WO2015118746A1 - エレベータ制御装置およびエレベータ制御方法 - Google Patents

エレベータ制御装置およびエレベータ制御方法 Download PDF

Info

Publication number
WO2015118746A1
WO2015118746A1 PCT/JP2014/080160 JP2014080160W WO2015118746A1 WO 2015118746 A1 WO2015118746 A1 WO 2015118746A1 JP 2014080160 W JP2014080160 W JP 2014080160W WO 2015118746 A1 WO2015118746 A1 WO 2015118746A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
braking
coil
force
brake device
Prior art date
Application number
PCT/JP2014/080160
Other languages
English (en)
French (fr)
Inventor
然一 伊藤
酒井 雅也
賢司 下畑
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112014005147.0T priority Critical patent/DE112014005147B4/de
Priority to CN201480058981.3A priority patent/CN105683077B/zh
Priority to JP2015561161A priority patent/JP6029777B2/ja
Publication of WO2015118746A1 publication Critical patent/WO2015118746A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes

Definitions

  • the present invention relates to an elevator control device and an elevator control method for diagnosing the braking force of an elevator hoisting machine brake.
  • a car arranged in a hoistway is suspended in a vine-like manner together with a counterweight on the other end side by a main rope wound around a sheave of the hoisting machine. It is driven up and down by a motor.
  • the brake drum is arranged on the shaft that connects the hoist motor and the sheave.
  • a braking device is provided having a brake coil that presses the movable portion against the brake drum by the urging force of the spring, applies a braking force, attracts the movable portion with an electromagnetic attractive force, and releases the braking.
  • the hoisting machine is provided with an encoder that detects and outputs the rotation speed of the brake drum.
  • An elevator apparatus for determining is known (for example, Patent Document 1).
  • (Procedure 1) In a state where there is a weight imbalance between the car side and the counterweight side, the car is stopped by the braking device.
  • (Procedure 2) The braking current by the braking device is gradually released by controlling the suction current to the brake coil, and the start of the movement of the car is detected via the encoder.
  • (Procedure 3) The attraction force is calculated from the value of the attraction current at the start of the movement of the car, and the braking ability of the braking device is measured using the attraction force and the magnitude of the weight imbalance.
  • the present invention has been made to solve the above-described problems, and provides an elevator control device and an elevator control method capable of measuring the braking force of a brake with high accuracy even when the gap of the brake fluctuates. Objective.
  • An elevator control apparatus includes a car and a counterweight disposed in an elevator hoistway, a hoisting machine that drives the elevator and the lift of the car and the counterweight, and a brake device that brakes the motor of the hoisting machine. And a rotation detector that detects the number of rotations of the motor and a state monitoring unit that detects the braking ability of the brake device, wherein the brake device uses the spring biasing force to generate a spring biasing force.
  • the state monitoring unit is configured to suck the movable unit against the brake and release the braking, and the state monitoring unit controls a current to the brake coil of the brake device, thereby controlling a braking force of the brake device;
  • An unbalance torque detector that detects unbalance torque acting on the motor due to weight imbalance between the car side and the counterweight side as unbalance torque information; Is stopped by the braking force of the brake device, and there is a weight imbalance between the car side and the counterweight side, the brake control unit controls the current to the brake coil to release the braking by the brake device.
  • the time from the start of opening until the rotation detector detects that the motor has started rotating is measured as elapsed time information, and the electromagnetic attraction force of the brake coil is calculated from the correspondence between the elapsed time information and the electromagnetic attraction force.
  • the braking capability of the brake device is determined from the balance of the force of the brake device when the motor starts rotating, which is obtained from the unbalance torque information acquired from the unbalance torque detector and the calculated electromagnetic attraction force of the brake coil.
  • a detecting unit for detecting is provided.
  • the elevator control device brakes a car and a counterweight disposed in the elevator hoistway, a hoisting machine that drives the car and the counterweight to be raised and lowered, and a motor of the hoisting machine.
  • An elevator device including a brake device, a rotation detector that detects the number of rotations of the motor, and a state monitoring unit that detects the braking ability of the brake device, the brake device being movable to the brake drum by a biasing force of a spring It is configured to generate a braking force by pressing the part, and to attract the moving part against the biasing force of the spring and to release the brake against the urging force of the spring by passing an electric current through the brake coil.
  • the brake control unit By controlling the current to the brake coil of the device, the brake control unit that controls the braking force of the brake device and the motor due to the weight imbalance between the car side and the counterweight side
  • An unbalance torque detector that detects the acting unbalance torque as unbalance torque information
  • a gap detector that detects a gap between the movable part and the brake coil in the brake device as gap information
  • a car that is controlled by the brake device.
  • the brake control unit controls the current to the brake coil to release the brake device, and the rotation detector
  • the brake coil current information is acquired from the brake controller when it is detected that the motor has started rotating, and the brake coil electromagnetic attraction force is determined from the correspondence between the current information and gap information of the brake coil and the electromagnetic attraction force.
  • the braking by the brake device is gradually released, and either the current flowing in the brake coil when the motor starts rotating or the elapsed time from the start of opening until the motor starts rotating,
  • FIG. 1 is a configuration diagram illustrating an entire elevator system including an elevator control device according to Embodiment 1 of the present invention. It is a flowchart which shows the flow of a series of operation
  • FIG. 1 is a configuration diagram showing an entire elevator system including an elevator control apparatus according to Embodiment 1 of the present invention.
  • an elevator car 1 is arranged in a hoistway.
  • car 1 is suspended by the rope 4 wound around the sheave 3 with which the hoisting machine 2 was equipped with the counterweight 5 of the other end side like a vine.
  • the car 1 is driven up and down by a motor provided in the hoisting machine 2 and is braked by the brake device 6.
  • the weight of the counterweight 5 is set so as to balance the weight on the car 1 side when the rated load of 50% is loaded in the car 1, for example.
  • the brake device 6 includes a brake drum installed on a shaft that couples the motor of the hoisting machine 2 and the sheave 3, and a brake arranged to face the brake drum (not shown). .
  • the brake has a movable part that generates a braking force by a frictional force when it is pressed against the brake drum by the urging force of the spring, and a brake that sucks the moving part against the urging force by the spring by energizing it with current. And a brake coil for releasing.
  • the hoisting machine 2 is provided with a rotation detector 7 for detecting the rotation speed of the motor.
  • the state monitoring unit 8 includes a brake control unit 9, a motor control unit 10, a gap detector 11, an unbalance torque detector 12, and a detection unit 13.
  • the brake control unit 9 controls the brake device 6.
  • the motor control unit 10 controls the motor of the hoisting machine 2.
  • the gap detector 11 detects a gap between the movable part of the brake device 6 and the brake coil.
  • the unbalance torque detector 12 detects an unbalance torque TA due to a weight difference between the car 1 and the counterweight 5. Furthermore, the detection unit 13 diagnoses the braking capability of the brake mechanism unit based on information from the brake control unit 9, the rotation detector 7, the gap detector 11, and the unbalance torque detector 12.
  • FIG. 2 is a flowchart showing a flow of a series of operations of the elevator control apparatus according to Embodiment 1 of the present invention.
  • the flowchart of FIG. 2 can be activated when the elevator is before traveling and is in a door-closed stop state.
  • the door closed stop state is a door closed state
  • the hoisting machine 2 generates an unbalance torque TA due to a difference in weight between the car 1 side and the weight on the counterweight 5 side. This means that the car 1 is stopped and held in a state where the braking torque TB exceeds the unbalance torque TA.
  • the brake control unit 9 controls the voltage applied to the brake coil of the brake device 6 to gradually increase the current flowing through the brake coil (step S1).
  • the brake device 6 is gradually opened, and the braking torque TB (that is, the braking force of the brake against the brake drum) by the brake device 6 is gradually reduced.
  • the braking torque TB by the brake device 6 decreases, the braking torque TB and the unbalance torque TA become equal at a certain point in time and balance. Further, when the current to the brake coil is increased from this state and the braking torque TB is slightly below the unbalance torque TA, the motor of the hoisting machine 2 starts to rotate.
  • the detection unit 13 of the state monitoring unit 8 detects the timing at which the motor starts rotating by monitoring the output from the rotation detector 7, and when the motor starts to rotate (that is, the braking torque TB and the unbalance).
  • the current value supplied to the brake coil of the brake device 6 is measured and recorded (corresponding to when the torque TA is balanced) (step S2).
  • the motor control unit 10 controls the motor to stop the rotation of the motor, cancels the unbalance torque TA by the motor torque, stops the motor, and holds the car 1 stationary. (Step S3).
  • the detector 13 measures the gap between the movable part and the brake coil when the movable part of the brake device 6 is in contact with the drum from the gap detector 11 (step S4).
  • the gap detector 11 may measure the gap using a displacement sensor, or may estimate the gap using a current waveform of a brake coil or a brake model.
  • the brake control unit 9 increases the current supplied to the brake coil after the rotation of the motor is detected, and attracts and holds the movable unit against the urging force of the spring (step S5).
  • the detection part 13 measures the unbalance torque TA which is acting on the winding machine 2 from the unbalance torque detector 12 (step S6).
  • the unbalance torque detector 12 measures the weight of the car 1 with a scale device and detects the unbalance torque TA from the unbalance of the rope obtained from the stop floor information of the car 1 and the weight of the counterweight.
  • the motor control unit 10 may estimate the unbalance torque TA by estimating the motor torque necessary for holding the motor stationary from the motor current.
  • step S7 the detection unit 13 calculates the friction coefficient ⁇ between the brake drum of the brake device 6 and the movable unit.
  • the calculation of the friction coefficient ⁇ by the detection unit 13 is performed as follows.
  • the braking torque TB by the brake device 6 when the motor starts to rotate is equally balanced with the unbalance torque TA.
  • the braking torque TB when the motor starts to rotate is expressed by the following formula (1) using the urging force FB of the brake by the spring, the electromagnetic attraction force FC of the brake coil, and the rotation radius r of the brake drum.
  • the electromagnetic attraction force FC when the motor starts rotating is calculated from the function FC (x, i) using the gap x between the movable part and the brake drum and the coil current i at the start of rotation.
  • the gap of the brake device 6 is set very small in order to reduce the size of the device. Since the electromagnetic attractive force increases in inverse proportion to the square of the gap, the value varies greatly depending on the gap. Therefore, the electromagnetic attractive force needs to be calculated in consideration of the gap.
  • p is a known value of the attractive force coefficient
  • Xm is a known value determined from the leakage magnetic flux of the coil.
  • the biasing force FB of the brake by the spring is less affected by the gap x. Therefore, the set value of the urging force FB stored in advance may be used, or may be calculated from the function FB (x) indicating the relationship between the gap x and the urging force FB using the measured gap x. .
  • the function FB (x) for calculating the urging force for example, the following expression (3) is used.
  • k is a known value of the spring constant of the spring
  • Fh is a known value determined from the natural length of the spring.
  • step S5 when the movable portion of the brake device 6 starts suction, the movable portion starts suction because the electromagnetic attractive force FC and the biasing force FB are balanced.
  • the urging force FB may be calculated from the function FC (x, i) for recording the current i of the brake coil and calculating the electromagnetic attractive force.
  • the friction coefficient ⁇ is obtained from the following equation (4) using the current i of the brake coil when the motor starts rotating and the gap x between the movable part of the brake device 6 and the brake coil.
  • TA / ⁇ (FB (x) ⁇ FC (x, i)) r ⁇ (4)
  • step S7 After calculating the friction coefficient ⁇ in step S7, the process proceeds to step S8.
  • the detection unit 13 of the state monitoring unit 8 confirms the braking capability of the brake device 6 based on the current value x of the brake coil and the friction coefficient ⁇ obtained from the gap i.
  • the detection unit 13 stores in advance a reference range of the friction coefficient ⁇ necessary for the brake device 6 to hold the car 1, and determines whether or not the calculated friction coefficient ⁇ is within the reference range. judge.
  • the detection unit 13 determines that the braking capability of the brake device 6 is normal (step S9), and shifts to car traveling (step S10).
  • the detection unit 13 determines that the braking capability of the brake device 6 is abnormal (step S11), stops the operation of the elevator (step S12), The fact that the braking ability of the brake device 6 is abnormal is reported toward a predetermined location such as a maintenance company.
  • step S3 by maintaining the rotation of the motor by the motor control (step S3), it is possible to suppress the impact on the car 1 when the motor starts to slide and to prevent the operation of the car 1. For this reason, the braking capability of the brake device 6 can be confirmed even when there are passengers in the car 1 during normal operation of the elevator. That is, since monitoring within the normal service is possible, there is no need to stop the service for diagnosis.
  • the present invention can detect the braking capability of the brake device 6 in the normal service, the operation is not limited to the normal service, but the service is stopped by switching to a mode such as a braking capability confirmation mode. May be carried out.
  • the electromagnetic attractive force FC (x, i) is calculated in consideration of the gap x between the movable part of the brake device 6 obtained from the gap detector 11 and the brake coil, thereby obtaining the electromagnetic attractive force FC with high accuracy. be able to. For this reason, the braking ability of the brake device 6 can be accurately measured.
  • the measurement accuracy of the braking capacity is poor, it is necessary to give a large margin to the threshold value in order to ensure the soundness of the braking capacity, and it is necessary to stop the service even in an area where it can be used normally. Therefore, it is conceivable that excessive detection will occur.
  • the first embodiment it is possible to accurately measure the braking ability by accurately measuring the braking ability, and it is possible to suppress deterioration in serviceability by suppressing excessive detection.
  • Embodiment 2 FIG.
  • the gap x is measured using a displacement sensor as the gap detector 11, and the function FC (x, The electromagnetic attraction force was calculated from i), the friction coefficient ⁇ was calculated using the obtained electromagnetic attraction force, and the braking ability of the brake device 6 was detected.
  • FC The electromagnetic attraction force was calculated from i
  • the friction coefficient ⁇ was calculated using the obtained electromagnetic attraction force
  • the braking ability of the brake device 6 was detected.
  • a method for detecting the braking ability of the brake will be described by a procedure different from that of the first embodiment.
  • FIG. 3 is a flowchart showing a flow of a series of operations of the elevator control apparatus according to the second embodiment of the present invention.
  • the flowchart of FIG. 3 can be started when the elevator is not traveling and is in the door-closed stop state, similarly to the flowchart of FIG. 2 in the first embodiment.
  • the brake control unit 9 controls the voltage applied to the brake coil of the brake device 6 to gradually increase the current flowing through the brake coil (step S1a).
  • the brake device 6 is gradually opened, and the braking torque TB by the brake device 6 is gradually reduced.
  • the braking torque TB by the brake device 6 decreases, the braking torque TB and the unbalance torque TA become equal at a certain point in time and balance. Further, when the current to the brake coil is increased from this state and the braking torque TB is slightly below the unbalance torque TA, the motor of the hoisting machine 2 starts to rotate.
  • the detection unit 13 of the state monitoring unit 8 detects the timing at which the motor starts rotating by monitoring the output from the rotation detector 7, and when the motor starts to rotate (that is, the braking torque TB and the unbalance).
  • the current value supplied to the brake coil of the brake device 6 is measured and recorded (corresponding to when the torque TA is balanced) (step S2a).
  • the motor control unit 10 controls the motor to stop the rotation of the motor, cancels the unbalance torque TA by the motor torque, stops the motor, and holds the car 1 stationary. (Step S3a).
  • the brake control unit 9 increases the current supplied to the brake coil even after detecting the rotation of the motor, and attracts and holds the movable unit against the urging force of the spring (step S4a).
  • the detection part 13 measures the unbalance torque TA which is acting on the winding machine 2 from the unbalance torque detector 12 (step S5a).
  • step S6a the detection unit 13 of the state monitoring unit 8 measures the gap x between the movable unit of the brake device 6 and the brake coil by the gap detector 11. Further, based on the measurement result, the detection unit 13 obtains a data table that associates the current i of the brake coil corresponding to the gap x with the electromagnetic attractive force FC, and the value of the urging force FB of the brake device 6 with respect to the gap x. select.
  • step S6a the operation in step S6a is performed as follows. First, when the current i is applied to the brake coil for a plurality of gaps x, the relationship of the electromagnetic attractive force FC acting on the movable part and the urging force FB with respect to the gap x are measured in advance. Then, from this measurement result, the relationship between the current i and the electromagnetic attractive force FC and the urging force FB are converted into a data table for each gap x and recorded in the detection unit 13. For example, the variation range of the gap x is divided into three, and a data table is created and recorded for the central gap of each region.
  • the gap detector 11 calculates the resistance R of the brake coil using the following equation (5) from the current i flowing through the brake coil and the applied voltage u of the brake control unit 9 when holding the brake.
  • R u / i (5)
  • the mounting portion of the brake device 6 expands due to heat, so that the gap x between the movable portion of the brake device 6 and the brake coil increases when braking is applied.
  • the mounting portion of the brake device 6 contracts due to heat, and thus the gap x decreases.
  • the gap detector 11 can detect the gap x in consideration of the increase / decrease due to the temperature change by measuring the resistance R of the brake coil.
  • the detection unit 13 includes a data table that associates the current i of the corresponding brake coil and the electromagnetic attractive force FC from the relationship between the gap x and the resistance R based on the resistance R of the brake coil measured by the gap detector 11, and the brake device. A value of 6 biasing force FB is selected.
  • step S7a the detection unit 13 calculates a friction coefficient ⁇ between the brake drum of the brake device 6 and the movable unit.
  • the detection unit 13 calculates the electromagnetic attraction force FC from the current i at which the motor has started to rotate using the data table in which the current i of the brake coil selected in step S6a and the electromagnetic attraction force FC are related, and selects this.
  • step S7a After calculating the friction coefficient ⁇ in step S7a, the process proceeds to step S8a.
  • the detection unit 13 of the state monitoring unit 8 confirms the braking capability of the brake device 6 based on the obtained friction coefficient ⁇ .
  • the detection unit 13 stores in advance a reference range of the friction coefficient ⁇ necessary for the brake device 6 to hold the car 1. Furthermore, the detection unit 13 takes an average of the immediately previous measurement results and the current measurement result, and determines whether or not the average friction coefficient ⁇ is within the reference range. When the average friction coefficient ⁇ is within the reference range, the detection unit 13 determines that the braking capability of the brake device 6 is normal (step S9a), and shifts to car traveling (step S10a).
  • the detection unit 13 determines that the braking capability of the brake device 6 is abnormal (step S11a), stops the operation of the elevator (step S12a), and brakes The fact that the braking capability of the device 6 is abnormal is reported toward a predetermined place such as a maintenance company.
  • the gap detector 11 is used to calculate the resistance R of the brake coil in order to detect the temperature.
  • the present invention is not limited to this.
  • a temperature sensor may be arranged as the gap detector 11 and the temperature itself may be measured.
  • the gap detector 11 includes a scale device that measures the load in the car 1 and may use the load in the car 1 measured by the scale device.
  • the axial load is calculated from the measured load in the car and the weight of the counterweight 5 and the rope 4, and the detector 13 detects the gap x corresponding to the axial load measured by the gap detector 11.
  • a data table associating the brake coil current i with the electromagnetic attractive force FC and the value of the urging force FB of the brake device 6 may be selected.
  • the gap detector 11 may be provided with a displacement sensor and be fistulatable.
  • the gap x is directly measured by the displacement sensor, and the detection unit 13 includes a data table that associates the current i of the brake coil with the electromagnetic attraction force FC with respect to the gap x measured by the gap detector 11, and the brake device.
  • a value of 6 urging forces FB may be selected.
  • Embodiment 3 FIG.
  • the current supplied to the brake coil of the brake device 6 is gradually increased, the current i of the brake coil when the motor starts rotating with the unbalance torque TA, and the gap detector. 11
  • the electromagnetic attraction force was calculated from the function FC (x, i) of the electromagnetic attraction force using the gap x between the movable portion of the brake device 6 detected from 11 and the brake coil.
  • the electromagnetic attraction is calculated from the function FC (t) of the electromagnetic attraction force using the time until the motor starts rotating with the unbalance torque TA.
  • FC the force FC is calculated and the braking ability of the brake device 6 is detected.
  • FIG. 4 is a configuration diagram illustrating the entire elevator system including the elevator control device according to the third embodiment of the present invention.
  • the same configurations as those in FIG. 1 in the first embodiment are denoted by the same reference numerals, Alternatively, “b” is appended after the reference numeral, and detailed description thereof is omitted.
  • the state monitoring unit 8b includes a brake control unit 9, a motor control unit 10, an unbalance torque detector 12, and a detection unit 13.
  • the configuration shown in FIG. 4 in the third embodiment is different from the configuration of FIG. 1 in the first embodiment in that the gap detector 11 is not provided.
  • FIG. 5 is a flowchart showing a flow of a series of operations of the elevator control apparatus according to Embodiment 3 of the present invention.
  • 3 is the same as the flowchart of FIG. 2 in the previous embodiment 1 and the flowchart of FIG. 3 in the previous embodiment 2, and the elevator is before traveling and is in a door-closed stop state. Sometimes it can be started.
  • the brake control unit 9 controls the voltage applied to the brake coil of the brake device 6 so as to gradually increase the current flowing through the brake coil.
  • the detection unit 13 starts measuring the time after the current is supplied to the brake coil (step S1b). As the current of the brake coil increases, the brake device 6 is gradually opened, and the braking torque TB by the brake device 6 gradually decreases.
  • the braking torque TB by the brake device 6 decreases, the braking torque TB and the unbalance torque TA become equal at a certain point in time and balance. Further, when the current i to the brake coil is increased from this state and the braking torque TB is slightly below the unbalance torque TA, the motor of the hoisting machine 2 starts to rotate.
  • the detection unit 13 of the state monitoring unit 8b monitors the output from the rotation detector 7 to detect the timing at which the motor starts rotating, and after the brake control unit 9 starts supplying current to the brake coil, The time tm until the motor starts rotating (that is, the time until the braking torque TB and the unbalance torque TA are balanced) tm is measured and recorded (step S2b).
  • the motor control unit 10 controls the motor to stop the rotation of the motor, cancels the unbalance torque TA by the motor torque, stops the motor, and holds the car 1 stationary. (Step S3b).
  • the brake control unit 9 increases the current supplied to the brake coil even after the rotation of the motor is detected.
  • the electromagnetic attraction force increases as the coil current increases, the electromagnetic attraction force and the biasing force by the spring become equal. From this state, the current of the brake coil increases and the electromagnetic attraction force slightly exceeds the biasing force. Then, the movable part of the brake device 6 is attracted by the brake coil.
  • the detection unit 13 records a time th from when the brake control unit 9 starts supplying current to the brake coil until the electromagnetic attraction force overcomes the biasing force and starts to attract the movable portion.
  • the timing at which the movable part starts suction is detected from the current of the brake coil.
  • a counter electromotive force is generated in the brake coil, so that the current flowing through the brake coil decreases.
  • the detection unit 13 monitors the current of the brake coil and detects the movement of the movable unit from the timing when the current starts to decrease due to the counter electromotive force. After the moving part suction is completed, the suction state is maintained (step S4b).
  • the present invention is not limited to this, and a displacement sensor, a mechanical switch, or the like is attached and the movement start is detected from those outputs. Also good.
  • the detection part 13 measures the unbalance torque TA acting on the hoisting machine 2 from the unbalance torque detector 12 (step S5b).
  • step S6b the detection unit 13 calculates a friction coefficient ⁇ between the brake drum of the brake device 6 and the movable unit.
  • the detecting unit 13 is a relational expression FC (t) between the time t and the electromagnetic attractive force FC with respect to the voltage waveform applied to the brake coil applied by the brake control unit 9, or the time t when the voltage is applied to the brake coil and the movable unit.
  • FC (t) a relational expression between the time t and the electromagnetic attractive force FC with respect to the voltage waveform applied to the brake coil applied by the brake control unit 9, or the time t when the voltage is applied to the brake coil and the movable unit.
  • FC (t) between the time t and the electromagnetic attractive force FC with respect to the voltage waveform applied to the brake coil applied by the brake control unit 9, or the time t when the voltage is applied to the brake coil and the movable unit.
  • the detection unit 13 detects the unbalance torque TA and the braking torque TB from the time tm until the motor recorded in step S2b starts rotating and the time th until the movable unit recorded in step S4b starts to suck.
  • the electromagnetic attractive force FC and the urging force FB when they are matched are calculated.
  • FIG. 6 is a diagram showing the relationship between the response waveforms of the voltage, current, and electromagnetic attraction force FC when a voltage is applied to the brake coil in Embodiment 3 of the present invention.
  • the horizontal axis represents time
  • (a) is the waveform of the voltage applied to the brake coil
  • (b) is the waveform of the current i of the brake coil when the voltage is applied
  • (c) Shows the waveform of the electromagnetic attractive force FC due to the current i of the brake coil.
  • the current i of the brake coil increases according to a time constant determined by the resistance value and inductance value of the brake coil.
  • the increase of the current i at this time varies depending on the time constant.
  • the time constant increases, the rise of the current i is delayed. Conversely, when the time constant is small, the rise of the current i is accelerated.
  • the relationship between the current i and the electromagnetic attractive force FC also changes with the gap x. As the gap x decreases, the electromagnetic attractive force FC with respect to the current i increases. Conversely, as the gap x increases, the electromagnetic with respect to the current i increases. The suction force FC decreases.
  • the influence of the rising speed of the current i on the gap x and the magnitude of the electromagnetic attractive force FC act in a direction that cancels the influence of the gap x.
  • the time waveform of the electromagnetic attractive force FC with respect to the applied voltage has a small fluctuation due to the change of the gap x.
  • the influence of the change in the gap x can be suppressed by obtaining the electromagnetic attractive force FC from the time t. For this reason, the electromagnetic attraction force FC can be accurately obtained without using the gap x.
  • step S6b the operation of step S6b is performed as follows.
  • the electromagnetic attractive force FC when the unbalance torque TA and the braking torque TB are balanced is the electromagnetic attractive force FC at the time tm until the motor starts rotating. Therefore, using the relational expression FC (t) between the time t and the electromagnetic attractive force FC, the following expression (7) is obtained.
  • FC FC (tm) (7)
  • the detection unit 13 calculates the friction coefficient ⁇ from the following equation (9) using the measured times tm and th.
  • step S6b After calculating the friction coefficient ⁇ in step S6b, the process proceeds to step S7b. And the detection part 13 of the state monitoring part 8b calculates the normal days until the braking capability of the brake device 6 remove
  • the detection unit 13 stores in advance the reference range of the friction coefficient ⁇ necessary for the brake device 6 to hold the car 1 and the period of periodic inspection by the maintenance company.
  • the results and measurement date and time for the past several times measured by the state monitoring unit 8b are recorded at the time of measurement.
  • the detection unit 13 calculates the rate of change of the friction coefficient ⁇ using, for example, the least square method from the current measurement result and the measurement results of the past several times, and the friction coefficient ⁇ changes at the calculated change rate.
  • the normal number of days which is the number of days until the stored reference range is exceeded, is estimated.
  • step S8b the detection unit 13 compares the normal number of days with the next maintenance inspection date. If the normal number of days is shorter than the next maintenance / inspection date, it means that the braking device 6 has no braking capability until the maintenance / inspection date. In this case, the state monitoring unit 8b issues a report to the elevator maintenance company so that the maintenance is performed within the estimated normal number of days (step S11b).
  • the detection unit 13 determines whether the normal days are within a predetermined value from the next maintenance inspection date. If it is within the predetermined value, it means that the braking capability of the brake device 6 is insufficient immediately after the next maintenance check. Therefore, in this case, the maintenance company is notified to perform the maintenance inspection of the braking capacity on the next maintenance inspection day (step S12b).
  • step S10b when the normal number of days is not within the predetermined value from the next maintenance inspection date, the detection unit 13 determines that the braking capability of the brake device 6 is normal (step S10b).
  • the brake device 6 has sufficient braking capability and can operate normally, so after the diagnosis, the elevator shifts to car traveling (step S13b).
  • the braking device 6 has a sufficient braking capacity and has normal days.
  • the friction coefficient ⁇ obtained in step S6b is not within the reference range, it is determined that the brake device 6 is abnormal, the elevator operation is stopped as it is, and maintenance that the braking capability of the brake device 6 is abnormal is maintained. Report to a predetermined location such as a company.
  • Embodiment 4 the electromagnetic attraction force FC is calculated from the function FC (t) of the electromagnetic attraction force using the time until the motor starts rotating at the unbalance torque TA, and the braking capability of the brake device 6 is increased.
  • FC the electromagnetic attraction force FC is calculated in consideration of temperature fluctuations and the braking capability of the brake device 6 is detected.
  • the number of brake devices 6 included in the elevator control device is one.
  • two brake devices that can perform a braking operation independently of each other in the elevator control device Consider the case where 6 is provided.
  • FIG. 7 is a flowchart showing a flow of a series of operations of the elevator control device according to the fourth embodiment of the present invention.
  • the flowchart of FIG. 7 is the same as the flowchart of FIG. 2 in the previous embodiment 1, the flowchart of FIG. 3 in the previous embodiment 2, and the flowchart of FIG. 5 in the previous embodiment 3. It can be activated when it is in front and is in a door closed stop state.
  • the brake control unit 9 controls the voltage applied to the brake coil of the brake device 6 so as to gradually increase the current flowing through the brake coil.
  • the detection unit 13 starts measuring the time after the current i is supplied to the brake coil (step S1c).
  • the brake control unit 9 supplies the current i to the brake coil while shifting the timing to the two brake devices 6.
  • the brake control unit 9 alternately replaces the brake device 6 that delays the supply of the current i for each diagnosis. By doing so, the brake device 6 whose release is delayed at every diagnosis changes, so that the braking ability of both brake devices 6 can be detected by two diagnoses.
  • the brake device 6 As the brake coil current increases, the brake device 6 is gradually opened, and the braking torque TB by the brake device 6 gradually decreases. As the braking torque TB by the brake device 6 decreases, the braking torque TB and the unbalance torque TA become equal at a certain point in time and balance. Further, when the current i to the brake coil is increased from this state and the braking torque TB is slightly below the unbalance torque TA, the motor of the hoisting machine 2 starts to rotate.
  • the detection unit 13 of the state monitoring unit 8b monitors the output from the rotation detector 7 to detect the timing at which the motor starts rotating, and after the brake control unit 9 starts supplying current to the brake coil, The time tm until the motor starts rotating (that is, the time until the braking torque TB and the unbalance torque TA are balanced) tm is measured and recorded (step S2c).
  • the motor control unit 10 controls the motor to stop the rotation of the motor, cancels the unbalance torque TA by the motor torque, stops the motor, and holds the car 1 stationary. (Step S3c).
  • the brake control unit 9 increases the current supplied to the brake coil even after the rotation of the motor is detected.
  • the electromagnetic attraction force increases as the coil current increases, the electromagnetic attraction force and the biasing force by the spring become equal. From this state, the current of the brake coil increases and the electromagnetic attraction force slightly exceeds the biasing force. Then, the movable part of the brake device 6 is attracted by the brake coil.
  • the detection unit 13 records a time th from when the brake control unit 9 starts supplying current to the brake coil until the electromagnetic attraction force overcomes the biasing force and starts to attract the movable portion.
  • the timing at which the movable part starts suction is detected from the timing at which the current i of the brake coil changes due to the counter electromotive force. After the moving part suction is completed, the suction state is maintained (step S4c).
  • the detection unit 13 After sucking and holding the movable part, the detection unit 13 measures the unbalance torque TA acting on the hoisting machine 2 from the unbalance torque detector 12 (step S5c).
  • step S6c the detection unit 13 of the state monitoring unit 8 measures the temperature of the brake device 6.
  • the operation of step S6c is performed as follows.
  • the detection unit 13 detects the temperature by calculating the resistance R of the brake coil.
  • the resistance R of the brake coil is calculated to detect the temperature.
  • the present invention is not limited to this, and a temperature sensor may be arranged to measure the actual temperature.
  • step S7c the detection unit 13 calculates a braking torque TB when the brake drum is held.
  • the rise of the current i with respect to the applied voltage varies depending on the time constant, which is determined by the inductance value of the brake coil. Therefore, when the resistance of the brake coil changes with the temperature change of the brake device 6, the time constant changes. Then, since the behavior of the current i with respect to the time t changes, the waveform of the electromagnetic attractive force FC with respect to the time t also changes.
  • step S6c the resistance value R of the brake coil that has changed due to the temperature fluctuation measured in step S6c is used, and in step S7c, the electromagnetic attraction force with respect to time t.
  • the relationship of FC is corrected and the electromagnetic attractive force FC is calculated using the function FCt (t, R).
  • FCt (t, R) examples include the following expressions.
  • the rise of the current i with respect to the applied voltage varies depending on the time constant L / R. Therefore, when the resistance R changes, the rising of the current i changes with the reciprocal of the change rate of the resistance R. From the relationship between the current i and the electromagnetic attractive force FC, when the rising of the current i changes, the waveform of the electromagnetic attractive force FC with respect to the time t also changes by the amount of change. Therefore, the electromagnetic attractive force FC is obtained from the following equation (11).
  • the known Ro is a value of the coil resistance at a normal temperature
  • FC (t) is a relational expression of the time t with respect to the applied voltage in the normal temperature environment and the electromagnetic attractive force FC.
  • step S7c the calculation of the braking torque TB when the brake drum is held is performed as follows.
  • the electromagnetic attraction force FC when the unbalance torque TA and the braking torque TB are balanced is obtained by the following equation (12) using the time tm until the motor starts rotating and the coil resistance R.
  • FC FCt (tm, R) (12)
  • the biasing force FB coincides with the electromagnetic suction force FC.
  • the friction coefficient ⁇ is calculated from the following equation (14) using the measured times tm and th and the coil resistance R.
  • the braking torque TB when the brake drum is held is calculated from the following equation (15).
  • step S8c After calculating the braking torque TB when holding the brake drum in step S7c, the process proceeds to step S8c.
  • the detection unit 13 of the state monitoring unit 8b confirms the braking capability of the brake device 6 based on the braking torque TB obtained when the brake drum is held.
  • the detection unit 13 stores in advance a reference range of the braking torque TB necessary for the brake device 6 to hold the car 1, and the braking torque TB when the calculated brake drum is held is It is determined whether it is within the reference range.
  • the detection unit 13 determines that the braking capability of the brake device 6 is normal (step S9c), and the car travels. (Step S10c).
  • the detection unit 13 determines that the braking capability of the brake device 6 is abnormal (step S11c), and the elevator The operation is stopped (step S12c), and the fact that the braking capability of the brake device 6 is abnormal is reported toward a predetermined place such as a maintenance company.
  • the brake drum is held corresponding to the temperature fluctuation by obtaining the braking torque TB when the brake drum is held by correcting the relational expression between the time t and the electromagnetic attractive force FC using the brake coil. It is possible to calculate the braking torque TB when For this reason, even when there is a temperature change, the braking ability of the brake device 6 can be detected accurately.
  • the electromagnetic attraction force FC is calculated using time t, the relational expression FCt (t, R) of the coil resistance R and the electromagnetic attraction force FC.
  • FCt the relational expression FCt (t, R) of the coil resistance R and the electromagnetic attraction force FC.
  • the present invention is not limited to this.
  • a data table recording the relationship between time t and electromagnetic attraction force FC for a plurality of temperatures is stored, a corresponding temperature data table is selected from the detected resistance R, and electromagnetic attraction force using time t and the data table is selected.
  • FC may be calculated.
  • the braking capability of the brake device 6 is detected using the braking torque TB when the brake drum is held.
  • the braking capability of the brake device 6 may be detected using the obtained friction coefficient ⁇ .
  • the number of brake devices 6 is not limited to two, and the number of brake devices 6 may be three or more. A similar method can be applied.
  • Embodiment 5 the function of the electromagnetic attraction force is calculated using the time tm until the motor starts rotating by the unbalance torque TA and the time th until the movable part of the brake device 6 starts the suction operation.
  • FC (t) FC (t)
  • the braking ability of the brake device 6 is detected.
  • the fifth embodiment a case will be described in which the braking capability of the brake device 6 is detected using only the time tm until the motor starts rotating with the unbalance torque TA.
  • FIG. 8 is a flowchart showing a flow of a series of operations of the elevator control apparatus according to the fifth embodiment of the present invention. 8 is the flowchart of FIG. 2 in the previous embodiment 1, the flowchart of FIG. 3 in the previous embodiment 2, the flowchart of FIG. 5 in the previous embodiment 3, and the previous embodiment 4. As in the flowchart of FIG. 7, the elevator can be started when the elevator is not traveling and is in a door-closed stop state.
  • the brake control 9 controls the voltage applied to the brake coil of the brake device 6 so as to increase the current flowing through the brake coil in the state of shifting from the door-closed stop state to the car running, and the detection unit. No. 13 starts measuring the time after the current i is supplied to the brake coil (step S1d).
  • the brake device 6 As the brake coil current increases, the brake device 6 is gradually opened, and the braking torque TB by the brake device 6 gradually decreases. When the braking torque TB by the brake device 6 decreases, at a certain point, the braking torque TB and the unbalance torque TA become equal and balance. Further, when the current i to the brake coil is increased from this state and the braking torque TB is slightly below the unbalance torque TA, the motor of the hoisting machine 2 starts to rotate.
  • the detection unit 13 of the state monitoring unit 8b monitors the output from the rotation detector 7 to detect the timing at which the motor starts rotating, and after the brake control unit 9 starts supplying current to the brake coil, A time tm until the motor starts rotating (that is, a time until the braking torque TB and the unbalance torque TA are balanced) tm is measured and recorded (step S2d).
  • the motor control unit 10 controls the motor to stop the rotation of the motor, cancels the unbalance torque TA by the motor torque, stops the motor, and holds the car 1 stationary. (Step S3d).
  • the brake control unit 9 increases the current supplied to the brake coil even after the rotation of the motor is detected.
  • the electromagnetic attraction force increases as the coil current increases, the electromagnetic attraction force becomes larger than the biasing force of the spring, and the movable part of the brake device 6 is attracted by the brake coil. After completion of suction of the movable part, the suction state is maintained. Then, after sucking and holding the movable part, the detection unit 13 measures the unbalance torque TA acting on the hoisting machine 2 by the unbalance detector 12 (step S4d).
  • the detection part 13 calculates the friction coefficient (mu) between the brake drum and the movable part of the brake device 6 (step S5d).
  • the detection unit 13 records a relational expression FC (t) between the time t with respect to the voltage waveform applied to the brake coil applied by the brake control unit 9 and the electromagnetic attractive force FC. And the detection part 13 calculates the electromagnetic attraction force FC when the unbalance torque TA and the braking torque TB are balanced from the time tm until the motor recorded in step S2d starts rotating. That is, the electromagnetic attractive force FC is obtained by the following equation (16) using the relational expression FC (t) between the time t and the electromagnetic attractive force FC.
  • FC FC (tm) (16)
  • the detection unit 13 stores the set value of the urging force FB in advance with respect to the urging force FB by the spring, and calculates the friction coefficient ⁇ from the following equation (17) using the measured time tm.
  • step S5d After calculating the friction coefficient ⁇ in step S5d, the process proceeds to step S6d. And the detection part 13 confirms the braking capability of the brake device 6 based on the calculated
  • the detecting unit 13 stores in advance a reference range of the friction coefficient ⁇ necessary for the brake device 6 to hold the car 1 and determines whether or not the calculated friction coefficient ⁇ is within the reference range. When the calculated friction coefficient ⁇ is within the reference range, the detection unit 13 determines that the braking capability of the brake device 6 is normal (step S7d), and shifts to car traveling (step S8d).
  • the detection unit 13 determines that the braking capability of the brake device 6 is abnormal (step S9d), stops the operation of the elevator (step S10d), The fact that the braking ability of the brake device 6 is abnormal is reported toward a predetermined location such as a maintenance company.
  • the braking ability of the brake device 6 can be detected only from the time tm until the motor starts rotating with the unbalance torque TA. For this reason, it is not necessary to measure the time th until the movable part of the brake device 6 starts the suction operation, and it is only necessary to measure the time tm until the motor starts rotating. Can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

 エレベータの昇降路内に配置されたかご(1)および釣合おもり(5)の昇降を駆動する巻上機(3)と、巻上機(3)のモータを制動するブレーキ装置(6)と、状態監視部(8)とを備え、状態監視部(8)は、ブレーキコイルへの電流を制御することでブレーキ装置(6)の制動力を制御するブレーキ制御部(9)と、アンバランストルク情報を検出するアンバランストルク検出器(12)と、ブレーキ装置(6)による制動を開放させていき、開放開始からモータが回転を始めるまでの経過時間からブレーキコイルの電磁吸引力を算出し、算出した電磁吸引力とアンバランストルク情報とに基づいてブレーキ装置(6)の制動能力を検出する検出部(13)とを含む。

Description

エレベータ制御装置およびエレベータ制御方法
 本発明は、エレベータ用巻上機ブレーキの制動力を診断するエレベータ制御装置およびエレベータ制御方法に関する。
 一般的なエレベータでは、昇降路内に配置されたかごは、巻上機のシーブに巻き掛けられた主索により、他端側の釣合おもりとともにつるべ式に吊持されており、巻上機モータによって昇降駆動される。
 ブレーキドラムは、巻上機モータとシーブとを結合する軸上に配置されている。そして、ばねの付勢力によって可動部をブレーキドラムに押付け、制動力を作用させ、電磁吸引力で可動部を吸引して制動を解除するブレーキコイルを有する制動装置が設けられている。また、巻上機には、ブレーキドラムの回転数を検出して出力するエンコーダが設けられている。
 このようなエレベータにおいては、かごの停止時は、制動装置によりブレーキドラムを保持し、かごを停止位置に静止保持する。しかしながら、制動装置の制動能力が低下すると、停止時に正常にかごを静止保持することができなくなる可能性がある。そのため、制動装置の制動能力は、適正な値に設定されるとともに、定期的な保守点検を実施し、制動能力が異常になっていないかを確認する必要がある。
 このような課題に対して、かご内の乗客の有無を確認し、かご内に乗客がいないときに制動能力確認モードに切替るとともに、以下のような動作を行うことで、制動能力の異常を判定するエレベータ装置が知られている(例えば特許文献1)。
(手順1)かご側と釣合おもり側との間に重量の不均衡がある状態で、制動装置によりかごを停止させる。
(手順2)ブレーキコイルへの吸引電流を制御して制動装置による制動を徐々に解除し、エンコーダを介してかごの移動開始を検知する。
(手順3)かごの移動開始時点における吸引電流の値から吸引力を算出し、吸引力と重量不均衡の大きさを用いて、制動装置の制動能力を測定する。
WO2011/101978号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1に示されたエレベータ装置においては、計測したかごの移動開始時の電流から吸引力を計算するときに、予め測定しておいた吸引電流と吸引力の関係を用いて、吸引力を求めている。
 しかしながら、実際の吸引力は、ブレーキコイルの電流だけでなく、ブレーキコイルとブレーキシューの間のギャップによっても変動する。そのため、予め測定した吸引電流と吸引力の関係を用いている特許文献1の方法では、ブレーキのギャップが変化すると、吸引力を正確に求めることができない。このため、制動力を精度よく求めることができないという課題がある。
 したがって、安全性を考えると、制動能力を判定する基準値に、制動力の検出誤差を考慮して、大きな裕度をもたせる必要がでてくる。この結果、本来なら十分サービスを継続可能な領域でも、サービスを停止させることになってしまう。
 本発明は、上記のような課題を解決するためになされたものであり、ブレーキのギャップが変動した場合にもブレーキの制動力を高精度に測定できるエレベータ制御装置およびエレベータ制御方法を得ることを目的とする。
 本発明に係るエレベータ制御装置は、エレベータの昇降路内に配置されたかごおよび釣合おもりと、かごおよび釣合おもりの昇降を駆動する巻上機と、巻上機のモータを制動するブレーキ装置と、モータの回転数を検出する回転検出器と、ブレーキ装置の制動能力を検出する状態監視部とを備えたエレベータ制御装置であって、ブレーキ装置は、ばねの付勢力によってばねの付勢力に抗して可動部を吸引し制動を解除するように構成されており、状態監視部は、ブレーキ装置のブレーキコイルへの電流を制御することで、ブレーキ装置の制動力を制御するブレーキ制御部と、かご側と釣合おもり側との間の重量不均衡によってモータに作用するアンバランストルクをアンバランストルク情報として検出するアンバランストルク検出器と、かごがブレーキ装置による制動力で停止されており、かご側と釣合おもり側に重量不均衡がある状態で、ブレーキ制御部によるブレーキコイルへの電流を制御してブレーキ装置による制動を開放させていき、開放開始から回転検出器によりモータが回転を始めたことが検出されるまでの時間を経過時間情報として計測するとともに、経過時間情報と電磁吸引力の対応関係よりブレーキコイルの電磁吸引力を算出し、アンバランストルク検出器から取得したアンバランストルク情報と算出したブレーキコイルの電磁吸引力とから求まる、モータが回転を始めた時のブレーキ装置の力の釣合関係より、ブレーキ装置の制動能力を検出する検出部とを含むものである。
 また、本発明に係るエレベータ制御装置は、エレベータの昇降路内に配置されたかごおよび釣合おもりと、かごおよび釣合おもりの昇降を駆動する巻上機と、巻上機のモータを制動するブレーキ装置と、モータの回転数を検出する回転検出器と、ブレーキ装置の制動能力を検出する状態監視部とを備えたエレベータ装置であって、ブレーキ装置は、ばねの付勢力によってブレーキドラムに可動部を押圧することで制動力を発生させ、ブレーキコイルに電流を流すことによってばねの付勢力に抗して可動部を吸引し制動を解除するように構成されており、状態監視部は、ブレーキ装置のブレーキコイルへの電流を制御することで、ブレーキ装置の制動力を制御するブレーキ制御部と、かご側と釣合おもり側との間の重量不均衡によってモータに作用するアンバランストルクをアンバランストルク情報として検出するアンバランストルク検出器と、ブレーキ装置における可動部とブレーキコイルとの間のギャップをギャップ情報として検出するギャップ検出器と、かごがブレーキ装置による制動力で停止されており、かご側と釣合おもり側に重量不均衡がある状態で、ブレーキ制御部によるブレーキコイルへの電流を制御してブレーキ装置による制動を開放させていき、回転検出器によりモータが回転を始めたことが検出された際のブレーキコイルの電流情報をブレーキ制御部より取得するとともに、ブレーキコイルの電流情報およびギャップ情報と電磁吸引力との対応関係よりブレーキコイルの電磁吸引力を算出し、アンバランストルク検出器から取得したアンバランストルク情報と算出したブレーキコイルの電磁吸引力とから求まる、モータが回転を始めた時のブレーキ装置の力の釣合関係より、ブレーキ装置の制動能力を検出する検出部とを含むものである。
 本発明によれば、ブレーキ装置による制動を徐々に開放させていき、モータが回転を始めた際にブレーキコイルに流れる電流、あるいは開放開始からモータが回転を始めるまでの経過時間のいずれか一方と、アンバランストルクとの関係からブレーキ装置の制動能力を測定する構成を備えることで、ギャップ変動に応じた電磁吸引力を高精度に算出でき、ブレーキのギャップが変動した場合にもブレーキの制動力を高精度に測定できるエレベータ制御装置およびエレベータ制御方法を得ることができる。
本発明の実施の形態1に係るエレベータ制御装置を含むエレベータシステム全体を示す構成図である。 本発明の実施の形態1に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。 本発明の実施の形態2に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。 本発明の実施の形態3に係るエレベータ制御装置を含むエレベータシステム全体を示す構成図である。 本発明の実施の形態3に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。 本発明の実施の形態3におけるブレーキコイルに電圧を印加したときの電圧、電流、および電磁吸引力FCのそれぞれの応答波形の関係を示す図である。 本発明の実施の形態4に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。 本発明の実施の形態5に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。
 以下、本発明のエレベータ制御装置およびエレベータ制御方法の好適な実施の形態につき図面を用いて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係るエレベータ制御装置を含むエレベータシステム全体を示す構成図である。図1において、エレベータのかご1は、昇降路内に配置されている。そして、かご1は、巻上機2に備えられたシーブ3に巻き掛けられたロープ4により、他端側の釣合おもり5とともにつるべ式に吊持されている。さらに、かご1は、巻上機2に備えられたモータによって昇降駆動され、ブレーキ装置6によって制動される。ここで、釣合おもり5の重量は、例えば、かご1内に定格負荷50%が積載されたときのかご1側の重量と釣合うように設定されている。
 ブレーキ装置6は、巻上機2のモータとシーブ3とを結合する軸上に設置されたブレーキドラムと、ブレーキドラムに対向するように配置されたブレーキと、が備えられている(図示省略)。ブレーキは、ばねの付勢力によってブレーキドラムに押付けられたときの摩擦力により制動力を発生させる可動部と、電流を流して付勢することで可動部をばねによる付勢力に逆らって吸引し制動を解除するブレーキコイルと、を備えている。また、巻上機2には、モータの回転数を検出する回転検出器7が設けられている。
 状態監視部8は、ブレーキ制御部9と、モータ制御部10と、ギャップ検出器11と、アンバランストルク検出器12と、検出部13と、を備えて構成されている。ここで、ブレーキ制御部9は、ブレーキ装置6を制御する。モータ制御部10は、巻上機2のモータを制御する。ギャップ検出器11は、ブレーキ装置6の可動部とブレーキコイルとの間のギャップを検出する。
 アンバランストルク検出器12は、かご1と釣合おもり5の重量差によるアンバランストルクTAを検出する。さらに、検出部13は、ブレーキ制御部9、回転検出器7、ギャップ検出器11、およびアンバランストルク検出器12からの情報に基づいて、ブレーキ機構部の制動能力を診断する。
 次に、本実施の形態1におけるエレベータ制御装置の動作について、フローチャートに基づいて説明する。図2は、本発明の実施の形態1に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。この図2のフローチャートは、エレベータが走行前であり、かつ、戸閉停止状態にあるときに起動可能である。
 ここで、戸閉停止状態とは、戸閉状態であるとともに、巻上機2にはかご1側の重量と釣合おもり5側の重量差によるアンバランストルクTAが発生し、ブレーキ装置6による制動トルクTBがアンバランストルクTAを上回る状態でかご1が停止保持されているかご停止状態であることを意味している。
 この戸閉停止状態から、かご走行に移行する状態において、ブレーキ制御部9は、ブレーキ装置6のブレーキコイルへ印加する電圧を制御し、ブレーキコイルに流れる電流を徐々に増加させ(ステップS1)、ブレーキ装置6を徐々に開放していき、ブレーキ装置6による制動トルクTB(すなわち、ブレーキドラムに対するブレーキの制動力)を徐々に小さくしていく。
 ブレーキ装置6による制動トルクTBが低減していくと、ある時点で、制動トルクTBとアンバランストルクTAとが等しくなり、釣合う。さらに、この状態からブレーキコイルへの電流を大きくし、制動トルクTBがアンバランストルクTAをわずかでも下回ると、巻上機2のモータが回転を始める。
 状態監視部8の検出部13は、回転検出器7からの出力を監視することにより、モータが回転を始めるタイミングを検知し、このモータが回転を始めたとき(つまり、制動トルクTBとアンバランストルクTAが釣合ったときに相当)に、ブレーキ装置6のブレーキコイルに供給されている電流値を測定し、これを記録する(ステップS2)。
 モータが回転を始めると同時に、モータ制御部10は、モータの回転を停止させるように、モータを制御し、モータトルクによってアンバランストルクTAを打ち消すことで、モータを停止させ、かご1を静止保持する(ステップS3)。
 また、検出部13は、ギャップ検出器11よりブレーキ装置6の可動部がドラムに接触しているときの可動部とブレーキコイルの間のギャップを計測する(ステップS4)。ここで、ギャップ検出器11は、変位センサを用いてギャップを計測してもよいし、ブレーキコイルの電流波形やブレーキモデルを用いてギャップを推定してもよい。
 ブレーキ制御部9は、モータの回転検出後も、ブレーキコイルへ供給する電流を増加させ、可動部をばねによる付勢力に逆らって吸引し、保持する(ステップS5)。
 そして、検出部13は、アンバランストルク検出器12より、巻上機2に作用しているアンバランストルクTAを計測する(ステップS6)。ここで、アンバランストルク検出器12は、かご1の重量を秤装置で計測し、かご1の停止階情報から求まるロープのアンバランスおよび釣合おもりの重量よりアンバランストルクTAを検出してもよいし、モータ制御部10で、モータを静止保持するために必要なモータトルクをモータ電流から推定することで、アンバランストルクTAを推定してもよい。
 以上のステップを受けて、ステップS7において、検出部13は、ブレーキ装置6のブレーキドラムと可動部との間の摩擦係数μを算出する。この検出部13による摩擦係数μの算出は、次のようにして行われる。
 モータが回転を始めたときのブレーキ装置6による制動トルクTBは、アンバランストルクTAと等しく釣合っている。また、モータが回転を始めたときの制動トルクTBは、ばねによるブレーキの付勢力FB、ブレーキコイルの電磁吸引力FC、およびブレーキドラムの回転半径rを用いて、下式(1)で表される。
  TA=TB=μ(FB-FC)r              (1)
 モータが回転を始めたときの電磁吸引力FCは、可動部とブレーキドラムの間のギャップx、および回転開始時のコイル電流iを用い、関数FC(x、i)より計算される。ブレーキ装置6のギャップは、装置の小型化のために、非常に小さく設定される。電磁吸引力は、ギャップの2乗に反比例して増大していくため、ギャップによって値が大きく変動する。そのため、電磁吸引力は、ギャップを考慮して計算する必要がある。
 電磁吸引力を算出する関数FC(x、i)としては、例えば、下式(2)が用いられる。
  FC=FC(x、i)=p{i/(x+Xm)}2      (2)
 ここで、pは、吸引力係数で既知の値であり、Xmは、コイルの漏れ磁束などから決まる既知の値である。
 ばねによるブレーキの付勢力FBは、電磁吸引力FCとは違い、ギャップxの影響は小さい。そのため、事前に記憶させておいた付勢力FBの設定値を用いてもよいし、計測したギャップxを用いてギャップxと付勢力FBの関係を示す関数FB(x)より計算してもよい。付勢力を算出する関数FB(x)としては、例えば、下式(3)が用いられる。
  FB=FB(x)=-kx+Fh              (3)
 ここで、kは、ばねのばね定数で既知の値であり、Fhは、ばねの自然長などから決まる既知の値である。
 また、その他にも、ステップS5において、ブレーキ装置6の可動部が吸引を開始するときは、電磁吸引力FCと付勢力FBが釣合っているタイミングであることから、可動部が吸引を開始するときのブレーキコイルの電流iを記録し、電磁吸引力を算出する関数FC(x、i)より、付勢力FBを算出してもよい。
 以上より、摩擦係数μは、モータが回転を始めたときのブレーキコイルの電流i、およびブレーキ装置6の可動部とブレーキコイルの間のギャップxを用いて、下式(4)より求める。
  μ=TA/{(FB(x)-FC(x、i))r}      (4)
 ステップS7で摩擦係数μを計算した後は、ステップS8に進む。状態監視部8の検出部13は、ブレーキコイルの電流値x、およびギャップiから求めた摩擦係数μに基づいて、ブレーキ装置6の制動能力を確認する。
 このとき、検出部13は、ブレーキ装置6がかご1を保持するために必要な摩擦係数μの基準範囲を予め記憶しておき、算出した摩擦係数μが、基準範囲内にあるか否かを判定する。そして、算出した摩擦係数μが基準範囲内の場合には、検出部13は、ブレーキ装置6の制動能力が正常であると判断し(ステップS9)、かご走行に移行する(ステップS10)。
 一方、算出した摩擦係数μが基準範囲外の場合には、検出部13は、ブレーキ装置6の制動能力が異常であると判断し(ステップS11)、エレベータの運転を休止させ(ステップS12)、ブレーキ装置6の制動能力が異常であることを、保守会社等の所定の場所に向けて発報する。
 このように、モータ制御によりモータの回転を保持する(ステップS3)ことで、モータ滑り出し時のかご1内への衝撃を抑えるとともに、かご1の動作を防ぐことができる。このため、エレベータの通常運転中、かご1内に乗客がいる状態でも、ブレーキ装置6の制動能力を確認できる。すなわち、通常サービス内での監視が可能となるので、診断のためにサービスを停止させる必要がなくなる。
 また、乗客の有無によらず診断可能なため、診断の頻度を向上させることができる。なお、本発明は、通常サービス内でブレーキ装置6の制動能力を検出することができるが、動作を通常サービス中のみに限定するものではなく、制動能力確認モードといったモードに切替えて、サービスを停止させて実施してもよい。
 また、ギャップ検出器11から得られるブレーキ装置6の可動部とブレーキコイルの間のギャップxを考慮して電磁吸引力FC(x、i)を計算することで、電磁吸引力FCを精度よく求めることができる。このため、ブレーキ装置6の制動能力を正確に計測することができるようになる。
 制動能力の測定精度が悪い場合には、制動能力の健全性を担保するために、閾値に大きな裕度を持たせる必要があり、実際は正常に使用できる領域でも、サービスを停止させる必要が出てきてしまい、過剰検出になってしまうことが考えられる。これに対して、本実施の形態1では、制動能力を正確に計測することで、制動能力を正確に測定でき、過剰検出を抑制することで、サービス性の低下を抑えることが可能となる。
 実施の形態2.
 先の実施の形態1では、ギャップ検出器11として変位センサを用いてギャップxを計測し、計測したギャップxとモータが回転を開始した電流iを用いて、電磁吸引力の関数FC(x、i)より電磁吸引力を計算し、求めた電磁吸引力を用いて、摩擦係数μを計算し、ブレーキ装置6の制動能力を検出した。これに対して、本実施の形態2では、先の実施の形態1とは異なる手順で、ブレーキの制動能力を検出する方法について説明する。
 図3は、本発明の実施の形態2に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。この図3のフローチャートは、先の実施の形態1における図2のフローチャートと同様に、エレベータが走行前であり、かつ、戸閉停止状態にあるときに起動可能である。
 この戸閉停止状態から、かご走行に移行する状態において、ブレーキ制御部9は、ブレーキ装置6のブレーキコイルへ印加する電圧を制御し、ブレーキコイルに流れる電流を徐々に増加させ(ステップS1a)、ブレーキ装置6を徐々に開放していき、ブレーキ装置6による制動トルクTBを徐々に小さくしていく。
 ブレーキ装置6による制動トルクTBが低減していくと、ある時点で、制動トルクTBとアンバランストルクTAとが等しくなり、釣合う。さらに、この状態からブレーキコイルへの電流を大きくし、制動トルクTBがアンバランストルクTAをわずかでも下回ると、巻上機2のモータが回転を始める。
 状態監視部8の検出部13は、回転検出器7からの出力を監視することにより、モータが回転を始めるタイミングを検知し、このモータが回転を始めたとき(つまり、制動トルクTBとアンバランストルクTAが釣合ったときに相当)に、ブレーキ装置6のブレーキコイルに供給されている電流値を測定し、これを記録する(ステップS2a)。
 モータが回転を始めると同時に、モータ制御部10は、モータの回転を停止させるように、モータを制御し、モータトルクによってアンバランストルクTAを打ち消すことで、モータを停止させ、かご1を静止保持する(ステップS3a)。
 ブレーキ制御部9は、モータの回転検出後も、ブレーキコイルへ供給する電流を増加させ、可動部をばねによる付勢力に逆らって吸引し、保持する(ステップS4a)。
 そして、検出部13は、アンバランストルク検出器12より、巻上機2に作用しているアンバランストルクTAを計測する(ステップS5a)。
 ステップS6aにおいて、状態監視部8の検出部13は、ギャップ検出器11による、ブレーキ装置6の可動部とブレーキコイルの間のギャップxを計測する。さらに、検出部13は、測定結果に基づいて、ギャップxに対応するブレーキコイルの電流iと電磁吸引力FCとを関係付けたデータテーブルと、ギャップxに対するブレーキ装置6の付勢力FBの値を選択する。
 具体的には、このステップS6aの動作は、次のようにして行われる。
 まず、予め、複数のギャップx対してブレーキコイルに電流iを与えたときに、可動部に作用する電磁吸引力FCの関係およびそのギャップxに対する付勢力FBをそれぞれ測定しておく。そして、この測定結果から、電流iと電磁吸引力FCの関係および付勢力FBをそれぞれのギャップxに対しデータテーブル化し、検出部13に記録しておく。例えば、ギャップxの変動範囲を3分割し、それぞれの領域の中心ギャップに対し、データテーブルを作成し、記録しておく。
 そして、ギャップ検出器11は、ブレーキ保持時に、ブレーキコイルに流れている電流iとブレーキ制御部9の印加電圧uより、ブレーキコイルの抵抗Rを、次式(5)を用いて計算する。
  R=u/i                        (5)
 温度が上がると、ブレーキ装置6の取付部が熱で膨張するため、制動付加時におけるブレーキ装置6の可動部とブレーキコイルの間のギャップxは、増大する。逆に、温度が下がると、ブレーキ装置6の取付部が熱で収縮するため、ギャップxは、減少することになる。
 つまり、温度によって、制動付加時の可動部とブレーキコイルの間のギャップxは、変化する。温度が変化すると、ブレーキコイルの抵抗Rも変化するため、ギャップ検出器11は、ブレーキコイルの抵抗Rを計測することで、温度変化による増減を考慮したギャップxを検出することができる。
 検出部13は、ギャップ検出器11で計測されたブレーキコイルの抵抗Rより、ギャップxと抵抗Rの関係から対応するブレーキコイルの電流iと電磁吸引力FCを関係付けたデータテーブルと、ブレーキ装置6の付勢力FBの値を選択する。
 その後、ステップS7aにおいて、検出部13は、ブレーキ装置6のブレーキドラムと可動部との間の摩擦係数μを算出する。
 検出部13は、ステップS6aで選択したブレーキコイルの電流iと電磁吸引力FCを関係付けたデータテーブルを用いてモータが回転を開始した電流iより電磁吸引力FCを算出し、これと選択した付勢力FBの値を用いて、下式(6)より、摩擦係数μを算出する。
  μ=TA/{(FB-FC)r}              (6)
 ステップS7aで摩擦係数μを計算した後は、ステップS8aに進む。状態監視部8の検出部13は、求めた摩擦係数μに基づいて、ブレーキ装置6の制動能力を確認する。
 このとき、検出部13は、ブレーキ装置6がかご1を保持するために必要な摩擦係数μの基準範囲を予め記憶しておく。さらに、検出部13は、直前の複数回の測定結果と今回の測定結果の平均をとり、平均摩擦係数μが基準範囲内にあるか否かを判定する。そして、平均摩擦係数μが基準範囲内の場合には、検出部13は、ブレーキ装置6の制動能力が正常であると判断し(ステップS9a)、かご走行に移行する(ステップS10a)。
 一方、平均摩擦係数μが基準範囲外の場合には、検出部13は、ブレーキ装置6の制動能力が異常であると判断し(ステップS11a)、エレベータの運転を休止させ(ステップS12a)、ブレーキ装置6の制動能力が異常であることを保守会社等の所定の場所に向けて発報する。
 本実施の形態2では、ギャップ検出器11を用いて、温度を検出するために、ブレーキコイルの抵抗Rを算出したが、これに限定されない。ギャップ検出器11として、温度センサを配置し、温度そのものを計測してもよい。
 また、その他にも、本実施の形態2では、温度とギャップxの関係に注目したが、ギャップxは、エレベータの軸荷重でも変化する。そのため、ギャップ検出器11は、かご1内の負荷を計測する秤装置を備え、秤装置によって計測されたかご1内の負荷を利用することも考えられる。
 この場合には、計測されたかご内の負荷、および釣合おもり5とロープ4の重量から、軸荷重を算出し、検出部13は、ギャップ検出器11で計測した軸荷重に応じたギャップxに対するブレーキコイルの電流iと電磁吸引力FCを関係付けたデータテーブルと、ブレーキ装置6の付勢力FBの値を選択してもよい。
 さらに、本実施の形態2では、温度とギャップxの関係を使用したが、ギャップ検出器11は、変位センサを備え瘻孔性としてもよい。この場合には、変位センサによりそのままギャップxを計測し、検出部13は、ギャップ検出器11で計測したギャップxに対するブレーキコイルの電流iと電磁吸引力FCを関係付けたデータテーブルと、ブレーキ装置6の付勢力FBの値を選択してもよい。
 このように、ギャップxに対するブレーキコイルの電流iと電磁吸引力FCを関係付けたデータテーブルや、ギャップxと対応する付勢力FBの値を記録しておくことで、非線形で複雑な計算式を用いることなく、ギャップxの変動に対応することができる。そのため、ブレーキ装置6の制動能力を、簡単にかつ精度よく検出することができるようになる。
 実施の形態3.
 先の実施の形態1、2では、ブレーキ装置6のブレーキコイルへ供給する電流を徐々に増加させていき、モータがアンバランストルクTAで回転を始めるときのブレーキコイルの電流i、およびギャップ検出器11から検出されるブレーキ装置6の可動部とブレーキコイルとの間のギャップxを用いて、電磁吸引力の関数FC(x、i)より電磁吸引力を計算した。
 これに対して、本実施の形態3では、ギャップ検出器11を用いずに、モータがアンバランストルクTAで回転を始めるまでの時間を用いて、電磁吸引力の関数FC(t)より電磁吸引力FCを計算し、ブレーキ装置6の制動能力を検出する場合について説明する。
 図4は、本発明の実施の形態3に係るエレベータ制御装置を含むエレベータシステム全体を示す構成図であり、先の実施の形態1における図1と同様の構成については、同一符号を付すか、あるいは符号の後に「b」を付しており、詳述を省略する。
 状態監視部8bは、ブレーキ制御部9と、モータ制御部10と、アンバランストルク検出器12と、検出部13と、を備えて構成されている。本実施の形態3における図4に示した構成は、先の実施の形態1における図1の構成と比較すると、ギャップ検出器11を備えていない点が異なっている。
 次に、本実施の形態3におけるエレベータ制御装置の動作について、フローチャートのい基づいて説明する。図5は、本発明の実施の形態3に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。この図3のフローチャートは、先の実施の形態1における図2のフローチャート、および先の実施の形態2における図3のフローチャートと同様に、エレベータが走行前であり、かつ、戸閉停止状態にあるときに起動可能である。
 この戸閉停止状態から、かご走行に移行する状態において、ブレーキ制御部9は、ブレーキ装置6のブレーキコイルへ印加する電圧を制御し、ブレーキコイルに流れる電流を徐々に増加させるように制御するとともに、検出部13は、ブレーキコイルに電流が供給されてからの時間の計測を開始する(ステップS1b)。ブレーキコイルの電流が増加することで、ブレーキ装置6は、徐々に開放され、ブレーキ装置6による制動トルクTBは、徐々に減少していく。
 ブレーキ装置6による制動トルクTBが低減していくと、ある時点で、制動トルクTBとアンバランストルクTAとが等しくなり、釣合う。さらに、この状態からブレーキコイルへの電流iを大きくし、制動トルクTBがアンバランストルクTAをわずかでも下回ると、巻上機2のモータが回転を始める。
 状態監視部8bの検出部13は、回転検出器7からの出力を監視することにより、モータが回転を始めるタイミングを検知し、ブレーキ制御部9がブレーキコイルへの電流供給を開始してから、モータが回転を始めたときまでの時間(つまり、制動トルクTBとアンバランストルクTAとが釣合うまでの時間)tmを測定し、これを記録する(ステップS2b)。
 モータが回転を始めると同時に、モータ制御部10は、モータの回転を停止させるように、モータを制御し、モータトルクによってアンバランストルクTAを打ち消すことで、モータを停止させ、かご1を静止保持する(ステップS3b)。
 ブレーキ制御部9は、モータの回転検出後も、ブレーキコイルへ供給する電流を増加させていく。コイル電流が増加することで電磁吸引力が増大していくと、電磁吸引力とばねによる付勢力が等しくなり、この状態からブレーキコイルの電流が増加し、電磁吸引力が付勢力をわずかでも超えると、ブレーキ装置6の可動部は、ブレーキコイルに吸引される。
 検出部13は、ブレーキ制御部9がブレーキコイルへの電流供給を開始してから、この電磁吸引力が付勢力に打ち勝って可動部を吸引し始めるまでの時間thを記録する。なお、可動部が吸引を開始するタイミングは、ブレーキコイルの電流から検出する。可動部が移動を開始すると、ブレーキコイルに逆起電力が発生するため、ブレーキコイルに流れる電流は、減少することになる。
 そこで、検出部13は、ブレーキコイルの電流を監視し、電流が逆起電力によって低下を開始したタイミングから可動部の移動を検出する。可動部吸引完了後は、吸引状態を保持しておく(ステップS4b)。
 なお、ここでは、可動部の吸引開始のタイミングをコイル電流から検出する方法を示したが、これに限定されず、変位センサや機械的なスイッチなどを取付け、それらの出力から動き出しを検出してもよい。
 可動部を吸引保持した後、検出部13は、アンバランストルク検出器12より、巻上機2に作用しているアンバランストルクTAを計測する(ステップS5b)。
 そして、ステップS6bにおいて、検出部13は、ブレーキ装置6のブレーキドラムと可動部との間の摩擦係数μを算出する。
 検出部13は、ブレーキ制御部9が印加するブレーキコイルへの電圧波形に対する時間tと電磁吸引力FCの関係式FC(t)、または、ブレーキコイルに電圧を印加したときの時間tと可動部に作用する電磁吸引力FCの関係を測定しデータテーブル化したものを記録しておく。
 そして、検出部13は、ステップS2b記録したモータが回転を開始するまでの時間tmと、ステップS4bで記録した可動部が吸引し始めるまでの時間thより、アンバランストルクTAと制動トルクTBが釣合っているときの電磁吸引力FCと付勢力FBを算出する。
 図6は、本発明の実施の形態3におけるブレーキコイルに電圧を印加したときの電圧、電流、および電磁吸引力FCのそれぞれの応答波形の関係を示す図である。また、図6では、可動部とブレーキコイルの間のギャップxが、x=xaとx=xb(xa<xb)のときの2つの波形を示している。
 図6において、横軸は、時間を示し、(a)は、ブレーキコイルに印加される電圧の波形、(b)は、電圧が印加されたときのブレーキコイルの電流iの波形、(c)は、ブレーキコイルの電流iによる電磁吸引力FCの波形、をそれぞれ示している。
 ブレーキコイルに電圧が印加されると、ブレーキコイルの抵抗値およびインダクタンス値によって定まる時定数に応じて、ブレーキコイルの電流iが増加する。このときの電流iの増加は、時定数によって変化し、時定数が大きくなると、電流iの立ち上がりは遅くなり、逆に、時定数が小さいと、電流iの立ち上がりは早くなる。
 ブレーキ装置6のギャップxが変化すると、インダクタンスが変化するため、時定数が変動する。ギャップxが小さくなるにつれて、ブレーキコイルのインダクタンスは、増加していくため、ギャップxが小さくなることで、時定数は大きくなっていく。そのため、図6に示すように、印加した電圧に対する電流iの立ち上がりは、ギャップxが小さくなると(x=xaのとき)遅くなる。
 また、電流iと電磁吸引力FCの関係もギャップxで変化し、ギャップxが小さくなるにつれて、電流iに対する電磁吸引力FCは大きくなり、逆に、ギャップxが大きくなるにつれて、電流iに対する電磁吸引力FCは減少する。
 そのため、ギャップxが小さいとき(x=xa)は、電流iの立ち上がりが早いため、時間tに対する電流値iは高くなるが、ギャップxが大きい分、電磁吸引力FCは低下する。逆に、ギャップxが大きいとき(x=xb)は、電流iの立ち上がりが遅いため、時間tに対する電流値iは低くなるが、ギャップxが小さい分、電磁吸引力FCは増加する。
 よって、時間tと電磁吸引力FCの関係でみると、ギャップxに対する電流iの立ち上がり速度と電磁吸引力FCの大きさの影響は、ギャップxの影響を互いに打ち消す方向に作用するため、図6に示すように、印加した電圧に対する、電磁吸引力FCの時間波形は、ギャップxの変化による変動が小さい。
 以上のことから、電磁吸引力FCを時間tから求めることで、ギャップxの変化の影響を抑えることができる。このため、ギャップxを用いずとも、電磁吸引力FCを精度よく求めることができるようになる。
 次に、図5のフローチャートの説明に戻り、ステップS6bの動作は、次のようにして行われる。まず、アンバランストルクTAと制動トルクTBとが釣合ったときの電磁吸引力FCは、モータが回転を開始するまでの時間tmでの電磁吸引力FCである。したがって、時間tと電磁吸引力FCの関係式FC(t)を用いて、下式(7)により求まる。
  FC=FC(tm)                    (7)
 次に、付勢力FBに関しては、ブレーキ装置6の可動部が吸引を開始するときは、電磁吸引力FCと付勢力FBが釣合っているタイミングであることから、可動部が吸引動作を開始するまでの時間thでの電磁吸引力FCより、下式(8)により求まる。
  FB=FC(th)                    (8)
 よって、検出部13は、計測した時間tmとthを用いて、下式(9)より、摩擦係数μを算出する。
  μ=TA/{(FB-FC)r}
   =TA/{(FC(th)-FC(tm))r}      (9)
 ステップS6bで摩擦係数μを計算した後は、ステップS7bに進む。そして、状態監視部8bの検出部13は、求めた摩擦係数μに基づいて、ブレーキ装置6の制動能力が、基準範囲をはずれるまでの正常日数を計算する。
 このとき、検出部13は、ブレーキ装置6がかご1を保持するために必要な摩擦係数μの基準範囲、および保守会社による定期点検の時期を予め記憶しておく。また、状態監視部8bで計測した過去数回分の結果と計測日時を、計測時に記録しておく。
 そして、検出部13は、今回の計測結果と、過去数回分の計測結果より、例えば、最小二乗法などを用いて摩擦係数μの変化率を算出し、算出した変化率で摩擦係数μが変化したときに、記憶した基準範囲を超えるまでの日数である正常日数を推定する。
 次に、ステップS8bにおいて、検出部13は、正常日数と次回の保守の点検日とを比較する。正常日数が次の保守点検日よりも短い場合には、保守点検日までブレーキ装置6の制動能力がもたないことを意味する。この場合には、状態監視ぶ8bは、エレベータの保守会社に、推定した正常日数以内に保守を実施するように発報する(ステップS11b)。
 一方、正常日数が次回の保守の点検日より長い場合には、検出部13は、正常日数が次回の保守の点検日より所定値内か否かを判定する。所定値内の場合には、次回の保守点検後、すぐにブレーキ装置6の制動能力が不足することを意味する。そこで、この場合には、次回の保守点検日に、制動能力の保守点検を実施するように、保守会社に発報する(ステップS12b)。
 また、先のステップS9bにおいて、正常日数が次回の保守の点検日から所定値内でない場合には、検出部13は、ブレーキ装置6の制動能力は、正常であると判断する(ステップS10b)。
 そして、正常日数の範囲内ならば、ブレーキ装置6が十分な制動能力を有していることとなり、正常動作が可能なため、診断後、エレベータは、かご走行に移行する(ステップS13b)。
 ここでは、ブレーキ装置6の制動能力に余裕があり、正常日数がある場合を考えている。ただし、ステップS6bで求めた摩擦係数μが基準範囲内にない場合には、ブレーキ装置6の異常と判断し、そのままエレベータの運転を休止させ、ブレーキ装置6の制動能力が異常であることを保守会社等の所定の場所へと発報する。
 このように、時間tを用いて電磁吸引力FCと付勢力FBを算出することで、ブレーキ装置6の可動部とブレーキコイルの間のギャップxの影響を抑え、精度よく電磁吸引力FCを算出できるようになる。このため、ギャップ検出器を用いることなく、ブレーキ装置6の制動能力を検出できることとなる。
 また、ブレーキ装置6の制動能力が正常な期間を予測することで、異常状態に陥る前に保守を実施できるとともに、保守を実施するタイミングを調整できる。このため、エレベータのサービスを継続しながら、サービス停止中や利用者の少ないタイミングで保守を行うことが可能となる。よって、サービス性を保ちながら、適切なタイミングで保守点検を実施することが可能となる。
 実施の形態4.
 先の実施の形態3では、モータがアンバランストルクTAで回転を始めるまでの時間を用いて、電磁吸引力の関数FC(t)より電磁吸引力FCを計算し、ブレーキ装置6の制動能力を検出する場合について説明した。これに対して、本実施の形態4では、温度変動も考慮して電磁吸引力FCを計算し、ブレーキ装置6の制動能力を検出する場合について説明する。
 なお、先の実施の形態1では、エレベータ制御装置の備えるブレーキ装置6が、1つであったが、本実施の形態4では、エレベータ制御装置に互いに独立して制動動作可能な2つのブレーキ装置6が備えられている場合を考えることとする。
 図7は、本発明の実施の形態4に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。この図7のフローチャートは、先の実施の形態1における図2のフローチャート、先の実施の形態2における図3のフローチャート、および先の実施の形態3における図5のフローチャートと同様に、エレベータが走行前であり、かつ、戸閉停止状態にあるときに起動可能である。
 この戸閉停止状態から、かご走行に移行する状態において、ブレーキ制御部9は、ブレーキ装置6のブレーキコイルへ印加する電圧を制御し、ブレーキコイルに流れる電流を徐々に増加させるように制御するとともに、検出部13は、ブレーキコイルに電流iが供給されてからの時間の計測を開始する(ステップS1c)。
 このとき、2つのブレーキ装置6に同時に電圧を印加すると、ブレーキ装置6の個体差から、どちらか一方のブレーキコイルの電流iの増加が遅れるため、電流iの増加が遅い方のブレーキ装置6の制動能力ばかりを測定することになってしまう。そこで、ブレーキ制御部9は、2つのブレーキ装置6へタイミングをずらして、ブレーキコイルに電流iを供給する。
 このとき、ブレーキ制御部9は、電流iの供給を遅らせる方のブレーキ装置6を、診断のたびに交互に交代させる。こうすることにより、診断のたびに開放が遅れるブレーキ装置6が変化するため、2回の診断で、両方のブレーキ装置6の制動能力を検出できるようになる。
 ブレーキコイルの電流が増加することで、ブレーキ装置6は、徐々に開放され、ブレーキ装置6による制動トルクTBは、徐々に減少していく。ブレーキ装置6による制動トルクTBが低減していくと、ある時点で、制動トルクTBとアンバランストルクTAとが等しくなり、釣合う。さらに、この状態からブレーキコイルへの電流iを大きくし、制動トルクTBがアンバランストルクTAをわずかでも下回ると、巻上機2のモータが回転を始める。
 状態監視部8bの検出部13は、回転検出器7からの出力を監視することにより、モータが回転を始めるタイミングを検知し、ブレーキ制御部9がブレーキコイルへの電流供給を開始してから、モータが回転を始めたときまでの時間(つまり、制動トルクTBとアンバランストルクTAとが釣合までの時間)tmを測定し、これを記録する(ステップS2c)。
 モータが回転を始めると同時に、モータ制御部10は、モータの回転を停止させるように、モータを制御し、モータトルクによってアンバランストルクTAを打ち消すことで、モータを停止させ、かご1を静止保持する(ステップS3c)。
 ブレーキ制御部9は、モータの回転検出後も、ブレーキコイルへ供給する電流を増加させていく。コイル電流が増加することで電磁吸引力が増大していくと、電磁吸引力とばねによる付勢力が等しくなり、この状態からブレーキコイルの電流が増加し、電磁吸引力が付勢力をわずかでも超えると、ブレーキ装置6の可動部は、ブレーキコイルに吸引される。
 検出部13は、ブレーキ制御部9がブレーキコイルへの電流供給を開始してから、この電磁吸引力が付勢力に打ち勝って可動部を吸引し始めるまでの時間thを記録する。なお、可動部が吸引を開始するタイミングは、ブレーキコイルの電流iが逆起電力によって変化するタイミングから検出する。可動部吸引完了後は、吸引状態を保持しておく(ステップS4c)。
 可動部を吸引保持した後、検出部13は、アンバランストルク検出器12より、巻上機2に作用しているアンバランストルクTAを計測する(ステップS5c)。
 そして、ステップS6cにおいて、状態監視部8の検出部13は、ブレーキ装置6の温度を計測する。ここで、ステップS6cの動作は、次のように行われる。
 ブレーキ装置6の温度が変化すると、ブレーキコイルの抵抗Rが変化する。このことから、検出部13は、ブレーキコイルの抵抗Rを算出することで、温度の検出を行う。ブレーキコイルの抵抗Rは、ブレーキ保持時にブレーキコイルに流れる電流iと、そのときのブレーキ制御部9の印加電圧uより、次式(10)を用いて計算をおこなう。
  R=u/i                       (10)
 なお、ここでは、温度を検出するためにブレーキコイルの抵抗Rを算出したが、これに限定されず、温度センサを配置し、実際の温度を計測してもよい。
 次に、ステップS7cにおいて、検出部13は、ブレーキドラムを保持している時の制動トルクTBを算出する。
 印加電圧に対する電流iの立ち上がりは、時定数によって変化するが、時定数は、ブレーキコイルのインダクタンスの値によって決まる。そのため、ブレーキ装置6の温度変化に伴ってブレーキコイルの抵抗が変化すると、時定数が変化する。そうすると、電流iの時間tに対する挙動が変化するため、時間tに対する電磁吸引力FCの波形も変化することになる。
 そこで、温度変動が生じても正確に電磁吸引力FCを算出するために、ステップS6cで計測した温度変動によって変化したブレーキコイルの抵抗値Rを用いて、ステップS7cで、時間tに対する電磁吸引力FCの関係を補正し、関数FCt(t、R)を用いて電磁吸引力FCを算出する。
 関数FCt(t、R)としては、例えば、次のような式が挙げられる。
 印加電圧に対する電流iの立ち上がりは、時定数L/Rによって変化する。よって、抵抗Rが変化すると、抵抗Rの変化割合の逆数で電流iの立ち上がりが変化する。電流iと電磁吸引力FCの関係より、電流iの立ち上がりが変化すると、変化分だけ電磁吸引力FCの時間tに対する波形も変化する。よって、電磁吸引力FCは、次式(11)より求まる。
  FC=FCt(t、R)=FC(t・Ro/R)      (11)
 ここで、既知のRoは、通常温度でのコイル抵抗の値であり、FC(t)は、通常温度環境での印加した電圧に対する時間tと電磁吸引力FCの関係式である。
 このように、時間tと電磁吸引力FCの関係式を、抵抗Rの変化による時定数の変化割合分だけ変化させることで、温度が変化しても、正確な電磁吸引力FCを算出できるようになる。
 そこで、ステップS7cにおいて、ブレーキドラムを保持している時の制動トルクTBの算出は、次のようにして行われる。まず、アンバランストルクTAと制動トルクTBが釣合ったときの電磁吸引力FCを、モータが回転を開始するまでの時間tmとコイル抵抗Rを用いて、下式(12)により求める。
  FC=FCt(tm、R)                (12)
 次に、ブレーキ装置6の可動部が吸引を開始するときには、付勢力FBは、電磁吸引力FCと一致する。このことから、付勢力FBは、可動部が吸引動作を開始するまでの時間thとコイル抵抗Rを用いて、下式(13)により求まる。
 FB=FCt(th、R)                 (13)
 よって、計測した時間tmとth、およびコイル抵抗Rを用いて、下式(14)より、摩擦係数μを算出する。
  μ=TA/{(FB-FC)r}
   =TA/{(FCt(th、R)-FCt(tm、R))r}
                              (14)
 そして、算出した摩擦係数μと付勢力FBを用いて、下式(15)より、ブレーキドラムを保持している時の制動トルクTBを算出する。
  TB=rμFB
    =rTA/{(FCt(th、R)-FCt(tm、R))r}FCt(th、R)                      (15)
 ステップS7cでブレーキドラムを保持している時の制動トルクTBを計算した後は、ステップS8cに進む。状態監視部8bの検出部13は、求めたブレーキドラムを保持している時の制動トルクTBに基づいて、ブレーキ装置6の制動能力を確認する。
 このとき、検出部13は、ブレーキ装置6がかご1を保持するために必要な制動トルクTBの基準範囲を予め記憶しておき、算出したブレーキドラムを保持している時の制動トルクTBが、基準範囲内にあるか否かを判定する。そして、算出したブレーキドラムを保持している時の制動トルクTBが基準範囲内の場合には、検出部13は、ブレーキ装置6の制動能力が正常であると判断し(ステップS9c)、かご走行に移行する(ステップS10c)。
 一方、算出したブレーキドラムを保持している時の制動トルクTBが基準範囲外の場合には、検出部13は、ブレーキ装置6の制動能力が異常であると判断し(ステップS11c)、エレベータの運転を休止させ(ステップS12c)、ブレーキ装置6の制動能力が異常であることを、保守会社等の所定の場所に向けて発報する。
 このように、ブレーキコイルを用いて時間tと電磁吸引力FCの関係式を補正してブレーキドラムを保持している時の制動トルクTBを求めることで、温度変動に対応したブレーキドラムを保持している時の制動トルクTBを算出できる。このため、温度変化がある場合にも、正確にブレーキ装置6の制動能力を検出できる。
 また、2つのブレーキ装置6への電流iの供給を交互にずらすことで、一方のブレーキ装置6ばかりを診断することを防ぎ、2回の診断で、両方のブレーキ装置6の制動能力を検出可能となる。
 なお、本実施の形態4では、時間t、コイル抵抗Rと電磁吸引力FCの関係式FCt(t、R)を用いて電磁吸引力FCを算出したが、これに限定されない。複数の温度に対する時間tと電磁吸引力FCの関係を記録したデータテーブルを記憶しておき、検出した抵抗Rから対応する温度のデータテーブルを選択し、時間tとデータテーブルを用いて電磁吸引力FCを算出してもよい。
 また、本実施の形態4では、ブレーキドラムを保持している時の制動トルクTBを用いてブレーキ装置6の制動能力を検出したが、これに限定されるわけではなく、上式(14)で求めた摩擦係数μを用いてブレーキ装置6の制動能力を検出してもよい。
 また、本実施の形態4では、2つのブレーキ装置6を有する場合を説明したが、ブレーキ装置6の数は、2つに限定されるわけではなく、3つ以上のブレーキ装置6を有する場合にも、同様の手法を適用することができる。
 実施の形態5.
 先の実施の形態3では、モータがアンバランストルクTAによって回転を始めるまでの時間tmと、ブレーキ装置6の可動部が吸引動作を開始するまでの時間thとを用いて、電磁吸引力の関数FC(t)よりそれぞれの時間での電磁力を算出し、ブレーキ装置6の制動能力を検出する場合について説明した。これに対して、本実施の形態5では、モータがアンバランストルクTAによって回転を始めるまでの時間tmのみを用いて、ブレーキ装置6の制動能力を検出する場合について説明する。
 図8は、本発明の実施の形態5に係るエレベータ制御装置の一連動作の流れを示すフローチャートである。この図8のフローチャートは、先の実施の形態1における図2のフローチャート、先の実施の形態2における図3のフローチャート、先の実施の形態3における図5のフローチャート、および先の実施の形態4における図7のフローチャートと同様に、エレベータが走行前であり、かつ、戸閉停止状態にあるときに起動可能である。
 この戸閉停止状態から、かご走行に移行する状態において、ブレーキ制御9は、ブレーキ装置6のブレーキコイルへ印加する電圧を制御し、ブレーキコイルに流れる電流を増加させるように制御するとともに、検出部13は、ブレーキコイルに電流iが供給されてからの時間の計測を開始する(ステップS1d)。
 ブレーキコイルの電流が増加することで、ブレーキ装置6は、徐々に開放され、ブレーキ装置6による制動トルクTBは、徐々に減少していく。ブレーキ装置6による制動トルクTBが減少していくと、ある時点で、制動トルクTBとアンバランストルクTAとが等しくなり、釣り合う。さらに、この状態からブレーキコイルへの電流iを大きくし、制動トルクTBがアンバランストルクTAをわずかでも下回ると、巻上機2のモータが回転を始める。
 状態監視部8bの検出部13は、回転検出器7からの出力を監視することにより、モータが回転を始めるタイミングを検知し、ブレーキ制御部9がブレーキコイルへの電流供給を開始してから、モータが回転を始めたときまでの時間(つまり、制動トルクTBとアンバランストルクTAとが釣合うまでの時間)tmを測定し、これを記録する(ステップS2d)。
 モータが回転を開始すると同時に、モータ制御部10は、モータの回転を停止させるように、モータを制御し、モータトルクによってアンバランストルクTAを打ち消すことで、モータを停止させ、かご1を静止保持する(ステップS3d)。
 ブレーキ制御部9は、モータの回転検出後も、ブレーキコイルへ供給する電流を増加させていく。コイル電流が増加することで電磁吸引力が増大していくと、電磁吸引力がばねの付勢力よりも大きくなり、ブレーキ装置6の可動部は、ブレーキコイルに吸引される。可動部吸引完了後は、吸引状態を保持しておく。そして、可動部を吸引保持した後、検出部13は、アンバランス検出器12により、巻上機2に作用しているアンバランストルクTAを計測する(ステップS4d)。
 そして、検出部13は、ブレーキ装置6のブレーキドラムと可動部との間の摩擦係数μを算出する(ステップS5d)。
 検出部13は、ブレーキ制御部9が印加するブレーキコイルへの電圧波形に対する時間tと電磁吸引力FCとの関係式FC(t)を記録しておく。そして、検出部13は、ステップS2dで記録したモータが回転を開始するまでの時間tmより、アンバランストルクTAと制動トルクTBが釣合っているときの電磁吸引力FCを算出する。すなわち、電磁吸引力FCは、時間tと電磁吸引力FCの関係式FC(t)を用いて、下式(16)により求まる。
  FC=FC(tm)                   (16)
 また、検出部13は、ばねによる付勢力FBに関して、付勢力FBの設定値を事前に記憶しておき、計測した時間tmを用いて、下式(17)より、摩擦係数μを算出する。
  μ=TA/{(FB-FC)r}
   =TA/{(FB-FC(tm))r}         (17)
 ステップS5dで摩擦係数μを計算した後は、ステップS6dに進む。そして、検出部13は、求めた摩擦係数μに基づいて、ブレーキ装置6の制動能力を確認する。
 検出部13は、ブレーキ装置6がかご1を保持するために必要な摩擦係数μの基準範囲をあらかじめ記憶しておき、算出した摩擦係数μが、基準範囲内にあるか否かを判定する。そして、算出した摩擦係数μが基準範囲内の場合には、検出部13は、ブレーキ装置6の制動能力が正常であると判断し(ステップS7d)、かご走行に移行する(ステップS8d)。
 一方、算出した摩擦係数μが基準範囲外の場合には、検出部13は、ブレーキ装置6の制動能力が異常であると判断し(ステップS9d)、エレベータの運行を休止させ(ステップS10d)、ブレーキ装置6の制動能力が異常であることを、保守会社等の所定の場所に向けて発報する。
 このように、モータがアンバランストルクTAで回転を始めるまでの時間tmのみからブレーキ装置6の制動能力を検出することもできる。このため、ブレーキ装置6の可動部が吸引動作を開始するまでの時間thの計測が必要なく、モータが回転を開始するまでの時間tmを計測するだけでよく、容易にブレーキ装置6の制動能力を検出できることとなる。

Claims (9)

  1.  エレベータの昇降路内に配置されたかごおよび釣合おもりと、
     前記かごおよび前記釣合おもりの昇降を駆動する巻上機と、
     前記巻上機のモータを制動するブレーキ装置と、
     前記モータの回転数を検出する回転検出器と、
     前記ブレーキ装置の制動能力を検出する状態監視部と
     を備えたエレベータ制御装置であって、
     前記ブレーキ装置は、ばねの付勢力によって前記ばねの付勢力に抗して前記可動部を吸引し制動を解除するように構成されており、
     前記状態監視部は、
      前記ブレーキ装置の前記ブレーキコイルへの電流を制御することで、前記ブレーキ装置の制動力を制御するブレーキ制御部と、
      前記かご側と前記釣合おもり側との間の重量不均衡によって前記モータに作用するアンバランストルクをアンバランストルク情報として検出するアンバランストルク検出器と、
      前記かごが前記ブレーキ装置による制動力で停止されており、前記かご側と前記釣合おもり側に重量不均衡がある状態で、前記ブレーキ制御部による前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていき、開放開始から前記回転検出器により前記モータが回転を始めたことが検出されるまでの時間を経過時間情報として計測するとともに、前記経過時間情報と電磁吸引力の対応関係より前記ブレーキコイルの電磁吸引力を算出し、前記アンバランストルク検出器から取得した前記アンバランストルク情報と算出した前記ブレーキコイルの電磁吸引力とから求まる、前記モータが回転を始めた時の前記ブレーキ装置の力の釣合関係より、前記ブレーキ装置の制動能力を検出する検出部と
     を含むエレベータ制御装置。
  2.  前記検出部は、前記ブレーキ装置の制動能力を測定する際に、前記ブレーキ制御部による前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていくときに、前記開放開始から前記回転検出器により前記モータが回転を始めたことが検出されるまでの時間および前記開放開始から前記ブレーキ装置の前記可動部の吸引が開始されるまでの時間をそれぞれ経過時間情報として計測するとともに、前記ブレーキコイルの経過時間と電磁吸引力の対応関係よりそれぞれの経過時間での前記ブレーキコイルの電磁吸引力を算出し、前記アンバランストルク検出器から取得した前記アンバランストルク情報と算出した前記ブレーキコイルの電磁吸引力とから求まる、前記モータが回転を始めた時の前記ブレーキ装置の力の釣合関係より、前記ブレーキ装置の制動能力を検出する
     請求項1に記載のエレベータ制御装置。
  3.  前記検出部は、前記ブレーキ制御部が前記ブレーキコイルに印加した電圧と前記ブレーキコイルに流れる電流から前記ブレーキコイルの抵抗値を検出し、検出した前記ブレーキコイルの抵抗値によって、事前に記憶した前記ブレーキコイルの経過時間と電磁吸引力の対応関係を補正し、補正した前記対応関係と計測した前記経過時間情報より前記ブレーキコイルの電磁吸引力を算出する
     請求項1または2に記載のエレベータ制御装置。
  4.  エレベータの昇降路内に配置されたかごおよび釣合おもりと、
     前記かごおよび前記釣合おもりの昇降を駆動する巻上機と、
     前記巻上機のモータを制動するブレーキ装置と、
     前記モータの回転数を検出する回転検出器と、
     前記ブレーキ装置の制動能力を検出する状態監視部と
     を備えたエレベータ装置であって、
     前記ブレーキ装置は、ばねの付勢力によってブレーキドラムに可動部を押圧することで制動力を発生させ、ブレーキコイルに電流を流すことによって前記ばねの付勢力に抗して前記可動部を吸引し制動を解除するように構成されており、
     前記状態監視部は、
      前記ブレーキ装置の前記ブレーキコイルへの電流を制御することで、前記ブレーキ装置の制動力を制御するブレーキ制御部と、
      前記かご側と前記釣合おもり側との間の重量不均衡によって前記モータに作用するアンバランストルクをアンバランストルク情報として検出するアンバランストルク検出器と、
      前記ブレーキ装置における前記可動部と前記ブレーキコイルとの間のギャップをギャップ情報として検出するギャップ検出器と、
      前記かごが前記ブレーキ装置による制動力で停止されており、前記かご側と前記釣合おもり側に重量不均衡がある状態で、前記ブレーキ制御部による前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていき、前記回転検出器により前記モータが回転を始めたことが検出された際の前記ブレーキコイルの電流情報を前記ブレーキ制御部より取得するとともに、前記ブレーキコイルの電流情報および前記ギャップ情報と電磁吸引力との対応関係より前記ブレーキコイルの電磁吸引力を算出し、前記アンバランストルク検出器から取得した前記アンバランストルク情報と算出した前記ブレーキコイルの電磁吸引力とから求まる、前記モータが回転を始めた時の前記ブレーキ装置の力の釣合関係より、前記ブレーキ装置の制動能力を検出する検出部と
     を含むエレベータ制御装置。
  5.  前記検出部は、前記ブレーキ装置の制動能力を測定する際に、前記ブレーキ制御部による前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていくときに、前記回転検出器により前記モータが回転を始めたことが検出された際および前記ブレーキ装置の前記可動部が吸引を開始した際のそれぞれの前記ブレーキコイルの電流情報を前記ブレーキ制御部より取得するとともに、前記ブレーキコイルの電流情報および前記ギャップ情報と電磁吸引力の対応関係よりそれぞれのタイミングでの前記ブレーキコイルの電磁吸引力を算出し、前記アンバランストルク検出器から取得した前記アンバランストルク情報と算出した前記ブレーキコイルの電磁吸引力とから求まる、前記モータが回転を始めた時の前記ブレーキ装置の力の釣合関係より、前記ブレーキ装置の制動能力を検出する
     請求項4に記載のエレベータ制御装置。
  6.  前記ギャップ検出器は、前記ブレーキ制御部が前記ブレーキコイルに印加した電圧と前記ブレーキコイルに流れる電流から前記ブレーキコイルの抵抗値を検出し、検出した前記ブレーキコイルの抵抗値から前記ブレーキ装置が前記モータを制動しているときの前記ギャップを検出する
     請求項4または5に記載のエレベータ制御装置。
  7.  前記状態監視部は、前記ブレーキ制御部による前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていき、前記回転検出器により前記モータが回転を始めたことが検出された後に、前記モータの回転を停止保持するように制御するモータ制御部をさらに含む
     請求項1から6のいずれか1項に記載のエレベータ制御装置。
  8.  エレベータの昇降路内に配置されたかごおよび釣合おもりと、
     前記かごおよび前記釣合おもりの昇降を駆動する巻上機と、
     前記巻上機のモータを制動するブレーキ装置と、
     前記モータの回転数を検出する回転検出器と、
     前記ブレーキ装置の制動能力を検出する状態監視部と
     を備えたエレベータ制御装置において実行されるエレベータ制御方法であって、
     前記ブレーキ装置は、ばねの付勢力によって前記ばねの付勢力に抗して前記可動部を吸引し制動を解除するように構成されており、
     前記状態監視部において、
      前記ブレーキ装置の前記ブレーキコイルへの電流を制御することで、前記ブレーキ装置の制動力を制御するブレーキ制御ステップと、
      前記かご側と前記釣合おもり側との間の重量不均衡によって前記モータに作用するアンバランストルクを、アンバランストルク検出器を介してアンバランストルク情報として検出するアンバランストルク検出ステップと、
      前記かごが前記ブレーキ装置による制動力で停止されており、前記かご側と前記釣合おもり側に重量不均衡がある状態で、前記ブレーキ制御ステップにおいて前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていき、開放開始から前記回転検出器により前記モータが回転を始めたことが検出されるまでの時間を経過時間情報として計測するとともに、前記経過時間情報と電磁吸引力の対応関係より前記ブレーキコイルの電磁吸引力を算出し、前記アンバランストルク検出ステップにおいて前記アンバランストルク検出器から取得した前記アンバランストルク情報と算出した前記ブレーキコイルの電磁吸引力とから求まる、前記モータが回転を始めた時の前記ブレーキ装置の力の釣合関係より、前記ブレーキ装置の制動能力を検出する検出ステップと
     を含むエレベータ制御方法。
  9.  エレベータの昇降路内に配置されたかごおよび釣合おもりと、
     前記かごおよび釣合おもりの昇降を駆動する巻上機と、
     前記巻上機のモータを制動するブレーキ装置と、
     前記モータの回転数を検出する回転検出器と、
     前記ブレーキ装置の制動能力を検出する状態監視部と
     を備えたエレベータ制御装置において実行されるエレベータ制御方法であって、
     前記ブレーキ装置は、ばねの付勢力によってブレーキドラムに可動部を押圧することで制動力を発生させ、ブレーキコイルに電流を流すことによって前記ばねの付勢力に抗して前記可動部を吸引し制動を解除するように構成されており、
     前記状態監視部において、
      前記ブレーキ装置の前記ブレーキコイルへの電流を制御することで、前記ブレーキ装置の制動力を制御するブレーキ制御ステップと、
      前記かご側と前記釣合おもり側との間の重量不均衡によって前記モータに作用するアンバランストルクを、アンバランストルク検出器を介してアンバランストルク情報として検出するアンバランストルク検出ステップと、
      前記ブレーキ装置における前記可動部と前記ブレーキコイルとの間のギャップを、ギャップ検出器を介してギャップ情報として検出するギャップ検出ステップと、
      前記かごが前記ブレーキ装置による制動力で停止されており、前記かご側と前記釣合おもり側に重量不均衡がある状態で、前記ブレーキ制御ステップにおいて前記ブレーキコイルへの電流を制御して前記ブレーキ装置による制動を開放させていき、前記回転検出器により前記モータが回転を始めたことが検出された際の前記ブレーキコイルの電流情報を前記ブレーキ制御ステップより取得するとともに、前記ブレーキコイルの電流情報および前記ギャップ情報と電磁吸引力との対応関係より前記ブレーキコイルの電磁吸引力を算出し、前記アンバランストルク検出ステップにおいて前記アンバランストルク検出器から取得した前記アンバランストルク情報と算出した前記ブレーキコイルの電磁吸引力とから求まる、前記モータが回転を始めた時の前記ブレーキ装置の力の釣合関係より、前記ブレーキ装置の制動能力を検出する検出ステップと
     を含むエレベータ制御方法。
PCT/JP2014/080160 2014-02-06 2014-11-14 エレベータ制御装置およびエレベータ制御方法 WO2015118746A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014005147.0T DE112014005147B4 (de) 2014-02-06 2014-11-14 Aufzugsteuerungsvorrichtung und Aufzugsteuerungsverfahren
CN201480058981.3A CN105683077B (zh) 2014-02-06 2014-11-14 电梯控制装置和电梯控制方法
JP2015561161A JP6029777B2 (ja) 2014-02-06 2014-11-14 エレベータ制御装置、エレベータシステム、およびエレベータ制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021216 2014-02-06
JP2014021216 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015118746A1 true WO2015118746A1 (ja) 2015-08-13

Family

ID=53777564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080160 WO2015118746A1 (ja) 2014-02-06 2014-11-14 エレベータ制御装置およびエレベータ制御方法

Country Status (4)

Country Link
JP (1) JP6029777B2 (ja)
CN (1) CN105683077B (ja)
DE (1) DE112014005147B4 (ja)
WO (1) WO2015118746A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216162A1 (ja) * 2017-05-25 2018-11-29 三菱電機株式会社 エレベータの制御装置
WO2018235183A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 エレベータ制御装置及びエレベータ制御方法
WO2020079842A1 (ja) * 2018-10-19 2020-04-23 三菱電機株式会社 エレベーターのブレーキ装置異常診断システム
JP2020185656A (ja) * 2019-05-17 2020-11-19 トヨタ自動車株式会社 ロボットの診断方法
US20210101782A1 (en) * 2019-10-04 2021-04-08 Otis Elevator Company Electromagnetic brake temperature monitoring system and method
CN113614014A (zh) * 2019-03-29 2021-11-05 三菱电机株式会社 电梯控制装置
CN113635327A (zh) * 2021-09-23 2021-11-12 上海卓昕医疗科技有限公司 多自由度机器人和手术辅助定位系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102084917B1 (ko) * 2016-06-30 2020-03-05 미쓰비시덴키 가부시키가이샤 엘리베이터의 제어 장치
WO2018100632A1 (ja) * 2016-11-29 2018-06-07 三菱電機株式会社 エレベータ制御装置およびエレベータ制御方法
KR102458398B1 (ko) * 2018-05-09 2022-10-24 미쓰비시덴키 가부시키가이샤 엘리베이터 장치 및 비상 정지 장치의 시험 방법
CN109292573B (zh) * 2018-11-30 2020-12-22 日立楼宇技术(广州)有限公司 一种制动器线圈检测方法、装置、设备和存储介质
CN113979250B (zh) * 2021-10-29 2023-03-24 杭州赛翔科技有限公司 基于油温的液压电梯启停调速控制方法
CN117985559A (zh) * 2024-04-02 2024-05-07 深圳市博安智控科技有限公司 一种应用于楼宇的电梯管理方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168501A (ja) * 2002-11-20 2004-06-17 Mitsubishi Electric Building Techno Service Co Ltd エレベータのブレーキトルク測定装置および測定方法
WO2013066321A1 (en) * 2011-11-02 2013-05-10 Otis Elevator Company Brake torque monitoring and health assessment
WO2013088823A1 (ja) * 2011-12-12 2013-06-20 三菱電機株式会社 電磁ブレーキ状態診断装置およびその方法
JP2014502241A (ja) * 2010-12-03 2014-01-30 インベンテイオ・アクテイエンゲゼルシヤフト エレベータを動作させる方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101978A1 (ja) 2010-02-19 2011-08-25 三菱電機株式会社 エレベーター装置
JP5743319B2 (ja) * 2011-03-02 2015-07-01 東芝エレベータ株式会社 エレベータシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168501A (ja) * 2002-11-20 2004-06-17 Mitsubishi Electric Building Techno Service Co Ltd エレベータのブレーキトルク測定装置および測定方法
JP2014502241A (ja) * 2010-12-03 2014-01-30 インベンテイオ・アクテイエンゲゼルシヤフト エレベータを動作させる方法
WO2013066321A1 (en) * 2011-11-02 2013-05-10 Otis Elevator Company Brake torque monitoring and health assessment
WO2013088823A1 (ja) * 2011-12-12 2013-06-20 三菱電機株式会社 電磁ブレーキ状態診断装置およびその方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216162A1 (ja) * 2017-05-25 2018-11-29 三菱電機株式会社 エレベータの制御装置
JPWO2018216162A1 (ja) * 2017-05-25 2019-11-07 三菱電機株式会社 エレベータの制御装置
WO2018235183A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 エレベータ制御装置及びエレベータ制御方法
JPWO2018235183A1 (ja) * 2017-06-21 2019-06-27 三菱電機株式会社 エレベータ制御装置及びエレベータ制御方法
WO2020079842A1 (ja) * 2018-10-19 2020-04-23 三菱電機株式会社 エレベーターのブレーキ装置異常診断システム
JP7056753B6 (ja) 2018-10-19 2022-06-10 三菱電機株式会社 エレベーターのブレーキ装置異常診断システム
JP7056753B2 (ja) 2018-10-19 2022-04-19 三菱電機株式会社 エレベーターのブレーキ装置異常診断システム
CN112805233A (zh) * 2018-10-19 2021-05-14 三菱电机株式会社 电梯的制动装置异常诊断系统
JPWO2020079842A1 (ja) * 2018-10-19 2021-09-16 三菱電機株式会社 エレベーターのブレーキ装置異常診断システム
CN113614014A (zh) * 2019-03-29 2021-11-05 三菱电机株式会社 电梯控制装置
CN113614014B (zh) * 2019-03-29 2023-08-29 三菱电机株式会社 电梯控制装置
JP2020185656A (ja) * 2019-05-17 2020-11-19 トヨタ自動車株式会社 ロボットの診断方法
US20210101782A1 (en) * 2019-10-04 2021-04-08 Otis Elevator Company Electromagnetic brake temperature monitoring system and method
CN113635327A (zh) * 2021-09-23 2021-11-12 上海卓昕医疗科技有限公司 多自由度机器人和手术辅助定位系统

Also Published As

Publication number Publication date
DE112014005147T5 (de) 2016-08-18
CN105683077A (zh) 2016-06-15
JP6029777B2 (ja) 2016-11-24
DE112014005147B4 (de) 2020-06-10
JPWO2015118746A1 (ja) 2017-03-23
CN105683077B (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
JP6029777B2 (ja) エレベータ制御装置、エレベータシステム、およびエレベータ制御方法
JP5653537B2 (ja) 電磁ブレーキ状態診断装置およびその方法
JP5025860B2 (ja) エレベータの診断方法
JP4574636B2 (ja) エレベーター装置
JP6603483B2 (ja) 異常検出装置、および異常検出方法
WO2017175845A1 (ja) ロボット制御装置および同制御装置を備えたロボット
JPWO2011101978A1 (ja) エレベーター装置
JP6537458B2 (ja) エレベータ制御装置、エレベータ監視システム、及びエレベータ制御方法
CN106006262A (zh) 电梯控制装置、电梯监视系统及电梯控制方法
JP6573729B2 (ja) エレベータ制御装置及びエレベータ制御方法
JP6216238B2 (ja) エレベーター
JP2005001823A (ja) エレベータ装置のブレーキ診断装置
CN105793183A (zh) 电梯装置及其控制方法
JP6368007B1 (ja) ブレーキ故障予兆診断装置
CN106495047B (zh) 电梯制动器释放监控
JP5098376B2 (ja) エレベーターの制御装置
JP2018099748A (ja) ブレーキ付きモータのブレーキ診断システム及び方法
WO2012131840A1 (ja) エレベータ装置
JP6449806B2 (ja) エレベータ装置及びその動作制御方法
JP4974745B2 (ja) 乗客コンベア用マグネットブレーキの診断装置
JPH0930750A (ja) エレベーターのブレーキ特性評価装置
JP7036248B1 (ja) 診断装置
JP2014118299A (ja) エレベータ装置
JP2003130096A (ja) モータ用ブレーキの寿命判定方法及び装置
JP2014101210A (ja) エレベータの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561161

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005147

Country of ref document: DE

Ref document number: 1120140051470

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882021

Country of ref document: EP

Kind code of ref document: A1