WO2018235183A1 - エレベータ制御装置及びエレベータ制御方法 - Google Patents

エレベータ制御装置及びエレベータ制御方法 Download PDF

Info

Publication number
WO2018235183A1
WO2018235183A1 PCT/JP2017/022810 JP2017022810W WO2018235183A1 WO 2018235183 A1 WO2018235183 A1 WO 2018235183A1 JP 2017022810 W JP2017022810 W JP 2017022810W WO 2018235183 A1 WO2018235183 A1 WO 2018235183A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control unit
torque
braking
suction force
Prior art date
Application number
PCT/JP2017/022810
Other languages
English (en)
French (fr)
Inventor
然一 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020197007382A priority Critical patent/KR102209174B1/ko
Priority to PCT/JP2017/022810 priority patent/WO2018235183A1/ja
Priority to DE112017007670.6T priority patent/DE112017007670B4/de
Priority to JP2018547490A priority patent/JP6573729B2/ja
Priority to CN201780056358.8A priority patent/CN110740958B/zh
Publication of WO2018235183A1 publication Critical patent/WO2018235183A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers

Definitions

  • the present invention relates to an elevator control device and an elevator control method, and more particularly to braking capability diagnosis in a braking device of a hoist of an elevator.
  • a car placed in the hoistway is suspended by a main rope, ie, a rope, wound around a sheave of the hoist with a counterweight on the other side. It is vertically driven by the motor of the hoist.
  • a main rope ie, a rope
  • the brake drum is disposed on an axis connecting the motor and sheave of the hoist. Then, the movable portion is pressed against the brake drum by the biasing force of the spring to brake the rotation of the hoisting machine motor, and the movable portion is attracted and separated from the brake drum by the electromagnetic force generated by applying current to the brake coil.
  • a braking device is provided to release the braking.
  • the braking device holds the motor in a stationary state, and the car is held at the stop position.
  • the braking device operates to decelerate and stop the hoist motor, whereby the car is immediately stopped.
  • the braking device in a no-load state where there are no passengers in the car, the braking device is operated, and the sum of unbalance torque and motor torque generated by the weight imbalance of the car and the balance weight is normal.
  • the motor torque is applied to be equal to the braking capacity of the braking system, and normality of the braking capacity of the braking system is diagnosed based on the change in motor rotation angle and the operating state of the car detected from the rotational speed at this time.
  • the elevator which does is known (for example, following patent document 1).
  • the brake torque of the elevator which rotates the motor while operating the braking device and diagnoses the braking ability of the braking device from the motor torque at this time and the unbalanced torque generated by the weight imbalance of the car and the balance weight.
  • the measuring apparatus is known (for example, following patent document 2).
  • the braking system of an elevator is required to have a braking ability to hold a car to which a load of 1.25 times the load is applied even when the braking ability is lowered. Therefore, the braking ability in the normal state is set to a very large value.
  • a very large motor torque is required because the motor is rotated by the motor torque while the braking device is operating. Therefore, there is a problem that damage to the device for supplying current to the motor at the time of diagnosis is increased, and the life of the device is shortened.
  • the present invention has been made to solve the above-described problems, and an elevator control that reduces damage to equipment for supplying current to a motor by reducing the magnitude of motor torque necessary for diagnosis. It is an object to provide an apparatus and an elevator control method.
  • the present invention brakes the motor of the hoist by pressing the movable part by the hoisting machine which drives the raising and lowering of the car, and the urging force regardless of whether the hoisting machine is arranged in the hoistway of the elevator
  • a braking device for attracting the movable portion against the biasing force to release the braking;
  • a brake control unit for controlling the braking ability of the braking device by controlling the suction force, an electric motor control unit for controlling a motor torque generated by the motor, and the winding machine
  • a load detector for detecting the magnitude of a load torque required to hold the car stationary while the braking device is released, and the brake control from the state where the car is held stationary by the braking device While applying a suction force by the unit to reduce the biasing force, the motor control unit applies the motor torque to rotate the motor, and detects the applied motor torque, and the applied suction force and the applied force.
  • the motor control unit controls the motor torque to rotate the motor. Since the diagnosis can be performed in a state where the braking ability is reduced by reducing the biasing force, it is possible to suppress the value of the motor torque necessary to rotate the motor. By this, the elevator control apparatus which suppressed the damage given to an apparatus can be obtained.
  • FIG. 1 is a block diagram showing the whole of an example of an elevator system including an elevator control apparatus according to each embodiment of the present invention.
  • the elevator car 1 is arranged in the hoistway.
  • the car 1 is suspended by a rope 4 wound around a sheave 3 provided in the hoisting machine 2 along with a counterweight 5 on the other end side in a support manner.
  • the car 1 is driven to move up and down by a motor M provided in the hoisting machine 2 and is braked by a braking device 6.
  • the weight of the counterweight 5 is set, for example, to balance with the weight on the side of the car 1 when 50% of the rated load is loaded in the car 1.
  • the motor M is indicated by a broken line, for example, as provided so as to rotationally drive the sheave 3 on the back side of the sheave 3.
  • a portion configured of the car 1, the hoist 2, the sheave 3, the rope 4, the counterweight 5, and the braking device 6 is an elevator apparatus.
  • the braking device 6 is arranged to face the brake drum 6a installed on the shaft connecting the motor M of the hoisting machine 2 and the sheave 3 and the brake drum 6a. And a brake 6b disposed at the
  • the brake 6b includes a movable portion 6b2 that generates a frictional force when pressed against the brake drum 6a by an urging force FB, which is an elastic force of the spring 6b3, and a movable portion 6b2 by the spring 6b3 by energizing the current. And a brake coil 6b4 provided on the side of the fixed portion 6b1 that sucks against the biasing force FB to release the frictional force.
  • the torque due to the static friction acting between the movable portion 6b2 of the braking device 6 and the brake drum 6a is called the holding torque TH
  • the torque due to the dynamic friction acting between the movable portion 6b2 and the brake drum 6a is braked. It is called torque TD.
  • the holding torque TH is acting when the car 1 is stopped and held by the braking device 6, and the braking torque TD is acting when the car 1 is decelerated by the braking device 6. It becomes. Then, the holding torque TH of the braking device 6 and the braking torque TD are collectively referred to as the braking ability BF of the braking device 6.
  • the hoisting machine 2 is provided with a rotation detector 7 for detecting the number of rotations of the motor M.
  • the brake control unit 9 controls the current applied to the brake coil 6 b 4 of the braking device 6 to apply the suction force FC to control the braking ability BF of the braking device 6.
  • the motor control unit 10 controls the current applied to the motor M of the hoisting machine 2 to control the motor torque TM.
  • the load detection control unit 11 detects a load torque TL acting on the motor M of the hoisting machine 2.
  • the load torque TL is a motor torque TM necessary to hold the motor M of the hoisting machine 2 stationary in a state where the braking of the braking device 6 is released.
  • control can be performed via the brake control unit 9 to release the braking of the braking device 6, and the motor control unit 10 can obtain the motor torque TM necessary to hold the motor M stationary.
  • the unbalance torque acting on the motor M due to the weight difference between the car 1 side and the counterweight 5 side with respect to the sheave 3 of the hoisting machine 2 becomes the load torque TL.
  • the torque acting on the motor M by the weight of the car 1 is the load torque TL Become.
  • the braking ability detection control unit 8 controls the braking device 6 via the brake control unit 9 and controls the motor M of the hoisting machine 2 via the motor control unit 10. Then, the braking ability detection control unit 8 diagnoses the braking ability BF of the braking device 6 based on the information from the rotation detector 7, the brake control unit 9, the motor control unit 10 and the load detection control unit 11.
  • the brake control unit 9 and the arithmetic processing portion of the motor control unit 10 are implemented by software, a program for executing each function and each function are executed. And a processor that performs processing in accordance with programs stored in the memory and the various data.
  • a processor that performs processing in accordance with programs stored in the memory and the various data.
  • it is configured by hardware, it is configured by one or more digital circuits that execute various functions, and the accompanying various data are incorporated in advance in the digital circuits.
  • the operation flowchart of FIG. 2 can be started when the car 1 is in the stopped state and the hoisting machine 2 is in the stationary holding state by the braking device 6 (step S0).
  • the hoist 2 is held stationary by the braking device 6 ing. That is, the holding torque TH by the braking device 6 is in a state where it exceeds the load torque TL.
  • the braking ability detection control unit 8 controls the voltage applied to the brake coil 6b4 of the braking device 6 by the brake control unit 9, and the setting is previously set to the brake coil 6b4. A current i is applied (step S1).
  • FIG. 3 is a view showing the relationship of the response waveforms of the current i, the force F, the brake torque TB, and the motor torque TM at the time of the braking ability diagnosis in the first embodiment of the present invention.
  • the horizontal axis indicates time T
  • (a) shows the waveform of the current i of the brake coil 6b4 when a voltage is applied to the brake coil 6b4
  • (b) is a waveform of a suction force FC by the current i of the brake coil 6b4 and a biasing force FB by the spring 6b3
  • (c) shows the waveforms of the holding torque TH and the braking torque TD of the braking device 6
  • (d) is a waveform of the motor torque TM of the motor M of the hoisting machine 2, Respectively.
  • the magnitude of the current i applied to the brake coil 6b4 is set so that the holding torque TH reduced by the attraction force FC does not become smaller than the load torque TL. That is, the state in which the holding torque TH exceeds the load torque TL is held.
  • the braking ability detection control unit 8 causes the motor control unit 10 to generate motor torque TM generated by the motor M of the hoisting machine 2 as shown in (d) of FIG. Is gradually increased (step S2).
  • the motor torque TM actually means the torque generated by the motor M. Same below.
  • the motor torque TM generated by the motor M As the motor torque TM generated by the motor M is increased, the sum of the motor torque TM and the load torque TL balances with the holding torque TH at time th shown in (d) of FIG. Further, from this state, the motor torque TM is increased, and when the sum of the motor torque TM and the load torque TL slightly exceeds the holding torque TH, the motor M of the hoisting machine 2 starts to rotate.
  • the braking ability detection control unit 8 detects the time th at which the motor M starts rotation by monitoring the output from the rotation detector 7 (step S3). Then, when the motor M starts to rotate, the motor torque TMh applied to the motor M of the hoisting machine 2 and the current ih supplied to the brake coil 6b 4 of the braking device 6 are measured and recorded ((1) Step S4).
  • the motor torque TMh is obtained from the motor control unit 10, and the current ih supplied to the brake coil 6b4 is obtained from the brake control unit 9.
  • the braking ability detection control unit 8 controls the motor torque TM by the motor control unit 10 so that the motor rotates at a constant rotational speed (step S5).
  • the motor control unit 10 uses, for example, the output from the rotation detector 7 to control the motor torque TM such that the detected rotational speed of the motor becomes the target speed.
  • the fact that the motor is rotating at a constant rotational speed means that the sum of the motor torque TM and the load torque TL is in balance with the braking torque TD.
  • the rotational speed at this time is set, for example, to be lower than the traveling speed of the car 1 during normal traveling.
  • the braking ability detection control unit 8 monitors the output from the rotation detector 7 to detect that the motor M is rotating at a constant rotational speed.
  • the motor M is rotating at a constant rotational speed, that is, at time td shown in FIG. 3D, the motor torque TMd generated by the motor M of the hoisting machine 2 and the brake of the braking device 6
  • the current id supplied to the coil 6b4 is measured and recorded (step S6).
  • step S7 the braking ability detection control unit 8 controls the voltage applied to the brake coil 6b4 of the braking device 6 by the brake control unit 9 to gradually increase the current i flowing to the brake coil 6b4. Then, the movable portion 6b2 is attracted against the biasing force FB of the spring 6b3 and held.
  • the movable portion 6b2 of the braking device 6 starts suctioning, that is, the timing at which the suction force FC and the urging force FB of the brake coil 6b4 are in balance at time tb shown in FIG.
  • the braking ability detection control unit 8 measures the current ib supplied to the brake coil 6b4 of the braking device 6 when the attraction force FC of the brake coil 6b4 and the biasing force FB are balanced at this time tb. Keep a record.
  • suction attaches the switch which abbreviate
  • a current detector (not shown) is attached to the brake coil 6b4, and a change in coil current due to a back electromotive force generated in the brake coil 6b4 when the movable portion 6b2 starts moving is detected using the output of the current detector.
  • the movement of the movable part may be detected.
  • the braking ability detection control unit 8 detects the load torque TL acting on the hoisting machine 2 by the load detection control unit 11 (step S8).
  • the load detection control unit 11 measures the weight of the car 1 with a weighing device (not shown), and detects the load torque TL from the unbalance of the rope and the weight of the counterweight obtained from the stop floor information of the car 1.
  • the motor control unit 10 controls the motor torque TM so as to hold the motor M stationary after suction of the movable portion 6b2 of the braking device 6, and the motor torque TM when the motor M is held stationary is the load torque TL may be detected.
  • the stop floor information is obtained from a normal operation control unit or the like for ordinary car service (not shown), and the unbalance of the rope with respect to the stop floor and the weight of the counterweight are stored in advance in a memory etc. .
  • step S9 the braking ability detection control unit 8 calculates the holding torque TH and the braking torque TD of the braking device 6.
  • the calculation of the holding torque TH and the braking torque TD by the braking ability detection control unit 8 is performed as follows.
  • the braking ability detection control unit 8 measures in advance the relationship of the attraction force FC acting on the movable portion 6b2 from the brake coil 6b4 when an arbitrary current i is applied to the brake coil 6b4 of the braking device 6, and the relationship formula Is stored as FC (i).
  • the calculation of the holding torque TH of the braking device 6 will be described.
  • the holding torque THh at the time th is a holding torque TH in which the biasing force FB is reduced by the suction force FC by the brake coil 6b4 at the time th. Therefore, the brake holding torque TH when there is no suction force FC by the brake coil 6b4 is expressed by the following equation (1) in which the applied suction force FC is corrected with respect to the holding torque THh at time th.
  • FC (ib) and FC (ih) indicate the attraction force FC by the current i of the brake coil 6b4 at time tb and time th respectively in FIG.
  • the urging force FB is obtained from the relationship at the time tb at which the suction force FC by the brake coil 6b4 and the urging force FB by the spring 6b3 obtained in step S7 balance each other, Do not mean.
  • the magnitude of the biasing force FB by the spring 6b3 may be obtained in advance and stored, and the holding torque TH may be calculated using the stored biasing force FB.
  • the brake braking torque TD when there is no suction force FC by the brake coil 6b4 is expressed by the following equation (2) in which the applied suction force FC is corrected with respect to the braking torque TDd at time td.
  • TD (TL + TMd) (FC (ib) / (FC (ib)-FC (id))) (2)
  • the braking ability detection control unit 8 determines whether the braking ability of the braking device 6 is normal or abnormal based on the calculated holding torque TH and the braking torque TD.
  • the braking ability detection control unit 8 stores in advance the reference range of the holding torque TH necessary for the braking device 6 to hold the car 1, and the calculated holding torque TH is within the reference range. Determine if In addition, the braking ability detection control unit 8 stores in advance a reference range of the braking torque TD necessary for the braking device 6 to safely stop the car 1, and the calculated braking torque TD is within the reference range. Determine if If both the holding torque TH and the braking torque TD are within the reference range, the braking ability detection control unit 8 determines that the braking ability of the braking device 6 is normal (step S11), and continues the elevator service. (Step S12).
  • the braking ability detection control unit 8 determines that the braking ability of the braking device 6 is abnormal (step S13).
  • the operation of the elevator is stopped (step S14), and an alarm is issued to a predetermined place such as a maintenance company or the like that the braking ability of the braking device 6 is abnormal.
  • the braking ability detection control unit 8 stores which one of the holding torque TH and the braking torque TD is out of the reference range, and the information is also sent to a predetermined place such as a maintenance company. An alert may be issued.
  • diagnosis is performed to reduce the braking ability of the braking device 6
  • the diagnosis can be performed in the As a result, the magnitude of the motor torque TM of the motor M of the hoisting machine 2 required at the time of diagnosis can be reduced.
  • the motor torque TM used for diagnosis it is possible to suppress the current applied to the motor M, so it is possible to suppress damage to equipment such as an inverter for applying the current to the motor M. . And since the damage to an apparatus can be suppressed, the lifetime of an apparatus can be extended.
  • a method of applying the motor torque TM in the same direction as the direction in which the load torque TL acts and rotating the motor M of the hoisting machine 2 is also conceivable.
  • diagnosis can only be performed in the direction in which the load torque TL acts, so for example, the weight of the counterweight 5 side is greater than that of the car 1 with respect to the motor M of the hoisting machine 2, and the load torque TL If the car 1 is stopped at the top floor when the car 1 is moving upward, the car 1 can not travel upward and therefore diagnosis can not be performed.
  • diagnosis can not be performed even when the weight of the car 1 side and the counterweight 5 side is equal to the motor of the hoisting machine 2 and the load torque TL does not act. Even in the case of such a problem, in a state where the braking ability of the braking device 6 is reduced by the suction force FC of the brake coil 6b4, the winding machine 2 is rotated using the motor torque TM by the motor M of the winding machine 2.
  • diagnosis can be performed in either the upper or lower direction, so diagnosis can be performed anywhere without depending on the position of the car 1, and diagnosis can be performed regardless of the presence or absence of the load torque TL.
  • step S6 After current i set in advance in step S1 is applied to brake coil 6b4, motor torque TMd applied to motor M of hoist 2 at time td in step S6.
  • the current id applied to the brake coil 6b4 of the braking device 6 is measured, and the situation where the constant current i is continuously applied until the current is recorded is described as an example. However, the present invention is not limited to this.
  • the motor torque TM is controlled so that the motor M of the hoisting machine 2 rotates at a constant speed in step S5.
  • the current i applied to the brake coil 6b4 may be changed by the brake control unit 9.
  • the braking torque TD is smaller than the holding torque TH, so the current i applied to the brake coil 6b4 after the hoisting machine 2 rotates has a value lower than the current i applied in step S1.
  • the brake for attracting the movable portion 6b2 by the brake coil 6b4 has been described as an example of the braking device 6, the present invention is not limited to this.
  • a brake that attracts the movable portion with the hydraulic unit or pneumatic unit May be used.
  • the diagnosis of the braking ability is performed in a state where the current i set in advance is applied to the brake coil 6b4 of the braking device 6.
  • a method of diagnosing the braking ability of the braking device 6 in a procedure different from that of the first embodiment will be described.
  • the motor torque TM of the hoisting machine 2 is applied in the direction of the traveling command CD of the car 1 from the normal operation control unit or the like to diagnose the braking ability. As a result, after diagnosis, it is possible to shift to traveling of the car 1 as it is.
  • the configuration of the entire elevator system including the elevator control device in the second embodiment is as shown in FIG. 1 as in the first embodiment.
  • FIG. 4 is an operation flowchart showing a series of flows of the elevator braking device in accordance with Embodiment 2 of the present invention.
  • the operation flowchart of FIG. 4 can be started when the car 1 is in the stopped state and the hoisting machine 2 is in the stationary holding state by the braking device 6 (step S0a).
  • the braking ability detection control unit 8 causes the load detection control unit 11 to apply load torque acting on the hoisting machine 2
  • the TL is detected (step S1a).
  • the braking ability detection control unit 8 controls the voltage applied to the brake coil 6b4 of the braking device 6 by the brake control unit 9, and responds to the travel command CD of the car 1 and the load torque TL acting on the brake coil 6b4.
  • a current i is applied (step S2a).
  • the braking ability detection control unit 8 records the set values of the two types of current i in advance.
  • the current i of the lower set value is applied to the brake coil 6b4.
  • the current i of the higher set value is applied to the brake coil 6b4.
  • the motor torque TM required to rotate the hoisting machine 2 in the direction of the travel command CD is reduced by the load torque TL. Be done. Conversely, if the direction of the travel command CD and the direction in which the load torque TL acts are different, the load torque TL acts in the direction that inhibits the hoisting machine 2 from rotating in the direction of the travel command CD. Motor torque TM will increase. Therefore, when the direction of the travel command CD of the car 1 and the direction in which the load torque TL acts are different, the current i to be applied is set to a large value.
  • the braking capacity detection control unit 8 further records the magnitude of the current i corresponding to the time when the load torque TL is 0 in advance, and based on the value of the detected load torque TL, the load torque TL The magnitude of the current i to be applied may be changed by a value obtained by multiplying the conversion factor set in advance by. At this time, if the direction of travel command CD and the direction in which load torque TL acts are the same, the magnitude of current i is reduced by the amount of load torque TL that acts, and conversely the direction of travel command CD and load torque TL If the directions are different, the magnitude of the current i is increased by the acting load torque TL.
  • step S3a the braking ability detection control unit 8 causes the motor control unit 10 to gradually increase the motor torque TM generated by the motor M of the hoisting machine 2 in the direction of the travel command CD of the car 1.
  • the braking ability detection control unit 8 detects the time th at which the motor starts to rotate by monitoring the output from the rotation detector 7 (step S4a). Then, when the motor M starts to rotate, the motor torque TMh applied to the motor M of the hoisting machine 2 and the current ih supplied to the brake coil 6b 4 of the braking device 6 are measured and recorded ((1) Step S5a). The motor torque TMh is obtained from the motor control unit 10, and the current ih supplied to the brake coil 6b4 is obtained from the brake control unit 9.
  • the braking ability detection control unit 8 controls the motor torque TM by the motor control unit 10 so that the motor M rotates at a constant rotational speed (step S6a).
  • the motor torque TM is applied so that the motor M of the hoisting machine 2 is also rotated in the same direction as the travel command CD of the car 1 at this time.
  • the braking ability detection control unit 8 monitors the output from the rotation detector 7 to detect that the motor M is rotating at a constant rotational speed.
  • the motor torque TMd applied to the motor of the hoisting machine 2 and the brake coil of the braking device 6 at time td corresponding to time td in FIG. 3 (d) when the motor is rotating at a constant rotational speed The current id supplied to 6b4 is measured and recorded (step S7a).
  • the braking ability detection control unit 8 causes the brake control unit 9 to increase the current i flowing to the brake coil 6b4 of the braking device 6. Then, the movable portion 6b2 is attracted against the biasing force FB of the spring 6b3 and held (step S8a). The braking ability detection control unit 8 measures the current ib supplied to the brake coil 6b4 of the braking device 6 when the movable part 6b2 starts suctioning at the time tb corresponding to the time tb in (d) of FIG. 3 And record this.
  • step S9a the braking ability detection control unit 8 calculates the holding torque TH and the braking torque TD of the braking device 6.
  • the braking ability detection control unit 8 calculates the holding torque TH using the recorded motor torque TMh, the load torque TL, and the current ih and the current ib of the brake coil 6b4. Further, the braking torque TD is calculated using the recorded motor torque TMd, the load torque TL, and the current id and current ib of the brake coil 6b4.
  • the braking ability detection control unit 8 determines whether each of the calculated holding torque TH and the braking torque TD is within the reference range. It determines (step S10a).
  • the braking ability detection control unit 8 determines that the braking ability of the braking device 6 is normal (step S11a). Then, when it is determined that the braking ability of the braking device 6 is normal, the process directly shifts to the traveling of the car 1 (step S12a).
  • the motor control unit 10 controls the motor torque TM so that the car 1 travels in accordance with the travel command CD, and travels the car 1 toward the destination floor.
  • the braking ability detection control unit 8 determines that the braking ability of the braking device 6 is abnormal. (Step S13a). In this case, the braking capacity detection control unit 8 controls the motor torque TM by the motor control unit 10 to make the car 1 travel to the terminal floor in the direction in which the load torque TL acts, and then stops the operation of the elevator (step S14a). At the same time, an alarm is issued to a predetermined place such as a maintenance company that the braking ability of the braking device 6 is abnormal.
  • the motor torque TM of the hoisting machine 2 in the direction of the travel command CD of the car 1 and diagnosing the braking ability, it is possible to shift to the travel of the car 1 as it is.
  • the braking ability of the braking device 6 can be diagnosed.
  • the configuration of the entire elevator system including the elevator control device in the third embodiment is as shown in FIG. 1 as in the first embodiment.
  • FIG. 5 shows the relationship between the response waveforms of the current i, the force F, and the motor rotational speed RM when setting the value of the current i applied to the brake coil 6b4 at the time of diagnosis in the third embodiment of the present invention.
  • the horizontal axis indicates time T, (a) shows the waveform of the current i of the brake coil when a voltage is applied to the brake coil 6b4, (b) is a suction force FC by the current i of the brake coil 6b4, (c) shows the waveform of the rotational speed RM of the motor M of the hoisting machine 2, Respectively.
  • the braking ability detection control unit 8 is activated in a state where the car 1 is in a stopped state and the hoisting machine 2 is held stationary by the braking device 6. From the stationary holding state of the hoisting machine 2, the braking ability detection control unit 8 controls the voltage applied to the brake coil 6b4 of the braking device 6 by the brake control unit 9, and as shown in (a) of FIG. The current i flowing to 6b4 is gradually increased.
  • the braking ability detection control unit 8 monitors the output from the rotation detector 7 to detect time tk when the motor M of the hoisting machine 2 starts to rotate. Then, when the motor M starts to rotate, the current ik flowing through the brake coil 6b4 of the braking device 6 is measured and recorded.
  • the braking ability detection control unit 8 sets the current i applied to the brake coil 6b4 at the time of diagnosis to a lower value than the detected current ik based on the detected current ik.
  • the suction force FC applied at the time of diagnosis can be set to a value lower than the maximum value of the suction force FC that can be applied.
  • the braking ability detection control unit 8 sets the current i to be applied at the time of diagnosis to a value of 80% of the detected ik.
  • the current i to be applied may be set to a value lower than the detected current ik by a set value.
  • the braking ability detection control unit 8 stops the rotation of the motor M of the hoisting machine 2.
  • the braking ability detection control unit 8 causes the brake control unit 9 to de-energize the current i flowing to the brake coil 6b4 of the braking device 6, thereby increasing the braking torque TD of the braking device 6, and the rotation of the hoisting machine 2 May be stopped.
  • the braking ability detection control unit 8 controls the motor torque TM generated by the motor M to stop the rotation of the hoisting machine 2 by the motor control unit 10, and the hoisting machine 2 is controlled by the motor torque TM. It may be held stationary. After the hoisting machine 2 is held stationary, the current i flowing to the brake coil 6b4 of the braking device 6 is de-energized by the brake control unit 9, and the hoisting machine 2 is held stationary by the holding torque TH of the braking device 6.
  • the braking ability of the braking device 6 is diagnosed using the value of the current i applied at the set diagnosis.
  • FIG. 6 is an operation flowchart showing a series of flows at the time of braking capacity diagnosis of the elevator braking device according to Embodiment 3 of the present invention.
  • the operation flowchart of FIG. 6 is started when the hoisting machine 2 is in the stationary holding state by the braking device 6 after setting the value of the current i applied at the time of diagnosis (step S0 b).
  • the braking ability detection control unit 8 applies the current i learned and set in advance to the brake coil 6b 4 of the braking device 6 by the brake control unit 9 (step S1b).
  • step S2b the braking ability detection control unit 8 causes the motor control unit 10 to gradually increase the motor torque TM generated by the motor M of the hoisting machine 2.
  • the braking ability detection control unit 8 detects the time th at which the motor M starts rotation by monitoring the output from the rotation detector 7 (step S3b). Then, when the motor M starts to rotate, the motor torque TMh applied to the motor M of the hoisting machine 2 and the current ih supplied to the brake coil 6b 4 of the braking device 6 are measured and recorded ((1) Step S4b).
  • the braking ability detection control unit 8 controls the motor torque TM by the motor control unit 10 so that the motor M rotates at a constant rotational speed (step S5b).
  • the braking ability detection control unit 8 monitors the output from the rotation detector 7 to detect that the motor M is rotating at a constant rotational speed.
  • the motor torque TMd applied to the motor M of the hoisting machine 2 and the braking device 6 at time td corresponding to time td in FIG. 3 (d) when the motor M is rotating at a constant rotational speed The current id supplied to the brake coil 6b4 is measured and recorded (step S6b).
  • the braking ability detection control unit 8 causes the brake control unit 9 to de-energize the current i flowing to the brake coil 6b4 of the braking device 6, and causes the motor control unit 10 to stop the motor torque TM applied to the motor M.
  • the rotation of the hoisting machine 2 is stopped (step S7b).
  • the braking ability detection control unit 8 causes the load detection control unit 11 to detect the load torque TL acting on the hoisting machine 2 (step S8 b).
  • step S9b the braking ability detection control unit 8 corrects the reference range stored in advance in accordance with the coil current i applied at the time of diagnosis.
  • the braking ability detection control unit 8 controls the reference range of the holding torque TH necessary for the braking device 6 to hold the car 1 in a state where the coil current i is not applied, and the braking necessary for safely stopping the car 1
  • the reference range of the torque TD is stored in advance.
  • the biasing force FB is reduced by an amount corresponding to the suction force FC by the brake coil 6b4.
  • the braking ability detection control unit 8 applies a certain current i to the brake coil 6b4 of the braking device 6, the holding torque TH and the braking torque TD are reduced by the attraction force FC acting on the movable portion 6b2 from the brake coil 6b4.
  • the ratio of is measured in advance, and the relational expression is stored as G (i).
  • the reference range of the holding torque TH is corrected by multiplying G (ih) calculated using the current ih flowing through the brake coil 6b4 measured in step S4b by the reference range of the holding torque TH.
  • the reference range of the braking torque TD is corrected by multiplying G (id) calculated using the current id flowing through the brake coil 6b4 measured in step S6b with the reference range of the braking torque TD.
  • the braking ability detection control unit 8 determines whether the braking ability of the braking device 6 is normal or abnormal in step S10b.
  • Holding torque THh in a state where biasing force FB is reduced by suction force FC by brake coil 6b4 at time th is the sum of motor torque TMh applied to motor M at time th and load torque TL. Therefore, from the measured motor torque TMh and load torque TL, the braking ability detection control unit 8 calculates the holding torque THh in a state where the biasing force FB is reduced by the suction force FC by the brake coil 6b4.
  • braking torque TDd in a state in which biasing force FB is reduced by suction force FC by brake coil 6b4 at time td is the sum of motor torque TMd applied to motor M at time td and load torque TL. Become. Therefore, from the measured motor torque TMd and the load torque TL, the braking ability detection control unit 8 calculates the braking torque TDd in a state where the biasing force FB is reduced by the suction force FC by the brake coil 6b4.
  • the calculated holding torque THh and the braking torque TDd are respectively compared with the reference range corrected in step S9b to determine whether the holding torque THh and the braking torque TDd are within the reference range. If both the holding torque THh and the braking torque TDd are within the reference range, the braking ability detection control unit 8 determines that the braking ability of the braking device 6 is normal (step S11 b), and continues the elevator service. (Step S12b).
  • the braking ability detection control unit 8 determines that the braking ability of the braking device 6 is abnormal (step S13b), The operation of the elevator is stopped (step S14b), and an alarm is issued to a predetermined place such as a maintenance company that the braking ability of the braking device 6 is abnormal.
  • the difference between the load torque TL and the holding torque TH of the braking device 6 when the current i of the learned set value is applied is extremely
  • the value of the motor torque TM necessary for rotating the motor M of the hoisting machine 2 at the time of diagnosis can be reduced.
  • the current applied to the motor M can be made extremely small, so that damage to the device such as an inverter can be suppressed and the life of the device can be extended.
  • the present invention is not limited to this. For example, periodical such as once a month You may learn in a timely manner.
  • the cage 1 disposed in the elevator shaft of the elevator, the hoisting machine 2 for driving the raising and lowering of the car, and the movable portion 6b2 are pressed by the urging force FB.
  • the braking is performed by controlling the suction force FC to an elevator apparatus provided with a braking device 6 that brakes the motor M and sucks the movable portion against the urging force FB by the suction force FC to release the braking.
  • the brake control unit 9 for controlling the braking ability of the device 6, the motor control unit 10 for controlling the motor torque TM generated by the motor, and the car being stationary with the braking device released from braking in the hoisting machine
  • a load detector 11 for detecting the magnitude of a load torque TL required to hold the load, and the brake control unit from the state where the car is held stationary by the braking device.
  • the motor control unit 10 applies the motor torque TM to rotate the motor, and detects and applies the applied motor torque TM.
  • An elevator control apparatus comprising: a braking ability detection control unit 8 for obtaining a braking ability BF of the braking device based on an attraction force FC, the motor torque TM, and the load torque TL detected by the load detector. .
  • a braking ability detection control unit 8 for obtaining a braking ability BF of the braking device based on an attraction force FC, the motor torque TM, and the load torque TL detected by the load detector.
  • the braking ability detection control unit 8 sets the suction force FC applied in order to reduce the biasing force FB by the brake control unit 9 to a constant value. As a result, the motor torque required to rotate the hoist can be reduced, and damage to the power supply equipment can be reduced.
  • the braking ability detection control unit 8 corrects the braking ability BF of the braking device 6 detected based on the detected motor torque TM and the load torque TL by the applied attraction force FC. Thereby, by correcting with the applied suction force, it is possible to detect the braking ability when the suction force is not applied.
  • the braking ability detection control unit 8 causes the motor control unit 10 to increase the motor torque TM, and the motor starts to rotate. Detects the first motor torque TMh and the applied first suction force FCh, and the holding torque of the braking device 6 from the first motor torque TMh, the load torque TL and the first suction force FCh Ask for TH. Thus, the holding torque can be detected with a small motor torque.
  • the braking ability detection control unit 8 controls the motor torque TM so that the motor rotates at a constant rotation speed by the motor control unit 10, and the motor at a constant rotation speed.
  • the second motor torque TMd and the applied second attraction force FCd are detected, and the braking torque TD of the braking device 6 is calculated from the second motor torque TMd, the load torque TL, and the second attraction force FCd. Ask.
  • the braking torque can be detected with a small motor torque.
  • the motor control unit 10 When the motor control unit 10 causes the motor control unit 10 to rotate the motor at a constant rotational speed, the braking ability detection control unit 8 rotates the motor at a speed lower than the traveling speed of the elevator apparatus during normal traveling. As described above, the motor control unit 10 controls the motor torque TM. Thus, the diagnosis system can be improved by performing rotation and diagnosis at a low speed.
  • the braking device 6 has a spring 6b3 for generating the biasing force FB, and a brake coil 6b4 for generating the suction force by applying an electric current, and the braking ability detection control unit 8 controls the brake control.
  • the suction force FC is generated to reduce the biasing force FB.
  • the motor torque required to rotate the hoist can be reduced, and the diagnosis of the braking ability can be performed with a small motor torque.
  • the braking ability detection control unit 8 applies the motor torque TM by the motor control unit 10 to rotate the motor, and then causes the brake control unit 9 to increase the attraction force FC, and the movable unit
  • the third suction force FCb is detected when the brake 6b2 is suctioned and the braking is released, and the braking ability BF detected by the detection unit 8 is corrected based on the third suction force FCb. This improves the diagnostic accuracy of the braking ability.
  • the third suction force FCb is a suction force at time tb in FIG.
  • the braking ability detection control unit 8 increases the suction force FC applied by the brake control unit 9, and the motor starts to rotate. Detects the upper limit suction force FCk at the same time, and at the time of detection of the braking ability BF, the suction force FC applied to make the urging force reduced by the brake control unit 9 than the upper limit suction force FCk Set to a low value. This can reduce the motor torque required for diagnosis.
  • the upper limit suction force FCk is the suction force at time tk in FIG. In the present invention, it is necessary to set the current (current ih or current id) applied at the time of diagnosis to a value such that the holding torque TH does not exceed the load torque TL.
  • the upper limit attractive force FCk that can be applied is determined in order to satisfy this condition.
  • the upper limit current (ik) that can be applied is obtained.
  • the suction force FC applied to reduce the biasing force FB at the time of diagnosis is set to a value smaller than the detected upper limit suction force FCk.
  • a current i lower than the upper limit current ik is applied.
  • the braking ability detection control unit 8 causes the motor control unit 10 to apply the motor torque TM in a state where the suction force FC is applied by the brake control unit 9.
  • the motor torque TM is applied in the direction in which the motor rotates in the direction of the travel command CD, and the motor torque TM, the suction force FC and the load torque TL are detected.
  • the brake control unit 9 applies the suction force FC to suck the movable portion to release the braking, and the motor control unit 9 applies the motor torque TM to cause the car to travel according to the travel command CD. This enables diagnosis during normal service.
  • the motor M of the hoisting machine 2 that raises and lowers the car to the hoistway of the elevator is braked by pressing the movable portion 6b2 by the biasing force FB, and the movable portion is braked against the biasing force FB by the suction force FC.
  • a load torque TL necessary for holding the car stationary is detected in a state where the braking device is released for the elevator apparatus having the braking device 6 that sucks and releases the braking, and the car performs the braking
  • the motor M is rotated to apply the motor torque TM while applying a suction force FC to reduce the biasing force FB from the state of being held stationary by the device, and the applied motor torque TM is detected.
  • the motor torque TM To determine the braking ability BF of the braking device based on the applied attraction force FC, the motor torque TM, and the detected load torque TL. In the beta control method. As a result, the motor torque required to rotate the hoist can be reduced, and damage to the power supply equipment can be reduced.
  • the present invention is not limited to the above embodiments, but includes all possible combinations of these.
  • the elevator control device and elevator control method of the present invention can be applied to various types of elevator systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

エレベータにおける巻上機の制動装置の制動能力診断時に、必要なモータトルクを低減して電源供給機器に与えるダメージを抑制する。エレベータの昇降路内に配置されたかごを、制動装置によって静止保持されている状態から、ブレーキ制御部によって制動装置に吸引力を印加して付勢力を低減した状態において、モータ制御部によって巻上機のモータにモータトルクを発生させて、モータを回転させる。このとき印加した吸引力とモータトルクを検出するとともに、印加した吸引力とモータトルク、および負荷検出器より検出した負荷トルクの値に基づいて制動装置の制動能力を検出する。

Description

エレベータ制御装置及びエレベータ制御方法
 この発明は、エレベータ制御装置及びエレベータ制御方法、特にエレベータの巻上機の制動装置における制動能力診断に関する。
 一般的なエレベータでは、昇降路内に配置されたかごは、巻上機のシーブに巻き掛けられた主索、すなわちロープによって、他端側の釣合おもりとともにつるべ式に吊持されており、巻上機のモータによって昇降駆動される。
 ブレーキドラムは、巻上機のモータとシーブとを結合する軸上に配置されている。そして、ばねの付勢力によって可動部をブレーキドラムに押付けて巻上機モータの回転に制動を掛けるとともに、ブレーキコイルに電流を流すことによって発生する電磁力で可動部をブレーキドラムから吸引、離反させて制動を解除する制動装置が設けられている。
 このようなエレベータにおいて、かご停止中は、制動装置によりモータの静止状態が保持され、かごが停止位置に保持される。一方、かごの走行中に何等かの異常が検出され、かごを非常停止させる場合も、制動装置が働いて巻上機モータが減速停止され、これによりかごが即座に停止される。
 そのため、制動装置の制動能力は適正な値に設定されるとともに、定期的な保守点検を実施し、制動能力が異常になっていないかを診断する必要がある。
 このような課題に対し、かご内に乗客などがいない無負荷状態において、制動装置を作動させておき、かごと釣合おもりの重量不均衡によって生じるアンバランストルクとモータトルクの和が正常時の制動装置の制動能力と等しくなるようにモータトルクを印加し、このときのモータの回転角の変化分や回転速度から検出されたかごの動作状態を基に制動装置の制動能力の正常異常を診断するエレベータが知られている(例えば下記特許文献1)。
 その他にも、制動装置を作動させた状態で、モータを回転させ、このときのモータトルクとかごと釣合おもりの重量不均衡によって生じるアンバランストルクから制動装置の制動能力を診断するエレベータのブレーキトルク測定装置が知られている(例えば下記特許文献2)。
特開2008-133096号公報 特開2004-168501号公報
 しかしながら、エレベータの制動装置には制動能力が低下した状態においても積載荷重の1.25倍の荷重が加わったかごを保持する制動能力が要求される。そのため、正常時の制動能力は非常に大きな値に設定されていることになる。従来技術では制動装置を作動させた状態でモータトルクによってモータを回転させるため、非常に大きなモータトルクが要求されることになる。そのため、診断時にモータに電流を供給する機器に与えるダメージが大きくなり、機器の寿命を縮めてしまうという課題があった。
 この発明は、上記のような課題を解決するためになされたものであり、診断時に必要なモータトルクの大きさを低減することで、モータに電流を供給する機器に与えるダメージを抑えたエレベータ制御装置及びエレベータ制御方法を提供することを目的とする。
 この発明は、エレベータの昇降路に配置されたかごと、前記かごの昇降を駆動する巻上機と、付勢力によって可動部を押圧することで前記巻上機のモータを制動させるとともに吸引力によって前記付勢力に逆らって前記可動部を吸引し制動を解除する制動装置と、
 を備えたエレベータ装置に、前記吸引力を制御することで前記制動装置の制動能力を制御するブレーキ制御部と、前記モータが発生するモータトルクを制御するモータ制御部と、前記巻上機において前記制動装置の制動を解除した状態で前記かごを静止保持するために必要な負荷トルクの大きさを検出する負荷検出器と、前記かごが前記制動装置によって静止保持されている状態から、前記ブレーキ制御部によって吸引力を印加し前記付勢力を低減した状態において、前記モータ制御部によって前記モータトルクを印加し前記モータを回転させるとともに、印加した前記モータトルクを検出し、印加した前記吸引力と前記モータトルクおよび前記負荷検出器によって検出された前記負荷トルクに基づいて前記制動装置の制動能力を求める制動能力検出制御部と、を備えた、エレベータ制御装置等にある。
 この発明では、診断時に必要なモータトルクの大きさを低減することで、モータに電流を供給する機器に与えるダメージを抑えることができる。
この発明の各実施の形態に係るエレベータ制御装置を含むエレベータシステムの一例の全体を示す概略構成図である。 この発明の実施の形態1に係るエレベータ制御装置の一連動作の流れを示す動作フローチャートである。 この発明の実施の形態1に係るブレーキコイルに電流を印加したときの電流、力、ブレーキトルクおよびモータトルクのそれぞれの応答波形図である。 この発明の実施の形態2に係るエレベータ制御装置の一連動作の流れを示す動作フローチャートである。 この発明の実施の形態3に係るブレーキコイルに電流を印加したときの電流、力およびモータ回転速度のそれぞれの応答波形図である。 この発明の実施の形態3に係るエレベータ制御装置の診断時の一連動作の流れを示す動作フローチャートである。 この発明の各実施の形態に係るエレベータ制御装置の巻上機周辺の構成の一例の概略図である。
 この発明によれば、ブレーキ制御部によって吸引力を印加し、付勢力を低減した状態において、モータ制御部によってモータトルクを制御し、モータを回転させる。付勢力を低減したことで制動能力を低下させた状態での診断ができるため、モータを回転させるために必要なモータトルクの値を抑制することができる。これによって、機器に与えるダメージを抑えたエレベータ制御装置を得ることができる。
 以下、この発明によるエレベータ制御装置及びエレベータ制御方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。
 実施の形態1.
 図1は、この発明の各実施の形態におけるエレベータ制御装置を含むエレベータシステムの一例の全体を示す構成図である。図1において、エレベータのかご1は、昇降路内に配置されている。そして、かご1は、巻上機2に備えられたシーブ3に巻き掛けられたロープ4により、他端側の釣合おもり5とともにつるべ式に吊持されている。さらに、かご1は巻上機2に備えられたモータMによって昇降駆動され、制動装置6によって制動される。ここで、釣合おもり5の重量は、例えば、かご1内に定格負荷50%が積載されたときのかご1側の重量と釣合うように設定されている。
 なおモータMは、例えばシーブ3の裏側でシーブ3を回転駆動させるように設けられたものとして破線で示されている。
 また、かご1、巻上機2、シーブ3、ロープ4、釣合おもり5、制動装置6から構成される部分をエレベータ装置とする。
 図7に一例を概略的に示すように、制動装置6は、巻上機2のモータMとシーブ3とを結合する軸上に設置されたブレーキドラム6aと、このブレーキドラム6aに対向するように配置されたブレーキ6bとが備えられている。
 ブレーキ6bは、ばね6b3の弾性力である付勢力FBによってブレーキドラム6aに押付けられたときに摩擦力を発生させる可動部6b2と、電流を流して付勢することで可動部6b2をばね6b3による付勢力FBに逆らって吸引し摩擦力を解除する固定部6b1側に設けられたブレーキコイル6b4と、を備えている。そして、制動装置6の可動部6b2とブレーキドラム6aとの間に作用する静止摩擦力によるトルクを保持トルクTHと呼び、可動部6b2とブレーキドラム6aとの間に作用する動摩擦力によるトルクを制動トルクTDと呼ぶ。例えば、かご1が制動装置6によって停止保持されているときに作用しているのが保持トルクTHであり、かご1が制動装置6によって減速されているときに作用しているのが制動トルクTDとなる。そして、制動装置6の保持トルクTHと制動トルクTDを合わせて制動装置6の制動能力BFと呼ぶ。
 また、巻上機2には、モータMの回転数を検出する回転検出器7が設けられている。
 ブレーキ制御部9は、制動装置6のブレーキコイル6b4に印加する電流を制御することで吸引力FCを作用させ、制動装置6の制動能力BFを制御する。
 そして、モータ制御部10は巻上機2のモータMに印加する電流を制御することで、モータトルクTMを制御する。
 負荷検出制御部11は、巻上機2のモータMに作用する負荷トルクTLを検出する。負荷トルクTLとは、制動装置6の制動を解除した状態における、巻上機2のモータMを静止保持するために必要なモータトルクTMのことである。例えば、ブレーキ制御部9を介して制御して制動装置6の制動を解除し、モータ制御部10を介してモータMを静止保持するために必要なモータトルクTMを得ることができる。
 尚例えば、図1においては巻上機2のシーブ3に対してかご1側と釣合おもり5側の重量差によってモータMに作用するアンバランストルクが負荷トルクTLとなる。その他にも、例えば釣合おもり5やロープ4がなく、かご1に巻上機2が備えられているようなエレベータの場合は、かご1の自重によってモータMに作用するトルクが負荷トルクTLとなる。
 制動能力検出制御部8は、ブレーキ制御部9を介して制動装置6を制御し、モータ制御部10を介して巻上機2のモータMを制御する。そして、制動能力検出制御部8は、回転検出器7、ブレーキ制御部9、モータ制御部10及び負荷検出制御部11からの情報に基づいて、制動装置6の制動能力BFを診断する。
 制動能力検出制御部8および負荷検出制御部11、またブレーキ制御部9、モータ制御部10の演算処理部分は、ソフトウェアで構成する場合には、各機能を実行するプログラムおよび各機能を実行するのに必要な各種データを記憶したメモリと、メモリに格納されたプログラムおよび各種データに従って処理を行うプロセッサからなるコンピュータで構成され得る。ハードウェアで構成する場合には、各種機能を実行する1つまたは複数のディジタル回路で構成され、付随する各種データはディジタル回路に予め組み込んでおく。
 次に、本実施の形態1におけるエレベータ制御装置の診断動作について、図2に示す動作フローチャート及び図3に示す応答波形図に基づいて説明する。尚、図2の動作フローチャートは、かご1が停止状態であり、制動装置6によって巻上機2が静止保持状態にあるときに起動可能である(ステップS0)。
 このとき、巻上機2にはシーブ3に対してかご1側の重量と釣合おもり5側の重量差による負荷トルクTLが発生しつつも、制動装置6によって巻上機2が静止保持されている。つまり、制動装置6による保持トルクTHが負荷トルクTLを上回っている状態となる。
 この巻上機2の静止保持状態から、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4に印加する電圧を制御し、ブレーキコイル6b4に事前に設定しておいた設定電流iを印加する(ステップS1)。
 ここで図3は、この発明の実施の形態1における制動能力診断時の電流i、力F、ブレーキトルクTB、モータトルクTMのそれぞれの応答波形の関係を示す図である。
 図3において、横軸は時間Tを示し、
 (a)は、ブレーキコイル6b4に電圧が印加されたときのブレーキコイル6b4の電流iの波形、
 (b)は、ブレーキコイル6b4の電流iによる吸引力FC及びばね6b3による付勢力FBの波形、
 (c)は、制動装置6の保持トルクTH及び制動トルクTDの波形、
 (d)は、巻上機2のモータMのモータトルクTMの波形、
 をそれぞれ示している。
 図3の(a)に示すように、ブレーキコイル6b4に設定された電流iを印加すると、(b)に示すように吸引力FCが作用し、(c)に示すように制動装置6による保持トルクTHが小さくなる。
 尚、ブレーキコイル6b4に印加する電流iの大きさは、吸引力FCによって低減される保持トルクTHが負荷トルクTLよりも小さくならない程度に設定する。
 すなわち保持トルクTHが負荷トルクTLを上回っている状態は保持する。
 ブレーキコイル6b4へ設定された電流iを印加した後、制動能力検出制御部8はモータ制御部10によって、図3の(d)に示すように巻上機2のモータMが発生するモータトルクTMを徐々に増加させる(ステップS2)。
 ここでモータトルクTMは実際にはモータMが発生するトルクを意味する。以下同様。
 モータMが発生するモータトルクTMを増加させていくと、図3の(d)に示す時刻thでモータトルクTMと負荷トルクTLの和が保持トルクTHと釣合う。さらに、この状態からモータトルクTMを大きくし、モータトルクTMと負荷トルクTLの和が保持トルクTHを僅かでも上回ると、巻上機2のモータMが回転を開始する。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、モータMが回転を開始する時刻thを検出する(ステップS3)。そして、モータMが回転を開始したときに巻上機2のモータMに印加されているモータトルクTMhと制動装置6のブレーキコイル6b4に供給されている電流ihを測定し、これを記録する(ステップS4)。
 モータトルクTMhはモータ制御部10から得られ、ブレーキコイル6b4に供給されている電流ihはブレーキ制御部9から得られる。
 時刻thにおいてモータMが回転を開始すると、制動装置6の可動部6b2とブレーキドラム6aの間に作用する力は静摩擦力から動摩擦力に切り替わる。これによって、ブレーキドラム6aには制動トルクTDが作用することになる。
 モータMが回転を開始すると、制動能力検出制御部8はモータ制御部10によってモータが一定の回転速度で回転するようにモータトルクTMを制御する(ステップS5)。モータ制御部10は例えば回転検出器7からの出力を用いて、検出されるモータの回転速度が目標速度になるようにモータトルクTMを制御する。モータが一定の回転速度で回転しているということは、モータトルクTMと負荷トルクTLの和が制動トルクTDと釣合っているということになる。このときの回転速度は例えばかご1の通常走行時の走行速度よりも低い速度となるように設定する。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、モータMが一定の回転速度で回転していることを検出する。そして、このモータMが一定の回転速度で回転しているとき、つまり図3の(d)に示す時刻tdにおいて巻上機2のモータMが発生しているモータトルクTMdと制動装置6のブレーキコイル6b4に供給されている電流idを測定し、これを記録する(ステップS6)。
 その後、ステップS7において、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4に印加する電圧を制御し、ブレーキコイル6b4へ流れる電流iを徐々に増加させていく。そして、可動部6b2をばね6b3による付勢力FBに逆らって吸引し、保持する。制動装置6の可動部6b2が吸引を開始するとき、つまり図3の(a)に示す時刻tbでのブレーキコイル6b4の吸引力FCと付勢力FBが釣合っているタイミングとなる。制動能力検出制御部8は、この時刻tbでブレーキコイル6b4の吸引力FCと付勢力FBが釣合っているときの制動装置6のブレーキコイル6b4に供給されている電流ibを測定し、これを記録しておく。尚、可動部6b2が吸引を開始するタイミングは、例えば制動装置6に可動部6b2の吸引開始を検出するような図示を省略したスイッチを取り付け、このスイッチの出力を監視することで可動部6b2の吸引開始を検出する。また、その他にもブレーキコイル6b4に図示を省略した電流検出器を取付け、可動部6b2の動き出し時にブレーキコイル6b4に発生する逆起電力によるコイル電流の変化を電流検出器の出力を用いて検出することで可動部の動き出しを検出してもよい。
 制動装置6の可動部6b2の吸引後、制動能力検出制御部8は負荷検出制御部11により、巻上機2に作用している負荷トルクTLを検出する(ステップS8)。例えば、負荷検出制御部11は、かご1の重量を図示を省略した秤装置で計測し、かご1の停止階情報から求まるロープのアンバランス及び釣合おもりの重量より負荷トルクTLを検出する。その他にも制動装置6の可動部6b2の吸引後にモータ制御部10によって、モータMを静止保持するようにモータトルクTMを制御するとともに、このモータMを静止保持したときのモータトルクTMから負荷トルクTLを検出してもよい。
 秤装置は、例えばかご1に設けられたものを使用する。停止階情報は、図示を省略した通常のかごのサービスのための通常運転制御部等から得る、停止階に対するロープのアンバランス及び釣合おもりの重量はメモリ等に予めマップ等を格納しておく。
 以上のステップを受けて、ステップS9において、制動能力検出制御部8は、制動装置6の保持トルクTH及び制動トルクTDを算出する。
 この制動能力検出制御部8による保持トルクTH及び制動トルクTDの算出は、次のようにしておこなわれる。
 まず、予め、制動能力検出制御部8は制動装置6のブレーキコイル6b4へ任意の電流iを印加したときにブレーキコイル6b4から可動部6b2に作用する吸引力FCの関係を測定し、その関係式をFC(i)として記憶しておく。
 制動装置6の保持トルクTHの算出について説明する。時刻thにおいて、巻上機2のモータMが回転を開始したときのモータトルクTMhと負荷トルクTLの和は、時刻thでの保持トルクTHhと釣合っている。時刻thでの保持トルクTHhは、時刻thでのブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された保持トルクTHとなっている。そのため、ブレーキコイル6b4による吸引力FCがないときのブレーキ保持トルクTHは、時刻thでの保持トルクTHhに対し、印加した吸引力FC分を補正した下式(1)で表される。
  TH=(TL+TMh)(FC(ib)/(FC(ib)-FC(ih))) (1)
 ここでFC(ib)、FC(ih)は、図3のそれぞれ時刻tb,時刻thでのブレーキコイル6b4の電流iによる吸引力FCを示す。
 尚、式(1)では、ステップS7において求めたブレーキコイル6b4による吸引力FCとばね6b3による付勢力FBが釣合う時刻tbでの関係から付勢力FBを求めているが、これに限定されるわけではない。ばね6b3による付勢力FBの大きさを事前に求め記憶しておき、記憶している付勢力FBを使用して保持トルクTHを算出してもよい。
 次に、制動トルクTDの算出について説明する。時刻tdにおいて、巻上機2のモータMが一定の回転速度で回転しているときのモータトルクTMdと負荷トルクTLの和は、時刻tdでの制動トルクTDdと釣合っている。時刻tdでの制動トルクTDdは、時刻tdでのブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された制動トルクTDとなっている。そのため、ブレーキコイル6b4による吸引力FCがないときのブレーキ制動トルクTDは、時刻tdでの制動トルクTDdに対し、印加した吸引力FC分を補正した下式(2)で表される。
  TD=(TL+TMd)(FC(ib)/(FC(ib)-FC(id))) (2)
 巻上機2の制動装置6の保持トルクTHおよび制動トルクTDを算出した後は、ステップS10に進む。制動能力検出制御部8は、算出した保持トルクTHおよび制動トルクTDに基づいて、制動装置6の制動能力が正常か異常かを判定する。
 このとき、制動能力検出制御部8は、制動装置6がかご1を保持するために必要な保持トルクTHの基準範囲を予め記憶しておき、算出した保持トルクTHが基準範囲内にあるか否かを判定する。
 また、制動能力検出制御部8は、制動装置6がかご1を安全に停止させるために必要な制動トルクTDの基準範囲を予め記憶しておき、算出した制動トルクTDが基準範囲内あるか否かを判定する。
 保持トルクTHと制動トルクTDが両方とも基準範囲内にある場合には、制動能力検出制御部8は、制動装置6の制動能力が正常であると判断し(ステップS11)、エレベータのサービスを継続する(ステップS12)。
 一方、算出した保持トルクTHと制動トルクTDの少なくとも一つが基準範囲外にある場合には、制動能力検出制御部8は、制動装置6の制動能力が異常であると判断し(ステップS13)、エレベータの運行を休止させ(ステップS14)、制動装置6の制動能力が異常であることを、保守会社等の予め定められた場所に向けて発報する。尚、ステップS10において制動能力検出制御部8は、保持トルクTHと制動トルクTDのどれが基準範囲外なのか記憶しておき、その情報も合わせて保守会社等の予め定められた場所に向けて発報してもよい。
 以上の様に、制動装置6のブレーキコイル6b4に電流iを印加し、制動装置6の可動部6b2に吸引力FCを作用させた状態で診断をおこなうことで、制動装置6の制動能力を低減した状態で診断をおこなうことができる。これによって、診断時に必要な巻上機2のモータMのモータトルクTMの大きさを低減することができる。診断に使用するモータトルクTMを低減したことで、モータMに印加する電流を押さえることがきるため、モータMに電流を印加するためのインバータ等の機器に与えるダメージを抑制することが可能となる。そして、機器へのダメージを抑制できるため、機器の寿命を延ばすことができるようになる。
 また、診断に必要なモータトルクTMを低減する方法としては、負荷トルクTLの作用する方向と同じ方向にモータトルクTMを印加し、巻上機2のモータMを回転させる方法も考えられる。しかし、このような方法では負荷トルクTLが作用する方向にしか診断ができないため、例えば巻上機2のモータMに対してかご1側よりも釣合おもり5側の重量が大きく負荷トルクTLがかご1を上昇させる方向に作用している場合において、かご1が最上階に停止していると、かご1は上方向に走行できないため診断をおこなうことができない。その他にも、巻上機2のモータに対してかご1側と釣合おもり5側の重量が等しく、負荷トルクTLが作用していないような場合にも診断をおこなうことができない。
 このような問題に対しても、ブレーキコイル6b4の吸引力FCによって制動装置6の制動能力を低減した状態で、巻上機2のモータMによるモータトルクTMを用いて巻上機2を回転させることで、上下どちらの方向に対しても診断が可能となるため、かご1の位置に寄らずどこでも診断が可能であり、負荷トルクTLの有無にも係らず診断が可能となる。
 尚、本実施の形態1では、ステップS1で予め設定された電流iをブレーキコイル6b4に印加した後、ステップS6にて、時刻tdで巻上機2のモータMに印加されているモータトルクTMdと制動装置6のブレーキコイル6b4に印加されている電流idを測定し、これを記録するまで一定の電流iを印加し続ける状況を例に説明をおこなっている。しかしながら、これに限定されるわけではなく、ステップS1でブレーキコイル6b4に電流iを印加した後、ステップS5にて巻上機2のモータMが一定の速度で回転するようにモータトルクTMを制御するときに、ブレーキ制御部9によってブレーキコイル6b4に印加する電流iを変更してもよい。基本的には保持トルクTHよりも制動トルクTDの方が小さいため、巻上機2が回転した後にブレーキコイル6b4に印加する電流iは、ステップS1で印加していた電流iよりも低い値に設定する。
 また、制動装置6としてブレーキコイル6b4によって可動部6b2を吸引するブレーキを例に説明をおこなったが、これに限定されるわけではなく、油圧ユニットや空圧ユニットによって可動部を吸引するようなブレーキを用いてもよい。
 実施の形態2.
 上記実施の形態1では、制動装置6のブレーキコイル6b4に予め設定された電流iを印加した状態で制動能力の診断をおこなった。本実施の形態2では実施の形態1とは異なる手順で、制動装置6の制動能力を診断する方法について説明する。
 本実施の形態2では総じて、通常運転制御部等からのかご1の走行指令CDの方向に巻上機2のモータトルクTMを印加して、制動能力を診断する。これにより診断後、そのままかご1の走行に移行できる。
 尚、本実施の形態2におけるエレベータ制御装置を含むエレベータシステム全体の構成は、実施の形態1と同様に図1に示すものである。
 図4は、この発明の実施の形態2に係るエレベータ制動装置の一連の流れを示す動作フローチャートである。図4の動作フローチャートは、かご1が停止状態であり、制動装置6によって巻上機2が静止保持状態にあるときに起動可能である(ステップS0a)。
 かご1の停止状態からエレベータの走行指令CDが出され、かご1が走行に移行する状態において、制動能力検出制御部8は負荷検出制御部11により、巻上機2に作用している負荷トルクTLを検出する(ステップS1a)。
 そして、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4に印加する電圧を制御し、ブレーキコイル6b4にかご1の走行指令CDおよび作用している負荷トルクTLに応じた電流iを印加する(ステップS2a)。
 制動能力検出制御部8は、事前に2種類の電流iの設定値を記録しておく。そして、かご1の走行指令CDの方向と負荷トルクTLが作用する方向が一致している場合は、低い方の設定値の電流iをブレーキコイル6b4に印加する。一方、かご1の走行指令CDの方向と負荷トルクTLが作用する方向が異なる場合は、高い方の設定値の電流iをブレーキコイル6b4に印加する。
 走行指令CDの方向と負荷トルクTLの作用する方向が一致している場合は、負荷トルクTLの分だけ、巻上機2を走行指令CDの方向に回転させるために必要なモータトルクTMは低減される。逆に走行指令CDの方向と負荷トルクTLの作用する方向が異なる場合は、負荷トルクTLは巻上機2が走行指令CDの方向に回転するのを阻害する方向に作用しているため、必要なモータトルクTMは増大することになる。そのため、かご1の走行指令CDの方向と負荷トルクTLの作用する方向が異なる場合は、印加する電流iを大きい値とする。
 また、その他にも制動能力検出制御部8は、事前に負荷トルクTLが0のときに対応する電流iの大きさを記録しておき、検出した負荷トルクTLの値を基に、負荷トルクTLに予め設定された変換係数をかけた値分、印加する電流iの大きさを変化させてもよい。このとき、走行指令CDの方向と負荷トルクTLの作用する方向が同じ場合は作用する負荷トルクTL分だけ電流iの大きさを低減し、逆に走行指令CDの方向と負荷トルクTLの作用する方向が異なる場合は作用する負荷トルクTL分だけ電流iの大きさを増大させる。
 その後、ステップS3aにおいて、制動能力検出制御部8はモータ制御部10によって、かご1の走行指令CDの方向に向かって巻上機2のモータMが発生するモータトルクTMを徐々に増加させる。
 モータMが発生するモータトルクTMを増加させていくと、図3の(d)の時刻thに相当する時刻thでモータトルクTMと負荷トルクTLの和が保持トルクTHを上回り、巻上機2のモータMが回転を開始する。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、モータが回転を開始する時刻thを検出する(ステップS4a)。そして、モータMが回転を開始したときに巻上機2のモータMに印加されているモータトルクTMhと制動装置6のブレーキコイル6b4に供給されている電流ihを測定し、これを記録する(ステップS5a)。
 モータトルクTMhはモータ制御部10から得られ、ブレーキコイル6b4に供給されている電流ihはブレーキ制御部9から得られる。
 モータMが回転を開始すると、制動能力検出制御部8はモータ制御部10によってモータMが一定の回転速度で回転するようにモータトルクTMを制御する(ステップS6a)。このときの回転方向も、かご1の走行指令CDと同じ方向に巻上機2のモータMが回転するようにモータトルクTMを印加する。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、モータMが一定の回転速度で回転していることを検出する。そして、このモータが一定の回転速度で回転している図3の(d)の時刻tdに相当する時刻tdにおいて巻上機2のモータに印加されているモータトルクTMdと制動装置6のブレーキコイル6b4に供給されている電流idを測定し、これを記録する(ステップS7a)。
 その後、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4へ流れる電流iを増加させる。そして、可動部6b2をばね6b3による付勢力FBに逆らって吸引し、保持する(ステップS8a)。制動能力検出制御部8は、図3の(d)の時刻tbに相当する時刻tbで可動部6b2が吸引を開始したときの、制動装置6のブレーキコイル6b4に供給されている電流ibを測定し、これを記録する。
 以上のステップを受けて、ステップS9aにおいて、制動能力検出制御部8は、制動装置6の保持トルクTH及び制動トルクTDを算出する。
 制動能力検出制御部8は、記録したモータトルクTMhと、負荷トルクTL、およびブレーキコイル6b4の電流ihと電流ibを用いて保持トルクTHを算出する。また、記録したモータトルクTMdと、負荷トルクTL、およびブレーキコイル6b4の電流idと電流ibを用いて制動トルクTDを算出する。
 巻上機2の制動装置6の保持トルクTHおよび制動トルクTDを算出した後、制動能力検出制御部8は、算出した保持トルクTHおよび制動トルクTDのそれぞれが基準範囲内にあるか否かを判定する(ステップS10a)。
 ステップS10aにて、算出した保持トルクTHおよび制動トルクTDの両方が基準範囲内にある場合は、制動能力検出制御部8は制動装置6の制動能力が正常であると判定する(ステップS11a)。そして、制動装置6の制動能力が正常であると判定すると、かご1の走行にそのまま移行する(ステップS12a)。モータ制御部10はかご1が走行指令CDに従って走行するようにモータトルクTMを制御し、かご1を目的階に向けて走行させる。
 一方、ステップS10aにて、算出した保持トルクTHおよび制動トルクTDの少なくともどちらか一方が基準範囲外にある場合は、制動能力検出制御部8は制動装置6の制動能力が異常であると判定する(ステップS13a)。この場合は、制動能力検出制御部8はモータ制御部10によってモータトルクTMを制御し、かご1を負荷トルクTLが作用する方向の終端階に走行させた後、エレベータの運行を休止させる(ステップS14a)。同時に、制動装置6の制動能力が異常であることを、保守会社等の予め定められた場所に向けて発報する。
 以上の様に、かご1の走行指令CDの方向に巻上機2のモータトルクTMを印加して、制動能力を診断することで、そのままかご1の走行に移行できるため、エレベータの通常サービス中に制動装置6の制動能力を診断することができるようになる。
 また、走行指令CDの方向と負荷トルクTLの作用する方向に応じて、診断時にブレーキコイル6b4に印加する電流iの大きさを変えることで、負荷トルクTLの作用する方向と逆の方向に巻上機2のモータMを回転させる場合にも、診断に必要なモータトルクTMの増大を抑えられる。従って、巻上機2の回転方向によらず、診断に必要なモータトルクTMを削減することができる。
 実施の形態3.
 上記実施の形態2では、診断時に制動装置6のブレーキコイル6b4に印加する電流iを事前に2種類記憶しておき、診断時の状況によって印加する電流iを選択した。本実施の形態3では、ブレーキコイル6b4に印加する電流iの大きさを学習して設定する方法について説明する。
 尚、本実施の形態3におけるエレベータ制御装置を含むエレベータシステム全体の構成は、実施の形態1と同様に図1に示すものである。
 本実施の形態3におけるエレベータ制御装置の動作について、図5に示す波形図に基づいて説明する、
 ここで、図5は、この発明の実施の形態3において、診断時にブレーキコイル6b4に印加する電流iの値を設定するときの電流i、力F、モータ回転速度RMのそれぞれの応答波形の関係を示す図となる。
 図5において、横軸は時間Tを示し、
 (a)は、ブレーキコイル6b4に電圧が印加されたときのブレーキコイルの電流iの波形、
 (b)は、ブレーキコイル6b4の電流iによる吸引力FC、
 (c)は、巻上機2のモータMの回転速度RMの波形、
 をそれぞれ示している。
 制動能力検出制御部8はかご1が停止状態であり、制動装置6によって巻上機2が静止保持されている状態において起動される。この巻上機2の静止保持状態から、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4に印加する電圧を制御し、図5の(a)に示すようにブレーキコイル6b4に流れる電流iを徐々に増加させていく。
 ブレーキコイル6b4に流れる電流iが増加すると、図5の(b)に示すように吸引力FCが作用し、制動装置6による保持トルクTHが低下していくことになる。そのため、ブレーキコイル6b4に流れる電流iが増加すると、図5の(c)に示す時刻tkにおいて負荷トルクTLが、保持トルクTHを上回り、巻上機2が回転を開始する。
 診断時に印加する吸引力FCは、低減する保持トルクTHが負荷トルクTLよりも小さくならないように設定する必要がある。そのため、時刻tkにおいて負荷トルクTLが、保持トルクTHを上回ったときのブレーキコイル6b4による吸引力FCが診断時に印加可能な吸引力FCの最大値となる。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、巻上機2のモータMが回転を開始する時刻tkを検出する。そして、モータMが回転を開始したときに制動装置6のブレーキコイル6b4に流れる電流ikを測定し、これを記録する。
 制動能力検出制御部8は、検出した電流ikに基づいて、診断時にブレーキコイル6b4に印加する電流iを検出した電流ikよりも低い値に設定する。これにより診断時に印加する吸引力FCを印加可能な吸引力FCの最大値よりも低い値に設定できる。例えば、制動能力検出制御部8は検出したikの8割の値に診断時に印加する電流iを設定する。その他にも検出した電流ikに対し設定値だけ低い値に印加する電流iを設定してもよい。
 時刻tkにて、ブレーキコイル6b4に流れる電流ikを検出すると、制動能力検出制御部8は巻上機2のモータMの回転を停止させる。ここで、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4に流れる電流iを消勢させることで、制動装置6の制動トルクTDを増加させ、巻上機2の回転を停止させてもよい。その他にも、制動能力検出制御部8はモータ制御部10によって、巻上機2の回転を停止させるようにモータMが発生するモータトルクTMを制御し、モータトルクTMによって、巻上機2を静止保持してもよい。巻上機2を静止保持した後は、ブレーキ制御部9によって制動装置6のブレーキコイル6b4に流れる電流iを消勢させ、制動装置6の保持トルクTHによって巻上機2を静止保持する。
 そして、制動装置6によって巻上機2を静止保持状態にした後は、設定した診断時に印加する電流iの値を用いて、制動装置6の制動能力を診断する。
 図6は、この発明の実施の形態3に係るエレベータ制動装置の制動能力診断時の一連の流れを示す動作フローチャートである。図6の動作フローチャートは、診断時に印加する電流iの値を設定後、制動装置6によって巻上機2が静止保持状態にあるときに起動される(ステップS0b)。
 この巻上機2の静止保持状態から、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4に事前に学習して設定した電流iを印加する(ステップS1b)。
 その後、ステップS2bにおいて、制動能力検出制御部8はモータ制御部10によって、巻上機2のモータMが発生するモータトルクTMを徐々に増加させる。
 モータMが発生するモータトルクTMを増加させていくと、図5の(c)の時刻thでモータトルクTMと負荷トルクTLの和が保持トルクTHを上回り、巻上機2のモータMが回転を開始する。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、モータMが回転を開始する時刻thを検出する(ステップS3b)。そして、モータMが回転を開始したときに巻上機2のモータMに印加されているモータトルクTMhと制動装置6のブレーキコイル6b4に供給されている電流ihを測定し、これを記録する(ステップS4b)。
 モータMが回転を開始すると、制動能力検出制御部8はモータ制御部10によってモータMが一定の回転速度で回転するようにモータトルクTMを制御する(ステップS5b)。
 制動能力検出制御部8は、回転検出器7からの出力を監視することにより、モータMが一定の回転速度で回転していることを検出する。そして、このモータMが一定の回転速度で回転している図3の(d)の時刻tdに相当する時刻tdにおいて巻上機2のモータMに印加されているモータトルクTMdと制動装置6のブレーキコイル6b4に供給されている電流idを測定し、これを記録する(ステップS6b)。
 その後、制動能力検出制御部8はブレーキ制御部9によって制動装置6のブレーキコイル6b4へ流れる電流iを消勢させるとともに、モータ制御部10によってモータMに印加しているモータトルクTMを停止させ、巻上機2の回転を停止させる(ステップS7b)。
 そして、制動能力検出制御部8は負荷検出制御部11により、巻上機2に作用している負荷トルクTLを検出する(ステップS8b)。
 ステップS9bにおいて、制動能力検出制御部8は予め記憶している基準範囲を診断時に印加したコイル電流iに応じて補正する。制動能力検出制御部8はコイル電流iが印加されていない状態で制動装置6がかご1を保持するために必要な保持トルクTHの基準範囲および、かご1を安全に停止させるために必要な制動トルクTDの基準範囲を予め記憶しておく。診断時はブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された状態となっている。そのため、制動能力検出制御部8は制動装置6のブレーキコイル6b4へある電流iを印加したときに、ブレーキコイル6b4から可動部6b2に作用する吸引力FCによって低減される保持トルクTHおよび制動トルクTDの割合を事前に測定し、その関係式をG(i)として記憶しておく。
 そして、ステップS4bにて測定したブレーキコイル6b4に流れる電流ihを用いて演算されたG(ih)を保持トルクTHの基準範囲に掛けることで保持トルクTHの基準範囲の補正をおこなう。同様に、ステップS6b測定したブレーキコイル6b4に流れる電流idを用いて演算されたG(id)を制動トルクTDの基準範囲に掛けることで制動トルクTDの基準範囲の補正をおこなう。
 以上の様に補正した基準範囲を用いて、ステップS10bにおいて、制動能力検出制御部8は、制動装置6の制動能力が正常か異常かを判定する。
 時刻thでブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された状態での保持トルクTHhは、時刻thでのモータMに印加されていたモータトルクTMhと負荷トルクTLの和となる。そのため、制動能力検出制御部8は測定されたモータトルクTMhと負荷トルクTLから、ブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された状態での保持トルクTHhを算出する。
 また、時刻tdでブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された状態での制動トルクTDdは、時刻tdでのモータMに印加されていたモータトルクTMdと負荷トルクTLの和となる。そのため、制動能力検出制御部8は測定されたモータトルクTMdと負荷トルクTLから、ブレーキコイル6b4による吸引力FC分だけ付勢力FBが低減された状態での制動トルクTDdを算出する。
 そして、算出された保持トルクTHhと制動トルクTDdをそれぞれ、ステップS9bで補正した基準範囲と比較し、保持トルクTHhと制動トルクTDdが基準範囲内にあるか否かを判定する。保持トルクTHhと制動トルクTDdが両方とも基準範囲内にある場合には、制動能力検出制御部8は、制動装置6の制動能力が正常であると判断し(ステップS11b)、エレベータのサービスを継続する(ステップS12b)。
 一方、算出した保持トルクTHhと制動トルクTDdの少なくとも一つが基準範囲外にある場合には、制動能力検出制御部8は、制動装置6の制動能力が異常であると判断し(ステップS13b)、エレベータの運行を休止させ(ステップS14b)、制動装置6の制動能力が異常であることを、保守会社等の予め定められた場所に向けて発報する。
 以上のように、診断時に印加する電流iの値を学習して設定することで、負荷トルクTLと、学習した設定値の電流iを印加したときの制動装置6の保持トルクTHの差を非常に小さくできるため、診断時に巻上機2のモータMを回転させる為に必要なモータトルクTMの値を低減することができる。これによって、モータMに印加する電流を非常に小さくできるため、インバータ等の機器に与えるダメージを抑制し、機器の寿命を延ばすことができるようになる。
 尚、本実施の形態3では診断直前に診断時に印加する電流iの値を学習する場合を例に説明をおこなったが、これに限定されるわけではなく、例えば一月に1回など、定期的に学習をおこなってもよい。
 以上のようにこの発明は、エレベータの昇降路に配置されたかご1と、前記かごの昇降を駆動する巻上機2と、付勢力FBによって可動部6b2を押圧することで前記巻上機のモータMを制動させるとともに吸引力FCによって前記付勢力FBに逆らって前記可動部を吸引し制動を解除する制動装置6と、を備えたエレベータ装置に、前記吸引力FCを制御することで前記制動装置6の制動能力を制御するブレーキ制御部9と、前記モータが発生するモータトルクTMを制御するモータ制御部10と、前記巻上機において前記制動装置の制動を解除した状態で前記かごを静止保持するために必要な負荷トルクTLの大きさを検出する負荷検出器11と、前記かごが前記制動装置によって静止保持されている状態から、前記ブレーキ制御部によって吸引力FCを印加し前記付勢力FBを低減した状態において、前記モータ制御部10によって前記モータトルクTMを印加し前記モータを回転させるとともに、印加した前記モータトルクTMを検出し、印加した前記吸引力FCと前記モータトルクTMおよび前記負荷検出器によって検出された前記負荷トルクTLに基づいて前記制動装置の制動能力BFを求める制動能力検出制御部8と、を備えた、エレベータ制御装置にある。
 これにより、巻上機を回転させるために必要なモータトルクを低減でき、電源供給機器へのダメージを低減できる。
 また、前記制動能力検出制御部8は、前記ブレーキ制御部9によって前記付勢力FBを低減した状態にするために印加する前記吸引力FCを一定の値とする。
 これにより、巻上機を回転させるために必要なモータトルクを低減でき、電源供給機器へのダメージを低減できる。
 また、前記制動能力検出制御部8は、検出した前記モータトルクTMと前記負荷トルクTLに基づいて検出される前記制動装置6の前記制動能力BFを、印加した前記吸引力FCによって補正する。
 これにより、印加した吸引力によって補正することで、吸引力が作用していないときの制動能力を検出することができる。
 また、前記制動能力検出制御部8は、前記ブレーキ制御部9によって前記吸引力FCを印加した状態において、前記モータ制御部10によって、前記モータトルクTMを増加させていき、前記モータが回転を開始したときの第1のモータトルクTMhおよび印加した第1の吸引力FChを検出し、前記第1のモータトルクTMhと前記負荷トルクTLおよび前記第1の吸引力FChより前記制動装置6の保持トルクTHを求める。
 これにより、小さなモータトルクで保持トルクを検出できる。
 また、前記制動能力検出制御部8は、前記モータ制御部10によって前記モータが一定の回転速度で回転するように前記モータトルクTMを制御するとともに、前記モータが一定の回転速度となった状態での第2のモータトルクTMdおよび印加した第2の吸引力FCdを検出し、前記第2のモータトルクTMdと前記負荷トルクTLおよび前記第2の吸引力FCdより前記制動装置6の制動トルクTDを求める。
 これにより、小さなモータトルクで制動トルクを検出できる。
 また、前記制動能力検出制御部8は、前記モータ制御部10によって前記モータを一定の回転速度で回転させるときに、前記モータが前記エレベータ装置の通常走行時の走行速度よりも低い速度で回転するように前記モータ制御部10によって前記モータトルクTMを制御する。
 これにより、低い速度で回転させて診断することで、診断制度を向上させることができる。
 また、前記制動装置6は、前記付勢力FBを発生させるばね6b3、および電流を印加することによって前記吸引力を発生させるブレーキコイル6b4を有し、前記制動能力検出制御部8は、前記ブレーキ制御部9によって前記ブレーキコイルに電流を印加することで前記吸引力FCを発生させ前記付勢力FBを低減させる。
 これにより、巻上機を回転させるために必要なモータトルクを低減でき、小さなモータトルクで制動能力の診断が可能となる。
 また、前記制動能力検出制御部8は、前記モータ制御部10によって前記モータトルクTMを印加し前記モータを回転させた後、前記ブレーキ制御部9によって前記吸引力FCを増加させるとともに、前記可動部6b2が吸引され制動が解除されたときの第3の吸引力FCbを検出し、前記第3の吸引力FCbに基づいて前記検出部8で検出された前記制動能力BFを補正する。
 これにより、制動能力の診断精度を向上させる。
 第3の吸引力FCbは図3の時刻tbの吸引力である。付勢力FBと吸引力FCb=FC(ib)が釣合う瞬間であり、付勢力FBの推定に用いられる。
 また、前記制動能力検出制御部8は、前記かごが前記制動装置6によって静止保持されている状態において、前記ブレーキ制御部9によって印加する前記吸引力FCを増加するとともに、前記モータが回転を開始したときの上限吸引力FCkを検出するとともに、前記制動能力BFの検出時に前記ブレーキ制御部9によって前記付勢力を低減した状態にするために印加する前記吸引力FCを前記上限吸引力FCkよりも低い値に設定する。
 これにより、診断に必要なモータトルクを低減できる。
 上限吸引力FCkは図5における時刻tkの吸引力のことである。この発明では、診断時に印加する電流(電流ihや電流id)は保持トルクTHが負荷トルクTLを上回らないような値に設定する必要がある。実施の形態3で記載したように、本条件を満たすために印加可能な上限吸引力FCkを求めている。実際には印加可能な上限電流(ik)を求めている。そして、診断時に付勢力FBを低減するために印加する吸引力FCを検出した上限吸引力FCkよりも小さい値に設定している。実際には、上限電流ikよりも低い電流iを印加する。
 また、前記制動能力検出制御部8は、前記かごに対する走行指令CDが入力されると、前記ブレーキ制御部9によって前記吸引力FCを印加した状態において、前記モータ制御部10によって前記モータトルクTMを印加するときに、前記走行指令CDの方向に向かって前記モータが回転する方向に前記モータトルクTMを印加するとともに、前記モータトルクTMと、前記吸引力FCおよび前記負荷トルクTLを検出後、前記ブレーキ制御部9によって前記吸引力FCを印加し前記可動部を吸引し制動を解除し、前記モータ制御部9によって前記モータトルクTMを印加し前記かごを前記走行指令CDに従って走行させる。
 これにより、通常サービス中の診断が可能となる。
 また、エレベータの昇降路にかごを昇降させる巻上機2のモータMを、付勢力FBによって可動部6b2を押圧することで制動させるとともに吸引力FCによって前記付勢力FBに逆らって前記可動部を吸引し制動を解除する制動装置6を備えたエレベータ装置に対して、前記制動装置の制動を解除した状態で前記かごを静止保持するために必要な負荷トルクTLを検出し、前記かごが前記制動装置によって静止保持されている状態から、吸引力FCを印加して付勢力FBを低減した状態にして、前記モータMを回転させてモータトルクTMを印加するとともに、印加した前記モータトルクTMを検出し、印加した前記吸引力FCと前記モータトルクTMおよび検出した前記負荷トルクTLに基づいて前記制動装置の制動能力BFを求めるエレベータ制御方法にある。
 これにより、巻上機を回転させるために必要なモータトルクを低減でき、電源供給機器へのダメージを低減できる。
 この発明は上記各実施の形態に限定されるものではなく、これらの可能な組合せを全て含む。
産業上の利用の可能性
 この発明のエレベータ制御装置及びエレベータ制御方法は種々の機種のエレベータシステムに適用することが可能である。
 1 かご、2 巻上機、3 シーブ、4 ロープ、5 釣合おもり、6 制動装置、6a ブレーキドラム、6b ブレーキ、6b1 固定部、6b2 可動部、6b3 ばね、6b4 ブレーキコイル、7 回転検出器、8 制動能力検出制御部、9 ブレーキ制御部、10 モータ制御部、11 負荷検出制御部。

Claims (11)

  1.  エレベータの昇降路に配置されたかごと、
     前記かごの昇降を駆動する巻上機と、
     付勢力によって可動部を押圧することで前記巻上機のモータを制動させるとともに吸引力によって前記付勢力に逆らって前記可動部を吸引し制動を解除する制動装置と、
     を備えたエレベータ装置に、
     前記吸引力を制御することで前記制動装置の制動能力を制御するブレーキ制御部と、
     前記モータが発生するモータトルクを制御するモータ制御部と、
     前記巻上機において前記制動装置の制動を解除した状態で前記かごを静止保持するために必要な負荷トルクの大きさを検出する負荷検出器と、
     前記かごが前記制動装置によって静止保持されている状態から、前記ブレーキ制御部によって吸引力を印加し前記付勢力を低減した状態において、
     前記モータ制御部によって前記モータトルクを印加し前記モータを回転させるとともに、印加した前記モータトルクを検出し、
     印加した前記吸引力と前記モータトルクおよび前記負荷検出器によって検出された前記負荷トルクに基づいて前記制動装置の制動能力を求める制動能力検出制御部と、
     を備えた、エレベータ制御装置。
  2.  前記制動能力検出制御部は、前記ブレーキ制御部によって前記付勢力を低減した状態にするために印加する前記吸引力を一定の値とする、
     請求項1に記載のエレベータ制御装置。
  3.  前記制動能力検出制御部は、検出した前記モータトルクと前記負荷トルクに基づいて検出される前記制動装置の前記制動能力を、印加した前記吸引力によって補正する、
     請求項1または2に記載のエレベータ制御装置。
  4.  前記制動能力検出制御部は、前記ブレーキ制御部によって前記吸引力を印加した状態において、前記モータ制御部によって、前記モータトルクを増加させていき、前記モータが回転を開始したときの第1のモータトルクおよび印加した第1の吸引力を検出し、前記第1のモータトルクと前記負荷トルクおよび前記第1の吸引力より前記制動装置の保持トルクを求める、
     請求項1から3までのいずれか1項に記載のエレベータ制御装置。
  5.  前記制動能力検出制御部は、前記モータ制御部によって前記モータが一定の回転速度で回転するように前記モータトルクを制御するとともに、前記モータが一定の回転速度となった状態での第2のモータトルクおよび印加した第2の吸引力を検出し、前記第2のモータトルクと前記負荷トルクおよび前記第2の吸引力より前記制動装置の制動トルクを求める、
     請求項1から4までのいずれか1項に記載のエレベータ制御装置。
  6.  前記制動能力検出制御部は、前記モータ制御部によって前記モータを一定の回転速度で回転させるときに、前記モータが前記エレベータ装置の通常走行時の走行速度よりも低い速度で回転するように前記モータ制御部によって前記モータトルクを制御する、
     請求項5に記載のエレベータ制御装置。
  7.  前記制動装置は、前記付勢力を発生させるばね、および電流を印加することによって前記吸引力を発生させるブレーキコイルを有し、
     前記制動能力検出制御部は、前記ブレーキ制御部よって前記ブレーキコイルに電流を印加することで前記吸引力を発生させ前記付勢力を低減させる、
     請求項1から6までのいずれか1項に記載のエレベータ制御装置。
  8.  前記制動能力検出制御部は、前記モータ制御部によって前記モータトルクを印加し前記モータを回転させた後、前記ブレーキ制御部によって前記吸引力を増加させるとともに、前記可動部が吸引され制動が解除されたときの第3の吸引力を検出し、前記第3の吸引力に基づいて前記検出部で検出された前記制動能力を補正する、
     請求項1から7までのいずれか1項に記載のエレベータ制御装置。
  9.  前記制動能力検出制御部は、前記かごが前記制動装置によって静止保持されている状態において、前記ブレーキ制御部によって印加する前記吸引力を増加するとともに、前記モータが回転を開始したときの上限吸引力を検出するとともに、前記制動能力の検出時に前記ブレーキ制御部によって前記付勢力を低減した状態にするために印加する前記吸引力を前記上限吸引力よりも低い値に設定する、
     請求項1から8までのいずれか1項に記載のエレベータ制御装置
  10.  前記制動能力検出制御部は、前記かごに対する走行指令が入力されると、
     前記ブレーキ制御部によって前記吸引力を印加した状態において、前記モータ制御部によって前記モータトルクを印加するときに、前記走行指令の方向に向かって前記モータが回転する方向に前記モータトルクを印加するとともに、前記モータトルクと、前記吸引力および前記負荷トルクを検出後、前記ブレーキ制御部によって前記吸引力を印加し前記可動部を吸引し制動を解除し、前記モータ制御部によって前記モータトルクを印加し前記かごを前記走行指令に従って走行させる、
     請求項1から8までのいずれか1項に記載のエレベータ制御装置。
  11.  エレベータの昇降路にかごを昇降させる巻上機のモータを、付勢力によって可動部を押圧することで制動させるとともに吸引力によって前記付勢力に逆らって前記可動部を吸引し制動を解除する制動装置を備えたエレベータ装置に対して、
     前記制動装置の制動を解除した状態で前記かごを静止保持するために必要な負荷トルクを検出し、
     前記かごが前記制動装置によって静止保持されている状態から、吸引力を印加して付勢力を低減した状態にして、前記モータを回転させてモータトルクを印加するとともに、印加した前記モータトルクを検出し、
     印加した前記吸引力と前記モータトルクおよび検出した前記負荷トルクに基づいて前記制動装置の制動能力を求める、
     エレベータ制御方法。
PCT/JP2017/022810 2017-06-21 2017-06-21 エレベータ制御装置及びエレベータ制御方法 WO2018235183A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197007382A KR102209174B1 (ko) 2017-06-21 2017-06-21 엘리베이터 제어 장치 및 엘리베이터 제어 방법
PCT/JP2017/022810 WO2018235183A1 (ja) 2017-06-21 2017-06-21 エレベータ制御装置及びエレベータ制御方法
DE112017007670.6T DE112017007670B4 (de) 2017-06-21 2017-06-21 Fahrstuhlsteuerung und Fahrstuhl-Steuerungsverfahren
JP2018547490A JP6573729B2 (ja) 2017-06-21 2017-06-21 エレベータ制御装置及びエレベータ制御方法
CN201780056358.8A CN110740958B (zh) 2017-06-21 2017-06-21 电梯控制装置及电梯控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022810 WO2018235183A1 (ja) 2017-06-21 2017-06-21 エレベータ制御装置及びエレベータ制御方法

Publications (1)

Publication Number Publication Date
WO2018235183A1 true WO2018235183A1 (ja) 2018-12-27

Family

ID=64736962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022810 WO2018235183A1 (ja) 2017-06-21 2017-06-21 エレベータ制御装置及びエレベータ制御方法

Country Status (5)

Country Link
JP (1) JP6573729B2 (ja)
KR (1) KR102209174B1 (ja)
CN (1) CN110740958B (ja)
DE (1) DE112017007670B4 (ja)
WO (1) WO2018235183A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790103A (zh) * 2019-11-11 2020-02-14 昆山科瞬电磁技术有限公司 一种测试装置以及测试方法
WO2021149172A1 (ja) * 2020-01-22 2021-07-29 株式会社日立製作所 エレベータ用ブレーキ制御装置、並びにエレベータ装置
JP7406733B1 (ja) * 2022-08-23 2023-12-28 フジテック株式会社 マンコンベヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168501A (ja) * 2002-11-20 2004-06-17 Mitsubishi Electric Building Techno Service Co Ltd エレベータのブレーキトルク測定装置および測定方法
WO2011101978A1 (ja) * 2010-02-19 2011-08-25 三菱電機株式会社 エレベーター装置
JP2012144345A (ja) * 2011-01-13 2012-08-02 Toshiba Elevator Co Ltd エレベータブレーキトルク診断方法
JP2015127261A (ja) * 2013-11-26 2015-07-09 三菱電機株式会社 エレベータの制御装置およびエレベータの制御方法
WO2015118746A1 (ja) * 2014-02-06 2015-08-13 三菱電機株式会社 エレベータ制御装置およびエレベータ制御方法
JP2016183048A (ja) * 2015-03-26 2016-10-20 三菱電機株式会社 エレベータ制御装置、エレベータ監視システム、及びエレベータ制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133096A (ja) 2006-11-28 2008-06-12 Toshiba Elevator Co Ltd エレベータ
CN104671022B (zh) * 2013-11-26 2017-04-12 三菱电机株式会社 电梯的控制装置及电梯的控制方法
CN104495547A (zh) * 2014-12-23 2015-04-08 重庆迈高电梯有限公司 一种电梯曳引机制动器的检测方法
DE102016104408B4 (de) 2015-03-26 2021-04-29 Mitsubishi Electric Corporation Fahrstuhlsteuerung, fahrstuhlüberwachungssystem und fahrstuhl-steuerungsverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168501A (ja) * 2002-11-20 2004-06-17 Mitsubishi Electric Building Techno Service Co Ltd エレベータのブレーキトルク測定装置および測定方法
WO2011101978A1 (ja) * 2010-02-19 2011-08-25 三菱電機株式会社 エレベーター装置
JP2012144345A (ja) * 2011-01-13 2012-08-02 Toshiba Elevator Co Ltd エレベータブレーキトルク診断方法
JP2015127261A (ja) * 2013-11-26 2015-07-09 三菱電機株式会社 エレベータの制御装置およびエレベータの制御方法
WO2015118746A1 (ja) * 2014-02-06 2015-08-13 三菱電機株式会社 エレベータ制御装置およびエレベータ制御方法
JP2016183048A (ja) * 2015-03-26 2016-10-20 三菱電機株式会社 エレベータ制御装置、エレベータ監視システム、及びエレベータ制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790103A (zh) * 2019-11-11 2020-02-14 昆山科瞬电磁技术有限公司 一种测试装置以及测试方法
WO2021149172A1 (ja) * 2020-01-22 2021-07-29 株式会社日立製作所 エレベータ用ブレーキ制御装置、並びにエレベータ装置
JP7406733B1 (ja) * 2022-08-23 2023-12-28 フジテック株式会社 マンコンベヤ

Also Published As

Publication number Publication date
KR102209174B1 (ko) 2021-01-28
DE112017007670T5 (de) 2020-03-05
KR20190032608A (ko) 2019-03-27
JP6573729B2 (ja) 2019-09-11
CN110740958B (zh) 2021-11-16
CN110740958A (zh) 2020-01-31
DE112017007670B4 (de) 2021-10-28
JPWO2018235183A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6029777B2 (ja) エレベータ制御装置、エレベータシステム、およびエレベータ制御方法
EP2537790A1 (en) Elevator device
JPWO2008012896A1 (ja) エレベータ装置
US20100154527A1 (en) Elevator Brake Condition Testing
EP2918536B1 (en) Condition monitoring of vertical transport equipment
JP2002068626A (ja) エレベータの診断方法
JP6573729B2 (ja) エレベータ制御装置及びエレベータ制御方法
JP6537458B2 (ja) エレベータ制御装置、エレベータ監視システム、及びエレベータ制御方法
JP2012144345A (ja) エレベータブレーキトルク診断方法
JP6218706B2 (ja) エレベータの制御装置およびエレベータの制御方法
JP5383375B2 (ja) エレベータ装置
EP3224176A1 (en) System and method for monitoring elevator brake capability
JP2011143982A (ja) エレベータの制動制御装置及び制動制御方法
JP5098376B2 (ja) エレベーターの制御装置
JP2014201412A (ja) エレベーターの自動診断装置
JP7185858B2 (ja) エレベータ用ロープテスタ装置及びエレベータシステム
JP2003182945A (ja) エレベータの制動力測定装置および測定方法
JPH0930750A (ja) エレベーターのブレーキ特性評価装置
CN112678637A (zh) 用于监视电梯的制动拖曳的方法
JP7188590B2 (ja) エレベーター装置
JPWO2019215844A1 (ja) エレベーター装置および非常止め装置の試験方法
JP2014118299A (ja) エレベータ装置
WO2018235216A1 (ja) 電磁ブレーキ試験方法、および、エレベータ装置
JP3061502B2 (ja) エレベータの制動力点検装置
CN117466197A (zh) 曳引机用制动装置的状态推定装置、状态推定系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547490

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007382

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17914564

Country of ref document: EP

Kind code of ref document: A1