WO2019017216A1 - 車両制御装置及び車両制御方法 - Google Patents

車両制御装置及び車両制御方法 Download PDF

Info

Publication number
WO2019017216A1
WO2019017216A1 PCT/JP2018/025655 JP2018025655W WO2019017216A1 WO 2019017216 A1 WO2019017216 A1 WO 2019017216A1 JP 2018025655 W JP2018025655 W JP 2018025655W WO 2019017216 A1 WO2019017216 A1 WO 2019017216A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
driving
vehicle
unit
traveling
Prior art date
Application number
PCT/JP2018/025655
Other languages
English (en)
French (fr)
Inventor
英史 大場
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/631,020 priority Critical patent/US20200139992A1/en
Priority to JP2019530963A priority patent/JP7155122B2/ja
Priority to EP18834796.7A priority patent/EP3657465A4/en
Priority to CN201880047033.8A priority patent/CN110914884B/zh
Publication of WO2019017216A1 publication Critical patent/WO2019017216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0061Aborting handover process
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/223Posture, e.g. hand, foot, or seat position, turned or inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/229Attention level, e.g. attentive to driving, reading or sleeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present technology relates to a vehicle control device and a vehicle control method, and more particularly to a vehicle control device and a vehicle control method capable of performing safe handover from automatic driving to manual driving.
  • Patent Document 2 mentions stopping the vehicle urgently if takeover of the manual operation is not successful at the completion of the automatic operation.
  • the present technology has been made in view of such a situation, and enables safe handover from automatic operation to manual operation.
  • a vehicle control device includes: a traveling control unit that performs traveling control that deviates from normal traveling of the vehicle when switching the operation mode from the automatic operation mode to the manual operation mode; And a driving state detection unit that detects a driving state of the driver based on a driving operation by the driver performed for the vehicle.
  • the driving mode switching unit may further include a driving mode switching unit that switches the driving mode according to the driving state detected by the driving state detection unit.
  • the drive mode switching unit is configured to drive the drive mode from the automatic drive mode to the manual drive mode when the drive state detected by the drive state detection unit indicates that normal travel is possible. Can be switched to
  • the traveling control unit can perform the traveling control that deviates as a process according to a final stage or a final stage of a plurality of determination processes performed through stages when switching the operation mode.
  • the traveling control unit can perform traveling control for moving the vehicle in a direction shifted with respect to the traveling direction as the traveling control that deviates.
  • the travel control unit may perform travel control to move the vehicle in the perpendicular direction as the shifted direction.
  • the traveling control unit can perform traveling control for giving rapid acceleration and deceleration to the vehicle as the traveling control that deviates.
  • the travel control unit may perform travel control to deviate after the driver is notified of switching the driving mode.
  • the driving state detection unit can passively detect the driving state of the driver before the departure control is performed by the travel control unit.
  • the driving state detecting unit passively or semi-passively detects the driving state of the driver before the traveling control to deviate is performed by the driving control unit, and the driving control unit detects the driving state of the driver
  • the notification timing to the driver can be determined based on the state and the return prediction timing.
  • the driving state detection unit can detect the driving state based on a correction operation performed by the driver on the travel operation device.
  • the driving state detection unit can detect at least one of the reactivity and the awakening degree of the driver as the driving state.
  • the travel control unit permits the automatic operation mode of the vehicle at a low speed by limiting the automatic drive mode, determines the switching from the automatic driving to the manual driving when shifting to the traveling at the predetermined speed or more, and travels at the predetermined speed or more.
  • the driver can ask for steering intervention.
  • the vehicle control method performs traveling control that deviates from normal traveling of the vehicle at the time of switching the operation mode from the automatic driving mode to the manual operation mode, and Detecting the driving state of the driver based on the driving operation by the driver.
  • travel control is performed to deviate from normal travel of the vehicle. Then, the driving state of the driver is detected based on the driving operation by the driver performed for the departure control.
  • FIG. 1 shows a configuration example of an automatic driving system 10 to which the present technology is applied.
  • the autonomous driving system 10 includes a vehicle control system 11 and a portable terminal 12.
  • the vehicle control system 11 includes a surrounding imaging unit 21, a surrounding information acquisition unit 22, a position measurement unit 23, an input unit 24, a vehicle information acquisition unit 25, a driver monitoring unit 26, a communication unit 27, a vehicle control unit 28, and a display unit 29. And an audio output unit 30, a light emitting unit 31, a traveling control unit 33, an in-vehicle device control unit 34, and a storage unit 35.
  • the peripheral imaging unit 21 includes, for example, various imaging devices such as a mono camera, a stereo camera, a ToF (Time of Flight) camera, a polarization camera, a time gated camera, a multispectral camera, and an invisible light camera such as infrared light. .
  • the surrounding imaging unit 21 performs imaging of the periphery of the vehicle including the traveling direction of the vehicle, and supplies an image obtained by the imaging to the vehicle control unit 28 as a surrounding image.
  • the peripheral information acquisition unit 22 includes various sensors such as a sonar, a radar, a lidar, a temperature sensor, a humidity sensor, a rain sensor, a snow sensor, and a backlight sensor.
  • the peripheral information acquisition unit 22 acquires peripheral information which is information on the periphery of a vehicle. Furthermore, by wirelessly acquiring information from a traveling vehicle traveling on the roadside, the vicinity of the host vehicle, a pedestrian, or a bicycle, etc., it is possible to obtain information in a blind spot that can not be obtained only by measurement with the host vehicle. It is also good.
  • the peripheral information acquisition unit 22 may surround information on the environment around the vehicle such as temperature, humidity, weather, road surface condition, etc., and information on objects around the vehicle such as types and positions of objects on the periphery of the vehicle. Acquire as information.
  • the surrounding information acquisition unit 22 supplies the acquired surrounding information to the vehicle control unit 28.
  • the position measurement unit 23 is, for example, a satellite navigation system such as a GNSS (Global Navigation Satellite System) that measures the current position using a satellite, an altimeter, an acceleration sensor, a gyroscope, or a SLAM (Simultaneous Localization and) by an image recognition device.
  • the current position of the vehicle is measured using a positioning system combining an autonomous positioning system represented by Mapping).
  • the position measurement unit 23 supplies the measurement result to the vehicle control unit 28.
  • the input unit 24 includes an input device such as a microphone, a button, a switch, a touch panel, a direction indicator, and a gesture recognition device.
  • the input unit 24 receives an input of an instruction, data, and the like by a passenger of a vehicle including a driver.
  • the input unit 24 supplies the input instruction, data, and the like to the vehicle control unit 28.
  • the vehicle information acquisition unit 25 acquires vehicle information including various information related to the vehicle. For example, the vehicle information acquisition unit 25 acquires, as vehicle information, information on the movement of the vehicle such as the speed, acceleration, angular velocity, and traveling direction of the vehicle.
  • the vehicle information acquisition unit 25 includes, for example, the operation timing and operation amount for the accelerator pedal, brake pedal, steering, parking brake, shift lever, direction indication lever, power (ignition) switch, lamp switch, wiper switch, etc. Get information on driving operations.
  • the vehicle information acquisition unit 25 acquires information on the state of the vehicle, such as the state of each part of the vehicle and the presence or absence of a failure.
  • the vehicle information acquisition unit 25 supplies the acquired vehicle information to the vehicle control unit 28.
  • the driver monitoring unit 26 monitors the driver and supplies the monitoring result to the vehicle control unit 28, as described later with reference to FIG.
  • the communication unit 27 includes communication devices of various communication methods.
  • the communication unit 27 includes a communication device that performs wireless communication by DSRC (Dedicated Short Range Communications).
  • the communication unit 27 communicates with an ITS (Intelligent Transport Systems) spot installed along the road to acquire an LDM (Local Dynamic Map).
  • ITS Intelligent Transport Systems
  • LDM includes static information including road surface information, lane information, three-dimensional structure information, etc., traffic regulation information that changes from moment to moment, road construction prior information and current approach prior update information, wide-area weather Includes semi-static information including information etc. and the latest update information, accident information, traffic information, semi-dynamic information including narrow-area weather information etc, and dynamic information including surrounding vehicle and pedestrian information, signal information etc. .
  • This broadband communication is an effective means to obtain information essential for localized travel, which is imminent immediately ahead, and to upload road environment information acquired by the vehicle to the infrastructure side.
  • the communication unit 27 further includes a communication device capable of further remote communication, for example, according to a communication standard (3G / 4G / LTE (Long Term Evolution) or the like) with which the mobile phone performs communication.
  • a communication standard 3G / 4G / LTE (Long Term Evolution) or the like
  • the communication unit 27 acquires various types of information such as map data of a wider area or weather information of a distant traveling point from a server or the like via a dedicated or common general-purpose network such as the Internet.
  • the communication unit 27 includes a beacon device.
  • the communication unit 27 communicates with a roadside device installed on the roadside to support safe driving or path planning, and acquires or exchanges various types of traffic information.
  • the environmental information that the vehicle is about to travel need not be limited to these particular means.
  • relay communication between vehicles or near-field communication not via a base station with a cloud server near a traveling section may be performed. Further, redundancy may be provided to make the configuration robust against a specific communication system failure.
  • the communication unit 27 includes a short distance wireless communication device that can be used in a car such as Bluetooth (registered trademark). In this case, the communication unit 27 communicates with the mobile terminal 12 and the like represented by a smartphone and a tablet terminal, and transmits and receives various types of information.
  • a short distance wireless communication device that can be used in a car such as Bluetooth (registered trademark).
  • the communication unit 27 communicates with the mobile terminal 12 and the like represented by a smartphone and a tablet terminal, and transmits and receives various types of information.
  • the communication unit 27 supplies the acquired information to the vehicle control unit 28. Further, the communication unit 27 acquires, from the vehicle control unit 28, information to be transmitted to another communication device or the like.
  • the vehicle control unit 28 includes an ECU (Electronic Control Unit) and the like, and controls each unit of the vehicle control system 11 as described later with reference to FIG. 2.
  • ECU Electronic Control Unit
  • the display unit 29 includes various display devices, and displays various images and information under the control of the vehicle control unit 28.
  • the display unit 29 includes a transmissive display provided on a head-up display or a part of a windshield, and superimposes and displays an image or information on the driver's view.
  • the display unit 29 includes an instrument panel, a display of a car navigation system, and the like.
  • the audio output unit 30 includes, for example, a speaker, an alarm, a buzzer, and the like.
  • the voice output unit 30 outputs voice information, a notification sound, a warning sound, and the like under the control of the vehicle control unit 28.
  • the light emitting unit 31 includes, for example, a light emitting device such as a light emitting diode (LED) or a lamp. Under the control of the vehicle control unit 28, the light emitting unit 31 performs lighting or blinking of light for the purpose of notifying or alerting various information to the driver.
  • the light emitting unit 31 does not have to be limited to an LED or the like as a point light source, and presents the driver with detailed message information or the like using monogram display or the like on the entire instrument panel or a partial matrix array display unit. You may do so.
  • the traveling control unit 33 controls devices related to the traveling of the vehicle among various devices mounted on the vehicle.
  • the traveling control unit 33 includes an engine control unit that controls the operation of the engine, a motor control unit that controls the operation of the motor, a brake control unit that controls the operation of the brake, and a steering control unit that controls the operation of the steering. .
  • the in-vehicle device control unit 34 controls devices other than devices related to traveling of the vehicle among various devices mounted in the vehicle. For example, the in-vehicle device control unit 34 controls an actuator that controls the inclination of the seat, an actuator that vibrates the seat, an actuator that vibrates the steering, and the like.
  • the storage unit 35 stores programs and data necessary for the processing of the vehicle control system 11.
  • the storage unit 35 stores a log related to the traveling of the vehicle, a face image used for authenticating the driver, recognition identification extraction information, learning results of various features of the driver, car inspection information, vehicle accident diagnosis information, etc. . It is not necessary to store all the information in the storage unit 35.
  • the information may be transmitted to a remote server via the communication unit 27 and stored.
  • FIG. 2 shows a configuration example of the driver monitoring unit 26 and the vehicle control unit 28 of the vehicle control system 11.
  • the driver monitoring unit 26 includes a driver imaging unit 101, a biological information acquisition unit 102, a sight line detection unit 103, and an authentication unit 104.
  • the driver imaging unit 101 includes an imaging device such as a ToF sensor, a stereo camera, a 3D camera, and a 3D Flash LIDAR sensor, and performs imaging of the driver.
  • the imaging range of the driver imaging unit 101 may include at least a portion above the driver's waist while driving at the driver's seat, and may include a wider range.
  • you may substitute by the attitude
  • the driver imaging unit 101 further includes high-speed imaging means capable of pupil analysis or detailed analysis of the driver's eyeball, and the high-speed imaging means includes a movement of eyelids or fixation or eye movement or drift associated with fixation. It may be possible to give a function that can analyze the intracerebral sensory response.
  • the high-speed imaging means indicates a moving image faster than the frame update rate of 60 fps (Frames per second) used in a normal television signal, and preferably indicates an imaging means capable of capturing a moving image of 250 fps or more.
  • the driver imaging unit 101 supplies the image obtained by the imaging to the vehicle control unit 28 as a driver image.
  • a dedicated light source such as a light source emitting Structured Light or a light source of a specific wavelength including infrared light. It may be illuminated.
  • the biological information acquisition unit 102 includes a sensor or the like that detects various types of biological information of the driver.
  • the biological information acquired by the biological information acquisition unit 102 includes, for example, pulse, pulse wave, blood pressure, blood flow system, seat body pressure, sitting posture, brain wave, intracerebral blood flow, eye muscle potential, electrocardiogram, body temperature, body odor, It includes skin temperature, sweating, steering grip response, respiratory condition, alcohol content, etc.
  • the biological information acquisition unit 102 supplies the acquired biological information to the vehicle control unit 28. Although it is difficult to directly grasp the driver's definite awakening situation directly from these mainly passive type biometric information, it has a loose correlation with the driver's fatigue state, sleepiness and the like.
  • the gaze detection unit 103 detects the driver's face direction, gaze direction, blinks, eye movement (for example, involuntary eye movement, saccade, micro saccade, drift, tremor, etc.) based on the driver image. Perform gaze detection).
  • eye movement for example, involuntary eye movement, saccade, micro saccade, drift, tremor, etc.
  • a face detection unit that performs face detection such as facial expression, open / close state of eyes, etc. based on the driver image
  • a head detection unit that detects head movement based on the driver image is the sight line detection unit 103 May be provided.
  • the gaze detection unit 103 performs dynamic analysis of the gaze to evaluate the degree of alertness and the degree of alertness of the driver to the outside world.
  • the awakening degree is a degree representing the driver's state of consciousness. For example, that the awakening degree is higher than a predetermined threshold value indicates that the driver's consciousness is normal.
  • the gaze detection unit 103 supplies the vehicle control unit 28 with analysis results such as the detection result of the gaze and the degree of attention.
  • the behavior of the line of sight contains many dynamic characteristics specific to the driver, it is usually performed first by the authentication unit 104 described later.
  • the movement characteristic of the line of sight is Depending on the physical characteristics and empirical characteristics, it depends on the progress of the cognitive judgment leading to judgment in turning around.
  • the driver's awakening judgment by the dynamic analysis of the eye gaze is not determined depending on whether the driver gazes and fixes the external object accurately in the physical direction of the eye.
  • the driver may fix eyes on a specific target, for example, look at the face of a person who is in view, make a judgment, or look at an advertising billboard or the like.
  • the gaze may be focused on a specific object.
  • the driver often finds that the subject matter of interest is a peripheral vision that deviates from the central visual field of the gaze, especially in that case, since the resolution of the peripheral vision is low.
  • the subject matter of interest is a peripheral vision that deviates from the central visual field of the gaze, especially in that case, since the resolution of the peripheral vision is low.
  • start eye movement In order to catch the target in the direction of the central vision in the direction, start eye movement. So-called saccade motion of the eye is observed.
  • the driver's dynamic characteristics of saccade motion and fixation in the line of sight of the driver appear on the table in a form in which a part of the judgment activity of intracerebral perception is reflected.
  • the judgment is decided by the fact that a certain degree of coincidence is obtained between the stimulus by the information captured as visual information and the information extracted from the stored information. Ignition of cognitive judgment takes place and leads to judgment.
  • the process further proceeds to the observation stage to obtain affirmation of the decision, and waits for the information necessary for firing the decision.
  • the cognitive activity in the brain does not necessarily mean that the line of sight always turns around when the general direction of the line of sight is turned, as perceptual judgment in the brain is already started as soon as the driver starts moving the gaze of the saccade. It does not always take time to finish perceptual judgment until the subject is caught in the central vision.
  • the blue traffic light in the direction of travel and the red advertising tower can not distinguish between the two, it is necessary to determine the color of the traffic light when passing through the corresponding crossroads when entering the peripheral vision of the driver Because of that, turn the traffic light and start judging.
  • the line-of-sight detection unit 103 learns the line-of-sight dynamic characteristic unique to the driver even according to the environment according to the environment, and can thus estimate the awake state by the dynamic line-of-sight analysis according to the driver's situation.
  • the determination result of the dynamic analysis and the analysis result such as the degree of attention are supplied to the vehicle control unit 28.
  • the authentication unit 104 authenticates the driver based on, for example, the driver image, the gaze analysis image, and the like. At that time, iris authentication processing may be performed.
  • the authentication unit 104 supplies the authentication result to the vehicle control unit 28.
  • the driver authentication process is a process performed first as described above. Thereafter, an association is made with driver specific features.
  • the vehicle control unit 28 includes a periphery monitoring unit 121, a driver monitoring unit 122, an automatic driving control unit 123, a notification control unit 124, a log generation unit 125, and a learning unit 126.
  • the surroundings monitoring unit 121 monitors the surroundings of the vehicle based on the surroundings image from the surroundings photographing unit 21, the surroundings information from the surroundings information acquisition unit 22, and various kinds of information from the communication unit 27.
  • the driver monitoring unit 122 detects vehicle information from the vehicle information acquisition unit 25, a driver image from the driver imaging unit 101, biometric information of the driver from the biological information acquisition unit 102, detection results by the sight line detection unit 103, and authentication. The driver is monitored based on the authentication result by the unit 104, the learning result by the learning unit 126, and the like.
  • the driver monitoring unit 122 includes a driving behavior analysis unit 141 and a driving state detection unit 142.
  • the driving behavior analysis unit 141 detects a driving behavior of the driver (for example, a characteristic or the like specific to the authenticated driver, such as an operation or behavior for driving) based on the driver image, the vehicle information, the learning result by the learning unit 126, and the like. Analyze the characteristics).
  • a driving behavior of the driver for example, a characteristic or the like specific to the authenticated driver, such as an operation or behavior for driving
  • the driving state detection unit 142 detects the driving state based on the driver image, the driver's biometric information, the detection result by the sight line detection unit 103, the authentication result by the authentication unit 104, the learning result by the learning unit 126, and the like. .
  • the driving state includes the authenticated driver's state and the driver's awake state.
  • the detection of the driving state is performed in a plurality of stages based on the state of the authenticated driver, so that the awakening state of the driver can be determined with high precision and conventionally performed in a one-dimensional manner. By performing fixed learning, it is possible to make a determination according to the driver's specific characteristics, as compared to the case where the determination is made using the threshold value determined in 3.
  • the automatic driving control unit 123 performs control of automatic driving.
  • the automatic driving control unit 123 includes a route setting unit 151, an automation level setting unit 152, a driving support control unit 153, a driving mode switching control unit 154, and a switching determination unit 155.
  • the route setting unit 151 corrects the current position of the vehicle measured by the position measurement unit 23 based on the acceleration and angular velocity of the vehicle included in the vehicle information from the vehicle information acquisition unit 25.
  • the route setting unit 151 may use peripheral information from the peripheral information acquisition unit 22, LDM acquired through the communication unit 27, map data and map update information, map data stored in the storage unit 35, and the like. Based on the travel route to the destination input through the input unit 24 is set.
  • the automation level setting unit 152 sets the automation level on the traveling route based on the peripheral information from the peripheral information acquisition unit 22, the LDM acquired via the communication unit 27, traffic information, weather information, road surface information, and the like. Set the distribution for each travel section of. Further, the automation level setting unit 152 sets the automation level based on the distribution of the automation level for each route section, the user setting input via the input unit 24, and the like.
  • the automation level indicates the level of automatic driving, in other words, the degree of automation of driving.
  • the details of the automation level will be described later with reference to FIG.
  • the driving support control unit 153 controls the traveling control unit 33 according to the set automation level to support the driving of the driver. With the assistance of the driving assistance control unit 153, a partial or complete automatic driving is realized.
  • the driving support control unit 153 has a partial restriction function such as Adaptive Cruise Control (ACC), Lane Keep Assist System (LKAS), Traffic Jam Assist (TJA), and Advanced Emergency Braking System (AEBS).
  • ACC Adaptive Cruise Control
  • LKAS Lane Keep Assist System
  • TJA Traffic Jam Assist
  • AEBS Advanced Emergency Braking System
  • Automation level 3 includes more complex road condition judgment and path planning, such as recognition of road traffic signals, main line merging and leaving, passage of main intersections, priority control of crossroads, priority control of walking vehicles and pedestrians, etc. Complex multistage control may be performed.
  • the driving support control unit 153 may perform more sophisticated and complicated control (for example, overtaking including a lane change) in the driving section with automation level 3 or higher than the above driving support, or walking in a city area or the like. You may perform driving support by an autonomous run etc. with a state judgment in advanced unmanned including a person or a bicycle.
  • a vehicle that can run safely in all speed ranges of automatic driving requires expensive equipment, but if the function is limited to low-speed, sloppy driving, cheaper equipment can be realized.
  • the present technology may be applied, for example, to a special use form in which it is possible to substitute light vehicles for vulnerable people in rural areas, for example.
  • an automatic operation mode capable of unmanned normal traveling corresponding to so-called automation level 4 or higher, an automatic operation mode capable of return intervention by a driver corresponding to automation level 3 as appropriate A manual operation mode at an automation level 2 or lower, an emergency evacuation mode, and the like in which the driver mainly takes a lead in control judgment are set.
  • the automatic driving mode is a mode realized by driving assistance by the driving assistance control unit 153.
  • the manual operation mode is a mode in which the driver performs driving mainly.
  • the emergency evacuation mode is a mode in which the vehicle is evacuated to a predetermined place in an emergency.
  • the driver In the emergency evacuation mode, for example, when the driver can not drive due to illness or injury during manual operation (manual operation mode), the driver is awake when switching from automatic operation (automatic operation mode) to manual operation. If it can not be confirmed, it is used for etc.
  • the emergency evacuation mode is defined as a means for moving by lowering the priority of the moving speed, but the driver can not take over automatically using the manual operation with caution, so the emergency measures can be taken.
  • the emergency evacuation mode may be set as the evacuation zone.
  • the emergency evacuation mode in the evacuation zone and the movement priority safety pole when using it as a means for securing the moving poor to move to the hospital etc. in emergency
  • the movement priority safety pole when using it as a means for securing the moving poor to move to the hospital etc. in emergency
  • it may be low speed, it does not distinguish with the means which enables movement.
  • the driving mode switching control unit 154 changes the confirmation frequency of the LDM, the traffic information, and the like based on the LDM acquired via the communication unit 27, the latest update information, the weather, the road surface condition, the traffic information, and the like.
  • the operation mode switching control unit 154 monitors the necessity of switching from the automatic operation mode to the manual operation mode (that is, the necessity of manual return), and when there is the need, while traveling in the automatic operation mode Give the driver a request for manual operation recovery or a notification of warning. At this time, the driving mode switching control unit 154 causes the switching determination unit 155 to perform switching determination in accordance with the detection state of the driver. The driving mode switching control unit 154 executes switching processing from the automatic driving mode to the manual driving mode based on the determination result by the switching determination unit 155.
  • the notification does not necessarily require the driving mode switching control unit 154 to reliably determine the notification of the driver if the notification does not require an emergency handover.
  • the driving mode switching control unit 154 may simply notify the driver simply at an early stage when the situation change is detected. You do not have to recognize the notification content correctly or take notice of the notification. However, in situations where an immediate takeover is imminent after a few minutes, missed notification can be fatal. Therefore, well-known confirmation is necessary to ensure the driver's recognition.
  • the notification be made known by the predicted timing by an optimal notification timing estimator (not shown). Therefore, if, for example, 10 minutes before reaching the takeover point is estimated as the optimum notification timing, the notification and the well-known confirmation are executed, and if the well-known of the driver's notification is not detected, a warning notification as an alarm is additionally performed. It is also good.
  • the switching determination unit 155 Under the control of the driving mode switching control unit 154, the switching determination unit 155 performs switching determination from the automatic driving mode to the manual driving mode based on the detection result of the driver's reactivity and the awakening degree by the driving state detection unit 142. .
  • the switching determination by the switching determination unit 155 will be described later with reference to FIG.
  • the notification control unit 124 controls the display unit 29, the voice output unit 30, and the light emitting unit 31, and notifies, warns, warns of various information to the driver. Further, the notification control unit 124 may perform notification, warning, alerting, or the like of various information to the driver using, for example, an actuator or the like controlled by the on-vehicle apparatus control unit 34.
  • the driver notification includes a detected driver recovery action record, sitting vibration or steering wheel vibration simulating traveling on a rumble strip road surface by an actuator, panel information display, bad odor, raising a backrest, moving a sitting position, etc. It may be a source of an unpleasant factor.
  • the log generation unit 125 records the detected driver recovery action record, records various events generated in the vehicle, a response to the peripheral notification at the time of the handover of the vehicle, and a log on the vehicle-road-vehicle communication with a nearby vehicle or infrastructure. Create and update the The log generation unit 125 stores the generated log in the storage unit 35 and appropriately updates the log.
  • the learning unit 126 learns the driving behavior of the driver analyzed by the driving behavior analysis unit 141 (for example, characteristics or characteristics unique to the driver, such as operation for driving, return sequence, return behavior, etc.), and stores the learning result. Do.
  • the driver behavior analysis may also learn and record the individual's return characteristics in consideration of response depending on conditions such as a road surface at the time of back light, night or snow when taking into consideration the dependence of the traveling environment and the like. Since the driver usually grasps the return characteristic of the driver, there may be a mechanism for setting the offset of the early notification by the driver in order to obtain safety from the system learning recommendation value.
  • the driver is a prudent driver, the user prefers to give notice earlier than the timing presented by the vehicle control system 11 with emphasis on safety than the timing presented by the vehicle control system 11 as a recommended value through learning.
  • the driver may be a mechanism for performing so-called early notification offset setting in which the driver advances the notification timing as he / she desires.
  • This notification cancellation is equivalent to stopping before becoming an alarm clock.
  • FIG. 3 is a diagram illustrating an example of the configuration of the switching determination unit.
  • the switching determination unit 155 is configured to include a gesture recognition switching determination unit 201, a saccade information switching determination unit 202, a voice recognition switching determination unit 203, and an active reaction response detection switching determination unit 204.
  • the switching determination unit 155 having such a configuration, the determination based on each information is performed in a plurality of steps, and the operation mode can be switched from the automatic operation mode to the manual operation mode based on the respective determination results. It is finally determined whether or not.
  • a more reliable determination can be made by performing the determination hierarchically.
  • the present embodiment will be described with limitation to the above recognition, regardless of the necessity of taking over, the status of the driver is constantly monitored and notification / alarm notification is issued based on the information, Posture behavior analysis may be performed before the procedures herein may be added.
  • the gesture recognition switching determination unit 201 causes the driving state detection unit 142 to recognize the gesture motion and detect the responsiveness and the awakening degree of the driver.
  • the gesture recognition switching determination unit 201 determines the return internal state of the driver based on the detection result of the predetermined well-known confirmation operation after the handover notification by the driving state detection unit 142, thereby manually setting the driving mode from the automatic driving mode. It is determined whether or not the operation mode can be switched.
  • a simple pointing operation is taken as an example of a predetermined well-known operation.
  • the operation may be an operation that raises the well-known accuracy as an operation requiring an intelligent judgment of the driver rather than a repetitive operation.
  • the return internal state is the state of the driver's consciousness.
  • the determination of the return internal state corresponds to the determination of whether or not the driver's awareness is awake.
  • an accurate pointing operation is performed if feedback of judgment in the brain that directs the hand and fingertip to the gaze range does not work. Have difficulty.
  • an active reaction described later in the awake state in the brain can also be seen.
  • the driver can perform, as a secondary task, tasks and actions (including nap) other than driving.
  • the driver stops the secondary task and makes his return internal state a state in which the driving task can be performed as the primary task. There must be.
  • the driver status is continuously monitored by the passive method to determine if the driver is completely withdrawn from the state of driving awareness such as nap, etc., and the driver is restored at the necessary timing.
  • Make alert notification (alarm etc.) to make them The present technology is processing in which the vehicle control system 11 performs the purpose of well-known confirmation and driver's awakening judgment on the driver's notification when the driver is able to apparently return in the driver's state after the notification.
  • the determination as to whether or not the driver's return internal state is capable of performing the driving task is, for example, looking at the front of the driver's vehicle when the driver wakes up once and wakes up from nap. This is performed by detecting the finger pointing cue confirmation of When the pointing gesture confirmation can be detected normally without wandering, it is determined that the driver's return internal state is in a state where the driving task can be performed, and if it can not be detected, the driver's return internal state It is determined that the state is not in a state where the driving task can be performed. If the posture is not stabilized and the detection is not correctly performed, retry processing or the like may be performed by re-execution.
  • the pointing gesture confirmation is, for example, an operation performed by a conductor of a train or a shared bus, pointing one arm to a direction to be confirmed and pointing the direction of an event to be confirmed with the finger of the arm mentioned.
  • the driver is notified that the corresponding pointing signal is taken over, and at first, one of the arms is approximately horizontal with the assumption that the front of the vehicle is confirmed as the latest event when the vehicle advances as the prescription confirmation procedure. Raise to the position to check the forward direction of travel.
  • finger pointing cue confirmation while looking ahead of the vehicle is referred to as front finger pointing confirmation.
  • the driving state detection unit 142 detects the front pointing signal confirmation performed by the driver as a predetermined gesture operation.
  • the driving state detection unit 142 determines whether or not there is a positional relationship between the front of the vehicle confirmed by the driver, the position of the dominant eye or eyes of the driver, and the position of the pointing hand in the detected gesture operation. This is calculated and determined by a combination of information from the three-dimensional sensor of the driver imaging unit 101 and the two-dimensional sensor. As a result, the driving state detection unit 142 correctly detects and recognizes that the driver has pointed at the front, and detects the driver's responsiveness and alertness.
  • the driving state detection unit 142 detects the forward finger sign confirmation on the basis of the analysis result of the driving behavior of the driver by the driving behavior analysis unit 141, the learning result by the learning unit 126 using the analysis result, and the like.
  • the driving state detection unit 142 detects the driver image, the driver's biological information, the detection result of the sight line, the analysis result of the driver's driving behavior, the driver authentication result, the learning result by the learning unit 126, etc.
  • the driver's state is detected by detecting the gesture motion based on
  • the gesture recognition switching determination unit 201 is an operation of tracking detection of a sequence until the posture of the driver is restored to the position where the driver can drive based on whether or not the driver is seated at the secondary task time.
  • Driving posture recovery sequence tracking detection may be performed. By analyzing the driver's eye behavior including the process, the driver's responsiveness and alertness are further detected, and it is judged whether the driver's ability to recover from the manual driving has recovered. Good.
  • the driver's forward pointing cue confirmation may be combined and used in motion judgment such as line of sight, position of dominant eye or eyes, position of fingertip, road ahead of vehicle, posture tracking device such as three-dimensional ToF sensor, etc. Furthermore, the motion accuracy determination may be further performed from the fingertip position determination.
  • the driver's forward fingering confirmation involves the judgment action in the driver's brain that the driver actually looks at the front of the vehicle and points at the front of the vehicle.
  • the driver can also confirm physical abilities such as how well the front finger confirmation can be expressed.
  • transition observation of the driver state in multiple stages, it is possible to determine whether normal takeover of the manual operation could be performed by combining with other means, and in the case of the normal takeover Since it is possible to take a mechanism to determine that the finger pointing gesture transition is normal as the teacher data, it is not necessary to artificially select and determine the data of the normal transition and prepare.
  • the saccade information switching determination unit 202 reflects and interlocks with a series of intracerebral sensory activities such as eye saccade behavior analysis of the driver, micro saccade behavior analysis, fixation tremor and drift
  • the driving state detection unit 142 causes the driving state detection unit 142 to analyze the movement and detect the driver's responsiveness and the alertness.
  • the reflex response characteristic thereof is a behavior due to the reflexive active reaction in the brain such as visual acuity which may vary with time of the individual driver and the presence or absence of danger. Changes. Therefore, more accurate determination is possible by performing learning based on the retention characteristic learning that has been subjected to driver authentication and performing determination according to the behavior characteristic.
  • the driving mode can be switched from the automatic driving mode to the manual driving mode by determining the return internal state of the driver based on the detection result by the driving state detection unit 142 whether or not the saccade information switching determination unit 202 determines Also, determine the situation during awakening.
  • the voice recognition switching determination unit 203 detects the responsiveness and the awakening degree of the driver by making the driver judge and recognize based on the response by the voice of the driver. To the driving state detection unit 142.
  • the driving state detection unit 142 detects the responsiveness and the awakening degree of the driver based on whether the driver can answer the question. For example, if the driver responds correctly, the driver's responsiveness and alertness are detected as being good.
  • the driving mode can be switched from the automatic driving mode to the manual driving mode by determining the return internal state of the driver based on the detection result of the driving state detection unit 142 as to whether or not the voice recognition switching determination unit 203 determines Determine
  • the active reaction response detection switching determination unit 204 detects driving state to detect driver's responsiveness and arousal level based on the driver's response to the active reaction. Make the part 142 do it.
  • the active reaction means causing steering deviation by giving torque that becomes noise to the steering, and intentionally causing traveling (hereinafter referred to as noise traveling) that deviates from normal traveling.
  • noise traveling while keeping the vehicle substantially in the traveling direction with respect to the traveling direction along the lane, traveling in which the vehicle is moved in a shifted direction such as substantially perpendicular direction Lateral movement, or traveling intentionally giving quick acceleration and deceleration.
  • the vehicle receives a crosswind, the vehicle is moved in a direction slightly shifted to the side without changing the direction.
  • the active reaction response is a driver for active driving noise input such as allowing the driver to judge and apply a torque for correcting the steering to such noise driving and causing an accelerator or a brake to be stepped on. Response.
  • the driving state detection unit 142 detects that the driver has correctly implemented such a response that cancels out the applied noise.
  • the steering performed by the driver is input using travel operation devices such as a steering, an accelerator, and a brake.
  • the traveling control unit 33 performs control such as correcting the steering according to the operation input by the driver using the traveling operation device.
  • passive monitoring and active monitoring as methods of detecting the driver's responsiveness and alertness.
  • Passive monitoring is a method of detecting the driver's responsiveness and alertness by passively observing the driver's condition.
  • active monitoring detects the driver's responsiveness and arousal level by giving the driver stimulation, instructions, etc. by sight, hearing, touch, etc. and observing the driver's response to the given stimulation, instructions, etc. How to
  • detection may be performed by passive monitoring so as not to bother the driver.
  • semi-passive monitoring may be performed by detecting the state from analysis of the reflection response signal by irradiating infrared light or other electromagnetic wave signal.
  • the semi-passive method originally corresponds to the state monitoring means of the active method, but in the present specification, the semi-passive monitoring is described in order to distinguish it from the response to the driver's input described below and the active method.
  • active monitoring is used to view reaction characteristics in order to enhance detection accuracy.
  • the driving mode can be switched from the automatic driving mode to the manual driving mode by determining the return internal state of the driver based on the detection result by the driving state detection unit 142 whether the active reaction response detection switching determination unit 204 determines It is determined whether or not.
  • the active reaction response detection switching determination unit 204 has a driver's locomotive (in this specification, the term “locomotive” is used by extending the term locomotive to the steering ability of the accelerator or the brake) and the steering ability of the steering wheel. Confirm.
  • the active reaction response detection switching determination unit 204 confirms whether steering has been performed by an appropriate amount according to the perceptual determination.
  • the vehicle control system 11 is mounted on a vehicle equipped with various sensing devices for performing automatic driving. Therefore, there are preferable steering conditions according to the conditions of the road and the traveling environment. If the vehicle control system 11 intentionally performs traveling such as crossing a traveling lane or unnecessary acceleration / deceleration, if the driver performs steering (active steering response) that corrects such deviations It can be inferred that the driver properly grasps the situation and has the recognition and physical steering ability necessary for manual driving.
  • the switching determination unit 155 uses the plurality of pieces of information as described above to determine the driver's return internal state (whether or not the driver is awake or the degree thereof). Further, in the switching determination unit 155, switching determination based on active reaction response detection is performed as determination of the final stage of the switching determination.
  • Active reaction response detection may be performed by running control deviated from the ideal steering condition by intentionally adding an offset on the vehicle control system 11 side, but adding a noise running of a degree that does not give milder annoyance or discomfort. This is also done by monitoring the driver's response, such as whether the driver corrects or not, or whether the correction is delayed from normal.
  • the active reaction response detection is performed by performing meandering operation and acceleration / deceleration to an extent that gives a sense of discomfort or discomfort to the driver and monitoring whether the driver performs a normal travel with respect to the fluctuation.
  • the meandering operation also plays a role of informing the following vehicle that the preceding vehicle, which is the own vehicle, can not be handed over from automatic driving to manual driving.
  • the following vehicle approaches the host vehicle, it has a role to suggest to the following vehicle the possibility that the traveling may be suddenly disturbed or the vehicle may shift to the emergency evacuation mode and be decelerated because it can not be handed over.
  • the traveling control unit 33 performs control following the meandering operation to monitor the approach of the following vehicle and to avoid the risk of being struck. In addition, the traveling control unit 33 does not perform smooth deceleration, but repeats deceleration of a degree that the driver feels somewhat uncomfortable and release of the braking to control the driver to move forward and backward.
  • the driver performs acceleration throttle control (pedal operation to avoid emergency deceleration and stop) in order to avoid the deceleration.
  • the driving state detection unit 142 monitors the acceleration throttle control of the driver, and is regarded as normal if traveling smoothly without deceleration.
  • the awareness determination is performed by performing the stepping operation in accordance with the lighting timing of the green lamp displayed in the front, or repeating the stepping and releasing in a specific pattern. If it is confirmed based on such awareness determination that the driver's awareness is normal, thereafter, linear response control may be started according to the usual pedal operation amount.
  • active reaction refers to detection of a reaction response of the operator using a method of giving an active action to the driver and viewing the reaction.
  • FIG. 4 a road 251 having a gentle S-shaped curve is shown.
  • a dashed line passing substantially at the center of the road 251 represents an ideal travel path.
  • the steering wheel operation for traveling on this ideal traveling route is assumed to be steering wheel operation.
  • the steering for correcting the offset is repeated at a level at which the driver does not feel uncomfortable.
  • the dashed arrow 252 in FIG. 4 represents the added offset.
  • the driver's state can be determined with high accuracy by repeatedly adding an offset such as swinging the road left and right with respect to the lane.
  • ⁇ Modified example 1 Instead of adding a type of offset that swings the vehicle path from side to side, it may be provided as an active response to extend the inter-vehicle distance with the vehicle ahead more than expected.
  • the active reaction response detection on the other hand, it is evaluated whether or not the driver takes an action to depress the accelerator for correction.
  • the state of the driver may be evaluated by detection of blink frequency, detection of a closed state, detection of front / rear movement of the head, or the like.
  • ⁇ Modification 2 For example, when the steering operation is not performed, the traveling control unit 33 changes the direction of the wheel, or applies a braking load of left / right imbalance of the wheel without rotating the steering, or the like. During the period, meander the vehicle. In this case, the driving state detection unit 142 detects the driver's responsiveness and alertness based on whether the driver operates the steering so as to correct the meandering, the reaction speed, and the like.
  • the amount of meandering of the vehicle is an amount within the range where the driver can correct the meandering unknowingly.
  • the in-vehicle device control unit 34 When the vehicle is traveling normally, the in-vehicle device control unit 34 artificially applies to the steering a rotational load corresponding to the case where the vehicle meanders.
  • the driving state detection unit 142 detects the driver's responsiveness and alertness based on whether or not the driver operates the steering so as to stop the rotation, the reaction speed, and the like.
  • the travel control unit 33 changes the traveling direction of the vehicle to a direction slightly deviated from the lane for a predetermined period.
  • the driver When the driver is directing normal attention forward, it is expected to steer to correct the direction of the vehicle.
  • the traveling direction of the vehicle is unconditionally changed, a dangerous state may occur depending on the positional relationship with the surrounding vehicles.
  • the following vehicle is following and traveling.
  • the detection of the reactivity and the awakening degree based on the driver's response is a range that does not adversely affect the surrounding vehicles by comprehensively judging the conditions such as the state of the surrounding vehicles and the psychological effects of the driver. It is desirable that
  • the driving support control unit 153 sets the inter-vehicle distance to the preceding vehicle to be longer than that at the normal time.
  • the driving state detection unit 142 detects the driver's responsiveness and the awakening degree based on whether the accelerator pedal is operated to return the inter-vehicle distance to the normal length and the reaction speed. .
  • the traveling control unit 33 makes the amount of change in the traveling direction of the vehicle larger or smaller than the normal amount with respect to the amount of steering of the steering.
  • the driving state detection unit 142 detects the driver's responsiveness and alertness based on whether or not the steering is operated to adjust the traveling direction to a desired direction, and the reaction speed.
  • the difference between the change amount at the normal time and the change amount in the traveling direction of the vehicle in this case is preferably an amount within a range where the driver can correct the traveling direction unknowingly.
  • the driver's response reaction is observed after the control for actually moving the vehicle to the left and right directions, but as a modification, direct control of the vehicle is performed to confirm the active response reaction. It is also possible to add pseudo-rotational torque to the steering without adding dynamic noise, or to perform illusion-induced guidance using VR. Furthermore, the driver may perform a prescribed operation such as steering or steering, and may confirm the response in response to a specific torque response request by voice or the like.
  • the traveling control unit 33 makes the acceleration of the vehicle larger or smaller than usual with respect to the depression amount of the accelerator pedal.
  • the driving state detection unit 142 detects the driver's responsiveness and the awakening degree based on whether the accelerator pedal is operated to adjust the speed of the vehicle to a desired speed, and the reaction speed. .
  • the difference between the normal acceleration and the acceleration of the vehicle in this case is desirably within a range where the driver can correct the acceleration unconsciously.
  • the travel control unit 33 makes the deceleration of the vehicle larger or smaller than usual with respect to the depression amount of the brake pedal.
  • the driving state detection unit 142 detects the driver's responsiveness and the alertness based on whether or not the brake pedal is operated to adjust the speed of the vehicle to a desired speed, and the reaction speed. .
  • the difference between the normal deceleration and the deceleration of the vehicle in this case be within a range where the driver can unconsciously correct the deceleration.
  • the driving state detection unit 142 When the driver is operating the portable terminal 12, the driving state detection unit 142 causes the communication unit 27 to display a subwindow indicating an instruction to the driver on the screen of the portable terminal 12. Then, the driving state detection unit 142 detects the driver's responsiveness and the alertness based on the presence or absence of the driver's normal response to the instruction, the reaction speed, and the like.
  • FIG. 5 shows an example of the automation level.
  • SAE Society of Automotive Engineers
  • FIG. 5 shows an example of the automation level.
  • SAE Society of Automotive Engineers
  • the level of automatic operation defined by SAE is conveniently used with reference to SAE, problems and validity in the case where automatic operation is widely used are not considered in the industry. Not necessarily used in the interpretation as defined.
  • the use form is not limited to the use form that guarantees the content described in the present specification.
  • the automation level is divided into five levels from level 0 to level 4.
  • Automation level 0 is referred to as "no operation automation”. At automation level 0, the driver performs all driving tasks.
  • Automation level 1 is called "driver support”.
  • a system that performs automatic driving hereinafter, simply referred to as a system
  • Automation level 2 is referred to as "partial operation automation”. At automation level 2, the system performs, for example, the subtasks of limited driving tasks for both front and rear and left and right vehicle control.
  • Automation level 3 is referred to as "conditional operation automation”. At automation level 3, the system performs all driving tasks within a limited area. It is not clear how much secondary tasks can actually be performed at this level of automation. The driver performs secondary tasks such as operation of the mobile terminal 12, telephone conference, video watching, games, thinking, conversation with other passengers, etc. while driving the vehicle, for example. But there are many issues in terms of safety.
  • the driver performs the driving operation, etc. in response to the request of the system at the time of the preliminary response (during fallback) due to the failure of the system, the deterioration of the traveling environment, etc. It is expected to do properly. In other words, during this time, the driver needs to be in a quasi-standby state for return.
  • Automation level 4 is referred to as "advanced operation automation". At automation level 4, the system performs all driving tasks within a limited area. In addition, it is not expected that the driver performs a driving operation or the like at the time of preliminary handling (during fallback). Thus, for example, while the vehicle is traveling, the driver can perform a secondary task in a true sense, and can take a nap depending on the situation.
  • the driver carries out all or part of the driving task, and the monitoring and handling agent related to safe driving is the driver.
  • the driver is required to have the ability to always return to driving as needed. Therefore, it is not permitted for the driver to engage in secondary tasks other than driving, such as lowering attention at the time of driving and forward attention.
  • automation level 3 and automation level 4 the system carries out all driving tasks, and monitoring and handling related to safe driving becomes the system.
  • the driver may need to perform the driving operation.
  • ⁇ Switching of operation mode> a drive that requires the driver to directly intervene in some way to affect the driving of the vehicle will be referred to as “manual (manual) driving”. Therefore, at automation level 0 to automation level 2, manual operation is performed. As shown in FIG. 6, the operation mode at automation level 0 to automation level 2 is referred to as a manual operation mode.
  • autonomous automatic driving driving that does not require any driver's intervention
  • autonomous automatic driving autonomous driving
  • the automatic operation is basically performed.
  • manual operation may need to be performed depending on the requirements of the system. That is, at the automation level 3, since the driver's departure from the driving operation needs to be limited, automatic driving under attention is performed. Therefore, the operation mode at the automation level 4 is referred to as an automatic operation mode, and the operation mode at the automation level 3 is referred to as an attentional automatic operation mode.
  • level 3 automatic operation defined as automatic operation under attention is based on the idea that it is not ergonomically suitable as an operation mode for continuous use for a long time There is. Therefore, in level 3 automatic driving, the driver must not be able to concentrate on the complete secondary task, but can not continue to be in a state of being unable to directly intervene even though the driver can not directly intervene in driving steering. Depending on the form of use, it can be said that it is a traveling section that is very painful.
  • Level 3 automatic operation mode which is the automatic operation under caution is not a mode assuming continuous long-term use.
  • Level 3 automatic operation mode is a buffer section at the time of switching from automatic operation mode 4 and the use to make the driver stand by as a backup for a short period if it is difficult or risky to pass through the section while autonomous automatic driving. It is an automatic operation mode limited to the use to be used. However, steady use may be performed as long as the driver is always used in combination with a means for maintaining awareness connection for awakening return to driving through viewing of the screen of the tablet or the like by operation of a portable terminal.
  • the buffer section at the time of switching is selected. It is based on the idea of an automatic operation mode provided for passing.
  • switching from the automatic driving mode to the manual driving mode is performed according to the detection of the driver's reactivity level and the awakening level using gesture recognition, saccade information, active reaction response detection, or voice recognition. Whether or not it is determined is executed as appropriate.
  • the mode transition during this period is basically limited to the case where the driver's ability to return to the manual operation at automation level 4 is secured, the driver's active steering ability is observed until just before the switching ( Not determined. Therefore, the situation where it is possible to switch is a road where security is secured without any risk of straight line and the driver's steering ability such as LKAS or ACC copes with the driver's handover failure with the residual ADAS function against the steering ability failure If possible.
  • the driver's manual driving ability determination when the driver's manual driving ability determination is performed, the handover is completed for the first time, and when the control by the steering intervention is entrusted at the unreliable steering detection stage, the driver's operation in the sleep state It is also conceivable to induce an accident at
  • the vehicle control unit 28 in charge of control of the vehicle sets a section of automation level 3 before entering a section that requires switching from automatic to manual while traveling, and determines the recovery ability of the driver during that time And prepare for the entry of a section where the possible automation level is at most 2 or less.
  • the driving mode is indicated by thick arrows # 11, # 12, and # 13 when the driver's reactivity and alertness can not be detected when switching the white arrows # 1, # 2, and # 3.
  • the emergency evacuation mode is entered.
  • the emergency evacuation mode is not described in detail, but actually has two functions.
  • the first function is a vehicle that is running normally, and when it is difficult to continue or take over normal running assumed due to the driver's awakening degree or sudden change in physical condition, etc., a safe evacuation place for the vehicle It is a function to make emergency evacuation travel.
  • the second function is a means of moving to a hospital etc. urgently in a transportation poor area where the driving ability is originally degraded, and is a function of securing the moving means even when there is no steering ability by the driver.
  • the second function is a function in which the priority of the moving speed itself is lowered, and it becomes one of the driving modes of automatic driving that aims to secure the movement by combining the remote assistance and the traveling assistance of the leading vehicle. .
  • the transition from the emergency evacuation mode to the automation level 3 or to the automation level 4 is, for example, only for special cases such as patient conveyance during an emergency. It becomes.
  • the use case assumed as a form of use used automatic driving level 4 in the area where automatic driving of level 4 is possible for the passenger who can not wait for the arrival of the emergency vehicle to move to the expressway service area at the middle point Movement etc. can be considered. If the normal user transitions to the emergency evacuation mode due to a handover failure, the procedure is to return only through a predetermined procedure such as a return failure record (not shown).
  • the return from manual operation to automatic operation is to prevent the start of secondary task execution from the assumption that the driver in manual operation is "in automatic operation” for easy “in automatic operation” by introducing a known procedure for returning the driver's automatic operation. It is possible to reduce the risk of carelessness due to the assumption in the manual operation mode. And, even after well-known, it is possible to use a mode display for further preventing the believing and a warning of steering-assisted departure.
  • step S1 the driver monitoring unit 26 authenticates the driver. Specifically, the driver imaging unit 101 of the driver monitoring unit 26 images the driver. The authentication unit 104 recognizes the driver's face in the driver image obtained by photographing.
  • the authentication unit 104 also identifies the driver by searching for a face image that matches the driver's face among the face images stored in the storage unit 35. For example, in the storage unit 35, face images of the respective users who use the vehicle and information of the respective users such as identification information are linked and managed.
  • the authentication unit 104 determines that the authentication is successful if the driver can be identified, and determines that the authentication fails if the driver can not be identified.
  • the authentication unit 104 supplies the result of the driver's authentication to the vehicle control unit 28.
  • Other means such as fingerprint authentication, vein authentication and iris authentication may be used instead as the driver authentication technology.
  • the traveling of the vehicle may be prohibited.
  • the travel of the vehicle may be permitted by the driver performing a predetermined operation in an environment where security is secured and performing new user registration.
  • the main purpose of authenticating the driver is to correlate the characteristics of the driving operation of the authenticated driver with the state of the driver and control the vehicle accordingly. Therefore, the authentication result does not necessarily have to be used for control of permission or prohibition of vehicle travel. Thereby, for example, in an emergency or the like, it is possible to permit traveling in an unauthenticated state. In addition, you may make it notify circumference
  • step S2 the log generation unit 125 starts log recording.
  • step S3 the vehicle control unit 28 acquires a destination. Specifically, a passenger of the vehicle (not necessarily the driver) inputs a destination via the input unit 24. The input unit 24 supplies the vehicle control unit 28 with information indicating the acquired destination.
  • step S4 the vehicle control system 11 starts acquiring the weather, events, and the like of all the sections that affect the assumed route to the purpose and the section passing and the peripheral information of the approaching section accompanying the progress.
  • the surrounding imaging unit 21 starts imaging the traveling direction of the vehicle and the periphery, and starts supplying a surrounding image obtained by imaging to the vehicle control unit 28.
  • the peripheral information acquisition unit 22 acquires peripheral information on the environment and objects around the vehicle such as millimeter wave radar, laser radar, ToF sensor, sonar, raindrop sensor, road light state sensor, road surface condition sensor, and the vehicle of peripheral information
  • the supply to the control unit 28 is started.
  • the vehicle information acquisition unit 25 starts acquisition of vehicle information and supply to the vehicle control unit 28.
  • the position measurement unit 23 starts measurement of the current position of the vehicle and supply of the measurement result to the vehicle control unit 28.
  • the communication unit 27 starts receiving an LDM (Local Dynamic Map) from an ITS spot (not shown) and supplying the LDM to the vehicle control unit 28.
  • LDM Local Dynamic Map
  • the communication unit 27 starts receiving map data and the like from a server (not shown) and supplying map data and the like to the vehicle control unit 28.
  • the map data may be stored in advance in the storage unit 35, and the vehicle control unit 28 may acquire the map data from the storage unit 35.
  • the communication unit 27 starts reception of various types of traffic information from a roadside device (not shown) and supply of traffic information to the vehicle control unit 28.
  • a roadside device not shown
  • traffic information to the vehicle control unit 28.
  • the communication unit 27 by acquiring the latest update information from the communication unit 27, it is possible to update the risk change point in which temporal change has occurred in the map information acquired in advance.
  • map information information on maps such as LDM and map data.
  • the periphery monitoring unit 121 starts monitoring the periphery of the vehicle based on the periphery image from the periphery imaging unit 21, the periphery information from the periphery information acquisition unit 22, and various types of information from the communication unit 27.
  • the route setting unit 151 appropriately corrects the current position of the vehicle based on the information acquired from the surroundings monitoring unit 121 and the acceleration and angular velocity of the vehicle included in the vehicle information supplied from the vehicle information acquisition unit 25. . Thereby, for example, the estimation error of the current position of the vehicle due to the information in which the temporal change in the map information is not reflected or the detection / determination error of the position measuring unit 23 is corrected.
  • step S5 the route setting unit 151 starts setting of the traveling route. Specifically, based on the map information, the route setting unit 151 sets a traveling route from the current position or the designated position to the destination while considering the driving ability of the driver and the like. In addition, the route setting unit 151 changes the traveling route or presents a route option as necessary, based on the information such as the time zone, the weather to the destination, traffic congestion, and traffic restrictions.
  • step S6 the automation level setting unit 152 starts updating the automation level.
  • the automation level setting unit 152 sets the distribution of the permitted automation level (hereinafter referred to as “permitted automation level”) on the traveling route based on the map information, the surrounding information, and the like.
  • the allowable automation level indicates the maximum value of the automation level that can be set in the target section. For example, in a section where the allowable automation level is level 3, the vehicle can be driven with the automation level 3 or lower.
  • the automation level setting unit 152 sets the distribution of allowable automation levels on the traveling route to a default value indicated by map information or the like.
  • the automation level setting unit 152 automates the allowance on the traveling route based on the information on the traveling route and the surrounding environment such as the weather, the state of the road, the accident, the construction and the traffic regulation obtained from the map information and the surrounding information. Update the distribution of levels as appropriate.
  • the allowable automation level is lowered from the original level 3 to the level 2 or the maximum speed is limited.
  • the allowable automation level is lowered to level 1 or level 0 in a section where an accident occurs or a falling object is detected.
  • the speed limit may be lowered, or the allowable automation level may be lowered to level 1 or level 0.
  • the automation level setting unit 152 appropriately updates the distribution of allowable automation levels on the traveling route based on such limitation.
  • step S7 the vehicle control system 11 starts monitoring the driver.
  • the driver imaging unit 101 of the driver monitoring unit 26 starts imaging of the driver and supply of the driver image obtained by imaging to the vehicle control unit 28.
  • the biometric information acquisition unit 102 starts acquisition of the driver's biometric information and supply to the vehicle control unit 28.
  • the gaze detection unit 103 may be a block specialized for eye analysis, or based on the driver image of a wide area, the driver's face direction, gaze direction, blink, eye movement (eg, fixation, saccade, etc. Etc.), and supply of the detection result including such information to the vehicle control unit 28 is started.
  • the driving behavior analysis unit 141 starts analysis of the driving behavior of the driver based on the driver image, the vehicle information, the learning result by the learning unit 126, and the like.
  • the driving state detection unit 142 detects the driver's state based on the driver image, the driver's biometric information, the detection result by the sight line detection unit 103, the authentication result by the authentication unit 104, and the learning result by the learning unit 126. Start detection.
  • the driving state detection unit 142 starts detection of the driver's posture, behavior, and the like.
  • the driving state detection unit 142 detects the responsiveness and the awakening degree of the driver.
  • the detection results of the driver's responsiveness and the awakening degree are supplied from the driving state detection unit 142 to the switching determination unit 155.
  • the switching determination unit 155 determines the switching from the automatic driving mode to the manual driving mode based on at least one of these detection results. Is done. The determination of switching from the automatic driving mode to the manual driving mode is performed after notification of the driving mode switching to the driver.
  • the driver's responsiveness may be, for example, external requests, instructions, and stimuli, and the presence or absence of the driver's reaction to an obstacle or the like in the direction of travel of the vehicle, the reaction speed, and the accuracy of the reaction. It is defined based on etc.
  • the driver's responsiveness is lowered when the driver's awareness is not directed to the driver or when the driver's awareness is not intentionally reacted.
  • Methods for detecting driver responsiveness and alertness include passive monitoring and active monitoring as described above.
  • the driver's responsiveness and alertness are detected by passively observing the driver's condition.
  • the driver's responsiveness and alertness are detected based on the driver's movement such as face direction transition, gaze direction transition, blink frequency, eye movement transition, and the like.
  • gaze movement or fixation on an object correlated to the visual field information of the real space obtained by the peripheral imaging unit 21 or the peripheral information acquisition unit 22 is observed, and based on the result, the driver-specific learned eye With reference to the behavior, the driver's responsiveness and alertness are detected.
  • the awakening degree of the driver is detected based on biological information such as the heart rate and body odor of the driver.
  • the driver's responsiveness and alertness Changes are detected.
  • these driver's reactions have characteristics specific to each driver, learning of characteristics according to the driver's situation is performed, and based on the learning result, the driver's responsiveness and arousal level are It may be detected.
  • the driver's responsiveness and arousal level are obtained by giving the driver stimulation, instructions, etc. by sight, hearing, tactile sense, etc. and observing the driver's response (response) to the given stimulation, instructions, etc. It is detected.
  • Active monitoring is used, for example, when it is difficult to detect the driver's responsiveness and alertness by passive monitoring, or when the detection accuracy is to be enhanced.
  • the driver's intervention in the travel operation device may be completely interrupted.
  • the driver's reaction is steered even if the operation state of the travel operation device is monitored. It is no longer possible to detect from the operation situation of Active monitoring is an effective means to ensure that the driver's condition can be grasped even in such a case.
  • active monitoring has a function that complements passive monitoring. Also, active monitoring is used to wake up the driver, for example, by applying a stimulus.
  • the detection of the responsiveness and the awakening degree of the driver may be performed after the notification of switching the manual driving mode to the driver, or when there is a correction operation using the travel operation device. It may be performed.
  • the driving state detection unit 142 controls the display unit 29 to display short words or numbers in the driver's field of vision to make the driver read aloud or display a simple mathematical expression, and the driver to calculate the calculation result.
  • the driver's responsiveness and arousal level can be detected by making the speaker speak.
  • the driving state detection unit 142 controls the display unit 29 to display the pseudo target that is the target of the line of sight in the driver's field of view, thereby tracking the movement of the line of sight of the driver. Sex and alertness can be detected.
  • the driving state detection unit 142 controls the voice output unit 30, gives the driver a simple instruction (for example, shakes the head, etc.), and observes the driver's reaction to the instruction. The driver's responsiveness and alertness can be detected.
  • the driving support control unit 153 controls the traveling control unit 33 according to the instruction of the driving state detection unit 142, and causes the vehicle to travel unnaturally within the range where safety can be ensured. Then, the driving state detection unit 142 detects the responsiveness and the awakening degree of the driver based on the reaction of the driver to the unnatural driving.
  • the processing for detecting the driver's responsiveness and the awakening degree based on the driver's reaction to the unnatural travel of the vehicle is performed by the travel control unit 33 and the driving state detection unit 142 described above with reference to FIG.
  • the processing is similar to that of the driving support control unit 153.
  • a state of consciousness In addition to the driver's state described above, other types of states, such as a state of consciousness, a state of mind, a state of tension, and the degree of influence of a drug, may be detected.
  • step S8 the learning unit 126 starts the learning process.
  • the learning unit 126 may start learning of the correlation between the driving ability of the driver and various observable states or behaviors of the detectable driver based on the analysis result of the driving behavior analysis unit 141. it can.
  • the learning unit 126 starts learning of biological information when the driver is performing the manual driving normally, the movement of the driver, and the tendency of the driving operation of the driver. For example, when the vehicle stably travels in the center of the lane, the vehicle is stably stopped by a stop signal, etc., or the vehicle is decelerated appropriately in the curve, the driver performs the manual driving normally. It is detected as
  • This learning is, for example, the driving behavior such as the behavior of the driver's line of sight when the driver is performing the manual driving normally, the posture of the head, the posture of the body, the pulse waveform, the breathing state, and the pupil response to external light It is carried out so as to constantly learn the correlation between the driver's own characteristic and the normal driving characteristic. By using this learning result, it is possible to improve the accuracy of passive monitoring.
  • the learning unit 126 starts learning of the driver's response characteristics to active monitoring so as to distinguish between normal and abnormal states. By using this learning result, it is possible to improve the accuracy of active monitoring.
  • any learning method such as simple correlation learning or complex artificial intelligence learning using CNN (Convolutional Neural Network) can be used for the above learning.
  • the driver's state for example, the driver's health state and fatigue condition, the past, accident and near-miss experience, over-taking or sensitivity to a specific event
  • the driver's state for example, the driver's health state and fatigue condition, the past, accident and near-miss experience, over-taking or sensitivity to a specific event
  • the learning unit 126 stores the learning result in the storage unit 35.
  • the learning result may not only be stored and reused in the used vehicle, but may be stored separately from the vehicle in an electronic key or a remote server so that it can be used in another vehicle such as a rental car .
  • the driver takes in the learning results from the previous use in the vehicle used repeatedly, determines the obsolescence, adds a safety margin to the learning dictionary obtained by the previous use, and makes an initial determination You may use as data.
  • the learning characteristic since the response characteristic changes when the vehicle is not driven for a certain period of time, the learning characteristic is appropriately updated according to the usage history and the safety coefficient is added according to the vacant period of the usage history and judgment is made. Good.
  • step S9 the driving support control unit 153 starts driving support. That is, the driving support control unit 153 controls the traveling control unit 33 in accordance with the current automation level, for example, to start processing for supporting the driving of ACC, LKAS, TJA, AEBS, etc. as a part thereof. Do.
  • step S10 the driving support control unit 153 performs the continuous traveling by controlling the traveling control unit 33 in accordance with the current automation level.
  • step S11 the driving mode switching control unit 154 controls the communication unit 27 to obtain and update the LDM of the approaching section based on the current position on the traveling route.
  • step S12 the driving mode switching control unit 154 confirms the states of the LDM and the driver.
  • the driver's state confirmed here includes the driver's secondary task execution status, the driver's responsiveness and the alertness.
  • the driver's responsiveness and alertness are confirmed based on the detection result of the driving state detection unit 142.
  • the automation level may change due to changes in the traveling route and the driver's situation.
  • the driving mode switching control unit 154 needs to obtain new information and continuously monitor the driving route and the driver.
  • the driver is limited to the secondary task content in a state in which the driver can promptly start the operation return, and the use form of any secondary task Also in the case of the above, security is ensured by limiting to a range that does not involve withdrawal of attention.
  • Posture inside and outside are configured in the state of NG.
  • the section in the posture awakening OK (in the posture OK) is a section in which traveling can be performed in the automatic driving mode, as long as the seating posture of the driver is a posture defined as a seating posture capable of returning immediately to manual driving.
  • this awakening-under-OK section in the posture is a section in which automatic driving can be performed without any problem unless an unexpected situation occurs. Therefore, it is possible for steady-state use to be able to conditionally execute the execution of a short-term limited secondary task using automatic driving in a short period even within a level 3 or higher interval or a level 2 interval. It is.
  • the actual application depends on the characteristics of the vehicle and the target safety.
  • the execution of the short-term secondary task may be the possibility of the target being a confirmation or operation of a primary navigation screen leading to front carelessness.
  • the driver's sitting posture is within the range defined as the sitting posture that can be returned to manual driving, perform the secondary task under automatic driving in the section of NG under awakening in posture (NG in posture). It is a section that should not be.
  • a section where the driver's sitting posture is outside the range defined as the sitting posture where the driver can return to manual driving is a section where automatic driving travel of level 3 or higher is possible, in the section where the awakening is OK outside the posture (OK outside the posture).
  • the grace period of the seating return is secured, it is a zone where the secondary task may be executed temporarily for a short time temporarily under the automatic driving mode in the level 3 allowable traveling zone.
  • the driver's sitting posture is a posture outside the range defined as the posture where the driver can immediately return to the manual driving, the driver needs to return to the driving. Even if the awakening level is sufficiently maintained, such a leaving attitude is a section where automatic driving is not permitted.
  • the steady leaving secondary task work in a section where level 3 is permitted is a section corresponding to prohibition.
  • the section of OK inside and outside the posture is a section where secondary tasks can be executed under level 4 equivalent automatic driving regardless of the state of the driver.
  • NG is a section that requires passing at level 0 or 1 with a risk to automatically pass through the road section, and even for roads where normal level 4 is permitted, for any reason In this section, automatic driving is not permitted regardless of the driver's condition, because LDM or the like is not updated or safety is not confirmed.
  • the allowable automation level of the section S1 of the point P1 to the point P2 is set to the level 0 or the level 1. Further, whether or not the secondary task can be executed in the section S1 is set as "inside posture NG".
  • the allowable automation level of the section S2 of the point P2 to the point P3 is set to level 3. Further, whether or not the secondary task can be performed in the section S2 is set as awake in the post-attention awakening OK, and whether or not the short-term limited secondary task is performed is set as the off-post awakening in the non-posted OK.
  • the allowable automation level of the section S3 of the point P3 to the point P4 is set to level 4. Further, whether or not the secondary task can be executed in the section S3 is set to be OK both inside and outside the posture.
  • the allowable automation level of the section S4 of the point P4 to the point P5 is set to level 2. Further, whether or not the secondary task can be performed in the section S4 is set to NG regardless of whether the posture is inside or outside, and whether or not the short-term limited secondary task can be performed is set to be awakening OK within the posture.
  • the timing not accompanied by the return delay risk is determined based on the steady state of the driver's awakening or posture, the safety status of the planned road, etc., and the takeover delay Q1 is determined. ing.
  • the active confirmation of the driver's hand-over according to the present invention is performed via this level 3 equivalent traveling.
  • the section S4 of the point P4 to the point P5 is at level 2.
  • the interval S4 becomes all level 3 and the interval S5 (level 3 interval) becomes level 4 with the passage of time during retrogression, it is one. Challenges remain. That is, in a route section where a section of level 4 is interrupted and travels through a section of level 3 and then a level 4 again, it is possible to pass the level 3 section which passes halfway through the corresponding section.
  • the driver's return intervention is not required if it is under attention, the device steering intervention by the driver is not performed at all in this case.
  • the temporary level 3 return condition is determined during the above-described level 4 and the driver control is grasped and detected by the vehicle control system 11 while in the level 3 section.
  • the active steering response of temporary driving may be intentionally confirmed.
  • the allowable automation level of the section S5 of the point P5 to the point P6 is set to level 3. Also, whether or not the secondary task can be performed in the section S5 is awake within the post-OK state (a steady operation return is possible and a secondary task can be executed under the awakening necessary for the operation return). Whether or not to execute the task is set as an interval that is off-post awakening OK (if it is a short-term limitation, even if it is out-of-post you can execute a secondary task).
  • the allowable automation level of the section S6 of the point P6 to the point P7 is set to level 0 or level 1.
  • secondary task executability of section S6 is NG inside and outside the posture (immediate return to driving is possible and even if there is a sufficient awakening withdraw from the frontal attention driving there is a risk because even with navigation system operations etc. It is set as a section where permission is not permitted.
  • the point P7 is also an arrival point.
  • the allowable automation level shifts from level 4 to level 2
  • the secondary task executability shifts from OK inside and outside the posture to NG both inside and outside the posture.
  • the allowable automation level shifts from level 3 to level 1 (level 0)
  • secondary task executability shifts from OK inside and outside the posture to NG both inside and outside the posture .
  • the transition control before this section is a transition grace period necessary for the driver to complete the transition to the state required for the next section in the next intrusion section prior to the entry to the corresponding section. Especially, it is important when intruding from the automatic driving section to the manual driving and the permission section of the automatic driving under attention.
  • the operation mode switching control unit 154 sets, as a scheduled handover start point, a point that is a predetermined distance before the point at which the allowable automation level and the secondary task executability shift.
  • the timing at which the vehicle passes the planned handover start point is the timing at which the driver is notified of switching from the automatic driving mode to the manual driving mode.
  • operation mode switching control unit 154 sets point Q1 shown before point P4 which is the end point of section S3 and point Q5 shown before point P6 which is the end point of section S5 as the planned handover start point .
  • the timing at which the vehicle passes points Q1 and Q5 is the timing at which the driver is notified of switching from the automatic driving mode to the manual driving mode.
  • the section S11 of the point P11 to the point P12 corresponds to the section S1 from the point P1 to the point P2 of FIG.
  • the allowable automation level of the section S11 is level 0 or level 1, and the secondary task execution availability is NG outside the posture.
  • section S12 of the point P12 to the point P13 it is assumed that a change such as becoming a situation where the road and the road become unclear due to snow accumulation and so forth and becomes unsuitable for automatic driving occurs.
  • the allowable automation level of section S12 is changed to level 2 (broken line), and the secondary task executability is NG for both inside and outside of the posture, or is no longer steadily permitted to be OK within the awakening in the posture and short-term limited Only the secondary task is changed to a situation that is permitted under awakening in posture.
  • Section S12 in FIG. 11 corresponds to FIG. 10 in which the allowable automation level is level 3, that is, section S2 before departure.
  • a section S14 of FIG. 11 is a section including a part of the second half of the section S3 of FIG. 10 in which the allowable automation level is level 4 and a part of the first half of the section S4 of FIG.
  • the allowable automation level is level 2 and the secondary task executability is NG both inside and outside the posture; Whether or not to execute is set as the awakening lower section within the posture.
  • the allowable automation level of the section S16 is changed to level 2 (broken line), and the secondary task executability is NG outside the posture inside and outside the awakening, and is not permitted any longer under steady state or within the posture awakening; Only in the next task, the permission condition is changed to awake in the posture and OK.
  • the section S17 of the point P17 to the point P18 at which the state due to the change 3 ends is the level 0 or the level 1 or 2 of the permitted automation level or not. Both are set as an NG section.
  • the driving mode switching control unit 154 changes (resetting) the timing of notifying the driver that the automatic driving mode is to be switched to the manual driving mode by changing the scheduled handover start point according to the setting after the change. Become.
  • the operation mode switching control unit 154 sets a point Q11 shown in front of the point P14 of the section S14 as a planned handover start point.
  • the timing when the vehicle passes point Q11 is the timing when the driver is notified that the automatic driving mode is switched to the manual driving mode.
  • the traveling route and the driver's situation change from moment to moment from moment to moment.
  • data of the latest LDM at the point N after a predetermined time has elapsed since the start of traveling is shown. Even after the start of traveling, there is a change in the situation as shown by the balloon in FIG.
  • the vehicle is currently traveling at a point P23 point N in the section S23 of the point P23 to the point P24.
  • the section S21 of the point P21 to the point P22 is a section in which the allowable automation level is set as the level 0 or the level 1, and the vehicle has already been run with the allowable automation level as the level 1.
  • Section S21 corresponds to section S11 in FIG. Note that the secondary task executability in the section S21 is a section that is set as NG both inside and outside the posture and has passed through.
  • the section S22 following the section S21 from the point P22 to the point P23 is a section in which the allowable automation level is set as the level 2 and has already been traveled based on such setting.
  • the section S22 corresponds to the section S12 of FIG.
  • the secondary task executability in the section S22 is NG in both inside and outside of the posture, and the short-term limited secondary task executability is a segment which has been set as OK in the posture within awakening.
  • the allowable automation level is traveling at level 4. That is, since the vehicle travels in the fully automatic driving mode, the driving mode switching control unit 154 travels while acquiring update data of the latest LDM of at least the section indicated by the arrow R1.
  • the section indicated by the arrow R1 is a planned travel section from a secondary task (state in which the driver is not present) to a certain period ahead which can be reliably restored.
  • the shortest information acquisition section of this LDM information in advance is, for example, the shortest period during which recovery from secondary tasks can be made with a certain margin, in the case of long-term absence due to, for example, a driver sleeping or moving a platform. You must at least define and keep updating. Hereinafter, for example, it is assumed that the change information to the prior information is acquired by the section update at that time.
  • the predicted time required for recovery from the monitoring of the driver is constantly monitored It is possible to temporarily calculate the time required for recovery from the status grasp of the person.
  • the driver's intervention return request level associated with the change 21 is updated, and the section S24 of the point P24 to the point P25, which was not initially included in the initial travel or the information below N point, changes the allowable automation level to level 1; Whether or not the secondary task can be executed in that section is NG both inside and outside the posture.
  • the operation mode switching control unit 154 calculates the predicted timing necessary for the return, and changes the point Q21 shown in front of the point P24 of the section S24 to the planned handover start point.
  • the prediction timing is calculated in consideration of characteristics based on the learning of the driver's return characteristics, dynamics characteristics of loading and braking of the vehicle, and specification of road safety.
  • the timing at which the vehicle passes point Q21 is the timing at which the driver is notified of switching from the automatic driving mode to the manual driving mode.
  • the operation mode switching control unit 154 sets the allowable automation level to level 1 and sets the secondary task executability as NG for both inside and outside of the posture. For example, timing calculation is performed according to the situation, such as an early warning to a sleeping driver, a short notice when a smartphone is operated while being seated and paying attention to the front.
  • the driver request means prevents the unconscious return to the automatic driving mode by the driver and the driver's misunderstanding despite the fact that the vehicle control system 11 is not restored to the automatic driving mode. It is a function to prevent an illusion. If the driver performs a control sequence that does not have the upper-level automatic driving level return well-known function, the system assumes that the driver is continuing to use automatic driving according to the driver's expectation when traveling in a section where automatic driving return is not originally performed. It is because there is a possibility of inducing.
  • the allowable automation level is level 4 and the secondary task executability is OK in the inside and outside of the posture as in the section S13 of the point P13 to the point P14 in FIG. 11.
  • the point Q11 is the planned handover start point.
  • a change 22 occurs from the work schedule indicated by change 2 of points P14 to P15 in FIG. 11, the construction section information is updated, and the construction is performed in section S26 of points P26 to P27.
  • a section reduction change has been made.
  • the allowable automation level is level 1
  • the secondary task executability is NG both inside and outside the posture.
  • the operation mode switching control unit 154 changes the point Q22 shown in front of the point P26 of the section S26 from the point Q11 to the planned handover start point.
  • the timing at which the vehicle passes point Q22 is the timing at which the driver is notified that the automatic driving mode is to be switched to the manual driving mode.
  • section S28 of the next point P28 to point P29 the weather improves, the road and the road segment become sharp, and a change 23 occurs such that the road environment is improved. Due to this change 23, the allowable automation level of section S28 in FIG. 12 which was level 2 in FIG. 11 has been changed to level 3 and secondary task execution availability whether it is out-post NG or in-post awakening OK In the post-attitude awakening is OK, and the short-term limited secondary task executability is changed to the off-post awakening OK.
  • the allowable automation level is set to level 0 or level 1 similarly to the section S29 of FIG. 12 and the section S17 of FIG.
  • the secondary task executability is set to NG both inside and outside the posture.
  • the recommended time (notice timing and warning timing to the driver) for which the driver is required to return is the point in time (or assumed time of entering the section). It changes from moment to moment according to the driving environment, the driver's condition, the loading of the vehicle, or the braking characteristics. That is, according to the LDM map information and environmental information, the risk of change over time due to meteorological factors such as accident, pop-out, snowfall, crosswind, and the driver's condition, the timing for asking the driver to return changes actively.
  • the speed until the driver's consciousness returns to a state in which normal driving is possible is expressed as an eigenfunction determined by learning using the driver's characteristics.
  • Such an eigenfunction is expressed as a function associated with, for example, the saccade of the eye, the micro-saccade behavior, the characteristics of the involuntary eye movement, the pupillary reflex, the blink characteristic and the like.
  • the aforementioned pulse, respiration, and brain may be expressed as a function in association with the observable information of various biological signals.
  • These observable evaluation values are observed each time a handover event occurs from automatic operation to manual operation, and a stable correlation with subsequent handover and a failure or delay of handover can be obtained, so that handover is normally performed.
  • the performance of the judgment unit of the awakening recovery is improved according to the utilization from the observable value with the value when performed as the teacher data.
  • FIG. 13 is a diagram showing a table in which secondary task executability is summarized.
  • inside means that the driver can return to the steering driver's seat.
  • the “outside posture” indicates that the steering driver's seat can not immediately return to a sitting position.
  • the typical awakening state is a state of falling asleep, but other examples include watching a video, being addicted to games, holding a remote conference call in a moving car, or sending an e-mail It falls outside the awakening of situations that are devoted to browsing and browsing.
  • individual classifications are not described in order to avoid complexity, it is also necessary to actually consider the steering function of the body, for example, so-called locomotive ability such as numbness of hands and feet by secondary task, It becomes a deciding factor of notification timing decision and the use tolerance of automatic operation.
  • Level 4 can execute a steady secondary task.
  • Level 3 If it is Level 3 or less, whether it is under awakening or not, regardless of the posture, steady secondary task execution is impossible.
  • the long-term use of continuous steering departure is basically disabled. In this case, it is difficult to continuously monitor the state of automatic traveling and keep an alert in a state where a return is always required without intervention in direct steering for a long time. If the use of Level 3 continues for a predetermined time or more, it is desirable that the driver be intermittently restored to give a change.
  • a variety of secondary tasks can also be performed with Level 4 regardless of whether the user is in the awakening state or not regardless of the posture.
  • Level 3 a short-term limited secondary task that can return early can be executed at Level 3 or higher.
  • Level 3 is not expected to be used continuously for a long time without continuous autonomous driving, and in this case, even if the driver's driving is unconscious, monitoring of the situation is repeated periodically. Therefore, if the driver sleeps or is overwhelmed with watching a video or playing a game, and the return delay occurs, it is possible to suppress the occurrence of unconsciousness by making the delay a penalty target.
  • a short-term limited secondary task can be executed at Level 2 or higher. If it is a section where a certain level of safe driving is secured, although it is not completely automatic driving, all operations conventionally prohibited such as navigation are also carried out within the scope of the secondary task where the posture is broken slightly. It is possible to assume possible operation.
  • step S13 the driving mode switching control unit 154 refers to FIGS. 10 to 12 based on (the update information of) the LDM and the driver's state detected by the driving state detecting unit 142. As described above, it is determined whether the situation has changed.
  • step S13 If it is determined in step S13 that there has been a change in situation, the process proceeds to step S14.
  • step S14 the operation mode switching control unit 154 resets (changes) the notification timing.
  • the LDM and the driver's confirmation frequency may be reset.
  • step S13 when it is determined in step S13 that there is no change in the situation, the process of step S14 is skipped.
  • step S15 the driving mode switching control unit 154 determines whether or not the current time has reached a predetermined time before the set notification timing.
  • the constant time determined here indicates a return time estimated from steady observation by eigen-learning required for return to manual driving, and is a predicted time in which manual driving can be normally performed with a certain success probability.
  • the learning method is not described in detail herein.
  • the time from when the driver receives the notification necessary for taking over to when the actual taking over is normally completed varies depending on the driver individually, and depends on the posture state, the action being performed, and the like.
  • the notification time is determined based on the statistical recovery characteristics distribution of the driver population, if possible, 100%, if not, according to the target success rate of handover.
  • the fixed time is the grace limit timing of notification given to the driver for securing the fixed success rate.
  • step S15 If it is determined in step S15 that the time has not reached the predetermined time before the notification timing, the process returns to step S10, and the subsequent processing is repeated.
  • the reason for constantly observing notification timing at low frequency and shifting to high frequency detection due to situation change is that the driver usually only wakes up and can return immediately after failure if steady observation is neglected Users who are not running can become sleepy with the passage of time and shift to a deeper withdrawal such as sleep.
  • the sampling frequency is determined.
  • the change of the driver is changed by combining the sensitive change detection and sensitive detection means. May be observed, and event-driven notification timing recalculation may be performed to detect the change. Also, depending on the content of the secondary task, the driver may periodically be notified of some situation and its recognition.
  • step S15 when it is determined in step S15 that the time has reached a predetermined time before the notification timing, the process proceeds to step S16.
  • step S16 the driving mode switching control unit 154 resets the confirmation frequency of the LDM and the driver to a higher frequency than before.
  • step S17 the driving mode switching control unit 154 determines whether the current time has reached the notification timing. For example, when the vehicle passes the planned handover start point, it is determined that the notification timing has come.
  • step S17 If it is determined in step S17 that the notification timing has not come, the process proceeds to step S18.
  • step S18 the route setting unit 151 determines whether or not the set destination has arrived.
  • step S18 If it is determined in step S18 that the vehicle has not arrived at the destination, the process returns to step S10, and the subsequent processing is repeated.
  • step S18 when it is determined in step S18 that the vehicle has arrived at the destination, the automatic driving process starts an end procedure.
  • step S17 If it is determined in step S17 that the notification timing has come, the process proceeds to step S19 (FIG. 9).
  • step S19 the driving mode switching control unit 154 determines whether the driver is in the awakening reduction state. The determination here is performed based on the degree of reaction and the degree of alertness of the driver detected by the driving state detection unit 142.
  • the driver's reactivity level and alertness level are lower than values preset as threshold values, it is determined that the driver is in the alertness reduction state, and if higher than threshold values preset as threshold values, the driver is alert. It is determined that the vehicle is not in the decrease state.
  • a fixed value uniquely defined for the driver population may be used as the threshold here. In that case, some drivers hurry to immediately return according to the individual's characteristics, and some drivers require time, so in order to improve the driver's inherent return to the characteristics and improve the accuracy, A driver-specific learning characteristic corresponding to an observable observation value of the state may be learned (periodically) in advance and determined.
  • step S19 If it is determined in step S19 that the driver is in the awakening reduction state, the process proceeds to step S20.
  • step S20 the operation mode switching control unit 154 performs notification of transition to the manual operation mode.
  • the notification of transition to the manual operation mode is to notify the driver of switching from the automatic operation mode to the manual operation mode, and is performed, for example, under the control of the notification control unit 124.
  • the display unit 29 displays a notification screen or the like that calls attention within the driver's field of view.
  • a notification screen or the like may be displayed on the screen of the mobile terminal 12.
  • control is performed such that the state in operation is forcibly saved, and the portable terminal 12 is shifted to the standby state so that the operation can be resumed from the same state, or the screen of the portable terminal 12 is forcibly turned off. May be performed.
  • the driver can be prevented from operating suddenly and operating the mobile terminal 12 in response to the notification screen being displayed.
  • Notification of transition to the manual operation mode may be performed by a method other than screen display.
  • the voice output unit 30 may output a voice message, an alarm, a buzzer, a beep, a pseudo car horn (a horn) of a following car that sounds only in the car, and the like. .
  • the light emitting unit 31 may light or blink a lamp or the like under the control of the notification control unit 124.
  • the in-vehicle device control unit 34 may perform haptic feedback such as vibrating the driver's seat or steering wheel or pulling the seat belt. The same vibration as when the vehicle crosses rumble strips or a road surface may be transmitted to the driver by vibrating the seat.
  • the same vibration as when crossing the rumble strips or the road edge may be transmitted to the driver.
  • step S21 the driving mode switching control unit 154 controls the switching determination unit 155 to perform driving mode switching determination processing.
  • each determination unit of the gesture recognition switching determination unit 201, the saccade information switching determination unit 202, the voice recognition switching determination unit 203, and the active reaction response detection switching determination unit 204 determines whether switching is possible or not. To be done.
  • the operation mode switching determination process of step S21 will be described later with reference to the flowchart of FIG.
  • step S22 the switching determination unit 155 determines whether or not switching from the automatic operation mode to the manual operation mode is possible, based on the determination results by the determination units that configure the switching determination unit 155.
  • step S22 If it is determined in step S22 that switching from the automatic operation mode to the manual operation mode is possible, the process proceeds to step S23.
  • step S23 the drive mode switching control unit 154 switches from the automatic drive mode to the manual drive mode, shifts the driver to the driver-based control state in which the driver performs the driving mainly, and then automatically End the operation control process.
  • step S19 if it is determined in step S19 that the driver is in the awakening reduction state, the process proceeds to step S24.
  • step S24 the operation mode switching control unit 154 controls the notification control unit 124 to cause an alert for awakening. For example, a loud sound or vibration that causes people to wake up is output as an alarm.
  • the alarm output in step S24 is more powerful. For example, a voice message, an alarm, a buzzer, a beep, a pseudo-knock, etc. are output at a higher volume than at the time of notification. In addition, a tone of dissonance or the like that is more uncomfortable than that at the time of notification is output. Light emission from a lamp or the like may be performed with a larger amount of light as compared to that at the time of notification, or haptic feedback may be performed with a higher intensity than that at the time of notification.
  • step S25 the driving mode switching control unit 154 determines whether the driver's confirmation return posture has been confirmed. For example, when it is possible to specify that the driver tries to take the same posture as the normal posture based on the detection result of the awakening degree by the driving state detection unit 142, it is determined that the awakening return posture is confirmed. . In the system that allows posture movement and leaving work, the determination may be performed by providing a device that determines the posture and posture movement of the driver in the vehicle.
  • step S25 If it is determined in step S25 that the awakening return posture of the driver has not been confirmed, the process proceeds to step S26.
  • step S26 the operation mode switching control unit 154 refers to the built-in timer and determines, for example, whether or not a predetermined handover completion delay time has elapsed since the notification timing.
  • step S26 If it is determined in step S26 that the predetermined time has not elapsed, the process returns to step S24, and the subsequent processing is repeated.
  • the predetermined elapsed time is, for example, the time to awakening allowed to wake up a sleeping driver, and in the case of a driver who has a bad sleep, the corresponding certified driver is long and the driver who wakes up in a short period is short. , Is the time set as personal information.
  • step S26 when it is determined in step S26 that the predetermined time has elapsed, the driver's awakening return work is abandoned, and the process proceeds to step S27. Also in the case where it is determined in step S22 that switching from the automatic operation mode to the manual operation mode is not possible, the process proceeds to step S27.
  • step S27 the log generation unit 125 performs switching NG recording to the manual operation mode. For example, a log indicating that switching to the manual operation mode could not be made is generated and recorded.
  • step S28 the operation mode switching control unit 154 activates and executes the emergency evacuation mode.
  • the emergency evacuation mode for example, control is performed such that the driver's vehicle is decelerated and slowed down to the roadside zone taking into consideration the road traveling peripheral conditions, and then emergency evacuation is performed on the road shoulder or the like. It will be. However, even if it is an emergency, road shoulder stops are not the preferred form of use.
  • the vehicle is moved to a position where it can be a non-traffic obstruction point and parked. The reason is that the spread of automatic driving advances temporarily, and if stagnation of the flow of vehicles occurs due to the occurrence of traffic congestion etc. in the first place, the traveling band is completely filled with the autonomous driving car and the passage of emergency vehicles is obstructed. Securing is extremely important for the normal operation of the transportation infrastructure.
  • processing for forcibly stopping the vehicle is performed.
  • the nearest forced stop location on the traveling route is searched by the route setting unit 151 based on the map information, and processing for stopping the searched forced stop location is performed.
  • a forced stop location for example, an emergency parking zone, a safety zone, a parking lot of a store, etc. which can stop the vehicle are searched.
  • the surrounding conditions of road travel for example, if the vehicle is decelerated and firstly stopped with only one lane in a time zone where there is a traffic volume of a single lane without a road shoulder, Become.
  • the nearest parking area or service area may be searched based on the map information.
  • the route setting unit 151 sets the parking area or the service area as a forced stopping place. It will be. If there is no parking area or service area within the specified range, or if the parking area or service area can not be reached without passing the route where manual operation is required, forced parking will be performed in the same way as in the case of emergency.
  • the location may be retrieved and set.
  • the driving support control unit 153 controls the travel control unit 33 and the like to stop the vehicle at the set forced stopping place. At this time, deceleration or slowing is performed as necessary. In addition, when the driver's medical condition has occurred due to a sudden change or the like as a factor that the driver can not return, SOS transmission may be performed together with event notification upon detection or after stopping.
  • step S101 the gesture recognition switching determination unit 201 causes the driving state detection unit 142 to detect the reactivity and the awakening degree using the gesture recognition.
  • the driving mode can be switched from the automatic driving mode to the manual driving mode by determining the return internal state of the driver based on the detection result by the driving state detection unit 142 whether or not the gesture recognition switching determination unit 201 determines Determine
  • step S102 the saccade information switching determination unit 202 causes the driving state detection unit 142 to perform the eye behavior analysis of the driver, for example, the saccade analysis to detect the driver's reactivity and alertness.
  • the driving mode can be switched from the automatic driving mode to the manual driving mode by determining the return internal state of the driver based on the detection result by the driving state detection unit 142 whether or not the saccade information switching determination unit 202 determines Determine
  • step S103 the driving state detection unit 142 causes the driving state detection unit 142 to recognize the driver's voice response and to detect the driver's responsiveness and alertness.
  • the driving mode can be switched from the automatic driving mode to the manual driving mode by determining the return internal state of the driver based on the detection result of the driving state detection unit 142 as to whether or not the voice recognition switching determination unit 203 determines Determine
  • step S104 the active reaction response detection switching determination unit 204 causes the driving state detection unit 142 to detect the driver's responsiveness and the alertness based on the driver's response to the active reaction.
  • the active reaction response detection switching determination unit 204 determines the return internal state of the driver based on the detection result by the driving state detection unit 142, that is, the reaction result that appears as the driver's cognitive response to the action acting on the drive. It is determined whether the operation mode can be switched from the automatic operation mode to the manual operation mode.
  • the determination process of switching from the automatic operation mode to the manual operation mode is not limited to that performed after the determination process of these four stages.
  • another determination process may be performed, or a determination process may be added.
  • the order of the four determination processes shown in FIG. 14 can be arbitrarily changed.
  • the effect of acting on the driver simply depends on the observation of the cognitive judgment depending on the driver's passive means, and in the case of detection, the road is a monotonous road and the passive observation of the driver does not require special attention.
  • the vehicle control system 11 actively works on the driver to make the observable state necessary for the judgment of wakefulness return There is an advantage that discrimination of observation values can be more apparent.
  • step S22 of FIG. 9 may be performed based on all the determination results of the four determination processes shown in FIG. 14, or at least one of the determination processes. It may be performed based on the judgment result of
  • steps S201 to S209 in FIG. 15 are the same as the processes in steps S1 to S9 in FIG. 7 described above. Duplicate descriptions will be omitted as appropriate.
  • step S201 the driver is authenticated, and in step S202, log recording is started.
  • a destination is acquired in step S203, and acquisition of surrounding information is started in step S204.
  • step S205 setting of a travel route is started, and in step S206, updating of the automation level is started.
  • step S207 monitoring of the driver is started, and in step S208, learning processing is started.
  • step S209 driving support is started.
  • step S210 of FIG. 16 the operation mode switching control unit 154 monitors the necessity of the manual return based on the LDM and the traffic information and the like acquired via the communication unit 27. Note that switching from the automatic operation mode to the manual operation mode is the same as manual return. Hereinafter, switching (transition) from the automatic operation mode to the manual operation mode is appropriately referred to as manual return.
  • the operation mode switching control unit 154 resets the scheduled handover start point, etc. Do.
  • step S211 the operation mode switching control unit 154 determines whether or not manual return is necessary.
  • step S211 If it is determined in step S211 that the manual return is not necessary, the process returns to step S210, and the subsequent processing is repeated.
  • step S211 determines whether the manual return is necessary.
  • step S212 the operation mode switching control unit 154 causes the notification control unit 124 to notify of the necessity of return.
  • the notification performed here is the notification of transition to the manual operation mode similar to the notification in step S20 of FIG. 9.
  • an alarm similar to the alarm in step S24 of FIG. 9 may be repeated a predetermined number of times.
  • step S213 the driving mode switching control unit 154 determines whether or not the awakening return of the driver can be expected.
  • each determination unit of the switching determination unit 155 may determine whether the switching is possible or not, and based on the determination result, it may be determined whether awakening return of the driver can be expected. The determination as to whether or not the driver can expect wakefulness recovery may be performed based on the result of at least one of the four determination processes described above.
  • step S213 If it is determined in step S213 that wakefulness return of the driver can be expected, the process proceeds to step S214.
  • step S214 the drive mode switching control unit 154 starts the drive return procedure and causes the drive state detection unit 142 to perform drive position return sequence tracking, which is tracking of position return.
  • the driving posture return sequence tracking is an operation of tracking a sequence until the driver's posture returns to a driveable posture in accordance with whether or not the driver is seated at the secondary task time.
  • step S215 the operation mode switching control unit 154 performs return monitoring to the drivable attitude. For example, monitoring is performed based on driver's movement such as face direction transition, gaze direction transition, blink frequency, eye movement transition, etc., as return monitoring to the drivable posture. Sex and alertness detection is performed.
  • step S216 the driving mode switching control unit 154 determines whether the possibility of the start of steering using the driving operation device of the driver is detected based on the result of the return monitoring in step S215.
  • step S216 If it is determined in step S216 that the possibility of the start of steering using the driver's travel operation device has been detected, the process proceeds to step S218 in FIG.
  • step S213 If it is determined in step S213 that awakening return of the driver can not be expected, or if it is determined in step S216 that the possibility of the start of steering using the driving operation device of the driver can not be detected, the process The process proceeds to step S217.
  • step S217 the operation mode switching control unit 154 activates and executes the emergency evacuation mode as in step S28 of FIG. By executing the emergency evacuation mode, the vehicle is forcibly stopped, and then the automatic driving control process is ended.
  • steps S218 to S220 in FIG. 17 a switching process by active reaction response detection is performed.
  • step S218, the active reaction response detection switching determination unit 204 causes the traveling control unit 33 to perform sensory deviation control from normal traveling, such as noise traveling.
  • Intuitive deviation control includes control such as torque addition to steering, intentional steering deviation, meandering steering, and rapid acceleration / deceleration.
  • the sensory deviation control is control that does not give a feeling of control loss.
  • step S219 the active reaction response detection switching determination unit 204 causes the driving state detection unit 142 to monitor the correction operation of the driver with respect to sensory deviation control such as noise traveling. By monitoring the corrective operation, it is detected that the driver is correctly performing an active reaction response that cancels the noise traveling.
  • step S ⁇ b> 220 the active reaction response detection switching determination unit 204 evaluates the state of the driver based on the detection result of the driving state detection unit 142. Here, it is evaluated whether or not it is possible to return to a state where normal steering is possible.
  • step S221 the active reaction response detection switching determination unit 204 determines, based on the evaluation result in step S220, whether the driver has returned to the state in which normal steering is possible.
  • step S221 If it is determined in step S221 that the driver has returned to a state in which normal steering is possible, the process proceeds to step S222.
  • step S222 the driving mode switching control unit 154 gradually transfers the right of normal steering to the driver. That is, the operation mode switching control unit 154 switches from the automatic operation mode to the manual operation mode in stages.
  • step S223 the driving mode switching control unit 154 continuously performs driving steering corresponding to steady manual driving by continuously seeing the detection results of the driver's responsiveness and the awakening degree by the driving state detection unit 142. Determine if there is.
  • the steering operation corresponding to the steady manual operation be determined based on the characteristics of the driving operation during the normal manual operation of the driver.
  • step S223 If it is determined in step S223 that driving steering corresponding to steady manual driving is being performed, the automatic driving control process ends.
  • step S221 when it is determined in step S221 that the driver has not returned to the state where normal steering is possible, or in step S223, it is determined that driving steering corresponding to steady manual driving is not performed. In this case, the processing returns to step S217 in FIG. 16 and the subsequent processing is repeated.
  • control is performed such that the driver feels the necessity of the steering correction operation as processing of the final stage of the procedure of determination of the driver's return internal state using the detection result of the awakening degree etc. Is done intentionally.
  • the driver's recovery ability can be determined with high accuracy by sequentially performing gestures, eye movement tracking, confirmation by voice recognition, etc. As a result, from the automatic driving mode to the manual driving mode It becomes possible to make the handover to a more reliable.
  • the vehicle control system 11 uses a technique such as SLAM (Simultaneous Localization and Mapping) to check and improve the accuracy of the autonomous self position for correcting the relative position of the environment, and further correct the acquired map data. Data may be created.
  • SLAM Simultaneous Localization and Mapping
  • the level of automatic driving capable of traveling according to the road environment is from the level 0 where utilization of automatic driving is not permitted.
  • the level capable of automatic driving requires the intervention of the driver sequentially, and further advanced automatic driving.
  • the explanation is based on the classification from level 4 to level 5.
  • the critical point indicates, for example, the final handover point on the map to be handed over to be completed, using information such as LDM acquired in advance.
  • the critical point could not be dealt with in manual operation when the corresponding vehicle passes the point, or when the driver's manual return is requested according to the request of the vehicle control system 11 In some cases, this is a point that may trigger a danger.
  • the point does not necessarily involve direct danger if manual return is not possible. It is the point where the driver's completion of the manual operation recovery is sought because something has happened that the vehicle control system 11 can not judge the danger or the situation.
  • the critical point is the decision point determined by the vehicle control system 11 because the vehicle control system 11 can not determine it or the vehicle control system 11 is unsure to automatically travel at a normal cruising speed. It is. Therefore, it may actually happen that the driver does not actually realize the necessity of returning to the manual operation of the vehicle by the point passing when passing the relevant critical point.
  • mixed use in a high-speed driving environment is not suitable for use in an expressway environment as it is because an autonomous driving system that can only be used at low speeds is not suitable because there are many obstacles to infrastructure functions such as congestion in road infrastructure.
  • traveling speed can be increased to enable section passing for high-speed traveling at automatic driving level 3 or level 2 In this case, it is possible to use the same means of transportation more practically, to secure safety, and to prevent the occurrence of traffic congestion or the like caused by the entry of a low speed vehicle in the road infrastructure.
  • the present technology is mainly based on the determination of the manual operation recovery capability when the driver switches from the automatic operation mode to the manual operation mode as appropriate for each road section that changes from moment to moment according to the traveling section.
  • the driver may extend the determination of the ability to recover from the manual driving.
  • the present technology can be applied to various vehicles that can automate at least part of driving regardless of the power source or energy supply source of the vehicle.
  • the present technology can be applied to gasoline vehicles, hybrid vehicles, plug-in hybrid vehicles, electric vehicles, fuel cell vehicles and the like.
  • the present technology can be applied to buses, trucks, motorcycles, etc. as well as general automobiles.
  • the present technology is effective when applied to various types of vehicles capable of switching between autonomous automatic driving and manual driving.
  • the series of processes described above can be performed by hardware or software.
  • a program that configures the software is installed on a computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 18 is a block diagram showing an example of a hardware configuration of a computer that executes the series of processes described above according to a program.
  • a central processing unit (CPU) 401, a read only memory (ROM) 402, and a random access memory (RAM) 403 are mutually connected by a bus 404.
  • an input / output interface 405 is connected to the bus 404.
  • An input unit 406, an output unit 407, a recording unit 408, a communication unit 409, and a drive 410 are connected to the input / output interface 405.
  • the input unit 406 includes an input switch, a button, a microphone, an imaging device, and the like.
  • the output unit 407 includes a display, a speaker, and the like.
  • the recording unit 408 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 409 includes a network interface and the like.
  • the drive 410 drives a removable recording medium 411 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 401 loads the program recorded in the recording unit 408 into the RAM 403 via the input / output interface 405 and the bus 404 and executes the program. Processing is performed.
  • the program executed by the computer (CPU 401) can be provided by being recorded on, for example, a removable recording medium 411 as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 408 via the input / output interface 405 by attaching the removable recording medium 411 to the drive 410.
  • the program can be received by the communication unit 409 via a wired or wireless transmission medium and installed in the recording unit 408.
  • the program can be installed in advance in the ROM 402 or the recording unit 408.
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
  • each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
  • the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
  • the present technology can also be configured as follows.
  • a traveling control unit that performs traveling control that deviates from normal traveling of the vehicle when switching the driving mode from the automatic driving mode to the manual driving mode;
  • a driving state detection unit configured to detect a driving state of the driver based on a driving operation by the driver performed for the deviation control.
  • the vehicle control device further including: a driving mode switching unit that switches the driving mode according to the driving state detected by the driving state detection unit.
  • the drive mode switching unit is configured to drive the drive mode from the automatic drive mode to the manual drive mode when the drive state detected by the drive state detection unit indicates that normal travel is possible.
  • the traveling control unit performs traveling control that deviates from the plurality of determination processes performed through the stages at the time of switching the operation mode, as the process according to the final stage or the final stage.
  • (1) to (3) The vehicle control device according to any one of the above.
  • (5) The vehicle control device according to any one of (1) to (4), wherein the traveling control unit performs traveling control to move the vehicle in a direction shifted from a traveling direction as the traveling control to deviate.
  • (6) The vehicle control device according to (5), wherein the traveling control unit performs traveling control to move the vehicle in a perpendicular direction as the shifted direction.
  • the vehicle control device performs traveling control that provides rapid acceleration and deceleration to the vehicle as the traveling control that deviates.
  • the driving state detection unit passively or semi-passively detects the driving state of the driver before the traveling control that deviates is performed by the travel control unit.
  • the vehicle control device determines the notification timing to the driver based on the state of the driver and a return prediction timing.
  • the traveling control unit determines the notification timing to the driver based on the state of the driver and a return prediction timing.
  • the driving state detection unit detects the driving state based on a correction operation performed on the traveling operation device by the driver.
  • the driving state detection unit detects at least one of the reactivity and the awakening degree of the driver as the driving state.
  • the travel control unit permits the automatic operation mode of the vehicle at a low speed by limiting the automatic drive mode, determines the switching from the automatic driving to the manual driving when shifting to the traveling at the predetermined speed or more, and travels at the predetermined speed or more.
  • the vehicle control device according to any one of (1) to (11), wherein the driver's steering intervention is obtained.
  • traveling control is performed to deviate from the normal traveling of the vehicle, A vehicle control method comprising: detecting a driving state of the driver based on a driving operation by the driver performed for the deviation control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本技術は、自動運転から手動運転への引き継ぎをより安全に行うことができるようにする車両制御装置及び車両制御方法に関する。 車両制御装置は、運転モードの自動運転モードから手動運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行う走行制御部と、逸脱する走行制御に対して行われた運転者による走行操作に基づいて、運転者の反応性及び覚醒度を検出する運転状態検出部とを備える。検出された運転者の反応性及び覚醒状態は、運転モードを、自動運転モードから、運転者による手動運転モードに切り替える際に用いられる。本技術は、例えば、自動運転の制御を行う車両制御装置に適用できる。

Description

車両制御装置及び車両制御方法
 本技術は、車両制御装置及び車両制御方法に関し、特に、自動運転から手動運転への引き継ぎをより安全に行うことができるようにした車両制御装置及び車両制御方法に関する。
 従来、運転者の姿勢崩れが運転者の癖によるものか否かを判定し、癖による姿勢崩れと判定された場合と癖以外の姿勢崩れと判定された場合とで、姿勢崩れに関する通知を異なる態様で行うことが提案されている(例えば、特許文献1参照)。
 また、従来、車両の自動運転走行を開始する前に、自動運転から手動運転に復帰することができる運転能力が運転者にあるか否かを判定し、そのような運転能力がないと判定された場合に、自動運転走行の開始を禁止することが提案されている(例えば、特許文献2参照)。
特開2016-38793号公報 特開2016-115356号公報
 ところで、自動運転から手動運転への切り替えがスムーズに実行されることが必要である。例えば、その対策として、特許文献2には、自動運転の完了時に手動運転の引き継ぎがうまくいかない場合、車両を緊急に止めることが挙げられている。
 しかしながら、交通量が多い場所などでは、引き継ぎに失敗した車両を一時的に駐車する退避エリアを設けて誘導しない限り、渋滞の要因となってしまう。
 本技術は、このような状況に鑑みてなされたものであり、自動運転から手動運転への引き継ぎをより安全に行うことができるようにするものである。
 本技術の一側面の車両制御装置は、自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行う走行制御部と、前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態を検出する運転状態検出部とを備える。
 前記運転状態検出部により検出された前記運転状態に応じて、前記運転モードを切り替える運転モード切り替え部をさらに備えることができる。
 前記運転モード切り替え部は、前記運転状態検出部により検出された前記運転状態が、正常な走行が可能であることを表している場合に、前記運転モードを、前記自動運転モードから前記手動運転モードに切り替えることができる。
 前記走行制御部は、前記運転モードの切り替え時に段階を経て行われる複数の判定処理のうちの最終段階または最終段階に準じた処理として、前記逸脱する走行制御を行うことができる。
 前記走行制御部は、前記逸脱する走行制御として、進行方向に対してずれた方向へ車両を移動させる走行制御を行うことができる。
 前記走行制御部は、前記ずれた方向としての直角方向へ車両を移動させる走行制御を行うことができる。
 前記走行制御部は、前記逸脱する走行制御として、車両に対して急加減速を与える走行制御を行うことができる。
 前記走行制御部は、前記運転モードを切り替えることを前記運転者に通知された後で、前記逸脱する走行制御を行うことができる。
 前記運転状態検出部は、前記逸脱する走行制御が前記走行制御部により行われる前に、前記運転者の運転状態を受動的に検出することができる。
 前記運転状態検出部は、前記逸脱する走行制御が前記走行制御部により行われる前に、前記運転者の運転状態を受動的または準受動的に検出し、前記走行制御部は、前記運転者の状態と復帰予測タイミングを元に、前記運転者への通知タイミングを決定することができる。
 前記運転状態検出部は、前記運転者が行う走行操作機器への補正動作に基づいて、前記運転状態を検出することができる。
 前記運転状態検出部は、前記運転状態として、前記運転者の反応性と覚醒度のうちの少なくともいずれかを検出することができる。
 前記走行制御部は、車両の自動運転モードを低速時に限定して許可を行い、所定の速度以上の走行に移行する際に自動運転から手動運転切り替えを判定し、所定速度以上で走行する際には前記運転者の操舵介在を求めることができる。
 本技術の一側面の車両制御方法は、自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行い、前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態を検出するステップを含む。
 本技術の一側面においては、自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御が行われる。そして、前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態が検出される。
 本技術の一側面によれば、自動運転から手動運転への引き継ぎをより安全に行うことができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。
本技術を適用した自動運転システムの構成例を示すブロック図である。 運転者監視部及び車両制御部の構成例を示すブロック図である。 切り替え判定部の構成例を示す図である。 アクティブ反応応答検出による切り替え判定を説明する図である。 自動化レベルを説明するための図である。 運転モードの切り替えを示す遷移図である。 自動運転制御処理を説明するためのフローチャートである。 自動運転制御処理を説明するための図7に続くフローチャートである。 自動運転制御処理を説明するための図8に続くフローチャートである。 LDMデータの更新について説明する図である。 LDMデータの更新について説明する図である。 LDMデータの更新について説明する図である。 2次タスク実行可否についてまとめた表を示す図である。 運転モード切り替え判定処理を説明するためのフローチャートである。 自動運転制御処理の他の例を説明するためのフローチャートである。 自動運転制御処理の他の例を説明するための図15に続くフローチャートである。 自動運転制御処理の他の例を説明するための図16に続くフローチャートである。 コンピュータの構成例を示す図である。
 以下、発明を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。
 <自動運転システムの構成例>
 図1は、本技術を適用した自動運転システム10の構成例を示している。
 自動運転システム10は、車両制御システム11および携帯端末12を備える。
 車両制御システム11は、周辺撮影部21、周辺情報取得部22、位置測定部23、入力部24、車両情報取得部25、運転者監視部26、通信部27、車両制御部28、表示部29、音声出力部30、発光部31、走行制御部33、車載装置制御部34、および、記憶部35を備える。
 周辺撮影部21は、例えば、モノカメラ、ステレオカメラ、ToF(Time of Flight)カメラ、偏光カメラ、タイムゲーテッドカメラ、マルチスペクトルカメラ、赤外光などの非可視光カメラ等の各種の撮影装置を備える。周辺撮影部21は、車両の進行方向を含む、車両の周辺の撮影を行い、撮影により得られた画像を周辺画像として車両制御部28に供給する。
 周辺情報取得部22は、ソナー、レーダ、ライダ、温度センサ、湿度センサ、雨センサ、雪センサ、逆光センサ等の各種のセンサを備える。周辺情報取得部22は、車両の周辺の情報である周辺情報を取得する。さらには、路側、自車近傍を走行する走行車両、歩行者、または自転車などからの情報を無線により取得することで、自車での測定のみでは得られない死角にある情報を得るようにしてもよい。
 例えば、周辺情報取得部22は、温度、湿度、天候、路面状態等の車両の周辺の環境に関する情報、並びに、車両の周辺の物体の種類および位置等の車両の周辺の物体に関する情報等を周辺情報として取得する。周辺情報取得部22は、取得した周辺情報を車両制御部28に供給する。
 位置測定部23は、例えば、人工衛星を利用して現在位置を測定するGNSS(Global Navigation Satellite System)等の衛星航法システム、高度計、加速度センサ、ジャイロスコープ、または画像認識装置によるSLAM(Simultaneous Localization and Mapping)に代表される自律測位システムなどを組み合わせた測位システムを利用して、車両の現在位置を測定する。位置測定部23は、測定結果を車両制御部28に供給する。
 入力部24は、マイクロフォン、ボタン、スイッチ、タッチパネル、方向指示器、ジェスチャー認識機器等の入力デバイスを備える。入力部24は、運転者を含む、車両の搭乗者による指示やデータ等の入力を受け付ける。入力部24は、入力された指示やデータ等を車両制御部28に供給する。
 車両情報取得部25は、車両に関する各種の情報を含む車両情報を取得する。例えば、車両情報取得部25は、車両の速度、加速度、角速度、進行方向等の車両の動きに関する情報を車両情報として取得する。
 また、車両情報取得部25は、例えば、アクセルペダル、ブレーキペダル、ステアリング、パーキングブレーキ、シフトレバー、方向指示レバー、パワー(イグニッション)スイッチ、ランプスイッチ、ワイパースイッチ等に対する操作タイミングおよび操作量等の、運転操作に関する情報を取得する。
 さらに、車両情報取得部25は、車両の各部の状態、故障の有無等の、車両の状態に関する情報を取得する。車両情報取得部25は、取得した車両情報を車両制御部28に供給する。
 運転者監視部26は、図2を参照して後述するように、運転者の監視を行い、監視結果を車両制御部28に供給する。
 通信部27は、各種の通信方式の通信装置を備える。
 例えば、通信部27は、DSRC(Dedicated Short Range Communications)により無線通信を行う通信装置を備える。この場合、通信部27は、道路沿いに設置されたITS(Intelligent Transport Systems)スポットと通信を行い、LDM(Local Dynamic Map)を取得する。
 LDMは、例えば、路面情報、車線情報、3次元構造物情報等を含む静的情報、さらには時々刻々と変化する交通規制情報、道路工事の事前情報と実行現在の接近事前更新情報、広域気象情報等を含む準静的情報と最新更新情報、事故情報、渋滞情報、狭域気象情報等を含む準動的情報、並びに、周辺車両および歩行者情報、信号情報等を含む動的情報を含む。
 短期間の近接通信でより多くの情報の広帯域通信を優先することで、無線通信リソースの有効利用が可能となる。この広帯域通信は、特に直ぐ前方に差し迫ってくるローカライズされた走行に必須な情報の取得や自車で取得した道路環境情報をインフラ側へアップロードする上で有効な手段となる。
 また、通信部27は、さらにより遠隔な通信が可能な、例えば、携帯電話機が通信を行う通信規格(3G/4G/LTE(Long Term Evolution)等)に従って通信を行う通信装置を備える。この場合、通信部27は、インターネットなどの専用または共通の汎用ネットワークを経由して、サーバ等からより広域の地図データまたは遠方の進行地点の天候情報等の各種の情報を取得する。
 通信部27は、ビーコン装置を備える。この場合、通信部27は、安全運転またはパスプラニングを支援するために路側に設置された路側機と通信を行い、各種の交通情報を取得したり、交換したりする。
 車両が走行する予定の環境情報は、これら特定の手段に限定される必要はない。次世代携帯電話通信規格で予定される基地局通信以外に車車間のリレー通信または走行区間近傍クラウドサーバとの基地局を介さない近傍通信を行ってもよい。また、互いに冗長性を持たせて特定の通信システム故障に対して堅牢な構成にしてもよい。
 通信可能な帯域により、進行しようとするルート上の環境データ更新鮮度が変わるため、特にLDMなどの更新鮮度が著しく悪い道路区間に自車が侵入した場合、該当区間での完全自動運転での走行に必要な情報鮮度は低下してしまう。その結果、本来、運転者が介在しなくても走行できる区間として定義された区間での運転者の介在復帰が求められるようになることも想定しておく必要がある。
 通信部27は、Bluetooth(登録商標)等の車内でも利用可能な近距離無線通信装置を備える。この場合、通信部27は、スマートフォンやタブレット端末に代表される携帯端末12等と通信を行い、各種の情報の送受信を行う。
 通信部27は、取得した情報を車両制御部28に供給する。また、通信部27は、他の通信装置等に送信する情報を車両制御部28から取得する。
 車両制御部28は、ECU(Electronic Control Unit)等を備え、図2を参照して後述するように、車両制御システム11の各部の制御を行う。
 表示部29は、各種の表示装置を備え、車両制御部28の制御の下に、各種の画像や情報の表示を行う。例えば、表示部29は、ヘッドアップディスプレイまたはウインドシールドの一部に設けられた透過型ディスプレイを備え、運転者の視界に画像や情報を重畳して表示する。また、例えば、表示部29は、インストルメントパネル、カーナビゲーションシステムのディスプレイ等を備える。
 音声出力部30は、例えば、スピーカ、アラーム、ブザー等を備える。音声出力部30は、車両制御部28の制御の下に、音声情報、通知音、または警告音等の出力を行う。
 発光部31は、例えば、LED(Light Emitting Diode)、ランプ等の発光装置を備える。発光部31は、車両制御部28の制御の下に、運転者への各種の情報の通知や注意喚起等を目的とする光の点灯または点滅を行う。発光部31は、点光源としてLEDなどに限定する必要はなく、インストルメントパネル全面または部分的なマトリックスアレイ表示部を介してのモノグラム表示などを用いて、詳細メッセージ情報などを運転者に提示するようにしてもよい。
 走行制御部33は、車両制御部28の制御の下に、車両に搭載されている各種の装置のうち、車両の走行に関わる装置の制御を行う。例えば、走行制御部33は、エンジンの作動を制御するエンジン制御装置、モータの作動を制御するモータ制御装置、ブレーキの作動を制御するブレーキ制御装置、ステアリングの作動を制御するステアリング制御装置等を備える。
 車載装置制御部34は、車両に搭載されている各種の装置のうち、車両の走行に関わる装置以外の装置の制御を行う。例えば、車載装置制御部34は、シートの傾きを制御するアクチュエータ、シートを振動させるアクチュエータ、ステアリングを振動させるアクチュエータ等の制御を行う。
 記憶部35は、車両制御システム11の処理に必要なプログラムやデータを記憶する。例えば、記憶部35は、車両の走行等に関するログ、運転者の認証に用いる顔画像や認識識別抽出情報、運転者の各種の特徴の学習結果、車検情報、および車両事故診断情報等を記憶する。なお、必ずしも全ての情報を記憶部35に記憶させる必要はなく、例えば、通信部27を介して遠隔のサーバ等に情報を送信して記憶させるようにしてもよい。
 <運転者監視部26および車両制御部28の構成例>
 図2は、車両制御システム11の運転者監視部26および車両制御部28の構成例を示している。
 運転者監視部26は、運転者撮影部101、生体情報取得部102、視線検出部103、および認証部104を備える。
 運転者撮影部101は、ToFセンサ、ステレオカメラ、3Dカメラ、3D Flash LIDARセンサ等の撮影装置を備え、運転者の撮影を行う。運転者撮影部101の撮影範囲は、運転席における、運転中の運転者の腰から上の部分を少なくとも含み、それより広い範囲を含んでいてもよい。なお、機能の一部をさらに座席を設けた体圧検出するSeat Strain Gaugeによる姿勢検出で代用してもよい。
 運転者撮影部101は、瞳孔解析または運転者の眼球の詳細解析が可能な高速撮像手段をさらに備えており、高速撮像手段には、眼球のサッケードまたは固視および固視に伴う微動またはドリフトなどの脳内知覚反応が解析可能な機能を持たせるようにしてもよい。高速撮像手段とは、通常のテレビジョン信号で用いる60fps(Frames per second)のフレーム更新レートより早い動画画像を示し、望ましくは、250fps以上の動画画像を撮像できる撮像手段を示す。
 運転者撮影部101は、撮影により得られた画像を運転者画像として車両制御部28に供給する。なお、運転者の撮影を行う際、より正確でかつ固有の情報を取得するために、例えば、Structured Lightを発する光源や赤外光を含む特定の波長の光源などの専用の光源により運転者を照らすようにしてもよい。
 生体情報取得部102は、運転者の各種の生体情報を検出するセンサ等を備える。生体情報取得部102が取得する生体情報には、例えば、脈拍、脈波、血圧、血流系、座席体圧、着座姿勢、脳波、脳内血流、眼筋電位、心電図、体温、体臭、皮膚温、発汗、ステアリンググリップ反応、呼吸状態、アルコール含有量等が含まれる。生体情報取得部102は、取得した生体情報を、車両制御部28に供給する。これらの主にパッシブ型の生体情報から運転者の確定的覚醒状況を直接把握する事は困難であるが、運転者の疲労状況や眠気等との緩い相関関係をもつ。後述する視線の動的解析を組み合せ判断することで、より正確な運転者状態の覚醒判断が可能となる。さらに、これらの情報は、運転者が着座ではない姿勢で視線検出が困難な状態において、運転者の活動量を観測する上で補完的役割をする。
 視線検出部103は、運転者画像に基づいて、運転者の顔の向き、視線の向き、瞬き、眼球の動き(例えば、固視微動、サッケード、マイクロサッケード、ドリフト、またはトレモア等)の検出(視線検出)を行う。なお、顔の表情、眼の開閉状態等の顔の検出を運転者画像に基づいて行う顔検出部、および頭部の動きを運転者画像に基づいて検出する頭部検出部が視線検出部103に設けられるようにしてもよい。
 視線検出部103は、視線の動的解析を行うことによって、運転者の外界への注意度や覚醒度の評価を行う。覚醒度は、運転者の意識の状態を表す度合いである。例えば、覚醒度が所定の閾値より高いことは、運転者の意識が正常であることを表す。視線検出部103は、視線の検出結果、注意度等の解析結果を車両制御部28に供給する。
 視線の挙動は、運転者固有の動的特性を多く含むことから、後述する認証部104で通常真っ先に行われる。
 運転者個人の眼球動作は、外界の情報のうち運転者が気に掛けた情報に対して視線を移動するため、理解判断の状態に応じて順次何を目視するか、その視線の動作特性は身体的な特徴と合わせて経験的特性により振り向きざまに判断に至る認知判断の経過推移に依存して決まる。
 視線の動的解析による運転者の覚醒判断は、運転者が外界対象物を眼球の物理方角的に正確に凝視・固視をしたかで決まるわけではない。もちろん、運転者が、車両を安全に停車中に特定の対象に目を固視して、例えば視界に入った人物の顔を見て誰か判断をしたり、または広告の看板など見て記載された内容を読んだりして、その内容の認知判断を行うような状況では、視線を特定対象に固視焦点を合わせる事がある。
 しかしながら、一般の走行中の車両で運転者が外界の状況把握をしながら走行を行う場合、飛び出しやその他突発事象に的確な判断を要する事から、運転者は、特定の対象に視線を固定する事があまりない。
 さらに、一般に、気になる対象事象を視線の中心視野から外れた周辺視野でとらえる事が多く、特にその場合周辺視野の分解能が低い領域であることから、運転者は、内容把握のために該当方角に中心視野の振り向きで対象を捕えようと、視線移動を開始する。いわゆる、眼球のサッケード動作が観測される。
 一般に覚醒ができている運転者であれば、その最初の眼球移動で、一旦、対象事象の把握が完結すると、対象事象に視線を固定して観察を勧めるよりもむしろ、視界に入るその他のリスク要因を捕えるために、視線移動と詳細固視観察を行わなくとも次の対象に視線移動を繰り返す。対称事象の把握が完結とは、脳での認知の完結であり、必ずしも中心視野で対称を捉え、固視する必要はない。
 つまり、運転者の視線のサッケード動作や固視の動的な特性には、運転者が脳内知覚の判断活動の一部が反映された形で表に表れていると言い換える事ができる。人が目的に合わせた情報の判断を完結する際、視覚情報として捉えた情報による刺激と関連する記憶情報から引き出された情報との間で一定以上の一致度が得られることで、判断を確定する認知判断の発火が起きて判断に至る。しかしながら、判断にいたらない場合は、判断の確証を得るための観察段階にさらに移行し、判断の発火に必要な情報を待つことになる。
 脳内の認知の活動は、運転者がサッケードの視線移動を始めた間にもすぐに脳内での知覚判断が既に始まるため、必ずしも視線が、大凡の方角が振り向きかかった時点で目の焦点を合わせ、さらには中心視野で対象を捕えるまで知覚判断が終了するのに時間を要するとは限らない。
 視線移動を開始するのは、周辺視野で捉えた動体視力による刺激情報のみではその内容判別が不十分なため、情報を補充するために中心視野を該当方向へ振り向け、詳細判断に至ろうとする過程の開始であり、途中で判断に至れない対象を必ずしも見終わらない。
 例えば進行方向にある青色状態の信号機と、赤色の広告塔等とが両者判別ができない状態で運転者の周辺視界に入った場合、該当十字路を通過する際に信号機の色を判断する必要があることから信号機を振り向き判断を開始する事になる。
 運転者は必ずしも赤色の広告塔を厳密に固視して見る必要はなく、ちらっと覗く程度でむしろ判断が完結するなら、そのまま進行した際に歩行者や自転車の飛び出しなどが無いか確認する方が優先されることもある。さらには、同じ運転者でも視力の影響で環境の明るさ、眩しさなど複合要因で動的な観察手順などの動作特性が変化する。
 視線検出部103は、このように運転者に固有の視線動的特性を環境に応じても学習する事で運転者の状況に応じて動的視線解析で覚醒状態推定が可能であり、視線動的解析の判定結果、注意度等の解析結果を車両制御部28に供給する。
 認証部104は、例えば、運転者画像や視線解析画像等に基づいて、運転者の認証を行う。その際に、虹彩認証処理を介してもよい。認証部104は、認証結果を車両制御部28に供給する。この運転者の認証処理は、上述したように真っ先に行われる処理である。その後、運転者固有の特徴と関連付けが行われる。
 車両制御部28は、周辺監視部121、運転者監視部122、自動運転制御部123、通知制御部124、ログ生成部125、および学習部126を備える。
 周辺監視部121は、周辺撮影部21からの周辺画像、周辺情報取得部22からの周辺情報、および、通信部27からの各種の情報に基づいて、車両の周辺の監視を行う。
 運転者監視部122は、車両情報取得部25からの車両情報、運転者撮影部101からの運転者画像、生体情報取得部102からの運転者の生体情報、視線検出部103による検出結果、認証部104による認証結果、および、学習部126による学習結果等に基づいて、運転者の監視を行う。運転者監視部122は、運転挙動分析部141、および運転状態検出部142を備える。
 運転挙動分析部141は、運転者画像、車両情報、および、学習部126による学習結果等に基づいて、運転者の運転挙動(例えば、運転に対する操作や振る舞いなど、認証した運転者固有の特徴や特性)を分析する。
 運転状態検出部142は、運転者画像、運転者の生体情報、視線検出部103による検出結果、認証部104による認証結果、および、学習部126による学習結果等に基づいて、運転状態を検出する。運転状態には、認証した運転者の状態および運転者の覚醒状態が含まれる。運転状態の検出は、認証した運転者の状態に基づいて複数の段階的に行うことで、運転者の覚醒状態を高精度に、かつ、従来一般的に行われている1次元的に決め打ちで決定された閾値で判定する場合と比較して、固定学習をすることでより運転者固有の特性に準じた判定が可能となる。
 自動運転制御部123は、自動運転の制御を行う。自動運転制御部123は、ルート設定部151、自動化レベル設定部152、運転支援制御部153、運転モード切り替え制御部154、および切り替え判定部155を備える。
 ルート設定部151は、車両情報取得部25からの車両情報に含まれる車両の加速度と角速度に基づいて、位置測定部23により測定された車両の現在位置の補正を行う。また、ルート設定部151は、周辺情報取得部22からの周辺情報、通信部27を介して取得されたLDMおよび地図データや地図更新情報、並びに、記憶部35に記憶されている地図データ等に基づいて、入力部24を介して入力される目的地までの走行ルートを設定する。
 自動化レベル設定部152は、周辺情報取得部22からの周辺情報、並びに、通信部27を介して取得されたLDMおよび交通情報、天候情報、路面情報等に基づいて、走行ルート上の、自動化レベルの走行区間毎の分布を設定する。また、自動化レベル設定部152は、ルート区間毎の自動化レベルの分布、入力部24を介して入力されるユーザ設定等に基づいて、自動化レベルの設定を行う。
 ここで、自動化レベルとは、自動運転のレベル、換言すれば、運転の自動化の程度を示すものである。自動化レベルの詳細については、図6を参照して後述する。
 運転支援制御部153は、設定されている自動化レベルに応じて走行制御部33を制御し、運転者の運転の支援を行う。運転支援制御部153による支援により、部分的または全面的な自動運転が実現される。例えば、運転支援制御部153は、自動化レベル2で、ACC(Adaptive Cruise Control)、LKAS(Lane Keep Assist System)、TJA(Traffic Jam Assist)、AEBS(Advanced Emergency Braking System)等の一部制限機能付きの運転支援を行う。なお、自動化レベルの詳細については、後述される。
 自動化レベル3で、道路信号機の認識・本線合流・離脱・幹線交差点の通過、十字路の優先順位制御、歩行車体および歩行者の優先車両制御などさらに複雑な一般道路での状況判断やパスプラニングを包含した複合的多段制御が行われてもよい。
 本明細書では、自動化レベル4の運転者介在を要しない完全自動運転制御も、この運転支援制御部153に包含して記載するが、厳密な制御区分けとしては運転支援制御部153のレベル4走行時では支援ではなく、完全な自動運転制御に徹した制御となる。
 また、運転支援制御部153は、自動化レベル3以上の走行区間において、上記の運転支援より高度かつ複雑な制御(例えば、車線変更を含む追い越し等)を行ってもよいし、市街地等での歩行者や自転車を含む高度な無人での状況判断を伴う自律走行等による運転支援を行ってもよい。
 さらに、特殊な利用形態となるが、公共交通が提供されていない地域等への移動手段確保の観点で自動運転の車両利用を分野として、低速時に限定して利用ができる安全のろのろ自動運転車両を社会的導入することも想定ができる。そうした際に、利便性の観点で運転者が、正常に手動運転ができる場合に限り、該当車両を用いてより高速走行に車両の利用を拡張することも想定される。その際に、本技術は運転者能力判定を行うための有効な機能である。なお、この特殊な利用形態は、通常利用形態の車両における緊急退避モードとは異なる利用形態である。
 自動運転が全速度域で安全に走行できる車両は高価な装備が必要となるが、低速のろのろ運転程度に機能を限るのであれば、より安価が装備で実現可能となる。本技術は、例えば、地方過疎地などの移動弱者の軽自動車の代用利用などが可能となる特殊な利用形態に適用してもよい。
 車両制御システム11においては、運転モードとして、いわゆる自動化レベル4以上に該当する無人での通常走行が可能な自動運転モード、自動化レベル3に相当する運転者が適宜、復帰介在可能な自動運転モード、主に運転者が主導的な制御判断に携わる自動化レベル2以下の手動運転モード、および、緊急退避モード等が設定されている。
 自動運転モードは、運転支援制御部153による運転支援により実現されるモードである。
 手動運転モードは、運転者が主体で運転を行うモードである。緊急退避モードは、緊急時に所定の場所に車両を退避させるモードである。
 緊急退避モードは、例えば、手動運転(手動運転モード)時において、運転者が病気や怪我などで運転できない場合、自動運転(自動運転モード)から手動運転への切り替えの際に運転者の覚醒が確認できない場合、等に用いられる。
 本明細書では、移動速度の優先度を下げて移動を行う手段として緊急退避モードを定義しているが、運転者が自動運転を、利用注意での手動引き継ぎができない事で、緊急時の対策として退避帯に緊急退避モードにしてもよい。本明細書の内容では、退避帯に対する際の緊急退避モードと、公共交通手段を有しない僻地居住者で移動貧困者が緊急時に病院等へ移動する確保する手段として用いる際の移動優先(安全極低速でもよいが移動を可能とする)手段とで区別をしていない。
 運転モード切り替え制御部154は、通信部27を介して取得するLDM、その最新更新情報、天候、路面状況、および交通情報等に基づいて、LDMおよび交通情報などの確認頻度を変更する。
 また、運転モード切り替え制御部154は、自動運転モードから手動運転モードへの切り替えの必要性(すなわち、手動復帰の必要性)を監視し、その必要性がある場合、自動運転モードで走行中、運転者に手動運転復帰を要求通知または警告通知をする。このとき、運転者の検出状態に応じて、運転モード切り替え制御部154は、切り替え判定部155に切り替え判定を行わせる。運転モード切り替え制御部154は、切り替え判定部155による判定結果に基づいて、自動運転モードから手動運転モードへの切り替え処理を実行する。
 なお、通知は、緊急引き継ぎを要しない状況なら、運転モード切り替え制御部154が運転者の通知周知を確実に判別する必要は必ずしもない。例えば自動運転で1時間程度継続走行した後に復帰が必要なケースでは、状況変化を検出した段階では運転モード切り替え制御部154が運転者に単純に通知のみを早期に行う程度でもよく、必ずしも運転者に通知内容を正確に認知したか、その通知の周知確認を取らなくても良い。ところが、緊急の引き継ぎが数分後に差し迫っている状況では、通知の聞き逃しは致命傷になり兼ねない。そこで、運転者の確実な認知のために周知確認が必要となる。
 ただし、図示しない最適通知タイミング推定器より、予測されるタイミングまでに周知がされる事が望ましい。そこで、引継ぎ地点到達の例えば10分前が最適通知タイミングとして推定された場合、その通知と周知確認を実行し、運転者の通知の周知が検出されない場合は、さらにアラームとしての警告通知を行ってもよい。
 切り替え判定部155は、運転モード切り替え制御部154の制御の下、運転状態検出部142による運転者の反応性および覚醒度の検出結果に基づいて、自動運転モードから手動運転モードへ切り替え判定を行う。切り替え判定部155による切り替え判定については、図3を参照して後述する。
 通知制御部124は、表示部29、音声出力部30、および発光部31を制御し、運転者への各種の情報の通知、警告、または注意喚起等を行う。また、通知制御部124は、例えば、車載装置制御部34より制御されるアクチュエータ等を用いて、運転者への各種の情報の通知、警告、または注意喚起等を行ってもよい。
 運転者通知は、検出された運転者復帰行動記録、アクチュエータによるランブルストリップス路面走行を模した着座振動やハンドル振動、パネル情報表示、悪臭、背もたれを上げたり、着座位置移動など様々な運転者が不快に感じる要因の発生源であっても良い。
 ログ生成部125は、検出された運転者復帰行動記録、車両において発生した各種のイベントを記録、自車の引き継ぎ時の周辺通知に対する応答、近傍車両またはインフラとの車車・路車通信に対するログの生成および更新を行う。ログ生成部125は、生成したログを記憶部35に記憶させ、適宜更新する。
 学習部126は、運転挙動分析部141により分析された運転者の運転挙動(例えば、運転に対する操作、復帰シーケンス、復帰の振る舞いなど、運転者固有の特徴や特性)を学習し、学習結果を記憶する。
 運転者挙動分析は、さらに走行環境の依存等を加味して、逆光時や夜間や積雪時路面など状況別応答を考慮した個人の復帰特性を学習記録してもよい。通常、運転者は自分の復帰特性を把握しているので、システム学習推奨値より安全をとるために、運転者による早期通知のオフセット設定を行う仕組みが有ってもよい。
 そして、慎重な運転者であれば、車両制御システム11が学習により推奨値として提示するタイミングより、安全面を重視して、車両制御システム11が提示したタイミングよりも早期の通知を好む利用者がいる事も想定される。その対策としては、通知タイミングを運転者が好みで早める、いわゆる早期通知のオフセット設定を行う仕組みが有ってもよい。
 ただし、通知タイミングを早めさせるのではなく、より遅くした設定をする事で、復帰が間に合わないケースが発生するのは望ましくない。運転者の復帰が間に合わずに結果的に遅れる事態が僅かでも発生するようになると、車両は緊急停車をする頻度を上がり、スムーズな交通を前提とする交通インフラに渋滞を誘発するという問題をはらむため、望ましくない利用形態となる。したがって、利用者が希望に応じて変更できるのは通知タイミングを早える設定のみとするべきである。
 他方では、運転者自身が早期に復帰を意識して、車両制御システム11が学習して通知するタイミングより早く復帰準備が整う場合には、車両制御システム11による煩わしい通知や警報が発布する前に、事前に運転者による早期通知の取り消しをできる仕組みをあわせもってもよい。
 この通知キャンセルは、目覚まし時計で例えるなら、なる前に止めるのと等しい。しかしながら、余りに早期に止める事で油断をして二度寝の様な事態が発生すると危険であるため、早期通知のキャンセルはその後に運転者の復帰推移を検出する手段があり、手動運転の復帰手順に遅れがある場合に復帰催促する仕組みがある際に利用を限定してもよい。
 <切り替え判定部の構成例>
 図3は、切り替え判定部の構成例を示す図である。
 切り替え判定部155は、ジェスチャー認識切り替え判定部201、サッケード情報切り替え判定部202、音声認識切り替え判定部203、およびアクティブ反応応答検出切り替え判定部204を含むように構成される。
 このような構成を有する切り替え判定部155においては、各情報に基づく判定が複数の段階的に行われ、それぞれの判定結果に基づき、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かが最終的に判定される。
 階層的に判定をする事でより確実な判定を行うことができる。本実施例では上記の認識に限定して説明するが、さらに引継ぎの必要性の有無に関わらず、常時運転者の状態モニタリングをしてその情報に基づいて、通知・警報発報し、動的姿勢の行動解析を行ってから、本明細書の手順を追加させてもよい。
・ジェスチャー動作の認識に基づく反応性および覚醒度の検出
 ジェスチャー認識切り替え判定部201は、ジェスチャー動作を認識して運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 ジェスチャー認識切り替え判定部201は、運転状態検出部142による引き継ぎ通知後の所定の周知確認動作の検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
 本実施例では単純な指さしを所定の周知動作を例としているが、反復動作などより運転者の知能的判断を要する動作として周知確度を上げる動作であってもよい。
 ここで、復帰内部状態は、運転者の意識の状態である。復帰内部状態の判定は、運転者の意識が覚醒しているか否かを判定することに相当する。
 特に、前方を見ての指さし動作では運転者が前方を見た視覚情報に基づき、その視線範囲に手と指先を振り向ける脳内判断のフィードバックが働かないと正確な指差し動作を行うことが困難である。またその動作のふらつきや正確度には、運転者の内部意識状態が反映されるため、脳内覚醒状態のアクティブ反応(後述)を見ることもできる。
 自動運転が行われている間、運転者は、2次タスクとして、運転以外の作業や行動(仮眠を含む)を行うことができる。しかしながら、自動運転モードから手動運転モードへの切り替えの必要性がある場合、運転者は、2次タスクをやめて、自身の復帰内部状態を、1次タスクとしての運転タスクを行うことができる状態にしなければならない。
 なお、本明細書にて詳述はしないが、特に仮眠などの運転意識状態から完全に離脱をしているかはパッシブ方式で運転者状態観測を継続的に行い、必要がタイミングで運転者を復帰させるための覚醒通知(アラーム等)を行う。本技術は、この通知後の運転者状態で運転者が、外見的復帰ができた際に、車両制御システム11が、運転者の通知に対する周知確認と覚醒度判断が目的を行う処理である。
 運転者の復帰内部状態が運転タスクを行うことができる状態にあるか否かの判定は、例えば、運転者が、一旦目が覚めて仮眠から起き上がったときに、運転者の車両前方を見ながらの指差し合図確認を検出することにより行われる。指差し合図確認を正常にふらつきなく検出することができた場合、運転者の復帰内部状態が運転タスクを行うことができる状態にあると判定され、検出することができない場合、運転者の復帰内部状態が運転タスクを行うことができる状態にないと判定される。なお、姿勢が安定せずに検出が正しく行われない場合には再実行でリトライ処理等を行ってもよい。
 指差し合図確認は、例えば、電車や乗り合いバスの車掌が行うような、片方の腕を確認対象となる方角に向け、その挙げた腕の指で確認したい事象の方向を指す動作である。
 本実施例では該当の指差し合図を、運転者が引き継ぎ通知を受けて先ずは規定確認手順として、車両が進んだ場合の直近事象として車輛前方の確認をする想定で、片方の腕を略水平になる位置に上げ進行方向前方を確認する。
 以下、適宜、車両前方を見ながらの指差し合図確認を、前方指合図確認という。
 運転状態検出部142は、運転者が行う前方指合図確認を所定のジェスチャー動作として検出する。運転状態検出部142は、検出されたジェスチャー動作において、運転者が確認する車両前方、運転者の利き目または両目の位置、および、指差しの位置を含む平面の位置関係があるか否かを、運転者撮影部101の3次元センサと2次元センサからの情報の組み合わせで算出して判定する。これにより、運転状態検出部142は、運転者が前方を指差したことを正しく検出・認知し、運転者の反応性および覚醒度の検出を行う。
 なお、ジェスチャー動作には、運転者個人の癖や若さなどの影響が加わることが多い。運転状態検出部142は、運転挙動分析部141による運転者の運転挙動の分析結果や、その分析結果を用いた学習部126による学習結果等なども踏まえて、前方指合図確認の検出を行う。
 このように、運転状態検出部142は、運転者画像、運転者の生体情報、視線の検出結果、運転者の運転挙動の分析結果、運転者の認証結果、および、学習部126による学習結果等に基づいてジェスチャー動作を検出することで、運転者状態を検出する。
 また、ジェスチャー認識切り替え判定部201においては、2次タスク時の運転者の着座有無に応じて、さらに、運転者の姿勢が運転できるところに復帰されるまでのシーケンスをトラッキング検出する動作である、運転姿勢復帰シーケンストラッキング検出を行ってもよい。その過程を含めて、運転者の眼球挙動解析を行うことで、運転者の反応性および覚醒度の検出をさらに行い、運転者の手動運転の復帰能力が回復しているかどうかを判定してもよい。
 運転者の前方指合図確認は、視線、利き目または両目の位置、指先の位置、車両前方の道路、3次元ToFセンサなどの姿勢トラッキング装置など複合的に用いて動作判定してもよい。さらに、指先位置判定から、動作正確度判定をさらに行ってもよい。
 このように、運転者の前方指合図確認は、運転者が実際に車両前方を見て、さらに、車両前方を指差すという、運転者の脳内の判断行動を伴う。このように、所定の動作ジェスチャーを実行するように求めることで、運転者が、前方指合図確認をどこまで忠実に表現できるのか等の身体的能力も合わせて確認することができる。特に、以下に説明する通り、多段階の運転者状態の推移観測を行う事で、他の手段と組み合わせる事で手動運転の正常引き継ぎが実行できたか判別が可能であり、その正常な引き継ぎの際の指差しジェスチャー推移を正常とする教師データと判定する仕組みを取れることから、人為的に正常推移のデータを選定判別して準備を行わなくともよい。
・サッケード情報に基づく反応性および覚醒度の検出
 サッケード情報切り替え判定部202は、運転者の眼球サッケード挙動解析、マイクロサッケード挙動解析、固視微動やドリフトといった一連の脳内知覚活動に反射して連動した動作の解析を行って運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 ここで、特定の運転者の脳内判断行動を検出するために、その反射応答特性には、運転者個人の時間的に変動し得る視力や危険有無等の脳内の反射的活性反応により挙動が変化する。そのため、運転者認証を行った固持特性学習に基づいた学習して挙動特性に応じて判定を行う事で、より正確判断が可能となる。
 サッケード情報切り替え判定部202は、運転状態検出部142による検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否か、また、覚醒途中の状況を判定する。
・音声認識に基づく反応性および覚醒度の検出
 音声認識切り替え判定部203は、運転者の音声による応答を元に、運転者に判断認識させて、運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 例えば、運転者が考えないと応答できないような質問が音声によって提示され、質問に対する応答が運転状態検出部142により検出される。運転状態検出部142は、運転者が質問に対して応答できるか否かに基づいて、運転者の反応性および覚醒度を検出する。例えば、運転者が正しく応答できた場合、運転者の反応性および覚醒度が良好であるとして検出される。
 また、間違って応答した場合は、覚醒復帰途中と判定ができ、引継ぎ点までに時間的猶予があれば再トライを実行もできる。しかしながら、一切の応答がない場合は引継ぎリスクが増すために、LDM情報等を元に判断し、特に道路環境が悪化する様な区間の走行なら後述するように早期の緊急退避モードに早々と移行してもよい。
 音声認識切り替え判定部203は、運転状態検出部142による検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
・アクティブ反応応答検出に基づく反応性および覚醒度の検出
 アクティブ反応応答検出切り替え判定部204は、アクティブ反応に対する運転者の応答に基づいて運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 ここで、アクティブ反応は、ノイズとなるトルクをステアリングに与えることによって操舵ズレを起こさせ、正常な走行から逸脱する走行(以下、ノイズ走行と称する)を意図的に発生させることをいう。例えば、ノイズ走行には、車線に沿った進行方向に対して車両を車線に略進行方向に保ったまま、略直角方向などの、ずれた方向へ車両を移動させる走行、車線を横切る方向を変えた横移動、または急加減速を意図的に与える走行がある。車両が横風を受ける場合、方向を変えずに横に小量ずれた方向へ車両が移動される。
 アクティブ反応応答は、このようなノイズ走行に対して、操舵を是正するためのトルクを運転者が判断し、付加させたり、アクセルやブレーキを踏んだりするなどの、アクティブな走行ノイズ入力に対する運転者の応答となる。運転状態検出部142は、このような、印加ノイズを打ち消す応答を運転者が正しく実施できていること等を検出する。
 運転者が行う操舵は、ステアリング、アクセル、ブレーキなどの走行操作機器を用いて入力される。走行制御部33は、走行操作機器を用いて運転者により入力される操作に応じて、操舵を是正するなどの制御を行う。
 ここで、運転者の反応性および覚醒度の検出方法には、例えば、パッシブモニタリングとアクティブモニタリングがある。
 パッシブモニタリングは、運転者の状態を受動的に観察することにより、運転者の反応性および覚醒度を検出する方法である。一方、アクティブモニタリングは、視覚、聴覚、触覚等による刺激や指示等を運転者に与え、与えた刺激や指示等に対する運転者の応答を観察することにより、運転者の反応性および覚醒度を検出する方法である。
 例えば、運転者が寝ていたり、2次タスク実行中で、復帰を急がせる必要が無い状況下でいたりする場合、運転者の煩わさないで済むようにパッシブモニタリングにより検出をしてもよい。また、赤外光やその他の電磁波信号照射などして、反射応答信号の解析から状態検出する準パッシブモニタリングをしても良い。ただし、これら完全はパッシブ方式や準パッシブ方式では運転者の応答反応を直接観測するわけでは無く、検出結果の確実性が乏しい。
 準パッシブ方式については、本来はアクティブ方式の状態観測手段に該当するが、本明細書では以下に記述する運転者の入力に対する応答、アクティブ方式と区別するために準パッシブモニタリングと記述する。
 このように、反応性および覚醒度をパッシブモニタリングにより検出することが困難な場合や検出精度を高めるために反応特性をみるアクティブモニタリングが用いられる。
 アクティブ反応応答検出切り替え判定部204は、運転状態検出部142による検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
 なお、運転者の確実な引き継ぎを確認して安全を確保するためには、正常な走行を行うための操舵を行う状態に運転者が復帰し、その操舵力や操舵量が適切になされたことまでを確認することが望ましい。
 具体的には、アクティブ反応応答検出切り替え判定部204は、運転者のロコモーティブ(本明細書においては、ロコモーティブという用語をアクセルやブレーキの操舵能力に拡張してあてはめて用いられる)能力やハンドル操舵能力を確認する。
 さらに、アクティブ反応応答検出切り替え判定部204は、知覚判断に応じて適切な量だけ操舵が行われたかを確認する。
 車両制御システム11は、自動運転を行うための各種センシング装置を装備した車両に搭載されるものである。したがって、道路の状況や走行環境に応じて好ましい操舵条件がある。走行レーンを横切る様な走行や不必要な加減速を、車両制御システム11が意図的に行った場合に、そのような逸脱を是正する操舵(アクティブ操舵反応)が運転者によりなされるのであれば、運転者が、状況把握を正常に行い、手動運転に必要な認知と体力的な操舵能力を有していると推定できる。
 本技術においては、自動運転から手動運転への引継ぎの際の確認手順では、例えば、寝ているなど直接反応が観測されない段階では運転者を煩わせることなく運転者のパッシブモニタリングが行われた後に、通知タイミングを超えてすぐ、上述したようなアクティブモニタリングが行われる。正常な走行に対して僅かに逸脱する動作を車両制御システム11が意図的に起こさせることにより、運転者の認知能力と筋力的能力の復帰を確認することができる。
 切り替え判定部155においては、このように複数の情報が用いられて、運転者の復帰内部状態(覚醒しているか否か、またはその度合い)が判定される。また、切り替え判定部155においては、切り替え判定の最終段階の判定として、アクティブ反応応答検出による切り替え判定が行われる。
 これら多段階の運転者覚醒状態判別を行うことにより、運転モードを、より確実に、より安全に、自動運転モードから手動運転モードに切り替えることが可能になる。そして、この引き継ぎ動作が同一の運転者により繰り返し実行され続けることで正常な引き継ぎの際の教師データと失敗の際の教師データも自己整合的に収集され、利用に頻度に応じて検出精度の向上が図られる。
 <アクティブ反応応答検出による切り替え判定の詳細>
 ここで、アクティブ反応応答検出に基づく反応性および覚醒度の検出の詳細について説明する。
 アクティブ反応応答検出は、車両制御システム11側でオフセットを敢えて加えることで理想的操舵状況から逸脱した走行制御を行ってもよいが、より軽度の煩わしさや不快を与えない程度のノイズ走行を加えてもよく、それを運転者が補正するか、しないか、あるいは、補正が正常時より遅れているか等の運転者の応答をモニタリングすることにより行われる。
 すなわち、アクティブ反応応答検出は、運転者に違和感や不快感を与える程度の蛇行運転や加減速を行い、その揺らぎに対して運転者が正常な走行を行うかをモニタリングすることにより行われる。
 ここで、蛇行運転することは、後続車に対して、自車である前走車が、自動運転から手動運転に引き継ぎができていないことを知らせる役割も果たす。また、後続車が自車に接近すると急に走行が乱れたり、引き継ぎができないために緊急退避モードに移行して減速したりする可能性を後続車に示唆する役割を果たす。
 例えば、車両の横ずれに任せている場合(補正のための操舵が行われない場合)、運転者が操舵に介在していないことが疑われる。走行制御部33は、蛇行運転に続き、後続車の接近を監視しながら追突されるリスクを回避する制御を行う。また、走行制御部33は、滑らかな減速ではなく、運転者が若干不快を感じる程度の減速とその制動のリリースを繰り返し、運転者を前後にゆする制御を行う。
 これに対して、運転者はその減速を避けるために加速スロットル制御(緊急の減速や停車を避けるためのペダル操作)を行う。運転状態検出部142は、運転者の加速スロットル制御をモニタリングし、減速せずにスムーズに走行がなされれば、正常とみなすことになる。
 なお、アクセルペダルを踏んで減速を補う際、その咄嗟のアクセルペダルの操作を、運転者が未覚醒の夢見状態で行うリスクがある。
 したがって、アクセルペダルによる加速を有効に機能させることを、所定の意識判定の後に行うようにしてもよい。この場合、例えば、前方に表示する緑ランプの点灯タイミングにあわせて踏み込み操作をさせたり、踏み込みと踏み外しを特定のパターンで繰り返させたりすることで意識判定が行われる。このような意識判定に基づいて、運転者の意識が正常であることが確認できた場合、それ以降、通常どおりのペダル操作量に応じた線形的な応答制御を開始するようにしてもよい。
 このようなアクティブ反応応答検出について具体的に説明する。なお、以下においてアクティブ反応とは、運転者に何からの能動的作用を与えてその反応を見る手法を用いた運手者の応答反応検出を示すこととする。
 図4には、緩やかなS字状のカーブを有する道路251が示されている。道路251の略中央を通る破線が、理想的な走行経路を表す。この理想的な走行経路を走行するためのハンドル操作を想定ハンドル操作とする。
 アクティブ反応応答検出においては、想定ハンドル操作とは異なる微小なオフセットを加えることにより、そのオフセットを補正するための操舵を、運転者が違和感を抱かないレベルで繰り返させる。図4の破線矢印252は、加えられるオフセットを表す。
 車線に対して左右に進路を振るなどのオフセットを繰り返し加えることにより、運転者の状態の判定を精度よく行うことができる。
・変形例1
 左右に車両進路を振るような種類のオフセットを加えることに限らず、前方車との車間距離を予想以上伸ばすことをアクティブ反応として与えるようにしてもよい。アクティブ反応応答検出においては、それに対し、補正のために、運転者がアクセルを踏む動作を取るか否かが評価される。その他、瞬き頻度の検出、目を閉じた状態の検出、頭部の前後へのふらつき検出などにより、運転者の状態が評価されるようにしてもよい。
 このように、安全性を確保できる範囲内で、車両に不自然な走行をさせるものであれば、どのような種類の逸脱した走行や感覚のみを与えるだけでもよく、他の種類のアクティブ反応として与えられるようにしてもよい。
・変形例2
 例えば、走行制御部33は、ステアリングの操作が行われていない場合に、車輪の方向を変化させたり、ステアリングを回転させずに車輪の左右アンバランスの制動負荷を加えたりすることで、所定の期間、車両を蛇行させる。この場合、運転状態検出部142は、運転者が蛇行を是正するようにステアリングを操作するか否か、および、反応速度等に基づいて、運転者の反応性および覚醒度を検出する。
 なお、車両を蛇行させる量は、運転者が無意識のうちに蛇行を是正できる範囲内の量であることが望ましい。
・変形例3
 車載装置制御部34は、車両が正常に走行している場合に、車両が蛇行する場合に相当する回転負荷をステアリングに疑似的に加える。この場合、運転状態検出部142は、運転者が回転を止めるようにステアリングを操作するか否か、および、反応速度等に基づいて、運転者の反応性および覚醒度を検出する。
・変形例4
 運転者が反応しないために蛇行運転が継続している場合、運転者の反応性または覚醒度の低下等により異常が発生していることを、通信部27等を介して、後続車などの外部に通知するようにしてもよい。
・変形例5
 走行制御部33は、所定の期間、車線から僅かに逸脱させる方向に車両の進行方向を変更する。運転者が前方に正常な注意を向けている場合、車両の方向を補正するように操舵を行うことが期待される。ただし、車両の進行方向が無条件に変更すると、周辺車両との位置関係によっては危険な状態が発生する可能性がある。また、後続車が追尾走行を行っている可能性がある。
 したがって、反応性および覚醒度を運転者の応答に基づいて検出することは、周辺車両の状態や運転者の心理的影響等の条件を総合的に判断して、周辺車両に悪影響を与えない範囲で実施されることが望ましい。
・変形例6
 運転支援制御部153は、ACCが有効である場合、通常時と比べて、先行車との車間距離を長く設定する。この場合、運転状態検出部142は、車間距離を通常時の長さに戻すようにアクセルペダルを操作するか否か、および、反応速度に基づいて、運転者の反応性および覚醒度を検出する。
・変形例7
 走行制御部33は、ステアリングの操舵量に対して、車両の進行方向の変化量を通常より大きくまたは小さくする。この場合、運転状態検出部142は、進行方向を所望の方向に調整するようにステアリングを操作するか否か、および、反応速度に基づいて、運転者の反応性および覚醒度を検出する。
 なお、通常時の変化量と、この場合の車両の進行方向の変化量との差は、運転者が無意識のうちに進行方向を是正できる範囲内の量であることが望ましい。
 また、上記例では実際に車両を左右方角へ移動させる制御を加えた上で運転者の応答反応を見ているが、変形例として、アクティブ応答反応の確認のために、車両の制御には直接的ノイズを加えず、ステアリングへの擬似的回転トルクを付加させたり、VRを用いて錯覚による誘導を行ってもよい。さらに音声等による特定のトルク応答要求に対して運転者がステアリング回転操舵やステアリング前後押引きなどの規定動作を行って応答確認をしたりしてもよい。
・変形例8
 走行制御部33は、アクセルペダルの踏み込み量に対して、車両の加速度を通常より大きくまたは小さくする。この場合、運転状態検出部142は、車両の速度を所望の速度に調整するようにアクセルペダルを操作するか否か、および、反応速度に基づいて、運転者の反応性および覚醒度を検出する。
 なお、通常時の加速度と、この場合の車両の加速度との差は、運転者が無意識のうちに加速度を是正できる範囲内であることが望ましい。
・変形例9
 走行制御部33は、ブレーキペダルの踏み込み量に対して、車両の減速度を通常より大きくまたは小さくする。この場合、運転状態検出部142は、車両の速度を所望の速度に調整するようにブレーキペダルを操作するか否か、および、反応速度に基づいて、運転者の反応性および覚醒度を検出する。
 なお、通常時の減速度と、この場合の車両の減速度との差は、運転者が無意識のうちに減速度を是正できる範囲内であることが望ましい。
・変形例10
 自動運転が行われていることによって運転者が運転に介在する必要がない場合、運転者は携帯端末12(情報処理装置)を操作することができる。
 運転者が携帯端末12を操作しているとき、運転状態検出部142は、通信部27を介して、運転者への指示を示すサブウインドウを携帯端末12の画面に表示させる。そして、運転状態検出部142は、その指示に対する運転者の正常な反応の有無、および、反応速度等に基づいて、運転者の反応性および覚醒度を検出する。
・効果
 例えば、運転者が前方を見ているが、考え事等により運転に対する意識が低下している場合、パッシブモニタリングだけでは、運転者の反応性および覚醒度を検出することが困難なときがある。アクティブモニタリングを用い、以上のようにしてアクティブ反応応答検出による切り替え判定を行うことにより、運転者の反応性および覚醒度の検出精度を向上させることが可能になる。
 <自動化レベルの例>
 図5は、自動化レベルの例を示している。ここでは、SAE(Society of Automotive Engineers)により定義された自動化レベルの例を示している。なお本明細書では、便宜的にSAEで定義された自動運転のレベルを参照して用いているが、いざ自動運転が広く用いられた場合の課題や妥当性が業界で検討し尽くされてなく、必ずしも定義通りの解釈で用いていない。また、利用形態は本明細書に記載されている内容を保証する利用形態とは限らない。
 自動化レベルは、レベル0からレベル4までの5段階に分かれる。
 自動化レベル0は、”運転自動化なし”と称される。自動化レベル0では、運転者が全ての運転タスクを実施する。
 自動化レベル1は、”運転者支援”と称される。自動化レベル1では、自動運転を行うシステム(以下、単にシステムと称する)が前後および左右のいずれかの車両制御に係る運転タスクのサブタスクを実施する。
 自動化レベル2は、”部分運転自動化”と称される。自動化レベル2では、システムが例えば、前後および左右の両方の車両制御に係る限定された運転タスクのサブタスクを実施する。
 自動化レベル3は、”条件付運転自動化”と称される。自動化レベル3では、システムが、限られた領域内で全ての運転タスクを実施する。この自動化レベルで実際にどの程度の2次タスクが実行可能か明確にされていない。運転者は、車両の走行中に、運転以外の作業や行動、例えば、携帯端末12の操作、電話会議、ビデオ鑑賞、ゲーム、思考、他の搭乗者との会話等の2次タスクを行うことができると考えられるが、安全性の面で課題が多い。
 つまり、この自動化レベル3の定義の範囲では、システムの障害や走行環境の悪化等による予備対応時(フォールバック中)に、システムの要求等に対して、運転者が運転操作を行う等の対応を適切に行うことが期待される。言い方を変えると、この間は、運転者は復帰の準スタンバイ状態にいる必要がある。
 自動化レベル4は、”高度運転自動化”と称される。自動化レベル4では、システムが、限られた領域内で全ての運転タスクを実施する。また、予備対応時(フォールバック中)に、運転者が運転操作を行う等の対応を行うことは期待されない。したがって、運転者は、例えば、車両の走行中に、本当の意味での2次タスクが可能となり、状況次第では、仮眠をとることも可能である。
 したがって、自動化レベル0乃至自動化レベル2では、運転者が全て或いは一部の運転タスクを実施し、安全運転に係る監視、対応主体は運転者となる。この3つの自動化レベルでは、運転者は必要に応じて常に運転に復帰できる能力が求められる。したがって、走行時の注意低下や前方注意を損なう、運転以外の2次タスクに運転者が従事することは、許容されていない。
 一方、自動化レベル3および自動化レベル4では、システムが全ての運転タスクを実施し、安全運転に係る監視、対応主体はシステムとなる。ただし、自動化レベル3では、運転者が運転操作を行う必要が生じる場合がある。また、走行ルートの一部に自動化レベル3および自動化レベル4を適用できない区間が存在する場合があり、そのような区間では、自動化レベル2以下に設定され、運転者が運転に介在する必要がある。
 なお、自動運転の際に、2次タスクを許容した場合に、運転者の覚醒度の把握が困難であることから、法規的にも2次タスクの実行が禁止のままで議論の進捗が停滞している。しかしながら、上述した前方指合図確認(ジェスチャー認識)やアクティブ反応応答検出では、極めて有効な運転者復帰能力確認となるため、2次タスク実行が許容される目途が十分に期待できる。
 自動車メーカーにとって自動運転の最大の利点である自動運転中の2次タスクを実行しても、必要なタイミングで通知確認を行うことで、安全が担保される仕組みを構築できるため、大きな期待がもてる。
 <運転モードの切り替え>
 なお、以下、運転者が何らかの形で介在して直接的に車両の運転へ影響を及ぼす必要がある運転を「手動(マニュアル)運転」と称する。したがって、自動化レベル0乃至自動化レベル2では、手動運転が行われる。図6に示されるように、自動化レベル0乃至自動化レベル2での運転モードを、手動運転モードと称する。
 一方、以下、運転者の介在を全く必要としない運転を、自律自動運転(自動運転)と称する。したがって、自動化レベル3および自動化レベル4では、基本的に自動運転が行われる。ただし、自動化レベル3では、システムの要求に応じて、手動運転を行う必要が生じる場合がある。すなわち、自動化レベル3では、運転者の運転操作の離脱が限定的である必要があるため、注意下での自動運転が行われる。よって、自動化レベル4での運転モードを、自動運転モードと称し、自動化レベル3での運転モードを、注意下自動運転モードと称する。
 なお、本技術の骨格において、注意下での自動運転として定義されているレベル3の自動運転の利用は、長時間継続利用の運転モードとして、人間工学的に見て適さないという考えに基づいている。したがって、レベル3の自動運転は、運転者は運転操舵に直接は介在ができないにも関わらず、且つ完全な2次タスクに没頭もできずのどっちつかずの状態を継続しなくてはいけないため、利用形態によってはとても苦痛となる走行区間と言える。
 無論、短期に運転復帰できる2次タスクに限定する事はできるが、実用的な視点で運転者にレベル3での利用の制限を法的に掛ける事はできるとしても、人間の生体的特性から単調な状況が続いた場合に無意識のうちに眠くなったり、2次タスクに知らずの内に没頭してしまったりすることがある。
 つまり、注意下での自動運転となるレベル3の自動運転モードは、継続的な長期利用を想定したモードではない。レベル3の自動運転モードは、自律自動運転のまま区間通過が難しいかリスクを伴う場合に、運転者を短期的にバックアップとして復帰待機させる利用と、自動運転モード4から切り替えの際の緩衝区間に用いる利用に限定された自動運転モードである。ただし、携帯端末器の操作などで、運転者がタブレットの画面閲覧などを通じて常に運転への覚醒復帰の意識接続を維持する手段と併用する利用等に限れば、定常利用を行ってもよい。
 緩衝区間に用いる利用は、自動運転モード4から急激に手動運転モードへ復帰させるには、覚醒復帰の確かさを確認が不十分となるために危険を伴うので、その切り替えの際の緩衝区間を通過するために備える自動運転モードという考えに基づいている。
 この緩衝区間のモードを的確に備え実行するシステムの技術を提供することで、手動運転復帰が必要な際に、引き継ぎ失敗車両が多発して道路インフラ環境での引き継ぎ失敗車両による渋滞発生などを回避し、健全な道路インフラ環境を担保する狙いがある。
 ここで、本技術においては、ジェスチャー認識、サッケード情報、アクティブ反応応答検出、または音声認識を用いた運転者の反応度および覚醒度の検出に応じて、自動運転モードから手動運転モードへの切り替えの可否が判定され、適宜、実行される。
 この自動運転モードから手動運転モードへの切り替えには、図6の白抜き矢印#1に示されるように、自動化レベル4の自動運転モードから、運転者の運転操作が少しでも介在する意味を含めて、自動化レベル3の注意下自動運転モードへの切り替えも含まれる。
 自動運転モードから手動運転モードへの切り替えには、図6の白抜き矢印#2に示されるように、自動化レベル3の注意下自動運転モードから、自動化レベル0,1,2の手動運転モードへの切り替えも含まれる。
 自動運転モードから手動運転モードへの切り替えには、図6の白抜き矢印#3に示されるように、自動化レベル4の自動運転モードから、自動化レベル0,1,2の手動運転モードへの切り替えも含まれる。
 基本的にこの間のモード遷移は、自動化レベル4での運転者の手動運転への復帰能力が担保されている場合に限定されるため、切り替え直前まで運転者の能動的な操舵能力は、観測(判定)されていない。したがって、切り替えが可能な状況は、直線の危険を全く伴わない安全が担保された道路で且つLKASやACCなどの運転者の万が一の操舵能力不全に対して残存ADAS機能で運転者引き継ぎ不全に対処が可能な場合に限る。または、運転者のリクエストに応じ、運転者の手動運転能力判定を実行した上で初めて引き継ぎを完結し、不確実な操舵検出段階で操舵介在による制御を委ねると、寝ぼけた状態の運転者による操作で事故を誘発することも想定される。
 そのため、車両の制御を司る車両制御部28は、走行中に自動から手動への切り替えが必要な区間に侵入するのに先立ち、自動化レベル3の区間設定をし、その間に運転者の復帰能力判定を進め、走行可能自動化レベルが最大でもレベル2以下の区間侵入に備える。
 白抜き矢印#1,#2,#3の切り替えの際に、運転者の反応度および覚醒度を検出することができない場合、運転モードは、太線矢印#11,#12,#13に示されるように、緊急退避モードに移行される。なお、自動化レベル0,1,2の手動運転モードからは、体調変化などの緊急時にも、この緊急退避モードに移行される。
 なお、本明細書において、緊急退避モードの詳述はしないが、実際には、2つの機能を有している。1つ目の機能は、通常の走行を行っている車両で運転者の覚醒度合いや体調の急変等で想定される通常走行の継続や引き継ぎが困難となった場合に、車両を安全な退避場所まで緊急退避走行をさせる機能である。
 2つ目の機能は、そもそも運転能力が低下している交通手段貧困地で緊急に病院等へ移動する手段として、運転者による操舵能力がない状態でも移動手段を確保する機能である。特に、2つ目の機能は、移動速度自体の優先度を下げた機能であり、遠隔支援や先導車両の走行支援等を組み合せての移動確保が目的となる自動運転の走行モードの1つとなる。
 図6の実線矢印#21,#22に示されるように、自動化レベル0,1,2の手動運転モードから、自動化レベル3の注意下自動運転モードや、自動化レベル4の自動運転モードへの切り替えは、走行設定された車輛がその後進む道路のLDMや天候、事象発生情報、運転者による必要時の復帰可能性情報などに応じ、運転者によるリクエストのもと、実行可否判定が行われる。
 特に、実線矢印#21では、手動運転中の車両から運転者の周知外での自動運転復帰が行われると、車両利用時に無意識のうちに自動運転利用の発生と誤解を生むケースが発生する事もある。このケースは、極めて低い確率であったとしても、手動運転モード中の車両で、運転者は、いざ自動運転のつもりで、一瞬2次タスクを行い、気を取られていると危険事態を招くリスクがあるので望ましくない。
 なお、図6の破線矢印#31,#32に示されるように、緊急退避モードから、自動化レベル3または自動化レベル4への移行は、例えば、緊急時の患者の搬送などの特殊ケースのみが対象となる。
 利用形態として想定されるユースケースは、緊急車両の到達を待てない乗客が、中間地点の高速道路サービスエリアまでの移動のために、レベル4の自動運転が可能区間で自動運転レベル4を利用した移動などが考えらえる。通常利用者が、引き継ぎ不全で緊急退避モードに遷移した場合は、図示しない復帰不全記録などの所定の手続きを経てのみ復帰をする手順にする。
 運転者が、必要な区間において、手動運転に安全かつスムーズに復帰できるようにすることで、自動運転が可能な区間と手動運転が必要な区間が混在したルートを延長することができる。また、運転者の運転操作への介在からの完全な離脱を防ぎ、手動運転に安全かつスムーズに復帰できるようにすることで、走行ルートの主要な区間における自動運転の実施が可能になる。
 また、手動運転から自動運転への復帰は運転者の自動運転の復帰周知手順を導入する事で、手動運転中の運転者による安易な「自動運転中」と思い込みから2次タスク実行開始を防ぎ、手動運転モード中の思い込みによる不注意事故のリスク低減をはかることができる。そして、周知後であっても、思い込みをさらに防ぐモード表示や操舵介在離脱の警告を併用してもよい。
 <自動運転制御処理>
 次に、図7乃至図9のフローチャートを参照して、車両制御システム11により実行される自動運転制御処理について説明する。なお、この処理は、例えば、車両のパワー(イグニッション)スイッチがオンされたときに開始される。
 ステップS1において、運転者監視部26は、運転者の認証を行う。具体的には、運転者監視部26の運転者撮影部101は、運転者を撮影する。認証部104は、撮影により得られた運転者画像中の運転者の顔を認識する。
 また、認証部104は、記憶部35に記憶されている顔画像の中から、運転者の顔と一致する顔画像を検索することにより、運転者を特定する。例えば、記憶部35には、車両を使うそれぞれのユーザの顔画像と、識別情報などのそれぞれのユーザの情報が紐付けて管理されている。
 認証部104は、運転者を特定できた場合、認証に成功したと判定し、運転者を特定できなかった場合、認証に失敗したと判定する。認証部104は、運転者の認証結果を車両制御部28に供給する。なお、運転者の認証技術として、その他にも指紋認証、静脈認証、虹彩認証のような他の手段を代わりに用いてもよい。
 なお、運転者の認証に失敗した場合、車両の走行が禁止されるようにしてもよい。この場合、運転者が、セキュリティが確保された環境下で所定の操作を行い、新規のユーザ登録を行うことにより、車両の走行が許可されるようにしてもよい。
 ただし、運転者の認証を行う主な目的は、認証された運転者の運転操作の特徴と運転者の状態との相関をとり、それに応じて車両を制御したりすることである。したがって、必ずしも、認証結果を車両の走行の許可または禁止の制御に用いる必要はない。これにより、例えば、緊急時等に、未認証の状態での走行を許可することが可能になる。なお、未認証の状態で走行していることを、表示灯や車車間通信等により周囲に通知するようにしてもよい。
 ステップS2において、ログ生成部125は、ログの記録を開始する。
 ステップS3において、車両制御部28は、目的地を取得する。具体的には、車両の搭乗者(必ずしも運転者とは限らない)は、入力部24を介して、目的地を入力する。入力部24は、取得した目的地を示す情報を車両制御部28に供給する。
 なお、今後、人工知能による音声認識の発達が見込めることから、会話型の目的設定や走行プリフェランス設定を行うようにしてもよい。
 ステップS4において、車両制御システム11は、目的にまでの想定ルートおよび区間通過走行に影響を与える該当全区間の天候や事象等と進行に伴う接近区間の周辺情報の取得を開始する。
 例えば、周辺撮影部21は、車両の進行方向および周辺の撮影、並びに、撮影により得られた周辺画像の車両制御部28への供給を開始する。
 周辺情報取得部22は、ミリ波レーダ、レーザーレーダ、ToFセンサ、ソナー、雨滴センサ、外光センサ、路面状態センサなど車両の周辺の環境および物体等に関する周辺情報の取得、並びに、周辺情報の車両制御部28への供給を開始する。
 車両情報取得部25は、車両情報の取得、および、車両制御部28への供給を開始する。
 位置測定部23は、車両の現在位置の測定、および、測定結果の車両制御部28への供給を開始する。
 通信部27は、ITSスポット(不図示)からのLDM(Local Dynamic Map)の受信、および、LDMの車両制御部28への供給を開始する。また、通信部27は、サーバ(不図示)からの地図データ等の受信、および、地図データ等の車両制御部28への供給を開始する。なお、地図データを記憶部35に予め記憶しておき、車両制御部28が、記憶部35から地図データを取得するようにしてもよい。
 さらに、通信部27は、路側機(不図示)からの各種の交通情報の受信、および、交通情報の車両制御部28への供給を開始する。特に、通信部27より直近の更新情報を取得することで、事前取得された地図情報に対して経時変化が起きたリスク変化点の更新を行う事が可能となる。
 なお、以下、LDM、地図データ等の、地図に関する情報をまとめて地図情報と称する。
 周辺監視部121は、周辺撮影部21からの周辺画像、周辺情報取得部22からの周辺情報、および、通信部27からの各種の情報に基づいて、車両の周辺の監視を開始する。
 ルート設定部151は、周辺監視部121から取得した情報、および、車両情報取得部25から供給される車両情報に含まれる車両の加速度および角速度等に基づいて、車両の現在位置の補正を適宜行う。これにより、例えば、地図情報内の経時変化が反映されていない情報や位置測定部23の検出・判定誤差等による車両の現在位置の推定誤差が補正される。
 ステップS5において、ルート設定部151は、走行ルートの設定を開始する。具体的には、ルート設定部151は、地図情報に基づいて、運転者の運転能力等を考慮しながら、現在位置または指定位置から目的地までの走行ルートを設定する。また、ルート設定部151は、時間帯、目的地までの天候、渋滞、通行規制等の情報に基づいて、必要に応じて走行ルートの変更またはルート選択肢の提示を行う。
 ステップS6において、自動化レベル設定部152は、自動化レベルの更新を開始する。
 具体的には、自動化レベル設定部152は、地図情報および周辺情報等に基づいて、走行ルート上において、許容される自動化レベル(以下、許容自動化レベルと称する)の分布を設定する。
 ここで、許容自動化レベルとは、対象となる区間において設定可能な自動化レベルの最大値を示す。例えば、許容自動化レベルがレベル3の区間においては、車両は自動化レベル3以下に設定して走行することが可能である。
 例えば、自動化レベル設定部152は、走行ルート上の許容自動化レベルの分布を、地図情報等に示されるデフォルト値に設定する。また、自動化レベル設定部152は、地図情報および周辺情報から得られる天候、道路の状態、事故、工事、交通規制等の走行ルート上および周辺の環境に関する情報に基づいて、走行ルート上の許容自動化レベルの分布を適宜更新する。
 例えば、路面の道路鋲、ペイント、縁石等の道路の区画線、記号、並びに、文字等の道路標示が積雪や冠水等で認識困難な区間において、許容自動化レベルが本来のレベル3からレベル2に下げられたり、LKASの使用が禁止されたりする。
 走行開始後の区間毎の状況変化は、雨水滞留に伴う白線隠れまたは濡れた路面の逆光反射など、さまざま状況で時々刻々変化する。特に、継続的な自動運転通過が見込まれる区間の一部で運転者復帰が必要となる変化は、運転者にその変化を周知し、2次タスク実行の事前制限をかける必要がある。
 また、火災による煙や濃霧等で視界が不良な区間において、許容自動化レベルが本来のレベル3からレベル2に下げられたり、最高速度が制限されたりする。
 さらに、事故が発生したり、落下物が検出されたりした区間において、許容自動化レベルがレベル1またはレベル0に下げられる。
 路面が凍結した区間や、横風が激しい橋において、制限速度が下げられたり、許容自動化レベルがレベル1またはレベル0に下げられたりする。
 自動化レベル設定部152は、このような制限に基づいて、走行ルート上の許容自動化レベルの分布を適宜更新する。
 ステップS7において、車両制御システム11は、運転者の監視を開始する。
 具体的には、運転者監視部26の運転者撮影部101は、運転者の撮影、および、撮影により得られた運転者画像の車両制御部28への供給を開始する。
 生体情報取得部102は、運転者の生体情報の取得、および、車両制御部28への供給を開始する。
 視線検出部103は、眼球解析に特化したブロックでもよいし、広域の運転者画像に基づいて、運転者の顔の向き、視線の向き、瞬き、眼球の動き(例えば、固視、サッカード等)の検出を行い、このような各情報を含む検出結果の車両制御部28への供給を開始する。
 運転挙動分析部141は、運転者画像、車両情報、および、学習部126による学習結果等に基づいて、運転者の運転挙動の分析を開始する。
 運転状態検出部142は、運転者画像、運転者の生体情報、視線検出部103による検出結果、認証部104による認証結果、および、学習部126による学習結果等に基づいて、運転者の状態の検出を開始する。
 例えば、運転状態検出部142は、運転者の姿勢および行動等の検出を開始する。
 また、例えば、運転状態検出部142は、運転者の反応性および覚醒度の検出を行う。運転者の反応性および覚醒度の検出結果は、運転状態検出部142から切り替え判定部155に供給される。
 切り替え判定部155においては、自動運転モードから手動運転モードへの切り替えの必要性があるときに、これらの検出結果のうちの少なくとも1つに基づいて、自動運転モードから手動運転モードへの切り替え判定が行われる。自動運転モードから手動運転モードへの切り替え判定は、運転者への運転モード切り替えの通知の後に行われる。
 ここで、運転者の反応性は、例えば、外部からの要求、指示、および刺激、並びに、車両の進行方向にある障害物等に対する運転者の反応の有無、反応速度、および、反応の的確性等に基づいて定義される。運転者の反応性は、運転者の覚醒度が低下している場合に加えて、運転者の意識が運転に向けられていない場合や、意図的に反応しない場合等に低下する。
 運転者の反応性および覚醒度の検出方法には、上述したようにパッシブモニタリングとアクティブモニタリングがある。
 パッシブモニタリングでは、運転者の状態を受動的に観察することにより、運転者の反応性及び覚醒度が検出される。
 例えば、顔の向きの遷移、視線の向きの遷移、瞬きの頻度、眼球の動きの遷移等の運転者の動きに基づいて、運転者の反応性及び覚醒度が検出される。例えば、周辺撮影部21や周辺情報取得部22等で得られた実空間の視野情報に相関する対象物に対する視線移動や固視等が観測され、その結果に基づき、運転者固有の学習済み眼球挙動を参照して、運転者の反応性及び覚醒度が検出される。
 例えば、運転者の心拍数、体臭等の生体情報に基づいて、運転者の覚醒度が検出される。
 例えば、ステアリングの操舵安定性や操作速度、アクセルペダルやブレーキペダルの操作安定性や操作速度等の運転者の運転操作の継時的な推移を観測することにより、運転者の反応性および覚醒度の変化が検出される。なお、これらの運転者の反応は、運転者毎に固有の特性を有するため、運転者の状況に応じた特性の学習を行い、その学習結果に基づいて、運転者の反応性および覚醒度を検出するようにしてもよい。
 アクティブモニタリングでは、視覚、聴覚、触覚等による刺激や指示等を運転者に与え、与えた刺激や指示等に対する運転者の反応(応答)を観察することにより、運転者の反応性および覚醒度が検出される。
 アクティブモニタリングは、例えば、パッシブモニタリングにより運転者の反応性および覚醒度の検出が困難な場合や検出精度を高める場合に用いられる。
 例えば、自動化レベル3以上になると、運転者の走行操作機器への介在が完全に途切れる場合があり、この場合には、走行操作機器の操作状況をモニタリングしても、運転者の反応を操舵機器の操作状況より検出することがもはやできない。アクティブモニタリングは、このような場合においても運転者の状態を確実に把握できるようにするために有効な手段となる。つまり、アクティブモニタリングはパッシブモニタリングを補完する機能を備える。また、例えば、刺激を与えることによって運転者を覚醒させるためにアクティブモニタリングが用いられる。
 なお、これらの運転者の反応性および覚醒度の検出は、運転者への手動運転モードの切り替え通知の後に行われるようにしてもよいし、走行操作機器を用いた補正操作があったときに行われるようにしてもよい。
 運転状態検出部142は、表示部29を制御し、運転者の視界内に短い単語や数字を表示させてそれを運転者に音読させたり、簡単な数式を表示させてその計算結果を運転者に発声させたりすることにより、運転者の反応性および覚醒度を検出することができる。
 また、運転状態検出部142は、表示部29を制御し、運転者の視界内に視線の目標となる疑似ターゲットを表示させて、運転者の視線の動きを追跡することにより、運転者の反応性および覚醒度を検出することができる。
 さらに、運転状態検出部142は、音声出力部30を制御し、運転者に簡単な指示(例えば、頭部を横に振る等)を出し、その指示に対する運転者の反応を観察することにより、運転者の反応性および覚醒度を検出することができる。
 運転支援制御部153は、運転状態検出部142の指示に従って、走行制御部33を制御し、安全性を確保できる範囲内で、車両に不自然な走行をさせる。そして、運転状態検出部142は、不自然な走行に対する運転者の反応に基づいて、運転者の反応性および覚醒度を検出する。
 なお、車両の不自然な走行に対する運転者の反応に基づいて運転者の反応性および覚醒度を検出する処理は、図4等を参照して上述した走行制御部33、運転状態検出部142、運転支援制御部153の処理と同様である。
 なお、上述した運転者の状態以外にも、意識状態、精神状態、緊張状態、薬物の影響度合い等の、他の種類の状態が検出されるようにしてもよい。
 ステップS8において、学習部126は、学習処理を開始する。
 例えば、学習部126は、運転挙動分析部141の分析結果に基づいて、運転者の運転能力と、検出可能な運転者の各種の可観測な状態または挙動との相関の学習を開始することができる。
 また、学習部126は、運転者がマニュアル運転を正常に行っているときの生体情報、運転者の動き、運転者の運転操作の傾向の学習を開始する。例えば、車線の中心を安定して走行したり、停止信号等で車両が安定して停止したり、カーブにおいて適切に減速が行われたりしたときに、運転者がマニュアル運転を正常に行っているものとして検出される。
 この学習は、例えば、運転者がマニュアル運転を正常に行っているときの運転者の視線の挙動、頭部の姿勢、体の姿勢、脈波波形、呼吸状態、外光に対する瞳孔反応などの運転者固有の特性と、正常な運転特性との相関を恒常的に学習するようにして行われる。この学習結果を用いることにより、パッシブモニタリングの精度を向上させることが可能になる。
 学習部126は、正常時と異常時の判別が可能なように、アクティブモニタリングに対する運転者の反応特性の学習を開始する。この学習結果を用いることにより、アクティブモニタリングの精度を向上させることが可能になる。
 なお、上記の学習には、単純な相関学習、CNN(Convolutional Neural Network)を用いた複雑な人工知能学習等の任意の学習方法を用いることができる。
 このように、各状態に応じた運転者固有の特性を学習することにより、運転者の状態(例えば、運転者の健康状態や疲労具合、過去に事故やヒヤリハット経験から特定事象に対する注意過多や敏感応答反応等)に基づいて、運転者の運転能力をより正確に検出することが可能になる。
 そして、学習部126は、学習結果を記憶部35に記憶させる。なお、学習結果については、利用した車両に記憶させて再利用するだけでなく、電子キーや遠隔サーバ等に車両と分離して記憶させて、レンタカーなど別の車両で利用できるようにしてもよい。また、運転者が繰り返し利用する車両に前回利用時の学習結果を取り込み、その陳腐化を判定して、前回利用時までに得られた学習辞書を、安全マージン付加してその判定の際の初期データとして利用してもよい。なお、学習特性は、一定期間車両の運転をしなかったりすると応答特性が変化する事から、利用履歴と合わせ適宜更新や利用履歴の空き期間に応じて安全係数を加え判断を行うようにしてもよい。
 ステップS9において、運転支援制御部153は、運転支援を開始する。すなわち、運転支援制御部153は、現在の自動化レベルに合わせて、走行制御部33を制御することにより、例えば、その一部として、ACC、LKAS、TJA、AEBS等の運転を支援する処理を開始する。
 ステップS10(図8)において、運転支援制御部153は、現在の自動化レベルに合わせて、走行制御部33を制御することにより、継続走行を行う。
 ステップS11において、運転モード切り替え制御部154は、通信部27を制御して走行ルート上の現在の位置を基準とした接近区間のLDMを取得させ、更新する。
 ステップS12において、運転モード切り替え制御部154は、LDMおよび運転者の状態を確認する。ここで確認される運転者の状態には、運転者の2次タスクの実行状況、運転者の反応性および覚醒度が含まれる。なお、運転者の反応性および覚醒度は、運転状態検出部142による検出結果に基づいて確認される。
 ここで、時間が経過すると、走行ルートや運転者の状況が変わることによって自動化レベルが変わる可能性がある。運転モード切り替え制御部154は、走行中、新しい情報を取得するとともに、走行ルートと運転者のモニタリングを常に続ける必要がある。
 図10の例においては、出発(走行ルート選定)時点での理想的LDMのデータが示されている。図10において、上から順に、区間、その区間に設定されている許容自動化レベル、その区間の定常的な2次タスク実行可否とその下段に、短期一時的な(短期限定、ともいう)2次タスク実行可否が示されている。
 なお、短期限定とは、通知制御部124から通知発報が出された場合、運転者は速やかに運転復帰に取りかかることのできる状態の2次タスク内容に限定され、如何なる2次タスクの利用形態においても、注意離脱を伴わない範囲に限定されることで、安全性を確保する。
 2次タスク実行可否は、例えば、姿勢内覚醒下OK、姿勢内覚醒下NG、姿勢外覚醒下OK、姿勢外覚醒下OK、姿勢外覚醒下NG、姿勢内外ともOK(覚醒度合いに依存せず)、姿勢内外ともNGの状態で構成されている。
 姿勢内覚醒下OK(姿勢内OK)の区間は、運転者の着座姿勢が、手動運転に直ぐに復帰できる着座姿勢と定める範囲内の姿勢であれば、自動運転モードで走行ができる区間である。
 すなわち、この姿勢内覚醒下OKの区間は、特に、想定外事情が発生しなければ、問題なく自動運転での通過が可能な区間である。したがって、定常利用は、基本的にはレベル3以上の区間、またはレベル2の区間内でも短期的に自動運転を利用した短期限定2次タスクの実行は条件付きで可能とする事も運用上可能である。実際の適用は、車両の特性や目標安全性次第である。短期限定2次タスクの実行は、前方不注意を招く一次的なナビ画面の確認や操作などがその対象の可能性となりえる。
 姿勢内覚醒下NG(姿勢内NG)の区間は、運転者の着座姿勢が、手動運転に復帰できる着座姿勢と定める範囲内の姿勢であっても、自動運転下での2次タスクを行ってはいけない区間である。
 レベル1までの自動運転しか利用が許可されない区間では、自動運転レベルが限定的となる。また、運転者が走行中にナビゲーション操作したり、何らかの前方に対する不注意な走行を行ったりした場合、危険を伴うリスクがあるため、自動運転に伴う一切の2次タスク実行が推奨されない区間である。
 姿勢外覚醒下OK(姿勢外OK)の区間は、運転者の着座姿勢が、手動運転に復帰できる着座姿勢と定める範囲外の姿勢であっても、レベル3以上の自動運転走行が可能な区間で、かつ、着座復帰の猶予期間が担保されていれば、そのレベル3許容走行区間を自動運転モード下で短期一時的に2次タスクの実行を行ってもよい区間である。
 ただし、同じ姿勢外と言っても、離席してデスクワークや仮眠などを行う事は、リスクが顕在化して復帰通知をしても復帰まで要する時間が長いタスクはリスクがあるため、自動運転に伴うそれら定常的離脱での2次タスク実行が推奨されない区間である。
 姿勢外覚醒下NG(姿勢外NG)の区間は、運転者の着座姿勢が、手動運転に直ぐに運転復帰できる姿勢と定める範囲外の姿勢である場合に、例え、運転者が運転復帰に必要な十分に覚醒度保っていたとしても、その様な離脱姿勢では、自動運転を許可しない区間である。
 すなわち、レベル3が許容される区間での定常的離席2次タスク作業は禁止に該当する区間である。
 姿勢内外ともOKの区間は、LDM等の更新や安全が確実に確認されたために、運転者の状態を問わず、レベル4相当の自動運転下での2次タスクが実行可能な区間である。
 ただし、詳細後述するように、レベル4に該当する区間で、車両がレベル4での自動走行性能を有しても、その全区間で完全に運転者が任意の2次タスクに従事できるわけではない。
 姿勢内外ともNGは、道路区間を自動運転で通過するにはリスクを伴い、レベル0や1で通過が必要な区間であり、さらに通常レベル4が許可される道路でも、一次的に何らかの理由でLDM等の更新がされなかったり、安全が確認されなかったりするために、運転者の状態を問わず、自動運転を許可しない区間である。
 なお、通常の自動運転が利用可能区間から手動運転が求められる区間に移行する際に、急に手動運転を実行する事は、手動運転の実行の確実性からみて好ましくない。したがって、自動運転のレベルの許容レベルが下がる区間侵入に先立ち、必ず手動運転を確認し終えるまでの猶予期間で許容される自動運転要求レベルを順次下げ、移行レベルの走行区間を確保する制御を行う。
 つまり、基本的にはレベル4からレベル2へは移行せず、レベル3を経てレベル2やレベル1に移行する。
 図10において、出発地点である地点P1でのLDMのデータでは、地点P1乃至地点P2の区間S1の許容自動化レベルは、レベル0またはレベル1に設定されている。また、区間S1の2次タスク実行可否は、姿勢内NGと設定されている。
 地点P2乃至地点P3の区間S2の許容自動化レベルは、レベル3に設定されている。また、区間S2の2次タスク実行可否は、姿勢内覚醒下OKとされ、短期限定2次タスクの実行可否は、姿勢外覚醒下OKと設定されている。
 地点P3乃至地点P4の区間S3の許容自動化レベルは、レベル4に設定されている。また、区間S3の2次タスク実行可否は、姿勢内外ともOKと設定されている。
 地点P4乃至地点P5の区間S4の許容自動化レベルは、レベル2に設定されている。また、区間S4の2次タスク実行可否は、姿勢内外ともNGとされ、短期限定2次タスクの実行可否は、姿勢内覚醒下OKと設定されている。
 ただし、レベル4の区間終了点であるポイントQ1では、その後続く自動運転レベル2を上限の自動運転区間に侵入する事前準備猶予として運転者覚醒復帰が必要である。したがって、必然的な自動運転レベル3区間(破線)をシステムが挿入し、この間に運転者の完全手動運転復帰を進める。
 本明細書では詳述をしていないが、定常的な運転者の覚醒状態や姿勢状態や進行予定道路の安全状況等に基づいて復帰遅延リスクを伴わないタイミングを判定し、引き継ぎ遅延Q1を定めている。本発明の運転者引き継ぎのアクティブ確認は、このレベル3相当走行を介して行う。
 図10の例では、地点P4乃至地点P5の区間S4はレベル2としている。図示はしていないが、仮に遡航中の時間経過とともに、この区間S4が全てレベル3になり、その後に続く区間S5(レベル3の区間)が、レベル4になった場合には、1つ課題が残る。つまり、レベル4の区間が途切れてレベル3の区間を経て再びレベル4になる区間を走行するようなルート区間においては、該当の途中通過するレベル3区間の通過の際には、本来であれば注意下であれば運転者復帰介在を求めないものの、運転者による機器操舵介在がこの場合ではまったく行われないことになる。
 この結果として、運転者の必要時の復帰可否判定を行う事が困難である。したがって、運転者による復帰能力判定をしつつ、上述したレベル4の途中一時的レベル3復帰条件の判定をして、レベル3の区間でありながら車両制御システム11により運転者反応を把握検出するために、意図的に一時運転のアクティブ操舵反応を確認してもよい。
 図10に戻り、地点P5乃至地点P6の区間S5の許容自動化レベルは、レベル3に設定されている。また、区間S5の2次タスク実行可否は、姿勢内覚醒下OK(定常的な運転復帰可能でかつ運転復帰に必要な覚醒下では、2次タスクの実行は可能)とされ、短期限定2次タスクの実行可否は、姿勢外覚醒下OK(短期限定なら姿勢外であっても意識下なら2次タスクの実行は可能)な区間として設定されている。
 地点P6乃至地点P7の区間S6の許容自動化レベルは、レベル0またはレベル1に設定されている。また、区間S6の2次タスク実行可否は、姿勢内外ともNG(運転に即復帰ができで十分な覚醒下でも前方注意運転からの離脱は、リスクを伴うためにナビゲーションシステムの操作などあっても許可がされない区間)と設定されている。なお、地点P7が到達地点でもある。
 ここで、区間S3の終点である地点P4においては、許容自動化レベルがレベル4からレベル2に移行し、2次タスク実行可否が姿勢内外ともOKから姿勢内外ともNGに移行している。また、区間S5の終点である地点P6においては、許容自動化レベルがレベル3からレベル1(レベル0)に移行し、2次タスク実行可否が姿勢内外ともOKから姿勢内外ともNGに移行している。
 この区間前の移行制御は、該当区間侵入に先立ち、次の侵入区間で運転者が次区間で求められる状態に移行完了をし終えるのに必要な移行猶予期間である。取り分け自動運転区間から手動運転や注意下での自動運転の許可区間に侵入する際に重要である。
 運転モード切り替え制御部154は、このような許容自動化レベルおよび2次タスク実行可否が移行する地点より所定の距離だけ手前の地点を、予定引き継ぎ開始地点として設定する。例えば、車両が予定引き継ぎ開始地点を通過するタイミングが、自動運転モードから手動運転モードに切り替えることを運転者に通知するタイミングとなる。
 すなわち、運転モード切り替え制御部154は、区間S3の終点である地点P4の手前に示されるポイントQ1、区間S5の終点である地点P6の手前に示されるポイントQ5を、予定引き継ぎ開始地点として設定する。車両がポイントQ1,Q5を通過するタイミングが、自動運転モードから手動運転モードに切り替えることを運転者に通知するタイミングとなる。
 なお、実際には、出発後、図11の吹き出しに示されるように状況の変化がある。そのため、出発(走行ルート選定)時点に設定された予定引き継ぎ開始地点を見直す必要が出てくることがある。
 図11において、地点P11乃至地点P12の区間S11は、図10の地点P1乃至地点P2までの区間S1に対応する。区間S11の許容自動化レベルはレベル0またはレベル1となり、2次タスク実行可否は姿勢外NGとなる。
 ここで、地点P12乃至地点P13の区間S12において、積雪などにより道路と道路の区切りが不明りょうとなり、かつ、自動運転に不向きな状況になるような変化が変化1として生じたものとする。この場合、区間S12の許容自動化レベルはレベル2(破線)に変更され、2次タスク実行可否は姿勢内外ともNGとなり、または姿勢内覚醒下OKにもはや定常的には許可されず、短期限定の2次タスクのみが姿勢内覚醒下で許可される状況に変更される。図11の区間S12は、許容自動化レベルがレベル3であった図10、つまり出発前の区間S2に対応する。
 なお、状況の変化が生じた場合、区間の設定についても変化が適宜生じることになる。
 図11の例において、変化1による状況が終了した後の地点P13乃至地点P14の区間S13は、図10の区間S3と同様に、許容自動化レベルが、レベル4、2次タスク実行可否が姿勢内外ともOKの区間として設定されている。
 また、図11の地点P14乃至地点P15の区間S14において、工事などにより、マニュアル走行が必要な状況になるような変化が変化2として生じたものとする。この場合、区間S14の許容自動化レベルはレベル1(破線)に変更され、2次タスク実行可否は姿勢内外ともNGに変更される。図11の区間S14は、許容自動化レベルがレベル4であった図10の区間S3の後半の一部や、レベル2であった図10の区間S4の前半の一部を含む区間である。
 ただし、図10のポイントQ1同様、レベル4の区間終了点であるポイントQ11では、その後の自動運転レベル1を上限の自動運転区間に侵入する事前準備猶予として運転者覚醒復帰が必要である。したがって、必然的な自動運転レベル3区間(破線)を、車両制御システム11が挿入し、この間に運転者の完全手動運転復帰を進める。
 図11の例において、変化2による状況が終了した後の地点P15乃至地点P16の区間S15は、許容自動化レベルが、レベル2、2次タスク実行可否が姿勢内外ともNGで、短期限定2次タスクの実行可否が姿勢内覚醒下OKの区間として設定されている。
 地点P16乃至地点P17の区間S16において、積雪などにより道路と道路の区切りが不明りょうとなり、かつ、自動運転に不向きな状況になるような変化が変化3として生じたものとする。この場合、区間S16の許容自動化レベルはレベル2(破線)に変更され、2次タスク実行可否は姿勢内外覚醒外ではNG、もはや定常的にはまたは姿勢内覚醒下は許可されず、短期限定2次タスクのみが姿勢内覚醒下OKに許可条件が変更される。
 図11の例において、変化3による状態が終了する地点P17乃至地点P18の区間S17は、図10の区間S6と同様に、許容自動化レベルがレベル0またはレベル1、2次タスク実行可否が姿勢内外ともNGの区間として設定されている。
 このような状況の変化によって、許容自動化レベルおよび2次タスク実行可否の設定が変更される。運転モード切り替え制御部154は、変更後の設定に応じて、予定引き継ぎ開始地点を変更し、自動運転モードから手動運転モードに切り替えることを運転者に通知するタイミングを変更(再設定)することになる。
 すなわち、運転モード切り替え制御部154は、区間S14の地点P14の手前に示されるポイントQ11を、予定引き継ぎ開始地点として設定する。車両がポイントQ11を通過するタイミングが、自動運転モードから手動運転モードに切り替えることを運転者に通知するタイミングとなる。
 このように、走行ルートや運転者の状況は、走行開始から時々刻々と変化する。図12の例においては、走行開始から一定時間経過後の地点Nの最新LDMのデータが示されている。走行開始後も、図12の吹き出しに示されるように状況の変化がある。
 図12の例において、現在、車両は、地点P23乃至地点P24の区間S23における地点P23地点Nを走行している。
 したがって、地点P21乃至地点P22の区間S21は、許容自動化レベルがレベル0またはレベル1として設定されていた区間であり、許容自動化レベルをレベル1として走行済みである。区間S21は、図11の区間S11に対応する。なお、区間S21の2次タスク実行可否は、姿勢内外ともNGとして設定され、通過し終えた区間である。
 区間S21の次に続く、地点P22乃至地点P23の区間S22は、許容自動化レベルがレベル2として設定されていた区間であり、そのような設定に基づいて走行済みである。区間S22は、図11の区間S12に対応する。区間S22の2次タスク実行可否は、姿勢内外ともNGであり、短期限定2次タスク実行可否は、姿勢内覚醒下OKとして設定されていた区間である。
 次に、現在車両が走行中の地点Nが位置する地点P23乃至地点P24の区間S23は、許容自動化レベルがレベル4で走行中である。すなわち、車両が完全自動運転モードとして走行していることから、運転モード切り替え制御部154は、少なくとも、矢印R1に示される区間の最新LDMの更新データを取得しながら走行を行っている。矢印R1に示される区間は、2次タスク(運転者が介在していない状態)から確実に復帰できる一定期間先までの走行予定区間である。
 この事前のLDM情報の最短の情報取得区間は、例えば、運転者が睡眠や荷台移動するなど長期離席が想定される利用なら、その2次タスクから一定の余裕をもって復帰が可能な最短期間を少なくとも定義し更新し続ける必要がある。以下、例えばその際にその区間更新で事前情報に対する変化情報を取得したとする。
 その際、地点Nに来た時点で最新LDMの更新データにより変化21の情報が付加され予定が変更された場合、運転者のモニタリングから復帰に要する予測時間を常時モニタリングしておくことで、運転者の状態把握から仮に復帰に際して要する時間算出が可能である。変化21に伴う運転者の介在復帰要求レベルが更新され、当初走行初期やN点未満の情報にはなかった、地点P24乃至地点P25の区間S24が、許容自動化レベルがレベル1に変化して、その区間の2次タスク実行可否が、姿勢内外ともNGとなっている。
 そこで、運転モード切り替え制御部154は、上記復帰に必要な予測タイミング算出し、区間S24の地点P24の手前に示されるポイントQ21を、予定引き継ぎ開始地点に変更する。
 なお、予測タイミングの算出は、運転者の復帰特性の学習に基づく特性、車両の積載・制動のダイナミックス特性、道路の安全性特定など勘案して演算される。車両がポイントQ21を通過するタイミングが、自動運転モードから手動運転モードに切り替えることを運転者に通知するタイミングとなる。
 また、運転モード切り替え制御部154は、地点P24から地点P25までは、許容自動化レベルがレベル1で、2次タスク実行可否が、姿勢内外ともNGに設定する。例えば、寝ている運転者には早期の警告、着座して前方注意しながらスマートフォン操作中なら短期の画面通知など状況に応じたタイミング算出が行われる。
 なお、詳細詳述はしないが、一旦レベル0乃至3のレベルに運転者の運転介在モードに移行した場合、自動運転の上位レベルモードに運転者の周知なくして再復帰のシームレス移行ができない仕組みが望ましい。また、レベル3乃至レベル4への自動運転復帰には運転者の復帰要請の意図的入力反映手段を有することが必要となる。
 ここで、運転者要請手段とは、運転者による自動運転モードにシームレスの無意識復帰を防止し、実際には自動運転モードに車両制御システム11が復帰していないにも関わらず運転者の勘違いによる錯覚を防止する機能である。運転者による上位自動運転レベル復帰周知機能を有しない制御シーケンスを行うと、システムが自動運転復帰を本来行っていない区間での走行時に運転者の思い込みで自動運転の継続利用中と思い込み、事故を誘発する恐れがあるからである。
 例えば、直線道路が続く区間であったとしても自動で走行が継続されていると勘違いをし、その後にカーブ等に差し掛かった際に無制御であると気づいても運転者は慌てて事故になるリスクがある。
 次に、図12の地点P25乃至地点P26は、図11の地点P13乃至地点P14の区間S13と同様に、許容自動化レベルがレベル4で、2次タスク実行可否が、姿勢内外ともOKである。
 ここで、図11の変化2である工事予定が更新されておらず、予定が変更していなければ、図12の例においても、ポイントQ11が予定引き継ぎ開始地点であった。しかしながら、図12の例においては、図11の地点P14乃至P15の変化2で示された工事予定から変化22が生じ、工事区間情報が更新され、工事は、地点P26乃至地点P27の区間S26において区間縮小変更がなされている。区間S26においては、許容自動化レベルがレベル1で、2次タスク実行可否が、姿勢内外ともNGである。
 そこで、運転モード切り替え制御部154は、ポイントQ11から、区間S26の地点P26の手前に示されるポイントQ22を、予定引き継ぎ開始地点に変更する。車両がポイントQ22を通過するタイミングが、自動運転モードから手動運転モードに切り替えることを運転者に通知するタイミングとなる。
 このとき、レベル4の区間終了点であるポイントQ22では、その後の自動運転レベル1を上限の自動運転区間に侵入する事前準備猶予として運転者覚醒復帰が必要である。したがって、必然的な自動運転レベル3区間(破線)を、車両制御システム11が挿入し、この間に運転者の完全手動運転復帰を進める。
 次に、図12の地点P27乃至地点P28の区間S27は、図11の地点P15乃至地点P16までの区間S15と同様に、許容自動化レベルがレベル2で、2次タスク実行可否が姿勢内外ともNGであり、短期限定2次タスク実行可否が姿勢内覚醒下OKである。
 図12に示されるように、次の地点P28乃至地点P29の区間S28においては、天候が改善し、道路と道路区切りは鮮明となり、道路環境が改善されるという変化23が生じる。この変化23により、図11では、レベル2であった図12の区間S28の許容自動化レベルは、レベル3に変更されており、姿勢外NGまたは姿勢内覚醒下OKであった2次タスク実行可否は、姿勢内覚醒下OKであり、短期限定2次タスク実行可否が姿勢外覚醒下OKに変更されている。
 そして、図12の例において、変化23が終了する地点P29乃至地点P30の区間S29は、図12の区間S29、図11の区間S17と同様に、許容自動化レベルがレベル0またはレベル1に設定され、2次タスク実行可否は、姿勢内外ともNGと設定されている。
 以上のように、許容自動化レベルが同一であったとしても、運転者に復帰が求められる推奨時間(運転者への通知タイミングや警告タイミング)は、その時点(または区間侵入する想定時刻)での走行環境や運転者の状態、車両の積載、または制動特性などに応じて時々刻々と変化する。すなわち、LDMの地図情報や環境情報、事故、飛び出し、落雪、横風といった気象要因による継時変化リスク、さらには運転者の状態に応じて、運転者に復帰を求めるタイミングは能動的に変化する。
 なお、運転者の意識が正常な走行が可能な状態に復帰するまでのスピードは、運転者の特性を用いた学習によって求められる固有関数として表される。そのような固有関数は、例えば、眼球のサッケードやマイクロサッケード挙動・固視微動や瞳孔反射の特性、瞬きの特性などと関連付けた関数として表現される。
 その他、前述の脈拍、呼吸、脳は等様々な生体信号の可観測情報と関連付けて関数として表現をしてもよい。これら、可観測の評価値は、自動運転から手動運転の引き継ぎ事象が発生する都度観測され、その後の安定した引き継ぎと、引き継ぎの失敗や遅延との直接的相関が得られるため、引き継ぎが正常に行われた場合の値を教師データとして可観測値から運転が覚醒復帰の判定器の性能向上が利用に応じてなされる。
 図13は、2次タスク実行可否についてまとめた表を示す図である。
 上述したように、表の操舵運転席に運転復帰が可能な着座姿勢において、「姿勢内」は、操舵運転席に運転復帰が可能な着座姿勢であることを表す。「姿勢外」は、操舵運転席に即刻運転復帰が可能な着座姿勢ではないことを表す。
 表の周辺環境認知、回避行動がとれる覚醒状態において、「覚醒下」は、周辺環境認知、回避行動がとれる覚醒状態であることを表し、「覚醒外」は、周辺環境認知、回避行動がとれる覚醒状態ではないことを表す。
 代表的な覚醒外状態は寝てしまった状態となるが、その他の例として、ビデオ鑑賞していたり、ゲームに夢中になっていたり、移動中の車内で遠隔電話会議を開催していたり、メールやブラウジングに没頭している様な状況の覚醒外に該当する。なお、煩雑さを避けるために敢えて個別の分類記載はしていないが、さらに、体の操舵機能も実際には配慮する必要があり、例えば2次タスクによる手足の痺れなどのいわゆるロコモーティブ能力も、通知タイミング決定と自動運転の利用許容範囲の決定要因となる。
 上から順に説明すると、姿勢内外問わず、覚醒下であるか否か問わず、Level4であれば、定常的な2次タスク実行可能である。
 姿勢内外問わず、覚醒下であるか否か問わず、Level3以下であれば、定常的な2次タスク実行不可能である。継続的な操舵離脱の長期利用では、基本的に利用不可能としている。この場合、長時間、直接運転の操舵に介在せず、いつでも復帰が求められる状態で自動走行状態の監視・注意の継続的維持をするのは難しいためである。仮にLevel3の利用が一定以上の時間継続した場合は、断続的に運転者に復帰を求め変化を与える利用形態となるのが望ましい。
 姿勢内外問わず、覚醒下であるか否か問わず、Level4であれば、多様な2次タスクも実行可能である。
 姿勢内、覚醒下であれば、Level3以上で、早期復帰が可能な短期限定2次タスクが実行可能である。前述の通り、Level3の利用は長時間連続無介在の自動運転利用は想定されず、この場合、運転者の運転から意識離脱はしても、定期的に繰り返し状況のモニタリング確認を継続的にされる前提であるので、運転者が眠いたり、ビデオ鑑賞やゲームに夢中になり、復帰遅延が発生した場合その遅延に対してペナルティ対象とする事で意識離脱の発生を抑制できる。
 姿勢外(限定した姿勢を崩す範囲の短期復帰が可能な程度の姿勢崩し)は覚醒下であれば、Level2以上で、短期限定2次タスクが実行可能である。完全自動運転とはいかないものの、一定の安全運転が確保されている区間であれば、ナビゲーションの操作など従来禁止されていた一切の操作も、軽度の姿勢を崩した2次タスクの範囲で実施が可能とする運用を想定できる。
 姿勢外であれば、覚醒下であるか否か問わず、短期限定2次タスクであってもLevel3以下で2次タスクの実行は不可能である。
 図8に戻って、ステップS13において、運転モード切り替え制御部154は、LDM(の更新情報)および運転状態検出部142により検出された運転者の状態に基づいて、図10乃至図12を参照して説明したようにして、状況の変化があったか否かを判定する。
 ステップS13において、状況の変化があったと判定された場合、処理は、ステップS14に進む。
 ステップS14において、運転モード切り替え制御部154は、通知タイミングを再設定(変更)する。適宜、LDMおよび運転者の確認頻度の再設定も行われる。
 一方、ステップS13において、状況の変化がなかったと判定された場合、ステップS14の処理はスキップされる。
 ステップS15において、運転モード切り替え制御部154は、現在時刻が、設定された通知タイミングの一定時間前の時刻になったか否かを判定する。
 ここで定める一定時刻とは、運転者が、手動運転に復帰に要する固有学習によって定常的観測から推定される復帰時間を示し、一定の成功確率で手動運転が正常に行える予測時間である。学習手法に関しては本明細書では詳述しない。
 運転者が引き継ぎに必要な通知を受けてから実際の引き継ぎが正常に完了するまでの時間は、運転者個人でも異なるし、姿勢状態やそれまで行っていた行為等に依存する。
 そこで、通知時間は、ここの運転者の復帰特性を把握できないとしたら、それら運転者人口の統計的復帰特性分布に基づき、できれば100%、できなければ目標とする引継ぎ成功率に応じて、定めた目標引継ぎ成功率を達成するに必要な一定時刻で通知をすることで、運転者が正常に運転を引き継げるために前記成功率を確保する。一定時刻とは、この一定の成功率を確保するための運転者に与えられる通知の猶予限界タイミングである。
 ステップS15において、通知タイミングの一定時間前の時刻になっていないと判定された場合、ステップS10に戻り、それ以降の処理が繰り返される。
 ここで、低頻度で通知タイミングを定常的に観測し、状況変化で高頻度検出に移行する理由は、定常的観測を怠ると、運転者は、通常起きて直ぐに復帰が可能な2次タスクしか実行していない利用者が時間経過とともに眠気をもよおして、より睡眠などの深い離脱に移行する事がありえる。
 この場合、通常なら直前の通知で十分に猶予時間が取れたケースでも、睡眠が進み、当初の予定より早く通知をする状況に変化しているケースが起こりえる。これら経時変化にともなう状況の回避の為に、離れた時間間隔で行う定期の定常モニタリングサンプリングと、さらに引き継ぎ点接近に伴い、サンプリング頻度を上げた高周期サンプリングして引継ぎタイミングの高精度化や遅れ防止を行う目的のために行うサンプル頻度変更を実施する。
 本実施の形態においては、サンプリング頻度を定めた想定であるが、運転者の常時姿勢や定常生体の信号観測から、変化検出に高感度な変化、敏感型の検出手段を組み合せ、運転者の変化を観測して、その変化検出するイベントドリブン型の通知タイミング再算出を行う構成にしてもよい。また、2次タスクの内容次第では、運転者に何らかの状況通知とその認知を定期的に実施してもよい。
 一方、ステップS15において、通知タイミングの一定時間前の時刻になったと判定された場合、処理は、ステップS16に進む。
 ステップS16において、運転モード切り替え制御部154は、LDMおよび運転者の確認頻度を、今までよりも高頻度に再設定する。
 ステップS17において、運転モード切り替え制御部154は、現在時刻が通知タイミングになったか否かを判定する。例えば、車両が予定引き継ぎ開始地点を通過したときに、通知タイミングになったものとして判定される。
 ステップS17において、通知タイミングになっていないと判定された場合、処理は、ステップS18に進む。
 ステップS18において、ルート設定部151は、設定した目的地に到着したか否かを判定する。
 ステップS18において、目的地に到着していないと判定された場合、ステップS10に戻り、それ以降の処理が繰り返される。
 一方、ステップS18において、目的地に到着したと判定された場合、自動運転処理は終了手順を開始する。
 ステップS17において、通知タイミングになったと判定された場合、処理は、ステップS19(図9)に進む。
 ステップS19において、運転モード切り替え制御部154は、運転者が覚醒低下状態であるか否かを判定する。ここでの判定は、運転状態検出部142により検出された運転者の反応度および覚醒度に基づいて行われる。
 例えば、運転者の反応度および覚醒度が、閾値として予め設定された値より低い場合、運転者が覚醒低下状態であると判定され、閾値として予め設定された値より高い場合、運転者が覚醒低下状態ではないと判定される。
 ここでいう閾値として、ドライバー人口に対して一意に定義した固定値を用いてもよい。その場合、運転者には個人の特性に応じて直ぐ復帰を急ぐ運転者もいれば時間を要する運転者もいるため、より運転者固有の復帰に特性に合せ精度を向上するために、運転者状態の可観測な観測値に応じた運転者固有の学習特性を事前に(定期)学習し定めてもよい。
 運転者が特定することが困難な場合などは復帰に要する一般的運転者人口による統計値を用いてもよい。ただし、あらゆるドライバーを安全に引き継がせるには、早めに通知するが求められる一方で、定常的に数分や数十分も早い段階で早期通知を繰り替えしたのでは、運転者通知に対する復帰必要性の危機意識が低下し、復帰に対する怠慢リスクを誘発するため、あまり望ましくない通知タイミングの決定方法と言える。
 ステップS19において、運転者が覚醒低下状態であると判定された場合、処理は、ステップS20に進む。
 ステップS20において、運転モード切り替え制御部154は、手動運転モードへの移行通知を行わせる。手動運転モードへの移行通知は、自動運転モードから手動運転モードに切り替えることを運転者に通知するものであり、例えば通知制御部124による制御に従って行われる。
 例えば、表示部29は、通知制御部124の制御の下に、運転者の視界内に注意を促す通知画面等の表示を行う。運転者が携帯端末12を操作している場合、携帯端末12の画面に通知画面等が表示されるようにしてもよい。
 このとき、操作中の状態を強制的に保存し、同じ状態から操作を再開できるように携帯端末12をスタンバイ状態に遷移させたり、携帯端末12の画面を強制的にオフさせたりするような制御が行われるようにしてもよい。これにより、通知画面が表示されたことに対して、運転者が慌てて携帯端末12を操作するようなことを防止することができる。
 手動運転モードへの移行通知が、画面表示以外の方法で行われるようにしてもよい。
 例えば、音声出力部30が、通知制御部124の制御の下に、音声メッセージ、アラーム、ブザー、ビープ音、車内のみに聞こえる後続車の疑似カーホーン(クラクション)等の出力を行うようにしてもよい。
 また、発光部31が、通知制御部124の制御の下に、ランプ等の点灯または点滅を行うようにしてもよい。
 車載装置制御部34が、通知制御部124の制御の下に、運転者のシートまたはステアリングを振動させたり、シートベルトを引っ張ったりする等のハプティクスフィードバックを行うようにしてもよい。なお、シートを振動させることにより、車両がランブルストリップスや道路鋲を横切ったときと同様の振動が運転者に伝わるようにしてもよい。
 走行制御部33がステアリングを制御することにより、ランブルストリップスや道路鋲を横切ったときと同様の振動が運転者に伝わるようにしてもよい。
 ステップS21において、運転モード切り替え制御部154は、切り替え判定部155を制御し、運転モード切り替え判定処理を行わせる。運転モード切り替え判定処理においては、ジェスチャー認識切り替え判定部201、サッケード情報切り替え判定部202、音声認識切り替え判定部203、およびアクティブ反応応答検出切り替え判定部204の各判定部により、それぞれ切り替え可否の判定が行われる。ステップS21の運転モード切り替え判定処理については、図14のフローチャートを参照して後述する。
 ステップS22において、切り替え判定部155は、切り替え判定部155を構成する各判定部による判定結果に基づいて、自動運転モードから手動運転モードへの切り替えが可能であるか否かを判定する。
 ステップS22において、自動運転モードから手動運転モードへの切り替えが可能であると判定された場合、処理は、ステップS23に進む。
 ステップS23において、運転モード切り替え制御部154は、自動運転モードから手動運転モードへの切り替えを行い、運転者が主体的に運転を行う状態である運転者主体制御の状態へ移行させ、その後、自動運転制御処理を終了させる。
 一方、ステップS19において、運転者が覚醒低下状態であると判定された場合、処理は、ステップS24に進む。
 ステップS24において、運転モード切り替え制御部154は、通知制御部124を制御し、覚醒のための警報を行わせる。例えば、人を覚醒させるほどの大きな音や振動などが警報として出力される。
 ステップS24において出力される警報は、ステップS20において出力される通知とは異なり、より強力なものとなる。例えば、通知時と比較してより高い音量で、音声メッセージ、アラーム、ブザー、ビープ音、疑似クラクション等が出力される。また、通知時と比較してより不快感が強い不協和音等の音色が出力される。ランプ等の発光が通知時と比較してより多い光量で行われるようにしてもよいし、ハプティクスフィードバックが通知時と比較してより高い強度で行われるようにしてもよい。
 ステップS25において、運転モード切り替え制御部154は、運転者の確認復帰姿勢が確認されたか否かを判定する。例えば、正常時の姿勢と同じ姿勢を運転者がとろうとしていることが運転状態検出部142による覚醒度の検出結果に基づいて特定できた場合、覚醒復帰姿勢が確認できたものとして判定される。姿勢移動や離席作業を許容するシステムでは、運転者の車両内姿勢・体勢移動をトラッキング判定する装置を備えて判定を行ってもよい。
 ステップS25において、運転者の覚醒復帰姿勢が確認できていないと判定された場合、処理は、ステップS26に進む。
 ステップS26において、運転モード切り替え制御部154は、内蔵するタイマを参照し、例えば通知タイミングになってから所定の引き継ぎ完了猶予時間が経過したか否かを判定する。
 ステップS26において、所定の時間が経過していないと判定された場合、ステップS24に戻り、それ以降の処理が繰り返される。所定の経過時間とは、例えば寝ている運転者を起こすために許容される覚醒までの時間であり、寝起きの悪い運転者では該当認証運転者には長く、短期で目が覚める運転者なら短く、個人情報として設定された時間である。
 一方、ステップS26において、所定の時間が経過したと判定された場合、運転者の覚醒復帰作業を断念し、処理は、ステップS27に進む。自動運転モードから手動運転モードへの切り替えが可能ではないとステップS22において判定された場合も同様に、処理は、ステップS27に進む。
 ステップS27において、ログ生成部125は、手動運転モードへの切り替えNG記録を行う。例えば、手動運転モードに切り替えることができなかったことを表すログが生成され、記録される。
 ステップS28において、運転モード切り替え制御部154は、緊急退避モードを起動して実行させる。緊急退避モードが実行されることにより、例えば、運転者の車両を、路側帯まで道路走行周辺状況を勘案しつつ減速して低速化をすすめ、その後、路肩などに緊急退避させるような制御が行われる。ただし、仮に緊急時といえども路肩停車は好ましい利用形態ではない。望ましくは、最寄りの退避可能は交通非妨害地点となり得る位置まで車両を移動してパーキングすることである。その理由は、仮に自動運転の普及が進み、そもそもの渋滞等の発生に伴う車の流れの停滞が発生すると自動運転の車で走行帯が全て充填し、緊急車両の通過を阻害するため、路肩確保は交通インフラの正常運用に極めて重要となるからである。
 このように、緊急退避モードにおいては、車両を強制的に停車させる処理が行われる。緊急を要する場合、例えば、走行ルート上の最寄りの強制停車場所がルート設定部151により地図情報に基づいて検索され、検索された強制停車場所に停車させる処理が行われる。強制停車場所としては、例えば、車両を停車させることが可能な、非常駐車帯、安全地帯、店舗の駐車場等が検索される。ここで、道路走行の周辺状況を勘案しつつとは、例えば路肩を有しない単車線の交通量の多い時間帯でそのまま唯一の車線で車両をその減速救急停車すれば、該当道路の渋滞要因となる。
 緊急を要しない場合、最寄りのパーキングエリアまたはサービスエリアが地図情報に基づいて検索されるようにしてもよい。所定の範囲内にパーキングエリアまたはサービスエリアがあり、そこに、手動運転が要求されるルートを通らずに辿り着ける場合、ルート設定部151は、そのパーキングエリアまたはサービスエリアを強制停車場所に設定することになる。所定の範囲内にパーキングエリアまたはサービスエリアがない場合、または、手動運転が要求されるルートを通らずにパーキングエリアまたはサービスエリアに辿り着けない場合、緊急を要する場合と同様の方法により、強制停車場所が検索され、設定されるようにしてもよい。
 運転支援制御部153は、走行制御部33等を制御して、設定された強制停車場所に車両を停車させる。このとき、必要に応じて減速または徐行が行われる。また、運転者が復帰できない要因として運転者の病状急変などで発生した場合、SOS発信を検出時や停車後に事象通知と合わせて行われてもよい。
 なお、強制停車場所に自動的に停車する前に、運転者が手動運転への切り替えを強制的に行い、運転復帰を強行することも想定される。この場合、運転者が十分に覚醒していない可能性があるため、手動運転に段階的に移行させるようにしてもよい。
 次に、図14のフローチャートを参照して、図9のステップS21において行われる運転モード切り替え判定処理について説明する。
 ステップS101において、ジェスチャー認識切り替え判定部201は、ジェスチャー認識を用いた反応性および覚醒度の検出を運転状態検出部142に行わせる。
 ジェスチャー認識切り替え判定部201は、運転状態検出部142による検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
 ステップS102において、サッケード情報切り替え判定部202は、運転者の眼球挙動解析、例えば、サッケード解析を行って運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 サッケード情報切り替え判定部202は、運転状態検出部142による検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
 ステップS103において、運転者の音声による応答を認識して運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 音声認識切り替え判定部203は、運転状態検出部142による検出結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
 ステップS104において、アクティブ反応応答検出切り替え判定部204は、アクティブ反応に対する運転者の応答に基づいて運転者の反応性および覚醒度を検出することを運転状態検出部142に行わせる。
 アクティブ反応応答検出切り替え判定部204は、運転状態検出部142による検出結果、つまり、運転に働きかけるアクションに対する運転者の認知応答として現れる反応結果に基づいて運転者の復帰内部状態を判定することで、運転モードを、自動運転モードから手動運転モードに切り替えることができるか否かを判定する。
 なお、自動運転モードから手動運転モードへの切り替え判定処理は、これら4つの段階の判定処理を経て行われるものに限定されるものではない。例えば、図14に示される4つの判定処理に代えて他の判定処理が行われるようにしてもよいし、判定処理が追加されるようにしてもよい。
 また、図14に示される4つの判定処理の順番は、任意に変更可能である。ここで、運転者に働きかける効果は、単純に運転者の受動的手段に依存した認知判断の観測に依存して検出の場合、道路が単調で特に注意を要しない道路区間では運転者のパッシブ観測には何ら特異な特徴が出現せずに覚醒復帰状態の判断が困難であるのに対し、車両制御システム11から運転者に能動的に働き掛けることで、覚醒復帰の判定に必要な可観測な状態観測値の判別がより顕在化できる利点がある。
 図9のステップS22における切り替え可能であるか否かの判定が、図14に示される4つの判定処理の全ての判定結果に基づいて行われるようにしてもよいし、少なくともいずれか1つの判定処理の判定結果に基づいて行われるようにしてもよい。
 <自動運転制御処理>
 次に、図15乃至図17のフローチャートを参照して、車両制御システム11により実行される自動運転制御処理の他の例について説明する。
 図15のステップS201乃至ステップS209の処理は、上述した図7のステップS1乃至S9の処理と同様の処理である。重複する説明については適宜省略する。
 ステップS201において運転者の認証が行われ、ステップS202においてログの記録が開始される。ステップS203において目的地が取得され、ステップS204において周辺情報の取得が開始される。
 ステップS205において走行ルートの設定が開始され、ステップS206において、自動化レベルの更新が開始される。ステップS207において運転者の監視が開始され、ステップS208において学習処理が開始される。また、ステップS209において、運転支援が開始される。
 図16のステップS210において、運転モード切り替え制御部154は、通信部27を介して取得されるLDMおよび交通情報等に基づいて、手動復帰の必要性を監視する。なお、自動運転モードから手動運転モードへの切り替えは手動復帰と同意である。以下、適宜、自動運転モードから手動運転モードへの切り替え(移行)を、手動復帰と称する。
 例えば、手動復帰の必要性の監視中において、図10乃至図12を参照して説明したように状況に変化が発生した場合、運転モード切り替え制御部154は、予定引き継ぎ開始地点の再設定などを行う。
 ステップS211において、運転モード切り替え制御部154は、手動復帰が必要であるか否かを判定する。
 ステップS211において、手動復帰が必要ではないと判定された場合、ステップS210に戻り、それ以降の処理が繰り返される。
 一方、ステップS211において、手動復帰が必要であると判定された場合、処理は、ステップS212に進む。
 ステップS212において、運転モード切り替え制御部154は、復帰の必要性の通知を通知制御部124に行わせる。ここで行われる通知は、図9のステップS20の通知と同様の手動運転モードへの移行通知となる。
 復帰の必要性の通知によっては運転者の覚醒復帰が期待できない場合、図9のステップS24の警報と同様の警報が所定の回数繰り返されるようにしてもよい。
 ステップS213において、運転モード切り替え制御部154は、運転者の覚醒復帰が期待できるか否かを判定する。
 例えば、切り替え判定部155の各判定部により、それぞれ切り替え可否の判定が行われ、その判定結果に基づいて、運転者の覚醒復帰が期待できるか否かが判定されるようにしてもよい。なお、運転者の覚醒復帰が期待できるか否かの判定が、上述した4つの判定処理のうち、少なくとも1つの判定処理の結果を基準として行われるようにしてもよい。
 ステップS213において、運転者の覚醒復帰が期待できると判定された場合、処理は、ステップS214に進む。
 ステップS214において、運転モード切り替え制御部154は、運転復帰手順を開始し、姿勢復帰のトラッキングである運転姿勢復帰シーケンストラッキングを運転状態検出部142に行わせる。運転姿勢復帰シーケンストラッキングは、2次タスク時の運転者の着座有無に応じて、さらに、運転者の姿勢が運転できる姿勢に復帰するまでのシーケンスをトラッキングする動作である。
 ステップS215において、運転モード切り替え制御部154は、運転可能姿勢への復帰モニタリングを行う。例えば、運転可能姿勢への復帰モニタリングとして、顔の向きの遷移、視線の向きの遷移、瞬きの頻度、眼球の動きの遷移等の運転者の動きに基づいてモニタリングが行われ、運転者の反応性および覚醒度の検出が行われる。
 ステップS216において、運転モード切り替え制御部154は、ステップS215での復帰モニタリングの結果に基づいて、運転者の走行操作機器を用いた操舵開始の可能性を検出したか否かを判定する。
 ステップS216において、運転者の走行操作機器を用いた操舵開始の可能性を検出したと判定された場合、処理は、図17のステップS218に進む。
 なお、ステップS213において、運転者の覚醒復帰が期待できないと判定された場合、または、ステップS216において、運転者の走行操作機器を用いた操舵開始の可能性を検出できないと判定された場合、処理は、ステップS217に進む。
 ステップS217において、運転モード切り替え制御部154は、図9のステップS28と同様に緊急退避モードを起動実行させる。緊急退避モードが実行されることにより、車両が強制的に停車させられ、その後、自動運転制御処理が終了される。
 図17のステップS218乃至S220において、アクティブ反応応答検出による切り替え処理が行われる。
 すなわち、ステップS218において、アクティブ反応応答検出切り替え判定部204は、ノイズ走行などの、正常走行からの体感的な逸脱制御を走行制御部33に行わせる。体感的な逸脱制御には、ステアリングへのトルク付加、意図的な操舵ズレ、蛇行操舵、急加減速などの制御が含まれる。
 なお、体感的な逸脱制御は、制御ロスト感を与えないような制御であることが望ましい。例えば、横風や路面上の穴などへの乗揚げでハンドルが若干取られる程度の瞬間的な逸脱を与える範囲のものに抑えることが望ましい。
 ステップS219において、アクティブ反応応答検出切り替え判定部204は、ノイズ走行などの体感的な逸脱制御に対する運転者の是正操作を運転状態検出部142にモニタリングさせる。是正操作をモニタリングすることにより、運転者が、ノイズ走行を打ち消すアクティブ反応応答を正しく実施できていること等が検出される。
 ステップS220において、アクティブ反応応答検出切り替え判定部204は、運転状態検出部142による検出結果に基づいて、運転者の状態を評価する。ここでは、正常操舵が可能な状態に復帰できているか否かが評価される。
 ステップS221において、アクティブ反応応答検出切り替え判定部204は、ステップS220での評価結果に基づいて、運転者が、正常操舵が可能な状態に復帰したか否かを判定する。
 ステップS221において、運転者が、正常操舵が可能な状態に復帰したと判定された場合、処理は、ステップS222に進む。
 ステップS222において、運転モード切り替え制御部154は、運転者に対して、正常操舵の権限を段階的に移す。すなわち、運転モード切り替え制御部154は、自動運転モードから手動運転モードに段階的に切り替える。
 なお、運転者によるステアリング操作が検出された場合でも、運転者が夢遊病状態で操舵を行っていたり、慌てて反射的に操舵を行っていたりする可能性もある。したがって、権限を一度に移すのではなく、走行に対して、逸脱する走行制御の重み付けを段階的にしたり、ステアリングが運転者の意思に沿って回転するときに強い反力トルクの負荷をかけるようにしたりして、権限を段階的に移すようにすることが望ましい。
 ステップS223において、運転モード切り替え制御部154は、運転状態検出部142による運転者の反応性および覚醒度の検出結果を継続的に見ることで、定常の手動運転に相当する運転操舵が行われているか否かを判定する。ここで、定常の手動運転に相当する運転操舵とは、該当運転者の通常手動運転時の運転動作の特性を基準に判断するのが望ましい。
 ステップS223において、定常の手動運転に相当する運転操舵が行われていると判定された場合、自動運転制御処理は終了する。
 一方、ステップS221において、運転者が、正常操舵が可能な状態に復帰していないと判定された場合、または、ステップS223において、定常の手動運転に相当する運転操舵が行われていないと判定された場合、図16のステップS217に戻り、それ以降の処理が繰り返される。
 以上のように、本技術においては、覚醒度の検出結果などを用いた運転者の復帰内部状態の判定の手順の最終段階の処理として、操舵修正操作の必要性を運転者が感じるような制御が意図的に行われる。
 また、そのような制御に対する応答に基づいて、筋力が機器の操舵能力的にも正常な操舵能力を有するまでに運転者の意識が復帰したか否かを判定し、自動運転モードから手動運転モードへの切り替えるようにしたため、自動運転から手動運転への引き継ぎをより安全に行うことが可能になる。
 それ以外にも、さらに、ジェスチャー、視線動作トラッキング、音声認識による確認などを順番に行うことにより、運転者の復帰能力の判定を精度よく行うことができ、結果として、自動運転モードから手動運転モードへの引き継ぎをより確実に行わせることが可能になる。
 以上により、より安全に自動運転から手動運転に切り替えることができる。
 なお、例えば、車両制御システム11が、SLAM(Simultaneous Localization and Mapping)等の技術を用いて、対環境の相対位置補正するための自律自己位置の確認・高精度化やさらには取得地図データの補正データを作成するようにしてもよい。
 本技術の説明として、道路環境に応じて走行が可能な自動運転レベルが自動運転の利用が許容されないレベル0から自動運転可能レベルが順次運転者の介在を要する程度、さらには高度な自動運転化レベル4乃至レベル5に至る分類の基づき説明をしている。
 他方で、現行の道路交通法でまだ許容はされていいないものの、車両制御システム11が低速での走行利用を前提として自動運転を捉えた場合には、現在広く議論がされている通常の高速度の安全な走行に必要な主要リスクを多重にカバーする走行環境状況認識や短期パスプラニングと言った認知・判定と走行プラニングを実施する必要性は必ずしも必須ではない。そして、超小型モビリティーとして、規制緩和で導入が進む低速運転車輛と既存従来型の型式認証対象の軽自動車の中間的位置付けで、低速走行限定の自律全自動運転車両を想定した場合、その様な車輛の自動運転での低速利用が可能となるメリットは大きい。
 つまり、低速に限定した車両の利用を想定した場合、自動運転システムが短期判断を出来ない場合、時間軸を利用して車を止めたり、減速したりしてクリティカルポイントへの到達時刻を意図的に遅らせつつ、システムが車両の進行に必要な状況把握に時間をかけてもよく、さらに速度が遅ければその結果走行パス判断に時間を掛けて行ってよく、車両の進行を減速して進めることで補える。つまり、従来の高速自動走行に必要な常時更新されたLDMと言う「見えない軌道」に相当する地図情報が乏しくとも、車両を低速化した利用に限定する事で安全に走行させることが可能となる。
 なお、クリティカルポイントとは、例えば、事前取得されたLDM等の情報により、該当する引き継ぎ完了すべき地図上の最終引き継ぎ地点を示している。クリティカルポイントは、その地点を該当する車両が通過した時点で手動運転、または、車両制御システム11の要請に応じて運転者の手動復帰が求められた場合に、手動運転での対処が取れなかった場合に、危険を誘発する恐れがある地点である。
 車両制御システム11が手動運転を求める要因次第では、その地点は必ずしも手動復帰が出来ていない場合に直接危険を伴うとは限らない。車両制御システム11が危険か状況の判断ができない何がしらの事象が発生しているために、運転者の手動運転復帰の完了が求めている地点である。
 該当のクリティカルポイントは、車両制御システム11が判断出来なかったり、通常の巡航速度で自動走行をするのに車両制御システム11が不確実であったりするために、車両制御システム11が判断した決定地点である。したがって、運転者が、該当のクリティカルポイントを通過した際に、地点通過までに自車の手動運転復帰の必要性を実感しない事も実際には多々発生しえる。
 そのため、クリティカルポイントでは、該当地点での油断する運転者による引き継ぎ怠慢が多発する事で、いざ車両制御システム11が本当に判断出来ない危険事象が、たまたま発生した状況と相まって起きた場合には、結果的に重大事故を誘発するリスクが包含される。したがって、該当クリティカルポイントで運転者の引き継ぎが確認できない際、運転者の引き継ぎ軽視を回避するため、そのクリティカルポイントを、引き継ぎ遅延や引き継ぎ開始遅延の際に該当運転者に付与するペナルテイの発行の判定基準点として用いてもよい。
 他方で、高速走行環境での混在利用は、道路インフラの渋滞発生などインフラ機能の阻害要因が多いことから、低速での利用しかできない自動運転システムをそのまま高速道路環境で利用は適さない。
 つまり、低速専用の自動運転車両はより限定した周辺認知機能でも移動走行を安全に実現が可能である一方、そのまま自動運転を高速運転に適用すると、最適な障害回避ルートパス選定などの高速処理が求めるが、安全な自動運転に必要な遠方認知や高速処理判定ができないため、高速走行が求められるルートの通過が困難である。
 そこで、低速では運転者の手動運転能力の如何に関わらず低速限定での自動運転利用を許容する。さらに、一定の速度以上で区間通過を希望する運転者が手動運転として運転に介在復帰した場合に限り、走行速度を上げて自動運転化レベル3やレベル2での高速走行の区間通過用が可能となれば、同一の移動手段でより実用的な利用が可能となり、且つ、安全面も確保され、さらには道路インフラの低速車両の進入に起因する渋滞の発生等も防げるメリットが生じる。
 つまり、本技術は、走行区間に応じて時々刻々変化する道路区間毎に適宜運転者が自動運転モードから手動運転モードに切り替える際の手動運転復帰能力の判定に主体を置いているが、低速時での自動運転を許容する形態の車両を高速で移動する場合の、運転者による手動運転復帰能力判定に拡張利用をしてもよい。
 なお、上記説明においては、運転者の制御に対する能動的反応を確認する主要な実施例の構成例であるが、さらに車両の走行その物に具体的にノイズ走行を直接与える制御以外であってもよい。例えば、Virtual Reality効果などで視覚的効果を用いたり、ステアリングと車両制御を分離してステアリングの回転とトルクを擬似的に発生させたりまたはステアリングの回転自体は回転させずに打振に依る触覚的手法で回転体感を加えるなど行ってもよい。
 本技術は、車両の動力源やエネルギー供給源に関わらず、少なくとも運転の一部を自動化することが可能な各種の車両に適用することができる。例えば、本技術は、ガソリン車、ハイブリッド車、プラグインハイブリッド車、電気自動車、燃料電池車等に適用することができる。また、本技術は、一般的な自動車以外にも、バス、トラック、自動二輪車等にも適用することができる。特に、本技術は、自律自動運転とマニュアル運転の切り替えが可能な各種の車両に適用した場合に効果が大きくなる。
 <コンピュータの構成例>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図18は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)401,ROM(Read Only Memory)402,RAM(Random Access Memory)403は、バス404により相互に接続されている。
 バス404には、さらに、入出力インターフェース405が接続されている。入出力インターフェース405には、入力部406、出力部407、記録部408、通信部409、及びドライブ410が接続されている。
 入力部406は、入力スイッチ、ボタン、マイクロフォン、撮像素子などよりなる。出力部407は、ディスプレイ、スピーカなどよりなる。記録部408は、ハードディスクや不揮発性のメモリなどよりなる。通信部409は、ネットワークインターフェースなどよりなる。ドライブ410は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブル記録媒体411を駆動する。
 以上のように構成されるコンピュータでは、CPU401が、例えば、記録部408に記録されているプログラムを、入出力インターフェース405及びバス404を介して、RAM403にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU401)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体411に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブル記録媒体411をドライブ410に装着することにより、入出力インターフェース405を介して、記録部408にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部409で受信し、記録部408にインストールすることができる。その他、プログラムは、ROM402や記録部408に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 <構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行う走行制御部と、
 前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態を検出する運転状態検出部と
 を備える車両制御装置。
(2)
 前記運転状態検出部により検出された前記運転状態に応じて、前記運転モードを切り替える運転モード切り替え部を
 さらに備える前記(1)に記載の車両制御装置。
(3)
 前記運転モード切り替え部は、前記運転状態検出部により検出された前記運転状態が、正常な走行が可能であることを表している場合に、前記運転モードを、前記自動運転モードから前記手動運転モードに切り替える
 前記(2)に記載の車両制御装置。
(4)
 前記走行制御部は、前記運転モードの切り替え時に段階を経て行われる複数の判定処理のうちの最終段階または最終段階に準じた処理として、前記逸脱する走行制御を行う
 前記(1)乃至(3)のいずれかに記載の車両制御装置。
(5)
 前記走行制御部は、前記逸脱する走行制御として、進行方向に対してずれた方向へ車両を移動させる走行制御を行う
 前記(1)乃至(4)のいずれかに記載の車両制御装置。
(6)
 前記走行制御部は、前記ずれた方向としての直角方向へ車両を移動させる走行制御を行う
 前記(5)に記載の車両制御装置。
(7)
 前記走行制御部は、前記逸脱する走行制御として、車両に対して急加減速を与える走行制御を行う
 前記(1)乃至(6)のいずれかに記載の車両制御装置。
(8)
 前記走行制御部は、前記運転モードを切り替えることを前記運転者に通知された後で、前記逸脱する走行制御を行う
 前記(1)乃至(7)のいずれかに記載の車両制御装置。
(9)
 前記運転状態検出部は、前記逸脱する走行制御が前記走行制御部により行われる前に、前記運転者の運転状態を受動的に検出する
 前記(1)乃至(8)のいずれかに記載の車両制御装置。
(10)
 前記運転状態検出部は、前記逸脱する走行制御が前記走行制御部により行われる前に、前記運転者の運転状態を受動的または準受動的に検出し、
 前記走行制御部は、前記運転者の状態と復帰予測タイミングを元に、前記運転者への通知タイミングを決定する
 前記(1)乃至(9)のいずれかに記載の車両制御装置。
(11)
 前記運転状態検出部は、前記運転者が行う走行操作機器への補正動作に基づいて、前記運転状態を検出する
 前記(1)乃至(10)のいずれかに記載の車両制御装置。
(12)
 前記運転状態検出部は、前記運転状態として、前記運転者の反応性と覚醒度のうちの少なくともいずれかを検出する
 前記(1)乃至(11)のいずれかに記載の車両制御装置。
(13)
 前記走行制御部は、車両の自動運転モードを低速時に限定して許可を行い、所定の速度以上の走行に移行する際に自動運転から手動運転切り替えを判定し、所定速度以上で走行する際には前記運転者の操舵介在を求める
 前記(1)乃至(11)のいずれかに記載の車両制御装置。
(14)
 自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行い、
 前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態を検出する
 ステップを含む車両制御方法。
 10 自動運転システム, 11 車両制御システム, 12 携帯端末, 21 周辺撮影部, 22 周辺情報取得部, 23 位置測定部, 24 入力部, 25 車両情報取得部, 26 運転者監視部, 27 通信部, 28 車両制御部, 29 表示部, 30 音声出力部, 31 発光部, 33 走行制御部, 34 車載装置制御部, 35 記憶部, 101 運転者撮影部, 102 生体情報取得部, 103 視線検出部, 104 認証部, 121 周辺監視部, 122 運転者監視部, 123 自動運転制御部, 124 通知制御部, 125 ログ生成部, 126 学習部, 141 運転挙動分析部, 142 運転者状態検出部, 151 ルート設定部, 152 自動化レベル設定部, 153 運転支援制御部, 154 運転モード切り替え制御部, 155 切り替え判定部, 201 ジェスチャー認識切り替え判定部, 202 サッケード情報切り替え判定部, 203 音声認識切り替え判定部, 204 アクティブ反応応答検出切り替え判定部

Claims (14)

  1.  自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行う走行制御部と、
     前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態を検出する運転状態検出部と
     を備える車両制御装置。
  2.  前記運転状態検出部により検出された前記運転状態に応じて、前記運転モードを切り替える運転モード切り替え部を
     さらに備える請求項1に記載の車両制御装置。
  3.  前記運転モード切り替え部は、前記運転状態検出部により検出された前記運転状態が、正常な走行が可能であることを表している場合に、前記運転モードを、前記自動運転モードから前記手動運転モードに切り替える
     請求項2に記載の車両制御装置。
  4.  前記走行制御部は、前記運転モードの切り替え時に段階を経て行われる複数の判定処理のうちの最終段階または最終段階に準じた処理として、前記逸脱する走行制御を行う
     請求項1に記載の車両制御装置。
  5.  前記走行制御部は、前記逸脱する走行制御として、進行方向に対してずれた方向へ車両を移動させる走行制御を行う
     請求項1に記載の車両制御装置。
  6.  前記走行制御部は、前記ずれた方向としての直角方向へ車両を移動させる走行制御を行う
     請求項5に記載の車両制御装置。
  7.  前記走行制御部は、前記逸脱する走行制御として、車両に対して急加減速を与える走行制御を行う
     請求項1に記載の車両制御装置。
  8.  前記走行制御部は、前記運転モードを切り替えることを前記運転者に通知された後で、前記逸脱する走行制御を行う
     請求項1に記載の車両制御装置。
  9.  前記運転状態検出部は、前記逸脱する走行制御が前記走行制御部により行われる前に、前記運転者の運転状態を受動的に検出する
     請求項1に記載の車両制御装置。
  10.  前記運転状態検出部は、前記逸脱する走行制御が前記走行制御部により行われる前に、前記運転者の運転状態を受動的または準受動的に検出し、
     前記走行制御部は、前記運転者の状態と復帰予測タイミングを元に、前記運転者への通知タイミングを決定する
     請求項1に記載の車両制御装置。
  11.  前記運転状態検出部は、前記運転者が行う走行操作機器への補正動作に基づいて、前記運転状態を検出する
     請求項1に記載の車両制御装置。
  12.  前記運転状態検出部は、前記運転状態として、前記運転者の反応性と覚醒度のうちの少なくともいずれかを検出する
     請求項1に記載の車両制御装置。
  13.  前記走行制御部は、車両の自動運転モードを低速時に限定して許可を行い、所定の速度以上の走行に移行する際に自動運転から手動運転切り替えを判定し、所定速度以上で走行する際には前記運転者の操舵介在を求める
     請求項1に記載の車両制御装置。
  14.  自動運転モードから手動運転モードへの運転モードの切り替え時に、車両の正常な走行に対して逸脱する走行制御を行い、
     前記逸脱する走行制御に対して行われた運転者による走行操作に基づいて、前記運転者の運転状態を検出する
     ステップを含む車両制御方法。
PCT/JP2018/025655 2017-07-21 2018-07-06 車両制御装置及び車両制御方法 WO2019017216A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/631,020 US20200139992A1 (en) 2017-07-21 2018-07-06 Vehicle control device and vehicle control method
JP2019530963A JP7155122B2 (ja) 2017-07-21 2018-07-06 車両制御装置及び車両制御方法
EP18834796.7A EP3657465A4 (en) 2017-07-21 2018-07-06 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL PROCEDURE
CN201880047033.8A CN110914884B (zh) 2017-07-21 2018-07-06 车辆控制器和车辆控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-141553 2017-07-21
JP2017141553 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019017216A1 true WO2019017216A1 (ja) 2019-01-24

Family

ID=65015124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025655 WO2019017216A1 (ja) 2017-07-21 2018-07-06 車両制御装置及び車両制御方法

Country Status (5)

Country Link
US (1) US20200139992A1 (ja)
EP (1) EP3657465A4 (ja)
JP (1) JP7155122B2 (ja)
CN (1) CN110914884B (ja)
WO (1) WO2019017216A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132351A (ja) * 2019-02-19 2020-08-31 三菱ロジスネクスト株式会社 荷役システムおよび制御方法
JP2020132350A (ja) * 2019-02-19 2020-08-31 三菱ロジスネクスト株式会社 荷役システムおよび制御方法
WO2020174789A1 (ja) * 2019-02-25 2020-09-03 株式会社Jvcケンウッド 運転支援装置、運転支援システム、運転支援方法及びプログラム
CN112849146A (zh) * 2019-11-08 2021-05-28 丰田自动车株式会社 驾驶辅助装置、方法和计算机可读非暂时性存储介质
JP2021113043A (ja) * 2020-01-17 2021-08-05 株式会社デンソー 運転制御装置およびhmi制御装置
CN113353095A (zh) * 2020-03-04 2021-09-07 丰田自动车株式会社 车辆控制装置
JP2021152800A (ja) * 2020-03-24 2021-09-30 株式会社デンソー 運転支援装置、及び運転支援方法
US11225266B2 (en) 2019-08-20 2022-01-18 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for improving visual scanning behavior associated with controlling a vehicle
WO2022224721A1 (ja) * 2020-06-10 2022-10-27 株式会社デンソー 提示制御装置、提示制御プログラム、自動運転制御装置および自動運転制御プログラム
WO2022249837A1 (ja) * 2021-05-27 2022-12-01 株式会社デンソー 機能制御装置、機能制御プログラム、自動運転制御装置、及び自動運転制御プログラム
CN113353095B (zh) * 2020-03-04 2024-05-14 丰田自动车株式会社 车辆控制装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235190A (zh) * 2017-01-31 2019-09-13 三菱电机株式会社 自动驾驶控制装置
JP6944308B2 (ja) 2017-08-18 2021-10-06 ソニーセミコンダクタソリューションズ株式会社 制御装置、制御システム、および制御方法
JP2019156171A (ja) * 2018-03-13 2019-09-19 本田技研工業株式会社 走行制御装置、車両、走行制御システム、走行制御方法およびプログラム
KR20190134862A (ko) * 2018-04-27 2019-12-05 삼성전자주식회사 전자 장치 및 그 동작 방법
US11144052B2 (en) * 2018-12-07 2021-10-12 Toyota Research Institute, Inc. Readiness and identification by gaze and/or gesture pattern detection
KR20210113224A (ko) * 2019-01-04 2021-09-15 세렌스 오퍼레이팅 컴퍼니 음성 상호작용을 사용하여 자율 주행 차량의 안전성과 유연성을 향상시키기 위한 방법 및 시스템
US11216000B2 (en) * 2019-01-17 2022-01-04 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for estimating lane prediction errors for lane segments
US11001272B2 (en) * 2019-02-05 2021-05-11 GM Global Technology Operations LLC Apparatus to enable user driven range and feature selection
US11760377B2 (en) * 2019-02-26 2023-09-19 Harman International Industries, Incorporated Shape-shifting control surface for an autonomous vehicle
US11144053B2 (en) * 2019-04-04 2021-10-12 Toyota Research Institute, Inc. Controlling driving condition components of an autonomous vehicle based on a current driving mode and current conditions
US20200356100A1 (en) * 2019-05-09 2020-11-12 ANI Technologies Private Limited Generation of autonomy map for autonomous vehicle
US11511737B2 (en) * 2019-05-23 2022-11-29 Systomix, Inc. Apparatus and method for processing vehicle signals to compute a behavioral hazard measure
JP7226104B2 (ja) * 2019-05-30 2023-02-21 株式会社デンソー 情報提示装置、情報提示方法および情報提示プログラム
KR20210012463A (ko) * 2019-07-25 2021-02-03 엘지전자 주식회사 차량 단말 및 그의 동작 방법
BR112022000226A2 (pt) * 2019-07-26 2022-02-22 Honda Motor Co Ltd Servidor de processamento de informações, método de processamento de informações, programa, e sistema de suporte de provisão de serviços
JP7431531B2 (ja) * 2019-08-20 2024-02-15 株式会社Subaru 車両の自動運転制御装置
CN111613076A (zh) * 2020-04-09 2020-09-01 吉利汽车研究院(宁波)有限公司 辅助驾驶方法、系统、服务器及存储介质
CN111762179B (zh) * 2020-05-11 2022-07-12 广州文远知行科技有限公司 车辆控制方法、装置、车辆和计算机可读存储介质
US11571969B2 (en) * 2020-06-04 2023-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. External communication suppression device for driving automation
KR102424867B1 (ko) * 2020-06-09 2022-07-26 주식회사 인포카 개인화된 안전운전 보조 방법 및 시스템
US11603120B2 (en) * 2020-06-21 2023-03-14 TrueLite Trace, Inc. Autonomous driving co-driver switch mode certification system and method of its operation in a commercial vehicle ELD
CN111731314B (zh) * 2020-06-30 2021-07-30 中国第一汽车股份有限公司 一种车辆驾驶许用速度确定方法、车载设备及存储介质
JP7381414B2 (ja) * 2020-07-01 2023-11-15 トヨタ自動車株式会社 眠気兆候通知システム及び眠気兆候通知方法
US11597408B2 (en) * 2020-07-09 2023-03-07 Aptiv Technologies Limited Vehicle control system
US11577743B2 (en) * 2020-07-09 2023-02-14 Toyota Research Institute, Inc. Systems and methods for testing of driver inputs to improve automated driving
US20220063678A1 (en) * 2020-08-27 2022-03-03 Waymo Llc Mode management for autonomous vehicles
FR3114788B1 (fr) * 2020-10-07 2022-08-19 Psa Automobiles Sa Procédé et dispositif de détermination d’un indicateur de comportement latéral dangereux d’un véhicule autonome circulant sur une voie de circulation
KR20220063856A (ko) * 2020-11-10 2022-05-18 현대자동차주식회사 자율 주행 제어 방법 및 장치
DE102020214556A1 (de) 2020-11-19 2022-05-19 Volkswagen Aktiengesellschaft Kommunikationssystem für ein Fahrzeug zum Vorgehen bei einer Schlafstörung eines Insassen
WO2022113584A1 (ja) * 2020-11-27 2022-06-02 ソニーグループ株式会社 情報処理装置、および情報処理システム、並びに情報処理方法
CN112528793B (zh) * 2020-12-03 2024-03-12 上海汽车集团股份有限公司 一种车辆的障碍物检测框抖动消除方法及装置
US20220258728A1 (en) * 2021-02-16 2022-08-18 Atieva, Inc. Physical feedback confirmation from assisted-driving system about traffic event
JP7302616B2 (ja) * 2021-02-24 2023-07-04 トヨタ自動車株式会社 遠隔支援システム及び遠隔支援方法
EP4052983B1 (en) * 2021-03-04 2023-08-16 Volvo Car Corporation Method for transitioning a drive mode of a vehicle, drive control system for vehice and vehicle
CN112959926B (zh) * 2021-03-05 2022-11-29 广西双英集团股份有限公司 一种面向动态多任务汽车座舱平台的时分控制方法
EP4177125A1 (en) * 2021-11-08 2023-05-10 Volvo Car Corporation Driver controlling system for a vehicle
US20230322271A1 (en) * 2022-01-07 2023-10-12 Locomation, Inc. Multi-factor transition into or out of autonomy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193353A (ja) * 2008-02-14 2009-08-27 Toyota Motor Corp 飲酒検知装置
JP2013039891A (ja) * 2011-08-19 2013-02-28 Daimler Ag 自動走行制御装置
JP2016038793A (ja) 2014-08-08 2016-03-22 株式会社デンソー 運転者監視装置
JP2016115356A (ja) 2014-12-12 2016-06-23 ソニー株式会社 自動運転制御装置および自動運転制御方法、並びにプログラム
JP2017123054A (ja) * 2016-01-07 2017-07-13 株式会社デンソーアイティーラボラトリ 警報装置、警報方法、及びプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893831B2 (ja) * 2000-01-28 2007-03-14 いすゞ自動車株式会社 オートクルーズ制御方法
JP2005149201A (ja) * 2003-11-17 2005-06-09 Nissan Motor Co Ltd 運転者心理状態判定装置
DE102005018697A1 (de) * 2004-06-02 2005-12-29 Daimlerchrysler Ag Verfahren und Vorrichtung zur Warnung eines Fahrers im Falle eines Verlassens der Fahrspur
JP4739407B2 (ja) * 2006-03-24 2011-08-03 パイオニア株式会社 運転者の精神状態検出装置
JP2008195338A (ja) * 2007-02-15 2008-08-28 Mazda Motor Corp 車両用運転支援装置
JP5114351B2 (ja) * 2008-09-17 2013-01-09 富士重工業株式会社 覚醒度判定装置
JP4973687B2 (ja) * 2009-05-13 2012-07-11 トヨタ自動車株式会社 走行支援装置
US8676488B2 (en) * 2009-06-04 2014-03-18 Toyota Jidosha Kabushiki Kaisha Vehicle surrounding monitor device and method for monitoring surroundings used for vehicle
JP6176011B2 (ja) * 2013-09-11 2017-08-09 トヨタ自動車株式会社 車両の制御装置
JP6213282B2 (ja) * 2014-02-12 2017-10-18 株式会社デンソー 運転支援装置
US9919717B2 (en) * 2014-04-14 2018-03-20 Mitsubishi Electric Corporation Driving assistance device and driving assistance method
JP6201927B2 (ja) * 2014-08-01 2017-09-27 トヨタ自動車株式会社 車両制御装置
JP6135618B2 (ja) * 2014-08-08 2017-05-31 トヨタ自動車株式会社 車両制御装置
JP6323318B2 (ja) * 2014-12-12 2018-05-16 ソニー株式会社 車両制御装置および車両制御方法、並びにプログラム
JP6422812B2 (ja) * 2015-04-09 2018-11-14 三菱電機株式会社 運転支援装置および運転支援方法
JP6451537B2 (ja) * 2015-07-21 2019-01-16 株式会社デンソー 運転支援制御装置
CN105956548A (zh) * 2016-04-29 2016-09-21 奇瑞汽车股份有限公司 驾驶员疲劳状况检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193353A (ja) * 2008-02-14 2009-08-27 Toyota Motor Corp 飲酒検知装置
JP2013039891A (ja) * 2011-08-19 2013-02-28 Daimler Ag 自動走行制御装置
JP2016038793A (ja) 2014-08-08 2016-03-22 株式会社デンソー 運転者監視装置
JP2016115356A (ja) 2014-12-12 2016-06-23 ソニー株式会社 自動運転制御装置および自動運転制御方法、並びにプログラム
JP2017123054A (ja) * 2016-01-07 2017-07-13 株式会社デンソーアイティーラボラトリ 警報装置、警報方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657465A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132350A (ja) * 2019-02-19 2020-08-31 三菱ロジスネクスト株式会社 荷役システムおよび制御方法
JP2020132351A (ja) * 2019-02-19 2020-08-31 三菱ロジスネクスト株式会社 荷役システムおよび制御方法
WO2020174789A1 (ja) * 2019-02-25 2020-09-03 株式会社Jvcケンウッド 運転支援装置、運転支援システム、運転支援方法及びプログラム
US11225266B2 (en) 2019-08-20 2022-01-18 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for improving visual scanning behavior associated with controlling a vehicle
CN112849146B (zh) * 2019-11-08 2023-08-08 丰田自动车株式会社 驾驶辅助装置、方法和计算机可读非暂时性存储介质
CN112849146A (zh) * 2019-11-08 2021-05-28 丰田自动车株式会社 驾驶辅助装置、方法和计算机可读非暂时性存储介质
JP2021113043A (ja) * 2020-01-17 2021-08-05 株式会社デンソー 運転制御装置およびhmi制御装置
JP7375735B2 (ja) 2020-01-17 2023-11-08 株式会社デンソー 運転制御装置およびhmi制御装置、ならびに運転制御プログラムおよびhmi制御プログラム
CN113353095A (zh) * 2020-03-04 2021-09-07 丰田自动车株式会社 车辆控制装置
EP3875330A1 (en) * 2020-03-04 2021-09-08 Toyota Jidosha Kabushiki Kaisha Vehicle controller
US11472429B2 (en) 2020-03-04 2022-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle controller
CN113353095B (zh) * 2020-03-04 2024-05-14 丰田自动车株式会社 车辆控制装置
JP2021152800A (ja) * 2020-03-24 2021-09-30 株式会社デンソー 運転支援装置、及び運転支援方法
JP7375645B2 (ja) 2020-03-24 2023-11-08 株式会社デンソー 運転支援装置、及び運転支援方法
WO2022224721A1 (ja) * 2020-06-10 2022-10-27 株式会社デンソー 提示制御装置、提示制御プログラム、自動運転制御装置および自動運転制御プログラム
JP7416010B2 (ja) 2020-06-10 2024-01-17 株式会社デンソー 提示制御装置、提示制御プログラム、自動運転制御装置および自動運転制御プログラム
WO2022249837A1 (ja) * 2021-05-27 2022-12-01 株式会社デンソー 機能制御装置、機能制御プログラム、自動運転制御装置、及び自動運転制御プログラム

Also Published As

Publication number Publication date
CN110914884B (zh) 2022-08-30
EP3657465A4 (en) 2020-10-21
JPWO2019017216A1 (ja) 2020-05-28
US20200139992A1 (en) 2020-05-07
CN110914884A (zh) 2020-03-24
JP7155122B2 (ja) 2022-10-18
EP3657465A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP7155122B2 (ja) 車両制御装置及び車両制御方法
JP7080598B2 (ja) 車両制御装置および車両制御方法
JP7288911B2 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
JP7299840B2 (ja) 情報処理装置および情報処理方法
JP7352566B2 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
CN111989729B (zh) 信息处理装置、移动装置、信息处理系统、方法和程序
WO2021145131A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
KR20200113202A (ko) 정보 처리 장치, 이동 장치, 및 방법, 그리고 프로그램
JP7357006B2 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
US20240034362A1 (en) Information processing device, information processing method, and information processing program
JP7238193B2 (ja) 車両制御装置および車両制御方法
US20240051585A1 (en) Information processing apparatus, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018834796

Country of ref document: EP

Effective date: 20200221