおけるサンプル濃度である。
〔テトラヒドロフラン不溶分(THF不溶分)〕
 本発明のスチレン系樹脂のテトラヒドロフラン(THF)不溶分は0.1重量%以下(0を含む)である。上述したように、本発明のスチレン系樹脂は、高い分子量を有し、かつ多くの長鎖分岐を有していても、分子鎖中に多官能性単量体に由来する成分を含んでいないため、上記THF不溶分の範囲を達成することができる。スチレン系樹脂中のTHF不溶分の割合は0.05重量%以下であることが好ましく、0.01重量%以下であることがより好ましい。
 スチレン系樹脂中のスチレン系樹脂1gを精秤して、これにテトラヒドロフラン30mlを加え、23℃で24時間浸漬後、5時間振とうし、静置する。次いで上澄みをデカンテーションにより取り除き、再度テトラヒドロフラン10mlを加えて静置し、上澄みをデカンテーションにより取り除き、23℃で24時間乾燥する。乾燥後の重量を求め、次式によりテトラヒドロフラン不溶分を求める。
 テトラヒドロフラン不溶分(%)=[乾燥後の不溶分重量/試料の重量]×100
〔重量平均分子量Mw’〕
 本発明のスチレン系樹脂の重量平均分子量Mw’は100万以上500万以下である。
 重量平均分子量Mw’が100万以上であることで、押出成形、発泡成形、ブロー成形等の成形時において樹脂が破断しにくくなる。重量平均分子量Mw’は、120万以上が好ましく、155万以上がより好ましく、180万以上が更に好ましい。
 また、溶融時の流動性の観点から、重量平均分子量Mw’は300万以下であることが好ましく、250万以下であることがより好ましい。
〔数平均分子量Mn’〕
 本発明のスチレン系樹脂の数平均分子量Mn’は、溶融張力の観点から、30万以上であることが好ましく、50万以上であることがより好ましく、70万以上であることが更に好ましく、85万以上であることが特に好ましく、100万以上であることが更に好ましい。
 また、溶融時の流動性の観点から、数平均分子量Mn’は300万以下であることが好ましく、100万以下であることがより好ましく、90万以下であることが更に好ましい。
〔Z平均分子量Mz’〕
 本発明のスチレン系樹脂のZ平均分子量Mz’は、300万以上であることが好ましく、350万以上であることがより好ましく、500万以上であることが更に好ましく、800万以上であることが特に好ましい。
 また、溶融時の流動性の観点から、Z平均分子量Mz’は1500万以下であることが好ましく、1200万以下であることがより好ましい。
(Z平均分子量Mz’と数平均分子量Mn’との比Mz’/Mn’)
 本発明のスチレン系樹脂のZ平均分子量Mz’と数平均分子量Mn’との比(Mz’/Mn’)は、4以上であることが好ましい。特に、溶融時の高流動性と高溶融張力とを高いレベルで両立するという観点から、Mz’/Mn’は、7以上であることがより好ましく、8以上であることが更に好ましく、10以上であることが特に好ましい。Mz’/Mn’の上限は、25であることが好ましく、20であることがより好ましい。
(重量平均分子量Mw’と数平均分子量Mn’との比Mw’/Mn’)
 本発明のスチレン系樹脂の重量平均分子量Mw’と数平均分子量Mn’との比(Mw’/Mn’)は、1.5~2.0であることが好ましい。
(Z平均分子量Mz’と重量平均分子量Mw’との比Mz’/Mw’)
 本発明のスチレン系樹脂のZ平均分子量Mz’と重量平均分子量Mw’との比(Mz’/Mw’)は、2.0~3.5であることが好ましい。
〔収縮因子g
 本発明のスチレン系樹脂の収縮因子gは、0.80以下であることが好ましく、0.75以下であることがより好ましく、0.70以下であることがさらに好ましく、0.67以下であることが特に更に好ましい。その下限は概ね0.4程度であることが好ましい。
(1分子当たりの長鎖分岐度Bm,w
 本発明のスチレン系樹脂の1分子当たりの長鎖分岐度Bm,wは、4~20であることが好ましく、5~18であることがより好ましい。
(スチレン1000単位当たりの長鎖分岐度Bm,1000
 本発明のスチレン系樹脂のスチレン1000単位当たりの長鎖分岐度Bm,1000は0.2以上であり、好ましくは0.3以上、より好ましくは0.32以上、さらに好ましくは0.35以上、特に好ましくは0.4以上である。その上限は概ね2である。
(重量平均分子量Mwと重量平均分子量Mw’との比Mw/Mw’)
 本発明のスチレン系樹脂は、直鎖ポリスチレンを標準物質として、GPC法により求められる重量平均分子量Mwと、重量平均分子量Mw’との比(Mw/Mw’)が、0.5以下であることが好ましい。
 本発明のスチレン系樹脂は、重量平均分子量Mw’が100万以上500万以下であり、長鎖分岐度Bm,1000が0.2以上であれば、スチレン単量体の単独重合体であっても、スチレン単量体と他の単量体とのスチレン共重合体であってもよい。
 スチレン系樹脂が共重合体である場合、その共重合体に含まれるスチレン単量体に由来する構造単位の割合は少なくとも50重量%以上、好ましくは60重量%以上、より好ましくは80重量%以上である。
 スチレン系樹脂として、具体的には、ポリスチレン、ゴム変性ポリスチレン(耐衝撃性ポリスチレン)、スチレン-アクリロニトリル共重合体、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸メチル共重合体、スチレン-無水マレイン酸共重合体等が例示される。
 本発明のスチレン系樹脂のスチレンダイマー及びスチレントリマーの合計含有量は0.1重量%以下であることが好ましい。
 スチレンダイマー及びスチレントリマー(以下、「スチレンオリゴマー」と称することがある)は、スチレン系樹脂の製造過程で生成され、これらはスチレン系樹脂の分子鎖に取り込まれずに、そのままスチレン系樹脂中に残存することがある。スチレン系樹脂がスチレンオリゴマーを含有していると、発泡成形品からスチレンオリゴマーが抽出されることがあるため、スチレンダイマー及びスチレントリマーの合計含有量は0.1重量%以下であることが好ましい。
 本発明のスチレン系樹脂の200℃、剪断速度100sec-1における溶融粘度は2100Pa・s以下であることが好ましく、2000Pa・s以下であることがより好ましく、1900Pa・s以下であることが更に好ましい。当該溶融粘度の下限は特に制限されないが、1000Pa・s以上であることが好ましい。
 本発明のスチレン系樹脂の200℃における溶融張力は、350mN以上であることが好ましく、400mN以上であることがより好ましく、500mN以上であることが更に好ましく、600mN以上であることが特に好ましい。
 本発明のスチレン系樹脂は、既述のように、重量平均分子量Mw’が100万以上500万以下と高分子量でありながらも、スチレン1000単位当たりの長鎖分岐度が0.2以上であることから、従来の分岐状スチレン系樹脂よりも、分子鎖中に多くの長鎖分岐鎖が存在している。そのため、200℃、剪断速度100sec-1における溶融粘度を2100Pa・s以下とし易く、200℃における溶融張力を350mN以上としやすい。
 前記溶融粘度に対する前記溶融張力の比(溶融張力/溶融粘度〔mN/(Pa・s)〕)は、0.20以上であることが好ましく、0.30以上であることがより好ましく、0.40以上であることがさらに好ましい。
<第一の実施形態に係るスチレン系樹脂の製造方法>
 本発明のスチレン系樹脂を製造する方法は、多官能性単量体を用いずに、GPC-MALS法により求められる重量平均分子量Mw’が100万以上500万以下、スチレン1000単位当たりの長鎖分岐度が0.2以上、さらに、テトラヒドロフラン不溶分の割合が0.1重量%以下(0を含む)となるように製造し得る製造方法であれば、特に制限されず、種々の方法が用いられる。
 従来の分岐構造を有するスチレン系樹脂は、多量の多官能性単量体の存在下でスチレン単量体の重合を行うことにより製造されていた。しかし、このような重合方法では、多官能性単量体が重合した部分が過度に高分子量化し、高分子量側に多くの分岐鎖を有するスチレン系樹脂が得られやすくなるため、分岐構造を導入しても、スチレン系樹脂の溶融張力を一定レベル以上に高めにくい。
 また、より高度に分岐化したスチレン系樹脂を製造するために、多官能性単量体の添加量を多くすると、反応系内にて多官能性単量体同士が近接することで、重合中にゲル化が生じ易くなる。そのため、多官能性単量体の添加量が制限されてしまい、流動性を維持しながら、溶融張力が高いスチレン系樹脂を製造することは難しい。
 以下の方法により、多官能性単量体を使用せずに、分子量が高く、かつ高度な長鎖分岐構造を有するスチレン系樹脂を製造することができる。
 すなわち、本発明の第一の実施形態に係るスチレン系樹脂を製造する方法は、スチレン系樹脂を含む核粒子を水性媒体中に分散させる分散工程と、
 前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
 前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
 前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させて、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
を含み、
 前記含浸工程におけるスチレン単量体の添加量は、前記核粒子とスチレン単量体の総添加量の合計100重量部に対して3~25重量部であり、
 前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子とスチレン単量体の総添加量の合計100重量部に対して50~90重量部であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持することが好ましい。
 上記の製造方法は、得られたスチレン系樹脂を洗浄する工程等の他の工程を、更に含んでいてもよい。
 上記の製造方法は、主として、核粒子を水性媒体中に分散させる分散工程と、核粒子内に重合開始剤及びスチレン単量体を含浸させる含浸工程、スチレン単量体の重合を開始させる重合開始工程と、水性媒体中にスチレン単量体を追加添加して核粒子に含浸させ、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程とを有する。本発明では、追加含浸重合工程で、重合の反応場となる核粒子内におけるスチレン単量体の濃度を特定の濃度に保つことで、多官能性単量体を用いずに、GPC-MALS法により求められる重量平均分子量Mw’が100万以上であると共に、スチレン1000単位当たりの長鎖分岐度が0.2以上であるスチレン系樹脂を得ることができる。
 分散工程では、スチレン系樹脂を含む核粒子を水性媒体中に分散させることが好ましい。
 核粒子の水性媒体中への分散方法は、特に制限されず、例えば、核粒子と共に、水性媒体に懸濁剤と、必要に応じて界面活性剤を添加し、混合すればよい。
 なお、本発明の第一の実施形態に係るスチレン系樹脂は、後述する第二の実施形態に係るスチレン系樹脂の製造方法により、製造することもできる。
[第二の実施形態]
<スチレン系樹脂の製造方法>
 本発明の第二の実施形態に係るスチレン系樹脂の製造方法(以下、「本発明の製造方法」と称することがある)は、スチレン系樹脂を含む核粒子を水性媒体中に分散させる分散工程と、
 前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
 前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
 前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させつつ、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
を含み、
 前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し10~200重量部であり、
 前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50~700重量部であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持する。
 本発明の製造方法は、得られたスチレン系樹脂を洗浄する工程等の他の工程を、更に含んでいてもよい。
 スチレン系樹脂の溶融張力を向上させる手段として、樹脂の高分子量化が有用であるが、単純に高分子量化すると、樹脂の流動性が低下し、成形加工性が悪化するという問題があった。樹脂の溶融時の流動性を維持したまま溶融張力を向上させる手段として、分子鎖に分岐構造を導入することが有用である。分岐構造を有する樹脂は、分子鎖同士の絡み合いの程度が大きくなるため溶融張力が高くなり、延伸加工時に破断しにくくなる。スチレン系樹脂の分子鎖に分岐構造を取り入れる方法として、分岐剤としてジビニルベンゼン等の多官能性単量体の存在下でスチレン単量体の重合を行なう方法がある。しかし、このような重合方法では、多官能性単量体が重合した部分に分岐点が集中し、ミクロゲルが生成しやすいという問題があった。より高度に分岐化したスチレン系樹脂を製造しようとして、多官能性単量体の添加量を多くすると、反応系内にて多官能性単量体同士が近接することで、重合中にゲル化が生じ易くなる。そのため、分岐剤の添加量が制限されてしまい、溶融時の流動性を維持しながら、溶融張力が高いスチレン系樹脂を製造することは困難であった。
 これに対し、本発明の製造方法が上記構成であることで、溶融張力が高く、かつ流動性にも優れるスチレン系樹脂を製造することができる理由は定かではないが、次の理由によるものと推察される。
 本発明の製造方法は、主として、核粒子を水性媒体中に分散させる分散工程と、核粒子内に重合開始剤及びスチレン単量体を含浸させる含浸工程、スチレン単量体の重合を開始させる重合開始工程と、水性媒体中にスチレン単量体を追加添加して核粒子に含浸させ、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程とを有する。本発明の製造方法では、追加含浸重合工程で、重合の反応場となる核粒子内におけるスチレン単量体の濃度を特定の濃度に保つことで、スチレン系樹脂の分岐点の数を多くしつつ(高分岐度)、高分子量化することができ、更に、分岐点間を離すことができるものと考えられる。
 通常、反応場には、重合開始剤と多くのスチレン単量体とが存在し、重合開始剤から生成した開始剤ラジカルやポリマー鎖の生長末端ラジカルは、スチレン単量体のビニル基と優先的に反応するため、直鎖状のスチレン系樹脂が形成され易いと考えられる。
 一方、反応場のスチレン単量体の濃度が低い場合、開始剤ラジカルやポリマー鎖の生長末端ラジカルとスチレン単量体との重合反応だけではなく、開始剤ラジカルによるポリマー鎖の水素引抜反応が生じやすくなると考えられる。その結果、水素引抜反応により発生したポリマー鎖上のラジカルに、スチレン単量体がグラフト重合したり、あるいは、ポリマー鎖の生長末端ラジカルが再結合したりすることで、ポリマー鎖に分岐鎖が生成すると考えられる。さらに、ポリマー鎖に分岐鎖が生成した位置は、立体的に混み合った状況にあることから、生成した分岐点の近くには更なる分岐鎖は生じにくいと考えられる。つまり、立体障害が生じない程度に、分岐点から離れたポリマー鎖上で、再び水素引抜反応が生じ、分岐鎖が生成すると考えられる。そのため、分岐点間が適度に離れながら、分岐鎖を生成するため、ゲル化が生じることなく、多くの分岐鎖を有するスチレン系樹脂が得られるものと考えられる。
 以上により、本発明の製造方法によれば、ゲル化を抑制しつつ、分岐鎖を多く有し、かつ高分子量のスチレン系樹脂を製造できるため、溶融張力が高く、かつ溶融時の流動性が維持されたスチレン系樹脂を製造することができると考えられる。
 以下、製造方法の各工程について詳細に説明する。
〔分散工程〕
 本発明の製造方法における分散工程では、スチレン系樹脂を含む核粒子を水性媒体中に分散させる。
 核粒子の水性媒体中への分散方法は、特に制限されず、例えば、核粒子と共に、水性媒体に懸濁剤と、必要に応じて界面活性剤を添加し、混合すればよい。
(核粒子)
 核粒子は、スチレン系樹脂を含む。
 スチレン系樹脂としては、スチレン単量体の重合体、スチレン単量体と他の単量体との共重合体、及びこれらの2種以上の混合物が挙げられる。その共重合体に含まれるスチレン単量体に由来する構造単位は50重量%以上、好ましくは60重量%以上、より好ましくは80重量%以上である。
 スチレン系樹脂として、具体的には、ポリスチレン、ゴム変性ポリスチレン(耐衝撃性ポリスチレン)、スチレン-アクリロニトリル共重合体、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸メチル共重合体、スチレン-無水マレイン酸共重合体等が例示される。スチレン系樹脂は、1種のみ又は2種以上を組み合わせて用いられてもよい。これらの中でも、水素引抜反応が生じ易く、分岐鎖を生じ易い点から、スチレン系樹脂はポリスチレンであることが好ましい。
 核粒子は、スチレン系樹脂以外の樹脂を含んでいてもよいが、スチレン系樹脂を70重量%以上含んでいることが好ましく、85重量%以上含んでいることがより好ましく、スチレン系樹脂からなることが更に好ましい。
 核粒子の平均粒子径は、0.3~1.2mmであることが好ましい。核粒子の平均粒子径が0.3mm以上であることで、分岐状スチレン系樹脂の製造時に発生し得る細粒の発生量を低減できる。平均粒子径が1.2mm以下であることで核粒子の比表面積が大きくなり核粒子へのスチレン単量体の含浸性が向上する。核粒子の平均粒子径の上限は、1.0mmであることがより好ましく、0.5mmであることが更に好ましい。
 核粒子の平均粒子径は、63%体積平均粒子径を意味する。
(水性媒体)
 水性媒体としては、通常、脱イオン水等の水が用いられるが、核粒子が溶解しない限度において、該水性媒体はアルコール等の水溶性有機溶剤を含んでいてもよい。
(界面活性剤)
 界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤、及びノニオン性界面活性剤が挙げられる。これらの中でも、界面活性剤は、アニオン性界面活性剤、カチオン性界面活性剤、及びノニオン性界面活性剤からなる群より選択される少なくとも1つであることが好ましい。具体的には、界面活性剤としては、アルキルスルホン酸塩(例えば、ドデシルスルホン酸ナトリウム)、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸ナトリウム)、ポリオキシアルキルエーテルリン酸エステル、アルキルジメチルエチルアンモニウムエチルサルフェート、高級アルコール、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、脂肪酸塩等が挙げられる。
 界面活性剤は1種で又は2種以上を組み合わせて用いられてもよい。
 更に、界面活性剤と共に、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、コハク酸ナトリウム等の電解質を用いてもよい。
(懸濁剤)
 懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリビニルピロリドン等の親水性高分子;第三リン酸カルシウム、硝酸マグネシウム、ピロリン酸マグネシウム、ヒドロキシアパタイト、酸化アルミニウム、タルク、カオリン、ベントナイト等の難水溶性無機塩等が挙げられる。
 懸濁剤は1種で又は2種以上組み合わせて用いられてもよい。親水性高分子及び難水溶性無機塩のいずれか一方又は両方を用いてもよい。
 懸濁剤として難水溶性無機塩を使用する場合には、アルキルスルホン酸ナトリウムやアルキルベンゼンスルホン酸ナトリウム等のアニオン性界面活性剤を併用することが好ましい。
 懸濁剤の添加量は、核粒子とスチレン単量体の総添加量の合計100重量部に対して、0.01~5重量部であることが好ましい。難水溶性無機塩からなる懸濁剤とアニオン性界面活性剤とを併用する場合は、核粒子とスチレン単量体の総添加量の合計100重量部に対して、懸濁剤を0.05~3重量部、アニオン性界面活性剤を0.0001~0.5重量部用いることが好ましい。
〔含浸工程〕
 含浸工程では、核粒子が分散している水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で核粒子に重合開始剤及びスチレン単量体を含浸させる。
 ここで、「実質的にスチレン単量体の重合が進行しない温度」とは、有機過酸化物が実質的に分解しない温度である。有機過酸化物の分解を抑制するという観点から、有機過酸化物の10時間半減期温度をT1/2としたとき、含浸工程における水性媒体の温度を(T1/2-15)℃以下とすることが好ましく、(T1/2-18)℃以下とすることがより好ましい。核粒子へのスチレン単量体の含浸性の観点から、含浸工程における水性媒体の温度を70℃以上とすることが好ましく、75℃以上とすることがより好ましい。
 また、含浸工程の水性媒体の温度を前記範囲内で一定としてもよく、徐々に上昇させるなど、変化させてもよい。
 含浸工程の時間は、スチレン単量体と重合開始剤とを核粒子中に十分に含浸させるという観点から、0.5~2.0時間程度であることが好ましく、1.0~2.0時間であることがより好ましい。
 含浸工程において、スチレン単量体の添加量が前記範囲である場合、核粒子を十分に可塑化させることができ、重合開始剤を核粒子に十分に含浸させやすくなると共に、核粒子外でスチレン単量体が重合し細粒が発生することを抑制することができる。
 本発明の製造方法においては、含浸工程におけるスチレン単量体の添加量は、核粒子100重量部に対し、10~200重量部であり、20~200重量部であることが好ましく、30~180重量部であることがより好ましく、40~160重量部であることが更に好ましい。含浸工程において、スチレン単量体の添加量が少なすぎる場合、核粒子を十分に可塑化させることができず、重合開始剤を核粒子に十分に含浸させることができなくなる。一方、スチレン単量体の添加量が多すぎる場合、核粒子外でスチレン単量体が重合し細粒が発生し易くなる。特に、本発明のスチレン系樹脂を製造するためには、含浸工程におけるスチレン単量体の添加量は、核粒子とスチレン単量体の総添加量の合計100重量部に対して、3~25重量部であることが好ましく、5~20重量部であることがより好ましい。
(重合開始剤)
 本発明の製造方法においては、重合開始剤は、有機過酸化物を含む。
 有機過酸化物としては、例えば過酸化ベンゾイル、ジラウロイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-アミルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキシルカーボネート、t-ヘキシルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン等が挙げられる。
 これらの有機過酸化物は1種で又は2種以上組み合わせて用いられてもよい。
 重合開始剤としては、10時間半減期温度T1/2が85~120℃の有機過酸化物を用いることが好ましく、T1/2が90~110℃のものを用いることがより好ましい。なお、2種類以上の有機過酸化物を重合開始剤として用いる場合、10時間半減期温度の最も低い有機過酸化物の10時間半減期温度をT1/2とする。また、有機過酸化物としては、これらの温度範囲を満足し、かつ水素引抜能の高いもの、例えば、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエートなどのt-ブトキシラジカルを生成する有機過酸化物や、ジクミルパーキサイドなどのクミルオキシラジカルを生成する有機過酸化物を用いることがより好ましい。
 重合開始剤は、有機過酸化物以外の重合開始剤を含んでいてもよいが、水素引抜反応を起こし易くする観点から、重合開始剤は、有機過酸化物を70重量%以上含むことが好ましく、85重量%以上含むことがより好ましく、有機過酸化物からなることが更に好ましい。
 重合開始剤の添加量は、核粒子とスチレン単量体の総添加量の合計100重量部に対して0.1~2.0重量部であることが好ましい。この範囲であることで生産性を過度に低くせず、水素引抜反応を起こし易い。重合開始剤の添加量は、核粒子とスチレン単量体の総添加量の合計100重量部に対して、0.2~1.5重量部であることがより好ましい。
(水性媒体中の酸素濃度)
 水性媒体として、30℃における酸素濃度が4mg/L以上の水性媒体を用いることが好ましい。水性媒体の酸素は、水性媒体中での重合禁止剤として機能しており、細粒の発生を阻害する。したがって、水性媒体中の酸素濃度が高いほど、スチレン系樹脂の収率が向上する。30℃における酸素濃度は5mg/L以上であることがより好ましい。
 また、水性媒体に、水溶性の重合禁止剤、例えば亜硝酸ナトリウムを30~200ppm添加することによっても細粒発生を抑制することができる。
〔重合開始工程〕
 本発明の第二の実施形態に係る製造方法における重合開始工程では、重合開始剤とスチレン単量体が含浸された核粒子を分散している水性媒体の温度を昇温し、スチレン単量体の重合を開始させる。具体的には、水性媒体の温度を、有機過酸化物が実質的に分解する温度とすることにより、スチレン単量体の重合を開始させることが好ましい。生産性の観点から、水性媒体の温度を(T1/2-10)℃以上の温度とすることが好ましく、(T1/2-5)℃以上の温度とすることがより好ましい。
 前記温度までの昇温時間は、特に限定されるものではないが、水性媒体の昇温中に核粒子中のスチレン単量体の重合を進め、後述する追加含浸重合工程において核粒子中のスチレン単量体の含有量を10重量%以下に制御しやすいことから、3時間以上であることが好ましく、5時間以上であることがより好ましい。一方、生産性の観点からは、前記温度までの昇温時間は10時間以内であることが好ましい。
〔追加含浸重合工程〕
 本発明の製造方法における追加含浸重合工程では、水性媒体中、すなわち、重合開始工程を経て、核粒子内でスチレン単量体の重合が始まっている核粒子を含む水性媒体中に、スチレン単量体を追加して添加して、核粒子にスチレン単量体を含浸させて重合させる。この際、スチレン単量体の添加量は、追加含浸重合工程において、核粒子100重量部に対し50~700重量部である。そして、追加含浸重合工程における核粒子中のスチレン単量体の含有量(濃度)を10重量%以下に維持するようにスチレン単量体を水性媒体に断続的に又は連続的に添加する。
 本発明のスチレン系樹脂を製造するためには、スチレン単量体の添加量は、追加含浸重合工程において、核粒子とスチレン単量体の総添加量の合計100重量部に対して、50~90重量部であることが好ましく、55~85重量部であることがより好ましい。そして、追加含浸重合工程における核粒子中のスチレン単量体の含有量(濃度)を10重量%以下に維持するようにスチレン単量体を水性媒体に断続的に又は連続的に添加することが好ましい。
 重合開始工程を経ることにより、スチレン単量体が核粒子内を反応場として重合を開始している。そして、追加含浸重合工程において、核粒子中のスチレン単量体の含有量を10重量%以下に維持することで、スチレン単量体同士での重合だけではなく、スチレン系樹脂へのスチレン単量体のグラフト重合が生じやすくなり、グラフト重合により分岐鎖が生成される。
 なお、本発明の目的効果を阻害しない範囲において、追加含浸重合工程における核粒子中のスチレン単量体の含有量は10重量%を超えることができる。核粒子中のスチレン単量体の含有量が10重量%を超える時間は、追加含浸重合工程の時間のうち2割以下であることが好ましく、1割以下であることがより好ましく、追加含浸重合工程全てにおいて核粒子中のスチレン単量体の含有量を10重量%以下とすることが最も好ましい。分岐鎖を高度に生成させるという観点から、追加含浸重合工程の時間は、150分以上であることが好ましく、より好ましくは180分以上である。生産効率の観点から、追加含浸重合工程の時間の上限は600分程度であることが好ましい。
 追加含浸重合工程における核粒子中のスチレン単量体の含有量は8重量%以下であることが好ましく、6重量%以下であることがより好ましい。
 なお、追加含浸重合工程における核粒子中のスチレン単量体の含有量を、重合に用いる重合開始剤の化学的特性、重合温度から求めたスチレンの重合速度等をもとに計算することが可能である。その計算値をもとに所望のスチレン単量体の含有量となるようにスチレン単量体の追加添加のタイミング及び添加速度(添加割合)を調整することにより、追加含浸重合工程における核粒子中のスチレン単量体の含有量を調整することができる。また、重合中の核粒子を反応系から抜き出し、後述する方法により、実際の核粒子中のスチレン単量体の含有量を求めることができる。
 核粒子中のスチレン単量体の含有量が低いほど、重合反応だけではなく水素引抜反応を起こしやすくなり、スチレン系樹脂の分岐度が向上すると考えられる。また、核粒子に対してスチレン単量体の比率が高い場合、スチレン系樹脂の絶対分子量及び分岐度が向上し易い。
 既述のように、核粒子の平均粒子径を1.2mm以下とすることで、核粒子の比表面積が大きくなり、スチレン単量体の含浸性が向上し、分岐が生成されやすくなるものと考えられる。
 追加含浸重合工程の温度条件は特に制限されないが、水素引抜反応を生じ易くする観点から、追加含浸重合工程における水性媒体の温度は、(T1/2-10)℃~(T1/2+20)℃であることが好ましく、(T1/2-5)℃~(T1/2+10)℃であることがより好ましい。
 また、追加含浸重合工程の水性媒体の温度を前記範囲内で一定としてもよく、徐々に上昇させるなど変化させてもよい。
 スチレン単量体の添加量は、追加含浸重合工程において、核粒子100重量部に対し50~700重量部である。追加含浸重合工程においてスチレン単量体の添加量が少なすぎると、十分に分岐鎖を生成させることが難しい。また、スチレン単量体の添加量が多すぎると、核粒子外でスチレン単量体同士が重合しやすくなり、スチレン系樹脂の収率が悪くなるおそれがある。
 スチレン単量体の添加量は、追加含浸重合工程において、核粒子100重量部に対し100~600重量部であることがより好ましく、200~550重量部であることが更に好ましい。
(連鎖移動剤)
 上記追加含浸重合工程においては、重合の反応場となる核粒子内におけるスチレン単量体の濃度を特定の範囲に保ち、連鎖移動剤の存在下でスチレン単量体を重合させることが好ましい。さらに、重合開始剤の総添加量に対する連鎖移動剤の総添加量の比を所定の範囲内に調整することが好ましい。これにより、スチレン系樹脂の分岐点の数をさらに多くして分岐度を高め、高分子量にすることができ、さらに、分岐点間距離を広げて長鎖分岐度を高めることによりゲル化を回避することができ、また、流動性を高めることができると考えられる。
 連鎖移動剤は、重合時の反応場において、ポリマー鎖の生長末端ラジカル、ポリマー鎖上のラジカル、スチレン単量体ラジカル、開始剤ラジカル等のラジカル反応性分子の連鎖移動反応を引き起こす分子である。
 連鎖移動剤としては、例えばα-メチルスチレンダイマー、n-オクチルメルカプタン、t-ノニルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、フェニルチオール、シクロヘキサンチオール、4,4’-チオビスベンゼンチオール、トリメチロールプロパントリス(3-メルカプトプロピオナート)、ペンタエリトリトールテトラキス(3-メルカプトプロピオナート)、4-メチルベンゼンチオール、3-メルカプトプロピオン酸イソオクチル、1,8-ジメルカプト-3,6-ジオキサオクタン、ブロモトリクロロメタン、四塩化炭素、1,4-ナフトキノン、2,4-ジフェニル-4-メチル-1-ペンテン、ペンタフェニルエタン等が用いられる。臭気が少なく、着色のないスチレン系樹脂を得ることができるため、連鎖移動剤としてα-メチルスチレンダイマーを用いることが好ましい。
 上述したように、通常、スチレン単量体の重合時の反応場には、重合開始剤と多くのスチレン単量体とが存在し、重合開始剤から生成した開始剤ラジカルやポリマー鎖の生長末端ラジカルは、スチレン単量体のビニル基と優先的に反応するため、直鎖状のスチレン系樹脂が形成され易いと考えられる。一方、上記追加含浸重合工程のように反応場のスチレン単量体の濃度が低い場合、相対的にポリマー鎖が多くなることになるため、開始剤ラジカルやポリマー鎖の生長末端ラジカルとスチレン単量体との重合反応だけではなく、開始剤ラジカルによるポリマー鎖の水素引抜反応が生じやすくなると考えられる。その結果、水素引抜反応によりポリマー鎖上にラジカルが発生し、このポリマー鎖上のラジカルにスチレン単量体がグラフト重合したり、あるいは、ポリマー鎖の生長末端ラジカルが再結合したりすることで、ポリマー鎖に分岐鎖が生成すると考えられる。
 ポリマー鎖に分岐鎖が生成した位置は、立体的に混み合った状況にあることから、生成した分岐点の近くには更なる分岐鎖は生じにくいと考えられる。つまり、立体障害が生じない程度に、分岐点から離れたポリマー鎖上で、再び水素引抜反応が生じ、分岐鎖が生成すると考えられる。したがって、分岐点間が適度に離れながら、分岐鎖が生成するため、ゲル化が生じることなく、多くの分岐鎖を有するスチレン系樹脂が得られるものと考えられる。
 多くの分岐鎖を生成させるためには、追加含浸重合工程中の重合系内のラジカル濃度を高めて、ポリマー鎖上で水素引抜反応の発生頻度を増やす必要がある。しかし、重合開始剤添加量を増やすこと、追加含浸重合工程における水性媒体の温度を高めて重合開始剤の分解を促進させること等により、反応性の高い開始剤ラジカル濃度を高めてしまうと、ポリマー鎖の開裂反応等の望ましくない副反応が起きやすくなり、所望の分岐構造を有するスチレン系樹脂を得ることが難しい。
 一方、ラジカル重合において、連鎖移動剤は、ポリマー鎖の分子量を低く調整するために用いられ、通常、高分子量のポリマー鎖を合成するために用いられることはない。しかし、本発明者らは、重合開始剤の総添加量に対する連鎖移動剤の総添加量の比を所定の範囲内に調整することで、分子量低下を起こさず、逆に分岐度が高く、高分子量のスチレン系樹脂が生成されることを見出した。
 上記の理由は、核粒子中のスチレン単量体の濃度が特定の範囲内において、重合開始剤の総添加量に対する連鎖移動剤の総添加量の比を所定の範囲内に調整することで、開始剤ラジカルのような反応性の高いラジカルの一部が、連鎖移動反応により反応性が適度に低いラジカルに置き換わることで、ポリマー鎖の開裂反応などの副反応を抑制しつつ、ポリマー鎖の水素引抜反応により、分岐度が高く、高分子量のスチレン系樹脂が生成されるためと考えられる。
 また、本来、連鎖移動剤は、低分子量ポリマーを生成させるので、分岐鎖の生成に関与しなかった一部の連鎖移動剤により、分子量の小さいスチレン系樹脂も生成すると考えられる。その結果、水素引抜反応により生成した分岐度が高く高分子量のスチレン系樹脂と連鎖移動反応により生成した低分子量のスチレン系樹脂とが同時に生成されるため、スチレン系樹脂の分子量分布が広がり、高い溶融張力と高い流動性とを兼ね備えた、分岐鎖を有するスチレン系樹脂を製造することができると考えられる。
 連鎖移動剤は、追加含浸重合工程においてスチレン単量体と共に存在していればよい。高溶融張力を維持しつつ流動性をより高めるという観点から、重合開始剤の総添加量Miに対する連鎖移動剤の総添加量Mtの比(つまり、Mt/Mi)を0.1~0.6とすることが好ましい。Mt/Miの下限は0.12であることがより好ましく、0.15であることがさらに好ましい。一方、Mt/Miの上限は0.5であることが好ましく、0.4であることがより好ましい。
 連鎖移動剤の添加方法は、限定されるものではないが、添加方法として例えば下記の(I)~(IV)が挙げられる。連鎖移動剤は、(I)~(IV)のうちの少なくとも1つの方法により添加される。
(I)分散工程前に核粒子に連鎖移動剤を含有させておく方法。
(II)含浸工程において、核粒子に連鎖移動剤を含浸させる方法。
(III)重合開始工程において核粒子に連鎖移動剤を含浸させる方法。
(IV)追加含浸重合工程において核粒子に連鎖移動剤を含浸させる方法。
 (I)の場合においては、核粒子を水性媒体に添加する前に核粒子中に連鎖移動剤を含有させることができる。具体的には、スチレン系樹脂と連鎖移動剤とを配合し、造粒により核粒子を製造する。これにより、連鎖移動剤を含有する核粒子が得られる。
 (II)の場合においては、含浸工程において核粒子に連鎖移動剤を含浸させることができる。連鎖移動剤は、含浸工程において、水性媒体中に添加することにより、核粒子に含浸させることができる。連鎖移動剤は、スチレン単量体や重合開始剤と同じタイミングで水性媒体中に添加してもよいし、異なるタイミングで添加してもよい。スチレン単量体、重合開始剤と共に、連鎖移動剤を水性媒体中に添加することが好ましい。この場合には、含浸工程において、連鎖移動剤が、スチレン単量体や重合開始剤と共に、核粒子中に十分に分散される。したがって、重合開始工程や追加含浸重合工程において、ポリマー鎖の開裂反応などの副反応抑制とポリマー鎖の水素引抜反応発生を両立させることができ、スチレン系樹脂の長鎖分岐度を十分に高めることができる。
 (III)の場合においては、重合開始工程において核粒子に連鎖移動剤を含浸させることができる。水性媒体へ連鎖移動剤を添加するタイミングは、水性媒体の昇温中でも昇温後であってもよい。
 (IV)の場合においては、追加含浸重合工程において核粒子に連鎖移動剤を含浸させることができる。具体的には、重合開始工程後に、水性媒体中にスチレン単量体を追加添加しつつ、核粒子中のスチレン単量体の含有量を10重量%以下にしながら、核粒子に連鎖移動剤を含浸させることができる。連鎖移動剤を水性媒体中に添加するタイミングは、本発明の目的、効果を損ねない限り特に限定されず、例えば追加含浸重合工程の初期に連鎖移動剤をまとめて添加してもよいし、所定の添加速度で添加してもよい。また、添加速度は、例えば徐々に低下させるなどのように変化させてもよい。追加含浸重合工程において、連鎖移動剤を水性媒体中に添加する場合には、例えばスチレン単量体と連鎖移動剤とを混合して添加させることが好ましい。
 (I)~(IV)の中でも、(II)のように含浸工程において核粒子に連鎖移動剤を含浸させることが好ましい。この場合には、重合開始工程前に、核粒子中において重合開始剤の近くに連鎖移動剤を存在させることができるため、重合開始工程あるいは追加含浸重合工程において発生する反応性の高いラジカルの一部を、ポリマー鎖の開裂反応などの副反応を起こす前に、連鎖移動反応により反応性の適度に低いラジカルに置き換えることができる。その結果、より分子量分布が広く、より分岐度の高い、溶融張力と高い流動性とを高い次元で兼ね備えた、分岐鎖を有するスチレン系樹脂を得ることができる。
 本発明の製造方法は、多官能性単量体(分岐化剤)を用いずに、高分岐度のスチレン系樹脂を得ることができる方法であるが、重合時のゲル化が生じない限度において、水性媒体に多官能性単量体を添加してもよい。水性媒体中への多官能性単量体の添加量は、核粒子とスチレン系単量体との合計100重量部に対して0.2重量部以下であることが好ましく、0.1重量部以下であることがより好ましく、0.005質量部であることが更に好ましく、0重量部であることが特に好ましい。すなわち、多官能性単量体は用いないことが特に好ましい。多官能性単量体を用いないことによって、より分岐度の高いスチレン系樹脂を得ることができる。
 追加含浸重合工程に加え、上記の製造方法は、更に、追加含浸重合工程後にスチレン系樹脂粒子中に残存するスチレン単量体を重合させる残重合工程、得られたスチレン系樹脂に付着した懸濁剤、界面活性剤等を水等で洗浄する洗浄工程、スチレン系樹脂表面に帯電防止剤等の機能性成分を被覆する被覆工程等を含んでいてもよい。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。「部」及び「%」は、特に記載しない限り重量基準である。オートクレーブ内の温度は、水性媒体の温度を意味する。
〔核粒子の作製〕
(製造例1)
 撹拌装置を備えた内容積が1mのオートクレーブに、脱イオン水350kg、懸濁剤として第三リン酸カルシウム(太平化学産業社製、20.5%スラリー)2.1kg、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(10%水溶液)0.158kg、ドデシルジフェニルエーテルスルホン酸二ナトリウム(花王社製、ペレックスSSH 10%水溶液)0.053kg、電解質として酢酸ナトリウム0.535kgを供給した。
 ついで、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート0.975kg(日油社製、パーブチルO)及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート0.284kg(化薬アクゾ社製、トリゴノックス117)、重合禁止剤として4-tert-ブチルカテコール15.4gを、スチレン390kgに溶解させ、110rpmで撹拌しながら、これをオートクレーブ内に供給した。オートクレーブ内を窒素置換した後、オートクレーブ内の昇温を開始し、1時間15分かけて90℃まで昇温した。オートクレーブ内の温度を90℃まで昇温中、60℃に到達した時点で、懸濁助剤として過硫酸カリウム1.95gをオートクレーブ内に投入した。
 オートクレーブ内の温度が90℃到達後、100℃まで5時間かけて昇温した。オートクレーブ内の温度が100℃到達後、1時間30分かけて115℃まで昇温した。オートクレーブ内の温度を115℃で2時間40分保持し、その後40℃まで2時間かけて冷却した。
 オートクレーブ内を冷却後、オートクレーブ内から取り出したスチレン系樹脂粒子の表面に付着した第三リン酸カルシウムを硝酸により溶解させた後、粒子を水で洗浄し、遠心分離機で脱水し、さらに気流乾燥装置で粒子の表面に付着した水分を除去して、スチレン系樹脂粒子を得た。
 得られたスチレン系樹脂粒子を篩にかけて、直径が0.5~1.3mmの粒子(平均粒子径0.8mm)を取り出し、核粒子1とした。
 なお、日機装株式会社の粒度分布測定装置「ミリトラック JPA」によりスチレン系樹脂粒子(前記核粒子1、後述する核粒子2)の平均粒子径d63を測定した。
(製造例2)
 撹拌装置を備えた内容積が1mのオートクレーブに、脱イオン水380kg、懸濁剤として第三リン酸カルシウム(太平化学産業社製、20.5%スラリー)6.15kg、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(10%水溶液)0.499kg、ドデシルジフェニルエーテルスルホン酸二ナトリウム(花王社製、ペレックスSSH 10%水溶液)0.166kg、懸濁助剤として過硫酸カリウム4gを供給した。
 次いで、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート0.440kg(日油社製、パーブチルO)及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート0.520kg(化薬アクゾ社製、トリゴノックス117)をスチレン360kgに溶解させ、110rpmで撹拌しながら、これをオートクレーブに供給した。オートクレーブ内を窒素置換した後、オートクレーブ内の昇温を開始し、1時間15分かけて90℃まで昇温した。
 オートクレーブ内の温度が90℃到達後、120℃まで6時間かけて昇温し、120℃で3時間保持し、40℃まで3時間かけて冷却した。
 オートクレーブ内を冷却後、オートクレーブ内から取り出したスチレン系樹脂粒子の表面に付着した第三リン酸カルシウムを硝酸により溶解させた後、粒子を水で洗浄し、遠心分離機で脱水し、さらに気流乾燥装置で粒子の表面に付着した水分を除去して、スチレン系樹脂粒子を得た。
 得られたスチレン系樹脂粒子を篩にかけて、直径が0.3~0.5mmの粒子(平均粒子径0.4mm)を取り出し、核粒子2とした。
〔スチレン系樹脂の製造〕
(実施例1)
[分散工程]
 撹拌装置を備えた内容積が1.5mのオートクレーブに、脱イオン水421kg、ピロリン酸ナトリウム2.63kg、硝酸マグネシウム6.56kgを供給し、塩交換によりオートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。界面活性剤としてアルキルスルホン酸ナトリウム(花王社製、ラテムルPS、40%水溶液)0.131kg、核粒子として製造例1で得られたスチレン系樹脂粒子(核粒子1)112kgをオートクレーブに供給した後、オートクレーブ内を窒素置換した。具体的には窒素によりオートクレーブ内を0.3MPa(G)まで加圧し、その後オートクレーブ内の圧力が大気圧になるまでオートクレーブ内の気体を放出した。
[含浸工程]
 次いで、オートクレーブ内の水性媒体を50rpmで撹拌しながら、80℃まで昇温した。オートクレーブ内の水性媒体の温度が80℃に到達後、後述する乳化液をオートクレーブ内に供給した。その後、オートクレーブ内を0.1MPa(G)になるまで窒素で加圧し、80℃で1時間保持した。
 乳化液は、脱イオン水84kg、アルキルスルホン酸ナトリウム(花王社製、ラテムルPS、40%水溶液)0.171kg、スチレン(スチレン単量体)80kg、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(化薬アクゾ社製、トリゴノックス117;表中は「BE」と記載、10時間半減期温度T1/299.0℃)1.58kgの混合物をホモジナイザーにより調製して得られた。
[重合開始工程]
 その後、オートクレーブ内の温度を2時間かけて105℃まで昇温した。
[追加含浸重合工程]
 オートクレーブ内の温度が105℃到達後、該温度で5.5時間保持した。オートクレーブ内の温度が105℃に到達時から5時間10分かけて、スチレン(スチレン単量体)254kgを0.8kg/分の割合でオートクレーブ内に連続的に添加した。
 なお、スチレンの添加に当たっては、上記添加条件、重合に用いた重合開始剤の化学的特性、及び重合温度から計算したスチレンの重合速度をもとに、シミュレーションにより経過時間に対する核粒子中のスチレン含有量変化と温度変化を確認し、そのシミュレーションに基づき、スチレンの添加中の核粒子中のスチレン含有量が10重量%以下となるようにスチレンをオートクレーブ内に追加添加した。
 スチレンの追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法(「追加含浸重合工程中のスチレン単量体添加中の核粒子中のスチレン含有量の測定方法」)によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量はいずれも6重量%であった。
 図2~17に、実施例及び比較例におけるシミュレーション結果のグラフを示した。グラフは、横軸に経過時間〔Time(hr)〕、左側の縦軸に追加含浸重合工程における核粒子中のスチレン単量体の含有量〔Amount of Styrene monomer in a core particle (wt.%)〕、右側の縦軸に重合温度〔Temperature(℃)〕をとった。グラフ中、経過時間に対する核粒子中のスチレン含有量変化を実線で示し、経過時間に対する重合温度変化を破線で示した。
[残重合工程]
 追加含浸重合工程後、オートクレーブ内の水性媒体を120℃まで2時間かけて昇温し、120℃で3時間保持することで未反応のスチレン単量体を重合させた。
[冷却工程]
 残重合工程後、6時間かけてオートクレーブ内の水性媒体を35℃まで冷却した。
 オートクレーブ内を冷却後、オートクレーブから取り出したスチレン系樹脂粒子を希硝酸で洗浄して樹脂粒子表面に付着した懸濁剤を溶解除去した後、水洗を行い、さらに遠心分離機で脱水した。帯電防止剤としてのポリオキシエチレンラウリルエーテル0.01重量部(スチレン系樹脂100重量部に対する値)で被覆後、流動乾燥(室温空気、10分間)により樹脂粒子表面の水分を除去した。
(実施例2)
 実施例1とは、以下の点を変更した。具体的には、核粒子を、核粒子1から製造例2で得られたスチレン系樹脂粒子(核粒子2)66.9kgに変更した。また、追加含浸重合工程において、オートクレーブ内の温度105℃での保持時間を6時間10分に変更し、追加添加するスチレンの量を299kgに変更し、スチレンを6時間10分かけて0.8kg/分の割合でオートクレーブ内に連続的に添加した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は10重量%、添加開始から2.5時間経過時及び追加添加終了時は6重量%であった。
(実施例3)
 含浸工程後、オートクレーブ内の温度を80℃から2時間かけて100℃に昇温し、追加含浸重合工程の温度を100℃に変更したことを除いては実施例1と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は10重量%、添加開始から2.5時間経過時は9重量%、追加添加終了時は8重量%であった。
(実施例4)
 実施例1とは、以下の点を変更した。具体的には、分散工程において、核粒子(核粒子1)の供給量を183kgに変更した。また、追加含浸重合工程において、オートクレーブ内の温度105℃での保持時間を3時間に変更し、追加添加するスチレンの量を103kgに変更し、スチレンを3時間かけて0.8kg/分の割合でオートクレーブ内に連続的に添加した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は3重量%、添加開始から2.5時間経過時及び追加添加終了時は5重量%であった。
(実施例5)
 実施例1とは、以下の点を変更した。分散工程において、昇温前にオートクレーブ内の空気を窒素にて置換する際、窒素によりオートクレーブ内を0.5MPa(G)まで加圧し、オートクレーブ内の圧力が大気圧になるまでオートクレーブ内の気体を放出する操作を3回繰り返した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量はいずれも6重量%であった。
(実施例6)
 実施例1とは、以下の点を変更した。具体的には、核粒子(核粒子1)の供給量を67kgに変更した。また、追加含浸重合工程において、オートクレーブ内の温度105℃での保持時間を6時間30分に変更し、追加添加するスチレンの量を299kgに変更し、スチレンを6時間10分かけて0.8kg/分の割合でオートクレーブ内に連続的添加にした。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は10重量%、添加開始から2.5時間経過時及び追加添加終了時は6重量%であった。
(実施例7)
[分散工程]
 撹拌装置を備えた内容積が1.5mのオートクレーブに、脱イオン水410kg、ピロリン酸ナトリウム2.56kg、硝酸マグネシウム6.39kgを供給し、塩交換によりオートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。界面活性剤としてアルキルスルホン酸ナトリウム(花王社製、ラテムルPS、40%水溶液)0.128kg、核粒子として製造例1で得られたスチレン系樹脂粒子(核粒子1)78.2kgをオートクレーブに供給した後、オートクレーブ内の気相部を窒素置換した。具体的には窒素によりオートクレーブ内を0.3MPa(G)まで加圧し、その後オートクレーブ内の圧力が大気圧になるまでオートクレーブ内の気体を放出した。
[含浸工程]
 次いで、オートクレーブ内の水性媒体を50rpmで撹拌しながら、80℃まで昇温した。オートクレーブ内の温度が80℃に到達後、オートクレーブ内の水性媒体の撹拌回転数を100rpmに変更し、後述する乳化液をオートクレーブ内に供給した。その後、オートクレーブ内を0.1MPa(G)になるまで窒素で加圧し、80℃で15分保持した。
 乳化液は、脱イオン水82kg、アルキルスルホン酸ナトリウム(花王社製、ラテムルPS、40%水溶液)0.166kg、スチレン(スチレン単量体)27.6kg、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(日油社製、パーブチルE;BE、10時間半減期温度T1/299.0℃)1.54kg、連鎖移動剤としてα-メチルスチレンダイマー(日油株式会社製、ノフマーMSD;表中は「α-MSD」と記載)0.22kgの混合物をホモジナイザーにより調製して得られた。
[重合開始工程]
 その後、オートクレーブ内の水性媒体を100rpmで撹拌しながら、1時間かけて105℃まで昇温した。
[追加含浸重合工程]
 オートクレーブ内の温度が105℃到達後、オートクレーブ内の水性媒体を100rpmで撹拌しながら、7時間30分保持した。オートクレーブ内の温度が105℃に到達時から7時間30分かけて、スチレン(スチレン単量体)354.3kgを0.87kg/分の割合でオートクレーブ内に連続的に添加した。なお、スチレンの添加に当たっては、上記添加条件、重合に用いた重合開始剤の化学的特性、及び重合温度から計算したスチレンの重合速度をもとにシミュレーションを行い、スチレンの添加中の核粒子中のスチレン含有量が10重量%以下となるようにスチレンをオートクレーブ内に追加添加した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は5重量%、添加開始から3時間経過時は7重量%、追加添加終了時は6重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、6.3重量%であった。
[残重合工程]
 追加含浸重合工程後、オートクレーブ内の水性媒体を100rpmで撹拌しながら、水性媒体を120℃まで2時間かけて昇温し、120℃で3時間保持することで未反応のスチレン単量体を重合させた。
[冷却工程]
 残留モノマー重合工程後、オートクレーブ内の水性媒体を100rpmで撹拌しながら、6時間かけて水性媒体を35℃まで冷却した。オートクレーブ内を冷却後、オートクレーブから取り出したスチレン系樹脂粒子を希硝酸で洗浄して樹脂粒子表面に付着した懸濁剤を溶解除去した後、水洗を行い、さらに遠心分離機で脱水した。帯電防止剤としてのポリオキシエチレンラウリルエーテル0.01重量部(スチレン系樹脂100重量部に対する値)で被覆後、気流乾燥機により樹脂粒子表面の水分を除去した。
(実施例8)
 重合開始剤の量を1.54kgから2.43kg、連鎖移動剤の量を0.22kgから0.88kgに変更した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は3重量%、添加開始から3時間経過時は6重量%、追加添加終了時は5重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、4.5重量%であった。
(実施例9)
 重合開始剤の量を1.54kgから3.06kg、連鎖移動剤の量を0.22kgから1.15kgに変更した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は2重量%、添加開始から3時間経過時は5重量%、追加添加終了時は4重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、3.9重量%であった。
(実施例10)
 重合開始剤をt-ヘキシルパーオキシベンゾエート(日油社製、パーヘキシルZ;表中は「HZ」と記載、10時間半減期温度T1/2:99.4℃)1.62kg、連鎖移動剤の量を0.22kgから0.88kgに変更した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は5重量%、添加開始から3時間経過時は7重量%、追加添加終了時は6重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、6.2重量%であった。
(実施例11)
 重合開始剤をt-ヘキシルパーオキシベンゾエート(日油社製、パーブチルZ;表中は「TBPB」と記載、10時間半減期温度T1/2:104.3℃)1.62kg、連鎖移動剤の量を0.22kgから0.88kg、追加含浸重合工程におけるオートクレーブ内の温度を105℃から110℃に変更した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は5重量%、添加開始から3時間経過時は6重量%、追加添加終了時は5重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、5.1重量%であった。
(実施例12)
 含浸工程において、スチレン単量体及び重合開始剤に分岐化剤(多官能性単量体)としてジビニルベンゼン(表中は「DVB」と記載)11gを混合した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は5重量%、添加開始から3時間経過時は7重量%、追加添加終了時は6重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、6.3重量%であった。なお、実施例12は、本発明の第2の実施形態の製造方法のみの実施例である。
(実施例13)
 核粒子(核粒子1)の量を78.2kgから55.2kg、含浸工程におけるスチレン単量体の量を27.6kgから22.1kg、追加含浸重合工程におけるスチレン単量体の量を354.3kgから382.8kgに変更した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は4重量%、添加開始から3時間経過時は8重量%、追加添加終了時は6重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、6.0重量%であった。
(実施例14)
 核粒子(核粒子1)の量を78.2kgから105.8kg、含浸工程におけるスチレン単量体の量を27.6kgから41.4kg、追加含浸重合工程におけるスチレン単量体の量を354.3kgから312.9kgに変更した以外は実施例7と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は8重量%、添加開始から3時間経過時及び追加添加終了時は6重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、6.7重量%であった。
(実施例15)
 連鎖移動剤の種類をα-メチルスチレンダイマーからn-オクチルメルカプタン(花王社製、チオカルコール08;表中は「n-OM」と記載)に変更した以外は実施例9と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から3時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は5重量%、添加開始から3時間経過時は7重量%、追加添加終了時は6重量%であった。また、スチレン単量体の追加添加開始時、添加開始から3時間経過時及び追加添加終了時の核粒子中のスチレン含有量の算術平均を求めたところ、6.3重量%であった。
(実施例16)
 実施例1とは、以下の点を変更した。具体的には、分散工程において、核粒子(核粒子1)の供給量を55.6kgに変更した。含浸工程において、スチレンの量を26.8kgに変更し、重合開始剤をt-ヘキシルパーオキシベンゾエート(日油社製、パーヘキシルZ;HZ、10時間半減期温度T1/299.4℃)6.3kgに変更した。追加含浸重合工程において、オートクレーブ内の105℃での保持時間を8時間12分に変更し、追加添加するスチレンの量を366kgに変更した。
(実施例17)
 重合開始剤の量を6.3kgから4.75kgに変更した以外は実施例16と同様にスチレン系樹脂を作製した。
(比較例1)
 含浸工程後、オートクレーブ内の温度を80℃から2時間かけて90℃に昇温し、追加含浸重合工程の温度を90℃に変更したことを除いては実施例1と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は19重量%、添加開始から2.5時間経過時は25重量%、追加添加終了時は24重量%であった。
(比較例2)
 実施例1とは、以下の点を変更した。具体的には、分散工程において、核粒子(核粒子1)の供給量を105kgに変更した。含浸工程におけるオートクレーブ内の温度を75℃に変更した。75℃に到達後にオートクレーブ内に供給する乳化液について、スチレンの量を53kgに変更し、重合開始剤を過酸化ベンゾイル(日本油脂社製 ナイパーBW、水希釈粉体品;表中は「BPO」と記載、10時間半減期温度73.6℃)1.79kg、及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(化薬アクゾ社、トリゴノックス117、10時間半減期温度99.0℃)0.18kgに変更し、分岐剤(多官能性単量体)としてジビニルベンゼン11gを添加した。75℃のオートクレーブ内に乳化液を供給した後、オートクレーブ内の温度を75℃で2時間保持した。オートクレーブ内の温度を75℃で2時間保持した後、温度はそのままにして2時間30分かけてスチレン321kgとジビニルベンゼン89gの混合物を2.1kg/分の割合でオートクレーブ内に連続的に添加した。スチレン単量体の追加添加開始時、添加開始から1.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は8重量%、添加開始から1.5時間経過時は58重量%、追加添加終了時は66重量%であった。次いで、オートクレーブ内の温度を2時間かけて108℃まで昇温し、20分かけて112℃まで昇温し、2時間かけて125℃まで昇温した。その後、オートクレーブ内の温度を125℃で1時間30分保持し、6時間かけて35℃まで冷却した。
(比較例3)
 スチレン系樹脂として、市販品(DIC社製ポリスチレン「HP780AN」)を用いて評価を行なった。
(比較例4)
 スチレン系樹脂として、市販品(PSジャパン製ポリスチレン「G0002」)を用いて評価を行なった。
<評価>
 下記方法にて実施例及び比較例のスチレン系樹脂の物性を測定した。結果を表1~4に示す。
〔残存スチレン単量体(残留モノマー)の測定〕
 スチレン系樹脂1gを精秤し、N,N-ジメチルホルムアミド(DMF)25mlに溶解させ、ガスクロマトグラフィー(GC)で測定し、検量線で校正して、残存スチレンを定量した。なお、ガスクロマトグラフィーの測定条件は次の通りとした。
使用機器:島津製作所社製ガスクロマトグラフGC-9A
カラム充填剤:
 〔液相名〕PEG-20M
 〔液相含浸率〕25重量%
 〔担体粒度〕60/80メッシュ
 〔担体処理方法〕AW-DMCS(水洗、焼成、酸処理、シラン処理)
カラム材質:内径3mm、長さ3000mmのガラスカラム
キャリアガス:N
検出器:FID(水素炎イオン化検出器)
定量:内部標準法
〔残存スチレンオリゴマー(スチレンダイマー+スチレントリマー;残留オリゴマー)の測定〕
 スチレン系樹脂約0.1gを精秤し、テトラヒドロフラン10mlに溶解させ、23℃のn-ヘプタン約250ml中に滴下して樹脂を析出させた。樹脂を濾別した濾液をガスクロマトグラフ質量分析計で測定した。なお、ガスクロマトグラフ質量分析の測定条件は次の通りとした。
使用機器:島津製作所社製ガスクロマトグラフ質量分析計GC/MS-QP5050A
カラム:J&W Scientific社製DB-5MS、0.25mm×30m(固定相:5%ジフェニル-95%ジメチル-ポリシロキサン)
キャリアガス:ヘリウム、カラム流量1.6ml/min
試料注入量:1μL
〔水性媒体中の酸素濃度測定〕
 ハンディタイプ溶存酸素計DO-110(ニッコー・ハンセン社製)により昇温直前の30℃の水性媒体中の酸素濃度を測定した。
〔スチレン系樹脂のメルトフローレート測定〕
 JIS K7210-1:2014に基づき、温度190℃、荷重2.16kgの条件でスチレン系樹脂のメルトフローレート(MFR)を測定した。
〔溶融粘度の測定〕
 東洋精機社製キャピログラフ1Dにより、200℃、せん断速度100sec-1におけるスチレン系樹脂の溶融粘度を測定した。測定には内径1mm、長さ10mmのオリフィスを用いた。得られたスチレン系樹脂から無作為に採取した5つの測定用試料に対して溶融粘度の測定を行い、それらの測定値の算術平均値をスチレン系樹脂の溶融粘度とした。
〔溶融張力(MT;Melt Tension)の測定〕
 東洋精機社製キャピログラフ1Dにより、200℃におけるスチレン系樹脂の溶融張力を測定した。測定には内径2.095mm、長さ8mmのオリフィスを用いた。ピストン降下速度10mm/分にてオリフィスからストランド状に押出された溶融状態の樹脂を、荷重測定部を通して引取り速度5m/分にて引取り、荷重を測定した。なお、得られたスチレン系樹脂を均質化するために、東洋精機社製ラボプラストミルを用いて行い、スクリュー回転数50rpm、樹脂温度200℃の条件で混練したものを測定用試料として用いた。なお、スチレン系樹脂の溶融張力が高すぎて単体では溶融張力が測定できない場合には、得られたスチレン系樹脂にPSジャパン製ポリスチレン「680」をそれぞれ75重量%、50重量%の割合で混練したスチレン系樹脂組成物を測定用試料として用いてそれらの溶融張力を測定し、外挿することにより「680」の配合量が0重量%のときの溶融張力を求め、その値をスチレン系樹脂の溶融張力とした。
〔テトラヒドロフラン不溶分(THF不溶分)〕
 スチレン系樹脂1gを精秤して、テトラヒドロフラン30mlを加え、23℃で24時間浸漬後、5時間振とうし、静置した。次いで上澄みをデカンテーションにより取り除き、再度テトラヒドロフラン10mlを加えて静置し、上澄みをデカンテーションにより取り除き、23℃で24時間乾燥し、乾燥後の重量を求め次式によりテトラヒドロフラン不溶分を求めた。
 テトラヒドロフラン不溶分(%)=[乾燥後の不溶分重量/試料の重量]×100
〔GPC法によるポリスチレン換算分子量〕
 直鎖ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィ(GPC)法により、スチレン系樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)を測定した。具体的には、東ソー社製のHLC-8320GPC EcoSECを用いて、溶離液:テトラヒドロフラン(THF)、流量:0.6ml/分、試料濃度:0.1wt%という条件で測定した。カラムとしては、TSKguardcolumn SuperH-H×1本、TSK-GEL SuperHM-H×2本を直列に接続して用いた。すなわち、スチレン系樹脂をテトラヒドロフラン(THF)に溶解させ、GPC測定で分子量を測定した。そして、測定値を標準ポリスチレン(直鎖)で校正して、スチレン系樹脂の数平均分子量Mn、重量平均分子量Mw、Z平均分子量Mzをそれぞれ求めた。
〔GPC-MALS法による絶対分子量〕
 GPC-MALS法により、スチレン系樹脂の数平均分子量Mn’、重量平均分子量Mw’、Z平均分子量Mz’を測定した。
 具体的には、島津製作所社製Prominence LC-20AD(2HGE)/WSシステム、Wyatt Technology社製の多角度光散乱検出器 DAWN HELEOS IIを用いて、溶離液:テトラヒドロフラン(THF)、流量1.0ml/minという条件で測定した。カラムとしては、東ソー社製TSKgel HHR-H×1本、TSKgel GMHHR×2本、を直列に接続して用いた。測定の解析は、Wyatt社の解析ソフト ASTRAにより行い、スチレン系樹脂の数平均分子量Mn’、重量平均分子量Mw’、Z平均分子量Mz’を求めた。屈折率の濃度増分dn/dcには0.185ml/gの値を用いて解析を行った。
〔収縮因子及び長鎖分岐度〕
 既述の式(4)~(8)に基づき、収縮因子g、1分子あたりの長鎖分岐度Bm,w、スチレン1000単位あたりの長鎖分岐度Bm,1000を求めた。本解析ではスチレン系樹脂が3本鎖分岐と仮定して長鎖分岐度を求めた。直鎖ポリスチレンとしては、製造例1で得られたスチレン系樹脂のデータを用いた。
〔追加含浸重合工程中のスチレン単量体添加中の核粒子中のスチレン含有量の測定方法〕
 スチレン単量体の追加添加開始時、添加開始から1.5時間経過時、2.5時間経過時又は3.0時間経過時、追加添加終了時のそれぞれの系において、オートクレーブ内の温度を10分以内に30℃まで冷却し、重合中のスチレン系樹脂を取り出した。
 スチレン系樹脂をN,N-ジメチルホルムアミド(DMF)に溶解させ、ガスクロマトグラフィー(GC)で測定し、検量線で校正して、スチレン系樹脂中の残存スチレンを定量した。
 なお、ガスクロマトグラフィーの測定条件は次の通りである。
使用機器:島津製作所製のガスクロマトグラフGC-9A
カラム充填剤:
 〔液相名〕PEG-20M
 〔液相含浸率〕25重量%
 〔担体粒度〕60/80メッシュ
 〔担体処理方法〕AW-DMCS(水洗、焼成、酸処理、シラン処理)
カラム材質:内径3mm、長さ3000mmのガラスカラム
キャリアガス:N
検出器:FID(水素炎イオン化検出器)
定量:内部標準法
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1乃至4からわかるように、市販のスチレン系樹脂(比較例3及び4)では、重量平均分子量Mw’が100万未満であり、溶融時の流動性は高いものの、溶融張力が小さくなった。
 重量平均分子量Mw’が100万を超える比較例1及び2のスチレン系樹脂では、流動性が高いが、溶融張力が低いか(比較例1)、溶融張力が高いが、流動性が低い(比較例2)といったように、高流動性と高溶融張力とを両立することができなかった。
 これに対し、実施例1~17のスチレン系樹脂は、いずれも2100Pa・s以下の溶融粘度を有し、流動性に優れ、かつ、350mN以上の高い溶融張力を有した。
<積層発泡シートの熱成形性の評価>
〔積層発泡シートの製造〕
(押出1)
 実施例1で得たスチレン系樹脂35重量部と、比較例4で用いたPSジャパン株式会社製ポリスチレン「G0002」65重量部とを混合したポリスチレン系樹脂と、該ポリスチレン系樹脂100重量部に対してタルク1.8重量部を配合した原料を、内径90mmの第一押出機と内径120mmの第二押出機が連結されたタンデム型押出機の第一押出機に供給した。220℃で上記ポリスチレン系樹脂を溶融させると共に両者を混練することにより溶融樹脂組成物とし、該溶融樹脂組成物にイソブタン65重量%とノルマルブタン35重量%の混合ブタン発泡剤を圧入してさらに混練し、発泡性溶融樹脂組成物とした。なお、発泡剤の添加量は、上記ポリスチレン系樹脂100重量部に対して2.7重量部とした。
 次いで、第二押出機にて、上記発泡性溶融樹脂組成物を冷却して樹脂温度を165℃(第二押出機とダイとの間にて測定)に調整し、該発泡性溶融樹脂組成物を吐出量105kg/hrで、口径68mm、間隙0.67mmの円環状のスリットを通して円筒状に押出して発泡させた。その直後に、この円筒状の発泡体の内面側及び外面側から温度25℃の冷却エアを吹き付けつつ、円筒状の発泡体の内面を直径270mmの円柱状冷却装置(マンドレル)の円柱側面に沿わせて8.2m/minの速度で引取りながら、マンドレルの後部に取り付けられたカッターで円筒状の発泡体を押出方向に切り開くことにより、見掛け密度91kg/m、厚み2.2mm、幅850mmの発泡シートを得た。なお、円筒状発泡体の内面側に吹き付ける冷却エアの風量を0.6m/min、外面側に吹き付ける冷却エアの風量を1.6m/minとした。
 なお、発泡シートの重量を、発泡シートの見掛けの体積で除することにより発泡シートの見掛け密度を求めた。発泡シートの見掛けの体積は、水中に発泡シートを水没させ、その水位上昇から求められた。
 得られた発泡シートを23℃の雰囲気下で3週間養生した後、押出ラミネート方式により該発泡シートの片面に坪量120g/mの耐衝撃性ポリスチレン(HIPS)樹脂層を積層接着させて積層発泡シートを得た。
(押出2)
 押出1とは、以下の点を変更して積層発泡シートを得た。具体的には、用いるポリスチレン系樹脂を、比較例3で用いたDIC株式会社製ポリスチレン「HP780AN」35重量部と、比較例4で用いたPSジャパン株式会社製ポリスチレン「G0002」65重量部との混合物に変更した。
(押出3)
 押出1とは、以下の点を変更して積層発泡シートを得た。具体的には、用いるポリスチレン系樹脂を、比較例4で用いたPSジャパン株式会社製ポリスチレン「G0002」100重量部に変更した。
〔熱成形性の評価〕
 株式会社浅野研究所製、品番:FKS-0631-10の成形機を用いて、マッチモールド真空成形により、積層発泡シートのHIPS樹脂層面が成形体の外面側となるように、積層発泡シートを熱成形して丼形状の成形体(開口部直径140mm、深さ75mm)を得た。積層発泡シートを熱成形するにあたり、積層発泡シートを加熱する際の加熱炉のヒータ温度は、HIPS樹脂層積層面側を310℃、HIPS樹脂層非積層面側を260℃とし、加熱時間は、11秒、13秒、15秒、17秒、19秒と変えて、それぞれ積層発泡シートの熱成形を行なった。
 以下の通り熱成形性を評価した。評価結果を表5に示す。
A:成形体に、表面の裂け、伸びムラ等の成形不具合が見られず、成形性良好である。
B:成形体に、表面の裂け、伸びムラ等の成形不具合がわずかに見られる。
C:成形体に、表面の裂け、伸びムラ等の成形不具合が多く見られる。
Figure JPOXMLDOC01-appb-T000008
 表5からわかるように、実施例のスチレン系樹脂を用いて製造した押出1による積層発泡シートは、熱成形性評価「A」の条件(加熱時間)が3点あり、熱成形可能範囲が広いことがわかる。
 市販の耐衝撃性ポリスチレン(HIPS)に、実施例のスチレン系樹脂を混合した混合樹脂を用いて、一軸伸張粘度を調べた。
 まず、実施例7~11、比較例2、比較例3(市販の分岐ポリスチレン)、比較例4(市販の直鎖ポリスチレン)の各スチレン系樹脂と、PSジャパン社製HIPS(グレード名:475D、溶融粘度:1310Pa・s、後述する比(a1/a2):1.04)とをそれぞれ重量比1:9の割合で混合し、混合物を二軸押出機を用いて(スクリュー回転数50rpm、樹脂温度200℃)で混練して混合樹脂ペレットを得た。
 次に、混合樹脂ペレットを熱プレス機にて200℃の条件下でプレスして厚さ0.8mmの板状に加工し、一軸伸長粘度の測定用試料を作製した。測定装置として、動的粘弾性測定装置Anton Paar社製PHYSICA MCR301及び一軸伸長粘度測定用冶具SERを用いて、160℃、0.5s-1、300測定点数(0.01sから26sを「対数にて取得」)の条件にて一軸伸長粘度の測定を行い、時間-一軸伸長粘度曲線(両対数プロット)における線形領域の一次近似直線の傾き(a2)に対する非線形領域の一次近似直線の傾き(a1)の比(a1/a2)を求めた。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
 比(a1/a2)が大きいほど、樹脂のひずみ硬化が大きく、ブロー成形や真空成形などの成形加工において成形性に優れる樹脂であることを意味する。また、混合樹脂ペレットの溶融粘度を上記方法により測定した。表6からわかるように、実施例7~11の各スチレン系樹脂を耐衝撃性ポリスチレンに添加することにより、耐衝撃性ポリスチレンが有する流動性を損なうことなく、比較例に比べて、比(a1/a2)が大きくなっている。
 本発明のスチレン系樹脂は、流動性が高く、かつ、溶融張力が高いため、押出成形、発泡成形、ブロー成形等に用いたり、これらの成形時に、加工助剤として市販のスチレン系樹脂に混合してスチレン系樹脂組成物とすることで、延伸加工時に樹脂を破断しにくくすることができる。
 また、本発明のスチレン系樹脂の製造方法によれば、流動性が高く、かつ、溶融張力が高い、分岐構造を有するスチレン系樹脂を製造することができるため、スチレン系樹脂を押出成形、発泡成形、ブロー成形等に用いる、或はこれらの成形時の加工助剤として用いることで、延伸加工時に樹脂を破断しにくくすることができる。

Claims (14)

  1.  GPC-MALS法により求められる重量平均分子量Mw’が100万以上500万以下であると共に、スチレン1000単位当たりの長鎖分岐度が0.2以上であり、テトラヒドロフラン不溶分が0.1重量%以下(0を含む)であり、分子鎖中に多官能性単量体由来の成分を含まないスチレン系樹脂。
  2.  スチレン1000単位当たりの長鎖分岐度が0.3以上である請求項1に記載のスチレン系樹脂。
  3.  GPC-MALS法により求められるZ平均分子量Mz’が300万以上である請求項1又は2に記載のスチレン系樹脂。
  4.  GPC-MALS法により求められる数平均分子量Mn’に対するZ平均分子量Mz’の比Mz’/Mn’が7以上である請求項1~3のいずれか1項に記載のスチレン系樹脂。
  5.  スチレンダイマー及びスチレントリマーの合計含有量が0.1重量%以下である請求項1~4のいずれか1項に記載のスチレン系樹脂。
  6.  200℃、剪断速度100sec-1における溶融粘度が2100Pa・s以下であると共に、200℃における溶融張力が350mN以上であり、前記溶融粘度に対する前記溶融張力の比(溶融張力/溶融粘度〔mN/(Pa・s)〕)は、0.20以上である請求項1~5のいずれか1項に記載のスチレン系樹脂。
  7.  スチレン系樹脂を含む核粒子を水性媒体中に分散させる分散工程と、
     前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
     前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
     前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させつつ、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
    を含み、
     前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し10~200重量部であり、
     前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50~700重量部であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持するスチレン系樹脂の製造方法。
  8.  前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し20~200重量部である請求項7に記載のスチレン系樹脂の製造方法。
  9.  前記水性媒体は、30℃における酸素濃度が4mg/L以上である請求項7又は8に記載のスチレン系樹脂の製造方法。
  10.  前記分散工程における前記核粒子の平均粒子径が0.3~1.2mmである請求項7~9のいずれか1項に記載のスチレン系樹脂の製造方法。
  11.  前記有機過酸化物の10時間半減期温度T1/2が85~120℃であり、前記含浸工程における前記水性媒体の温度が70℃以上(T1/2-15)℃以下であり、前記追加含浸重合工程における前記水性媒体の温度が(T1/2-10)℃以上(T1/2+20)℃以下である請求項7~10のいずれか1項に記載のスチレン系樹脂の製造方法。
  12.  前記追加含浸重合工程においてスチレン単量体を連鎖移動剤の存在下で重合させ、重合開始剤の総添加量に対する連鎖移動剤の総添加量の比が0.1~0.6である請求項7~11のいずれか1項に記載のスチレン系樹脂の製造方法。
  13.  前記含浸工程において前記核粒子に前記連鎖移動剤を含浸させる請求項12に記載のスチレン系樹脂の製造方法。
  14.  前記連鎖移動剤がα-メチルスチレンダイマーである請求項12又は13に記載のスチレン系樹脂の製造方法。
PCT/JP2018/027314 2017-07-21 2018-07-20 スチレン系樹脂及びスチレン系樹脂の製造方法 WO2019017482A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880048037.8A CN110945043B (zh) 2017-07-21 2018-07-20 苯乙烯类树脂及苯乙烯类树脂的制造方法
US16/631,415 US11254774B2 (en) 2017-07-21 2018-07-20 Styrene resin and method for producing styrene resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-142147 2017-07-21
JP2017142147A JP6886883B2 (ja) 2017-07-21 2017-07-21 スチレン系樹脂の製造方法
JP2017-142151 2017-07-21
JP2017142151A JP6858661B2 (ja) 2017-07-21 2017-07-21 スチレン系樹脂

Publications (1)

Publication Number Publication Date
WO2019017482A1 true WO2019017482A1 (ja) 2019-01-24

Family

ID=65016384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027314 WO2019017482A1 (ja) 2017-07-21 2018-07-20 スチレン系樹脂及びスチレン系樹脂の製造方法

Country Status (3)

Country Link
US (1) US11254774B2 (ja)
CN (1) CN110945043B (ja)
WO (1) WO2019017482A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504054A (ja) * 1996-02-02 2000-04-04 ザ ダウ ケミカル カンパニー 枝分かれポリマーの製造法
US20140256898A1 (en) * 2011-10-27 2014-09-11 Changzhou University Process for preparing branched polymer
JP2014196444A (ja) * 2013-03-29 2014-10-16 積水化成品工業株式会社 ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281405A (ja) 2004-03-29 2005-10-13 Dainippon Ink & Chem Inc スチレン系樹脂組成物、その発泡シート及び発泡容器
CN103917594B (zh) * 2011-11-07 2016-05-11 新日铁住金化学株式会社 含有高分支型超高分子聚合物的苯乙烯系树脂组合物的制造方法及其组合物
JP2014189767A (ja) 2013-03-28 2014-10-06 Sekisui Plastics Co Ltd 発泡用ポリスチレン系樹脂組成物、ポリスチレン系樹脂発泡シート及び発泡成形品
JP6279383B2 (ja) 2014-03-31 2018-02-14 積水化成品工業株式会社 発泡用ポリスチレン系樹脂組成物及びその用途
JP6228883B2 (ja) 2014-03-31 2017-11-08 積水化成品工業株式会社 押出発泡用ポリスチレン系樹脂組成物及びその用途
WO2016209381A1 (en) * 2015-06-24 2016-12-29 Dow Global Technologies Llc Processes to prepare ethylene-based polymers with improved melt-strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504054A (ja) * 1996-02-02 2000-04-04 ザ ダウ ケミカル カンパニー 枝分かれポリマーの製造法
US20140256898A1 (en) * 2011-10-27 2014-09-11 Changzhou University Process for preparing branched polymer
JP2014196444A (ja) * 2013-03-29 2014-10-16 積水化成品工業株式会社 ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体

Also Published As

Publication number Publication date
CN110945043B (zh) 2022-10-11
CN110945043A (zh) 2020-03-31
US20200207897A1 (en) 2020-07-02
US11254774B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
JP6858661B2 (ja) スチレン系樹脂
WO2015137363A1 (ja) スチレン系樹脂発泡成形体及びその製造方法
AU2010329986B2 (en) Process for the polymerization of styrene
EP4006102A1 (en) Thermoplastic resin and method for preparing same
KR20220020200A (ko) 투명 열가소성 수지 및 이의 제조방법
CN114502646A (zh) 热塑性树脂及其制备方法
JP7089177B2 (ja) スチレン系樹脂
JP6886883B2 (ja) スチレン系樹脂の製造方法
WO2019017482A1 (ja) スチレン系樹脂及びスチレン系樹脂の製造方法
JP4681103B2 (ja) スチレン系樹脂およびその成形品
JP7391200B2 (ja) 透明熱可塑性樹脂及びその製造方法
JP7011167B2 (ja) スチレン樹脂の製造方法
JPH01138214A (ja) グラフト樹脂組成物の製造方法
JP7220082B2 (ja) 樹脂組成物の製造方法
JP6333140B2 (ja) 板状押出発泡体
EP2470591A1 (en) High impact polymers and methods of making and using same
CN109844017B (zh) 包括由茂金属催化的高粘度聚-α-烯烃添加剂的改进的单乙烯基芳族聚合物组合物
JP2016500387A (ja) 柔軟性を改善した発泡性高分子組成物、及び、関連生成プロセス
CN114651045B (zh) 透明热塑性树脂及其制备方法
JPH0476383B2 (ja)
TW201319146A (zh) 含有高分枝型超高分子量體之苯乙烯系樹脂組成物之製造方法及其組成物
JPH02155935A (ja) 難燃性多孔ポリマー粒子の製造方法
KR100210252B1 (ko) 열가소성 합성수지의 제조방법
JPH01259015A (ja) グラフト共重合体の製造方法
CN104011086A (zh) 制备含有颗粒状添加剂的可膨胀苯乙烯聚合物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834577

Country of ref document: EP

Kind code of ref document: A1