WO2019010815A1 - Méthode de synthèse de tamis moléculaire cu-sapo-34, et tamis moléculaire cu-sapo synthétisé et son application - Google Patents

Méthode de synthèse de tamis moléculaire cu-sapo-34, et tamis moléculaire cu-sapo synthétisé et son application Download PDF

Info

Publication number
WO2019010815A1
WO2019010815A1 PCT/CN2017/102291 CN2017102291W WO2019010815A1 WO 2019010815 A1 WO2019010815 A1 WO 2019010815A1 CN 2017102291 W CN2017102291 W CN 2017102291W WO 2019010815 A1 WO2019010815 A1 WO 2019010815A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
sapo
ssz
copper
source
Prior art date
Application number
PCT/CN2017/102291
Other languages
English (en)
Chinese (zh)
Inventor
杨淼
孙丽婧
田鹏
刘中民
曹毅
向骁
桑石云
曹磊
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019010815A1 publication Critical patent/WO2019010815A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the invention belongs to the field of chemistry and chemical industry, and relates to a molecular sieve and a preparation method thereof, in particular to a method for synthesizing Cu-SAPO-34, a product obtained by the method and a use thereof.
  • the Cu-SAPO-34 can be used as a catalyst for the oxynitride elimination process.
  • NOx nitrogen oxides
  • NH 3 reductant to NOx selective catalytic reduction techniques NH 3 -SCR i.e., it can be converted to harmless nitrogen gas, NOx removal process plays a very important role in the catalyst is.
  • the key core is the development of SCR catalysts.
  • the traditional denitration catalyst is mainly V-Ti-W system.
  • Cu-based small pore molecular sieve catalysts with CHA structure Cu-SSZ-13 and Cu-SAPO-34 (SSZ-13 is a molecular sieve having the same topology as SAPO-34, the difference being that the former is a silica-alumina molecular sieve, after It is a silicoaluminophosphate molecular sieve), which has received extensive attention due to its high efficiency of low temperature catalytic activity and N 2 selectivity, excellent hydrothermal stability and anti-poisoning ability.
  • the copper ion loading in the molecular sieve catalyst is achieved by ion exchange.
  • ion exchange In order to ensure the amount of copper introduced and its high dispersion, it is often necessary to carry out a multi-step ion exchange process.
  • the partial hydrolysis of the SAPO molecular sieve skeleton tends to cause a decrease in the specific surface area and stability of the molecular sieve.
  • the utilization rate of copper ions in the copper salt solution is low during the exchange process, the washing process consumes a large amount of pure water and is converted into sewage, and the high temperature roasting process takes time and energy.
  • CN102259892A discloses a method for synthesizing a silicoaluminophosphate molecular sieve catalyst by using a metal-amine complex as a template agent, thereby avoiding a cumbersome ion exchange process, but the high temperature hydrothermal stability of the one-step synthesis of Cu-SAPO-34 is poor.
  • Limit its industrial applications For example, Corma et al. synthesized Cu-SAPO-34 molecular sieve with copper amine complex and diethylamine as template, the copper loading was controlled at 3.4-10.4%, and the crystal size was about 6-10 ⁇ m.
  • the low copper loading catalyst synthesized by this method has a significant decrease in activity after hydrothermal aging at 750 °C for 13 h, while for the Cu-SAPO-34 catalyst with medium and high copper content, the skeletal structure after hydration at 750 °C for 13 h Collapse (Applied Catalysis B: Environmental, 2012, 127: 273).
  • the distribution of negative charge of the framework also affects the stability of copper ions outside the framework, thus affecting the hydrothermal stability of copper-loaded molecular sieve samples.
  • the amount and distribution of the negative charge of the skeleton is directly derived from the amount of introduction of silicon atoms and their distribution.
  • a single substitution of a P atom by a Si atom can form a Si(4Al) linkage to form an acid center.
  • Si atoms simultaneously replace adjacent P and Al atoms Si-rich regions or even silicon islands are formed, resulting in an uneven distribution of negative charges of the skeleton, which is not conducive to the stable existence of copper ions.
  • the present application firstly synthesizes a high copper content of Cu-SSZ-13 using a copper amine complex as a templating agent, and uses Cu-SAPO-34 molecular sieve as a Cu source, a partial silicon aluminum source and a seed crystal. synthesis.
  • the copper amine complex encapsulated in the Cu-SSZ-13 pore cage avoids competition with other organic amine templates and better exerts the guiding role of other organic amine template agents in the synthesis.
  • the method can achieve effective regulation of crystal grain size, Cu content, and silicon content and distribution of the product, thereby obtaining more excellent catalytic performance and hydrothermal stability.
  • the present invention provides a method of preparing a Cu-SAPO-34 molecular sieve, comprising the steps of:
  • the Cu-SSZ-13 molecular sieve obtained in the step (1) is used as a raw material and mixed with the crystallization liquid obtained in the step (2), and hydrothermally crystallized to obtain a Cu-SAPO-34 molecular sieve product.
  • the Cu-SSZ-13 molecular sieve in the step (1) may be synthesized using a templating agent containing a copper amine complex, and has a Cu content of 5-15 wt% and a silicon/aluminium atomic ratio of 4 /1-20/1.
  • the Cu-SSZ-13 molecular sieve in the step (1) may also be obtained by SSZ-13 by ion exchange method, wherein the Cu content is 5-15 wt%, and the silicon/aluminium atomic ratio may be greater than or equal to 4/ 1, preferably 10/1-30/1.
  • the copper amine complex in the step (1) comprises a copper-polyethylene polyamine complex, preferably a Cu-tetraethylene pentamine complex and a Cu-triethylenetetramine complex, Cu-di An ethylene triamine complex, a Cu-tetraethylenetetramine complex, and a Cu-pentaethylene hexamine complex.
  • the silicon source used in the step (2) is selected from one or more of tetraethyl orthosilicate, silica sol and white carbon;
  • the aluminum source is selected from aluminum isopropoxide, pseudo-thick aluminum One or more of stone, aluminum sol and aluminum hydroxide;
  • the phosphorus source is selected from one or more of phosphoric acid, phosphorous acid and phosphorus pentoxide;
  • the organic amine template R is selected from the group consisting of triethylamine and diethyl Mixture of one or more of amine, morpholine, tetraethylammonium hydroxide, propylamine, diisopropylamine, N,N diisopropylethylamine, trimethylamine, diethanolamine, and piperazine.
  • the Cu-SSZ-13 raw material in the step (3) is added in an amount of 5 to 80% by weight based on the total mass of the solid oxide in the formulated crystallization solution.
  • the temperature of hydrothermal crystallization in the step (3) is 140-240 ° C for 0.5-72 hours; more preferably, the crystallization temperature is 150-200 ° C.
  • the copper loading of the Cu-SAPO-34 molecular sieve product prepared in the step (3) The amount is 0.5-8 wt%.
  • the present invention provides a Cu-SAPO-34 molecular sieve raw powder which is synthesized by the above method.
  • the present invention provides a method for the removal of NO x selective reduction catalyst reaction, which is obtained from the molecular sieve synthesized according to the method described above was air calcined 550-800 deg.] C.
  • the catalyst is especially useful for catalytic removal of nitrogen oxides and exhibits good catalytic performance. The activity was still well maintained after the catalyst was treated with saturated water vapor at 800 ° C for 16 hours.
  • the present invention provides a method for improving high temperature hydrothermal stability of a Cu-SAPO-34 molecular sieve, characterized in that the method comprises: synthesis by using a templating agent comprising a copper amine complex
  • the copper-containing silicon-aluminum molecular sieve Cu-SSZ-13 is mixed with a crystallization liquid and subjected to hydrothermal crystallization, wherein the crystallization liquid is obtained by using an organic amine templating agent R and water and optionally a silicon source, an aluminum source and a phosphorus source.
  • the method comprises: synthesis by using a templating agent comprising a copper amine complex
  • the copper-containing silicon-aluminum molecular sieve Cu-SSZ-13 is mixed with a crystallization liquid and subjected to hydrothermal crystallization, wherein the crystallization liquid is obtained by using an organic amine templating agent R and water and optionally a silicon source, an aluminum source and a phosphorus source.
  • the prepared molecular sieve can be used as a catalyst for the catalytic removal reaction of nitrogen oxides and exhibits good catalytic performance; the catalytic performance of the catalyst is still well maintained after being treated by steam at 800 ° C for 16 hours.
  • Example 1 is an XRD pattern of a high copper content Cu-SSZ-13 synthesized in Example 1.
  • Example 2 is a scanning electron micrograph (SEM) of the high copper content Cu-SSZ-13 synthesized in Example 1.
  • Figure 3 is an XRD pattern of the product of Example 2.
  • Figure 4 is a scanning electron micrograph (SEM) of the product of Example 3.
  • Figure 5 is a solid 29 Si nuclear magnetic spectrum of Example 3.
  • Fig. 6 is a result of evaluation of NH 3 -SCR reaction of Examples 3, 5, and 7.
  • Fig. 7 is a comparison of the evaluation results of the NH 3 -SCR reaction of the catalyst of Example 3 before the high temperature hydrothermal treatment (Example 3) and after (Example 3H).
  • Figure 8 is an XRD pattern of a synthetic high copper Cu-SSZ-13 sample Cu-13-e.
  • Figure 9 is an XRD diffraction spectrum of the synthesized sample of Example 12.
  • Fig. 10 is a result of evaluation of NH 3 -SCR reaction of Example 12 and evaluation of NH 3 -SCR reaction after 10 times of low-temperature hydrothermal treatment at 80 °C.
  • Figure 11 is a SEM electron micrograph of a sample of Comparative Example 3.
  • Figure 12 is a solid 29 Si nuclear magnetic spectrum of a sample of Comparative Example 3.
  • test conditions of this application are as follows:
  • Elemental composition was determined using a Philips Magix X X-ray Fluorescence Analyzer (XRF).
  • the specific surface area and pore size distribution of the samples were determined using a Micromeritics ASAP Model 2020 physical adsorber. Before the analysis, the sample was preheated at 350 ° C for 6 h, and the free volume of the sample tube was measured with He as the medium. When the sample was analyzed, the adsorption and desorption measurements were carried out at a liquid nitrogen temperature (77 K) using nitrogen as an adsorption gas. The specific surface area of the material was determined using the BET formula; the total pore volume of the material was calculated using the amount of adsorption of N 2 at a relative pressure (P/P 0 ) of 0.99. The micropore surface area and micropore volume were calculated by the t-plot method. When calculated, the cross-sectional area of the N 2 molecule was taken to be 0.162 nm 2 .
  • Solid NMR experiments of the samples were performed on a Bruker Avance III 600 (14.1 Tesla) spectrometer.
  • the 29 Si MAS NMR experiment used a 7 mm dual resonance probe with a speed of 6 kHz.
  • the sampling frequency is 5000-6000
  • the pulse width of ⁇ /4 is 2.5 ⁇ s
  • the sampling delay is 10s
  • the sodium 4,4-dimethyl-4-propane sulfonate (DSS) is used as the chemistry.
  • Displacement reference corrected to 0ppm.
  • the seed crystal is added to reduce the particle size of the synthesized high copper Cu-SSZ-13, so that it is better involved in the subsequent crystallization, and acts as a seed crystal and a copper source.
  • the addition of seed crystals is also beneficial to increase product yield.
  • the seed crystal may be conventional SSZ-13 or Cu-SSZ-13 synthesized according to the above-mentioned literature Chem. Commun. 2011, 47, 9789-9791, or may be a conventional SAPO-34 molecular sieve, or a nanoscale synthesized by reference patent CN104340986B. SAPO-34 molecular sieve.
  • the XRD of the synthesized high copper Cu-SSZ-13 samples Cu-13-a and Cu-13-b is shown in Fig. 1, and the SEM of the sample Cu-13-a is shown in Fig. 2, and the particle size is 300-500 nm.
  • a seed seeding amount (M seed crystal / (M Al2O3 + M SiO2 )) * 100%
  • product yield (M product raw powder / (M CuO + M Al2O3 + M SiO2 ) * 100%
  • the optional aluminum source is first dissolved in water and then an optional phosphorus source, silicon source and templating agent R are added thereto in turn.
  • a sample of the Cu-SSZ-13 molecular sieve prepared in Example 1 was added to the above mixture. After stirring at room temperature, the gel was transferred to a stainless steel reaction vessel. After the reactor was placed in an oven, the temperature was raised to 140-240 ° C for 0.5-72 h, and the crystallization was completed. The solid product was centrifuged, washed, and dried in air at 120 ° C to obtain a sample of the molecular sieve raw powder.
  • FIG. 4 shows an SEM photograph of the Cu-SAPO-34 molecular sieve prepared in Example 3. It can be seen that the morphology of the obtained sample is rhombohedral and the particle size ranges from 1-2 ⁇ m. It can be seen that the particle size of the sample prepared by the synthesis method of this patent is smaller than that of the conventional hydrothermal synthesis SAPO molecular sieve. This is directly related to the use of Cu-SSZ-13 as a raw material and seed crystal.
  • FIG. 5 shows the solid nuclear magnetic 29 Si spectrum of the sample of Example 3. The results show that the sample shows a single peak at 91 ppm, respectively, which is assigned to the Si (4Al) coordination environment of the sample.
  • Samples 3,5 and 7 obtained in Example embodiments will be baked at a high temperature 650 °C 2h, after removal of the template agent for removing NH 3 reacts with NO x selective reduction catalyst performance tests.
  • the specific experimental procedures and conditions are as follows: After calcination, the sample is tableted, and 0.1 g of a 60 to 80 mesh sample is weighed and mixed with 0.4 g of quartz sand (60 to 80 mesh), and charged into a fixed bed reactor. The reaction was started by nitrogen at 600 ° C for 40 min, then the temperature was lowered to 120 ° C, and the temperature was raised to 550 ° C.
  • the reaction raw material gas was: NO: 500 ppm, NH 3 : 500 ppm, O 2 : 5%, H 2 O: 5%, N 2 as a balance gas, and a gas flow rate of 300 mL/min.
  • the reaction tail gas was analyzed by online FTIR using a Bruker Tensor 27 instrument. The results are shown in Fig. 6. It can be seen that the sample of Example 3 has a low NO conversion rate in the low temperature section, a 89% NO conversion rate in the high temperature section at 250 ° C, and a high NO conversion rate in the entire temperature range.
  • the samples of Examples 5 and 7 are With a higher Cu content, the reactivity in the low temperature section is further improved. However, due to the increase of copper content, a side reaction occurs in the high temperature section, so that the NO conversion rate decreases after 400 ° C, and the decrease is within 10%.
  • Example 3 Samples of high temperature firing at 650 °C 2h, after removal of the templating agent, further heat treated 16 hours at 800 °C hot water, followed by removal of NH2 3 reacts with NO x selective reduction catalyst performance tests.
  • the test conditions were the same as in Example 10, and the results are shown in Fig. 7. It can be seen that after high-temperature hydrothermal treatment, the reactivity of the sample is well maintained or even increased in the low temperature section. It can be seen that Cu-SAPO-34 prepared according to the method of the present invention has excellent high temperature hydrothermal stability.
  • the solid product was centrifuged, and the sample was washed with deionized water to neutrality, dried in air at 120 ° C, and then calcined at 600 ° C for 5 h to obtain a hydrogen type H-SSZ-13 molecular sieve sample.
  • the optional pseudoboehmite is mixed with water, and then silica sol, phosphoric acid and diethylamine are sequentially added thereto.
  • a sample of the Cu-13-e molecular sieve prepared in Example 11 was added to the above mixture.
  • the gel was transferred to a stainless steel reaction vessel. After the reaction vessel was placed in an oven, the temperature was raised to 180 ° C for 30 hours, and the crystallization was completed.
  • the solid product was centrifuged, washed, and dried in air at 120 ° C to obtain a sample of the molecular sieve raw powder.
  • the sample was subjected to XRD analysis, and the peak shape showed a typical CHA structural characteristic peak.
  • the XRD diffraction spectrum of the synthesized sample of Example 12 is shown in Fig. 9.
  • the sample composition obtained by XRF test was Al 0.37 P 0.28 Si 0.35 O 2 and the copper content was 6.2% by weight.
  • Example 12 The embodiment of the sample obtained in Example 12 650 °C calcination temperature 2h, after removal of the template agent for removing NH 3 reacts with NO x selective reduction catalyst performance tests.
  • the test conditions were the same as in Example 9, and the catalytic results are shown in Fig. 10. It can be seen that the sample of Example 12 has a NO conversion rate of 7% at a low temperature of 175 ° C and a NO of 94% at a high temperature of 500 ° C.
  • Example 13 The sample after the catalytic reaction of Example 13 was further calcined at a high temperature of 650 ° C for 2 h, and further hydrothermally treated at a low temperature of 80 ° C for 30 minutes after the regeneration, and the catalytic performance test for selective removal of NO x by NH 3 was repeated after 10 treatments. .
  • the test conditions were the same as in Example 9, and the catalytic results are shown in Fig. 10. It can be seen that after repeated low-temperature hydrothermal treatment, the reactivity of the sample can be well maintained, and the reduction is small. It can be seen that Cu-SAPO-34 prepared according to the process of the present invention has excellent low temperature hydrothermal stability.
  • Figure 11 shows a SEM electron micrograph of Comparative Sample 3, which shows that the sample has a particle size of 5-10 microns.
  • Figure 12 shows the 29 Si NMR solid NMR spectrum of Comparative Sample 3. It can be seen that in addition to the Si (4Al) signal, the sample has a significant signal at 110 ppm, which is attributed to Si (0Al). Copper amine complex templating agents tend to cause formation of silicon islands. From the results of the four comparative examples, it is known that for the Cu-SAPO-34 molecular sieve synthesized by using a copper amine complex with other organic amines, reducing the amount of the copper amine complex can reduce the copper content in the product.
  • the copper content of the synthesized product is also controlled by the amount of silica charged in the synthesis system.
  • the amount of silicon oxide is reduced, the amount of copper in the product is reduced to a limited extent.
  • the simultaneous loading of the silica and copper amine complexes also resulted in a slower crystallization rate of the SAPO molecular sieve and a significant decrease in yield (Comparative Example 4).
  • the method provided by the present invention cleverly solves the above problems.
  • the copper amine complex encapsulated in the Cu-SSZ-13 pore cage can avoid competition with other organic amine templates, and better play the guiding role of other organic amine template in the synthesis, Cu
  • the content can be adjusted within a relatively low range and meeting the needs of catalytic performance. The economic utilization of Cu atoms is realized.
  • the distribution of silicon atoms is mainly controlled by the selected organic amine template, thus providing a possibility to improve the hydrothermal stability of the synthesized Cu-SAPO-34.
  • the distribution and coordination environment of silicon atoms in SAPO molecular sieves are greatly affected by organic amine templating agents. Therefore, this method can flexibly modulate the type of organic amines and also improve the hydrothermal stability of synthetic Cu-SAPO-34. Sex offers.
  • Comparative Example 1-4 The sample obtained in Comparative Example 1-4 was calcined at a high temperature of 650 ° C for 2 h, and after removing the templating agent, it was further subjected to a hydrothermal treatment at 800 ° C for 16 hours.
  • XRD test results show that the first three diffraction peaks belonging to the CHA crystal phase disappear, and the sample has a diffraction peak in the range of 20-25 degrees, forming a dense phase. It can be seen that the synthetic sample provided by this patent has better high temperature hydrothermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

L'invention concerne une méthode de synthèse de tamis moléculaire Cu-SAPO-34, comprenant : l'utilisation d'un tamis moléculaire Cu-SSZ-13 ayant une teneur élevée en Cu qui est synthétisé en utilisant un complexe de cuivre amine en tant qu'agent structurant, en tant que source de Cu pour synthétiser un tamis moléculaire Cu-SAPO conjointement avec une partie d'une source d'aluminium de silicium, d'un germe cristallin, etc. Au moyen de la méthode, non seulement la charge de cuivre dans le tamis moléculaire SAPO-34 peut être régulée dans une certaine plage, mais également la teneur en atomes de silicium et la distribution peut également être efficacement régulée, et ainsi, le rendement du produit est élevé. Le catalyseur de tamis moléculaire Cu-SAPO-34 ainsi obtenu présente une excellente stabilité hydrothermique et une excellente performance catalytique pour une réduction sélective de NOx et une réaction d'élimination. L'invention concerne également une poudre brute pour un tamis moléculaire Cu-SAPO-34, un catalyseur pour une réduction sélective de NOx et une réaction d'élimination, et une méthode pour améliorer la stabilité hydrothermique à haute température du tamis moléculaire Cu-SAPO-34.
PCT/CN2017/102291 2017-07-12 2017-09-19 Méthode de synthèse de tamis moléculaire cu-sapo-34, et tamis moléculaire cu-sapo synthétisé et son application WO2019010815A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710566782.9A CN109250729B (zh) 2017-07-12 2017-07-12 Cu-SAPO-34分子筛合成方法及合成的分子筛和应用
CN201710566782.9 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019010815A1 true WO2019010815A1 (fr) 2019-01-17

Family

ID=65000881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102291 WO2019010815A1 (fr) 2017-07-12 2017-09-19 Méthode de synthèse de tamis moléculaire cu-sapo-34, et tamis moléculaire cu-sapo synthétisé et son application

Country Status (2)

Country Link
CN (1) CN109250729B (fr)
WO (1) WO2019010815A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255579A (zh) * 2019-06-19 2019-09-20 正大能源材料(大连)有限公司 一种金属改性的中空sapo-34分子筛及其制备方法和应用
CN111592011A (zh) * 2020-05-21 2020-08-28 浙江大学 以teaoh为有机模板剂直接合成ssz-13沸石分子筛的方法
CN112830499A (zh) * 2021-01-15 2021-05-25 天津大学 一种单分散ssz-32分子筛、其制备方法和应用
CN113716585A (zh) * 2021-09-08 2021-11-30 天津派森新材料技术有限责任公司 一步法制备Cu-SSZ-13分子筛的方法
CN114054074A (zh) * 2020-07-31 2022-02-18 大连理工大学 一种脱硝催化剂的制备方法及其应用
CN114210363A (zh) * 2022-01-18 2022-03-22 天津派森新材料技术有限责任公司 一种ssz-16含铜催化剂的制备方法
CN114426293A (zh) * 2020-09-27 2022-05-03 中国石油化工股份有限公司 Scm-35分子筛、其制备方法和应用
CN114477224A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种beta分子筛的制备方法、产品及其应用
CN114602544A (zh) * 2022-03-29 2022-06-10 潍柴动力股份有限公司 一种改性Cu-CHA分子筛复合催化剂及其制备方法和应用
CN114849765A (zh) * 2022-05-13 2022-08-05 苏州大学 一种分子筛催化剂的超快制备方法
CN115193408A (zh) * 2022-07-15 2022-10-18 盐城工学院 一种Ag-SAPO-34@Cu-BTC复合材料及其制备和应用方法
CN115318334A (zh) * 2022-09-13 2022-11-11 陕西煤业化工技术研究院有限责任公司 一种含活性金属的m-cha/m-mor复合分子筛及制备方法
CN115770613A (zh) * 2022-12-02 2023-03-10 江西省科学院应用化学研究所 一种分子筛催化剂及其制备方法
CN116493040A (zh) * 2023-04-26 2023-07-28 济南大学 一种高性能Cu基小孔分子筛催化剂的制备方法及所得产品及应用
CN117138784A (zh) * 2023-10-30 2023-12-01 潍坊学院 高载量高分散Cu基催化剂及其合成方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298831B (zh) * 2019-11-25 2022-10-25 上海绿强新材料有限公司 一种用于mto催化反应的ssz-13分子筛的制备方法
CN112978749B (zh) * 2019-12-02 2022-11-04 中国石油天然气股份有限公司 一种多级孔ssz-13分子筛的制备方法及用途、甲醇制烯烃的方法
CN111437878A (zh) * 2020-01-21 2020-07-24 大连理工大学盘锦产业技术研究院 一种Cu-SAPO-34分子筛、其制备方法及其在选择性催化还原脱硝中的应用
CN115057451B (zh) * 2022-05-20 2023-12-26 大连理工大学 无碱金属离子体系合成全硅zsm-22分子筛及油脂制生物航煤催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555022A (zh) * 2009-04-22 2009-10-14 神华集团有限责任公司 一种金属改性sapo-34分子筛和含有该分子筛的催化剂的制备方法
CN101767800A (zh) * 2009-01-06 2010-07-07 神华集团有限责任公司 一种sapo-34分子筛的制备方法
EP2269733A1 (fr) * 2009-06-08 2011-01-05 Basf Se Procédé pour la synthèse directe de cuivre contenant du silicoaluminophosphate (cu-sapo-34)
CN103818927A (zh) * 2014-02-20 2014-05-28 无锡威孚环保催化剂有限公司 一步法合成高水热稳定性含铜cha型分子筛的方法
CN104891528A (zh) * 2015-06-12 2015-09-09 杭州回水科技股份有限公司 铜胺络合物作为模板剂固相合成Cu-SAPO-34分子筛的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3981502A1 (fr) * 2007-04-26 2022-04-13 Johnson Matthey Public Limited Company Catalyseurs scr de zéolithe/métal de transition
WO2013159828A1 (fr) * 2012-04-27 2013-10-31 Haldor Topsøe A/S Procédé pour la synthèse directe de cu-sapo-34
CN104340985B (zh) * 2013-07-30 2017-03-29 中国科学院大连化学物理研究所 制备小晶粒sapo分子筛的方法及其产品和用途
CN105251528A (zh) * 2015-09-14 2016-01-20 天津大学 以四乙基氢氧化铵与铜氨络合物混合作为模板剂一步合成Cu-CHA催化剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767800A (zh) * 2009-01-06 2010-07-07 神华集团有限责任公司 一种sapo-34分子筛的制备方法
CN101555022A (zh) * 2009-04-22 2009-10-14 神华集团有限责任公司 一种金属改性sapo-34分子筛和含有该分子筛的催化剂的制备方法
EP2269733A1 (fr) * 2009-06-08 2011-01-05 Basf Se Procédé pour la synthèse directe de cuivre contenant du silicoaluminophosphate (cu-sapo-34)
CN103818927A (zh) * 2014-02-20 2014-05-28 无锡威孚环保催化剂有限公司 一步法合成高水热稳定性含铜cha型分子筛的方法
CN104891528A (zh) * 2015-06-12 2015-09-09 杭州回水科技股份有限公司 铜胺络合物作为模板剂固相合成Cu-SAPO-34分子筛的方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255579A (zh) * 2019-06-19 2019-09-20 正大能源材料(大连)有限公司 一种金属改性的中空sapo-34分子筛及其制备方法和应用
CN111592011A (zh) * 2020-05-21 2020-08-28 浙江大学 以teaoh为有机模板剂直接合成ssz-13沸石分子筛的方法
CN114054074B (zh) * 2020-07-31 2023-04-25 大连理工大学 一种脱硝催化剂的制备方法及其应用
CN114054074A (zh) * 2020-07-31 2022-02-18 大连理工大学 一种脱硝催化剂的制备方法及其应用
CN114426293B (zh) * 2020-09-27 2023-09-29 中国石油化工股份有限公司 Scm-35分子筛、其制备方法和应用
CN114426293A (zh) * 2020-09-27 2022-05-03 中国石油化工股份有限公司 Scm-35分子筛、其制备方法和应用
CN114477224B (zh) * 2020-10-26 2023-03-14 中国石油化工股份有限公司 一种beta分子筛的制备方法、产品及其应用
CN114477224A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种beta分子筛的制备方法、产品及其应用
CN112830499B (zh) * 2021-01-15 2022-12-13 天津大学 一种单分散ssz-32分子筛、其制备方法和应用
CN112830499A (zh) * 2021-01-15 2021-05-25 天津大学 一种单分散ssz-32分子筛、其制备方法和应用
CN113716585A (zh) * 2021-09-08 2021-11-30 天津派森新材料技术有限责任公司 一步法制备Cu-SSZ-13分子筛的方法
CN114210363A (zh) * 2022-01-18 2022-03-22 天津派森新材料技术有限责任公司 一种ssz-16含铜催化剂的制备方法
CN114602544A (zh) * 2022-03-29 2022-06-10 潍柴动力股份有限公司 一种改性Cu-CHA分子筛复合催化剂及其制备方法和应用
CN114849765B (zh) * 2022-05-13 2023-05-26 苏州大学 一种分子筛催化剂的超快制备方法
CN114849765A (zh) * 2022-05-13 2022-08-05 苏州大学 一种分子筛催化剂的超快制备方法
CN115193408A (zh) * 2022-07-15 2022-10-18 盐城工学院 一种Ag-SAPO-34@Cu-BTC复合材料及其制备和应用方法
CN115193408B (zh) * 2022-07-15 2023-05-05 盐城工学院 一种Ag-SAPO-34@Cu-BTC复合材料及其制备和应用方法
CN115318334B (zh) * 2022-09-13 2024-01-26 陕西煤业化工技术研究院有限责任公司 一种含活性金属的m-cha/m-mor复合分子筛及制备方法
CN115318334A (zh) * 2022-09-13 2022-11-11 陕西煤业化工技术研究院有限责任公司 一种含活性金属的m-cha/m-mor复合分子筛及制备方法
CN115770613A (zh) * 2022-12-02 2023-03-10 江西省科学院应用化学研究所 一种分子筛催化剂及其制备方法
CN115770613B (zh) * 2022-12-02 2024-03-12 江西省科学院应用化学研究所 一种分子筛催化剂及其制备方法
CN116493040A (zh) * 2023-04-26 2023-07-28 济南大学 一种高性能Cu基小孔分子筛催化剂的制备方法及所得产品及应用
CN116493040B (zh) * 2023-04-26 2024-05-07 济南大学 一种高性能Cu基小孔分子筛催化剂的制备方法及所得产品及应用
CN117138784A (zh) * 2023-10-30 2023-12-01 潍坊学院 高载量高分散Cu基催化剂及其合成方法与应用
CN117138784B (zh) * 2023-10-30 2024-02-06 潍坊学院 高载量高分散Cu基催化剂及其合成方法与应用

Also Published As

Publication number Publication date
CN109250729B (zh) 2022-02-25
CN109250729A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2019010815A1 (fr) Méthode de synthèse de tamis moléculaire cu-sapo-34, et tamis moléculaire cu-sapo synthétisé et son application
CN109250728B (zh) Cu-SAPO分子筛合成方法及合成的Cu-SAPO分子筛和应用
JP6017020B2 (ja) 銅−ポリアミン錯体と追加の有機分子の組合せに基づくCu−SAPO−34の直接合成、およびその触媒的使用
CN111943224B (zh) 一种Cu-SSZ-13分子筛催化剂的制备方法及所得产品和应用
CN110950354B (zh) 一种以氟改性y型分子筛为原料制备ssz-39分子筛的方法
CN111017950A (zh) 一种低成本ssz-13分子筛的制备方法及应用
US20120251422A1 (en) Fe-SAPO-34 CATALYST AND METHODS OF MAKING AND USING THE SAME
CN111886202B (zh) 用于合成沸石ssz-13的方法
CN110980761B (zh) 一种以硫改性y型分子筛为原料制备ssz-39分子筛的方法
CN110980756B (zh) 一种以磷改性y型分子筛为原料制备ssz-39分子筛的方法
CN114436279B (zh) Zsm-22分子筛及其制备方法和应用、正十二烷异构化反应
CN112499644A (zh) 一种低SiO2/Al2O3的Cu-CHA分子筛及其制备方法
CN112537778A (zh) 一种高硅铝比丝光沸石的制备方法及应用
CN117019214A (zh) 一种提高金属改性ssz-13脱硝性能的催化剂制备方法
CN111514929B (zh) 具有双铝中心的Cu-SSZ-13催化剂和H-SSZ-13分子筛及其制备方法和应用
CN115196651B (zh) 一种无钠Cu-SSZ-13沸石的制备方法及其应用
RU2730479C1 (ru) МОЛЕКУЛЯРНОЕ СИТО Cu-SAPO, СПОСОБ ЕГО СИНТЕЗА И ЕГО КАТАЛИТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ
CN112811437B (zh) 一种Cu-SSZ-13@SSZ-13分子筛的合成方法
CN112875720B (zh) 一种制备富含铝对的ssz-13分子筛的方法及应用
JP2023551654A (ja) 有機テンプレートを組み合わせて使用するチャバザイトゼオライトの合成
CN113976172A (zh) 一种高水热稳定性的助剂掺杂Cu-SSZ-39催化剂的制备与应用
CN114804136A (zh) 一种纳米ssz-13分子筛的制备方法及其应用
CN114162832B (zh) 一种超低模板体系下ssz-13分子筛的合成方法及应用
CN111410207B (zh) 一种sapo-11分子筛的常压合成方法
CN116550378A (zh) 一种柴油车脱硝分子筛催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917506

Country of ref document: EP

Kind code of ref document: A1